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BRIEF DEFINITIVE REPORT

Humans with inherited MyD88 and IRAK-4
deficiencies are predisposed to hypoxemic COVID-19
pneumonia
Ana Garćıa-Garćıa1,2,3, Rebeca Pérez de Diego4*, Carlos Flores5,6,7,8*, Darawan Rinchai9, Jordi Solé-Violán7,8,10, Àngela Deyà-Mart́ınez1,2,3,
Blanca Garćıa-Solis4, José M. Lorenzo-Salazar5, Elisa Hernández-Brito11, Anna-Lisa Lanz12, Leen Moens13, Giorgia Bucciol13,14,
Mohamed Almuqamam15, Joseph B. Domachowske16, Elena Colino17, Juan Luis Santos-Perez18, Francisco M. Marco19,20, Claudio Pignata21,
Aziz Bousfiha22,23, Stuart E. Turvey24, Stefanie Bauer25, Filomeen Haerynck26,27, Javier Gonzalo Ocejo-Vinyals28, Francisco Lendinez29,
Seraina Prader30, Nora Naumann-Bartsch25, Jana Pachlopnik Schmid30, Catherine M. Biggs24, Kyla Hildebrand24, Alexandra Dreesman31,
Miguel Ángel Cárdenes32, Fatima Ailal22,23, Ibtihal Benhsaien22,23, Giuliana Giardino21, Agueda Molina-Fuentes33, Claudia Fortuny2,34,35,36,
Swetha Madhavarapu15, Daniel H. Conway15, Carolina Prando37, Laire Schidlowski37, Maŕıa Teresa Mart́ınez de Saavedra Álvarez11,
Rafael Alfaro11, Felipe Rodŕıguez de Castro38,39, ESID Registry Working Party, COVID Human Genetic Effort, Isabelle Meyts13,14, Fabian Hauck12,
Anne Puel9,40,41, Paul Bastard9,40,41,42, Bertrand Boisson9,40,41, Emmanuelle Jouanguy9,40,41, Laurent Abel9,40,41, Aurélie Cobat40,41,
Qian Zhang9,40,41**, Jean-Laurent Casanova9,40,41,43,44**, Laia Alsina1,2,3,36**, and Carlos Rodŕıguez-Gallego8,11,38**

X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4–dependent endosomal ssRNA sensor, impairs SARS-CoV-2
recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19
pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4
deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on
three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of
whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also
much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8–207.8, P < 0.001). The
patients’ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do
not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively
vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.

Introduction
Less than 10% of individuals infected with SARS-CoV-2 develop
hypoxemic COVID-19 pneumonia, which may be severe (about
7%) or critical (3%) (Zhang et al., 2022a). Age is the major epi-
demiological risk factor for hospitalization or death from
COVID-19 pneumonia, the risk doubling with every 5 yr of age,
from childhood onwards (Zhang et al., 2020a; Knock et al., 2021;
Le Vu et al., 2021; O’Driscoll et al., 2021; Sah et al., 2021). The
infection fatality rate in unvaccinated individuals is 0.001% at 5
yr of age and 10% at 85 yr of age (a 10,000-fold increase; Bennett
et al., 2021; Knock et al., 2021; Le Vu et al., 2021; Navaratnam
et al., 2021; O’Driscoll et al., 2021). Most children, adolescents,
and young adults with SARS-CoV-2 infection are asymptomatic

or present a benign upper respiratory tract disease (Brotons
et al., 2021; Chua et al., 2021; Mantovani et al., 2020; Schober
et al., 2022; Woodruff et al., 2022). The proportion of asymp-
tomatic infections is greater in children than in adults (Sah et al.,
2021). However, interindividual clinical variability remains
vast, for all age categories. Various comorbid conditions operate
as modest risk factors, with odds ratios (ORs) typically <1.5 and
always <2. Men have a 1.5× higher risk of death than women,
after correction for other risk factors (Zhang et al., 2020a, 2022a;
Brodin, 2021). Likewise, the contribution of common genetic variants
detected by genome-wide association studies is modest, the most
robustly associated region being a Neanderthal haplotype on
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© 2023 Garćıa Garćıa et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/
licenses/by/4.0/).

Rockefeller University Press https://doi.org/10.1084/jem.20220170 1 of 19

J. Exp. Med. 2023 Vol. 220 No. 5 e20220170

https://orcid.org/0000-0002-9900-9376
https://orcid.org/0000-0001-8426-8765
https://orcid.org/0000-0001-5352-069X
https://orcid.org/0000-0001-8851-7730
https://orcid.org/0000-0002-0483-4470
https://orcid.org/0000-0002-8026-7674
https://orcid.org/0000-0002-3718-2560
https://orcid.org/0000-0002-5135-2861
https://orcid.org/0000-0002-8435-6885
https://orcid.org/0000-0002-2933-1167
https://orcid.org/0000-0002-5347-6526
https://orcid.org/0000-0001-5004-0738
https://orcid.org/0000-0002-9011-0830
https://orcid.org/0000-0003-1510-1309
https://orcid.org/0000-0002-9299-0800
https://orcid.org/0000-0002-7654-961X
https://orcid.org/0000-0001-5113-3637
https://orcid.org/0000-0003-1568-9843
https://orcid.org/0000-0002-5011-9873
https://orcid.org/0000-0003-1599-1065
https://orcid.org/0000-0002-9155-9138
https://orcid.org/0000-0001-9161-7361
https://orcid.org/0000-0003-2245-4639
https://orcid.org/0000-0002-1597-636X
https://orcid.org/0000-0002-2950-5411
https://orcid.org/0000-0001-5606-9822
https://orcid.org/0000-0002-6653-9047
https://orcid.org/0000-0002-4363-2660
https://orcid.org/0000-0003-3825-8202
https://orcid.org/0000-0002-1885-7462
https://orcid.org/0000-0003-1633-6214
https://orcid.org/0000-0001-5824-3193
https://orcid.org/0000-0001-5727-9629
https://orcid.org/0000-0002-0621-9527
https://orcid.org/0000-0001-9686-6156
https://orcid.org/0000-0001-7182-5745
https://orcid.org/0000-0001-8121-4374
https://orcid.org/0000-0001-7930-4071
https://orcid.org/0000-0002-9570-9770
https://orcid.org/0000-0002-0452-0164
https://orcid.org/0000-0001-8579-226X
https://orcid.org/0000-0002-8298-8918
https://orcid.org/0000-0002-6812-2739
https://orcid.org/0000-0003-1214-0302
https://orcid.org/0000-0001-9644-2003
https://orcid.org/0000-0003-2603-0323
https://orcid.org/0000-0002-5926-8437
https://orcid.org/0000-0001-5240-3555
https://orcid.org/0000-0002-7358-9157
https://orcid.org/0000-0001-7016-6493
https://orcid.org/0000-0001-7209-6257
https://orcid.org/0000-0002-9040-3289
https://orcid.org/0000-0002-7782-4169
https://orcid.org/0000-0002-3559-0018
https://orcid.org/0000-0002-4344-8644
mailto:casanova@rockefeller.edu
mailto:jrodgal@gobiernodecanarias.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1084/jem.20220170
http://crossmark.crossref.org/dialog/?doi=10.1084/jem.20220170&domain=pdf


chromosome 3 conferring predispositionwith an OR around 2 (2.7 in
patients <60 yr and 1.5 in patients >60 yr; Nakanishi et al., 2021).

A first molecular explanation for critical COVID-19 pneu-
monia was provided by inborn errors of TLR3- and/or TLR7-
dependent type I IFN immunity, including autosomal recessive
(AR) IRF7 and IFNAR1 deficiencies, in about 1–5% of patients,
this proportion being lower for individuals over 60 yr of age
(Zhang et al., 2020a, 2020b; Asano et al., 2021). This led to the
discovery of pre-existing autoantibodies (auto-Abs) against type
I IFNs in about 15–20% of patients, with a higher proportion in
patients over 70 yr of age (Bastard et al., 2021b, 2022; Bourgeois
et al., 2021; Solanich et al., 2021b) and in patients with “break-
through” hypoxemic COVID-19 pneumonia whose response to
RNA vaccines was normal (Bastard et al., 2022). In particular, we
found X-linked recessive (XR) TLR7 deficiency in about 1.8% of
male patients below the age of 60 yr and in 8.9% of boys (<16 yr)
in the COVID Human Genetic Effort (CHGE) consortium cohort
(https://www.covidhge.com; Asano et al., 2021; Zhang et al.,
2022b). The proportion of patients with combined AR and XR
inborn errors of type I IFNs is particularly high in children in
this cohort, accounting for 10% of cases of hospitalization for
COVID-19 pneumonia (Zhang et al., 2022b). TLR7 is a MyD88/
IRAK-4–dependent endosomal receptor for single-stranded RNA
in blood plasmacytoid dendritic cells (pDCs), which do not ex-
press TLR3 (Asano et al., 2021; Beutler, 2004; Diebold et al., 2004;
Reizis, 2019). Conversely, TLR3 is an endosomal receptor of
dsRNA in tissue respiratory epithelial cells (RECs), which do not
express TLR7 (Zhang et al., 2007a; Guo et al., 2011; Kyung Lim
et al., 2019). This genetic approach therefore suggested that both
pDCs and tissue respiratory epithelial cells are crucial for type I
IFN immunity to SARS-CoV-2 in the respiratory tract (Asano
et al., 2021; Casanova and Abel, 2021, 2022; Zhang et al., 2022a).

MyD88 and IRAK-4 are crucial for signaling through the
canonical Toll/IL-1 receptor pathway mediated by the 10 human
TLRs (including TLR7) other than TLR3, and the IL-1Rs, IL-18R
and IL-33R (Beutler, 2004; Kawai and Akira, 2011). Human-
inherited MyD88 and IRAK-4 deficiencies are immunological
and clinical phenocopies (Alsina et al., 2014; Picard et al., 2010).
Affected patients are particularly prone to invasive staphylo-
coccal and pneumococcal bacterial infections in childhood.
However, infections become rarer after adolescence (Ku et al.,
2007; von Bernuth et al., 2008, 2012, Picard et al., 2010, 2011).
Remarkably, due to the abolition of responses driven by TLRs
except TLR3, and by all IL-1Rs (in response to all IL-1 paralogs, IL-
18, and IL-33), clinical and laboratory signs of inflammation
develop slowly in these patients, even during bacterial disease
(Picard et al., 2010). Surprisingly, unusually severe viral, fungal,
and parasitic diseases have been reported only rarely in patients
with MyD88 or IRAK-4 deficiency (Bucciol et al., 2022a;
Nishimura et al., 2021; Picard et al., 2010; Tepe et al., 2022; Yang
et al., 2005; Zhang et al., 2007a). The only virus reported to
cause disease in more than one patient to date is HHV6
(Nishimura et al., 2021; Tepe et al., 2022). The apparent lack of
severe viral disease in other known patients is particularly in-
triguing, as responses to TLR7, TLR8, and TLR9were abolished in
the cells of these patients (Casanova et al., 2011; Yang et al., 2005).
Moreover, the four loci encoding the endosomal TLRs sensing
nucleic acids—TLR3, TLR7, TLR8, and TLR9—are under stronger
negative selection than other TLR loci (Quach et al., 2013).

Indeed, MyD88- and IRAK-4–deficient cells, including fibro-
blasts and leukocytes, do not produce type I IFN in response to
the endosomal TLR7, TLR8, and TLR9 nucleic acid sensors, but
they respond normally to TLR3 stimulation (Von Bernuth et al.,
2008; Yang et al., 2005). Until recently, the production of type I

.............................................................................................................................................................................
1Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain;
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IFN in response to specific viruses had never been tested for
pDCs from patients with MyD88 or IRAK-4 deficiency. pDCs
from an IRAK-4–deficient patient were recently shown not to
produce type I IFN in response to SARS-CoV-2 (Onodi et al., 2021).
Similar findings were obtained for an UNC-93B–deficient patient,
whose cells failed to respond to TLR3, TLR7, TLR8, and TLR9
stimulation (Casrouge et al., 2006; Onodi et al., 2021). Nevertheless,
the clinical impact of SARS-CoV-2 infection in patientswithMyD88
or IRAK-4 deficiency is unclear. Only brief reports have emerged, of
three patients in meeting abstracts (Mahmood et al., 2021) or five
patients in case reports (Bucciol et al., 2022a; Deyà-Mart́ınez et al.,
2021; Goudouris et al., 2021; Milito et al., 2021), describing clinical
phenotypes ranging from moderate to critical pneumonia. These
patients would be predicted to be prone to hypoxemic COVID-19
pneumonia, due to their complete lack of TLR7-dependent SARS-
CoV-2 sensing by pDCs (Asano et al., 2021; Onodi et al., 2021).
However, their lack of TLR- and IL-1R–mediated inflammation
might, perhaps, mitigate this vulnerability to some extent. We re-
port here the natural course of SARS-CoV-2 infection in these and
other patients, for a total of 22 patients from 17 kindreds and eight
countries on three continents.

Results
Patients with inherited MyD88 or IRAK-4 deficiency
Following an international call for collaboration, we obtained
data for 22 patients from 17 kindreds with inherited MyD88 (15
patients) or IRAK-4 (7 patients) deficiency, from Spain (7 pa-
tients and 6 kindreds), the USA (6 and 3), Belgium (2 and 2),
Germany (2 and 2), Canada (2 and 1), Morocco (1), Italy (1), and
Switzerland (1), all of whom were infected with SARS-CoV-2 be-
fore vaccination (Fig. 1 and Tables 1 and S1). SARS-CoV-2 infection
was diagnosed by real-time PCR (RT-PCR; 18 patients) or antigenic
assays (3 patients) on nasal swabs after the patients came into
contact with a case and/or respiratory clinical manifestations had
emerged, or by a serological test in one asymptomatic patient (P11)
during routine hospital screening (Table S1). All 10 patients tested
were seropositive for SARS-CoV-2–specific IgG/M 4–70 d after
infection (Table S1). All but 2 of the 22 patients (the exceptions
being P14 and P15) were known to suffer from MyD88 or IRAK-4
or deficiency before the start of the COVID-19 pandemic. All had
an AR, complete deficiency, and the genotypes of 10 patients have
been reported elsewhere (Yang et al., 2005; Cardenes et al., 2006;
von Bernuth et al., 2006, 2008; Ku et al., 2007; Conway et al.,
2010; Picard et al., 2010; Weller et al., 2012; Jia et al., 2020; Bucciol
et al., 2022a). The IRAK4 orMYD88 genotypes of the remaining 12
patients are reported here (Fig. 1). The 22 patients were aged 2 mo
to 24 yr (mean: 10.9 ± 6.8 yr). There were 18 (81.8%) male patients
and 4 (18.2%) female patients (Fig. 1). 16 patients were receiving
prophylaxis at the time of COVID-19 infection: 11 were on oral
antibiotics, and 15 were on IgG replacement therapy (IgRT), with
10 patients on both (Table S1). Previous viral infections in these
patients are summarized in Tables S2 and S3.

Clinical manifestations of SARS-CoV-2 infection in the patients
16 of the 22 patients were hospitalized for pneumonia, as con-
firmed by x ray or computed tomography (CT) scan, including

six with moderate pneumonia and 10 with hypoxemic pneu-
monia, which was critical and required admission to an inten-
sive care unit (ICU) in six cases. Six patients had silent or mild
infection, including one with x-ray data (P4, hospitalized as
a precaution) and five without x-ray or CT scan data. None of
the patients infected with the Omicron variant suffered from
pneumonia, whereas patients infected with other viral variants
had a wide spectrum of clinical manifestations, ranging from
silent infection to death, indicating that the viral variant in-
volved had a major impact on infection severity (Fig. 2 A). RT-
PCR cycle threshold (Ct) values were available for 10 patients
and were highly variable, even in patients with similar disease
severity (Table S1). This is not surprising, because Ct values
are dependent on both the RT-PCR platform and the RT-PCR
assay used, and on the SARS-CoV-2 genomic variant (Amorim
et al., 2022; Fomenko et al., 2022; Kogoj et al., 2022; Mohsin
andMahmud, 2022; Ong et al., 2022). Sex had no major impact
on the severity of infection, as 44.4% of male patients and 50%
of female patients developed hypoxemic pneumonia (Fig. 2 B).
By contrast, age had a major effect on disease severity in pa-
tients with MyD88/IRAK-4 deficiency. Indeed, 60% of pa-
tients under the age of 8 yr had mild infections, without
pneumonia, whereas all patients over the age of 8 yr had
pneumonia, which was hypoxemic in 50% of cases, with one
death (P17, 23 yr; Fig. 2 C). The chances of developing hypo-
xemic pneumonia were, therefore, much higher in older
patients. Thus, the risk factors for the general population,
including viral variant and age, also had a detectable impact
on the severity of COVID-19 pneumonia in MyD88- or IRAK-
4–deficient patients. The penetrance of hypoxemic pneumo-
nia was higher in older patients infected with more virulent
variants than in younger patients infected with the Omicron
variant.

Clinical course of disease in the 16 patients with COVID-19
pneumonia
The time from first symptoms to hospital admission for these 16
patients was 3.3 ± 1.7 d. For the 12 patients for whom the mode of
transmission was known (Table S1), the time from first contact
with an individual with confirmed SARS-CoV-2 infection to
hospitalization was 8.3 ± 4.7 d. The mean duration of hospital-
ization for patients withmoderate, severe, or critical pneumonia
was 5.0 (range: 3–7), 8.8 (range: 5–11), and 31.3 (range: 7–94) d,
respectively. The six patients with critical pneumonia had a
mean duration of ICU stay of 16.3 d (range: 1–28 d; Table 1). Mean
time from first symptoms to oxygen therapy in our 10 patients
with hypoxemic pneumonia was 4.0 (range: 2–7) d, and the
patients were on oxygen therapy for 16.2 (range: 3–94) d (3.3 d,
range: 3–4 d for severe pneumonia vs. 24.8 d, range: 5–94 d for
critical pneumonia, P = 0.013). The 16 patients with confirmed
pneumonia received antibiotics; 11 patients received systemic
glucocorticoids, 7 received remdesivir, 1 received tenofovir, 4
received hydroxychloroquine, 2 received tocilizumab, 1 received
baricitinib, and P19, who had moderate pneumonia, was treated
with SARS-CoV-2–neutralizing mAbs (casirivimab plus im-
devimab), 2 d after the onset of symptoms. One of the 22 patients
(P17, 23 yr old) died (Table 1). The course of SARS-CoV-2
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infection in patients with pneumonia was generally severe,
albeit with some interindividual variability.

Lack of other known genetic or immunological disorders in
the patients
We screened the patients for other genetic or immunological
disorders known to cause hypoxemic COVID-19 pneumonia
(Bastard et al., 2020, 2021b, Zhang et al., 2020b, 2022b; Asano
et al., 2021). Autoantibodies neutralizing IFN-α2, IFN-β, and

IFN-ω were not detected in any of the 12 patients tested, 3 of
whom had mild infections and 9 of whom had COVID-19 pneu-
monia (5 moderate, 2 severe, and 2 critical). We also sequenced
the exomes of 13 patients and analyzed the available exomes of
2 other patients. We screened our 15 patients for rare (MAF <
10−3 according to the gnomAD database) predicted loss-of-function
(pLOF) variants of the 478 genes known to underlie AR, au-
tosomal dominant (AD), or XR inborn errors of immunity
(IEIs; Tangye et al., 2022). Among the five patients with mild

Figure 1. ARMyD88 and IRAK-4 deficiencies and SARS-CoV-2 infection in 17 kindreds. Pedigrees of the 17 kindreds containing 7 IRAK-4– and 15 MyD88-
deficient patients with SARS-CoV-2 infection (P1–P22 are shown). Patients are identified by the number within the symbol for the individual concerned. The
mutations are indicated above each pedigree, and the genotype of each individual is identified below the symbol (M,mutation; ND, no data). Kindred N contains
five healthy sisters, indicated by the number “5” within the circle symbol.
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SARS-CoV-2 infection, three patients carried candidate variants
potentially linked to an IEI (Table S4). Noteworthy, two brothers
with mild COVID-19 (P20 and P21) carried a heterozygous vari-
ant (p.P301L) in the OAS1 gene. AR LOF mutations in OAS1
were recently shown to cause the multisystem inflammatory
syndrome in children (Lee et al., 2022); and heterozygous OAS1 gain-
of-function (GOF) variants cause a polymorphic autoinflammatory
immunodeficiency (OPAID), characterized by recurrent fever,

dermatitis, inflammatory bowel disease, pulmonary alveolar
proteinosis, and hypogammaglobulinemia (Cho et al., 2018;
Magg et al., 2021). Both patients and their parents (fully vac-
cinated against SARS-CoV-2) developed a mild SARS-CoV-2 in-
fection and did not have any of the clinical or immunological
signs of gain-of-function– or LOF-OAS1 deficiency.

Among 10 patients with COVID-19 pneumonia (5 moderate,
2 severe, and 3 critical), 4 patients carried variants that could
potentially be linked to an IEI (Table S4). Two patients, P14
(critical pneumonia) and P18 (moderate pneumonia), carried
heterozygous variants (p.R756W and p.E941K, respectively) in
RTEL1. AR and, more rarely, AD mutations in RTEL1 are associ-
ated with dyskeratosis congenita, and AD variants in RTEL1 have
also been associated with idiopathic pulmonary fibrosis, even
with a late or very late onset (Borie et al., 2019; Moore et al.,
2019; Newton et al., 2022; Stuart et al., 2015; Walne et al., 2013).
Neither the patients nor their parents had a history of any of
the cardinal features of dyskeratosis congenita or of idiopathic
pulmonary fibrosis, although no CT scans were performed.
Heterozygous variants in POL3RA and IFNAR1 were found in P15
(critical pneumonia). The variant in POLR3A found in P15 is the
same as that observed in P3 and his mother, both unvaccinated
against SARS-CoV-2 and with mild COVID-19 (Table S4 and
Fig. 1) and no previous varicella-zoster virus infection or any
pathological predisposition to viral infectious diseases. AD mu-
tations in IFNAR1, which encodes a subunit of the type I IFN
receptor, have been previously shown to cause critical COVID-19
pneumonia (Zhang et al., 2020b). The impact on expression and
function of the observed p.Q80H mutation in IFNAR1 was
studied and found to be neutral (Zhang et al., 2020b). Finally, P17
(critical pneumonia) was found to be homozygous for a p.E941K
variant in APOL1. Many African individuals express APOL1 var-
iants that, in heterozygosity, counteract resistance factors from
human infective trypanosomes, enabling them to avoid sleeping
sickness. In addition, the APOL1 variants that confer protection
against trypanosomiasis are associated with chronic kidney
disease, particularly in the context of virus-induced inflamma-
tion such as COVID-19 (Pays et al., 2022; Zhang et al., 2019). It is
unlikely that these variants predisposed to critical COVID-19
pneumonia in our patient with no documented chronic kidney
disease and normal serum creatinine levels in the course of his
SARS-CoV-2 infection.

None of the patients carried candidate variants at any IEI loci
(Tangye et al., 2022), suggesting that other known genetic disorders
did not contribute to their poor control of SARS-CoV-2. Thus, we
did not detect auto-Abs against type I IFN or additional genetic
defects in the patients. However, these findings do not exclude the
possibility that other genetic or acquired modifiers affected the
outcome of SARS-CoV-2 infection in these patients. Collectively,
however, they suggest that the MYD88 and IRAK4 genotypes were
the main drivers of COVID-19 pneumonia in 15 of the 22 patients.

More severe COVID-19 pneumonia in patients with MyD88/
IRAK-4 deficiencies than in age-matched individuals from the
general population
We compared the risks of hospitalization and critical COVID-19
pneumonia between our patients and a retrospective series of

Figure 2. Severity of SARS-CoV-2 infection in patients with MyD88 or
IRAK-4 deficiencies associated with risk factors. (A) Severity of the in-
fections associated with viral variants. (B) Severity of infection as a function
of sex. (C) Severity of infection as a function of age.
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167,262 SARS-CoV-2–infected children before the emergence of
the Omicron variant (mean age: 11.9 yr; interquartile range
[IQR]: 6.0–16.1 yr) within the National COVID Cohort Collabo-
rative (NC3) cohort (total 1,068,410 children <19 yr of age, NC3,
USA). We included only 19 patients from our cohort who were
also infected with the original and Delta variants. These two
cohorts had similar age distributions (mean age of patients with
MyD88 or IRAK-4 deficiency: 13.0 yr [IQR 6.5–16.0] vs. NC3
series: 11.9 yr [IQR 6–16.1]), but there were significantly more
male patients in our cohort (84.2%) than in the NC3 cohort
(50.1%; P = 0.006; OR 5.3, 95% confidence interval [CI] 1.5–18.1).
In total, 10,245 (6.1%) of the controls were hospitalized (Martin
et al., 2022a). The risk of hospitalizationwas significantly higher
inMyD88- or IRAK-4–deficient patients (89.5%) than in the N3C
series (6.1%; P < 0.001; OR: 130.3; 95% CI: 30.1–563.9; Fig. 3, A
and B). Invasive mechanical ventilation was required for 796 of
the 167,262 patients positive for SARS-CoV-2 in the NC3 series
(0.5%), and for 5 of our 19 patients (26.3%; P < 0.001; OR:
74.7, 95% CI: 26.8–207.8). Moreover, the infection fatality
rate was significantly higher in our patients (5%) than in the
NC3 series (0.08%; P < 0.001; OR: 70.9, 95% CI: 9.4–535.2;
Fig. 3, A and B). Overall, the clinical manifestations of SARS-
CoV-2 infection were much more severe in MyD88- or IRAK-
4–deficient patients than in age-matched individuals from
the general population.

Similar COVID-19 pneumonia severity in patients withMyD88/
IRAK-4 deficiencies and patients with TLR7 deficiency
35 male patients with SARS-CoV-2 infection and experimentally
confirmed TLR7 deficiency have been reported to date (van der
Made et al., 2020; Asano et al., 2021; Fallerini et al., 2021;
Solanich et al., 2021a; Zhang et al., 2022b). We compared 22
patients with MyD88/IRAK-4 deficiency with 35 patients with
TLR7 deficiency. Globally, MyD88/IRAK-4–deficient patients
were less likely to develop severe infections (mild infections:
27.3 vs. 5.7%; moderate: 27.3 vs. 2.9%; severe: 18.2 vs. 11.4%;
critical: 27.3 vs. 80%; P = 0.0002). These differences cannot be
explained by the sex of the patients because they remained
significant when only the 18 male patients with MyD88 or
IRAK-4 deficiency were considered (P = 0.0001). There may
have been an ascertainment bias, because the IRAK-4– and
MyD88-deficient patients in our cohort were recruited pro-
spectively, whereas most of the TLR7-deficient patients were
recruited retrospectively. We, therefore, also compared SARS-
CoV-2 infection severity between our cohort and a subgroup of
seven prospectively recruited TLR7-deficient patients (Asano
et al., 2021; Solanich et al., 2021a; Zhang et al., 2022b). No sig-
nificant differences in age were found between our 22 patients
(mean 10.9 ± 6.8 yr) and these 7 TLR7-deficient patients (25.4 ±
16.9; P = 0.06). No statistically significant differences in disease
severity were observed either (mild: 27.3 vs. 28.6%; moderate:
27.3 vs. 14.3%; severe: 18.2 vs. 14.3%; critical: 27.3 vs. 42.9%; P =
0.9). However, the group of prospectively recruited TLR7-
deficient patients was small. Overall, COVID-19 severity ap-
pears to be similar in patients with MyD88/IRAK-4 deficiency
and in those with TLR7 deficiency. The difference between these
groups is clearly less pronounced than that between either

group of patients and age-matched individuals from the gen-
eral population.

Lack of MYD88 or IRAK4 co-dominance for COVID-19
pneumonia
The bacterial infection phenotype of MyD88 or IRAK-4 defi-
ciency is clearly recessive (Picard et al., 2010), but we analyzed
possible co-dominance for the COVID-19 phenotype in 20 un-
vaccinated household relatives heterozygous for MYD88 or
IRAK4 (mean age: 32.4 yr, SD: 12.3 yr, range: 10–52 yr). Given
their age distribution and the Spanish origin of 6 of the 15 kin-
dreds, we compared the hospitalization rate, ICU need, and
mortality of this cohort with data for the Spanish general pop-
ulation between the ages of 20 and 49 yr after the first wave in
April 2020 (Cannistraci et al., 2021; Ministerio de Sanidad,
2022). We found no significant differences in hospitalization
rate (3 of 20, 15%, of MyD88/IRAK-4 heterozygous relatives vs.
8,823 of 35,583 (24.8%) in the general population, P = 0.4; OR:
0.5, 95% CI: 0.2–1.8), ICU admission (2/20–10.0% vs. 647/35,583
[1.8%], P = 0.06; OR: 6.0, 95% CI: 1.4–25.9) or mortality (1/20
[5.0%] vs. 161/35,583 [0.4%]; P = 0.2; OR: 11.6, 95% CI: 1.5–87.0;
Fig. 3, C and D). We also searched for an enrichment in rare
(gnomAD frequency <10−3) pLOF variants of IRAK4 and MYD88
in 3,269 patients with critical COVID-19, and 1,373 controls with
asymptomatic or mild SARS-CoV-2 infection from the CHGE
(Matuozzo et al., 2022). We identified three heterozygous in-
dividuals among the patients with critical disease and one
among the controls with mild disease (P = 0.09). Overall, our
results suggest that heterozygous carriers may not have a higher
risk of hypoxemic COVID-19, or that penetrance is very low in
these individuals.

Systemic inflammation during SARS-CoV-2 infection
In 7 of the 16 hospitalized patients for whom data were available,
hypothermia (1 patient) or low-grade fever (37.5–38.3°C; 6 pa-
tients) was documented; the other 9 patients developed a fever
with a body temperature between 39 and 40.9°C. Thus, most
patients were able tomount a fever, contrasting with the poor or
delayed fever mounted in response to pyogenic bacteria in such
patients (Picard et al., 2010). We also studied the blood levels of
inflammatory markers including C reactive protein (CRP), fer-
ritin, lactate dehydrogenase (LDH), and absolute neutrophil
count (ANC), in hospitalized patients upon admission, and the
highest or lowest levels detected if multiple measurements were
collected. Overall, most of the patients had high CRP, ferritin,
and LDH levels (Fig. 4, A–C). The levels of ferritin and LDH
seemed to be particularly high in the patients with the most
severe disease, indicating a strong inflammatory response, at
odds with previous studies of inflammation in the course of
bacterial disease in these patients (Picard et al., 2003; von
Bernuth et al., 2008; Picard et al., 2010). However, MyD88- or
IRAK-4–deficient patients with critical COVID-19 had somewhat
lower blood CRP, ferritin, and LDH levels than TLR7-deficient
patients with critical COVID-19 pneumonia (Asano et al., 2021),
hospitalized patients under the age of 21 yr from the general
population (Bourgeois et al., 2021), and patients from the general
population admitted to the ICU (Pierce et al., 2020), although
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this difference was not statistically significant (Fig. 4, A–C). High
ANC is another marker of systemic inflammation often observed
in patients with severe COVID-19 pneumonia (Pierce et al.,
2020; Bennett et al., 2021; Martin et al., 2022a). However,
neutropenia is rare in the acute phase of infection, even in
critical cases (Manson et al., 2020; Pierce et al., 2020; Bennett
et al., 2021; Bourgeois et al., 2021; Martin et al., 2022a). Sur-
prisingly, we observed frequent neutropenia (ANC < 1,500/
mm3) in MyD88- or IRAK-4–deficient patients (Fig. 4 D). Seven
of the hospitalized MyD88- or IRAK-4–deficient patients devel-
oped neutropenia during the acute phase of infection (three of
four moderate cases and four of six critical cases), whereas only
two had a high ANC at a particular time point (ANC > 8,000/
mm3; Fig. 4 D and Table S5). By contrast, only 1 of 12 TLR-
7–deficient patients with critical disease developed neutrope-
nia and 5 had a high ANC (Fig. 4 D). This phenotype was also
observed in MyD88- and IRAK-4–deficient patients with pyo-
genic bacterial infections (Picard et al., 2003; Picard et al., 2010).
Overall, IRAK-4– and MyD88-deficient patients were able to

mount an inflammatory response to SARS-CoV-2 infection, with
characteristic neutropenia potentially due to defective IL-1R
signaling.

Blood transcriptome inflammatory signature in patients
during COVID-19
We also performed a transcriptome analysis focused on the
genes of the inflammatory response to infection. The four pa-
tients studied had COVID-19 pneumonia (two moderate and two
severe cases). The inflammatory response has been shown to be
correlated with COVID-19 severity in several studies (Bennett
et al., 2021; Kim and Shin, 2021; Maleknia et al., 2022; Martin
et al., 2022a). In our patients, the upregulation of genes involved
in the inflammatory response, particularly those involved in the
IL-1–mediated pathway, was in the range observed in the four
patients with mild COVID-19. However, this upregulation was
markedly lower than that observed in the patient with IRF9
deficiency, who also had mild COVID-19 (Fig. 5 A; Lévy et al.,
2021). Thus, transcriptomic analysis demonstrated that the

Figure 3. Susceptibility to severe COVID-19 in patients with MyD88 or IRAK-4 deficiency. (A and B) Severity (A) and OR (B) of SARS-CoV-2 infection in
MyD88/IRAK-4–deficient patients relative to the age-matched controls from the NC3 cohort infected with the same viral variants. *, P < 0.001.
(C and D) Severity (C) and OR (D) of SARS-CoV-2 infection in heterozygous relatives of MyD88- or IRAK-4–deficient patients relative to the Spanish
general population between the ages of 20 and 49 yr after the first wave (April 2020).
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MyD88/IRAK-4–deficient patients were able to mount a sys-
temic inflammatory response during the acute phase of the
infection.

Blood type I IFN transcriptome signature in patients during
COVID-19
We collected whole-blood samples from four patients with
IRAK-4 (P19, with moderate disease) or MyD88 (P1 with mod-
erate disease, and P2 and P5 with severe disease) deficiency in
the course of primary SARS-CoV-2 infection. These samples
were used for whole-blood RNA-seq. Ex vivo transcriptome
analysis showed that IRAK-4– and MyD88-deficient patients
were able to produce type I IFNs during the acute phase of SARS-

CoV-2 infection, as shown by the induction of IFN-stimulated
genes (ISGs) in leukocytes, especially those with known anti-
viral functions (Fig. 5 B). The type I IFN activity detected in our
patients was, as expected, much higher than that observed in an
8-yr-old girl with mild COVID-19 and an AR complete deficiency
of IRF9 (Lévy et al., 2021), which governs ISGF-3–dependent
responses to type I and III IFNs (Fig. 5 A). Indeed, a strong up-
regulation of numerous ISGs has been observed in peripheral
blood during the first few days after symptom onset in patients
displaying progression to severe disease relative to patients with
mild disease (Galani et al., 2020; Hadjadj et al., 2020; Lee et al.,
2020; Zhu et al., 2020; Kim and Shin, 2021; Ng et al., 2021; Ren
et al., 2021; Zhao et al., 2021; Unterman et al., 2022). The scores

Figure 4. Inflammation markers in MyD88/
IRAK-4-deficient patients during acute in-
fections. (A) Left: CRP on admission (colored
dots), highest level detected (upper bar), and
lowest level detected (lower bar) in hospitalized
patients with MyD88 or IRAK-4 deficiency. Right:
CRP on admission in patients with TLR7 de-
ficiency, hospitalized members of the general
population <21 yr of age (Bourgeois et al., 2021),
or members of the general population admitted
to the ICU (Pierce et al., 2020). Dashed red line:
normal range of CRP concentration (<10 mg/dl).
(B and C) Ferritin (B) and LDH (C) concentrations
in patients with MyD88 or IRAK-4 deficiency (left
panels), or TLR7 deficiency, hospitalized mem-
bers of the general population <21 yr of age
(Bourgeois et al., 2021), or members of the
general population admitted to the ICU (Pierce
et al., 2020; right panels). Dashed red lines:
normal range of ferritin (11–336 ng/ml) and LDH
(<280 U/liter) concentrations. (D) Left: ANC on
admission (colored dots), highest level detected
(upper bar), and lowest level detected (lower
bar) in hospitalized patients with MyD88 or IRAK-4
deficiency. Right: ANC on admission in patients with
TLR7 deficiency, hospitalized members of the gen-
eral population <21 yr of age (Bourgeois et al., 2021),
or members of the general population admitted to
the ICU (Pierce et al., 2020). Dashed red line: normal
range of ANC (1,500–8,000 cells/mm3).
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obtained for our patients were in the range for control in-
dividuals with mild COVID-19 and higher than that obtained for
a non-infected healthy control (Fig. 5 A). We also observed some
heterogeneity in type I IFN activity between patients, possibly
due to the timing of sampling after disease onset (with samples
collected between 2 and 9 d after disease onset), or disease se-
verity, which ranged from moderate and severe. These data
suggest that despite the deficit of type I IFN production by pDCs,
as in TLR7-deficient patients (Asano et al., 2021), other cells can
produce type I IFNs that can activate leukocytes (Chiale et al.,
2022; Lucas et al., 2020). However, the type I IFN signature was
weaker than expected given the clinical severity of disease and
relative to the general population infected with SARS-CoV-2 and
analyzed in the first few days after symptoms onset.

mAb-mediated neutralization of SARS-CoV-2 in an
IRAK-4–deficient child
P19, a 14-yr-old male with IRAK4 deficiency, was admitted 2 d
after the onset of clinical manifestation, including cough, nasal
congestion, and fever (39.4°C). On day 1 of admission, PCR on a
nasal swab revealed a very high load of SARS-CoV-2 (Ct Gene S:
16.20, Ct Gene N: 20.98, Ct Gene RdRP: 17.56), and showed the

patient to be infected with the P681R/L425R Delta variant
(previously known as B.1.617.2). A chest x-ray showed increased
interstitial markings in the left retrocardiac space, but the SpO2/
FIO2 ratio was 99%, indicating a moderate, non-hypoxemic,
pneumonia. He then received a single dose of intravenous ca-
sirivimab (4,000 mg) and imdevimab (4,000 mg), a combina-
tion of human IgG1 neutralizing the receptor-binding domain of
the SARS-CoV-2 spike protein on this same first day of admis-
sion. His symptoms and signs disappeared on day 3, and he was
discharged on day 4. Follow-up evaluation on day 14 was unre-
markable and the patient was asymptomatic.

We performed RNA-seq analysis on longitudinal whole-blood
samples obtained from P19 at various time points from day 1 to
14. The transcripts of genes involved in antiviral immunity,
particularly ISGs with known antiviral functions, were readily
detected on days 1 and 2. Their levels decreased sharply on day 3,
4 d after symptom onset, when clinical manifestations dis-
appeared, and, on day 4, they were barely detectable, if at all, as
in a non-infected healthy control (Fig. 5 A). This pattern of
expression contrasts with that observed in a patient with IRF9
deficiency and mild COVID-19 with positive PCR results for
SARS-CoV-2, who was treated with casirivimab and imdevimab

Figure 5. Transcriptome analysis of whole-blood samples from SARS-CoV-2–infected individuals. (A) Single-sample gene set enrichment analysis
(Hänzelmann et al., 2013) was used to evaluate the IFN-α response, the IFN-γ response, TNF-α signaling through NF-κB, IL-6 JAK-STAT3 signaling, and the
inflammatory response. There was one sample for each time-point and patient, and the assay was performed once for each sample. Dot heatmap representing
pathway enrichment scores for individual samples. The enrichment score is represented by a colored spot, with red indicating an increase in abundance and
blue indicating a decrease in abundance. The intensity of the spots reflects the enrichment score. (B) Time-dependent consistent changes in transcript
abundance for type I IFN (red), ISGs with known antiviral functions (purple), other ISGs (yellow), and protein-coding genes (gray) are represented on a scatter
plot for IRAK4- and MyD88-deficient patients and a non-infected healthy control. In parentheses, D indicates the number of days after positive RT-PCR for
controls and the days after symptom onset for patients. Red arrows indicate the day of treatment with mAbs (casirivimab and imdevimab).
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on day 2 after hospital admission (Lévy et al., 2021; Fig. 5 A).
Moreover, the heatmap of RNA-seq–quantified gene expression
(z-score–scaled log2-normalized counts) for TNF-α signaling
through NF-κB gene sets showed lower transcript levels on
admission in P19 than in the IRF9-deficient patient. Transcript
levels for the induced genes of these inflammatory pathways
decreased to very low levels 2 d after treatment with anti–SARS-
Cov-2mAbs in both patients (Fig. 5 B). These data, together with
the rapid resolution of clinical manifestations in both patients,
demonstrate the safety and efficacy of antibody-mediated viral
neutralization in patients with either of these deficiencies of
type I IFN–mediated immunity.

Discussion
We showed that unvaccinated patients with MyD88 or IRAK-4
deficiency infected with SARS-CoV-2 are at high risk of COVID-
19 pneumonia, including hypoxemic and even critical forms. The
risk is much higher than for members of the same age group in
the general population (Knock et al., 2021; Le Vu et al., 2021;
Martin et al., 2022a; Martin et al., 2022b). The risk is also higher
than that of heterozygous relatives, attesting to a lack of de-
tectable co-dominance, and confirming that these two closely
related IEIs confer a recessive predisposition to life-threatening
COVID-19 pneumonia, even in childhood or adolescence. These
patients appear to have a risk similar to that of children and
adults with autoimmune polyendocrinopathy syndrome type 1
(APS-1), who are vulnerable to SARS-CoV-2 due to the produc-
tion of auto-antibodies neutralizing type I IFNs (Bastard et al.,
2021a; Lemarquis et al., 2021; Meisel et al., 2021). Our findings
for patients with MyD88 or IRAK-4 deficiency are also consis-
tent with previous findings from our own and other studies
indicating that XR TLR7 deficiency confers a high risk of severe
or critical COVID-19 pneumonia (van der Made et al., 2020;
Asano et al., 2021; Fallerini et al., 2021; Kosmicki et al., 2021;
Pessoa et al., 2021; Solanich et al., 2021a). The mechanism of
disease in patients with MyD88 or IRAK-4 deficiency probably
involves an impairment of the TLR7-mediated sensing of the
virus by pDCs, as demonstrated ex vivo (Asano et al., 2021;
Onodi et al., 2021). The residual response of TLR7-deficient pDCs
to SARS-CoV-2 ex vivo, contrasting with the abolition of this
response in IRAK-4– and UNC-93B–deficient pDCs, may be due
to signaling through TLR9, as pDCs do not express TLR8 (Aluri
et al., 2021; Asano et al., 2021; Boisson and Casanova, 2021) and
UNC-93B– and IRAK-4–deficient pDCs have defects of both TLR7
and TLR9 signaling (Onodi et al., 2021).

The TLR3-dependent induction of type I IFNs is intact in
patients with MyD88 or IRAK-4 deficiency. Our findings,
therefore, confirm that the TLR7-dependent induction of type I
IFNs by pDCS is essential for host defense against SARS-CoV-2 in
the respiratory tract. Patients with MyD88 or IRAK-4 deficiency
seem to suffer from COVID-19 disease as severe as that in pa-
tients with TLR7 deficiency. Their more profound pDC defect,
with the abolition of responses to both TLR7 and TLR9 agonists
and a complete lack of type I IFN production upon stimulation
with SARS-CoV-2 (Yang et al., 2005; Ku et al., 2007; von Bernuth
et al., 2008; Alsina et al., 2014; Onodi et al., 2021), may be

mitigated by other mechanisms, such as the abolition of re-
sponses to IL-1 paralogs, IL-18, and IL-33. The retrospective and
prospective nature of the recruitment of TLR7- and MyD88/
IRAK-4–deficient patients, respectively, may have led to an as-
certainment bias. Nevertheless, the ISG response in our patients’
leukocytes was weak but detectable, probably due to activation
of the TLR3-dependent or other pathways in infected lung
epithelial cells. In addition, other sensors of viral RNA, such as
RIG-1 and MDA-5, expressed in several leukocyte subsets, par-
ticularly in myeloid dendritic cells and monocytes, and at very
low levels in resting pDCs, may have contributed to type I IFN
production (Bencze et al., 2021; Liu and Gack, 2020). Notewor-
thy, transcriptome analyses have shown that the epithelial and
immune cells of the upper airways of healthy children are
preactivated and express significantly higher basal levels of the
genes coding for RIG-I and MDA5 compared to adults, resulting
in stronger innate antiviral responses upon SARS-CoV-2 infec-
tion (Loske et al., 2022). In addition, proteomic analyses, re-
vealed that particularly RIG-I (also called DDX58) is among the
most differentially detectable protein in circulation and in lung
parenchymal tissues in patients with acute and fatal SARS-CoV-2
infection respectively vs. healthy controls (Filbin et al., 2021;
Gisby et al., 2021; Russell et al., 2022). These data suggest that RIG-
I may be a dominant pathway induced by the virus. On the other
hand, there is a significant overlap between gene signatures for
type I and type II IFN signaling. Our RNA-seq data do not allows to
rule out that the IFN signature observed may be secondary, at
least partially, to signaling by IFN-γ. Studies of the transcriptome
of TLR3- or TLR7-deficient patients, and the identification of new
IEIs underling hypoxemic COVID-19 pneumonia, would help to
resolve these questions. Overall, impairment of the TLR7/MyD88/
IRAK-4 pathway prevents pDCs from producing sufficient type I
IFN in response to SARS-CoV-2 in the respiratory tract, ac-
counting for the patients’ vulnerability to infections with
this virus.

Since the first description of IRAK-4 andMyD88 deficiencies,
the MyD88/IRAK-4–mediated pathway has been considered
redundant for protective immunity against viruses in humans
(Ku et al., 2007; Picard et al., 2010). EBV viremia without clinical
repercussions was later reported in a MyD88-deficient patient
(Chiriaco et al., 2019), and P5 was recently reported to have
suffered from bilateral pneumonia caused by influenza A virus
and the human cororonavirus NL63 (Bucciol et al., 2022a). An
IRAK-4–deficient patient with a suspected reactivation of hu-
man herpesvirus 6 (HHV-6) infection has also been described
(Nishimura et al., 2021), and genomic material from HHV-6 was
also detected in three patients in our series (Table S2). A Turkish
patient with severe HHV-6 disease has also recently been de-
scribed (Tepe et al., 2022). The presence of the HHV-6 genome
has, however, repeatedly been reported in normal brains, and
HHV-6 reactivation may occur in healthy children without ap-
parent illness or during acute illness (Caserta et al., 2004;
Komaroff et al., 2020; Pandey et al., 2020; Santpere et al., 2020).
Overall, the susceptibility of MyD88- and IRAK-4–deficient pa-
tients to HHV-6 is probable, but not formally proven. TLR7-
deficient patients do not appear to be susceptible to common
viral infections other than SARS-CoV-2, but further studies are
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required to confirm this. Indeed, TLR3 deficiency was initially
reported in patients with herpes simplex encephalitis (Guo et al.,
2011; Jouanguy et al., 2020; Zhang et al., 2007b), but patients
with TLR3 deficiency were progressively found to be prone to
other viral diseases too, including critical influenza pneumonia
(Bucciol et al., 2022b; Kyung Lim et al., 2019), other types of viral
encephalitis (Chen et al., 2021; Hautala et al., 2020; Kuo et al.,
2022; Partanen et al., 2020), and hypoxemic COVID-19 pneu-
monia (Zhang et al., 2020b). Overall, our data suggest that
MyD88 and IRAK-4 deficiencies underlie hypoxemic COVID-19
pneumonia. Together with the reports of HHV6 disease in such
patients, and the occurrence of severe influenza pneumonia in
two patients from our cohort, these data suggest that MyD88-
and IRAK-4–deficient patients may be prone to other severe
viral infections, perhaps with low penetrance.

Materials and methods
Cohort recruitment and consent
We recruited patients with MyD88 or IRAK-4 deficiency who
had suffered COVID-19 between the start of the pandemic and
January 2022. Data were collected through an anonymized
survey sent to specialists in immunology or pediatrics with re-
ported or unreported patients with these IEIs, and through
clinicians caring for patients with IEIs identified from the Eu-
ropean Society for Immunodeficiencies (ESID) Registry. Sam-
ples were obtained from the probands, parents and relatives
with written informed consent. The study was approved by the
French Ethics Committee “Comité de Protection des Personnes,”
the French National Agency for Medicine and Health Product
Safety, the “Institut National de la Santé et de la Recherche
Médicale,” in Paris, France (protocol no. C10-13), the Rockefeller
University Institutional Review Board in New York, NY, USA
(protocol no. JCA-0700), the Committees for Ethical Research of
the University Hospital of Gran Canaria Dr. Negŕınn (protocol
no. 2020-200-1 COVID-19) and Hospital San Joan de Deu
(protocol no. PIC-173-21), and the Office of Research & Inno-
vation at Drexel University, Philadelphia, PA, USA (protocol
no. 2112008918).

Definition of SARS-CoV-2 infection
SARS-CoV-2 infection was defined as a positive RT-PCR or an-
tigenic test result for a nasopharyngeal sample for symptomatic
patients, or as a positive serological test result for patients with
no symptoms. The SARS-CoV-2 Ct value varied between pa-
tients. Viremia was not analyzed. The SARS-CoV-2 variants also
differed between patients. In five patients, the viral variant was
confirmed by molecular methods (two Alpha and three Delta
variants). In the remaining patients, infection was suspected to
be caused by the predominant variant in the country at the time
of diagnosis (OurWorld in Data, 2023). 12 patients were infected
between April 2020 and February 2021 when the variants of
clades 20A and 20B, which replaced the original virus infecting
humans (clade 19A), predominated. Four patients were infected
in April–May 2021, when the variant of concern (VOC) Alpha
(clade 20I, genetically confirmed in two) predominated. Three
patients infected from November 2021 to January 2022 had

genetically confirmed infections with the VOC Delta (clade 21A).
Finally, three patients were infected in January 2022, when
Omicron (clade 21M) was the predominant VOC in their coun-
tries of residence (Fig. 2 A and Table S1). For 15 patients, in-
fection was confirmed to have resulted from household
transmission from an infected relative (Table S1). In another two
patients (P4 and P5), the infection was contracted from a visiting
relative. The mode of infection of the remaining five patients is
unknown. None of the patients were vaccinated against SARS-
CoV-2 at the time of infection.

Data regarding COVID-19 and medical history
Clinical, laboratory, and chest imaging data obtained during
COVID-19, other risk factors for severe COVID-19 (Rodrigues
et al., 2020; Zhang et al., 2020a, 2022a; Bennett et al., 2021;
Bourgeois et al., 2021; Kooistra et al., 2021; Navaratnam et al.,
2021; O’Driscoll et al., 2021; Westblade et al., 2021; Martin et al.,
2022a; Schober et al., 2022; Woodruff et al., 2022), and family
history were collected for each patient in the survey. Concom-
itant infections were also recorded, when supported by clinical
suspicion, positive cultures, and/or chest x-ray images. Adults
with a body mass index (BMI) over 25 were considered to
be overweight, and those with a BMI over 30 were considered
to be obese. Children aged between 5 and 19 yr were consid-
ered to be obese if their BMI-for-age-and-sex was more than 2 SD
above theWHOGrowth Reference median. Children under 5 yr of
age were considered to be obese if their weight-for-height was
more than 3 SD above the WHO Child Growth Standard median
(WHO, 2021).

COVID-19 severity was assessed according to the Human
Genetic Effort clinical score (Asano et al., 2021). SARS-CoV-2
infection was classified as mild/non-confirmed pneumonia (for
patients who were asymptomatic, presented upper respiratory
tract disease with no signs of pneumonia on x ray or with res-
piratory symptoms not suggestive of a lower respiratory tract
infection and therefore not requiring x ray), moderate (non-
hypoxemic pneumonia, not requiring oxygen therapy), severe
(hypoxemic pneumonia requiring therapy with oxygen <6 liters
O2/min, without meeting the criteria for critical pneumonia) or
critical (hypoxemic pneumonia requiring high-flow oxygen >6
liters O2/min, ventilatory support with or without intubation, or
ECMO [extracorporeal membrane oxygenation]).

Laboratory values were recorded when available. Normal
ranges of laboratory values were reported according to age and
are expressed in standard units (Hollowell et al., 2005; Mayo
Clinic, 2022).

Definition of positive contacts
Patients were considered to be positive SARS-CoV-2 contacts if
they had been exposed (for more than 15 min, at a distance of <6
feet) to a person infected with the virus for whom an oral-
nasopharyngeal sample had tested positive for specific SARS-
CoV-2 RNA or antigen (CDC, 2022).

Analysis of anti-type I IFN auto-Abs
The presence of auto-Abs able to neutralize high doses
(10 ng/ml) of IFN-α2 and IFN-ω, and IFN-β, or lower, more
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physiological doses (100 pg/ml) of α2 and IFN-ω, was ana-
lyzed as previously reported (Bastard et al., 2021b) in plasma
or serum samples from the patients.

Next-generation sequencing
Genomic DNA was extracted from whole blood from all patients
except P17, for whom DNA was obtained from SV40-
transformed fibroblasts. The whole exome was sequenced at
the Genomics Core Facility of the Imagine Institute (Paris,
France), the Yale Center for Genome Analysis the New York
Genome Center, and The American Genome Center (Uniformed
Services University of the Health Sciences, Bethesda, MD, USA),
and the Genomics Division–Institute of Technology and Re-
newable Energies of the Canarian Health System sequencing
hub (Canary Islands, Spain), as previously reported (Asano
et al., 2021). The whole-exome sequences of the patients
were filtered against the complete International Union of
Immunological Societies list of genes (Tangye et al., 2022),
with the retention of variants with an allele frequency below
0.001. We excluded synonymous mutations, downstream,
upstream, intron and non-coding transcript variants and in-
tergenic variants. We also excluded variants predicted to be
benign and we checked the quality of the exome sequences.
The mutation significance cutoff (http://pec630.rockefeller.
edu:8080/MSC/) was used to determine whether variants
were likely to be damaging.

RNA-seq
Whole blood for RNA-seq was collected in PAXgene Blood RNA
tubes (BD Biosciences, samples collected from the IRF9-deficient
patient, her mother, P5, and P19), Tempus Blood RNA tubes
(Thermo Fisher Scientific, P1 and P2) or EDTA tubes (controls).
Samples from P1 (moderate pneumonia) were obtained at hos-
pital admission, 8 d after positive PCR and 2 d after symptom
onset; samples from P2 (severe pneumonia) were collected on
hospital admission, 4 d after PCR and symptom onset; samples
from P5 (severe pneumonia) were obtained 6 d after hospital
admission, 9 d after PCR and symptom onset; and the first
sample from P19 was obtained before treatment with anti–
SARS-CoV-2 mAbs, on the day of hospital admission, 2 d after
symptom onset, when PCR was performed. We also collected
longitudinal whole-blood samples from P19 at various time
points from day 1 to 14. We compared our data with data ob-
tained for samples from four controls with mild COVID-19 ob-
tained 4 d after a positive PCR for SARS-CoV-2, a non-infected
healthy control, and the longitudinal data (day 1 [hospitalization]
to day 32), obtained from a previously reported IRF9-deficient
patient with mild SARS-CoV-2 infection also treated with anti–
SARS-CoV-2 mAbs (Lévy et al., 2021) the day after hospital
admission.

There was one sample for each time-point and patient and
the assay was performed once for each sample.

Blood samples were subjected to hemoglobin RNA depletion.
Samples were sequenced on the Illumina NextSeq platformwith
a single-end 75-bp configuration. The RNA-seq fastq raw data
were inspected to ensure that they were of high quality. The
sequencing reads were mapped onto the human reference

genome GRCh38 with STAR aligner v.2.7, and the mapped reads
were then quantified with featureCounts v2.0.2 to determine
gene-level read counts. The gene-level read counts were nor-
malized and log2-transformed with DESeq2, to obtain the gene
expression profile for all samples.

Single-sample gene set enrichment analysis (Hänzelmann
et al., 2013) was used to evaluate the IFN-α response, IFN-γ
response, TNF-α signaling through NF-κB, IL-6 JAK-STAT3
signaling, including the inflammatory response enrichment
scores. The raw RNA-seq data generated from this study are
deposited in the National Center for Biotechnology In-
formation database under the National Center for Bio-
technology Information- Sequence Read Archive project
PRJNA916275.

Statistical analysis
Categorical variables are expressed as percentages, and discrete
variables as medians with the observed range, or as means ±95%
CI. Fisher’s exact tests or Yates correction and ORs with 95% CI
were used for comparative analyses. Continuous variables are
presented as the arithmetic mean ± SD, and Mann–Whitney
U-tests were used for the comparative analysis. The analysis was
performed with SPSS v.15.0 software (SPSS, Inc.) and graphs
were performed by GraphPad Prism v.7.00 for Windows,
GraphPad Software, with values of P ≤ 0.05 considered statis-
tically significant.

Online supplemental material
Table S1 provides information about baseline characteristics of
MyD88 and IRAK-4–deficient patients, data on the diagnosis of
COVID-19 and the lung conditions during the infection. Table S2
contains information about non–SARS-CoV-2 viral infections in
the MyD88 and IRAK-4–deficient patients. Table S3 shows the
serological results for antibodies against common viruses for
two patients. Table S4 summarizes the pLOF variants of the 478
genes known to underlie AR, AD, or XR IEIs in our MyD88/
IRAK-4–deficient patients. Table S5 includes the laboratory data
of MyD88 and IRAK-4–deficient patients during SARS-CoV-2
infection.
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(EKFS, 2017_A110), the German Federal Ministry of Education
and Research (01GM1910C), the Intramural Research Program of
the National Institute of Allergy and Infectious Diseases, Na-
tional Institutes of Health, and the Horizon Europe Framework
Programme of the European Union under Grant Agreement no.
101057100. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority
can be held responsible for them.

Author contributions: A. Garćıa-Garćıa: conceptualization,
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Rodŕıguez-Gallego: conceptualization, data curation, formal analy-
sis, project administration, resources, supervision, writing—
original draft preparation, writing—review and editing.

Disclosures: C. Flores reported grants from Instituto de Salud
Carlos III, Spanish Ministry of Science and Innovation, and
Cabildo Insular de Tenerife outside the submitted work.
J. Pachlopnik Schmid reported personal fees from University
Children’s Hospital Zurich and University of Zurich, Switzer-
land; grants from ITINERARE (University of Zurich, Switzer-
land), SNF 320030_205097 (Swiss National Science Foundation),
and CRPP (University of Zurich, Switzerland); and personal fees
from Pharming. J. Pachlopnik Schmid is a member of a data-
monitoring committee outside the submitted work. I. Meyts
reported grants from CSL Behring paid to the institution and
“other” from Boehringer-Ingelheim outside the submitted work.
J.-L. Casanova reported a patent to PCT/US2021/04274 pending.
No other disclosures were reported.

Submitted: 28 January 2022
Revised: 11 November 2022
Accepted: 30 January 2023

References
Alsina, L., E. Israelsson, M.C. Altman, K.K. Dang, P. Ghandil, L. Israel, H. Von

Bernuth, N. Baldwin, H. Qin, Z. Jin, et al. 2014. A narrow repertoire of
transcriptional modules responsive to pyogenic bacteria is impaired in
patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat.
Immunol.. 15:1134–1142. https://doi.org/10.1038/ni.3028

Aluri, J., A. Bach, S. Kaviany, L. Chiquetto Paracatu, M. Kitcharoensakkul,
M.A.Walkiewicz, C.D. Putnam,M. Shinawi, N. Saucier, E.M. Rizzi, et al.
2021. Immunodeficiency and bone marrow failure with mosaic and
germline TLR8 gain of function. Blood. 137:2450–2462. https://doi.org/
10.1182/blood.2020009620

Amorim, V.M., G.D.A. Guardia, F.F. Dos Santos, H. Ulrich, P.A.F. Galante, R.F.
De Souza, C.R. Guzzo, A. Silva De Souza, V. Martins De Freitas Amorim,
G.D.A. Guardia, et al. 2022. Severe acute respiratory syndrome coro-
navirus 2 variants of concern: A perspective for emerging more
transmissible and vaccine-resistant strains. Viruses. 14:827. https://doi
.org/10.3390/v14040827

Asano, T., B. Boisson, F. Onodi, D. Matuozzo, M. Moncada-Velez, M.R.L.
Maglorius Renkilaraj, P. Zhang, L.Meertens, A. Bolze, M.Materna, et al.
2021. X-linked recessive TLR7 deficiency in ∼1% of men under 60 years
old with life-threatening COVID-19. Sci. Immunol. 6:65. https://doi.org/
10.1126/sciimmunol.abl4348

Bastard, P., L.B. Rosen, Q. Zhang, E. Michailidis, H.H. Hoffmann, Y. Zhang, K.
Dorgham, Q. Philippot, J. Rosain, V. Béziat, et al. 2020. Autoantibodies
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Hoeijmakers, A. Antoĺı, J. del Valle, G. Rocamora-Blanch, F. Setié, M.
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