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ABSTRACT OF THE DISSERTATION

Active Colloidal Self-Assembly With Optical Binding Forces

by

Dominique Davenport

Doctor of Philosophy in Physics

University of California Merced, 2022

Assistant Professor Dustin Kleckner

The motivation of this dissertation was to develop methods to analyze optical

binding as a self-organization tool for colloidal matter. Since the initial experi-

mental validation of optical binding achieved by [1], the application of interest was

to eventually realize the self-organization of many-particle systems using light.

The original findings by Burns, Fournier and Golovchenko, which were inspired

by the experimental work of [2] on optical forces and theoretical work of [3] on

intermolecular radiation forces, illustrated unique features of optical binding. One

major finding was that the interaction featured multiple stable points between two

interacting dielectric spheres. The second finding was that the stable displacements

corresponded to the wavelength of the applied field [1]. With these two features, a

new force was introduced which could be applied externally to colloidal systems.

This interaction could be tuned to set the strength and inter-particle distances.

The current work presented is an extension of this primary work onto many-body

systems. Specifically, we aimed to provide a pathway towards determining how one

might practically design self-organization behaviors using optical binding forces.

There have been numerous studies in the past focused on using optical bind-

ing for the self-organization of multiple particles. Partially because of its wide

applicability and high specificity, it remains difficult to piece together a coherent

link between the various optical binding experiments achieved in the past. For

xv



example, it is common to describe distinct optical binding setups based on relative

particle size, orientation of the beam axis, beam-type, and damping conditions of

the surrounding medium to name a few. In some cases, experiments have described

vast differences in behaviors by subtle changes in particle size [4, 5]. Likewise, in

this dissertation, I describe how subtle changes in relative refractive index can

also strongly alter the behavior in optically bound systems. While these examples

illustrate tunability, which is generally ideal for designing self-organized systems,

the non-linearity of optical binding makes it extremely difficult to predict.

Some of the primary behaviors that are addressed in this dissertation include:

non-conservative, non-pairwise, and non-reciprocal interactions and how they in-

terface with the stability and activity of the system. Non-conservative forces are

generally present in optical forces [6]. It is common even to separate the conser-

vative gradient and non-conservative scattering force in the discussion of optically

induced forces. In application, optical tweezers and optical traps in fact utilize a

fine tuned balance of these two forces [2]. Because optical binding is ultimately

a second-order effect derived from these optical forces, non-conservative optical

binding is expected. However, because optical scattering and absorption is depen-

dent on polarizability, a complex variable which is tied to a number of physical

properties of the material, the field, and the surrounding medium [7], the strength

and relevance of non-conservative effects can range. For instance, conservative

gradient forces dominate for particles that are relatively small compared to the

field wavelength. In this dissertation, I discuss these effects with respect to the

complex part of the polarizability. For application of optical binding on large col-

loidal systems, non-conservative forces are important. [8] showed, for instance,

that the strong presence of non-conservative forces can play a role in stability of

large optically bound systems. This is an extremely important detail because if the

goal is to generate a large ordered structure, you would not want the emergence of

instabilities. On the other-hand, instabilities could be desirable if you are indeed

interested in active material properties. In either case, it would be beneficial to

know exactly when non-conservative forces will disrupt stability.

Less studied are the presence non-pairwise forces in optical binding systems.
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Non-pairwise forces in this system can ultimately arise from multiple scattering

effects. While multiple scattering and non-pairwise interactions are not new to

discussions of optical scattering, they are usually discussed at the molecular sub-

particle scale [7]. In this dissertation work, I discuss the potential effect of N -body

forces between particles in close proximity. In the past, these effects have been

generally ignored. For small particles, it is found that non-pairwise forces are

negligible [9]. There aren’t however clear guidelines for when this remains true for

larger particles. In this dissertation, I present numerical approaches which help us

discern the strength of non-pairwise contributions for a number of configurations.

We studied for instance the dependence on particle size along with alternative

parameters such as relative refractive index and orientation. Furthermore, I present

experimental evidence of collective action.

Finally, I address the presence of non-reciprocity in optical binding. Non-

reciprocal interactions are closely related to non-conservative interactions but are

more specific to multiple species in which one species exerts a force on another

without experiencing the equal and opposite effect. We have yet to observe optical

binding experiments which include multiple species of scatterers; however, we do

explore the presence of non-reciprocal forces in single species systems. I address

these non-reciprocal forces with numerical approaches. The numerical studies are

inspired by our experimental work which shows the formation of small semi-stable

clusters from a system of identical spheres. In other words, we found an emer-

gence of a two-species system from a single species system. More so, the findings

strongly suggest that the interactions can be non-reciprocal. These results and

their implications are discussed in Chapter 2.

As much as this dissertation attempts to answer about optical binding, it is also

a description of new approaches of studying optical binding itself. Generating self-

organization with optical binding can require extremely strong optical fields [1].

Even more difficult is the integration of imaging optics which can accommodate

a high powered laser. For the reader, I include the experimental techniques that

worked best along with a few alternative methods. The hope is that these methods

provide an easier pathway towards the study of optical binding or other light-

xvii



matter phenomena. For instance, in Chapter 2 you will find the description of a

custom built microscope system which allowed us to capture 3-dimensional images

of a sample subjected to a high powered laser source while I also describe an entirely

alternative system which geometry offers more control of the field propagation

angle.

In Chapter 3, I present our work in integrating optical binding forces into a

molecular dynamics simulation framework. While various simulations of optical

binding forces have been made by researchers in the past, the most relevant to this

dissertation being the work in [10], our goals were guided by finding approaches

which can handle a larger assortment of particles and be easily integrated to include

the effects of Brownian motion and additional forces. To that end, this dissertation

required the development of several scattering simulations. The first is a scattering

code based mainly on the Coupled Dipole Method (CDM), also known as the

Discrete Dipole Approximation (DDA) [11, 12]. While work remains to be done

to increase computational speed for larger simulations, I share results of small

scale simulations which include thermal fluctuations and additional interactions.

Unlike Mie scattering theory methods, CDM is generally easier to extend for many

particles that may be non-spherical or non-homogeneous.

The second scattering code presented briefly in this dissertation utilizes the

method of fundamental solutions (MFS) to obtain scattering results. The major

difference between CDM and MFS is that CDM requires that an object be ap-

proximated by scattering bodies that fill the volume whereas MFS can be used

with scattering bodies that fill on the surface area saving computational cost. The

computational development of this method was prepared by collaborator Arnold

D. Kim. The method was developed specifically for acoustic binding, with which

Nicholas St. Clair explored the dynamics of particle clusters driven by acoustic

field scattering interactions. This dissertation explores those results in terms of

optical fields, particularly how these systems can be approached numerically in a

similar manner.
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Chapter 1

Unique Properties of Optical

Binding

1.1 Introduction

The story of optical forces might very well have begun with the observation of

comet tails, a phenomenon which provided observable effects, shown in Fig. 1.1,

of solar radiation pressure on dust particles [13]. It wasn’t until Maxwell that the

phenomenon of light-pressure was described in classical electromagnetic theory; in

which he stated plainly, in A Treatise on Electricity and Magnetism, that in any

”medium in which waves are propagated, there is a pressure in the direction normal

to the waves” [14]. In the early 1900’s, Nichols and Hull provided the first mea-

surements of radiation pressure [15] . The development of the laser allowed Ashkin

in 1970 to accelerate and trap dielectric microspheres [16]. Ashkin described the

spheres being ”simultaneously drawn in to the beam axis and accelerated in the

direction of the light”. While the second statement indeed fits the description for

the radiation pressure force as previously described, this was the first experiment

in which we observe the ability of light to act as a trapping mechanism. In later

experiments, Ashkin described the new effect as an optical gradient force which ”is

proportional to the gradient of intensity and points in the direction of the intensity

gradient” [2]. Thus, we have a description of two distinct optical forces: a force

1
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Figure 1.1: comet gas and dust tail

which follows the intensity and direction of the light field and a force which follows

the gradient of the field intensity. These two forces are most widely referred to as

the optical scattering force and optical gradient force.

We have since then seen optical forces utilized in a number of applications in

optics and biophysics [17, 18]. Belonging to the first wave of researchers studying

optical traps using optical forces, in an attempt to trap multiple particles, Burns

et. al. experimentally observed the phenomenon of optical binding [1]. By placing

two micro-spheres displaced perpendicularly to the light propagation of a single

laser, it was found that the two particles would interact with each other such

that they tended to separate at distances corresponding to multiples of the light

wavelength. The best way to understand this interaction is that scattering particles

modify the light field around them; this light field then places optical forces on

neighboring objects. The wavelength dependent displacements are a consequence

of interference features that arise in optical scattering.

Understanding the optical binding force more generally has been an interest in

the field since the original optical binding experiments. In this Chapter, I outline

a few areas which we believe characterize the key aspects of the optical binding
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interaction: How strong are these forces? Are they pairwise? How much can

these effects be tuned? All of these characterizations are ultimately important for

directing self-assembly. They can tell you when self-assembly will occur and what

type of structures one can expect to find. The driving motivation of this work is

to realize the design of optically bound materials.

In this chapter, I will begin with describing single-body optical forces. Pri-

marily, the focus is on distinguishing the scattering and gradient forces. While

these forces are pretty well understood in terms of optical traps for single particle

systems, it is important to describe in this thesis as the differences between scat-

tering and gradient forces manifest in a new way for multi-particle systems. The

subsequent sections will cover in detail how two particles interact though optical

binding forces. An analytical form of the binding force derived from a small parti-

cle approximation will be presented for two distinct geometries. The final sections

of the chapter are intended to address additional phenomena which can arise for

many-particle systems of strongly scattering bodies.

1.2 Optical forces

The optical binding force can be understood as a second-order optical force.

Where optical forces can be applied directly to an object from an external field,

optical binding forces arise from the field scattered by another object, thus requir-

ing at least a two-particle system. Fortunately, we can use what we know about

single-body optical forces and relate it to optical binding as they share the same

underlying mechanisms.

Considering a single object placed in an optical field, we understand that the

object can be subject to optical forces which can pushed, trapped, or rotated.

Ultimately what that force is, can be determined by integrating Maxwell’s stress

tensor,
↔

T , given by

↔

T = ϵ0[EE + c2BB − 1

2

↔

I(E ·E + c2B ·B)] (1.1)
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over the surface of the entire object:

F =

fi
s

n̂ · ⟨
↔

T ⟩dσ (1.2)

(E is the total electric field, B is the magnetic flux density, ϵ0 the vacuum permit-

tivity, c the speed of light in a vacuum, and n̂ the vector normal to the surface) [19].
↔

T can be thought of as a representation of the flux of light momentum through

the object.

The total force on an object in a field can be obtained by Eq. 1.1 provided that

we know the total field E, Numerically, there are a few methods which can be used

to calculate the optical forces on objects; however, the rest of the thesis will depend

on total fields which involve electromagnetic scattering. For consistency it is useful

to utilize a scattering code such as those developed for Mie scattering theory [7]

or the Coupled Dipole Method (CDM) [20]. We utilize CDM for the rest of the

discussion when numerical data is required. Because CDM is an approximation in

which a single object is reduced to N dipoles, instead of using Eq. 1.2 to compute

the force, we find it is more straightforward to store force on each dipole, Fi and

obtain the total force by:

F =
N∑
i=1

F i (1.3)

1.2.1 Optical forces from the Coupled Dipole Method

The CDM was the tool of choice that we used to compute optical binding

forces. CDM is already a well studied method for optical scattering [11] It has

well documented methods for computing radiation pressure forces [12] as well as

previous use in computing optical binding forces [5]. This method is optimized for

the study of dielectric particles of arbitrary shape. While our main focus is spheres

in this work which could be handled by Mie scattering code, the freedom to study

arbitrarily shaped particles is an increasingly attractive feature as researchers are

pushing the boundaries on the development of non-spherical colloids [21].

CDM utilizes a finite array of polarizable points in a volume to approximate

an object. Starting with the incident field and assigning each dipole a complex
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polarizability, α, one can calculate the polarization at each dipole,

p0(r) = αEinc(r) (1.4)

with,

Einc(r) = E0(r) +
∑
i

↔

Gi(r, ri) · pi(ri) (1.5)

where E0(r) is the initial external field and Einc(r) is the total incident field at r.
↔

G is the dyadic Green’s function which can be defined by [22]:

↔

G =
eikR

4πϵ0ϵmR3
[(3− 3ikR− k2R2)

R⊗R

R2
+ (k2R2 + ikR− 1)

↔

I ] (1.6)

ϵ0 and ϵm are the dielectric constants of free space and the medium respectively, k

is the wave-number defined by 2π
λ
, R = r − ri, and

↔

I is the identity tensor. The

dot-product of
↔

G with each dipole-moment, pi returns the scattering contribution

of the ith dipole. From Eq. 1.4 and Eq. 1.5 each subsequent polarization and

and scattered field can be iteratively solved.

Once convergence is achieved, the force on each dipole is obtained from the

known polarizations of each dipole and the initial external field [12]:

F i = F inc,i + F scatter,i (1.7)

where,

F inc,i =
N∑
i

1

2
Re

[
ik(p∗

i,0 ·∇)E0e
ik·ri

]
(1.8)

and

F scatter,i =
N∑
i

N∑
j ̸=i

1

2
Re [F i,j] (1.9)

with,

Fi,j =eikri,j{[(p∗
i,0 · pj,0)n̂i,j + p∗

i,0(n̂i,j · pj,0) + (p∗
i,0 · n̂i,j)pj,0−

5(p∗
i,0 · n̂i,j)n̂i,j(n̂i,j · pj,0)]×

(
− k2

r2i,j
− 3ik

r3i,j
+

3

r4i,j

)
+

[(p∗
i,0 · pj,0)n̂i,j − (p∗

i,0 · n̂i,j)n̂i,j(n̂i,j · pj,0)]

(
ik3

ri,j
− k2

r2i,j

)
} (1.10)
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ri,j is the displacement between the ith and jth dipole (ri − rj), ri,j = |ri,j|,
n̂i,j = ri,j/ri,j. What is useful about Eq. 1.7-Eq. 1.10 is that the force can

be determined regardless of shape, size, or number of particles in the system. As

long as each dipole is accounted for, the optical forces on each particle can be

determined by summing the forces on the dipoles which belong to it. This method

can therefore be used to describe first-order and second-order optical forces.

1.2.2 Scattering and Gradient Forces

First-order optical forces can be understood as arising from two processes, scat-

tering from the object and polarization of the object; although these two processes

are clearly connected light-matter interactions. These processes do however gener-

ate behaviors which it has become common to distinguish when describing optical

forces. You’ll thus find descriptions of optical scattering and optical gradient forces,

although they both fall generally into radiation pressure forces. Although it’s not

always obvious, these forces are distinguished for good reason. The physics which

describes the behavior is certainly different: gradient forces are conservative and

scattering forces are not for instance. Furthermore, these forces do not scale to-

gether with physical properties of the system such as particle size. Finally, their

relative contributions can be manipulated by field design. Undoubtedly, these

two forces are important to describe for understanding the phenomena of optical

binding.

When light is scattered by an object, the magnitude and direction of the energy

flux of the light is changed [23]. Due to conservation laws, this momentum transfer

must be exerted onto the the particle. For small particles, (a ≪ λ) where a is the

radius and λ is the wavelength of light, this momentum transfer can be represented

as a force:

F scat =
nm

k2c

8

3
π(ka)6

(
m2 − 1

m2 + 2

)2

|E|2k̂ (1.11)

where nm is the refractive index of the medium,m = np/nm is the relative refractive

index, and k̂ is the propagation direction of the field [23]. The wavenumber, k,

multiplied by the radius, a, gives the size parameter, ka, which provides a value
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which compares the size of the object relative to the wavelength of the incident

field.

While Eq. 1.11 tells us the scaling within the small-particle limit, we cannot

assume that this scaling is represented in larger systems. Using the CDM method,

we can both validate Eq. 1.11 for small particles but also assess the scaling for

larger objects. To do this, we need to pick an initial-field. One of the more common

scenarios is that of a plane electromagnetic wave,

Einc = E0e
ik·rêp (1.12)

with polarization direction of êp and wave vector k. This choice is particularly

useful in that the component for the scattering force will be aligned with k due

to the symmetry of the field and it ensured that the gradient force will have no

contribution to the force. To assess the force for different ka and m, we can simply

test a separate CDM simulation and record the strength of the force in the k

direction. Numerically, Fig. 1.2 shows how the force scales in terms of both ka

and m. By selecting out certain relative indices, it is clear to see in Fig. 1.2b

that strength of the scattering force scales like (ka)6 while ka ≪ 1. This relation

is expected from Eq. 1.11. For larger spheres, we find that the force continues to

increase with size but scales with ∼ ka3.5.

The gradient force arises as the object is polarized in the field and the collective

dipole moment experiences a force similar to that of the force on a point dipole,

F dipole = (p ·∇)E (1.13)

which the dipole moment p can be written in terms of E,

p = αE (1.14)

where α is the polarizability which is in general complex and will be described in

more detail in the following section. Following Eq. 1.13 and Eq. 1.14 one can

derive the gradient force for a small object [23]:

F grad = n2
mϵ0πa

3

(
m2 − 1

m2 + 2

)
∇|E|2 (1.15)
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Figure 1.2: (a) Strength of the scattering force for a particle of size ka and relative
index m. A particle is placed in plane-wave of wavelength 400nm and a field
intensity of 1 mW/µm2. (b) selected lines from (a) are plotted to illustrate the
force scales with ka. (c) A higher resolution analysis for ka > 1 values.
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which, as expected, depends on the gradient of the field intensity. I also note

that the gradient force scales differently than the scattering force with ka and m.

Eq. 1.15 is of course another small particle approximation. To study this force

numerically, we place a single particle in a standing wave at a node and compute the

radiation forces that it experiences towards the plane of highest intensity. In this

case, the scattering forces should be negligible as the standing wave is formed by

two counter-propagating plane-waves which should cancel out first-order scattering

forces. From this simulation we generate Fig. 1.3 which provides us way to

understand how the gradient force scales with respect to the particle parameters.

From Fig. 1.3b, we can see that the gradient force scales like (ka)3 for ka ≪ 1

particles. Beyond small particles, we find that the strength of the gradient force

ceases to follow a (ka)3 trend. What is not shown in Fig. 1.3b because the

absolute value of the force is plotted on a log-scale is that the force oscillates

between positive and negative values depending on ka. Even though the force is

no longer shares a linear relationship with (ka)3 for larger particles, we observe

that the average strength has a general trend which follows ∼ (ka)2 (Fig. 1.3c).

1.2.3 Complex Polarizability

In general, particles will have a polarizability which is complex. Understanding

the role polarizability has on the scattering and gradient forces can help guide the

understanding of why these forces scale the way they do. This section is dedicated

to describing how the complex polarizability plays a role in scattering strength.

The complex polarizability suggests a phase shift between the incident field and

the field propagating through the scattering object. It is this shift which gives rise

to strong scattering and thus scattering forces which become dominate in certain

size regimes.

The complex polarizability can be written as:

α =
α0

1− ik3α0

6πϵ0ϵm

(1.16)
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with

α0 = 4πϵ0ϵma
3

(
ϵp − ϵm
ϵp + 2ϵm

)
(1.17)

an expansion of Eq. 1.16 yields:

α = α0 + i
k3

6πϵ0ϵp
α2
0 +O(α3

0) (1.18)

For small particles, α0 is small and therefore we can consider the first two terms.

A slight variation to Eq. 1.13 is to accommodate the complex contributions by

writing the forces as

F =
1

2
Re [α∗E∗∇E] (1.19)

for a complex field E = Re [E] + iIm [E] and complex polarizability α = Re [α] +

iIm [α]. The real terms can be factored out which include:

Re [α∗E∗∇E] =Re [α] (Re [E] ·∇Re [E] + Re [E] ·∇Re [E])−

Im [α] (Im [E] ·∇Re [E] + Re [E] ·∇Im [E]) (1.20)

By utilizing the dot product rule, the first two terms return the gradient force

(Eq. 1.15). The other contributions lead to the scattering force. One simple

way to observe this is to consider a plane-wave traveling in direction ẑ. The static

plane-wave can be represented as,

E = E0e
ikzêp (1.21)

= E0 [cos (kz) + i sin (kz)] êp (1.22)

Therefore,

∇E = kE0 [− sin (kz) + i cos (kz)] ẑ (1.23)

and the last two terms in Eq. 1.20 can be rewritten as

Im [α] (Im [E] ·∇Re [E] + Re [E] ·∇Im [E]) = kIm [α] |E|2ẑ (1.24)

and finally obtaining Eq. 1.11 by plugging in the imaginary part of α.

We can observe that the relative strength of the real and imaginary parts of α

thus control the relative strength of the scattering and gradient forces. In Fig. 1.4,

we show how the the real and imaginary parts of α depend on the size-parameter
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and the relative refractive index. We find that beyond ka = 1 that the imaginary

part of α can eventually becomes greater than the real part of α. Where exactly

this happens depends on the relative refractive index of the particles.

In the application of optical traps, particles are readily able to be trapped re-

gardless of the relative strengths of these two forces. This is because the gradient

forces can be enhanced, through focusing, well beyond the relatively subtle differ-

ences caused by increased scattering strength. One surprising result that is found

with optical traps is that small and large particles despite existing in different

regimes show similar behaviors. For larger particles, geometric ray tracing can be

used to describe how light, focused behind the center of mass of the particle to

produce a trapping force which combats the forward scattering forces. This how-

ever should not be assumed to remain true for all optical forces. In particular, for

optical binding forces the gradient and scattering contributions are determined by

the scattering of the particle itself. This means that the gradient component of

the binding force cannot simply be enhanced by means of focusing strength and

consequently might compete with the scattering force component for larger parti-

cles. Furthermore, with increased scattering, which is related to Im [α] we might

as well consider how multiple-scattering effects become more prevalent. Unfortu-

nately, this cannot be done analytically. I provide analysis of multiple-scattering

with respect to α in a later chapter which includes simulations of multiple objects.

The scattering force and the gradient force scale differently. Primarily, we find

that the scattering force increases as ka6 while the gradient force increases as ka3

when ka ≪ 1. These relationships can of course be related to α. By rewriting Eq.

1.17 as:

α0 = 4πϵ0a
3

(
m2 − 1

m2 + 2

)
(1.25)

we should also expect the scattering and gradient forces to scale differently with

respect to m. By expanding
(

m2−1
m2+2

)
about m = 1:(

m2 − 1

m2 + 2

)
≈ 2

3
(m− 1) (1.26)

we see that the real part of alpha should thus cause the gradient force to scale with

(m − 1) while the imaginary part should cause the scattering force to scale with
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Figure 1.3: (a-c) Strength of the gradient force for a particle of size ka and
relative index m. Here, a 1 mW/µm2 λ = 400 nm is used. A single particle is
placed at a node of a standing wave and the force applied on the particle towards
the plane of highest intensity is recorded. (b) Gradient force scaling for select
relative refractive indices for a wide range of size parameters. (c) Gradient force
scaling for select relative refractive indices for a range of size parameters to provide
more detail on the high-frequency region of (b).
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Figure 1.4: The real and imaginary parts of the complex polarizability for a range
of ka.
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Figure 1.5: Force scaling with respect to relative refractive index for (a) scattering
and (b) gradient forces. (a) A single sphere of size-parameter ka is placed into
a λ = 400 nm, I = 1 mW/µm2 single propagating plane-wave. The force in the
direction of field propagation is measured and scaled relative to (m − 1) (b) A
single sphere of size-parameter ka is placed into a node of a λ = 400 nm, I = 1
mW/µm2 standing wave. The force in the direction towards the plane of intensity
is measured.

(m− 1)2.

We use Fig. 1.5a to show that the scattering force indeed scales proportionally

with (m − 1)2. This relationship remains true even for particle sizes ka > 1. For

the gradient force, Fig. 1.5b shows a proportional scaling with (m− 1); however,

there are strong deviations when both m and ka are large. For the gradient force,

we also observe sign changes in the force, thus we’ve plotted only absolute value

of the force on the log-scale plot.

1.3 Two-Body Optical Forces

In two-body systems, the relative positions of the two bodies can be coupled to

each other. This can be understood by considering first that the optical scattering

and gradient forces depend on the total field, E, from the previous section and

that each body contributes to E via light scattering. The same reasoning holds

for many-particle systems, however the discussion for now is limited to two for
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simplicity. The optical binding forces are thus proportional to how strongly the

other body scatters light. In very strong scattering cases, one can imagine higher-

order effects such as multiple scattering. Here, the scattered field from each object

is non-negligibly re-scattered by the other at a strength that considerably alters the

total field experienced by each. It remains unclear, without computing numerically,

when strong multiple scattering effects are expected to be relevant.

Optical binding is a highly directional force depending heavily on the propaga-

tion vectors of the incoming light. It is thus common to consider two geometries:

one in which particles are displaced perpendicularly to the axis of propagation (lat-

eral binding) and one in which particles are displaced along the axis of propagation

(longitudinal binding).

1.3.1 Lateral binding

For small particles (ka ≪ 1) we can develop an analytical term for the optical

binding force between two particles displaced perpendicularly to the field propa-

gation. We consider a counter-propagating field along the z-axis,

Einc = E0e
ikzx̂+ E0e

−ikzŷ (1.27)

where k = 2π/λ and two particles displaced by R = [Rx, 0, 0] in the xy-plane.

Using Eq. 1.13 and Eq. 1.14, we can write down a force for each of the two

particles:

F =
1

2
Re [(α∗E∗ ·∇)E] (1.28)

where α is the complex polarizability of the particles and E can be written as the

sum of the incident field and the scattered field from the neighboring particle [22]:

E =
↔

K ·
(
Einc +

↔

G · αEinc

)
(1.29)

with the dyadic Green’s function,

↔

G =
eikR

4πϵ0ϵmR3
[(3− 3ikR− k2R2)

R⊗R

R2
+ (k2R2 + ikR− 1)

↔

I ] (1.30)
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The tensor
↔

K is a term which includes multiple scattering between the two bodies

and is related to the dyadic Green’s function as
↔

K = [
↔

I − α2
↔

G ·
↔

G]−1. For the

specified orientation:

Gxx =
eikRx

2πϵ0ϵm

(
1

R3
x

− ik

R2
x

)
(1.31)

Gyy = Gzz =
eikRx

2πϵ0ϵm

(
k2

Rx

+
ik

R2
x

− 1

R3
x

)
(1.32)

Kii = [1− α2G2
ii]

−1 ∼ 1, and E = [(E0 +GxxαE0), E0+, 0].

Using Eq. 1.28, we can determine the binding force along the axis of particle

separation:

F x =
1

2
Re [α∗E∗

i ∇xEi + α∗Giiα
∗E∗

i ∇xEi + α∗E∗
i ∇x(Gii)αEi] (1.33)

with the last term being the only non-zero contribution:

F x =
|α|2|E0|2

8πϵ0ϵm

(
−k3 sin (kRx)

Rx

+
2k2 cos (kRx)

R2
x

− 9k sin (kRx)

R3
x

− 3 cos(kRx)

R4
x

)
(1.34)

In general, the optical binding force can include long-range oscillatory com-

ponents that fall off as 1/R. Furthermore, since α is small for nanoparticles, we

ignore terms that include α(n>2) dependence. I also note that the multiple scat-

tering term, Kxx ∼ 1 for nanoparticles and it is generally acceptable to treat it as

exactly 1 within the nanoparticle limit.

Numerically, this problem can be treated without making such approximations

for larger particles utilizing CDM. We can place two particles in a simulated field

and measure the force on each particle due to the initial field and subsequent

scattering. For reference, we include the field around a single particle placed at

the origin (Fig. 1.6a-c). We compare this directly to the optical forces that

a second particle placed within the region experiences in the simulation (Fig.

1.6d-f). The data is presented for particles of relative index m = 1.2 which is

representative of polystyrene spheres in water. We also present the force-maps for

three sizes (ka = 1.0, 2.5, 4.0). In this geometry, we show that the oscillatory form

of the force is largely similar for all sizes except for the strength. We clearly show

that the force is much larger for larger spheres which is not surprising considering
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Figure 1.6: The field intensity surrounding a (a) ka = 1, (b) ka = 2.5, and (c)
ka = 4 particle. The two-body force experienced by (d) ka = 1, (e) ka = 2.5, and
(f) ka = 4 particles. All maps are shown in the xy-plane with a cross-polarized
counter-propagating beam propagating along the z-axis.

the a3 and a6 dependence found for the gradient and scattering forces respectively.

I also note the oscillatory nature of the force can be predicted by considering the

gradient of the fields provided in Fig. 1.5a-c.

1.3.2 Longitudinal binding

Using a similar approach taken above, we can consider two small particles

displaced along the beam propagation (R1 = [0, 0, Rz] and R2 = [0, 0, 0]). In this

case, we obtain:

Gxx = Gyy =
eikRz

2πϵ0ϵm

(
k2

Rz

+
ik

R2
z

− 1

R3
z

)
(1.35)

Einc,1 = [E0e
ikRz , E0e

−ikRz , 0] and Einc,2 = [E0, E0, 0]. Note that it is important

here that each particle is experiencing a different incident field, unlike the lateral

case which afforded a symmetry in the z-position. For the force on particle 1 we
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Figure 1.7: The field intensity surrounding a (a) ka = 1, (b) ka = 2.5, and (c)
ka = 4 particle. The two-body force experienced by (d) ka = 1, (e) ka = 2.5,
and (f) ka = 4 particles placed in a cross-polarized counter-propagating field of
λ = 400 nm and I = 1 mW/µm2. All maps are shown within the xz-plane with a
cross-polarized counter-propagating beam propagating along the z-axis.
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may utilize Eq. 1.33 and obtain:

F =
E2

0

4πϵ0ϵm

(
−k3|α|2 sin (2kRz)

Rz

+
k3(α

′2 − α”2) sin (2kRz)

Rz

+
2k3α

′
α”(cos (2kRz) + 1)

Rz

)
+

E2
0

4πϵ0ϵm

(
−2k2|α|2 cos (2kRz)

R2
z

− k2(α
′2 − α”2)(cos (2kRz)− 1)

R2
z

− 2k2α
′
α” sin (2kRz)

R2
z

)
(1.36)

Here we simplified by neglecting terms R(n<−2) and α(n>2). Note the oscillatory

terms which have a spatial frequency twice of the lateral binding force. We also

find a term which is non-oscillatory and long-range unlike the lateral binding force.

The procedures from Eq. 1.28-Eq. 1.36 are only appropriate for small particles

relative to the wavelength of the incident light, however we find that they describe

some of the major features observed in optical binding experiments as well as other

numerical methods which do not strictly utilize small particle approximations.

For a fuller picture, we again use CDM to compute the force for displacements

along and off-axis from the beam propagation axis. Fig. 1.7a-c shows the scat-

tered field on the xz-plane while Fig. 1.7d-f shows the force in the xz-plane for

ka = 1.0, 2.5, 4.0 particles. Unlike the forces in the lateral plane, the force along

the z-direction change in form for larger particles particularly along the axis of

propagation. The forward scattering pattern that becomes drastically more pro-

nounced for larger particles appears to account for these differences. The larger

particles are in a sense refocusing the light field as it passes generating a trap that

confines neighboring particles axially. However, an aligned particle is likely to be

pushed away along the axis.

1.4 Summary

In this chapter, I introduced that optical binding forces are a combination of

conservative gradient and non-conservative scattering forces. I show that the scat-

tering forces, which dominate in longitudinal arrangements due to the propagation

direction of the field, scale faster in strength than the gradient force with particle

size and relative refractive index. I also show that for larger particles, the gradient
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force exhibits strong and highly nonlinear response to subtle changes in the particle

properties. These results that in the Mie scattering regime, optical binding forces

are highly tunable. The differences between these two forces provides a complex

environment. Recall that the gradient force is conservative and the scattering force

is non-conservative. Tuning their relative strengths, can alter conservation prop-

erties of the system. We’ve shown that this tuning can be achieved by tuning ka

and m.

I also highlight that optical binding forces are highly directional. In §1.3

I provided a detailed analysis of lateral and longitudinal optical binding. This

directional feature can add complexity in a self-assembled system. What is most

obvious is that the lateral optical binding behaviors are similar across a large

particle size range, with exception of overall strength, while particles with some

degree of longitudinal displacement have strong responses to the particles relative

size. This suggests that longitudinal forces are highly sensitive to size. Considering

that scattering forces act strongest along the longitudinal direction and that they

too have a strong sensitivity to particle size; we start to see how the roles of

scattering and gradient forces will ultimately affect the interaction. Increasing the

complexity even further is the fact that both laterally and longitudinally bound

particles can experience multiple stable points. It is for these reasons that we

consider optical binding for self-assembly; both because it is highly tunable as well

as complex. In the next chapter, I discuss how we experimentally studied the

self-assembly behaviors in many-body optically bound systems.



Chapter 2

Many-body Optical Binding

Experiments

2.1 Introduction

Optical binding experiments date back to the work from Burns et. al. [1],

where it was shown that two laterally bound dielectric spheres trapped in a beam

interacted via optical binding forces. A histogram of the displacements observed

over time showed a preference for displacements that were multiples of the light

wavelength. This finding held clear implications for the use in organizing extended

systems.

In terms of accessibility, optical binding offers an externally driven interaction.

It is an interaction which can be spontaneously turned on or off along with the

ability to precisely tune the strength. This would make optical binding an ideal

model system to study thermodynamic phenomena such as glass-transitions. In

theory, optical binding can be used to manipulate a wide range of particle sizes,

including nano- and micro-scale objects. These objects are small enough to ex-

perience Brownian dynamics while large enough to be imaged and analyzed at

a single-particle level. Furthermore, the length-scale which is most accessible to

optical binding happens to be a scale which is relevant for optical metamaterial

fabrication [24]. Photonic crystals, for instance, manipulate the propagation of

21
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certain light wavelengths depending on the periodic spacing of material at that

wavelength scale. Optical binding has already the demonstrated ability to as-

semble periodic lattices making it a potential tool for photonic crystal fabrication

or manipulation [22]. These are our motivating concepts for which we sought to

understand the possibilities and limitations of large scale optical binding systems.

In previous optical binding research, there was a number of experiments which

focused on dielectric microspheres (1 < ka < 20) in either 2-dimensional later-

ally bound arrays or 1-dimensional longitudinal arrays. Each experiment a new

observation of unique features of optical binding: tuning lattices by altering the

light polarization [25], particles exhibiting breathing modes and center of mass

motion [26], as well as the formation of particle clusters [4]. Beyond dielectric

spheres, 2-dimensional lateral arrays have also been formed with Au and Ag metal

nanoparticles (ka ∼ 0.6) [27, 28].

With exception to [25] and [29], which investigate hundreds of particles, most

many-body optical binding studies focus on no more than 20-particle arrays in

either 1 or 2 dimensions. These limited configurations are indeed a good stepping

stone into understanding what structures and behaviors can be expected from

many-body optical binding. However, it remained unclear what applying a strong

field to a bulk colloidal material would result in: How does stability change with

system size and dimension? How much power is generally required? Do hierarchi-

cal structures form in larger systems? We found these questions most necessary to

address first in a relatively simple system: identical and spherical dielectric par-

ticles in a single field. Undoubtedly, optical binding offers a number of ways to

build more complexity including multiple-species systems, aspherical colloids, and

multiple fields to name a few.

For optical binding, even in relatively simple systems, the experimental data

remains sparse which originally might seem counter-intuitive; in theory, the re-

quirements include a colloidal media and a coherent laser beam which are both

readily available. However optical binding forces are known to be extremely weak,

and thus require high intensity fields. This makes studying optical binding diffi-

cult in practice. One must consider, for example, optical damage thresholds and
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constraints on imaging. One method that was utilized by Mellor et. al. [25] and

Garcés-Chávez et. al. [29] to allow the observation of binding over larger areas

was the utilization of evanescent waves in which the most of the beam power is

restricted to near a dielectric surface. Most recently, Brzobohaty et. al. [30]

presented a study of N ∼ 10000 small dielectric spheres (ka = .4) in a counter-

propagating beam propagating perpendicularly to the imaging path. In this study,

particles were far too small to resolve details pertaining to optical binding; how-

ever the effects of the interaction can be observed in the formation of non-uniform

patterns in the bulk material due to the beam.

In this chapter, I present a novel method which utilizes total internal reflection

allowing for the study of hundreds of large (ka ∼ 1.6−7.1) dielectric particles in an

unconfined geometry within a high-powered optical field [31]. Within this setup, we

can experimentally observe the self-assembly behavior of an assortment of colloidal

particles in a counter-propagating field. Here I highlight one of the most exciting

results discovered within this geometry; the formation of highly active optically

bound colloidal clusters.

§2.2 will be an introduction to the design of the apparatus and techniques used

to study optical binding. In §2.3 I provide experimental results for various sizes

and refractive indices. In §2.4 I provide a detailed analysis of the behavior of the

optically bound colloidal clusters.

2.2 Apparatus and experimental design

2.2.1 Estimation of power requirements

The obvious first question to ask is whether the experiment is even possible.

From previous studies, we had a sense that optical powers density requirements

could be quite high, but we needed to estimate exactly whether they are out of

range for practical experimentation especially as we sought to scale-up the size of

the experiments. There are a few measures to look into to obtain an estimate of

power density requirements; however it should also be noted that, as was shown
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Figure 2.1: (a) Experimental setup. The laser beam is split into two paths that
are aligned to counter propagate through the colloidal sample. Both beams are
adjusted so that they are totally internally reflected at the bottom surface of the
coverslip. The polarization and incident angle of each beam can be adjusted indi-
vidually by rotating the 1/2 wave plate in each path. The camera, electronically
tunable lens, and illumination source are all synchronized to a wave-function gen-
erator for the acquisition of 3-dimensional videos. (b) A closer view of the spherical
prism and sample at a relatively accurate scale. Here we can observe how both
beams are propagated through the various layers and are aligned such that they
are counter-propagating and focused within the thin glass sample tube. (c) Depth
profile of sample cell, we define z-axis as direction along the sample depth and k̂ as
the axis corresponding to the beam propagation axis. The imaging plane is shifted
along the ẑ axis by the electronically tunable lens. (d) Image of 500 nm polystyrene
spheres in the optical field. The image is a single slice of a 3-dimensional z-stack
of images. From the specific xy-plane, the different z-positions of the particles
are made obvious by the distortion of particles out of focus. In general, we can
observe that the particles tend to increase height as you move along the x-axis.(e)
Image of 500 nm silica spheres in the optical field. The image is a single slice of a
3-dimensional z-stack of images. From the specific xy-plane, the various positions
along the z-axis can be seen by the distortion of particles out of focus. In general,
it is observed that the particles tend to increase height as you move along the
x-axis.
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Figure 2.2: Strength of optical forces for a range of size-parameters (ka). The
optical gradient force (blue) was numerically simulated by placing a single particle
in a node of a standing wave, the optical scattering force (orange) was numer-
ically simulated by placing a single particle in a propagating plane-wave. The
optical binding force was obtained by placing two particles laterally in a counter-
propagating field at a separation of 2λ. The reference force, F0, is also plotted. In
all simulations we assume a light intensity of 1 mW/µm2.

in §1.2, the force strengths are highly sensitive to experimental parameters such

as the size of the particles of interest. Of the measures, we include the first-order

scattering force FS, the first-order gradient force FG, the lateral binding force FB.

Additionally we define a reference force, F0, which is the total optical momentum

impinging on a single particle in a plane wave of intensity I0:

F0 =
I0πr

2

c
, (2.1)

where r is the radius of the particle and c is the speed of light. It useful to compare

this to thermal excitation. For an order of magnitude estimate of how the thermal

activity compares to the strength of the optical forces in the experiment, we can

convert the thermal energy, kbT , to an equivalent force by including a length scale.

Given that the optical binding force has spatial oscillations with the wavelength of

the incoming light, the approximate scale of the equivalent thermal force is given

by FT ∼ kbT/λ ∼ 10 fN.
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We performed a numerical analysis to predict suitable light intensity and par-

ticle parameters which should allow us to observe optical binding effects (Fig.

2.2). This plot, generated by CDM code, gives us a lot of information. For one,

we observe that the optical binding force strength scales with the scattering force.

This is expected as both phenomena are connected. As a second-order effect, the

binding force is considerably weaker than the gradient and scattering forces. To

estimate whether we will even be able observe considerable effects, we are looking

for ranges in which FB > FT . I note that this analysis suggests that FB ≪ FT

until ka ≫ 1. Using a laser of λ = 400 nm and power density 1 mW/µm2 we might

expect to observe binding effects for particles of diameter d > 200 nm. This size

requirement falls within our experimental range as we are additionally interested

in resolving particles at an individual scale.

Secondly, we might also consider the role that the relative index, m, has on the

ability to observe considerable binding forces. We know that m = 1 yields abso-

lutely no scattering, however dielectric colloids can fall typically between 1− 1.4.

While the entire range could be analyzed, we decided to instead focus on two major

relative indices of interests. There are two materials which are readily available

for purchase as mono-disperse spheres of various sizes: polystyrene and SiO2. Be-

cause we are assessing a relatively unfamiliar force, we opted to limit ourselves to

utilizing relatively familiar components which we could obtain consistently. Thus,

in practice, we were able to focus our analysis with respect to a relative indices of

polystyrene in water (m = 1.2) and SiO2 in water (m = 1.1). I show both cases

in Fig. 2.2 and find that the although the SiO2 particles experience relatively

weaker optical forces they likely fall into the experimentally accessible range.

While this analysis suggests that a power density on the order of ∼ 1 mW/µm2

could be the enough to observe weak optical binding effects, we had to take careful

consideration of how to design the optical pathway. For instance, if we consider

covering an optical binding area of ∼ 100πµm2 which would require up to 0.5 W.

While the simplest optical design would be to propagate the beam perpendicularly

through a sample and image the dynamics from below, the objective lens would

further focus the beam. This additional focusing through the lens could bring
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the peak power density behind lens up to ∼ 800 mW/µm2 assuming a .75 NA

objective. This power density is extremely high and for obvious reasons something

that we wanted to avoid. Clearly, the beam must be isolated if we wish to observe

the effects of optical binding. We needed beam to be reflected at a layer between

the sample and the objective lens.

One way to do this is to place a dielectric mirror between the sample and

the objective. Doing so solves the issue of high-power, but introduces the issue of

imaging through a thick glass provided that you can fit a mirror within the working

distance of the objective. Through the addition of precision optical components

and/or the fabrication of custom thin-mirrors, this scheme is theoretically possible.

However, we opted to instead to convert a simple thin coverslip glass into our

reflecting surface by utilizing total internal reflection.

2.2.2 Optical Setup: Total Internal Reflection

Our primary experimental apparatus is based on a custom microscope designed

to observe colloidal interactions within a totally internally reflected beam. In

doing so, it required us to separate the imaging coordinate frame from the beam

coordinate frame. To achieve total internal reflection required the beam to be

propagated at an angle, ϕ, from the bottom of the sample. This peculiar geometry

was utilized as a necessary measure to protect sensitive imaging equipment. Note

that, unlike an optical trap where the extremely high optical power density is

experienced only at the site of interest where it is strongly focused, an optical

binding setup may require similar maximum power density but for a much wider

area. This demand requires a much higher optical power throughout the entire

optical pathway. Not only did we expect high powers to be required to observe

significant optical binding forces; but these high powers, if directed through a

microscope objective would be focused further.

In the original design, there was one beam path which was weakly focused

through a triangular prism. The prism sat on a microscope slide connected by

index-matching fluid. The colloidal sample was placed in between the microscope
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slide and a glass coverslip making it the final layer in the beam path. The beam

was aligned to enter the prism at a 45◦ angle. It would then pass through the

microscope slide at ∼ 45◦, the sample of water medium at ∼ 57◦ from the ẑ axis,

and finally ∼ 45◦ through the coverslip. At this angle, instead of propagating

through the final air interface, the beam is reflected and returned through the

opposite side of the triangular prism and directed into a beam dump.

The expectation in this geometry was that scattering forces would push parti-

cles against the bottom surface of the sample while gradient forces would collect

particles into the beam area. Thus this apparatus could give us a view of large

scale optical binding in two dimensions. This experimental design would be very

close to a scaled-up version of the original binding experiments [1], except with

the incident beam not perpendicular to the surface. In testing this original design,

we found that particles not only had a strong push downward towards the bottom

surface of the sample, but tended to be pushed along the surface and out of the

confinement area. Where we expected that the gradient forces and the downward

scattering forces would be enough to trap particles at the surface, the scattering

components parallel to the surface appeared to push particles out of the beam

area.

The are potentially a few ways to solve this issue. To make the following dis-

cussion more clear I will describe the coordinate system. First, the lab coordinate

frame is aligned with the imaging coordinate frame which is described by x̂, ŷ, and

ẑ. The imaging plane is in the x̂-ŷ plane. The propagation vector of the beam,

k̂, has both ẑ and x̂ components. The ẑ component pushes particles towards the

bottom surface of the sample while the x̂ component pushes particles out of the

confinement area.

Similar to optical trapping, one could focus the beam until the confinement

force overcomes the scattering forces. Unfortunately, this would set a limit on the

size of the optical binding region. Additionally, with strong confinement forces,

it would be more difficult to separate optical binding effects from the first-order

gradient forces. Because we wanted to maintain a larger binding area, we opted

to instead balance the scattering forces.
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We found that there were two configurations which allowed us to balance the

scattering forces. The first was to introduce a second beam which propagated in the

opposite direction along the x̂ axis but maintain the same downward component

(k̂x,1 = −k̂x,2 and k̂z,1 = k̂z,2, where k̂1 and k̂2 are the propagation vectors of

the first and second beam respectively). We considered this configuration as cross-

propagating. With cross-propagating beams, we found that particles were able to

be confined into a 2-dimensional lattice. By balancing each beam, the particles

remain within the confinement area.

The second configuration is a more familiar counter-propagating geometry. In

this configuration, a second beam is aligned with the first in the opposite direction

(k̂x,1 = −k̂x,2 and k̂z,1 = −k̂z,2). While it manages to balance both components

of the scattering force, we found that particles we no longer confined into a 2-

dimensional array on the surface. In general, we found particles can be gathered

instead into a 3-dimensional column that extends from the top to bottom surface

of the sample. Interestingly, this geometry is the same as simulated by Ng et. al.

[10]. By using counter-propagating beams with aligned polarizations, Ng et. al.

showed that an array of particles could in theory be trapped into a 2-dimensional

lattice away from a surface. In practice, we found that this confinement would be

extremely difficult to maintain. Not only do thermal forces readily allow particles

to move out of plane, but we find that small instabilities could drive particles out

of lateral orientation from each other. We did find that the overall motion of the

particles could be impeded by generating a standing wave with polarization align-

ment. In later sections, I describe quantifiable differences of colloidal behavior

within the standing wave and cross-polarized counter-propagating wave. For now,

it is important to note that trapping forces from the standing wave can yield con-

siderable effects on stability but are unlikely to confine particles into a completely

2-dimensional lattice away from a surface.

We experimented with both cross-propagating and counter-propagating geome-

tries, but shifted the main focus on the later. There have already been studies

which looked at optical binding of 2-dimensional lattices on surfaces [25, 29] and

thus we were most interested in a previously unexplored 3-dimensional geometry.
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This geometry gives full access to explore the longitudinal and lateral binding

forces and gives insight of bulk colloidal behavior to optical fields. For this reason

the majority of experimental analysis in this thesis are performed with the optical

designed described in Fig. 2.1a.

Two Gaussian beams (λ = 532 nm in vacuum, or 400 nm in water) are aligned

and focused through the sample tube to generate a counter-propagating crossed

polarized optical field (w0 = 27.0 ± 0.3 µm). The polarizations of each of the two

beams can be adjusted individually which allows us to switch between a counter-

propagating standing wave and a crossed polarized configuration. In this specific

setup, a portion of beam power is redirected back towards the laser source which

is removed using an optical isolator placed between the laser head and the beam

splitter. The final focusing of the beam allows us to further modulate the beam

power density. The orientation of the beam through the sample is at an angle of

approximately ϕg = 45◦ through the glass layers and ϕ = 36◦ through the water.

We achieve total-internal reflection at the glass-air interface at the bottom surface

of the coverslip depicted in Fig. 2.1c.

2.2.3 3-dimensional imaging with an Electronically Tun-

able Lens

Since we were now working in a 3-dimensional environment, we also developed

methods to collect 3-dimensional data. To do so, we used a combination of a

microscope objective (40X, NA = 0.75) and an electronically tunable lens (ETL).

The scanning of the ETL is synchronized with the imaging camera acquisition

to capture 10 volumes per second with 50 frames per volume. By adjusting the

focal length of the ETL, one can adjust the z-depth of the imaging plane shown in

Fig. 2.1c. By driving the ETL approximately 6 % of its full range, we scan more

than 10 µm which is the depth of the majority of samples. The signal output to

the ETL is in the form of a periodic sawtooth pattern (driven at 10 Hz) which

increases linearly for 70 % of the total period and quickly decreases linearly for

the remaining 30 %. As such, the first 70 % of the period is used to create the
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full volume. The 3D scanning method gave us a spatial resolution of 0.8 µm/pixel

in the z-direction and a time resolution of 10 Hz which was sufficient to reliably

locate particles within the volume.

Before utilizing the ETL, we did have to develop methods to calibrate it. In

a bright field microscope setup an ETL can be placed in between the objective

and tube lens to adjust the focal plane. This is achieved ultimately by adjusting

the focal length of the lens via an applied voltage. The voltage range for the

particular device is 0-5 V amounting to the total range of focal length between

-500-333 mm. We utilize approximately 6 % of that total range. Relating the

applied voltage to focal depth was achieved through a calibration procedure. The

calibration procedure consisted of locating a fixed particle in a sample. Using the

fixed object as a reference we could apply a voltage to the lens and physically

translate the objective until the object was back in focus. The physical position

of the objective is read out with micro-precision via the Mad City Labs - Micro-

Controller. Collecting a set of Voltages and positions provides a linear relationship

between the lens focus and the focal depth. Furthermore, the depth of the samples

are known to within 1 µm. This depth can be used to validate the calibration

provided there are objects located at the top and bottom surfaces of the sample.

2.2.4 Sample preparation

Colloidal samples are diluted in water (∼ 0.01 w/v %) and placed into thin

rectangular Borosilicate tubes (100 µm wide × 10 µm thick × 50 mm long) pur-

chased from VitroCom. The samples are drawn into the small tubes through

capillary forces. We performed experiments with polystyrene (relative index m =

1.20 [32, 33]) and silicon dioxide (relative index m = 1.10 [34, 33]) purchased from

microParticles GmbH as well as Bangs Lab. In the experiments, the number of

colloidal particles are in the range of 10-1000 particles depending on particle size

and density. The tubes allow us to keep a precise sample depth of 10± 1µm. This

tube depth is important for confining particles to a range in the z-direction. A

single drop of index matching fluid is placed onto a microscope slide and the tube

containing the sample is layed onto the drop. The index matching fluid is used to
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remove an air gap between the microscope slide and the sample tube. An air in-

terface will disrupt the total internal reflection pathway. A coverslip is then placed

directly onto the sample tube. The addition of the coverslip is used to provide

stability to the sample as the thin tubes are fragile as well as provide a flat glass

surface to image through. Finally, the coverslip is glued to the microscope slide,

using UV curable Epoxy (Norland Optical Adhesive NOA61 ), which seals the tube

and index matching fluid. The samples are fixed onto the Mad City Labs - RM21

microscopy base allowing for micro-precision movement of the sample in the x-y

plane.

2.3 Observations of Self-Organization

At the outset of the experimentation, we sought to cover a wide range of par-

ticle sizes (ka = 1.6 − 7.5) as well as asses the differences between commonly

available polystyrene (m = 1.2) and silica (m = 1.1) microspheres. The design of

each experiment are similar to that described in §2.2, however there are a number

of alterations which can be made to the optical setup. In most cases we utilize

counter-propagating beams either with crossed or aligned polarization; however

I also report results involving cross-propagating beams in which the scattering

forces in the x-y plane are balanced by the two beams but the scattering forces

in the z direction of each beam push particles against the surface. This geome-

try is a much less studied geometry of optical binding in 2-dimensions which is

not governed completely by lateral forces. Finally, I present a special geometry

which can be obtained by a slight misalignment of the counter-propagating beams

to force particles into a quasi-two-dimensional plane that is free from the sample

surface. It is in this highly constrained configuration within a 2-dimensional plane

of longitudinal and lateral interactions which we observed the most bizarre set of

behaviors. This section thus serves as a collection of mostly qualitative observa-

tions that highlight known and previously unknown aspects of the optical binding

force in bulk colloidal material.

From the previous chapter, we saw that the optical binding force is a combi-
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nation of second-order gradient and scattering forces. In Fig. 2.2, we plot the

relative strength of first-order gradient and scattering forces for polystyrene and

silica particles to approximate their relative contributions to the binding force. I

show here that the size parameter, ka, has a strong effect on the relative balance

of scattering and gradient forces, thus I draw a distinction between recent studies

done on dielectric nanoparticles [30]. Note that the optical binding force is com-

puted only for a pair of particles spaced by 2λ; for larger numbers of closely spaced

particles it can be 1–2 orders of magnitude stronger. We observe that polystyrene

particles, which have a higher index of refraction generally have a stronger scat-

tering force response.

Figure 2.3: Particles in a counter-propagating field of for various sizes. In each
case a power density of 2 mW/µm2 was used.

What we observe in all cases studied is that particles will collect into the beam

and extend from the bottom surface to the top surface of the sample Fig. 2.3.

For polystyrene spheres at 300 nm, we find that multiple lines form along the

beam propagation. This is due to particles self-aligning along the propagation

axis. Because the beam is not confining the particle in 1-dimension, multiple rods

along the axis form. At larger particle sizes, particularly, 500 nm and 600 nm,

we find that particles have the tendency to either align into chains that extend

from the bottom to the top of the sample –or– we find a cluster of tightly packed

particles. At larger sizes, we find that particles have a tendency to form into many

smaller clusters. For the silica particles, we find less differentiation between the
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sizes. In most cases, we find the formation of elongated tightly packed rods.

To summarize more generally, particles will tend to align along the field prop-

agation. Once aligned, particles either repel each other to form extended chains

or collapse onto each other. If collapsed, the number of tightly bound particles

appears to depend on the size of the particles and strongly depends on the relative

refractive index. For instance, silica particles with a lower relative index can eas-

ily collapse into long extended rods of particles, whereas the polystyrene particles

appear to have a limit. Extended observations of 500 nm polystyrene particles for

instance do not yield clusters longer than five particles.

Furthermore, in all cases we find evidence of highly dynamic behaviors and

instabilities. While stability increases with less particles. Indeed, we have observed

optically bound structures stabilized on the order of minutes at for a small number

of particles. At higher densities, instabilities drive the system into constantly

active motion. On few cases, which will be highlighted in the following sections,

we observe that at moderate densities, one can observe fluctuations in and out of

highly stable and highly unstable behaviors.

2.3.1 Optical binding in an extended boundary

Since we observed such strong boundary effects, we sought to observe the bind-

ing along the propagation axis (k̂) from an alternate perspective. For this, we

utilized a square sample tube and imaged the colloids perpendicular to the field

propagation.

An alternative custom microscope system was designed to mitigate effects from

high-powered beam and allows the in-focus observation of optical binding along

the beam propagation axis. Here, two Gaussian beams (λ = 400 nm in solution)

are aligned and focused perpendicularly through glass sample tube with four flat

sides. The open ends of the tube a sealed off with Norland 61 optical adhesive.

Illumination and imaging are performed through the sides of the tube perpendic-

ular to the beam propagation axis using a white light source focused onto the

sample from below and a 40X Nikon objective lens from above. In this design,
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Figure 2.4: 500 nm particles collected in a counter-propagating beam. The beam
is propagating along the y-axis of the image directly in the center (guided by white
bar). Particles at the center of the image can be seen in an extended chain.

3-dimensional imaging was not utilized, but can in theory be achieved in the same

manner as previously described for the first apparatus.

The main benefit of this design is that the beam can be propagated through

the sample at a perpendicular angle. This scheme allowed us to validate that

particles indeed formed chains along the propagation axis. Additional benefits

of the apparatus include the ability to easily adjust the angle of beam incidence.

Furthermore, the particular microscope arrangement does not require a depth scan

to analyze long range longitudinal binding. This is important as we find the general

tendency for particles to self-organize into longitudinal arrangements. One of the

major drawbacks of this design is that it limited our ability to work within a

confined boundary. We found that with the use of thin tubes (< 30µm), we

observed highly correlated behaviors using the total internal reflection scheme.

Furthermore, the restrictive boundary forced particles to more readily assemble

into a 3-dimensional structure. Unfortunately, some of these behaviors are lost

when the system is less confined. If given enough space along the propagation

axis, we found that particles will tend to self-assemble into a single chain. While

this is indeed an important finding, we were more interested in higher density

effects. For the current apparatus, a sample required to match the boundaries
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capable with the total internal reflection apparatus would be impossible to image

through. In future work, the use of the completely perpendicular imaging path

would be most useful in assessing optical binding at much larger scales with higher

density colloidal systems.

In this orientation, on a few accounts we observed the formation of an at least

one extended chain of particles Fig. 2.4. The collection of particles, although

stable in alignment exhibited collective flows towards either direction along the

beam propagation axis. While this configuration did not provide the desired ob-

servation of clear binding in 3-dimensions, it did allow us to confirm that with

extended boundaries particles will still tend to align, and they can form extremely

long particle chains (> 50 µm).

2.4 Active Colloidal Clusters

Of the set of experiments that were performed, polystyrene spheres of ka = 4

demonstrated a unique ability of switching between stable to highly active and

unstable behaviors. Much of the behavior was unexplained by prior knowledge and

we sought to understand where the abrupt transition into high activity arose. After

further examination at various densities and lengths of time, we began to observe

that the instabilities appeared to be connected to the presence of optically bound

colloidal clusters of (3-5) particles. Our hypothesis was that a cluster of particles,

though multiple scattering effects could greatly modify the scattering pattern such

that the cluster behaves as a different type of particle – a system of identical

spheres emerging into a system of spheres and clusters. These clusters, which now

scatter differently, thus under non-reciprocal interactions with surrounding objects.

To test this hypothesis, we decided to directly compare the polystyrene (HIP -

’High Index Particle’) and silica (LIP - ’Low Index Particle’) spheres of the same

size. Here, although the particles are roughly the same and the two-body forces

are highly similar as will be shown in §2.4.2, we would expect to find stronger

multiple-scattering effects in the polystyrene sample which drastically alter the

self-organization behavior. The following sections detail this analysis along with
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methods undertook to quantify the active behavior.

2.4.1 Changes in self-organization behavior with refractive

index.

Optical binding effects are immediately apparent between particles within the

beam region. For instance, spatial ordering is immediately observable within the

beam area – effects which can be enhanced by increasing the light intensity. The

most apparent feature is the generation of multiple chains of particles aligned along

the beam propagation direction (Fig. 2.1c). Once collected into a chain, particles

within the chain can be observed to move collectively together within the beam

region. The density of particles is large enough to observe the formation of multiple

chains at a time.

Other features of the formed structures arise on further examination. For

instance, the HIPs are found to self-organize into extended chains which extend

along the sample depth–or–small clusters of typically (3-5) particles long. Both

HIP structures can be observed in Fig. 2.1c. Unlike the HIPs, the LIPs tend to

form extremely long and close packed chains of particles (rods). Two LIP rods can

be observed in Fig. 2.1d.

2.4.2 Comparing observations to two-body forces

To understand the dominating interactions which are leading to the general

behavior of both systems, we numerically generated two-body force maps for the

two particle types (Fig. 2.4a,b). The force maps were created using a CDM

based simulation, as described in §1.2 [11, 12]. Comparing force maps for HIP

(m = 1.2) and LIP (m = 1.1) particles reveals surprisingly little difference, apart

from the overall strength. The strength differences can be observed in Fig. 2.2

by comparing how the optical forces are generally stronger for HIPs. The strength

can be found to scale approximately like the reflectivity of a dielectric plane, which

scales like ∼ (m− 1)2 which was discussed in the previous chapter.
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Figure 2.5: (a,b) Two-body force map of optical binding forces for HIPs and LIPs
(ka = 4) placed in counter-propagating crossed-polarized plane wave (λ = 0.4µm in
solution) propagating in the +k̂ = +z′ and −k̂ = −z′ direction. Maps are obtained
by placing two particles in a CDM simulation and calculating the force applied on
each particle at various displacements which fill the map space. The forces are
provided in a unit-less scale normalized by the reference force, F0, described by
the single scattering force on a single particle of the same size and material. The
direction of the arrows represent the direction of the force, while the size represents
the relative strength. The white region at the center of the plots represents the
particles, while the grey region around it is the excluded volume (i.e. particles
placed at these separations would overlap). (c) The optical binding force along the
axis of propagation for an extended range for two HIPs. (d) The optical binding
force along the axis of propagation for an extended range for two LIPs. (e-h) 2D
pair-correlation functions for HIPs in the x-y plane at various light intensities. (i-l)
2D pair-correlation functions for LIPs in the x-y plane at various light intensities.
The color bar in the pair-correlation functions gives the 2D probability density of
the particles, and has units of µm−2.
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Despite this, the two-body force maps can be used to describe some of the

overall structures observed in the system. The long range alignment along the

beam propagation for the HIPs and LIPs are qualitatively consistent with the two-

body force maps (Fig. 2.5), which suggest strong forces can tend to pull particles

onto the axis of propagation (k̂). The k̂ axis, as shown in Fig. 2.1b is rotated 54◦

from z. For comparison, we approximate the energy F0λ ∼ 65kbT , thus the HIPs

can experience ∼ 20kbT of energy keeping them aligned in the k̂ axis in the beam

at 1 mW/µm2. The LIPs experience ∼ 5kbT at 1 mW/µm2.

The HIPs force-map shows a repulsive force between particles that are aligned

along the field propagation (Fig. 2.5a). This fits with the observation of HIPs

forming extended particle chains (Fig. 2.1c), rather than tightly packing. What

the force-map fails to predict for the HIPs are the presence of the smaller tightly

packed HIP clusters also found in the experiment. While it is expected that we

observe structures that cannot be predicted from two-body optical binding in-

teractions, here we observe an emergence of a force which is not only strongly

contributing, but can act in the opposite direction of the two-body force. For the

HIPs, the two-body force is repulsive along the k̂ axis but we observe experimen-

tally an unexpected close-range attractive force suddenly drives particles together

into small clusters.

2.4.3 Pair-correlation function

To map the time-averaged structure created by optical binding forces, we com-

pute a 2D pair correlation function (2D PCF). Given all the 2D particle positions,

ri, we can compute all relative displacements ∆ij = ri − rj ̸=i; the 2D pair correla-

tion function is then the histogram of these displacements, averaged over all frames

in the data set and normalized by the bin size (so that the result is expressed as a

2D density). The form of the pair-correlation function also gives an approximation

for an effective potential through which the particles interact. We collected the

data for the pair-correlation function by recording the positions of colloidal parti-

cles all located within the same weakly focused beam of light. The beam is fixed

at a constant light intensity for a duration of 2 mins during which we collected
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3-dimensional imaging data. 3-dimensional volumes were used to locate particles

over the entire 10 µm in depth. However, as the optical configuration results in poor

resolution in z, we discard the z-positions essentially projecting the 3-dimensional

information onto a 2-dimensional plot. As such, the k̂ axis is projected along the

x-axis. The particles were located using the trackpy implementation of Crocker

and Grier [35, 36]. While the particle speeds and dense particle clustering made

it challenging to track particles through time, we found that the algorithms were

quite efficient at locating particles within a frame. We found relatively low fluc-

tuations in the total number of particles from frame to frame suggesting that the

particle locating algorithms were performing consistently. Inter-particle displace-

ments were determined by particle locations given for each time-step, thus the

frequencies of each displacement over the entire run were available.

The 2D pair-correlation function (PCF) for the HIPs suggest an increase in

spatial order with the increase in light intensity Fig. 2.5e-h. The form of the

PCF shows the dominating feature that the HIPs tend to align along the beam

propagation. At higher light intensities, I > 1 mW/µm2, multiple lines off-axis

begin to appear. This not only suggests that particles are interacting to form

long range structures, but that there are optical binding interactions occurring in

multiple directions within the field. For example, at high powers there is clear evi-

dence of preferred inter-chain transverse spacing of ∼ 1 µm. This can be explained

by the computed pairwise force diagrams, which have a converging force in the y

direction at these separations. The two-body force maps (Fig. 2.5a,b) can be

used to help explain the multiple off-axis lines that appear in the PCF at higher

light intensities, as we can observe multiple off-axis lines in which the force arrows

converge.

The 2D PCF for the LIPs are very consistent with the observation that the

particles collapse into tightly bound rods (Fig. 2.5i-l). One feature that becomes

prominent are secondary off-axis lines at higher light intensities. The secondary

lines are evidence of multiple rods interacting to form a long-range regular spacing

over time.
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2.4.4 Volume Mean Squared Difference (VMSD)
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Figure 2.6: (a-c) Three snapshots of the optically bound HIPs over a 0.2 s duration.
Two clusters are circled: (red) cluster of 5 particles ballistically moving (>80 µm/s)
through the sample and (blue) isolated cluster of 4 particles remaining relatively
still.

We use the mean squared displacement of particles to determine their dynamic

behavior. Due to high-density particle clustering and the high velocities of clusters

evidenced in Fig. 2.6, it is difficult to reliably track individual particles through

time. This is especially true for close-packed clusters, which – as we shall show

later – appear to drive motion in the HIPs. Instead of attempting to directly

track the particles in time, we use a proxy for the mean squared displacement by
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Figure 2.7: (a) HIP PCF for frames with higher (top 30%) VMSD values. (b)
HIP PCF for frames with lower (bottom 30%) VMSD values. (c) The difference
between the high VMSD and low VMSD pair-correlation functions for HIPs. (d)
LIP PCF for frames with higher (top 30%) VMSD values. (e) LIP PCF for frames
with lower (bottom 30%) VMSD values. (f) The difference between the high
VMSD and low VMSD pair-correlation functions for LIPs. Displacements found
more often in the higher VMSD frames are positive (blue) while displacements
found more often in the lower VMSD frames are negative (red). The PCFs are
normalized by dividing the 2D particle density by the number of particles.

obtaining the mean squared difference between two subsequent image volumes.

We found that the volume mean squared difference (VMSD) between subse-

quent frames gives us more consistent measures of motion while remaining highly

correlated with the true mean squared displacement. The VMSD, ∆, is given by:

∆(t) =
1

Np(t)

[
volume∑
i,j,k

(pi,j,k,t − pi,j,k,t−dt)
2 −∆0

]
(2.2)

where pi,j,k,t is the pixel value at a given location and time, dt = 0.1 is the time

between frames, and ∆0 is the background VMSD caused primarily by camera

noise, and is computed for when there are no moving particles in the frame. ∆ is
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proportional to the squared particle displacement provided the particles average

motion between frames is smaller to or comparable the particle size. In practice,

we normalize this value relative to one obtained by turning the optical binding

laser off, in which case the particles experience only Brownian motion.

(a)

(b) VMSD

VMSD

Figure 2.8: VMSD values compared to 2-dimensional mean squared displacement
(MSD) in the xy-plane for (a) HIP (PS) and (b) LIP (SiO2) particles.

The calibration of the VMSD values were performed with the use of particle

tracking of diffusive particles. Although we are unable to provide an absolute

estimate of speed, due to poor z-axis resolution, the strong correlation between

particle speed and the VMSD value, shown in Fig. 2.8 provided us a means

to determine the relative motion for particles moving much faster in a denser

environment when optically bound.. The second limitation is that the VSD value

is capped at displacements that are slightly larger than the particle diameter. At

the volume rate of 10 volumes/s, particles undergoing Brownian motion are moving
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slow enough; however we have observed that particles undergoing optical binding

forces can be propelled much faster. One way to alleviate the limitation is to record

at a higher volume rate; however, it is currently unfeasible to cover the full range

of possible particle speeds. This limitation is also present in traditional tracking

methods. Although the motion of the fastest particles are underrepresented in

the VSD values, the VMSD method still allows a maximum value to be assigned.

Traditional tracking methods would not be able to assign a velocity value at all.

I also note that underrepresenting the motion of the faster moving particles only

acts to underrepresent the strength of the findings.

Furthermore, the VMSD values must be normalized by the number of particles

in the frame. The number of particles, Np, is estimated by the following:

Np = c0

volume∑
i,j,k

|pi,j,k,t − bi,j,k|+ c1 (2.3)

Where bi,j,k is belongs to a volume representing the sample devoid of particles. c0

and c1 are fitting parameters determined by linearly fitting the number of particles

found by traditional tracking methods to
∑volume

i,j,k |pi,j,k,t − bi,j,k| for a system of

particles undergoing Brownian motion.

The distribution average particle motion for the HIPs is provided in Fig. 2.9a.

At lower light intensities, we find narrow distributions of the average particle mo-

tion and average values lower than what is found in a Brownian system, reflect-

ing the fact that the particles are being confined by the optical binding forces.

At higher light intensities, we find that the distributions shift to higher average

values and the size of the fluctuations are greater, indicating the presence of a

non-conservative driving force.

Surprisingly, comparing the pair-correlation function to the VMSD values sug-

gests that the average motion is increasing even as the particles are becoming more

ordered. This would not be expected for a conservative pair-wise force; in this case

ordering will result in weaker fluctuations. We do indeed observe this for lower

power levels (<0.4 mW/µm2). Above these power levels, the increasing motion

suggests that we are forming collections of particles which experience additional

non-conservative forces from the optical field.
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Figure 2.9: (a) Distribution of relative VMSD values over 2 min duration for vari-
ous intensities. For the high light intensity case (2.3 mW/µm2) we share a compar-
ative distribution of VMSD values for the same system in a counter-propagating
standing wave. (b) The variation of VMSD value over 2 minutes for various light
intensities. The shaded regions represent the standard deviation in the relative
VMSD values. Values over the dotted line represent the average motion of the
particles greater than what would be observed when the optical binding light is
turned off (i.e. purely Brownian motion). (c) Distribution of relative VMSD val-
ues over 2 min duration for various light intensities. For the higher light intensity
case (2.3 mW/µm2) we share a comparative distribution of VMSD values for the
same system in a counter-propagating standing wave. (d) The variation of VMSD
value over 2 minutes for various light intensities. The shaded regions represent the
variation in the relative VMSD values. Values over the dotted line represent the
average motion of the particles greater than what would be observed in a purely
diffusive system.

We found that the behavior can be altered by aligning the polarizations of the

counter-propagating beams to generate a standing wave pattern. In this config-
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uration, the optical binding area includes multiple planes of high light intensity

perpendicular the the propagation axis and separated by λ/2. While the overall

average motion is suppressed in the standing wave, the system is still observed to

fluctuate strongly between low average motion (∼ 0.5 × Brownian motion) and

high average motion (∼ 2.5 × Brownian motion). At the same light intensities

to the previous configuration, the standing wave had the effect of dramatically

suppressing the overall motion.

Using the same range of intensities, the same analysis was done for the LIP

system (Fig. 2.9b,d). At lower light intensities, we find narrow distributions of the

average particle motion and mean values lower than what is found in a Brownian

system. At higher light intensities, the average values do not exceed what is found

in the Brownian system; however the distributions are far less Gaussian. The

distribution suggests that the average motion is low with occasional rare events

that lead to high motion. The LIPs in the standing wave do not show significant

differences than particles in the cross-polarized counter-propagating beam.

Comparing the dynamic behavior between the HIPs and LIPs, there are clear

differences between the two systems. The optical binding force when increased is

shown to significantly increase the average kinetic energy of the system of HIPs.

This implies that optical binding is a source of non-conservative motion that is

especially present in the HIP case. We believe that non-conservative second-order

scattering forces, expected to be stronger for the HIPs, is contributing to the higher

overall motion. The LIPS are instead dominated by second-order gradient forces

thus pack into the rod structures until density limitations require the formation

of new rods. Where the standing-wave generates first-order gradient forces which

compete with the second-order scattering forces to suppress the overall motion,

the same standing-wave does not show much of an effect on the LIPs which are

already dominated by gradient forces.
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Figure 2.10: (a,b) 1-dimensional simulation of forces on particle chains. Particles
are placed into a equidistant configuration aligned with the beam axis of propaga-
tion (k̂ = ẑ’) with inter-particle distance, z′s. At each inter-particle spacing, the
total outward force is calculated. A positive force represents a net-force pushing
particles away from each other while a negative force represents a net-force in which
particles are attracted. We performed the simulation for (a) HIPs (m=1.2, ka =
4) and (b) LIPs (m=1.1, ka = 4) for various cluster sizes (N) (c,d) 1-dimensional
simulation of forces between clusters and neighboring particles. A cluster of N
touching spheres is aligned along the axis of propagation with a single particle and
the absolute sum over the absolute difference of force on the cluster and the force
on the particle are plotted for various particle-cluster spacings, z′p. Simulations
were performed for (c) HIP (m = 1.2, ka = 4) and (d) LIP (m = 1.1, ka = 4)
particles.

2.4.5 Pair-correlation function difference

We see clear dynamic differences between the HIPs and LIPs; in particular,

the HIPs are observed to experience higher average kinetic motion at high powers

and a wider range of fluctuations of that behavior. In each case, we can use the

fact that the kinetic motion does fluctuate to subset the data into high motion

frames and low motion frames. Doing so gives us a method to compare particle

configurations which may be correlated with driving instability in the system. To

do so, we sort frames from a single video by the VMSD value which represents the

average kinetic motion. We can use each subset of frames to generate PCFs for
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the top 30% and the bottom 30% VMSD values. Because of the wide distribution

of VMSD values, we focus on particles in a high powered (2.3 mW/µm2) standing

wave.

Comparing the PCFs for the high VMSD frames (Fig. 2.7a) versus the low

VMSD frames (Fig. 2.7b) for the HIPs shows subtle differences. Primarily, we

find more defined features for the low VMSD PCF. This suggest that the system

fluctuates between slower moving ordered states to faster moving disordered states.

Indeed, we observe sudden collapses and regeneration into order states in these

optically bound systems.

Secondly, we observe that there is a higher distribution of particles in close

proximity for the faster moving system. We illuminate this subtle difference by

subtracting the low VMSD PCF from the high VMSD PCF shown in Fig. 2.7c.

We propose that multiple scattering effects which are stronger when particles are

at close-range could be driving the collapse of stability and increase in average

kinetic motion of this system.

For the LIPs, we find that the high VMSD PCF (Fig. 2.7d) versus the low

VMSD PCF (Fig. 2.7e) are both structurally similar. Not until taking the dif-

ference between the two as shown in Fig. 2.7f, do we see that there are subtle

differences. For the low VMSD PCF, we observe that particles tend to be dis-

tributed among multiple lines: a single line that passes the origin and multiple

off-axis lines. These lines are evidence of the self-organization into multiple rods.

The center line represent displacements between particles that belong to the same

rod and the off-axis lines represent displacements between particles that are lo-

cated in neighboring rods. Interestingly, the differences between the high and low

PCFs suggest that inter-rod distance may play a role in the average kinetic motion

of this system. For instance, one can observe in Fig. 2.7f that the the first off-axis

line is closer to the center line for the higher VMSD frames.

Comparing the HIPs and the LIPs is useful for understanding how multiple

scattering is effecting these systems at different scales. For the HIPs, where scat-

tering is much stronger, we find that the presence of small clusters are generally

correlated with higher kinetic motion and less structural order of the overall sys-
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tem. We propose that HIP clusters can be treated as an emergent species which

can alter the system dynamics. On the other hand, the LIPs can generate much

larger stable structures before the system fluctuates dynamically.

2.4.6 Pathway to cluster formation

The two-body force maps cannot describe how a cluster or rod forms; in fact,

the two-body force maps suggest a weak repulsive force among particles that are

aligned along the beam propagation. As a result, we believe the cluster formation

can only be explained by considering a complete N -body force which we compute

using the CDM.

We find numerically that when the separation between aligned particles is suf-

ficiently large (≳ 0.25µm) the total force is always repulsive for HIP chains and

increases in strength with the number of particles (Fig. 2.10a). This suggests

that a chain of particles aligned along the propagation axis should remain spread

apart. This is consistent with some of the structures found in the experiment:

the lower density HIP chains are often found extending from the lower to upper

boundary of the sample. The strong repulsion at long range could also act as a

barrier to cluster formation at very high light intensity and low particle density.

The trend is similar for LIP chains µm (Fig. 2.10b).

At smaller distances, we observe a decrease in repulsive strength for all HIP

chains. For HIP chains of more than 3 particles, we observe an overall change in

sign of the force (Fig. 2.10a). This result suggests that the two-body repulsive

force (Fig. 2.5a) dominates as long as the particles are far away; however, when

many HIPs become in close range, N -body forces are strong enough to overcome

two-body repulsion and switch the sign of the force entirely.

The same analysis of the LIP chains of particles shows a similar reduction of the

repulsive force at shorter distances; however, an attractive force does not appear

until the number of particles exceeds N = 14 (Fig. 2.10b). The initial reduction

of the force, even at small N , is indicative of the presence of non-pairwise forces;

however the effects are clearly weaker in comparison to the HIPs.
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The numerical results provide a potential pathway to the previously unexpected

formation of clusters. The results also highlight the unique nature of the N -

body optical binding forces. These effects are shown to be comparatively much

stronger for the HIPs. This supports the hypothesis that a major factor driving

the differences in behavior between the HIP and LIP systems is a stronger presence

of N -body forces due to the higher scattering strength of HIPs.

2.4.7 Non-conservative forces on clusters

We simulated the effects of a particle cluster as it grows in size and interacts

with neighboring particles. We simulate a simplified configuration of N-particle

closed packed cluster in line with a single lone particle at varying distance. We

then compute the total force on the clustered particles, Fc, as well as the force

on the lone particle, Fp. To compare the relative presence of conservative and

non-conservative forces, we use the following quantity:

γ =
|Fc + Fp|
|Fc − Fp|

(2.4)

If the forces are equal and opposite – indicating a conservative interaction – we

will obtain γ = 0. In contrast, if the system is equal but in the same direction,

this would be indicative of a system which would be driven (γ → ∞).

Observing γ for the interaction between the HIP cluster and particle, we find

that the value increases exponentially as the cluster size increases from 2-6 particles

(Fig. 2.10c). At γ > 1 the force between the cluster and the particle are in the

same direction, while for γ ≫ 1 the forces are highly non-conservative.

For HIPs, there are configurations which could lead to uni-directional inter-

actions first appearing for clusters of size 4. For clusters of sizes > 5 particles,

γ > 1 at long ranges. This result is in good agreement with our observations of

driven HIP clusters. At certain cluster sizes, non-conservative forces appear to

allow clusters of particles to propel in an otherwise symmetric initial field. De-

spite the particles being identical in the simulation, the cluster-particle interaction

adds an asymmetry which can drive the system into unidirectional motion in some
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cases. Here we study a limited set of configurations due to their common observ-

able presence in the experimental data; however, we expect there are a number of

alternative configurations that can also exhibit highly propelled motion. We ex-

pect that these strongly non-conservative interactions are cause for the increased

average motion in the high light intensity binding experiments (Fig. 2.9a,b).

For a similar set of cluster sizes in the LIP case, we find γ < 0.1 regardless

of cluster size (Fig. 2.10d). Indeed, we observed in the experiments that LIPs

can build themselves into extremely long rods without exhibiting strongly non-

conservative responses at small cluster sizes, as we found for the HIPs. It is likely

that non-conservative forces won’t have a strong presence for LIPs until they’ve

assembled into elongated rods for which we do observe fluctuations in the VMSD

values.

2.5 Summary

In this chapter, I presented an experimental method which allows for the study

of 3-dimensional and 2-dimensional optical binding of many particles. This exper-

imental approach is a leap from previous experimental accounts which have been

typically limited in array size. Within this geometry, we can in study particles in-

teracting in all directions including lateral and longitudinal orientations. For most

of the cases in our study, the longitudinal orientation becomes more relevant as the

collective self-organizations tend to align particles along the axis of propagation.

I presented a detailed description of the primary apparatus of which was used

for the majority of the experiments as well as alternative orientations and methods.

Using this apparatus and technique, we performed optical binding experiments for

a various sizes and densities. Some of which are presented in this chapter include

polystyrene and silica microspheres which range from ka ∼ 1 − 7. Among these

results, which include self-organized lattices on a glass substrate, self-organized

particle chains and clusters in 3-dimensions inside a thin sample cell 10 − 20µm,

and the formation of elongated particle chains in thicker samples. The bulk of

these findings involve complex behavior that can not be predicted from two-body
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interactions alone.

Finally I focused attention on a specific case of active colloidal clusters. In com-

paring low to high index particles – whose two-body interaction is nearly identical

apart from overall strength – already demonstrates differences that may arise from

N -body interactions. Our results stress how the relative strength of gradient and

scattering forces play a role in these systems. For instance, ka ≪ 1 particles have

been shown to experience interesting conservative interactions on complex poten-

tial landscapes; however exploring larger ka affords the capability of controlling

non-negligible contributions of non-conservative binding forces. It is at this size

regime that we are able to find considerable differences between the LIPs and HIPs.

In particular, the lower index particles form close packed (or nearly closed packed)

chains, while the higher index particles are aligned with the beam, but usually

spaced out by several particle diameters. More strikingly, the dynamic behavior

of these particles demonstrates effects that can only be explained by considering

non-conservative N -body interactions. This is most dramatically demonstrated by

the temporary formation of close-packed clusters of 4-5 high index particles, which

appear to drive an instability of the system as a whole.

Our results suggest that although optical binding can be used to guide the

self-organization of colloidal particles, the effects of N -body forces are critical for

the assembly of many-particle systems when their scattering strength is sufficiently

strong. Notably, this is distinct from nano-particle assembly with optical binding,

in which pairwise forces are generally a good approximation [9]. Potentially, this

more complex force landscape offers new possibilities: with proper system design

these forces could be used to promote or evade specific configurations or produce

driven arrangements with dynamic behavior.

Unfortunately, predicting the behavior of large scale optically bound systems

remains a difficult task without a quick and accurate method of computing the

forces for a fully coupled N -body system. Efforts on this front can be aided by

further experimentation which can validate assumptions regarding N -body and

non-conservative effects over a larger parameter space than the current study. In

the next chapter, the focus returns to numerical methods in the hopes to generate
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a model that can help predict these dynamic behaviors.



Chapter 3

Dynamic Simulations of

Many-Body Optical Binding

Interactions

3.1 Introduction

The ability to simulate dynamic optical binding effects is important for future

research on the subject of optically bound self-assembly. Experimentally, it is

difficult to span the available parameter space. Optical binding interactions can

be sensitive to a number of parameters including ones inherent to the particles,

the medium, and the binding field.

Furthermore, it is hard to systematically generate consistent environments to

isolate what mechanism is driving the behaviors. For instance, if we wish to adjust

the relative refractive index of polystyrene in water by adjusting the refractive

index of the medium, we might have also then inadvertently adjusted the damping

conditions. Another example of experimental difficulty, which we directly expe-

rienced resided in simply maintaining the same number of particles. I also note

that initial conditions might play a considerable role in the dynamics which unfold.

This is because the potential landscape for optical binding–insofar as you can rep-

resent it as a potentential–is uniquely complex. We saw an example of this in the

54
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previous chapter, in that there is a high amount of fluctuation in systems which

differ only in configuration of the particles. A molecular dynamics type simulation

could at-least afford us the control to define the initial conditions or keep certain

parameters fixed.

Simulations can also be used to make predictions of experimental designs which

have yet to be developed. For instance, it might be worth exploring multiple

wavelengths of light. Experimentally, this would require the integration of different

optical equipment optimized for an alternative field wavelength. This could be a

costly approach without the motivation that an additional field will indeed generate

useful self-organized structures or behaviors.

Because experimentation is remains relatively difficult optical binding is a rela-

tively unexplored phenomenon. We have only scratched the surface of understand-

ing these relatively simple systems. For example, in the previous chapter we were

able to correlate the formation of clusters with increased activity; but there can

be a huge number of alternative configurations which become driven. Consider

further the added complexity of multi-species colloidal samples, non-spherical col-

loidal particles, and the use of multiple light sources with different wavelengths.

These are just a few of the many areas that remain uncharted in experimental

optical binding research which a good model can help motivate.

A few molecular dynamic simulations of optical binding forces have been achieved

in the past. One notable is the work of [10] which was achieved using Mie Scat-

tering Theory to study the dynamic self-organization of optically bound dielectric

spheres. Most recently, this model was utilized to study the stability dynamics

of much larger collections of particles [8]. These studies alone were able to eluci-

date fascinating dynamic properties of optical binding in various media. One of

highlighted results are the formations of stable and quasi-stable arrays in later-

ally bound configurations. Neither of these simulations include thermal noise nor

are they designed to easily integrate optical binding forces within a soft-matter

environment.

For our purposes, we sought to utilize the Coupled Dipole Method. CDM

offers the freedom to study beyond identical spheres and is generally easier to
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make intuitive decisions on approximations. The CDM method is ultimately built

upon the work of [11] and [20] and has been used in the study of optical binding

in previous computational works [37, 5, 38].

In this chapter, I attempt to understand the underlying mechanisms behind the

optical binding force. We wish to untangle effects due to non-conservative forces,

multiple scattering, and non-pairwise forces. The common thread between these

various phenomena is that all become more important with an increase in scattering

strength. Using simulations, we attempt to give a sense of when these forces

become relevant and what effects they could have on optically bound systems.

Finally, I focus on the coupling of CDM to a molecular dynamics simulation

which includes hard-sphere interactions, thermal noise, and other external forces.

The thermal noise and realistic damping make this simulation particularly suited

for colloidal self-organization studies. Unlike previous dynamic optical binding

tools, we use unique simulation techniques to accommodate thermal fluctuations.

We use this model to simulate interactions between small collections of particles

and show how tuning parameters change the behavior. I present a promising

method which is similar to CDM but can be much less computationally expensive.

This involves the method of fundamental solutions (MFS). I show that this method

can be utilized as a solution for optical scattering. While it remains undeveloped for

optical binding, I share methods used to study another field scattering phenomenon

we refer to as acoustic binding. To that end, I give a brief outlook on the similarity

of these interactions and what there similarities in dynamics suggest about field

driven self-organization in general.

3.2 Multiple-scattering

When two scattering bodies are near each other, the scattered field from one

can ultimately be re-scattered by the other. This event can occur multiple times

weakening in succession until it becomes negligible. In terms of optical forces,

these multiple scattering effects can add small contributions to the force. Using

numerical approaches, we can assess where within in the parameter space multiple



57

scattering is strongest. The reason why multiple scattering is important is that

it gives a good sense of when and why N -body forces might become relevant. In

many-body systems, N -body forces can generate highly correlated and complex

behaviors. The connection between multiple-scattering and N -body forces can be

drawn by the following consideration. Strong multiple-scattering suggests that

feedback interference is relevant, thus it can be expected many-particle systems

will experience similar feedback interference between neighboring particles.

From previous experimentation reported in §2.3 and §2.4, we observed hints

of highly correlated behaviors, such as collective motion. Furthermore, in §2.4

I showed that pairwise forces weren’t enough to describe the observed behaviors.

We expect that these behaviors are due to feedback mechanisms, such as scatter-

ing interference, which act to strongly alter the binding interaction. We found

this particularly true of particles aligned along the beam propagation. Thus we

also consider how inter-particle distances and orientations play a role in multiple

scattering effects. I focus attention on the lateral and longitudinal orientations

described in §1.2.

So how exactly can we measure multiple-scattering strength? We consider that

the CDM code is an iterative method of computing the total field. The initial field,

updates the dipole moments and the dipole moments update the field. We can

thus relate the number of iterations required to converge to the multiple scattering

strength. The degree of convergence is compared for a range of ka and m values.

For each point in the parameter space, (ka,m), two particles are placed into a

crossed-polarized counter-propagating field and displaced along a lateral axis or a

longitudinal axis. At each displacement, the dipole moments are computed after

each iteration of the scattering code and compared for convergence to the previous

iteration. We average the convergence value, given by:

C =

√〈
Pi − Pi−1

〉2√〈
Pi

〉2 (3.1)

over a range of displacements from d to d+3µm, where d is the particle diameter.

The results are provided in Fig. 3.1. We find that for larger particles multiple
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scattering becomes more prevalent. This is not surprising as we know that scatter-

ing strength also increases. We also compared the effects of orientation and show

that multiple scattering tends to be stronger in the longitudinal configuration.

For two bodies, these multiple-scattering forces can play add to the force, but in

a symmetric configuration, effects will tend to cancel out for each object. In asym-

metric configurations, multiple scattering can lead to non-pairwise interactions.

By considering three bodies, we can imagine that the field scattering interaction

between two bodies can easily be manipulated by the position of a third body

through multiple scattering effects. In the following section, we look into optical

binding for such systems.

3.3 Non-pairwise forces

The optical binding force described so far in the previous sections can be ex-

tended to many-particle systems. Theoretically, this can be done by modifying the

total optical field to include contributions from each scattering body. For small

spheres, one can utilize Eq. 1.28 to obtain an equation for the force on a single

particle from the scattering of N neighboring particles. On the other hand CDM

can be used which takes into account multiple scattering effects and particles that

fall within sizes that are not restricted to being much smaller than the light wave-

length. The presence of multiple scattering can effect fundamental characteristics

of the interaction for systems of more than two particles. For instance, consider

how the interaction between two objects might be effected by the presence of a

third. Through multiple scattering, the scattered field from the third object could

ultimately act as field source which mediates additional interactions between the

two objects. This additional interaction would be considered a three-body contri-

bution as the force would thus be dependent on the positions of all three bodies

in this system.

An important question to ask is: are the forces pairwise? That is, can the

force on any object be determined by the sum of two-body forces? The answer to

this question tells us a lot about the physics of the entire system. In particular, a
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Figure 3.1: Measurement of convergence for subsequent scattering events. Two
particles are placed in a CDM simulation. The particles are placed within a λ =
400nm and I = 1 mW/µm2 crossed-polarized counter-propagating field in either
a (a-c) lateral or (d-f) longitudinal configuration. The convergence values are
determined by taking the root mean squared difference of the dipole moments.
The same analysis is performed for a range of inter-particle displacements up to 3
µm and the convergence is averaged over the entire range.
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three-body force has a potential to disrupt the stability of a system.

Theoretically, the pairwise and three-body forces can be differentiated by ex-

amining how many positions are coupled in the force equation. A pairwise force

on a particle from N bodies may generally take the following form:

F2 =
N−1∑
j ̸=i

F2(ri, rj) (3.2)

where F2 is the total pair-wise force on the ith particle. On the other-hand, a

three-body force would have the form:

F3 =
N−1∑
j ̸=i

N−2∑
k ̸=i,j

F3(ri, rj, rk) (3.3)

For optical binding, we can generally write:

F total = F1 + F2 + F3 + ...FN (3.4)

The first term are contributions that may arise from first-order optical forces due

to the incident field. The second term are the contributions due to pairwise forces

and the third term due to three-body forces. Numerically, one can determine the

strength of the non-pairwise forces if you can determine F total, F1, and F2.

Using CDM, it is quite simple to determine each of these forces. Considering

three particles at (r0, r1, r2), we can run a simulation with a particle placed at r0

to determine F0, two simulations with particles placed at (r0, r1) and (r0, r2) to

determine F 0,1+F 0 and F 0,2+F 0 respectively and place particles at (r0, r1, r2) to

determine Ftotal,0. We can then determine the three-body contribution on particle

at r0 by:

F 0,1,2 = F total,0 − F 0 − (F 0,1 + F 0)− (F 0,2 + F 0) + 2F 0 (3.5)

The extra 2F 0 accounts for the two simulations which add an extra single body

contribution each.

We can assess the three body force for a lateral and longitudinal case for sim-

plicity. Starting with the lateral case, we place three particles along the x-axis
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with a cross-polarized counter-propagating beam along the z-axis. The particle

locations are (r0 = [0, 0, 0], r1 = [r0,1 + d, 0, 0], r2 = [r0,1 + r1,2 + 2d, 0, 0]) where

ri,j+d is the center-center distance between particles i and j and d is the diameter

of the particles. To determine the three body force on the particle located at the

origin requires four separate simulations: (1) single particle located at the origin

(r0), (2) two particles at r0 and r1, (3) two particles at r0 and r2, and (4) three

particles at r0, r1, and r2.

Fig. 3.2 shows a comparison between using the total force versus the pairwise

approximation for ka = 1, 2.5, 4. For the full force (Fig. 3.2a-c), we can observe

a complex relationship between the three particles. Most importantly, I note that

the force is sensitive to the positions of both particles and can oscillate in stability

from long range contributions from r1 and r2. Consider, for instance Fig. 3.2a

with r0,1 = 0.2µm how the force oscillates between positive and negative as r1,2

changes.

Fig. 3.2d-f shows that the pairwise forces are an extremely good approxima-

tion even at close range for this orientation. Not until taking the difference between

the two forces can you observe what the three-body contribution looks like (Fig.

3.3). Taking the average strength of the difference divided by the average strength

of the force, we obtain an 0.9% three-body contribution for ka = 1, a 3.7% contri-

bution for ka = 2.5, and a 21.2% contribution for ka = 4. Despite the contribution

being large, it doesn’t do much to fundamentally change the form of the force for

ka = 4 within this specific configuration. Looking closely at Fig. 3.2c,f, we can

observe a slight shift in phase along the x-axis between the two plots.

For the longitudinal case, we can perform the same analysis for particles that

are aligned along the z-axis. Fig. 3.4 shows the difference between the full force

calculation and a pairwise approximation. In this configuration, unlike the lateral

case ka = 2.5 and ka = 4 show noticeable differences in the force. Fig. 3.5

we observe the three-body contributions for longitudinal binding. For the various

sizes, ka = 1, 2.5, 4, we find that the average contribution is 3.1%, 10.7%, and

15.1% respectively. More importantly however is that this force appears to be

doing more than altering the phase of the oscillatory behavior. For the ka = 2.5
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Figure 3.2: Three particles are placed along x-axis perpendicular to cross polarized
counter-propagating beam along the z-axis. The full force on a single particle of
size (a) ka = 1, (b) ka = 2.5, and (c) ka = 4. The pairwise approximation of (d)
ka = 1, (e) ka = 2.5, and (f) ka = 4. ri,j is the distance between particle i and j
displaced perpendicularly to the field propagation.

Figure 3.3: The three-body force on a single particle of size (a) ka = 1, (b)
ka = 2.5, and (c) ka = 4. ri,j is the distance between particle i and j displaced
perpendicularly to the field propagation.
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Figure 3.4: Three particles are placed along x-axis perpendicular to cross polarized
counter-propagating beam along the z-axis. The full force on a single particle of
size (a) ka = 1, (b) ka = 2.5, and (c) ka = 4. The pairwise approximation of (d)
ka = 1, (e) ka = 2.5, and (f) ka = 4. ri,j is the distance between particle i and j
displaced parallel to the field propagation.

and especially the ka = 4 case, we see that the three-body force introduces a

positive force when particles are close which does not appear in the pair-wise

approximation. We can see that this positive force alters Fig. 3.4f to be slightly

less negative when particles are in close-range (Fig. 3.4c). This is a very important

finding in that it illustrates that there are indeed significant many-body forces at

larger particle sizes and that in the longitudinal orientation, the many-body force

can strongly disrupt the expected behavior from a pairwise approximation. In

certain configurations the pairwise force might predict repulsion where the three-

body force is actually acting to keep particles bound together. In the following

chapter, we experimentally observe the effects of these short-range forces through

the formation of longitudinally bound clusters.
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Figure 3.5: The three-body force on a single particle of size (a) ka = 1, (b)
ka = 2.5, and (c) ka = 4. ri,j is the distance between particle i and j displaced
parallel to the field propagation.

3.4 Determination of when three-body forces be-

come relevant

So far, I have shown that the optical binding force is a combination of conser-

vative gradient forces and non-conservative scattering forces, that the two body

force is long range can have multiple stable points, and that there can be signifi-

cant non-pairwise binding forces. I have also shown that the contributions can be

easily tuned based upon the properties of the particles, the light, and the geometry.

Using fairly simple numerical techniques, we can understand a great deal about

the optical binding force; however the configuration space has proven still to be

too large to generalize the behavior. The previous analysis remains too costly to

explore optical binding at a higher resolution.

A simple approach involves a stochastic sampling of three-body configurations.

By collecting a large enough sample of, one can determine the general strength of

three-body forces without exploring the entire configuration space which scales in

dimension like ∼ 3N for N particles. We can tune one parameter such as ka and

measure how well the pairwise approximation fits the total force. By obtaining a

fit of the pairwise approximation versus the total force for a number of randomly

chosen configurations, one can determine by the value of the slope and the correla-

tion number the accuracy of the pairwise force. Fig. 3.6 shows how the slope and

correlation number for various values of ka. What is interesting from this data

is that it suggests that in general the two-body approximation is a fairly good
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approximation until ka ≫ 1. By plotting the values for each randomly selected

configuration, we see that the fitness two-body approximation is strongly depen-

dent on the specific configuration. In many cases the error can range in orders

of magnitude. This validates our intuition that many-body behaviors are driven

by how a specific orientation of particles interact with the light field. However,

from Fig. 3.5 the longitudinal case, we observed much larger three-body contri-

butions. We thus performed a second set of randomly chosen configurations with

the restriction that the three particles reside along the axis of the field propaga-

tion. Fig. 3.6 shows that the pairwise approximation performs generally more

poorly for these longitudinally aligned particles. The presence of three-body forces

having such a strong dependence on this specific longitudinal orientation would be

an inexplicable finding if not for the strong scattering component which also acts

along this axis.

Unlike pairwise forces between identical particles, three body forces can be non-

reciprocal and thus generate net forces which can lead to driven motion. While so

far the focus has been on three particles and we haven’t yet stumbled upon strong

driven forces, I note that many-body systems interacting via three-body forces or

even N -body forces can indeed exhibit emergent properties.

3.5 Discrete Dipole Approximation Coupled Molec-

ular Dynamics

Coupling scattering code to a molecular dynamics simulation is an essential

step in characterizing the self-assembly behavior of optically bound systems. In

typical molecular dynamics simulations one can rely on a potential function as

an inter-particle interaction term. Unfortunately, writing down an optical binding

potential would cause the loss of interesting physics. Primarily, writing the optical

binding force as a potential would neglect relevant non-conservative contributions

which we have shown to be be important in the Mie regime. Aside from non-

conservative forces, it also remains unclear how to represent many-body forces

which also appear to become relevant in the Mie regime. Without the ability to
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Figure 3.6: The error associated approximating the total force, F3, with a two-
body approximation, F2, for various randomly distributed configurations. One set
of random configurations (black) were done for particles which were confined along
the ẑ-axis and the other set (red), were randomly placed in 3-dimensions. For this
analysis, we focused on particles with a relative refractive index of m = 1.2 and
altered the size parameter ka
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reduce optical binding to a potential nor an analytical forces which can be applied

to many body systems, there is not a clear way around the necessity of computing

the entire field at each time step. This process is by far the most computationally

expensive portion of the simulation. The Discrete Dipole Approximation (DDA)

utilizes a finite array of polarizable points in a volume to approximate an object.

Starting with the incident field, one can calculate the polarization at each dipole,

P 0(r) = αEinc(r) (3.6)

with,

Einc(r) = E0(r) +
∑
i

↔

Gi(r, ri) · P i(ri) (3.7)

where
↔

G is the dyadic Green’s function which appeared in §1.2. Each subsequent

scattered field and polarization can be iteratively solved.

The effective size of the dipole depends on the overall scale of the system and is

determined primarily by the dipole density. Traditionally, 10 dipoles/wavelength

have been found to be an appropriate approximation. In certain cases, we find

that the simulations converge with less. For reference, a particle of size 500 nm

in diameter in a 400 nm field, the approximate size used in the analysis in §2.4

would thus require ∼ 1000 dipoles for each particle. However, simply doubling the

size of the particles requires 8000 dipoles. In terms of time resolved simulations,

this iterative solution would have to be performed at each time-step. An average

simulation of two optically bound particles using 1000 dipoles is ≈ .5s while 2000

dipole simulation is ≈ 2. In general we find that the computation time of each

step scales with the total number of dipoles squared. For this reason, it can get

extremely costly to run simulations for many-particle systems.

Beyond the calculation of the total field, the force on each dipole can also be

determined by taking the total sum of the forces on each dipole,

F =

ndipoles∑
i

P i ·∇Ei (3.8)

For the other contributions to the equation of motion, we require a force that

will keep particles from overlapping and we require a drag coefficient. Using the
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assumption that the particles are in a relatively high friction environment like

water, we can write down the equation of motion:

∆x =
D

kbT
FO.B.∆t+∆xP.F.H.S (3.9)

FO.B. is the binding force, D is the drag coefficient, kb the Boltzmann constant, and

T room temperature. The second term is the Potential Free Hard-Sphere given by

[39],

∆xP.F.H.S =

−κ(d− r)r̂, r < d

0, otherwise
(3.10)

which displaces particles proportionally to their overlap distance. a value of κ = 0.5

ensures that the particles of diameter, d, will be set back to contact distance. It

is more typical to find a soft-sphere potential in use; however the scattering code

cannot support any amount overlap. In practice, we add a padding of 1-2% to the

diameter to ensure that dipoles are not touching.

While the F P.F.H.S solves the overlap issue with a straight-forward way to

separate a pair of overlapped particles, at high densities, we may not be able to

resolve each overlap in one pass. Consider, for instance, the the hard sphere force

separates two particles from touching, but generates a new overlap in the process.

Thus, in the code we iteratively scan the system for overlapping particles. The

code is designed to raise error if there remains overlapping objects before the next

time-step in the simulation. With appropriate choice of padding and sufficiently

small time steps, we find that the overlaps can be avoided in practice.

Additionally, we can include thermal motion:

∆xT =
√
2D∆tRnorm (3.11)

where Rnorm is a random vector selected from a normal distribution centered at

zero. Eq. 3.11 can be added to Eq. 3.9 The choice of ∆t is usually dependent

upon the maximum displacement which can be obtained by Eq. 3.11. The

maximum displacement certainly should be much less than the radius of a single

particle. The same criteria should be met for the optical binding contribution;

however, unlike the thermal contribution, there is not a straight forward method
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to determine what the maximum binding force is. Therefore, we base ∆t purely

on the thermal noise and adjust if errors arise due to large optical binding forces.

Again, thermal motion is random, thus there is a high chance of particles randomly

overlapping. As an additional measure to avoid overlap as much as possible, we

perform the randommotion and if overlapping occurs after the time-step, we simply

generate another random distribution. To avoid complications at high densities,

an arbitrary number of iterations are applied in this manner.

One concern with this procedure is that there could be a bias added when

throwing out random distributions which break the simulation by causing overlap.

In this case however, the only bias is against random selections that cause overlap

and, in a sense, simply acts as a Psuedo-Hard-Sphere interaction. It is otherwise

ensured that all positions outside of overlapping regions remain unbiased by this

process.

By utilizing the steps above, we have at the least a very good method to model

small systems for short time periods. While the model is computationally costly, it

does not rely on approximations which remove fundamental aspects of the optical

binding interaction. In a very fundamental way, we retain the computation of the

field and directly compute optical forces on the system of particles. Furthermore, in

this current development, it is relatively straightforward to explore non-spherical

objects which is a largely undeveloped area in optical binding studies. In the

following section, I have focused on small scale simulations of spherical dielectric

particles.

3.6 Many-body Optical Binding Simulations

3.6.1 Lateral 2-body

The simplest and most studied configuration in optical binding are two later-

ally bound particles. In this configuration, we expect to find particles bind into

stable displacements which correspond to the wavelength of light. By simulating

thermal noise, we should be able to observe that particles exhibit multistability.
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Figure 3.7: The distribution of inter-particle separations for two 500 nm
polystyrene spheres placed in a 400 nm cross-polarized counter-propagating field
of intensity (a) I = 0.5 mW/µm2, (b) I = 2 mW/µm2, and (c) I = 4 mW/µm2

.
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Furthermore, by adjusting the field intensity, we should be able to determine when

the binding force is expected to overcome thermal effects. For the first analysis,

we place two particles in a crossed-polarized counter-propagating field. The field

is set to propagate along the z-axis. To ensure particles remain laterally displaced,

we restrict their motion in z but allow them to move around freely within the

xy-plane. In the presence of thermal noise, we can observe how the two particles

interact. Fig. 3.7 shows the distribution of particle displacements over a 5 sec-

ond interaction for various power densities. In just a short time period, we can

observe clear signs of optical binding with I > 2 mW/µm2. The particles in the

simulations reported here are of size parameter ka = 4 and relative index m = 1.2.

These values are set to coincide with the 500 nm polystyrene spheres presented in

Chapter 2. In Fig. 3.7c, we observe the signs of a periodic multi-stable configu-

rations with λ spacing. These results, coincide with what is expected in two-body

lateral binding.

3.6.2 2-body along a lateral and longitudinal axis

Longitudinal binding has typically been observed experimentally in 1-dimension

[26, 4, 40]. In §2.3, we observed a system undergoing both longitudinal and lateral

binding forces and found that longitudinal effects tend to dominate with ka > 1

particles. Computationally, we can simulate particles interacting with both lateral

and longitudinal binding forces. For the longitudinal 2-body, we restricted particles

to the xz-plane with the counter-propagating field propagating along the z-axis.

At the specific size range of interests, we know that the forces along the propaga-

tion direction for two-bodies will tend to be repulsive, we also add a boundary of

20 µm similar in dimension to the thin sample tube utilized in the experimental

collection described in the previous chapter. Furthermore, since the interaction is

not symmetric in the plane, instead of collecting a 1-dimensional radial distribu-

tion as was done in the lateral case above, we opt for generating a 2-dimensional

histogram of displacements.

In, Fig. 3.8 we can observe that the thermally active colloidal spheres of

ka = 4 and m = 1.2 interact such that preferred displacements are non-uniform
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Figure 3.8: 2-dimensional histogram of displacements between the particles con-
fined to the xz-plane of a counter-propagating beam propagating in the z-direction.
The beam wavelength is 400 nm and power set to 2 mW/µm2.
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and match the scattering pattern of a single particle. With a small amount of

randomly initiated simulations (20 runs of 5 seconds each) we can observe strong

evidence of optical binding. A similar plot was generated with experimental data

of many particles in §2.4. While there is evidence of the two particles aligning

along the beam propagation, it is much weaker than what would be expected in the

binding experiments. One likely explanation is that since the particles were seeded

randomly, they have a higher chance of starting far from the aligned axis than

they do already near alignment. Thus, starting far from the axis of propagation,

the other off-axis optical binding forces are strong enough to keep particles from

reaching alignment. In the experiments, we start with a density high enough such

that particles are already near the axis of propagation and chain can begin to

form. When multiple chains of particles form, we notice a similar barrier which

eventually keeps chains apart.

3.6.3 Lateral 3-body

Similar to the static simulation approaches in §3.4 where we initiated the

particles in random configurations, we begin the dynamic simulations in a similar

fashion. Optical binding forces are highly dependent on the initial configuration

and the configuration space is far too large to explore completely. Therefore, we

can generate a random set of three-body configurations and observe a few of the

dynamic pathways to get a sense of what behaviors are possible. What we are

looking for in particular, are signs of stability and activity. Do particles assemble

into static, drifting, rotating, or quasi-stable structures? For the first cases, we

focus on the lateral orientation. Furthermore, we run these simulations without

thermal noise. Not including thermal forces in this section helps us determine the

precise role that optical binding forces are playing.

In this computational process, we randomly orient three particles on the xy-

plane inside a counter-propagating field propagating along the z-axis. We let the

particles interact for 0.5 seconds and record positions, center of mass, and moment

of inertia. Since all particles are identical, we treat the masses as equal to 1

(a.u.). From the position data, we also track the velocity and the squared velocity
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of each particle. In a non-active system, as particles interact, we should expect

that the total squared velocity of each particle would decrease; however in this

field driven system, where particles can borrow momentum from the light field,

we track the total squared velocity to determine what direction it is going. For

comparison, we repeated this analysis for three sizes (ka = 1, 2.5, 4) and two

relative refractive indices at each size (m = 1.1, 1.2) Utilizing the same set of

initial random configurations for consistency, we can directly compare how the

dynamic evolution changes with size and relative index.

For the smaller particles (ka = 1, 2.5), we did not find clear evidence of driven

clusters. Thus, I present results on the case in which we explicitly found the

presence of driven clusters using this analysis. To tie this analysis to the big-

ger discussion on the effects of relative refractive index and scattering strength, I

compare the results for ka = 4 sized particles with a relative refractive index of

m = 1.1 (Fig. 3.9) and m = 1.2 (Fig. 3.10). Starting with the low-index parti-

cles (LIPs), we found that particles quickly interacted to form stable clusters (Fig.

3.9). When stable, we find that generally the particles don’t move collectively (ex.

’6c’ and ’2f’ from Fig. 3.9). Certain, systems failed to stabilize in the short time

of the simulation; in these systems, we find that the particles within the system

tend to have different velocities indicative of a system still out of equilibrium.

The higher-index particles (HIPs) exhibit a more diverse set of behaviors amongst

the clusters. In this case, HIPs can form static structures (ex. ’5d’ and ’2f’ from

Fig. 3.10) as well as structures which exhibit collective motion (ex. ’3f’,’1b’, and

’5e’ from Fig. 3.10). Again, to distinguish from systems in which particles are

moving collectively is that .

In both cases, we observed that particles that are not initially in a stable state

will reorient themselves relatively quickly into a more stable orientation. Because,

we did not want to under-represent the speed of low-index clusters due to the fact

that optical binding forces are expected to be (1.2−1)2

(1.1−1)2
= 4 times weaker and the

speed should be proportional to the force, we multiplied the velocities by a factor

of 4.
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Figure 3.9: Collection of three-body simulations. Each cluster of particles are
shown after 0.5 seconds of interacting through optical binding forces and particle
positions are initiated at random. Particles of size ka = 4 are confined to the xy-
plane perpendicular to the propagation of a crossed-polarized counter-propagating
beam of λ = 400 nm and I = 2 mW/µm2. For each particle, the velocity is
represented by an arrow. The color of the cluster is designed to signify the total
moment of inertia such that clusters of similar structure can be easily identified.
The title of each cluster is provided by the axis labels (for example: the cluster on
the top left is ’6a’).
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Figure 3.10: Collection of three-body simulations. Each cluster of particles are
shown after 0.5 seconds of interacting through optical binding forces and particle
positions are initiated at random. Particles of size ka = 4 are confined to the xy-
plane perpendicular to the propagation of a crossed-polarized counter-propagating
beam of λ = 400 nm and I = 2 mW/µm2. For each particle, the velocity is
represented by an arrow. The color of the cluster is designed to signify the total
moment of inertia such that clusters of similar structure can be easily identified.
The title of each cluster is provided by the axis labels (for example: the cluster on
the top left is ’6a’).
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3.7 Active clusters

The previous section gave us a hint of where to look for driven clusters. These

clusters we denote as driven are systems of particles in which the relative displace-

ments are stable but the system remains out of equilibrium. Previous numerical

studies of optical binding have found such configurations in non-thermal systems

[10]. Namely they observed instances of drifting equilibrium structures. These

observations raise multiple questions: What do the presence of driven clusters do

to the overall stability of larger systems? Can optical binding be used to form an

active material? Can any of these driven behaviors be tuned?

In this section I highlight one such active cluster of three particles which shows

how the driven behavior can be tuned. For a system of three particles, the number

of stable active clusters that can be formed remains unknown as the possible con-

figuration space is extremely large. This remains even more true as the number of

particles increase. Furthermore, in the presence of thermal noise, the multistability

associated with optical binding might represent a competing source of instability

[38]. Thus, for this section I remove thermal noise to focus on instabilities driven

purely by non-conservative optical binding forces.

Searching for driven clusters is a problem on it’s own. Other than asymmetry,

we do not have a good sense of what makes one optically bound cluster more active

than another. However, using the technique described in the previous section, we

can test multiple random configurations until we find one which exhibits driven

behaviors. For this discussion, I focus in the lateral configuration; although, in

theory, the same analysis can be applied in 3-dimensions (we have yet to discover

a 3-dimensional structure in equilibrium without the use of a boundary). I also

limit our current discussion to particles with ka = 4 which is consistent with much

of the analysis presented within this thesis.

The first numerical simulation was performed by placing three particles in a

configuration that was discovered near a drifting equilibrium. In Fig. 3.11a,

I show the cluster of three particles which exhibiting drifting equilibrium in the

direction coinciding with the polarization of the counter-propagating beam. Over
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the 2-second simulation, the velocity of the cluster settles to a constant value.

As can be determined by the plot, the cluster moves at ∼ 1µm/s. The beam

intensity used in this simulation is 2 mW/µm2, but the cluster speed should also be

controlled proportionally to the intensity of the field. We find that the direction of

motion can be controlled by the polarization of the beam. For example, we observe

the same system under a counter-propagating field polarized in the ŷ direction.

Here, the clusters motion is virtually stopped. We have examined this particular

cluster at various orientations, and find that the cluster will tend to rotate towards

the polarization axis. Here we observe a way to externally control the direction of

a stable bounded cluster. In Fig. 3.11c and Fig. 3.11d we visualize the field and

show how the distribution of scattered light differs when the incident polarization

is rotated by 90◦.

In the second numerical analysis on the tunability of the active cluster, we look

at the dynamic behavior for various values relative refractive index. We choose

a range from 1.05 - 1.25 and initialize the configuration of particles at the same

positions and run a 2 second simulation. By fixing the force at 2 mW/µm2, we

find that the equilibrium structure and the drifting behavior remains a consistent

feature despite the relative refractive index. The main difference that is found

is that the speed of the cluster increases Fig. 3.12a. Some proportion of that

increase is expected to be due to the fact that the force strength tends to scale

linearly with relative refractive index. In Chapter 1, I showed that the strength

scales with (m − 1)2. To compare these systems more directly, we should adjust

the intensity of the field such that the scattering forces are equally strong. We

can effectively achieve this adjustment by dividing the speeds, which scale linearly

with the force, by (m− 1)2. I present this corresponding plot in Fig. 3.12b

This analysis shows that the speed and direction of active clusters can be tuned

by various means. By adjusting the polarization, for instance, we find that the

equilibrium structure can be rotated and directed along the polarization. In the

lateral orientation, we find that driven behaviors are observable for a large range

of m.
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Figure 3.11: Cluster responding to field polarization. (a,b) Stable cluster tra-
jectory in counter-propagating field with polarization in (a) x̂ direction versus
polarization in the (b) ŷ direction. (c,d) the total field intensity surrounding the
clusters in the xy-plane for (c) x̂ polarized and (d) ŷ polarized field. In both cases,
the wavelength of the field is set to 400 nm with a power density of 2 mW/µm2
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Figure 3.12: Three-body cluster speed for various values of relative refractive index.
(a) using a fixed force strength the speeds are compared for particles of different
relative refractive index. (b) The speeds are normalized by (m − 1)2 to account
for speed increase due to stronger scattering forces.

3.8 Method of fundamental solutions

In the previous sections of this chapter we’ve utilized DDA coupled with molec-

ular dynamics to study a limited set of many-body optical binding configurations.

This has so far only been a small bit of the vast behaviors that are possible with op-

tical binding forces. Unfortunately, computational costs remain the largest barriers

towards taking longer simulations with more particles. Much of the cost is due to

the fact that scattering calculations must be made, and this is mostly unavoidable.

However, some of the cost with DDA involve the number of dipoles required to fill

the volume of the object. In this section, I introduce a method which can provide

the scattering calculation with the use of scattering points placed on the particle

surface [41]. While this method has yet to be developed for the dynamic simulation

of optical binding interactions, I describe in this section the use of this computa-

tional technique on a similar scalar field scattering phenomena. The development

of this computational technique for vector fields remains a goal for future work.

The method of fundamental solutions (MFS) is a product of Huygen’s principle.

This principle states that all points in a wavefront can be treated as a point source
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of a spherically expanding wave. A total field can thus be represented as a sum of

appropriately weighted fundamental solutions. Taking an arbitrarily shaped object

and appropriate number and placement of source points placed along (very-near)

the surface of that object can generate a approximation of the total field. The

fundamental solution of the point source can be represented as

g(r, r′) =
eik|r−r′|

4π|r − r′|
(3.12)

which is defined everywhere, except r = r′. These leads to a theoretical require-

ment that to describe a field in a certain domain, the source points must be placed

outside of it. In practice, this means that to describe the field everywhere around

a particle, the source points are to be placed inside of the particle; likewise, to

compute the field inside of a particle, one can place source points just outside of

the particle.

Numerically, one can choose a set of evaluation points to solve for the weights

in the equations, (rj, j = 1, ..N). Using the boundary conditions specific to the

problem, one can generate a system of equations.

3.9 Acoustic Binding (MFS)

While we have yet to develop a molecular dynamics simulation utilizing MFS

for optical binding forces; in this section, I briefly share work done on a comparative

force known as acoustic binding. Like optical binding, acoustic binding is a field

driven inter-particle force due to the scattering of acoustic fields. Despite the fact

that acoustic binding and optical binding are relevant effects at different length

scales, optical binding in the nm and µm scale and acoustic binding in the mm

scale, they share many similarities. One of the major similarities between these

forces are the dependence on the wavelength of the incident optical or acoustic field

and the dependence of on the size parameter. Similarities additionally include the

presence of non-conservative and conservative forces as well as multiple scattering

effects including many-body interactions. To highlight the similarities between the

two forces, we can look at how there respective force maps compare for various
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Figure 3.13: Radial force maps. Acoustic two-body force maps for (a) ka = 4, (b)
ka = 2, and (c) ka = 1 particles. Optical binding forces compared for (d) ka = 4,
(e) ka = 2, and (f) ka = 1 particles.

sizes Fig. 3.13. The calculation of the force maps for optical binding was done

using traditional CDM methods while the force maps for acoustic binding was

achieved using MFS. In both the acoustic and optical binding force maps, particles

are placed into a counter-propagating standing wave. Furthermore, the fields are

propagating along the ẑ direction. In comparing both cases, we observe similarities

which include oscillatory behaviors in lateral and longitudinal directions.

One of the major differences between the two forces is that optical binding

is generated by a vector field and acoustic binding is generated by a scalar field.

Despite the similarities in Fig. 3.13, I also note that the acoustic binding was

computed on spheres which satisfied a ’sound-hard’ condition. This condition is

a good approximation for solid spheres in air. This condition states that the field

does not penetrate the spheres and translates more directly to a conducting sphere

in optical binding.

The ability to use MFS for acoustic binding allows us to gain insight on the

dynamic capabilities of field-driven self-assembled systems. One of the most in-



83

teresting results of the computational study was the discovery of driven clusters.

Similar to what was able to be observed with optical binding, we found the self-

organization of particles into drifting and rotating structures. This study was

limited to small clusters (N = 5); however the use of a MFS based simulation

allowed us to generate and classify an assortment of colloidal clusters which ex-

hibited a variety of active behaviors. Like the similarities in the static force maps

between acoustic and optical binding, we also find both forces have the capability

to generate active behaviors in materials. The MFS results for acoustic binding

showed the formation of particle clusters which exhibit drifting equilibrium states

as well as rotational motion. Although acoustic binding it is clearly a different

phenomenon than optical binding, the computational results seemed to overlap

with the many-body and non-conservative effects which we were simultaneously

attempting to address with optical binding. Using MFS for acoustic binding gave

us a window to further understand the behaviors we were seeing in experiments.

Furthermore, once we were able to develop the CDM based dynamic simulations,

we directly found comparable formations of active clusters as those reported by

Clair et. al. [42]. This study highlights dynamics that are inherent in systems

driven by field scattering and provides motivation to develop MFS methods for

optical binding.

3.10 Dielectric Sphere (MFS)

Electromagnetic scattering from dielectric objects can be approximated using

MFS methods [43]. This section addresses a single dielectric sphere in a plane

wave, and thus should serve only as a first step approach towards an optical binding

solution. In this section I share how the problem can be formulated in theory but

further development remains out of scope for this thesis.

Starting with an electromagnetic plane wave in medium:

E = E0e
ik+rz x̂ (3.13)

propagating through a sphere of radius, a. The field scattered by the sphere can
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be determined by a sum of fundamental solutions:

Es(r) =
N∑
j

↔

G
+

(r, r+j ) · cj (3.14)

while the field inside of the sphere is

E−(r) =
N∑
j

↔

G
−
(r, r−j ) · dj (3.15)

with the dyadic Green’s function
↔

G. cj and dj are constant vector quantities

which remain to be solved. r±j are the locations of N source points which are

located outside of the domain being evaluated. Thus r+j are all placed inside of

the sphere and r−j are placed outside of the sphere.

In order to solve for the unknown vectors known conditions at the surface of

the sphere can be used. Primarily,

n̂×Es(r)− n̂×E−(r) = f(r) (3.16)

n̂× (∇×Es(r))− ϵ−k−2

ϵ+k+2 n̂× (∇×E−(r)) = F (r) (3.17)

ϵ± represents the dielectric constant of the material outside (+) and inside (-) the

sphere boundary. By combining Eq. 3.14,Eq. 3.15 and Eq. 3.16,Eq. 3.17, we

can also write that

N∑
j

(n̂×
↔

G
+

(r, r+j ) · cj − n̂×
↔

G
−
(r, r−j ) · dj) = f(r) (3.18)

N∑
j

(n̂× (∇×
↔

G
+

(r, r+j ) · cj −
ϵ−k−2

ϵ+k+2
n̂× (∇×

↔

G
−
(r, r−j ) · dj) = F (r) (3.19)

By evaluating at ri, i = 1..M evaluation points on the sphere, an approximation

can be determined as long as M = N . Eq. 3.18 and Eq. 3.19 could then be

solved as a system of linear equations. Applying this technique to multiple objects

would require updating the sum to include scattering contributions of the source

points located inside the other particles.

This method can be utilized for non-spherical objects and be easily adapted to

study metallic objects as well. Although the methods are slightly more complex,
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the ability to obtain the scattered field with less source points than DDA is a

great benefit to computational cost. Currently computational cost is the biggest

obstacle to studying larger many-body systems. The biggest difference between

DDA and MFS is that the scattering units must be placed throughout the entire

volume of the object for DDA while MFS requires only scatterers near the surface.

This remains a proposed method for electromagnetic scattering.

3.11 Summary

The next steps in optical binding are going to depend on a combination of

experimental observations and computational analysis. What I have shown in this

chapter is that there is a large configuration space for optical binding. Where

you are in this space, whether it be inter-particle orientation, distance, or particle

size, particle refractive index can strongly effect the dynamics of the system. I

also showed that the dynamics of these optical binding systems can be highly

active. To understand these effects more generally, and to provide a guide for

future experimental systems, a good computational tool for molecular dynamics

must be developed.

In §3.5, I present such a tool by integrating DDA code to a molecular dynamics

type simulation. Furthermore, I show how the capability to include thermal noise

can return results that are aligned with observations. For feasible use of this model

for larger particles, we remain limited to N < 10 particles. Despite this limitation,

we were already able to find evidence of self-organization into driven clusters of just

three particles. This result shows us that the current model can already help us

map out when we should expect strong active effects in experiments. Furthermore,

by simply controlling the thermal noise we can begin to understand the various

mechanisms.

Finally I proposed a method which can be utilized to move the model closer

towards assessing larger systems. I discussed how this method shows promising

results for the acoustic equivalent of optical binding. Surprisingly, we find that

acoustic and optical binding are both very similar and both exhibit active clus-
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tering. Assessing these features, particularly in much bigger groups are the next

stages with dynamic modeling of these systems. This chapter is meant to serve as

the first steps towards that goal.



Chapter 4

Conclusion

The work presented in this thesis explored the optical binding forces as a self-

organizing tool for colloidal matter. I sought to learn what optically bound struc-

tures could be built and how would these structures behave. In Chapter 1, I

analyzed scattering and gradient forces, which are in some combination inherently

present in optical binding, and showed not only that their relative strengths can

play a role in self-organization behaviors but also that they can be tuned by altering

parameters specific to the optical and physical properties of the colloids, field, and

surrounding medium. I show that the scattering force which is generally weaker for

small particles dominates for larger particles and higher relative refractive indices.

Additionally, I aimed to highlight how important inter-particle orientation is. I

show that the force is analytically different depending on lateral and longitudinal

displacements. I also show that longitudinal optical binding forces tend to be more

sensitive to changes in particle size.

In Chapter 2, with the design of a novel experimental apparatus, we observed

the interaction of particles. While previous studies focused on lateral or longitudi-

nal configurations: our design allowed us to observe particles in 3-dimensions inter-

acting in both orientations simultaneously. This effort allowed us to observe new

self-organization behaviors including the formation of multiple colloidal chains,

multiple rods, and multiple active clusters. By comparing high-index and low-

index particles I presented a detailed analysis which correlated scattering strength

87
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to high activity dynamic behaviors as well as correlated activity with the formation

of high-density particle clusters. Using numerical simulations of optical binding

forces, I additionally show that non-pairwise effects can drive particle clustering

and that asymmetric particle clustering can generate non-conservative and non-

reciprocal interactions.

Finally, in Chapter 3 I used numerical simulations to understand where non-

pairwise forces come from and what types of effects they can have. I showed

that multiple-scattering becomes non-negligible when larger higher-index particles

interact through scattering. For a system of three particles, I measured the three-

body force and show that, in the longitudinal orientation, it can fundamentally

change the binding interaction. For a more generalized measure, I also looked at

the error associated with making a two-body approximation for a range of particle

sizes. This analysis, showed that the two-body forces were much less accurate as

particle sizes increase and that the difference is highly dependent on the specific

orientation of the system. As for more dynamic information, we developed a

model for optical binding which couples scattering code with a molecular dynamics

simulation. We used this code to generate two-body optical binding interactions

which include thermodynamic fluctuations. Furthermore, we used this code to

analyze active clusters. We found in the lateral configuration, three-body optically

bound systems can form a large number of stable structures and that some of

these structures exhibit high activity after formation. We find that formation of

active clusters is more common for larger high-index particles, which agrees with

our experimental findings.

The next steps in this work is to assess how to gain more control over the optical

binding experiments. What we uncovered in this thesis is that optically bound self-

organization is an extremely sensitive and leads to unexpected behavior. While

this is generally good news for generating complex behaviors, we really need to

prove that we can eventually use tools to design the structures that we want. This

may include tools which can enhance or reduce particle clustering for instance.

Our work suggests that removing particle clustering may enhance stability.

Future steps may also include generating different active systems. I showed
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that certain clusters and orientations could lead to collective linear and rotational

motions. If there was a way, possibly through functionalizing particle surfaces, to

lock particles into specific configurations, it could be possible to generate an entire

system of active optically bound objects.

As the systems we study become increasingly more complex and larger in scale,

the next steps in the study of optical binding would also include the optimization

of computational methods. So far, numerical analysis is the only practical method

to untangle the observed behaviors and to make predictions of self-organization. In

this thesis, although we relied heavily on the Coupled Dipole Method to understand

what we were observing, we propose the use of the method of fundamental solutions

as an eventual replacement. In this case, the benefit is the promise of utilizing less

scattering points, which can have a huge impact of the total number of particles

that can be simulated. So far, studying > 10 large particles is unfeasible in our

current development, which currently does not allow us to fully simulate the many-

particle systems which we have focused on experimentally.

While there remains a lot of future work to be done in characterizing optical

binding forces, I hope that the work in this thesis can serve as a guide for how to

think about inter-particle forces driven by field scattering. Undoubtedly, I shared

the rich complexity which can be involved with such interactions: directional,

multi-stable, non-conservative, non-pairwise, and non-linear. While it is this com-

plexity which makes optical binding so difficult to study, it is the same complexity

which makes it so worth studying. The ability to harness and manipulate these

various aspects of optical binding forces could ultimately help us design new static

and dynamic materials.



Bibliography

[1] Michael M. Burns, Jean-Marc Fournier, and Jene A. Golovchenko. Optical
binding. Physical Review Letters, 63(12):1233–1236, September 1989.

[2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. Observation of a
single-beam gradient force optical trap for dielectric particles. Optics Letters,
11(5):288–290, May 1986.

[3] T. Thirunamachandran. Intermolecular interactions in the presence of an
intense radiation field. Molecular Physics, 40(2):393–399, June 1980.

[4] Wolfgang Singer, Manfred Frick, Stefan Bernet, and Monika Ritsch-Marte.
Self-organized array of regularly spaced microbeads in a fiber-optical trap.
JOSA B, 20(7):1568–1574, July 2003.
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[37] V. Karásek, K. Dholakia, and P. Zemánek. Analysis of optical binding in one
dimension. Applied Physics B, 84(1):149–156, July 2006.
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