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ABSTRACT OF THE DISSERTATION

Numerical Tool Development

of Fluid–Structure Interactions in Upper Airway

for Investigation of Obstructive Sleep Apnea

by

Chien-Jung Huang

Doctor of Philosophy in Mechanical and Engineering

University of California, Los Angeles, 2017

Professor Jeffrey D. Eldredge, Chair

Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or

complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients

are prone to collapse under the low pressure loads incurred during breathing. A numerical

tool suitable for simulation of air-tissue interactions with patient-specific upper airway ge-

ometries has been developed. The tool is designed to utilize non-body-fitted Cartesian grid

to avoid grid generation and remeshing processes for the deforming irregular geometries. A

sharp-interface embedded boundary method is used resolving the airflow in the airway ge-

ometries, while a novel cut-cell non-linear finite element analysis is constructed for structure

undergoing large deformation. The separate fluid and structure solvers are strongly coupled

with a partitioned iterative algorithm. The interface is represented with the signed distance

function in the flow and structural solvers. Also, the explicit interface representation with the

union of Lagrangian triangle elements is introduced to manage the data exchange between

two solvers. The simulation of deformation of cantilever beam under uniformly distributed

load demonstrated the ability of the structural solver. The capability of the developed tool

dealing with flow induced deformation problems has been exhibited with several two- and

three- dimensional validation cases. To obtain the patient-specific airway and soft tissue

ii



geometries, a procedure by which patient-specific airway geometries are segmented and pro-

cessed from dental cone-beam CT scans into signed distance fields is presented. The results

are shown for three-dimensional flow simulation inside two rigid patient-specific airways.

The simulation results of fluid–structure interaction of the pressure driven flow surrounded

by deformable soft palate and tongue structures are also presented.
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CHAPTER 1

Introduction

1.1 Obstructive Sleep Apnea

1.1.1 General Introduction

Obstructive sleep apnea (OSA) is characterized by repetitive airway partial (hypopnea) or

complete (apnea) occlusion during sleep (of Sleep Medicine, 2014). The risk factors of OSA

including age, obesity, gender, race and craniofacial anatomy. Excess of body weight is the

strongest risk factor for OSA (Lurie, 2011). It was found that a one increase in the standard

deviation difference in BMI will lead to 4 times increase in the disease prevalence (Young

et al., 1993). The OSA affects about 3%−7% for adult men and 2%−4% for adult women in

the general population (Punjabi, 2008). However, due to the unawareness of the patients, up

to 83% of man and 93% of women are not clinically diagnosed (Lurie, 2011). These untreated

patients may have problems like daytime sleepiness, poor work performance, and cognitive

dysfunction. Moreover, the OSA may contribute to the development of hypertension (Marin

et al., 2013), coronary artery disease (Valham et al., 2008), or even ischmetic stroke (Adams

et al., 2007).

The occurrence of OSA is caused by the airway occlusion in nasal or pharynx during

sleep due to the relaxed muscle tone. For the obstruction in pharynx, Remmers et al. found

it is more likely to happen within pharyngeal segment between tip of the soft palate and

glottic inlet. In other word, velopharynx and oropharynx are more collapsible regions in

upper airway (see figure 1.1). The overnight polysomnography is the standard diagnostic

method for the syndrome. The in-laboratory testing records the physiologic signals including
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Figure 1.1: Anatomy representation of the human upper airway (Fogel et al., 2004).

electrocardiogram, electrooculogram, airflow, oxygen saturation, respiratory effort and other

signals of the patients (Epstein et al., 2009). The severity of the syndrome is evaluated

with the Apnea-Hypopnea Index (AHI) and Respiratory Disturbance Index (RDI). The AHI

represents the number of occurrence of apnea and hypopnea per hour, where the apnea is

commonly defined as when the breathing amount is less than 25% of the usually amount

and the hypopnea is defined as when the breathing amount is 26% − 69% of one’s normal

breath (Quan et al., 1999). The RDI represents the number of airway disturbance including

respiratory effort related arousal (RERA), apnea, and hypopnea, so that the value of RDI

is generally larger than AHI. For adults, one is commonly considered to be OSA patient if

one’s AHI> 5. The severity of OSA is defined as mild with 5 ≤RDI< 15, moderate with

15 ≤RDI< 30, and severe with RDI> 30.

The Starling resistor is a classic model to understand upper airway occlusion (Gleadhill

2



Figure 1.2: Left: the Starling resistor model by Gleadhill et al. (1991). Right: the pressure-flow relationship

for different subject types.

et al., 1991; Smith et al., 1988). The pharynx is modeled as a collapsible tube to discuss the

factors affecting the occurrence of the OSA (left plot in figure 1.2). The collapsible segment

of the tube is surrounded with external pressure Pcrit, and two rigid segments represent the

upstream nasal and downstream hypopharygeal parts. The collapsibility can then be defined

as the degree of Pcrit. While the transmural pressure Pcrit minus pressure in lumen is positive,

this corresponds to occlusion of the airway. Smith and Schwartz (2011) measured the Pcrit by

changing the pressure in the nasal and observed the pressure-flow relationship for normals,

subjects with snoring, hypopnea, and apnea as shown in the right plot in figure 1.2. The value

of Pcrit is equal to the value of nasal pressure PN when zero airflow is reached. The normal

subjects typically have Pcrit < −8 cmH2O and mild OSA patients have Pcrit slightly greater

then 0. This model relates the airway collapsibility to the transmural pressure. Abramson

et al. summarized the factors affecting the transmural pressure and airway collapsibility in

the figure 1.3.

The three-dimensional imaging techniques like computed tomographic (CT) (Abramson

et al., 2010) scans and magnetic resonance imaging (MRI) (Cosentini et al., 2004; Schwab

et al., 2003) have been utilized to characterize the airway anatomy of OSA patients. Abram-

son et al. used 3D-CT scans and showed that patients of sleep apnea usually have smaller

3



Figure 1.3: Factors that predisposed to airway collapse (summarized by Abramson et al.).

minimum cross-sectional area, longer airway, or smaller lateral dimension and anteroposte-

rior dimension ratio. Schwab et al. utilized volumetric MRI, and larger volume of tongue,

lateral pharyngeal wall, and soft tissue were found in the OSA patients. The limitation of

classical CT and MRI analysis are that MRI only can obtain images that is averaged with

time, and CT scans are usually obtained from awake patients. The anatomy and physiol-

ogy are different from awake and sleep (Ayappa and Rapoport, 2003). The cine Magnetic

resonance, or sleep MRI was utilized to observe the dynamic airway collapse and identify

location and type of occlusion (Moon et al., 2010).

1.1.2 Treatment

The treatments of OSA include continuous positive airway pressure (CPAP), behavioral

treatment, oral appliances (OA), and surgeries. Among all the treatments, the CPAP is the

preferred one (Epstein et al., 2009). Being applied through a nasal, oral, or oronasal interface

during sleep, CPAP maintains a continuous level of positive airway pressure. This maintains

the airway patency by providing the sufficient internal pressure to resist the wall collapse.

The use of CPAP is proven to reduce the risk of cardiovascular events (Marin et al., 2005)
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and stroke (Mart́ınez-Garćıa et al., 2009). The limitation of CPAP is the low tolerance of

patient to this treatment. In 5-year follow-up study by Mart́ınez-Garćıa et al. (2009), only

30% of patients were considered to have good long-term adherence of CPAP treatment.

Behavioral treatment (Epstein et al., 2009) options include weight loss, exercise, posi-

tional therapy. Obesity is a main risk factor for OSA and the ideal BMI should be 25 kg/m2

or less. The positional therapy is the method to keep patient in a non-supine sleeping posi-

tion to enlarge the airway size. Costume made oral appliance (OA) can enhance the airway

patency by increasing the upper airway calibre Chan et al. (2010) or improving the airway

muscle tone (Ferguson et al., 2006). Oral appliance is a well-tolerated treatment by patients

and with about 50% of rate of success. The OA includes mandibular repositioning appliance

(MRA), which hold the mandibular in an advance position, and tongue retaining devices

(TRD), which prevent tongue from falling backward to the resting position.

Surgical treatments are alternative treatments when patients fail to adhere to CPAP ther-

apy (figure 1.4). Maxillo-mandibular advancement (MMA) is a skeletal surgery to enlarge the

velo-oro-hypopharyngeal airway by moving the upper jaw and lower jaw forward. Surgeries

involving excision of uvula and tightening soft palate tissue include uvulopalatopharyngo-

plasty (UPPP), laser assisted uvulopalatoplasty (LAUP), and soft palatal implants (Caples

et al., 2010). Nasal surgery improves the nasal breath by reducing the size of the turbinate

and enlarging the nasal valve to reduce nasal obstruction. Sometimes multi-level simulta-

neous surgery, which combining different surgery in the same surgical session, or multi-level

phased surgeries, which contains series of step-wise surgeries, are applied (Caples et al.,

2010).

1.2 Review of Studies Focusing on Human Upper Airway

1.2.1 Experimental Research

The in-vivo experiment in upper airway is hard to conduct. In-vitro experiments by Hahn

et al. (1993) and Kelly et al. (2000) were performed to observe the flow field in the human
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Figure 1.4: Surgical treatments of maxillomandibular advancement, uvulopalatopharyngoplasty, and nasal

surgery (from www.sleepapneasurgery.com).

nasal cavity obtained from CT scans and MRI. The rigid airway models were used and steady

flow rate was imposed. Kelly et al. observed laminar flow in the nasal cavity in a low steady

flow rate (125 ml/s), while Hahn et al. (1993) demonstrated that the flow inside the nasal

cavity was laminar for low flow rate (180 ml/s) and became turbulent for moderate (560

ml/s) and high flow rate (1,100 ml/s).

As to the in-vitro experiments for the flow in pharynx, Heenan et al. (2003) and Pollard

and Shinneeb (2010) created an idealized, symmetric airway model to see the global flow

behaviour. Features of jet-like flow, asymmetry, anisotropy and recirculation are developed

in the air flow. Some studies used experiments results for validation and comparison with

CFD simulations (Chouly et al., 2008; Xu et al., 2006; Zhao et al., 2013).
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1.2.2 Theoretical Modelling

Some theoretical models were built to describe the flow and structure interaction in the

airway. On top of the classic the Starling resistor model proposed by Smith et al., there are

some advanced mathematical snoring models including Gavriely and Jensen (1993), Fodil

et al. (1997), and Aittokallio et al. (2001) describe the dynamic response of the airway.

The model by Gavriely and Jensen and Fodil et al. take the inertia of airway tissue into

consideration. Gavriely and Jensen proposed spring mass model to simulate the collapsible

segment in the airway to be a mass linking to a spring. The transmural pressure at the

collapsible segment has component of the pressure drop due to the upper airway resistance

as well as the Bernoulli effect. The force balance between spring force and the transmural

pressure force governs the behavior of the mass and affects the airway width. The phase-plane

plots, which show the relation of airway width and rate of change of the width, with different

topology are observed under different parameters. It showed the area of the airway and gas

density play an important role on the onset of snoring. Fodil et al. (1997) proposed two-

element model by modeling the collapsible wall to be a series of two individualized elements

with different compliant and size. On the other hand, Aittokallio et al. considered the

tube with varying cross-sectional area. The proposed one-dimensional model uses averaged

properties in cross-sectional direction. It resulted in the governing equations with area, flow

velocity, and pressure in variables x and t. The tube law described the relation between the

transmural pressure and airway area. The flow patterns of snoring and airway collapse were

observed by considering different values of tube stiffness, driving pressure, and muscle tone.

Instead of modeling OSA as the collapse of tube, there exists a different view that OSA

may be related with the airway blockage by the motion of the soft-palate. Balint and Lucey

proposed a mechanical model of the upper airway to be the air-flow in a rigid airway channel,

and a flexible plate is mounted behind an upstream rigid plate. The inlet is divided into

two sections representing the inflow from the nasal and oral cavity, while the flexible thin

plate represent the motion of the soft palate and uvula. The FSI studies of flow induced

deformation of the flexible plate were performed with different inlet velocities and plate
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heights. It was found that under the situation when one inlet is blocked, which means

the flow rates from nasal and oral cavity are imbalanced, the divergence instability of the

flexible plate can be observed when the flow speed in beyond a critical value. Furthermore,

Cisonni et al. considered a compound flexible plate composed with two sections with different

dimensions and properties representing soft palate and uvula. It is found the instability is

more likely to develop with a thinner, lighter, and softer uvula.

1.2.3 Numerical Research

1.2.3.1 Rigid Wall Assumption

In several studies, simplified averaged-extra-thoracic airway geometries were created to ana-

lyze the flow field inside. Kleinstreuer and Zhang (2003) developed an idealized model with

circular cross-section with constriction at larynx. The low-reynolds-number turbulence k−ω
model was utilized to simulate steady laminar-to-turbulent suspension flow from mouth to

trachea. The onset of turbulent after the constriction at larynx was observed. Matida et al.

(2006) used idealized mouth 3D geometry, which is a average model based on literatures,

to predict aerosol deposition in mouth. The LES was used for turbulence simulation and

steady inhalation flow was set. It showed good agreement compared with experiment with

same idealized geometry. Pollard and Shinneeb (2010) also did numerical simulations on the

idealized model to make comparison between different turbulence model with experiment.

Although the simulation results showed good concordance with experiments using the

idealized geometry in the in above studies, simplified airway model may not be able to reflect

the true flow field in the real airway. Collins et al. (2007) compared the simulated flow fields

and particle depositions in orotracheal airway using the idealized and patient-specific model

obtained from MRI. The flow field in this idealized model have good agreement with results

by Heenan et al. (2003) was observed due to the similar geometry. They both showed three

major regions of flow recirculation as well as laryngeal jet structure. However, in the results

using patient-specific airway model, neither recirculatory flow nor laryngeal jet structure

8



were observed. This may due to the sharp edges and the longer trachea structure in the

idealized airway model. In the particle deposition simulation, the percentages of different

size of particles trapped by the wall were much less than that in the patient-specific model.

This research conveys the importance to used anatomically accurate airway model for airflow

analysis. Also, because the airway geometry varies largely from person to person, the cause

of OSA and the location of occlusion differ with patients. It is important to build patient-

specific upper airway model for analysis of the occlusion of the airway.

For the studies using the three-dimensional anatomically accurate airway model, in most

of the researches airway wall was considered to be rigid. The Reynolds number of the airflow

in pharynx are on the order of O(103) (about 1000 to 2700 during light breathing with

flow rate 10 L/min). This implies the transition from laminar to turbulence might happen

locally in airway, where the transitional flow usually occurs at Reynolds number at 2000 to

10000. However, the three-dimensional flow separation or recirculation in airway may trigger

the onset of transitions to turbulence at high respiratory flow rate. The Reynolds-averaged

Navier-Stokes (RANS) method have been used in several literatures.

Shome et al. (1998) chose two-equation k− ε model in simulation. The flow was assumed

to be steady and with the uniform inlet flow velocity. The minimum intraluminal pressure

was found at the location with the smallest cross-section area. The pressure drop was up

to 40% larger in the turbulence flow compared with the one in laminar flow due to the high

mixing ability to exchange to energy between near-wall and core flows. Xu et al. (2006)

used RANS equation with low Reynolds number two-equations k − ω turbulence model

with finite volume method to simulate airway of children patients from nostril to trachea

on inspiration and expiration respectively. The flow was assumed to be steady while the

constant pressure condition was set at nostril and uniform flow velocity was set at trachea.

After comparison between results of airway subjects to OSA and normal airway, Xu et al.

(2006) found the resistances in pharynx were a lot higher in children with OSA than without

OSA, while the resistances in nostril are similar in both groups. The pharyngeal airway

shape in children with OSA have significant influence of the internal pressure distribution.

9



Vos et al. (2007) simulated steady expiratory flow in upper airway of 20 OSA patients with

different values of AHI. The outlet was set to be constant atmospheric pressure at nostril,

while the inlet was set to be uniform velocity at larynx. The parameters including minimum

cross-sectional area, resistance, pressure drop and BMI were checked. These parameters

showed a linear correlation with the values of AHI. Jeong et al. (2007) used low Reynolds

number two-equations k− ε turbulence model with finite volume method to simulate steady

flow in airway from nostril to trachea of a patients with OSA obtained from CT scan. A

validation test of the axisymmetric tube with sinusoidal construction showed good agreement

with the velocity distribution between the k − ε turbulence model and experiments. The

simulations were done with different inhaled flow rates, and it showed that the pressure drop

and aerodynamic force increase quadratically with the increasing inhaled flow rate. The

flow pattern in the pharynx demonstrated the acceleration flow (pharyngeal jet) extends at

velopharynx into hypopharynx and flows along the posterior side of the airway. Jeong et al.

considered the strength and flow characteristics of this pharyngeal jet would be the main

reason of the airway obstruction. The force acting on the wall surface had the maximum

value in the downstream region of the velopharynx, while the high shear force was observed

on the posterior pharyngeal wall due to the pharyngeal jet. It was concluded in this research

that the velopharynx is the most collapsible area due to the minimum intraluminal pressure

and maximum aerodynamic force.

Nonetheless, RANS may not be the best choice for analysis on flow pattern in upper

airway. Wilcox (1993) have found the ability of RANS to accurately predict anisotropic

flows which develop adverse pressure gradient, secondary flow regions or curved streamlines

is limited. In contract, the large eddy simulation (LES), which filters out and models the

small scale structure, is a relatively appropriate choice to simulate flow in the upper airway.

Mihaescu et al. (2008) simulated steady flow in upper airway reconstructed from MR scan

with RANS k − ω, k − ε model and LES. The results by RANS k − ω model was more

close to the results by LES. However, there still existed 30% of difference in the mean axial

velocities between these two models. The pharyngeal jet structure were observed in all the

10



turbulence models, but for the k − ε model only one recirculation region were observed,

while two recirculation regions on posterior and anterior wall after the jet are observed using

k − ω and LES models. The sizes of these two recirculation regions appeared to be similar

in k − ω model, while the size of recirculation region was larger on posterior wall in LES

model. Mihaescu et al. considered LES can provide an increased level of detail and accuracy

for the unsteady, separated and vortical turbulent flow in upper airway.

1.2.3.2 Fluid–Structure Intersection

The unsteadiness and wall flexibility may play an important role in the airway collapse (Luo

and Pedley, 1996). In the studies using rigid wall assumption, the location with lowest

intraluminal pressure and maximum force on the airway wall were obtained and was claimed

to be the most collapsible location. Actually, if the fluid–structure interaction is taken

into consideration, it has been observed that lowest pressure may not really correspond

to the location of collapse (Zhao et al., 2013). Considering interaction of the airflow with

surrounding tissue provides a more realistic and accurate prediction of the occlusion location.

There are limited studies on the fluid–structure interaction in upper airway. Huang

et al. (2007) considered that the fluid and structure are only weakly coupled. The patient-

specific airway geometry is reconstructed from the two-dimensional MRI slices and is set to

be anatomic symmetry about the midline. The flow field was computed first and the force

distribution on the airway wall was obtained. This information was then load on surface

of the tongue, soft palate, and uvula to calculate their deformation. For fluid, the laminar,

incompressible flow was assumed and the pressure boundary conditions were imposed at inlet

and outlet. For solid, the passive tongue and pharyngeal tissue were assumed to be linear

elastic materials. The genioglosus, which is the dilator muscle in airway, was assumed to

have nonlinear behavior under axial contraction. The closing pressure was measured when

the soft palate or tongue tissue touch the posterior wall. It was observed that the closing

pressure decreases after applying UPPP surgery, palatal implants, and tongue implants.

Chouly et al. (2008) utilized the strong coupling algorithm for FSI, however, a simplified
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airway model was considered. The pharynx was represented by the rigid circular pipe, while

the base of tongue was represented by a short deformable circular cylinder. The deformable

cylinder intersected orthogonally with the rigid circular pipe. The in-vitro experiment, using

the metallic rigid tube and short latex tube filled with water to represent pharynx and tongue

tissue, was performed to compare with the numerical results. For the numerical model, the

fluid was considered to be incompressible, laminar, and stationary, and the tissue is assumed

to be linear elastic material. Chouly et al. gradually increased the external pressure, which

is the pressure outside of the tongue tissue, and the decrease of the cross-sectional area was

observed. A similar simplified airway model was also simulated by Mohammad Rasani et al.

(2011). The tongue tissue was also assumed to be linear elasticity material, while the turbu-

lent flow was considered for fluid using the RANS with k−ω turbulent model. The relation

between pressure drop from inlet to outlet and flow rate showed the flow rate limitation

phenomena. The degree of flow plateauing, which the increase of flow rate decreases with

increasing pressure, decreased through raising of the constriction heigh, which corresponds

to the smallest hight in the airway model. Mohammad Rasani et al.’s turbulent model

predicted a more severe pressure drop in the constriction than the laminar flow model by

Chouly et al.. This result is in accordance with the numerical result in Shome et al. (1998).

This leads to the conclusion that the elastic wall collapse was more severe in turbulent flow

model than laminar model.

The simulation of strong coupled fluid–structure interaction in patient-specific upper

airway geometries were conducted in Sun et al. (2007), , Wang et al. (2012), Zhu et al.

(2012a), Zhao et al. (2013), and Pirnar et al. (2015) with software ANSYS or ADINA.

In all these studies, the soft tissues are governed with linear elasticity model. In most

studies RANS equation was utilized as the turbulence model, except for the laminar flow

assumption in Zhu et al. (2012a). Zhao et al. considered patient-specific airway geometry

from hard palate to the base of epiglottis. The fluid domain is surrounded with the 2 mm

thick deformable pharyngeal wall, while inspiration flow was set to be sinusoidal uniformly

distributed velocity at the inlet with maximum flow rate 166 ml/s. It was observed that
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the wall contact happened at the base of the tongue at flow rate 127 ml/s in the airway

geometry of OSA patient. The site of occlusion does’t coincide with the site with the lowest

pressure, which is about 4 cm before it. However, the lowest pressure decreased the overall

oropharyngeal and laryngeal pressures and induced wall occlusion in these regions. After

the mandibular advancement treatment, a more uniform flow with lower flow speed and

smaller transmural pressure were observed. Thus no airway obstruction occurred in the

post-treatment airway.

The results in Zhao et al. (2013) suggests the importance of including fluid–structure

interaction in the analysis. It shows the cite with the lowest pressure doesn’t guarantee

the be the location of airway collapse. Nevertheless, the assumption of uniform thickness of

tissue surrounding the airway can not reflect the real situation which the collapsibility should

vary along the airway. The patient-specific soft tissue geometries should be considered. Sun

et al. (2007), Wang et al. (2012), and Zhu et al. (2012a) conducted simulations of the

interaction between the soft palate and the airflow, where the first two studies considered

steady inspiratory and expiratory flow, and the last study considered transient flow within

two breathing cycles. Sun et al. used shorter airway geometries from nostril to oropharynx

from a healthy person and an OSA patient. It was observed that the characteristics involving

hypertrophic soft palate and narrow velopharynx lead to the rapid increase in both pressure

gradient and velocity gradient as well as increment of resistance. This leads to not only

larger deformation in soft palate but also larger transmural pressure in airway. Wang et al.

considered airway from nostril to laryngopharynx focusing on the influences of nasal surgery.

Not only the soft palate geometry was obtained from CT scans, the muscle supporting soft

palate was also taken into consideration by adding the four pairs of artificial bilateral palate

muscle on the basis of the anatomy of the soft palate. The material of these muscle pairs

were still assumed to be linear elastic but with about 40 times stiffer than the soft palate.

The comparison between flow field and displacement in airway before and after the nasal

surgery showed that airway resistances has significant decrease after the surgery due to the

increased volume in nasal cavity. The decrease of aerodynamic force resulted in the smaller
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displacement of soft palate after the surgery. Zhu et al. (2012a) used lower Young’s moduli

E = 7539 Pa and E = 3000 Pa in the simulations. It was found for in the studied patient-

specific airway geometry the deformation of the soft palate is larger during expiration than

in inspiration.

In the simulations in Pirnar et al. (2015), all the tissues surrounding the airway at

velopharynx were included. Not only the deformation of soft palate and uvula structure at

anterior side of the airway, but also the soft tissue at the posterior side connecting to the

supine is included. At the location where soft tissue adhering to the supine, hard palate and

other bone structure, the soft tissue is set to be fixed. In other words, more realistic soft tissue

structure and boundary conditions were considered. The airway starts from nostril to the

trachea, and except for the velopharynx, the rest of the airway remains rigid, including the

tongue. The sinusoidally-varying airflow rate is imposed with the peak flow rate 416 ml/s.

The soft palate exhibited flutter behavior under the pressure variation in the respiratory

flow. The flutter frequency of the soft palate is in accordance with the value reported in the

previous study in palatal snoring.

In summary, several previous studies have attempted conducting the simulations of

airflow-tissue interaction in patient-specific upper airway geometries. The airway narrowing

and the flutter behavior soft palate have been exhibited. Also, the reduction of the airway

resistance and the removal of the airway occlusion after treatment have also been demon-

strated. These show the numerical analysis of the fluid–structure interaction in patient-

specific airway geometries is promising for investigation of the OSA. However, there still

exists some deficiencies in the numerical model adopted in the previous studies considering

fluid–structure interaction. First, the physical model for the soft tissue and transitional flow

may be not appropriate. The nonlinear analysis is more proper for the prediction of the

motion of the soft tissue. Also, the soft tissue displays both properties of viscous and elastic

materials. The viscoelastic model would be the suitable model to predict the motion of soft

tissue in the respiratory flow. For the turbulence model, as discussed in the previous section,

is more appropriate for the transitional flow in the upper airway. Second, the deformation
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of the tongue was ignored in all the studies listed above. The area behind the tongue is

also considered a common site of airway collapse, so that the deformation at the back of the

tongue should not be ignored.

1.3 Objectives

This research aims to develop a numerical tool to simulate the fluid–structure interaction

(FSI) in the upper airway. The ultimate gaol of this tool is expected to capture the airway

occlusion with inspiratory flow in the patient-specific upper airway geometry. The airway and

tissue geometries will be obtained by cone-beam CT scans, and the data can be segmented

by using the software ITK-SNAP, which are used for structures segmentation of 3D medical

images. The segmented data will then be converted to the signed distance function by

MATLAB. For the OSA diagnosis, the polysomnography is time consuming and costly. The

numerical simulation is a relatively less expensive and fast analysis technique which provides

help on assess the severity of OSA. It can also provide assistant on selection the proper

treatment or surgery type for specific patients. To reach the goal, this tool needs to be

equipped with elements which enable accurate and efficient numerical analysis:

• FSI

Most of the previous studies targeted on the flow simulation in the fixed airway. How-

ever, the collapsibility of the surrounding tissue should vary with location and the

geometry. There are only limited number of studies considering FSI in the upper air-

way. Moreover, some studies considering FSI used simplified airway models or chose

commercial CFD codes to do simulation and coupling. Our main objectives of this re-

search is to design an in-house numerical tool dealing with FSI in human upper airway

efficiently and accurately with strong coupling algorithm.

• Patient specific geometries

It has been shown in the previous studies that the flow field in the simplified airway

model and patient-specific airway geometries showed different flow characteristics. To
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figure out the location of airway collapse and give suggestion on treatment selections,

it is crucial to conduct simulations with patient-specific upper airway geometries.

• Non-body-conformal Cartesian grid

Grid conformal finite element or finite volume method were used in most studies.

Considering the deforming and complex boundary geometry, the time consuming grid

generation and remeshing processes are the major drawbacks of the conformal grid.

Instead of setting the boundary domain to be adhered with the irregular geometries,

another group of solvers utilizing Cartesian grid system seem to be more suitable.

We choose to use non-body-conforming grid system with immersed boundary method

for fluid and cut-cell finite element method with virtual nodes for solid to avoid the

cumbersome grid generation and remeshing.

• Nonlinear elasticity

Most papers used linear elasticity model for tissue. However, linear elasticity model

is only suitable for structure undergoing infinitesimal displacement. When a struc-

ture undergoing large rotation or deformation, the, linear elasticity model predicts the

wrong strain field due to ignoring the higher order terms. This results in obtaining

a wrong displacement field. The simplest nonlinear elasticity, Saint-Venant’s model,

will be chosen to represent the constitutive law of soft tissue. The material properties

of tissues around upper airway obtained by Cheng et al. (2011) using a new magnetic

resonance elastography (MRE) can be utilized.

• Parallel computing

The parallel computing, which the calculations are split and distributed to multiple

processing elements, can highly raise the efficiency. It is implemented by using parallel

computing libraries including MPI, PETSc on distributed memory system.
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CHAPTER 2

Methodology

The domain of the fluid–structure interaction system Ω can be divided into two parts: the

one occupied by the solid ΩS and another occupied by the fluid ΩF as illustrated in plot 2.1.

The superscript S denotes the solid structure, while the superscript F denotes the fluid. The

union of ΩS and ΩF is an empty space. ΓS and ΓF denote the boundary of the domain ΩS

and ΩF respectively, while ΩFSI refers to the fluid–structure interaction interface between

these two domains. The subscript represents the different types of the boundary. The d

refers to the Dirichlet boundary type, and the n refers to the Neumann boundary type (or

traction boundary type for solid).
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Figure 2.1: System domain of a fluid–structure interaction problem.
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The solid and fluid domains are treated in different frameworks. For solid, the material

(or Lagrangian) coordinates X is used to describe the positions of a solid particle in the

reference state, while the spatial (or Eulerian) coordinates x describe the positions of a solid

particle in the deformed or current state. The displacement field ξ of this solid particle,

which is the difference between X and x, can then be tracked. The deformation-gradient

tensor, which is defined as F ≡ ∂x/∂X, relates the deformed state and reference state, while

the Jacobian, which is defined as J ≡ det (∂x/∂X), is the volume change of a solid element.

The naught subscript refers to the properties in the reference state, for example, ρS0 , bS0 , and

τS0 . For fluid, due to its high deformability, the Eulerian description is used. The Cartesian

spatial (or Eulerian) coordinates x describe the positions of a fluid particle in the current

state. The flow variables at the fixed grid points are computed.

2.1 Governing equations

For two-dimensional Newtonian and incompressible fluid, the governing momentum and

continuity equations are

ρF
(
∂u

∂t
+ u · ∇u

)
= −∇p+ µF∇2u+ ρF bF in ΩF (2.1)

∇u = 0 in ΩF (2.2)

where u refers to the velocity field, p is the fluid pressure field, fF is the external body force,

and µ and ρF are the dynamic viscosity coefficient and density of the fluid.

For the homogeneous, isotropic, and elastic solid material, the momentum equation with

respect to the current state is

ρSt Dttξ(x, t) = ∇t · σ + ρSt b
S
t in ΩS

t (2.3)

where ξ is the displacement field, σ is the Cauchy stress tensor, ρS and bS are the density

and body force, and D represents the material derivatives, which is the rate of change of

the properties of a specific solid particle. The subscripts t represent the properties in the

current state at time t, while double subscript tt means second derivatives in time. In order
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to simulate the structure undergoing large displacement or rotation, the nonlinear analysis

shall be performed. In this research, we choose to use the total Lagrangian formulation,

which all the properties are with respect to the reference state. The governing equation can

be rewritten as

ρS0Dttξ(X, t) = ∇0 · P + ρS0 b
S
0 , in ΩS

0 (2.4)

where P is the first Piola stress tensor.

The relation between stress and strain is described by the constitutive law. In the to-

tal Lagrangian formulation nonlinear analysis, the strain measure is defined by the Green-

Lagrange strain tensor E,

Eij =
1

2

(
∂ ξi
∂Xj

+
∂ ξj
∂Xi

+
∂ ξk
∂Xi

∂ ξk
∂Xj

)
(2.5)

The diagonal elements in Green-Lagrange strain tensor represent the change in length per

unit length in different direction, while the off-diagonal terms indicate change in the angle

between perpendicular lines. In this research, the Saint Venant-Kirchhoff model assumes the

stress is linearly related with the strain,

S(X, t) = 2µSE + λStr
(
E
)
I, in ΩS

0 , (2.6)

where S represents the second Piola stress tensor, which is related with P by P = S · F T .

The µS and λS denote the two Lamé’s coefficients of the solid, which has the relation with

the Young’s modulus E and poisson ratio ν,

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
,

The Saint Venant-Kirchhoff model is the simplest hyperelastic elasticity model, which the

stress-strain relation is derived from the strain energy function.

The Dirichlet and Neumann boundary conditions at the borders of solid and fluid domains
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are

ξ = ξ
D
, on ΓS0v (2.7)

P · n0 = τSN0, on ΓS0τ (2.8)

u = uD, on ΓFv (2.9)

σ · n = τFN , on ΓFτ (2.10)

where n0 and τSN0 denotes the normal vector and traction with respect to the material

coordinates. As to the boundary condition at the fluid–structure interface, the kinematic

boundary condition (no-slip boundary condition),

u(x, t) = ξ̇(X, t) on ΓFSI (2.11)

and the dynamic boundary condition,

σF · nF→S = − τ on ΓFSI (2.12)

σS · nS→F = τ on ΓFSI (2.13)

need to be satisfied, where the stress tensor σF for Newtonian fluid is defined as

σF (x, t) = 2µF
[
∇u(x, t) + (∇u(x, t))T

]
− pF (x, t)I, in ΩF (2.14)

and the σS is the Cauchy stress in the deformed state and can be related to the first Piola

stress tensor using,

σS = J−1F · P (2.15)

Non-dimensionalized governing equations

Considering the characteristic length L and the characteristic velocity U0 in the fluid–

structure interaction system, the characteristic time can thus be defined as t0 = L/U0.

The coordinates x, X and displacement field ξ are non-dimensionalized using L, while the

velocity field in fluid is non-dimensionalized using U0. The variables P , S, σ, τSN0, µS and λS

associated with structure and the variables σF , τFN and p associated with fluid have the unit
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force/area. The former group of variables are non-dimensionalized using ρSU2
0 , while the

latter group of variables are non-dimensionalized using ρFU2
0 . The traction at the interface

τ is chosen to be non-dimensionalized using ρSU2
0 . Also, define Reynolds number and density

ratio as

Re =
ρFLU0

µF
ρ̃S0 =

ρS0
ρF

The non-dimansionalized governing equations and boundary conditions are listed below.

(The tilde representing non-dimansional variables and parameters are dropped.)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+ bF in ΩF (2.16)

∇u = 0 in ΩF (2.17)

Dttξ(X, t) = ∇0 · P + bS0 , in ΩS
0 (2.18)

S(X, t) = 2µSE + λStr
(
E
)
I, in ΩS

0 (2.19)

σ · n = τFN on ΓFτ (2.20)

P · n0 = τSN0 on ΓS0τ (2.21)

u = uD on ΓFv (2.22)

ξ = ξ
D

on ΓS0v (2.23)

σ · nF→S = −ρS0 τ on ΓFSI (2.24)

σS · nS→F = τ on ΓFSI (2.25)

u(x, t) = ξ̇(X, t) on ΓFSI (2.26)

2.2 Fluid Solver

2.2.1 Introduction

The immersed boundary method pioneered by Peskin (1972) has wide applications. The

governing equations are discretized on Cartesian grid system and the immersed boundary
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is not conformal to grid points. The boundary conditions are imposed indirectly. A body-

force field or forcing term is introduced in the momentum equation to represent effect of the

immersed boundary. The non-body-conformal feature makes immersed boundary method

suitable for dealing with moving immersed boundaries. It eliminates the cumbersome body-

conformal-grid generation process and no grid transformation is needed.

The imposition of boundary condition is an important issue in IB algorithm. The forcing

approach can be classified into two categories: continuous and discrete forcing approaches

(Mittal and Iaccarino, 2005). For continuous forcing approach, the forcing term is intro-

duces into the continuous governing equation. The governing equation is then discretized on

Cartesian grid and solved in the entire domain. Peskin (1972) first simulated flow through

natural heart valve. The elastic boundary is tracked by a set of points linked by springs and

the stresses the boundary produces are transmitted to the fluid through Dirac delta function.

Goldstein et al. (1993) introduced the feedback forcing to simulate the flow over rigid bodies.

The forcing makes boundary acts like a damped oscillator when the boundary velocities de-

viate from the enforced velocities. These approaches using continuous forcing are not ideal

approaches for simulating flow at high Reynolds number. Firstly, the smooth discretized

Dirac delta function smears the influence of the sharp boundary so that the accuracy in the

thin boundary layer decreases in flow at high Reynold number. Secondly, stability problem

may rise when rigid or stiff body is simulated.

For the discrete forcing approach, the governing equation without effect of boundary is

discretized on Cartesian grid first and forcing terms are imposed on the discrete governing

system of equations. For finite volume method, boundary cells are cut by boundary and the

part in fluid is merged with neighboring cell (Ye et al., 1999). The fluxes on the faces of

these boundary cells are evaluated by interpolation using the flow properties at neighboring

nodes in fluid. For finite difference method, Majumdar et al. (2001) reconstructed the flow

variables at ghost cells, which are the solid nodes having at least one neighbor in fluid, so that

through interpolation the boundary conditions on the boundary are satisfied. Majumdar

et al. employed interpolant which is quadratic in the direction normal to boundary and
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linear in tangential direction. Similarly, Mohd-Yusof (1997) and Fadlun et al. (2000) applied

forcing to reconstruct flow variables at selected set of nodes. Mohd-Yusof applied forcing at

ghost nodes and Fadlun et al. tried to add forcing at different sets of nodes with different

interpolation schemes. Fadlun et al. showed choosing the fluid nodes closest to boundary

as the forcing points with reconstruction their flow variables using linear interpolation had

the best performance with second order of accuracy. The flow variables at forcing points

were linear interpolated using velocities at nearest boundary points and fluid nodes along

horizontal or vertical grid lines. However, the ambiguity of which direction to perform

interpolation appears for complex boundary geometry. Balaras (2004) then proposed to

do linear interpolation along the direction normal to boundary surface. To have a more

compact interpolation stencil, Yang and Balaras (2006) developed a triangular stencil to do

two-dimensional bilinear interpolation using one boundary point and two fluid nodes. The

discrete forcing approaches mentioned above treat the boundary as sharp interface without

using smooth distribution function. Also, no use of stability constraints is needed and

governing equations need only to be solved in fluid domain. These features make discrete

forcing approach more desirable for simulation at high Re number.

For transitional and turbulent flows, their small spatial and temporal scale require very

fine grid and time step. Using direct numerical simulation (DNS), which solves Navier-Stokes

equation without modeling, is very time consuming. The Reynolds-averaged Navier-Stokes

equation (RANS) solves the averaged flow variables in time and needs model of the Reynolds

stress. However, it is not suitable for anisotropic flows with secondary flow region or curved

streamlines (Wilcox, 1993). In large eddy simulation (LES), a spatial filter is used to compute

large-scale quantity and subgrid-scale (SGS) stress is modeled. Smagorinsky (1963) modeled

eddy viscosity to be proportional to and magnitude of local large-scale strain rate tensor with

a universal constant coefficient. This commonly used model is more desirable for isotropic

turbulence and need modification near wall. Germano et al. (1991) proposed dynamic model

to use two different widths of spatial filter to calculate the local coefficient in eddy viscosity.

This model is less ad hoc in determining eddy viscosity and no modification is needed near
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wall.

2.2.2 Numerical Methodology

The non-body-conforming Cartesian grid with immersed-boundary method proposed by

Yang and Balaras (2006) is used to simulate the airflow in airway. The projection method is

employed to solve the governing equations (2.1), (2.2) (Chorin, 1968; Kim and Moin, 1985).

For spatial discretization, central difference method to discretize velocity and pressure field

on the MAC staggered grid are used (figure 2.2). The time advancement is achieved using

third-order Runge-Kutta scheme. For both convection and viscous term, the explicit Adam-

Bashforth scheme is used. Rather than using implicit scheme for viscous terms, it was found

in previous studies that implicit scheme for viscous terms didn’t have obvious gains in the

time step (Balaras, 2004). The use of explicit scheme greatly simplifies the imposition of

boundary condition. The momentum equation then becomes

ûki − uk−1
i

∆t
= γkH(uk−1

i ) + ρkH(uk−2
i )− αk

∂pk−1

∂xi
+ fki , (2.27)

where H is an operator containing convection and viscous terms,

H(uni ) ≡ −∂u
n
i u

n
j

∂xj
+

1

Re

∂2uni
∂xj∂xj

,

and k refers to substep index of RK method, and the values of α, γ, ρ are listed in table

2.1. The intermediate velocities ûki are first computed and boundary conditions at domain

boundary are imposed. Then projection method is employed to obtain the divergence free

velocity field uki ,

∇2δp =
1

∆t

∂ûki
∂xi

, (2.28)

uki = ûki −∆t∇δp, (2.29)

pk = pk−1 + δp. (2.30)

For the immersed body in the fluid with non-conformal grid system, the boundary con-

ditions at the interface are satisfied by adding forcing term fi on the forcing points. The
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Figure 2.2: The MAC stagger grid for fluid in two-dimension.

forcing points are defined as grid points with at least one neighboring grid points in the

structure. The value of fi is set to let the velocities on the forcing point to be uf , which

means

fki =
uf − uk−1

i

∆t
− γkH(uk−1

i )− ρkH(uk−2
i ) + αk

∂pk−1

∂xi
. (2.31)

For most cases, the forcing point will not be located right at the interface. The uf will be

obtained from linear interpolation of velocities at the interface and on nearby fluid nodes. In

figure 2.3 two examples of the compact triangular interpolation stencil proposed by Yang and

Balaras (2006) are shown. The point 1 is the associated interface point of this forcing point

with its normal line passes the forcing point, and point 2 and 3 are nearby fluid nodes. The

interface is defined by the Eulerian implicit signed distance function, which is a special case

of the level set function. The value of the signed distance function represents the distance

from each grid point to the nearest surface, while the sign of it shows if the grid point is inside

(positive) or outside (negative). The advantage of using the implicit interface representation

for the immersed method is the simplicity of indentifying the fluid points and the forcing

points.

Table 2.1: Coefficients used in momentum equation (2.27)

k 1 2 3

a 8/15 2/15 1/3

g 8/15 5/12 3/4

r 0 -17/60 -5/12
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Figure 2.3: Two examples of the interpolation stencils for forcing points.

The flow field in the stencil can be obtained through linear interpolation, which is

φ = b0 + b1x+ b2y + b3z. (2.32)

, where φ represent the flow variables. The variable on the forcing points can be reconstructed

from the updated variables at nearby fluid points and interface,

φf =
[
1 xf yf zf

]

b0

b1

b2

b3

 =
[
1 xf yf zf

]


1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3



−1 
φ1

φ2

φ3

φ4

 (2.33)

The choice of stencil differs with the interface geometries and the orientation of it’s local nor-

mal direction. To maintain accuracy, usually only the fluid points within one grid size away

in each directions can be selected as interpolation stencils. Considering the two-dimensional

case, if the forcing point (i, j) is associated with the interface normal vector pointing upright,

fluid nodes (i + 1, j) and (i, j + 1) are naturally chosen to be the other two stencils, like in

the left plot in figure 2.3. In other case, if one of (i+ 1, j) or (i, j + 1) node is also a forcing

point, as in the right plot in figure 2.3, nodes (i+ 1, j) and (i+ 1, j + 1) are chosen instead.

With this interpolation stencil, it takes two (in 2D) or three (in 3D) nearby fluid points

to reconstruct flow field near interface. However in some cases, especially with very irregular
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interface geometries, there are insufficient number of fluid nodes that meet the criteria (the

right plot in figure 2.4). This is considered as a degenerate case, and the triangular or

tetrahedron stencils are not applicable. Instead of bilinear or trilinear interpolation, the field

reconstruction is achieved by the inverse distance weighted average of the field on nearby

available fluid nodes and the associated interface point.

1

2

3

1

2

Figure 2.4: Left: normal triangular stencil. Right: degenerate case.

Treatment Due to Moving Boundary

For moving interface geometry undergoing large deformation, scenarios of grid points change

from solid to fluid or fluid to solid may happen. These nodes are called flag-changing points.

Considering a fluid point being a solid point at the previous time step, it doesn’t contain

the appropriate flow property information at the previous time step needed in the Runge-

Kutta temporal advancement scheme. Yang and Balaras (2006) mentioned a field extension

treatment to extend flow field into solid within one grid distance by extrapolation at end of

every time step. The extrapolation sometimes produces extreme large value of flow properties

due to the extrapolation. To solve this problem, we labelled these flag-changing pressure

grids at beginning of every time step. Similar to the interpolation stencil for forcing points,

the pressure values at the current time step on the flag-changing points are also computed

by bilinear interpolation.
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Force Calculation

The force exerted on the interface by the flow plays an important role in fluid–structure

interaction. Lai and Peskin (2000) has discussed different ways to compute resultant force

on boundary. Yang and Balaras (2006) proposed force calculation algorithm based on recon-

struction stencil mentioned in section 2.2.2. The traction exerted on the interface has the

form:

ti = τijnj =

[
−pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
nj. (2.34)

The derivatives on velocity can be computed using the bilinear or trilinear interpolation

mentioned in the previous section, and are directly related to b1, b2 and b3,

∂φ

∂x
= b1,

∂φ

∂y
= b2,

∂φ

∂z
= b3.

The pressure on the interface cannot be obtained directly from interpolation. However, the

pressure gradient can be evaluated by projecting the momentum equation on interface along

the normal vector ~n and ignoring contribution of viscous terms. The pressure gradient along

the normal vector,
∂p

∂~n
≈ −D~u

Dt
· ~n
)
boundary

. (2.35)

So the pressure on interface pb can be obtained through trilinear relation using the gradient

on boundary and pressure on three fluid nodes,

pb =
[
1 xb yb zb

]

b0

b1

b2

b3

 =
[
1 xb yb yz

]


0 nx ny nz

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4



−1 
∂p/∂~n

p2

p3

p4

 (2.36)

where nx, ny, nz denote the component of the unit normal vector on boundary. The pressure

and velocity gradients will be obtained on the center of the triangular elements (called

simplices), which represent the discretization of the interface surface.
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2.3 Solid Solver

2.3.1 Introduction

Finite element method, first used by Hrennikoff (1941), is a commonly used and powerful

method to solve differential equations with boundary value problems. The governing equa-

tions are solved in weak form and variational method is used to obtain the approximation

solutions. In the structural problems, the approximation solutions can either choose the

function to minimized the total energy or to have minimum error compared to the exact

solution. Its capability to discretize weak form governing equation on unstructured grid sys-

tem makes it suitable for dealing with complex boundary geometry. However, cumbersome

grid generation and time consuming remeshing processes are the main drawbacks of using

unstructured elements.

Embedded techniques deal with problems using non-body-conformal grid system. Some

embedded techniques tackling with incompressible material are introduced below. In ficti-

tious domain method by Saulev (1963), irregular domain was extended to the whole regular

domain and impose boundary condition through Lagrange multiplier. Glowinski et al. (1999)

dealt with particulate flow which is viscous incompressible flow with suspended particles. The

irregular fluid domain was extended to a simpler extended domain by enforce the rigid body

motion in the particle domain. By combining the equation of motion in particle domain and

fluid domain, the weak form equations of motion for the extended domain were be obtained.

The rigid body assumption was then be relaxed to impose it in a weak sense using Lagrange

multiplier.

The immersed boundary method introduced in the fluid part is also an example for using

embedded method in incompressible material. Ng et al. (2009) added a discrete forcing in

the discretized momentum equation as the influence of the boundary. The ghost nodes were

utilized to satisfy the Dirichlet boundary condition at the boundary. Extended finite element

method (XFEM) is capable to modeling the material with arbitrary crack geometry (Daux
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et al., 2000). The crack was modeled independently of the regular mesh system. The shape

function of the displacement field was enriched by the step function to represent the crack

discontinuity and the asymptotic near-tip field representing the branched cracks. Daux

et al. successfully demonstrated simulation of material with cracks of multiple branches.

This method can also deal with problems containing voids or cracks emanating from holes.

Bijelonja et al. (2006) used cut-cell finite volume method on the incompressible material.

Zhu et al. (2012b) has the similar cut cell method in finite element method. Shape functions

are cut by the boundary and the part outside of the solid domain is disregarded. Virtual

nodes, which located outside of solid domain but having shape function inside the solid

domain, was introduced.

2.3.2 Numerical Methodology

For the nonlinear analysis, the total Lagrangian nonlinear finite element formulation is sued

following the framework by Bathe (2006). This solver aims to deal with different complex

geometries without element generation. The cut-cell treatment by Zhu et al. (2012b) is incor-

porated in the solver. The domain will be decomposed into non-body-conformal Cartesian

grids. The structure shape is described by level set function. Those elements that are cut

by the boundary undergo integration only within the cut polyhedronal (or polygonal in 2D)

region.

2.3.2.1 Formulation of Nonlinear Finite Element Analysis

When it comes to the numerical solution of the governing equation, the variational formula-

tion provides the advantage of reduction of the order of continuity needed for approximated

solution than dealing with the PDE directly. In solid mechanics, the variational formulation

with the principle of virtual displacement states that the total internal work should be equal

to the total external work, ∫
t+∆tSij

(
δ t+∆tEij

)
dV0 = t+∆tR, (2.37)
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where R represents the external virtual work. The super script t on the left denotes the

configuration at time t, which is the current state, and ∆t represents the time stepping size.

Unlike in section 2.1 the configuration at time t was represented in the subscript on the

right, in the following sections it will be moved to the superscript to the left for readability.

The equation (2.37) is a nonlinear equation in terms of the displacement. The displace-

ment is not assumed to be infinitesimal, so that the second order terms can not be ignored.

To linearized the governing equation, the stress and strain are decomposed into two parts:

the value obtained at the end of previous step and an incremental value,

t+∆tSij = tSij + Sij (2.38)

t+∆tEij = tEij + Eij. (2.39)

Furthermore, the incremental strain can be decomposed into linear and nonlinear parts:

Eij = eij + ηij (2.40)

eij =
1

2

(
∂ξi
∂Xj

+
∂ξj
∂Xi

+
∂ tξk
∂Xi

∂ξk
∂Xj

+
∂ξk
∂Xi

∂ tξk
∂Xj

)
(2.41)

ηij =
∂ξk
∂Xi

∂ξk
∂Xj

(2.42)

where the displacement t+∆tξi = tξi + ξi. At the current time, the deformed configuration

are known. Those incremental stress, strain and displacement at next step are the unknowns

to be solved for. After the incremental decomposition, governing equation (2.37) becomes∫
t+∆tSijδ

t+∆tεijdV0 =

∫
SijδεijdV0 +

∫
tSij (δeij + δηij) dV0 (2.43)

With the Saint Venant-Kirchhoff model, the constitutive law can be written as Sij = CijrsErs.

The equation (2.43) becomes∫
t+∆tSijδ

t+∆tEijdV0 =

∫
CijrsErsδEijdV0 +

∫
tSijδeijdV0 +

∫
tSijδηijdV0 (2.44)

The governing equation is still nonlinear in terms of displacement. The nonlinear term

ErsδEij term can be approximated and linearized to ersδeij. The linear governing equation

turns into ∫
CijrsersδeijdV0 +

∫
tSijδηijdV0 ≈ t+∆tR−

∫
tSijδeijdV0 (2.45)
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Due to the linearization approximation, the discrepancies between the internal and external

virtual work has been introduced. The iteration is necessary to reduce the ”out-of-balance”

of virtual work,∫
Cijrs∆e

(k)
rs δeijdV0 +

∫
t+∆tS

(k−1)
ij δ∆η

(k)
ij dV0 = t+∆tR−

∫
t+∆tS

(k−1)
ij δ t+∆te

(k−1)
ij dV0,

(2.46)

where the sign ∆ represents the difference of variables between previous and current iteration,

meaning t+∆tξ
(k)
i = t+∆tξ

(k−1)
i + ∆ξ

(k)
i .

The (2.46) describes the linearized governing equation at the static equilibrium. For

dynamics problems, the work by inertia forces can be introduced using the d’ Alembert’s

principle on the external work term.∫
Cijrs∆e

(k)
rs δeijdV0 +

∫
t+∆tS

(k−1)
ij δ∆η

(k)
ij dV0 = t+∆tR (2.47)

−
∫

t+∆tξ̈
(k)
i δξidV0 −

∫
t+∆tS

(k−1)
ij δ t+∆te

(k−1)
ij dV0,

After moving the inertia term to the left hand side, the left hand side of the equation contains

terms linearly related to the displacement field, while the right hand side has terms associated

with the discrepancies between the external and internal work in the previous iteration.∫
t+∆tξ̈

(k)
i δξidV0 +

∫
Cijrs∆e

(k)
rs δeijdV0 +

∫
t+∆tS

(k−1)
ij δ∆η

(k)
ij dV0 (2.48)

= t+∆tR−
∫

t+∆tS
(k−1)
ij δ t+∆te

(k−1)
ij dV0,

2.3.2.2 Discretization

The above variational formulations are discretized on a MAC staggered grid system as in

the fluid solver shown in figure 2.5. The grid spacing h is uniform. In the following section,

the superscript will represent the component of a variable, and the subscript will represent

the Ith involved element which has influence within the solid boundary. If an involved x-

displacement node ξxI resides on the the grid (i, j, k), it is located at (ih, jh+ 1/2h, kh+ 1/2h).

The y-displacement node ξyJ and the z-displacement node on the same grid are at (ih +

1/2h, jh, kh+ 1/2h) and (ih+ 1/2h, jh+ 1/2h, kh) respectively..
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Figure 2.5: Staggered grid system (two-dimensional).

The displacement field, ξ (X, t), is discretized into the superposition of the piecewise

trilinear shape functions multiply with the associated nodal values:

ξ(X, t) = ξx(X, t)ex + ξy(X, t)ey + ξz(X, t)ez (2.49)

=
∑
I

ξxI (t)N ξx
I (X)ex +

∑
J

ξyJ(t)N ξy
J (X)ey +

∑
K

ξzK(t)N ξz
K (X)ez

The N ξx
I (X), N ξy

J (X) and N ξz
K (X) denote the shape function for x-, y- and z-displacements.

The shape function associated with displacement ξxI , ξyJ , and ξzK is defined as a piecewise

trilinear function in the cubic area centered at locations of ξxI , ξyJ , and ξzK with width

2h. In other words, N ξx
I (X) has nonzero value in [ih− h, ih+ h] × [jh− 1/2h, jh+ 3/2h] ×

[kh− 1/2h, kh+ 3/2h]. Similarly, N ξy
J (X) andN ξz

K (X) have nonzero value in [ih− 1/2h, ih+ 3/2h]×
[jh− h, jh+ h] × [kh− 1/2h, kh+ 3/2h] and [ih− 1/2h, ih+ 3/2h] × [jh− 1/2h, jh+ 3/2h] ×
[kh− h, kh+ h]. These shape functions have value unity at the center and decreases to

zero at the boundary of cubic area (as shown in the figure 2.6). However, not all the shape

function has intersection with the domain occupied by solid ΩS. Only the shape functions

which has non-empty intersection with ΩS are considered. There are scenarios that some

nodes outside of the solid domain still have the shape function partially inside the domain.

These nodes are called ’virtual nodes’, and they are at most with distance h away from

the solid domain. In the variational form of governing formulation, the volume integration

(or, in two-dimension, area integration) are only applied in the ΩS domain. This implies
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Figure 2.6: Side view (left) and the top view (right) of the shape functions of the displacement field in

two-dimensional, which are piecewise bilinear functions.

there exists some ’cut-cells’ that are partially inside the solid domain. The part of the shape

functions being outside of solid domain will be disregarded.

As to the traction, τD(X, t), τN(X, t) , τF (X, t) denote the traction exerted on the

Dirichlet, Neumann and FSI boundary respectively. The traction field are discretized into

the superposition of the piecewise constant shape functions with the associated nodal values:

τD(X, t) =
∑
I

τDxI (t)N τDx
I (X)ex +

∑
J

τDyJ (t)N τDy
J (X)ey +

∑
K

τDzK (t)N τDz
K (X)ez (2.50)

τN(X, t) =
∑
I

τNxI (t)N τNx
I (X)ex +

∑
J

τNyJ (t)N τNy
J (X)ey +

∑
K

τNzK (t)N τNz
K (X)ez (2.51)

τF (X, t) =
∑
I

τFxI (t)N τFx
I (X)ex +

∑
J

τFyJ (t)N τFy
J (X)ey +

∑
K

τFzK (t)N τFz
K (X)ez (2.52)

The piecewise constant shape function is defined in the cubic area which has left corner

at the location of ξxI , ξyJ , and ξzK with width h as shown in figure 2.7. The traction terms

are associated with the integration along the solid boundary, so only the elements having

intersection with ΓS and ΓFSI are considered. This is equivalent to treat the traction on

boundary as a piecewise constant function along the solid boundary.
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Figure 2.7: Side view (left) and the top view (right) of the shape functions of the displacement field in

two-dimensional, which are piecewise bilinear functions.

2.3.2.3 System of Equations

After the discretizing the displacement and traction field into superposition of shape func-

tions, the original functional in the weak form can be transformed into a function with

nodal displacement and traction. The involved nodal displacement in each direction can be

rearranged into vectors:

ξ̂
x
≡


ξx1

ξx2
...

ξxnx

 , ξ̂y ≡

ξy1

ξy2
...

ξyny

 , ξ̂z ≡

ξz1

ξz2
...

ξznz

 , (2.53)

where nx, ny, nz are the number of total involved nodal points in each component. And ξ̂

vector denotes the involved nodal displacement in all directions:

ξ̂ ≡


ξ̂x

ξ̂y

ξ̂z

 . (2.54)
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The corresponding displacement shape function can also be written as:

hx ≡


N ξx

1

N ξx
2

...

N ξx
nx

 , hy ≡

N ξy

1

N ξy
2

...

N ξy
ny

 , hz ≡

N ξz

1

N ξz
2

...

N ξz
nz

 , (2.55)

Now the discretized displacement field can be written as

ξ =


ξx

ξy

ξz

 =


hTx

hTy

hTz

 ·

ξ̂
x

ξ̂
y

ξ̂
z

 ≡ H · ξ̂, (2.56)

where H can be viewed as the trilinear displacement interpolation matrices. Similarly, the

virtual displacement field can be shown as

δξ = H · δξ̂, (2.57)

The linear part of the incremental strain tensor has 6 independent components. It can
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be related with the displacement vector:

eij =



e11

e22

e33

2e12

2e23

2e13


=



hTx,x

hTy,y

hTy,y

hTx,y hTy,x

hTy,z hTz,y

hTx,z hTz,x


·


ξ̂
x

ξ̂
y

ξ̂
z



+



tux,xh
T
x,x

tuy,xh
T
y,x

tuz,xh
T
z,x

tux,yh
T
x,y

tuy,yh
T
y,y

tuz,yh
T
z,y

tux,zh
T
x,z

tuy,zh
T
y,z

tuz,zh
T
z,z

tux,xh
T
x,y + tux,yh

T
x,x

tuy,xh
T
y,y + tuy,yh

T
y,x

tuz,xh
T
z,y + tuz,yh

T
z,x

tux,yh
T
x,z + tux,zh

T
x,y

tuy,zh
T
y,y + tuy,yh

T
y,z

tuz,zh
T
z,y + tuz,yh

T
z,z

tux,xh
T
x,z + tux,zh

T
x,x

tuy,xh
T
y,z + tuy,zh

T
y,x

tuz,xh
T
z,z + tuz,zh

T
z,x


·


ξ̂
x

ξ̂
y

ξ̂
z



(2.58)

≡ tB
L
· ξ̂

where B
L

is the linear strain-displacement transformation matrix. The B
L

matrix is vary-

ing with time. The superscript t on the left represents the matrix is calculated from the

displacement gradient field at time t. On the other hand, the internal virtual work by the
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nonlinear part of the incremental strain tensor can be written as

tSijδηij =
{
δξ̂

T

x
δξ̂

T

y
δξ̂

T

z

}
·


hx,x hx,y hx,z

hy,x hy,y hy,z

hz,x hz,y hz,z

 (2.59)


tS

tS

tS

 ·



hTx,x

hTx,y

hTx,z

hTy,x

hTy,y

hTy,z

hTz,x

hTz,y

hTz,z




ξ̂
x

ξ̂
y

ξ̂
z

 ≡ δξ̂
T
BT

NL

tS B
NL
ξ̂

where B
NL

is the nonlinear strain-displacement transformation matrix and the stress tensor

tS means

tS ≡


tS11

tS12
tS13

tS21
tS22

tS23

tS31
tS32

tS33

 (2.60)

The external virtual work t+∆tR relates to the displacement and the traction exerted on

the solid boundary

t+∆tR =

∫ (
t+∆tτDi + t+∆tτNi + t+∆tτFi

)
δξidS0. (2.61)

Similar to the derivation in the previous section, the traction field can be written as the

inner product between the nodal stresses vector τ̂ and the piecewise constant interpolation

matrix T :

τD = TD · τ̂D (2.62)

τN = TN · τ̂N (2.63)

τF = T F · τ̂F (2.64)
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After the discretization, the governing equation (2.49) becomes∫
δξ̂

T
HT H t+∆tˆ̈ξ(k)dV0 +

∫
δξ̂

T t+∆tB(k−1)T

L
C t+∆tB(k−1)

L
∆ξ̂

(k)
dV0

+

∫
δξ̂

T
BT

NL

t+∆tS(k−1)B
NL

∆ξ̂
(k)
dV0

=

∫
δξ̂

T
HT

(
TDτ̂D + TN τ̂N + T F τ̂F

)
dS0 +

∫
δξ̂

T t+∆tB(k−1)T

L

t+∆tS(k−1) dV0 (2.65)

The term δξ̂
T

can be factored out. Also, the nodal displacements and tractions can be taken

out of the the volume or surface integral. The variational form of governing equation has

been transformed into a system of linear algebraic equations:

M t+∆tˆ̈ξ(k) +
(
t+∆tK(k−1)

L
+t+∆t K(k−1)

NL

)
∆ξ̂

(k)
= Dsτ̂D +N sτ̂N + F sτ̂F − t+∆tF (k−1),

(2.66)

and the displacement iteration

t+∆tξ̂
(k)

=t+∆t ξ̂
(k−1)

+ ∆ξ̂
(k)
. (2.67)

The M is the mass matrix, K
L

and K
NL

are the linear and nonlinear incremental stiffness

matrices, and F is the force vector due to the internal stress at previous iteration or step. Ds,

N s, and F s are the traction matrices associated with the traction exerted on the Dirichlet,

Neumann and FSI boundary.

M =

∫
HTHdV0 (2.68)

K
L

=

∫
BT

L
C B

L
dV0 (2.69)

K
NL

=

∫
BT

NL
S B

NL
dV0 (2.70)

F =

∫
BT

L
SdV0 (2.71)

Ds =

∫
HTTDdS0 (2.72)

N s =

∫
HTTNdS0 (2.73)

F s =

∫
HTT FdS0 (2.74)
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Figure 2.8: Doubly refined grid system for cut-cell integration.

For the Dirichlet boundary condition, the weak time-derivative formulation is imposed

DsT t+∆t ˙̂ξ(k) = DsT ˙̂
ξ
D
. (2.75)

2.3.2.4 Cut-Cell Treatment

If the cell is cut by the interface, it is not straight forward to do integration over an irregular

volume or surface mentioned above. Min and Gibou (2007) proposed a systematic way

to decompose the domain into a set of tetrahedron, and decompose the surface into a set

of triangular elements with given level set function describing the geometry. This way of

geometric integration over irregular domain has been utilized and modified to solve elliptic

problems by Hellrung et al. (2012). Every cubic grid cell is divided into 8 doubly refined

grids with size h/2, as shown in figure 2.8 (Zhu et al., 2012b). The volume integral in the

governing equation is the sum of the volume integral computed in all the involved doubly

refined grids inside the solid domain.

To systematically decompose the cubic grids into tetrahedron and discretize the surface

into triangles, Min and Gibou suggested to decompose a grid cell into several tetrahedra first.

Firstly, the cross section between a flat surface and any tetrahedron can be either a triangle

and a quadrilateral as shown in the figure 2.9. A quadrilateral can be easily divided into

two triangles. Secondly, there are limited scenarios of the outcome shape of polyhedron after
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Figure 2.9: Two scenarios of the obtained triangle and quadrilateral cross section between a surface and a

tetrahedron. V denotes the vertex of the tetrahedron and P is the intersection points. The sign + or - next

to the vertex represent the sign of the signed distance function on that point.

cutting the tetrahedron by a flat surface. The faces of the cut polyhedron will be triangles

or/and quadrilaterals.

There are various ways to perform triangulation. The cube can be divided into 5 tetrahe-

dra (middle cut triangulation), 6 tetrahedra (Kuhn triangulation) or even 24 tetrahedra or

more. Considering the computation efficiency, middle cut triangulation is performed on each

doubly refined grid shown in figure 2.10. There exists two different orientations of the middle

cut triangulation as plotted on the left in figure 2.11. In order to match the triangulations

between the neighboring doubly refined grids, we use both two orientations of the middle

cut triangulation in a staggered manner as shown on the right in figure 2.11. In other wards,

in each grid cell, there will be totally 40 tetrahedra after the triangulation.

As to the calculation of the surface integral, given the level set function describing the

surface geometry, the signed distance values on the vertices of a tetrahedron can be obtained.

From the signed distance values on the vertices, it can be determined whether the tetrahedra

is completely inside, completely outside or partially inside. If a tetrahedra is partially inside,

the approximated intersection point Pij can be calculated with linear interpolation by

Pij =
Vjφ(Vi)

φ(Vi)− φ(Vj)
− Viφ(Vj)

φ(Vi)− φ(Vj)
, (2.76)
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Figure 2.10: The middle cut triangulation.

A

B

A

A

A

B

B

B

B

Figure 2.11: Left: two orientations of the middle cut triangulation. Right: the staggered arrangement of the

triangulation A and B in one grid cell.
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with the fact that the signed distance function represents the nearest distance from one point

to the surface. If 3 intersection points are obtained, the surface integral on this triangle

cross section can be computed using the seventh-order twelve-points Gaussian quardrature

for the triangle (Dunavant, 1985). On the other hand, if there are 4 intersection points,

this quadrilateral cross section will then be decomposed into two triangles, and the surface

integral can be obtained with the same Gaussian quardrature rule.

As to the volume integral, after removing the part of the tetrahedron outside of the sur-

face, the remaining part can be either a tetrahedron or a pentahedron listed in the figure 2.12.

The obtained pentahedron will have three quadrilateral faces and two triangular faces. Since

the integrand functions in the governing equation are in the form of polynomial, the volume

integral can be transformed to surface integral using the divergence theorem (Hellrung et al.,

2012), ∫
Ω

xpyqzr dV =

∫
Ω

∇ · (xpyqzr, 0, 0) dV =

∫
∂Ω

∇ · (xp+1yqzr, 0, 0) · n dS. (2.77)

The surface integral on the faces of the tetrahedron or pentahedron can then be computed

with Gaussian quardrature rule.

2.3.2.5 Time Marching Scheme

The governing matrix contains not only variables of displacement, but also first and second

order of derivative of the displacement. The Newmark method by Newmark (1959) relates

the variable X(t) and its first and second time derivative using the relation

Ẋn+1 − Ẋn

∆t
= δ Ẍn+1 + (1− δ) Ẍn (2.78)(

Xn+1 −Xn

∆t

)
− Ẋn

∆t/2
= 2θẌn+1 + (1− 2θ)Ẍn, (2.79)

where subscripts n and n+ 1 refer to the approximation of any variable X at time n∆t and

(n+ 1)∆t respectively.

There are two adjustable parameters δ and θ. The parameter δ ∈ [0, 1] relates to the

stability, convergence and accuracy of the system,
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Figure 2.12: The polygon generated after dividing a tetrahedron with a flat surface. The resultant polygon

can be either tetrahedron or pentahedron.

• δ < 1

2
leads to an unstable system

• δ =
1

2
leads to the accurate 2nd order θ-scheme

• δ > 1

2
leads to a robust, but dissipative, 1st order scheme

The value of δ is set to be
1

2
to reach the highest order of accuracy. With this set-up, the

parameter θ ∈ [0, 1/2] influences the system in the following way:

• θ < δ

2
=

1

4
leads to a conditionally stable system

– θ = 0 is the explicit scheme

– θ = 1/12 leads to the 4th order Fox-Goodwin scheme

– θ = 1/6 leads to the linear-acceleration scheme

• θ ≥ δ

2
=

1

4
leads to an unconditionally stable system

– θ = 1/4 is the constant-average-acceleration or trapezoidal scheme
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The Newmark coefficients δ and θ are set as follow to obtain an unconditionally stable 2nd

order scheme.

δ =
1

2
θ =

1

4
(2.80)

Using the Newmark method, the accelerations and the displacements can be written in

term of velocities and the known variables in the previous steps or iteration.

t+∆tξ̈(k) =
t+∆tξ̇(k−1) + ∆ξ̇(k) − tξ̇

∆tδ
− 1− δ

δ
tξ̈ (2.81)

∆ξ(k) = tξ − t+∆tξ(k) + ∆t

(
θ

δ
ξ̇(k−1) +

δ − θ
δ

tξ̇

)
+ ∆t2

(
1

2
− θ

δ

)
tξ̈ +

∆tθ

δ
∆ξ̇(k) (2.82)

These reduces the unknown variables in the governing linear system into ∆ξ̇(k). The system

of equations for the solid material then has the form M Ds

Ds T 0

∆ξ̇(k)

τD

 =

RHSξ

RHSτ

 (2.83)

where the submatrices after applying Newmark scheme are

M =
θ∆t

δ

(
t+∆tKk−1

L
+t+∆t Kk−1

NL

)
+

1

δ∆t
M (2.84)

RHSξ = Dsτ̂D +N sτ̂N + F sτ̂F − t+∆tF (k−1)

−M

 t+∆tξ̇
(k−1) − tξ̇

∆t δ
− 1− δ

δ
tξ̈


−
(
t+∆tKk−1

L
+t+∆t Kk−1

NL

)[
tξ − t+∆tξ(k) + ∆t

(
θ

δ
ξ̇

(k−1)
+
δ − θ
δ

tξ̇

)
+ ∆t2

(
1

2
− θ

δ

)
tξ̈ +

∆t θ

δ
∆ξ̇

(k)
]

(2.85)

RHSτ = Ds T ξ̇
D

(2.86)

The governing system of equations (2.83) is ill-conditioned. One treatment proposed by

Zhu et al. (2012b) using the null-space of Ds can transform the governing equations into a

well-conditioned system.

45



The elastic pressure and shear waves develop in the elastic material without dissipation.

In some cases, artificial damping is needed to filter out some high-frequency elastic waves.

For this purpose, in the discretized equation, a damping term C
d
t+∆t ˙̂ξ will be added into

the governing equation (2.66), where C
d

is a damping matrix to be determined by the

Rayleigh damping, which is the mass- and stiffness- proportional damping (Bathe, 2006).

The damping matrix is defined as

C
d

= αM + βK
L
, (2.87)

where α and β are scalar constants. The α and β are obtained according to the eigenvalues

defined by

K
L
φ = ω2

iML
φ (2.88)

where φ is the eigenvectors. The ωi refers to the frequency of the ith vibration mode. With

the mode superposition analysis on the governing equation with damping, it becomes

α + βω2
i = 2ωiξi (2.89)

where ξi refers to the exponentially damping rate related to the elastic wave with vibration

frequency ωi. The appropriate α and β can be calculated by choosing the desired damping

ratio for two target vibration modes.

2.4 Interface

The flow field and structure deformation field are solved by separate solvers alternatively and

iteratively. Only the motion and the traction at the interface need to be exchanged between

these two solvers. Although the signed distance function on grid points is already defined

in the fluid and solid solvers, this implicit description of the interface may not be helpful

on the information exchanged between two domains. The Lagrangian interface elements

are introduced in order to build the mapping between the corresponding grids in fluid and

structure solvers.
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The interface is decomposed into a union of Lagrangian triangle elements, called simplices.

The decomposition are based on the solid grid lines. Since in the structural solver the total

Lagrangian formulation is used, every simplex is always associated with the same solid grid

cells and will not change with time. The location of the triangle elements are updated from

the solid displacement field. On the other hand, the flow field is solved with Eulerian method,

before each time step, the mapping between updated simplices and the associated fluid grid

points needs to be updated.

2.4.1 Interface Decomposition

In section 2.3.2.4, a surface decomposition algorithm using the middle cut triangularization

was already described. The use of this triangularization method is easy to be implemented.

This method also provides a systematic way to numerically calculate the surface and volume

for irregular geometry. Nevertheless, this method tends to generate more simplices, and the

geometry of the interface may be largely distorted near the edges and corners.

A new method without using the middle cut triangularization is proposed to reduce

the number of simplices without distorting the surface geometry. It is assumed that the

intersection between the cubic grid cell and the interface is nearly flat, so that the resulting

cross section will be a polygon. There are four possible scenarios of polygon: triangle,

quadrilateral, pentagon and hexagon. These polygon can be divided into 1 to 4 triangular

elements. The first step of the decomposition is to figure out the intersecting points, which are

the vertices of the polygon, between the grid lines and the interface. The intersecting points

residing on the same face of cell are connected with line segments as shown in figure 2.13.

The obtained polygon is then divided into triangle elements.

This new method is not meant to replace the middle cut triangularization used in the solid

solver. It is introduced only for interface decomposition on generating Lagrangian triangle

elements. Figure 2.14 and 2.15 show the surface decomposition of cubic shape and spherical

shape simplices using the middle cut triangularization and the proposed method. It can be

observed that using middle cut triangularization does generate more triangles and distort the
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Figure 2.13: The quadrilateral intersection of a flat surface and a cubic grid cell.

shape near edges and corners. With the used of the proposed new method, the distortion of

the sharp edges and corners is reduced, but the corners and edges will still be chamfered after

the new proposed decomposition. The generated triangular elements may have small aspect

ratio. However, the interface simplices element is introduced for information communication

between fluid and solid solvers. The less number of simplices is more important than the

consistency of the shape of the triangular elements.

2.4.2 Update the Signed Distance Field

In this research, the Eulerian interface description is used in the solid and fluid solvers, while

the Lagrangian simplices are also introduced for the information communication. Once the

structure deforms, the updated location of the simplices can be obtained. The signed distance

field also needs to be updated according to the current configuration of the simplices.

To update the signed distance function, the distance between each grid point to the

nearest triangle element is computed. Considering the distance from a triangle bounded

with vertices P1, P2, P3 and an arbitrary point P . These three vertices is coplanar on plane

P123, and the distance from P to P123 can be computed from ‖P − P0‖, where P0 is the

projection point of P on the plane. However, ‖P − P0‖ only can be regarded as the nearest

distance from P to the triangle only when P0 lies inside the triangle as shown in figure 2.16.

To figure out whether P0 lies inside the triangle, P0 can be written as the linear superposition
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(a) (b)

Figure 2.14: Decomposition of the surface of a cubic object using the middle cut triangularization (left) into

848 elements and the proposed method (right) into 296 elements. The cube is with length 0.24 and the grid

cell size is 0.05.

(a) (b)

Figure 2.15: Decomposition of the surface of a spherical object using the middle cut triangularization (left)

into 3224 elements and the proposed method (right) into 1304 elements. The sphere is with radius 0.3 and

the grid size is 0.05.
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of the three vertices,

P0 = c1P1 + c2P2 + c3P3, (2.90)

where the coefficient c1, c2 and c3 satisfy the relation c1 + c2 + c3 = 1 since P0 is coplanar

with the three vertices. The signs of the three coefficients indicate the relation between P0

and the triangle as listed in figure 2.16. The plane P123 can be divided into seven regions by

the extension lines of the sides of the triangle. Here we denote PB to be the nearest point

on the triangle to the point P . Following are the three different scenarios according to the

signs of the coefficients:

1. PB inside the triangle

If all the three coefficients are positive, PB is equivalent to P0 and it will be located

inside the triangle. (case (1) in figure 2.17)

2. PB on the side

If there is more than one negative coefficient, the projection point must lies outside of

the triangle. For example, consider the case in the figure 2.16, if the coefficient c1 is

negative, this implies P0 is outside of the side P2P3. In this case, find the projection

point from point P0 to P2P3. If the projection point lies between P2 and P3, the

projection point is then the PB. (case (2) in figure 2.17)

3. PB on the vertex

If in the previous case, P0 is outside P2P3 and the projection point from P0 to P2P3

lies outside of P3, then the PB is P3. (case (3) in figure 2.17)

Once the location of PB is determined, the distance from point P to the triangle is

‖P − PB‖. The distance from a point to the nearest triangle is the magnitude of the signed

distance function on that point. The sign of the signed distance function is determined from

the normal vector of the simplex. If
(
P − PB

)
· N is positive, this means than the sign

distance function on P is positive and vice versa.

50



P1

P2

P3

P1

P2

P3

N
P

P0

c1 < 0
c2 < 0

c3 < 0

c1 > 0 
c2 > 0  
c3 > 0

c1 < 0 
c2 < 0 

c2 < 0 
c3 < 0 

c1 < 0 
c3 < 0 

Figure 2.16: Left: the projection point P0 of the point P on the plane P123. Right: the sign of the coefficients

c1, c2 and c3 in the seven regions defined by the extension lines of the three sides of the triangle.
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Figure 2.17: Three scenarios of the location of the nearest point on the triangle, PB , to the point P .
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2.5 Fluid–Solid Interaction

At the fluid–structure interface, the kinematic and dynamic boundary conditions should be

satisfied at the same time. To couple the separate fluid and solid solvers described above,

a strong-coupling partitioned method is used to combine the solvers together. For the fluid

solver, the inputs needed are the boundary location and velocity. On the other hand, for

the solid solver, the input information is the traction on the solid boundary. It is a natural

choice for the solvers to form a loop so that they can use the output from each other as the

input information. The loop continues until the interface conditions converge.

For the interface description, the signed distance field is used in the solid and fluid solvers

for its convenience in obtaining the required information for field reconstruction at the fluid

forcing points and in acquiring the configuration of the cut-cell structure. However, it is not

trivial to exchange the information of velocities and traction from one system to another

using the signed distance field. A set of Lagrangian triangular elements are utilized as

the description of the fluid–structure interface to provide auxiliary information interchange

between the two systems introduced in the section 2.4. These triangular elements, which are

also called simplices, are defined from the intersection points between the interface and the

doubly refined grid lines in the solid domain. The set of simplices are an approximation of

the interface geometry. In this manner, the resolution of the interface is twice the resolution

of the solid grid. The signed distance field is updated from the updated location of the

simplices.

The critical aspect of the coupling is the communication of information between the fluid

and solid solvers. The interface velocities can be readily transferred from the solid to the fluid

by evaluating the trilinear shape functions in each element. With the field reconstruction

using the linear interpolation and the tetrahedron stencil described in the section 2.2, the

velocity gradients and pressure can be evaluated at the centroid of each triangular interface

elements. The stencils include the centroid of the specific triangle element and three nearby

fluid points which are not forcing points. After getting the pressure and velocity gradient on
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each centroid of the simplices, the traction exerted on each simplex can then be obtained.

Because of the piecewise constant shape function of the traction in the present finite element

analysis, the traction in a cell is obtained from the weighted average of the traction on the

simplices corresponding to that traction cell.

Figure 2.18 depicts the strong-coupling algorithm in the present work. To advance from

step n to n+ 1:

1. The initial guesses of the locations x
(0)
I and velocities v

(0)
I of the Lagrangian simplices,

which are usually the values obtained in the previous step, are made.

2. The signed distance field needed in the fluid immersed-boundary solver is generated

according to the configuration of the simplices. The velocities on the boundary points

associated with the velocity forcing points can be computed.

3. The fluid field is advanced for one step. The updated interface traction from the fluid

on the structure is obtained.

4. The structure is advanced for one step. The locations I∗b and velocities v∗I on the

Lagrangian simplices are updated.

5. Compare the locations of the simplices between the input to the output of iteration

k. If their discrepancy is larger than the tolerance value tolfsi, repeat the steps 2 to 4.

The (k + 1)th iterations of the marker locations and velocities are the weighted sum

of the input and output marker data with the relaxation parameter ω to ensure the

numerical stability of the iteration.

6. If the discrepancy between the input and output of the simplices locations (which is

defined as the square root of the sum of square of distances between the input and

output positions of the simplices’ centroid) is smaller than the tolerance value, the

kinematic and dynamic boundary conditions are deemed satisfied on the interface and

the updated state at step n+ 1 can be obtained.
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Figure 2.18: The strong coupling iterative algorithm of fluid–structure interaction.
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2.6 Parallel Computing

The parallel computing is introduced with MPI (Message Passing Interface) and PETSc

(Portable, Extensible Toolkit for Scientific computation) (Balay et al., 2016) for computation

on distributed memory multiprocessor computer system. PETSc is designed for parallel

computing on dealing with the partial differential equations with scientific applications.

PETSc provides data structures of distributed vector and matrices. It also has modules

dealing with domain partitioning and data management for the structured grid, Krylov

subspace iterative linear equation solver, algebraic manipulation on distributed matrices

and vectors, data communications, and etc.

The fluid domain and the solid domain may have different grid sizes and domain sizes.

For parallel computing, these two domains are partitioned independently (for example, as

shown in figure 2.19). Each processing element will store a portion of the field information.

When updating the field variables, the information on the nearby grid points may be needed.

In other words, when updating the values on the bordering points, the field information on

the ghost points, which are the bordering portion of points belonging to the neighboring

processes, may be needed. So that the communication of the data on the ghost points

between processes is necessary.

When it comes to the interaction at the interface, the data on the simplices is partitioned

in two different ways: one according to the fluid domain partitioning and other one according

to the solid domain partitioning. Figure 2.19 shows one example of data distribution on

fluid domain, solid domain, and of interface markers. Consider a bounded flow in a elliptic

cavity surrounded by deformable structure. Both the solid and fluid domain are partitioned

into four parts, and the fields are separately stored in four processors. For the interface

markers, after the solid solver advancing the displacement field for one step, process 0 and 2

will calculate the updated information of its local portion of markers. The updated position,

velocities and acceleration on the markers needs to be redistributed to match the partitioning

of the fluid domain before we can update signed distance function on the fluid points in each
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proc 0 proc 1

proc 2 proc 3

proc 0 proc 1

proc 2 proc 3

proc 0

proc 2

Solid System Fluid System

Interface
information  
exchange proc 1proc 0

proc 3proc 2

Figure 2.19: Domain partitioning example of the solid domain (top left), fluid domain (top right) and the

Lagrangian interface markers (bottom) in a FSI problem.

process. In this example, information of some markers in process 2 needs to be sent to process

3. Similarly, information of some markers in process 0 also needs to be sent to process 1.
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CHAPTER 3

Medical Image Processing

In this work, patient-specific nasopharyngeal airway and surrounding tissue geometries are

obtained from cone-beam computed tomography (CBCT) scans of the head and neck. Pa-

tient data in the present study is drawn from the archives of the Oral & Maxillofacial Radi-

ology Clinic and the Oro-facial Pain & Dental Sleep Medicine Clinic at the UCLA School of

Dentistry. The CBCT scans (Figure 3.1) have isotropic voxels with a resolution of 0.3 mm,

and are stored as a series of axial slices in DICOM format. Each voxel is assigned a gray

value number, where larger gray values represent highly attenuating tissues such as corti-

cal bone or soft tissue, and lower gray values represent low attenuating substances such as

air. Image processing is necessary to convert the obtained CBCT scan data to the required

signed distance field for the solver. This is achieved using the image processing toolbox of the

MATLAB scientific software package MATLAB Image Processing Toolbox, and ITK-SNAP,

the segmentation tool for 3D medical images (www.itksnap.org) (Yushkevich et al., 2006).

Two different ways of segmentation were used. In the simulation with the fixed airway

geometry, MATLAB imaging processing toolbox can extract the airway geometry automati-

cally because of the high contrast between the CBCT gray value of air and tissue. However,

for soft tissue segmentation, different kinds of soft tissue are hard to be distinguished in the

CBCT scan. The manual segmentation is done using ITK-SNAP for the FSI simulation.

The following sections illustrates the procedures to acquire the upper airway and soft tissue

geometries and the signed distance field with these two image processing softwares.
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3.1 Image Processing with Matlab

To obtain the airway geometry for the simulation of the fixed airway, these DICOM files

are imported by series into MATLAB. The region of interest is selected to extend from

the level of the hard palate to laryngopharynx, inferior to the epiglottis. (See the region

within the red lines in figure 3.1.) The grey value thresholding is applied to distinguish

the border of the air and soft tissue. The thresholding grey value is chosen manually and

may differ between patients. (Unlike CT Housefield units, CBCT gray values depend on

the attenuating properties of neighboring anatomy, and are not invariant between patients

of different anatomic size and structure.) The thresholding process will isolate all voxels

within a specified gray value range in the region of interest, including those outside the

nasopharyngeal airway, such as those from artifact and pockets of air within the oral cavity.

It will also fail to include voxels within the airway of uncharacteristically high gray values,

due to noise or artifact. This inevitably creates undesired internal and external extraneous

isolated clusters of voxels, as shown in the Figure 3.2(a). The MATLAB function bwareaopen

removes any clusters of connected points with fewer than some specified number; this helps

to eliminate the undesired clusters of low gray value voxels outside the airway, and those of

high value within the airway.

Next, the signed distance field of the airway is determined through the MATLAB function

bwdist. Soft tissue (outside the airway) and air (inside the airway) are arbitrarily defined

to have negative and positive values, respectively. The boundary of the airway, which is

indicated by the zero level set of the signed distance field, still contains fine-scale noise

inherent from the CBCT scan (figure 3.2(b)). This may lead to a large number of degenerate

cases in the immersed-boundary fluid solver and thereby reduce accuracy near the boundary.

To resolve this problem, smoothing—using Gaussian filters—is applied to the signed distance

field using the MATLAB function imfilter. The airway geometries after Gaussian filtering

are shown in the figure 3.3 with standard deviations of 1.6 (left) and 3.2 (right). The

application of a Gaussian filter may lead to a reduction of the cross sectional area or volume
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Figure 3.1: The CBCT scan data in the axial (upper left), sagittal (upper right), coronal (lower left) slices,

and the 3D volumetric view (lower right). The region of interest is outlined by the red box.

(a) (b)

Figure 3.2: (a) The air-tissue boundary after applying the thresholding in side view (left) and top view

(right). (b) The air-tissue boundary after removing the undesired internal and external clusters. The lower

right plots show the signed distance function and the tissue-air boundary of one axial slice (indicated by the

green dashed line).

59



(a) (b)

Figure 3.3: (a) The air-tissue boundary after applying Gaussian filters of standard deviations of 1.6 (a) and

3.2 (b), with a selected axial slices at positions indicated by the green dashed lines.

of the airway. To explore this, the change in size of the smallest cross sectional area before

and after smoothing was determined. The maximum reduction of the cross-sectional area or

volume of the airway is calculated to be < 5% and < 1% for Gaussian filtering of standard

deviations 3.2 and 1.6, respectively. Lastly, the smoothed signed distance field is interpolated

onto the staggered velocity component and pressure grid points for determining forcing points

and interpolation stencils in the fluid solver.

3.2 Segmentation with ITK-SNAP

In the FSI simulation, deformation of the tissue structure near the upper airway needs to

be considered. Besides the soft palate and the tongue tissue, there are muscle, pharyngeal

wall, bone and fat tissues around the upper airway (Schwab et al., 1995). Because the

current solid solver is still lack of proper contact model to deal with the contact interaction

between multiple structures, in the FSI model the soft tissues around the upper airway will

be regarded as all connected together and having with uniform property.

According to the volumetric reconstruction of the upper airway tissue with magnetic

resonance images (MRI) by Schwab et al., the soft palate, tongue, and pharyngeal walls are
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(a) (b)

Figure 3.4: The horizontal view (a) and the sagittal view (b) of the segmented tissues (red) and airway

(blue) geometries.

the main soft tissues around the airway. These soft tissues and the airway geometries are

manually segmented using ITK-SNAP following the tissue or tongue geometry described in

Schwab et al. (2003), Buchaillard et al. (2009), and (Stavness et al., 2012).

The horizontal and the sagittal views of the segmented airway and tissue geometries are

shown in the figure 3.4. The red color denotes the tissue geometry and the blue color denotes

the upper airway. The tissue only contains the region starting from the top of the epiglottis

to the hard palate, and from the tip of the tongue to the spine. The three-dimensional

segmented geometries are shown in the figure 3.5.

The segmented data is saved as .mha file and is input into Matlab for further image pro-

cessing. The procedures to generate the signed distance field and smoothing with Gaussian

filter are the same as described in the previous section. However, since the surface of the

geometries obtained from manual segmentation is uneven, three times of Gaussian filtering

with deviation 2.33, 2.33, 1.48 are used to smooth out the surface. The tissue and airway
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(a) (b)

Figure 3.5: The side view (a) and the front view (b) of the 3d segmentation of the tissues (red) and airway

(blue).

geometry after smoothing are plotted in the figure 3.5.
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(a) (b)

Figure 3.6: The tissues geometry (left) and the airway geometry (right) after smoothing with Matlab.
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CHAPTER 4

Results

The results shown in this chapter are divided into two parts. One main objective of this

research lies in the numerical tool development of a novel approach of using purely non-

body-conformal Cartesian grid. The first part includes the validation of the fluid solver,

solid solver and the FSI solver separately. The scalability tests are conducted to test the

performance of the parallel computing on the FSI problem. The second part includes the

results related with the patient-specific geometries. The pressure driven flow in the rigid

upper airway and the airflow-tissue interaction in upper airway are conducted.

4.1 Simulation of Validation Problems

4.1.1 Fluid Solver

The sharp interface immersed boundary method (embedded-boundary formulation) has been

proven to be nearly second order in the Yang and Balaras (2006) with the simulation of the

flow past circular cylinder. Here we tested the accuracy with an internal flow of the 2D

simulation of flow in the channel with prescribed motion. The channel wall is only allowed

to move in the y-direction and the wall displacement is prescribed to be a moving sinusoidal

wave with wave length λ and angular frequency ω (see figure 4.1). The wall displacements

are set to be

ξ = 0, η = Aeiω(t−x/c)

where ξ and η represents the x- and y- component of the wall displacement, A is the amplitude

of wall displacement, and c denotes the wave speed c = ωλ.
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Figure 4.1: Channel configuration and prescribed wall displacement.

Under the assumption of infinitesimal wall deformation compared with channel height

and relatively small induced velocity field, the analytical solution of the flow field can be

obtained,

p = Real
[
B
(
e2πy/c + e−2πy/c

)
ei2π(t−x/c)] (4.1)

u = Real
[(
C1

(
e2πy/c + e−2πy/c

)
+ C2

(
eγy + e−γy

))
ei2π(t−x/c)] (4.2)

v = Real
[(
D1

(
e2πy/c − e−2πy/c

)
+D2

(
eγy − e−γy

))
ei2π(t−x/c)] (4.3)

where

γ ≡
√

2iπRe +
4π2

c2
, Re ≡ ρL2ω

2πµ
, (4.4)

the coefficients are

C1 =
−2πA

(eγ/2 + e−γ/2)
(
− tanh (π/c) + 2π

cγ
tanh (γ/2)

) , (4.5)

C2 =
2πA

(eγ/2 + e−γ/2)
(
− tanh (π/c) + 2π

cγ
tanh (γ/2)

) , (4.6)

B = cC1, D1 = iC1, D2 =
2iπ

cγ
C2, (4.7)

and the time is non-dimensionlized by 2π/ω, length by channel length L, velocities by ωL/2π,

pressure by ρ (ωL/2π)2, and ω by 2π/ω. Thus the non-dimensionalized angular frequency is

a constant 2π.

65



Figure 4.2: Left: the velocity field of the flow in the deforming channel at t = 5 with infinitesimal deforming

amplitude. Right: the error distribution of velocity magnitude between the present work and the analytical

solution.

The validation case of flow in the deforming channel is at Re = 100 with wave speed c = 1.

The channel height is chosen to be 0.605 in order to prevent both u and v forcing points

from being conformal to the boundary. The amplitude of wall motion A is set to be 0.001.

The simulation is conducted in a 1 by 1 domain, and the periodic boundary conditions

are set at channel inlet (left side) and outlet (right side). Four kinds of grid sizes ∆x =

0.01, 0.0125, 0.025, 0.05, and the corresponding time step sizes 0.001, 0.00125, 0.0025, 0.005

are used. The obtained velocity vectors at t = 5 using ∆x = 0.01 are shown in figure 4.2.

The error distribution of the velocity magnitude field compared with analytical solution is

plotted at the right in figure 4.2. The error is larger near the boundary on the order of 10−4,

while the error near the centerline of the channel reduces to the order of 10−5 with respect

to the characteristic velocity ωL/2π.

The L2 norm error with different simulation resolution are depicted in figure 4.3. This

shows that the rate of convergences for the x- and y- component of velocities are between

first and second order of accuracy. In other words, the field reconstruction of the bilinear

interpolation (in two-dimensional simulation) near the boundary may deteriorate the order

of accuracy, but the accuracy still remains better than first order.
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Figure 4.3: The L2 norm error of fluid velocity field u (�) and v (�).

The flow simulation in the channel with larger wall deformation is also conducted. The

amplitude A = 0.05 and fix the other parameters used in the previous simulations of in-

finitesimal wall deformation. The grid size is chosen to be 0.01 and size of time step is 0.001.

The velocity field at t = 1 is plotted in figure 4.4.

4.1.2 Solid Solver

In the following section the solid solver will be validated with the classic cantilevered beam

problem. The problem setup is chosen to be the same as in Bathe et al. (1975) and Tian

et al. (2014). The two-dimensional and three-dimensional simulations of the cantilevered

beam under uniformly distributed load are performed. The tests are designed to validate

the nonlinear elasticity finite element formulation and the cut-cell treatment of the developed

solver.

The configuration of the beam is shown in the figure 4.5. The beam is with length L = 1
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Figure 4.4: The velocity field of the flow in the deforming channel at t = 1 with deforming amplitude 0.05.

in, height h = 0.1 in, width b = 0.1 in, and density ρ = 10−6 lbf s2/in4. The Young’s modulus

and poisson ratio are E = 12000 lbf/in2 and ν = 0.2. The uniformly distributed load with

strength q = 1.425 lbf/in2 is uniformly distributed on the upper and lower surface of the

beam. There are no traction acting on the front and back surface of the beam.

4.1.2.1 Test of Two-Dimensional Nonlinear Elasticity Formulation

The two-dimensional simulations of the beam deformation with linear and nonlinear elas-

ticity formulations are tested. The linear elasticity solver utilizes the mixed finite element

method described in Bannier (2012), which is originally proposed by Zhu et al. (2012b). The

displacement on the front-back direction is assumed to be zero. In other word, there exists

additional stresses in the front-back direction to enforce the two-dimensionality.

The grid size is chosen to be 0.01L and the boundary of the beam is conformal to

the grid lines. The time step size is dt = 4.5 × 10−5 s, which is 1/126 of the period of

the beam oscillation. Three constitutive models are considered: linear elasticity, nonlinear

elasticity formulation with and without iteration. No Rayleigh damping is added in the these
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Figure 4.5: The configuration of the solid validation problem. The dimension of the cantilever beam is L = 1

in, height h = 0.1 in, width b = 0.1. The load pointing downward has strength q = 1.425 lbf/in2.

simulations, so the oscillation amplitude of the beam is expected to stay constant, except

for the influence of the numerical dissipation.

The z-displacement at the midpoint of the free end (x = 1 in) of the beam with the above-

mentioned three models are plotted in the figure 4.6, comparing with the result in Bathe et al.

(1975). It is worth noting that the amplitude of z-displacement calculated using the linear

elasticity formulation is significantly larger than the amplitude obtained with the nonlinear

elasticity formulation. The linear formulation ignoring the higher order terms in the strain

measure is not adequate for structure undergoing large displacement and rotation. Figure 4.7

shows the distributions of material points in the beam at initial state and at its maximum

displacement state. The obtained beam is elongated incorrectly with the prediction by linear

elasticity formulation, especially near the free end. Under the linear elasticity, if an element

is undergoing rigid body rotation, the normal strains are negative rather than zero. The

element thus expands outward to remain zero strain under rigid body rotation. This is the

reason why the element expansion is observed, and the degree of expansion increases toward

the free end of the beam due to the larger rotation angle and larger displacement. On the

other hand, under the nonlinear elasticity model, the Lagrangian Green strain E remains
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Figure 4.6: The z-displacement of the midpoint at the free end of the beam using linear elasticity (dashed

line), nonlinear elasticity formulation without iteration (dotted line), nonlinear elasticity formulation without

iteration (dot-dash line), and the results by Bathe et al. (solid line).

zero in the element undergoing rigid body rotation.

In the figure 4.6, the oscillation amplitude of the beam using the nonlinear elasticity for-

mulation without iteration decreases slightly over time comparing with the result obtained

using nonlinear elasticity formulation with iteration. This shows the dissipation of the inter-

nal energy over time without the iteration to reduce the out-of-balance of the internal and

external energy. The dissipation becomes more obvious when the time step size increases as

shown in the figure 4.8. These tests show that only using the nonlinear elasticity formula-

tion with iteration can correctly predict the deformation of the structure undergoing large

displacement and rotation.

4.1.2.2 Test of Three-dimensional Cut-Cell Treatment

In the three-dimensional validation, the simulations with body-conformal grid cells and non-

body-conformal grids are performed to test the ability of the cut-cell treatment. The non-

linear elasticity formulation with iteration is used as the governing equations. For the body-

conformal grid, the grid size is dx = 0.02, and the doubly refined grids are shown in the
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Figure 4.7: The location of the material marker points at initial state (black), and the marker points at

the maximum displacement of the beam using linear elasticity formulation (blue) and nonlinear elasticity

formulation with iteration (red).
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Figure 4.8: The z-displacement at the midpoint of the free end of the beam using nonlinear elasticity

formulation without iteration with time step sizes dt = 4.5 × 10−5 s (blue dotted) and dt = 1.35 × 10−4 s

(red dotted) comparing with the results by Bathe et al. (black solid).

figure 4.9. On the other hand, for the non-body-conformal case, a slightly smaller grid size

is chosen dx = 0.4/21 = 0.019048, which is shown in the figure 4.10. The time step size is

set to be dt = 5× 10−5.

The z-displacement at the midpoint of the free end of the beam with two grid sizes are

shown in the figure 4.11. The oscillation amplitude and the frequency in the present work

are having a good agreement with the result by Bathe et al. (1975). This also demonstrates

the ability of the cut-cell treatment. The figure 4.12 depicts the obtained distribution of

the strain component E11 along the beam when it reaches the maximum displacement. The

normal strain in the x direction E11 is positive (stretched) on the upper-half part and negative

(compressed) on the lower-half part.

4.1.3 Fluid–Structure Interaction

In this section, an investigation of problems for the purpose of validating the fluid–structure

coupling scheme described above is presented, including two- and three-dimensional prob-

lems.
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Figure 4.9: The body-conformal doubly refined grids with grid size dx = 0.02.

Figure 4.10: The non-body-conformal doubly refined grids with grid size dx = 0.4/21 = 0.019048.
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Figure 4.11: The z-displacement of the midpoint at the free end of the beam using body-conformal grids

(blue dot-dash) and non-body-conformal grids (red dot-dash) comparing with the result by Bathe et al.

(black solid).

Figure 4.12: The distribution of the strain component E11 along the beam at the maximum displacement.
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Figure 4.13: Lid-driven cavity flow with elastic material at the bottom.

4.1.3.1 The Two-Dimensional Lid-Driven Cavity Flow with Elastic Wall at Bot-

tom

This cases consists of the deformation of an initially rectangular block of elastic material at

the bottom of a lid-driven cavity, as shown in Figure 4.13. Because the tissue surrounding

the upper airway are subjected to shear stress by the flow, which may lead to corresponding

shear deformation, this validation problem aims to show the ability of the proposed FSI

solver to handle such deformation. This problem, which eventually achieves a steady state

consisting of the statically-deformed solid adjacent to the steady circulatory flow, has been

considered previously in Dunne (2006) and Zhao et al. (2008). The square cavity—including

fluid and solid—has height and width 2 and the rectangular solid has initial height 0.5 and

length 2. The velocities at the cavity walls are fixed at zero, except for the velocity on the

upper wall, which has non-zero velocity in the tangential (x) direction,

u =
1

2


sin2 (πx/0.6) x ∈ [0, 0.3],

1 x ∈ (0.3, 1.7),

sin2 (π(x− 2)/0.6) x ∈ [1.7, 2].

(4.8)

For the solid, the Young’s modulus is chosen to be 0.6. Our solid solver lacks the ability

to strictly preserve the volume of the material. In order to approximately maintain incom-

pressibility, the Poisson ratio is set to be 0.49. The left, right, and the bottom sides of
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Figure 4.14: The non-body-conformal solid grid. The thick solid lines are the fixed boundary of the solid

and the thick dashed line represents the fluid-solid interface. Note that the solid mesh extends beyond the

cavity domain.

the rectangular solid are fixed, while the upper side is the fluid–structure interface. The

size of initial elements in the solid mesh is uniformly 0.08 in both directions. The initially

Cartesian solid mesh is purposely set up to not conform to the solid boundary or the fluid-

solid interface (as shown in figure 4.14); this is done in order to test the capability of the

cut-cell finite element method. The artificial Rayleigh damping uses coefficients with values

α = 2.5 × 10−4, and β = 0.2038, designed to ensure 2% damping of the first fundamental

mode in a vacuum.

In the fluid, the viscosity is µf = 0.2. The grid spacing in the fluid is uniformly 0.02,

one quarter of the solid grid spacing; the domain is discretized into 100 by 100 cells. The

density ratio between fluid and solid is ρf/ρs = 1. The tolerance for the fluid–structure

coupling scheme is set to
√

2× 10−8. As to the choice of the relaxation factor, it was found

that the preferred value of the relaxation factor is correlated with the density ratio ρf/ρs

(Causin et al., 2005). In this case, the relaxation factor is set to 0.35 for most time steps,

then is increased to 0.5 when the simulation approaches steady state. These choices are

based on trial and error. The time step size is 5× 10−4. The problem is initially solved with

a rigid solid until time t = 3, subsequent to which the solid is allowed to elastically deform.

The system is considered to reach steady state when the velocities in the structure satisfy∥∥∥Ẋ∥∥∥
∞
< 10−4.

The streamlines and the solid deformation at steady state are compared with the results

from previous work in Figure 4.15. Our results are in accordance with these previous results,
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Figure 4.15: The streamline and deformation of solid at steady state. (a) present work. (b) results by Dunne

(2006) (dots along interface) and Zhao et al. (2008) (streamlines and elastically-deformed mesh). (c) Solid

deformation of present work.

despite our use of a non-body-conformal Cartesian mesh in the solid. This demonstrates the

ability of our solver to use a non-body-conformal Cartesian mesh for treating fluid–structure

interaction problems. The displacements and velocities in the y direction on the fluid-solid

interface at (1.6, 0.5) are shown in the left panel of Figure 4.16; the iterations required for

the coupling scheme are reported in the right panel.

4.1.3.2 The Two-Dimensional Flow Induced Vibration of an Elastic Beam Be-

hind a Rigid Cylinder.

The second case studied is an elastic beam mounted behind a rigid circular cylinder in a

channel flow, as shown in Figure 4.17. This benchmark fluid–structure problem was originally
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Figure 4.16: (a) The displacement (solid line) and velocity (dashed line) in the y-direction on the fluid-solid

interface at location (1.6, 0.5). (b) The number of iterations required for the strong fluid–structure coupling.
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Figure 4.17: The beam behind the circular cylinder in the channel flow.

proposed by Turek and Hron (2006). The flow-induced vibration of the cantilevered beam in

the channel is particularly relevant for validation of upper airway simulations, since the flow

in the airway induces analogous vibrations of the soft palate, which itself is rigidly attached

to the hard palate. Indeed, such air-induced vibration of the soft palate may be an important

factor of airway occlusion. Thus, the ability to correctly capture the dynamic motion of the

beam in this validation case ensures greater confidence in treating the soft palate motion in

the full airway simulations.

In accord with the previous study of Turek and Hron (2006), the diameter of the rigid

cylinder is D = 1, the channel has width 4.1 and length 11. The velocity at the upper and

lower walls are set to zero while a parabolic velocity profile with mean velocity Ū = 1 is

specified at the inlet of the channel. The outlet is set to have zero velocity gradient. The

beam is elastic with initial height h = 0.2 and length L = 3.5. The center of the cylinder is

located at (2, 2), sufficiently far from the inlet and outlet to induce vortex shedding and the

fluid–structure interaction behind the cylinder.

For the structure, the non-dimensionalized Young’s modulus E = E∗/(ρf Ū
2) is chosen to

be 1400 and the Poisson ratio is 0.4. The solid mesh has spacing 0.04 and does not conform

to the fluid-solid interface, as shown in Figure 4.18. The coefficients for the artificial damping

are set to α = 1.4945× 10−3 and β = 1.4066× 10−2, to ensure 0.5% damping of the second

fundamental mode in a vacuum. To promote computational efficiency, iteration in the solid

solver is not activated unless the displacements exceed 0.05. The iteration tolerance is set
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Figure 4.18: (a) The solid mesh for the elastic beam behind the circular cylinder. (b) The mesh near the tip

of the beam.

to be 0.01 and 10−4, for displacements larger than 0.05 and 0.1, respectively.

In the fluid, the Reynolds number is Re = ρf ŪD/µf = 100. The spacing of the fluid

grid is 0.02, one half of the solid mesh spacing. The density ratio between solid and fluid

is ρs/ρf = 10. The tolerance for the fluid–structure coupling is set to
√

2 × 10−4, and the

relaxation factor is set to 0.4. The time step size is set to be 0.01, which is nearly 1/500 of

the resulting oscillation period of the beam.

To analyze the dynamic motion of this fluid–structure interaction problem, we can sep-

arately inspect the fundamental frequencies associated with the vortex shedding behind a

rigid cylinder in the channel (without beam) and with the free vibration of a cantilever

beam in vacuum. The obtained frequency of the vortex shedding is approximately 0.3. On

the other hand, for the free vibration of a cantilevered beam in a vacuum, the first three
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Figure 4.19: The x- (solid line) and y-displacement (dashed line) at the free end of the beam.

theoretical fundamental frequencies are 0.0311, 0.195,and 0.547. Though these fundamental

frequencies are slightly modified by the presence of the fluid, they suggest that the second

vibration mode of the beam is the one most likely to be excited.

The displacements of the tip of the beam are plotted in Figure 4.19 from t = 0 to t = 140.

It can be observed that the displacements grow from 0 and finally reach stationary periodic

oscillations. The frequency of the periodic oscillation is 0.1953, which is very close to the

estimated second fundamental frequency of the cantilever beam. The number of iterations

for fluid–structure coupling reaches 2, while the number of iterations in the solid remains at

2 after the system reaches periodic oscillations, as shown in Figure 4.17.

The vorticity fields when the beam has maximum deformation are compared with results

by Turek and Hron Turek and Hron (2006) in Figure 4.21. The results of the present work

exhibit good qualitative agreement with the results of Turek and Hron (2006). For quan-

titative comparison, the vibration amplitude at the free end of the beam and the Strouhal

number are compared with results by Turek and Hron (2006), Bhardwaj and Mittal (2012),

and Tian et al. (2014). The Strouhal number of the current work agrees well with the previ-

ous studies. The amplitude agrees well with the work of Tian et al. (2014), but has 6.2% and

15.4% discrepancies with the results by Turek and Hron (2006) and Bhardwaj and Mittal

(2012), respectively. This may be due to the use of artificial damping in the solid solver or
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Figure 4.20: The number of iterations for fluid–structure interaction (solid line) and the non-linear solid

solver (dashed line).

Amplitude of the tip Strouhal number

Turek and Hron (2006) 0.83 0.19

Bhardwaj and Mittal (2012) 0.92 0.19

Tian et al. (2014) 0.78 0.19

present work 0.7779 0.1953

Table 4.1: Comparison of the amplitude at the free end of the elastic beam and the Strouhal number with

results in previous work.

to the lower resolution of the solid compared with that used in Bhardwaj and Mittal (2012).

4.1.3.3 The Three-Dimensional Simulation of a Cantilevered Plate in the Cross

Flow

The FSI solver is tested with the three-dimensional flow past a cantilevered plate. The

results will be qualitatively compared with the simulation done by Tian et al. (2014). The

dimensions of the plate is shown in the figure 4.22. It is fixed at the bottom side and the top

end is free. For the fluid simulation, the domain is in [0, 10] × [0, 8] × [0, 10] with the plate
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Figure 4.21: The comparison of vorticity contours when the beam reaches the periodic oscillation with

maximum y-displacement at the tip of present work (a,b) and results by Bhardwaj and Mittal (2012) (c,d).

locating right at the middle of the rectangular domain. The Re = 100 and the density ratio

between fluid and solid is ρf/ρs = 0.678. The buoyancy force is not taken into consideration.

The domain is decomposed into 100×80×100 grid cells with grid size 0.1 and time step size

0.001. The inlet at x = 0 is set to have uniform flow velocity U . U gradually increases from

0 to 1 and remains constant after reaching 1 (figure 4.23). The outlet boundary condition

is imposed on the other boundaries. For the solid, the Young’s modulus is E = 12918.612,

poisson ratio ν = 0.4, and the grid size is set to be 0.1. The artificial damping is introduced

to allow only the lower frequency modes to develop. The coefficients in Rayleigh damping

are α = 0.1, and β = 0.0002 according to the vibration modes of the plate. The tolerance

of the nonlinear iteration is 1 × 10−4, while for the FSI iteration, the tolerance is 1 × 10−5

and the relaxation parameter is 0.2, chosen according to the density ratio between solid and

fluid. The interface is decomposed into 8936 triangle elements as shown in figure 4.24.

The simulation has been conducted for 4000 steps until the plate nearly reaches the steady

state. The x-displacement, which is along the flow direction, at the center of the free end

is plotted in the figure 4.25. The final deformation of the plate is compared with the result
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Figure 4.22: The setup of the validation problem of a cantilevered plate in the cross flow.

in Tian et al. (2014) with Re = 1600, E = 19054.9 and with buoyancy force (figure 4.26).

The shape of the deformed plate matches qualitatively with the result by Tian et al.. The

streamline near the deformed plate is shown in the figure 4.27.

4.1.4 Scalability Test

The parallel computing is achieved using MPI and PETSc. PETSc provides tools including

data structures of distributed vectors and matrices as well as routines of domain partition-

ing and Krylov method for parallel computing related with solving PDE systems. For the

fluid solver, the Distributed Arrays routine helps on the domain decomposition, data com-

munication on the ghost cells, and managing distributed vectors on the structured grids.

The poisson equation is solved using it’s iterative Krylov subspace method. For the solid

solver, since it is not using structured grid, the mapping between the global indices and

the local involved indices needs to be established first. After that, PETSc can help on the

data scattering and gathering between processors. As to the interface, the redistribution of

the interface information between different processors are achieved using MPI sending and

receiving routines.

The test problem are the flow in a deformable tube which is fixed at the inlet and outlet.
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Figure 4.23: The prescribed inlet freestream velocity.

Three kinds of size of test problems are listed in the table 4.2. The tests are conducted on

the Hoffman2 Cluster in UCLA Institute for Digital Research and Education (IDRE) with

intel E5-2670 processors. At most 64 processors are used.

The results of the runtime in one FSI iteration of these three cases with different number

of processor are shown in the figure 4.28. The runtime is nearly inversely proportional to the

number of processor, but the speedup is slightly lower with more number of processors. The

runtime used by the fluid solver, solid solver and the interface calculation has been plotted

separately in the figure 4.29. The simulation time of solving poisson equation is shown in

diamond marker, the time used in every nonlinear elasticity iteration is shown in triangle

markers, and the runtime in the interface computation is shown in square markers. For

most cases, solving poisson equation takes most of the computation time. However, when

the number of processor increases, the runtime used in the solid and interface calculation
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Figure 4.24: The surface of the plate is decomposed into 8936 triangular surface elements. Left: front view.

Right: side view.

decrease less and even plateaus at last. The bottle neck of the solid solver is on the up-

date of the governing stiffness matrices and load vector according to the current stress and

strain distribution. Constructing the distributed matrices and vectors on more number of

processors may deteriorate the performance.

4.2 Simulation Related with Patient-Specific Geometries

In this section, first we will demonstrate that the three-dimensional flow solver, whose

methodology was described above in section 2.2, performs well on simplified flows through
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Figure 4.25: The displacement history at the center of the free end.

Table 4.2: The number of fluid grid, solid involved node and interface element used in the scalability test.

Case 1 Case 2 Case 3

fluid grid 200 × 200 × 300 250 × 250 × 375 320 × 320 × 480

solid involved node:

x component 19968 33970 64200

y component 19968 33970 64200

z component 19404 34944 62800

interface element 86800 135664 225248

rigid airways obtained by the image processing technique described in chapter 3. Airways

from two arbitrarily chosen patients are chosen based on their dissimilarity. Secondly, the

tissue deformation will be taken into consideration. The objective in this demonstration is

not to simulate the airways under realistic flow conditions nor to compare their behaviors,

but rather, to verify that the algorithm performs well with different and complex image-

generated geometries.
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(a) (b)

Figure 4.26: The final deformation of the plate in the cross flow by the present work (a) and the result by

Tian et al. with different parameters (b).

4.2.1 Pressure Driven Flow in the Three–Dimensional Patient-Specific Airway

Geometry.

In this section, we consider reduced Reynolds number flows in two patient-specific airway

geometries, labelled as case A and case B, that are extracted from three-dimensional imaging

using the procedure described in Chapter 3. Each airway geometry is embedded in a three-

dimensional Cartesian mesh (with axes labelled as x, y, and z, respectively) of uniform grid

spacing. The mean flow is driven by pressure difference imposed between the inlet and outlet

of the airway, where the fluid region of the signed distance field intersects the boundaries of

the computational domain. The streamwise direction of the airway is primarily aligned with

the z coordinate axis. The upper boundary plane of the domain intersects the uppermost

(i.e. superior) portion of the airway, approximately at the nasopharynx, while the lower

boundary plane intersects the lowermost (i.e. inferior) portion, just below the epiglottis.

No-slip velocity boundary conditions are specified on all fluid-solid interfaces. The immersed

boundary method described in Section 2.2 is used to handle velocity reconstruction adjacent

to the irregular interface.
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Figure 4.27: The streamlines at T=4. The color of the streamline represents the velocity magnitude.
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Figure 4.28: The runtime per FSI iteration versus the number of processors with test case 1(solid line), case

2 (dashed line), and case 3 (dot-dash line).
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Figure 4.29: The simulation time of solving poisson equation (�), nonlinear elasticity iteration (5) and

interface computation (�).

90



4.2.1.1 Computational Setup

In this preliminary study, the pressure conditions are steady and set to inspiratory conditions

(i.e. inhalation), as is typical of previous computational studies of the airway, because of

the observed prevalence of airway occlusion in apnea patients during this portion of the

breathing cycle.

The non-dimensional pressure boundary conditions are p = 1 on the upper boundary and

p = −1 on the lower boundary. The distance variables are scaled by L, where the z heights

of the computational domain are 2.13L for Case A and 2.52L for Case B. A uniform grid

size is used and the time step sizes are adjusted such that the CFL number is maintained

approximately at 0.25 throughout the simulations. Density is set uniformly to 1.

Before the pressure difference is imposed on the boundaries, the velocity field is set

initially to zero everywhere. The portions of the computational domain in the solid region

(with signed distance value of opposite sign to the fluid region) are assigned zero fluid velocity

for all times. The simulation’s time stepping starts at t = 0, when the pressure difference is

applied. The flow then evolves toward a fully developed state.

4.2.1.2 Flow features

The simulations of steady flow in the upper airway geometries of patients A and B are

each conducted for two Reynolds numbers. The Reynolds number is based on the hydraulic

diameter and peak velocity in a representative cross-section. The development of the flow

field is indicated by the evolution of (dimensionless) mass flow rate through the airway,

defined as

q(z) =

∫
fluid

w dS (4.9)

where w is the streamwise velocity component; given a z location, the integration is carried

out only in the fluid region in the corresponding x−y plane. The fully developed state of the

flow field is determined when q reaches a steady state. The flow rates in these simulations

are found to be nearly invariant in the z-direction, indicating that mass is well conserved in
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our implementation of the immersed boundary method.

Figure 4.30 depicts the simulation results of the flow fields in the upper airway geometry

of patient A. Figure 4.30(a) is the iso-contour of velocity magnitude at selected x− y cross

sections at Reynolds number Re = 29 with grid size 0.01L, superimposed with the airway

geometry (identified by the zero level-set of the signed distance field). This figure indicates

that the immersed boundary method correctly enforces the no-slip boundary conditions on

the complex fluid-solid interface. Streamline traces, randomly seeded at upstream locations,

are shown in Figure 4.30(b) to visualize the overall flow patterns. The maximum velocity

magnitude |u| = 0.86 for case A at Re = 29.

We conducted a grid resolution study for this case. Two grid resolutions were tested:

the first grid used 134 × 197 × 213 grid cells, while the second grid used 268 × 394 × 426

grid cells. Between the two runs, the fully-developed cross-sectional flow rate differs by 3%

(0.0442 and 0.0429, respectively), and the maximum velocity differs by less than 1% (0.86

and 0.857, respectively), indicating that the resolution is adequate for the coarser grid.

It is important to note that this Reynolds number is around 100 times smaller than the

Reynolds numbers expected in a real airway during normal inspiration. The purpose of this

study is only to report preliminary results; a simulation at real flow conditions would require

large-eddy simulation (LES) to model the filtered scales on a grid with practically achiev-

able resolution. In order to appreciate the influence of Reynolds number, the simulation of

case A is carried out at somewhat larger (but still low) Reynolds number Re = 263. The

computational domain has the same size as for the Re = 29 case, but the grid spacing is

reduced to 0.005L in order to obtain convergent computations. Recirculation regions are

evident in the flow around the epiglottis, near the lower (inferior) end of the airway, at the

higher Reynolds number; however, the flow is still steady. In Figure 4.30(c), the maximum

velocity reaches |u| = 1.72.

For case B, the simulations at at Re = 10 and Re = 203 with grid spacing 0.01L and

0.005L were conducted. The results are shown in Figure 4.31. The maximum velocity reaches

|u| = 0.6 at Re = 10 and |u| = 1.99 at Re = 203. These two cases with quite different upper
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Figure 4.30: Simulation results of case A. (a) Velocity iso-contours at Re = 29; contour range extends from

0 (blue) to 0.69 (red). (b), (c) Streamline traces colored by velocity magnitude (red is high, blue is low), at

Re = 29 and Re = 268, respectively.

airway shape we believe are sufficient to demonstrate that our proposed fluid solver can

properly deal with a variety of complex airway geometries.

4.2.2 Deformable airway

In this section, the deformation of the tissue surrounding the upper airway is taken into

consideration. The soft tissue including tongue, soft palate, pharyngeal wall and fat from

the tip of epiglottis to the base of the soft palate is selected as described in the Chapter 3

(figure 4.32). It is worth noting that the real base of the tongue should be at the location

connecting to the hyoid bone, which is about 1 cm lower than the tip of the epiglottis.

In other word, the extracted tongue geometry will be slightly shorter than the real tongue

geometry. The reason of removing some bottom part of the tongue is that the present solid

solver does not have the ability to deal with the interaction between epiglottis and airway

wall. We chose to assume the epiglottis and the surrounding tissue to be rigid, and not

93



Figure 4.31: Simulation results of case B. (a) Velocity iso-contours at Re = 10; The contour range extends

from 0 (blue) to 0.6 (red). (b), (c) Streamline traces colored by velocity magnitude (red is high, blue is low),

at Re = 10 and Re = 203, respectively.

taking the nearby tongue tissue and pharyngeal wall into consideration. Moreover, due to

that there is still lack of the contact model in the solid solver, the soft palate is set to be

connected with the tongue, as shown on the right of figure 4.33. The dimension of the

obtained tissue geometry is 5.07 cm (H) × 4.95 cm (W) × 7.11 cm (D), while the dimension

of the upper airway is 6.84 cm (H) × 3.93 cm (W) × 1.26 cm (D).

As to the boundary condition, the setup of boundary conditions in the tissue and flow

simulation are shown in the figures 4.34 and 4.35. The part of the airway below the tip

of the epiglottis is considered to be fixed. As the matter of this fact, the bottom side of

the obtained tissue geometry has to be set to be fixed. Since the base of the soft palate

is connecting to the hard palate, the top side of the tissue is also set to be fixed. At the

rear side of the upper airway, the pharyngeal wall tissue is connecting to the spine. The

deformation at the rear side of the pharyngeal wall should be comparatively smaller than

the front side associated with the deformation of the tongue and soft palate, so that it is

assumed to be fixed in the simulation. We choose to use a simple straight dividing line to
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divide the border of the fixed and FSI boundary condition in the fluid and solid solvers. For

the part of the tissue boundary that is not fixed nor FSI interface, it is set to be traction-free.

Figure 4.32: The tissue and upper airway geometries in the simulation.

For the simulation parameters, the flow is driven by the constant pressure difference at

the inlet and outlet. The pressure at inlet and outlet is 0 Pa and −1.7 Pa. The Re = 140,

density ratio ρs/ρf = 849, the Young’s modules E = 7539 Pa, obtained from the result in

Cheng et al. (2011), and the poisson ratio ν = 0.45. The grid size of the flow simulation is

the same with the resolution of the CT images, which is 0.3 mm, while the grid size in the

solid solver is 0.9 mm. The time step size is 2.55× 10−5 s. There are 5505024 of fluid grids

as well as 189759,188697, and 187239 involved x-, y-, z-nodes in solid simulation. The FSI

interface has been decomposed into 22336 triangular elements (figure 4.36).

The displacement history at the tip of the soft palate and the displacement field after

5000 steps are shown in the figure 4.37. Because the pressure distribution in the airway

gradually decreases from inlet to outlet, and the tissue is fixed on the top and bottom sides,

the maximum deformation appears at the posterior side of the tongue but not the soft palate.

The obtained displacement is still relatively small and no airway occlusion is observed. The
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(a) (b)

Figure 4.33: The coronal (left) and sagittal (right) slices of the tissue and upper airway geometries used in

the FSI simulation.

flow field obtained after 5000 steps (figure 4.38) is similar to the results obtained in the rigid

upper airway simulation.
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Figure 4.34: The boundary conditions used in the soft tissue simulation. The yellow color represents Dirichlet

boundary condition, where the tissue is fixed. The red and green colors indicate the zero traction and the

FSI boundary condition.
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Figure 4.35: The boundary conditions used in the airflow simulation. The yellow color represents Dirich-

let boundary condition, where the airway wall is fixed, while the green color indicates the FSI boundary

condition.
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(a)

(b)

Figure 4.36: The Lagrangian triangle interface elements on the FSI boundary. The plot (b) is the zoomed

plot of the area inside the red rectangle in (a).
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Figure 4.37: The history of the backward displacement at the tip of the soft palate (left) and the magnitude

of the displacement field at the sagittal slice after 5000 steps.
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(a) (b)

Figure 4.38: The flow velocity magnitude on the sagittal slice (left) and the streamline (right) after 5000

steps.
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CHAPTER 5

Discussion and Future Perspectives

Summary

In this dissertation, the ability of the developed numerical tool using non-body-comformal

Cartesian grid with immersed boundary/embedded method to deal with fluid-structure prob-

lems has been demonstrated. The fluid field and solid deformation are computed respectively

with separate solvers. The fluid and solid domain are decomposed into Cartesian grids with

separately chosen grid sizes. The fluid field is solved with the sharp–interface embedded

boundary formulation. The existence of the impermeable solid body is represented with the

discrete forcing added on the forcing point near the fluid–structure interface. The solver

has been proven to have the order of accuracy slightly less than 2nd order. The solid solver

combining the nonlinear elasticity finite element formulation and the cut-cell treatment has

been successfully developed. The simulation results on the dynamics of a cantilever beam

with uniformly distributed load not only shows the abilities of the solver generating the

cut–cells from Eulerian signed-distance function, but also demonstrated appropriateness of

the nonlinear elasticity formulation for large deformation/rotation. The flow field and solid

deformation are solved iteratively until the boundary conditions are satisfied at the inter-

face. This strong coupling algorithm is considered to be more stable than the non-iterative

algorithm. The two- and three-dimensional simulation of flow-induced deformation prob-

lems with parallel computing have been successfully conducted, and the results show a good

agreement with the ones by previous studies. The combination of non-body conforming

solvers is novel. It has been proven to be feasible, and this removes much of the inherent

challenge to the user in setting up a FSI problem.
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To apply the designed numerical tool on the patient-specific upper airway geometries, a

procedure has been described to obtained the patient-specific geometry from cone-beam CT

scan. The segmentation of tissue and airway structure from CT scans has been performed

with ITK-Snap and MATLAB. With the proposed image processing procedures, the ob-

tained data has been transformed into a relatively smooth signed distance field description

of the upper airway and the soft tissue geometries. We have shown the capability of the

immersed-boundary fluid solver to deal with the three-dimensional flow in the irregular air-

way geometries obtained from different patients. It has been observed that even though the

minimum cross-sectional areas of these two upper airway geometries are at similar location

behind the soft palate, their maximum velocity magnitude ended up at very different loca-

tions, one behind the soft palate and the other one near the epiglottis. This result suggests

that it is not enough to estimate the occlusion site from only the dimension of the static

upper airway geometry.

The simulation of airflow-tissue interaction on the obtained upper airway and soft tissue

geometry has been conducted with a lower Reynolds number. The flow is driven by the

constant pressure difference at inlet (base of soft palate) and outlet (base of epiglottis). Only

the fluid-structure interaction at the back of the soft palate and tongue are considered, and

all the soft tissue around the airway are considered to be connected with uniform properties.

Due to the large density ratio between the solid and fluid, the deformation of the soft tissue

is mainly due to the pressure distribution in the airway. The soft palate and tongue are

pulled backward due to the negative pressure in the airway. The displacement is relatively

small because the inlet pressure is set to be ambient pressure rather than a realistic value

lower than ambient pressure. However, the result shows the the ability of the solver dealing

with the FSI problem in patient-specific geometries.

Future Work

There still exists a gap between the developed tool and the final desired tool to deal with real

flow condition and soft tissue deformation in the patient-specific upper airway geometries.
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Following are some suggestions that may help on reduce the gap:

• Improvement on the fluid solver: The fluid solver requires the large-eddy simulation

(LES) modeling to enable practical simulations at the larger Reynolds numbers associ-

ated with airflow accompanied with adaptive mesh refinement to resolve the flow near

the constriction and wall of the upper airway (Vanella et al., 2010). Also, the pressure-

type outlet boundary condition should be replaced with an impedance-type condition

in order to properly account for the influence of the lower airway and bronchial system;

the inlet condition should be time-varying to account for the entire breathing cycle.

• Constitutive law of the soft tissue: The Saint-Venant model used in the simulation is

the simplest hyperelastic model, but not the most appropriate one. Other hyperelastic

model can be implemented in the solid solver once the partial derivative of the stress

with respective to strain can be obtained. Moreover, the living tissues are usually

viscoelastic material, where the stresses may depend on not only strain but also on

strain rate (Fung, 1993). For numerical calculation, the linear Kelvin-Voigt viscoelastic

model is the easiest one to implement. Luo et al. (2008) already used this model in

the numerical calculation of FSI around vocal cord for phonation investigation.

• Handling multiple interacting solid objects: The tissues near the upper airway consist

of tongue, soft palate, epiglottis, pharyngeal wall, and fat pad. These tissues should

be considered as multiple bodies with different properties. The solid solver with cut-

cell method is born with the ability of constructing the governing linear system with

multiple bodies. It still needs the collision detection algorithm and the contact model

in order to identify the location of contact of two bodies and predict the interaction

between them. In addition, some part of the tongue, soft palate and pharyngeal wall

are composed by muscles. Although muscle can be regarded as passive when OSA

occur, the anisotropic material properties still affect the deformation of the muscle.

The solid solver needs to equip with ability of tackling material with nonuniform and

anisotropic properties.
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• FSI coupling scheme: The iterative coupling procedure can be accelerated with dy-

namic relaxation, which the relaxation parameter varies iteration by iteration. This

can be achieved with the use of Aitken or steepest descent relaxation using the inter-

face displacement in previous iterations to estimate the proper relaxation parameter

in the next iteration (Küttler and Wall, 2008).
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APPENDIX

Finite element formulation for nonlinear analysis in Bathe (2006)

• Total Lagrangian formulation: use the principle of virtual displacement stating the

total internal work is equal to the total external work; i.e.∫
t+∆tSijδ

t+∆tεijdV0 = t+∆tR (A.1)

where tSij is the 2nd Piola-Kirchhoff stress at time t, tεij is the Green-Lagrange strain

tensor, which is defined as

tεij =
1

2

(
∂ tui
∂Xj

+
∂ tuj
∂Xi

+
∂ tuk
∂Xi

∂ tuk
∂Xj

)
(A.2)

and tR is the external virtual work.

• Incremental decomposition: decompose stress and strain to be value obtained at the

end of previous step and an incremental value.

t+∆tSij = tSij + Sij (A.3)

t+∆tεij = tεij + εij (A.4)

Also, decompose the incremental strain into linear and nonlinear parts:

εij = eij + ηij (A.5)

eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂ tuk
∂Xi

∂uk
∂Xj

+
∂uk
∂Xi

∂ tuk
∂Xj

)
(A.6)

ηij =
∂uk
∂Xi

∂uk
∂Xj

(A.7)

where the displacement t+∆tui = tui + ui. The internal virtual work becomes∫
t+∆tSijδ

t+∆tεijdV0 =

∫
SijδεijdV0 +

∫
tSij (δeij + δηij) dV0 (A.8)

Using constitutive equation Sij = Cijrsεrs, then equation 2.43 becomes∫
t+∆tSijδ

t+∆tεijdV0 =

∫
CijrsεrsδεijdV0 +

∫
tSijδeijdV0 +

∫
tSijδηijdV0 (A.9)
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• Linearization: approximate the εrsδεij term to be ersδeij. The governing equation

becomes ∫
CijrsersδeijdV0 +

∫
tSijδηijdV0 ≈ t+∆tR−

∫
tSijδeijdV0 (A.10)

Due to the linearization approximation, iteration is used to reduce the ”out-of-balance”

of virtual work,∫
Cijrs∆e

(k)
rs δeijdV0 +

∫
tSijδ∆η

(k)
ij dV0 = t+∆tR−

∫
t+∆tS

(k−1)
ij δ t+∆te

(k−1)
ij dV0 (A.11)

t+∆tu
(k)
i = t+∆tu

(k−1)
i + ∆u

(k)
i (A.12)

Finite element discretization in 2D

Relate strain ε, displacement u with displacement on nodal points û using displacement

interpolation matrix H and strain-displacement matrix B:

u(x) = H(x)û→ hTx ûx + hTy ûy (A.13)

δu(x) = H(x)δû (A.14)

e(x) =


e11

e22

2e12

 =


hTx,x

hTy,y

hTx,y hTy,x


ûxûy

+


tux,xh

T
x,x

tuy,xh
T
y,x

tux,yh
T
x,y

tuy,yh
T
y,y

tux,xh
T
x,y + tux,yh

T
x,x

tuy,xh
T
y,y + tuy,yh

T
y,x


ûxûy


≡ B

L
û (A.15)
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tSijδηij =
{
δûTx δûTy

}hx,x hx,y

hy,x hy,y




tS11
tS12

tS21
tS22


tS11

tS12

tS21
tS22





·


hTx,x

hTx,y

hTy,x

hTy,y


ûxûy

 = δûTBT

NL

tS B
NL
û (A.16)

∫
CijrsersδeijdV0 → δûT

∫
BT

L
C B

L
dV0 û (A.17)∫

tSijδηijdV0 → δûT
∫

BT

NL

tS B
NL
dV0 û (A.18)∫

0ρ t+∆tüiδuidV0 → 0ρ δûT
∫

HT HdV0
t+∆t ˆ̈u (A.19)

The governing equation for dynamics analysis after discretization becomes:

δûT
[

0ρ

∫
HT HdV0

t+∆t ˆ̈u+

∫
BT

L
C B

L
dV0 û+

∫
BT

NL

tS B
NL
dV0 û

]
= δûT

[
t+∆tR +

∫
BT

L

tS dV0

]
(A.20)

The δûT can be eliminated on both sides,

0ρ

∫
HT HdV0

t+∆t ˆ̈u+

∫
BT

L
C B

L
dV0 û+

∫
BT

NL

tS B
NL
dV0 û =t+∆t R +

∫
BT

L

tS dV0

(A.21)
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The nonlinear stiffness matrix thus becomes:

δûTBT

NL

tS B
NL
û ≡ δûTK

NL
û

=

 δûx

δûy


T  hx,x hx,y

hy,x hy,y




tS11
tS12

tS21
tS22

tS11
tS12

tS21
tS22




hx,x

T

hx,y
T

hy,x
T

hy,y
T


 ûx

ûy



=

 δûx

δûy


T  hx,xhx,x

TS11 + hx,yhx,y
TS22 +

(
hx,yhx,x

T + hx,xhx,y
T
)
S12 0

0 hy,xhy,x
TS11 + hy,yhy,y

TS22 +
(
hy,yhy,x

T + hy,xhy,y
T
)
S12

 ûx

ûy


(A.22)

Also, the linear stiffness matrix is then:

δûTBT

L
C B

L
û ≡ δûTK

L
û

=

 δûx

δûy


T  (1 + ux,x)hx,x ux,yhx,y (1 + ux,x)hx,y + ux,yhx,x

uy,xhy,x (1 + uy,y)hy,y (1 + uy,y)hy,x + uy,xhy,y



λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ



·


(1 + ux,x)hx,x

T uy,xhy,x
T

ux,yhx,y
T (1 + uy,y)hy,y

T

(1 + ux,x)hx,y
T + ux,yhx,x

T (1 + uy,y)hy,x
T + uy,xhy,y

T


 ûx

ûy

 (A.23)

The submatrices compoments of the linear stiffness matrix are respectively

KL11 =
[
(1 + ux,x)

2 (λ+ 2µ) + µux,y
2
]
hx,xhx,x

T

+
[
µ(1 + ux,x)

2 + (λ+ 2µ)ux,y
2
]
hx,yhx,y

T

+ [(λ+ µ)ux,y (1 + ux,x)]
[
hx,yhx,x

T + hx,xhx,y
T
]

(A.24)

KL12 = KT
L21 = [(1 + ux,x) (λ+ 2µ)uy,x + µux,y (1 + uy,y)]hy,xhx,x

T

+ [λ (1 + ux,x) (1 + uy,y) + µux,yuy,x]hy,yhx,x
T

+ [µ (1 + ux,x) (1 + uy,y) + λux,yuy,x]hy,xhx,y
T

+ [µ (1 + ux,x)uy,x + (λ+ 2µ)ux,y (1 + uy,y)]hy,yhx,y
T (A.25)
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KL22 =
[
(λ+ 2µ) (1 + uy,y)

2 + µuy,x
2
]
hy,yhy,y

T

+
[
(λ+ 2µ)uy,x

2 + µ(1 + uy,y)
2]hy,xhy,xT

+ (λ+ µ) (1 + uy,y)uy,x
[
hy,xhy,y

T + hy,yhy,x
T
]

(A.26)

The load vector is then,

δûTBT

L

tS ≡ δûTF

=

 δûx

δûy


T  (1 + ux,x)hx,x ux,yhx,y (1 + ux,x)hx,y + ux,yhx,x

uy,xhy,x (1 + uy,y)hy,y (1 + uy,y)hy,x + uy,xhy,y



S11

S22

S12


=

 δûx

δûy


T  [(1 + ux,x)S11 + S12ux,y]hx,x + [S22ux,y + S12 (1 + ux,x)]hx,y

[S11uy,x + S12 (1 + uy,y)]hy,x + [S22 (1 + uy,y) + S12uy,x]hy,y

 (A.27)

The stress and displacement gradient are calculated according to the from the last iteration.

The details of these calculation will be described in the Cut-Cell FEM implementation report.

Finite element discretization in 3D

Extending to 3D, the z component is taken into consideration:

u(x) = H(x)û→ hTx ûx + hTy ûy + hTz ûz (A.28)

The strain, which has 6 components in 3D, can also be related to the displacement vector

by strain-displacement matrix B:
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e(x) =



e11

e22

e33

2e12

2e23

2e13


=



hTx,x

hTy,y

hTy,y

hTx,y hTy,x

hTy,z hTz,y

hTx,z hTz,x




ûx

ûy

ûz



+



tux,xh
T
x,x

tuy,xh
T
y,x

tuz,xh
T
z,x

tux,yh
T
x,y

tuy,yh
T
y,y

tuz,yh
T
z,y

tux,zh
T
x,z

tuy,zh
T
y,z

tuz,zh
T
z,z

tux,xh
T
x,y + tux,yh

T
x,x

tuy,xh
T
y,y + tuy,yh

T
y,x

tuz,xh
T
z,y + tuz,yh

T
z,x

tux,yh
T
x,z + tux,zh

T
x,y

tuy,zh
T
y,y + tuy,yh

T
y,z

tuz,zh
T
z,y + tuz,yh

T
z,z

tux,xh
T
x,z + tux,zh

T
x,x

tuy,xh
T
y,z + tuy,zh

T
y,x

tuz,xh
T
z,z + tuz,zh

T
z,x




ûx

ûy

ûz



(A.29)

≡ B
L
û

The resulting stiffness submatrices,

K
L

=


KL11 KL12 KL13

KL12
T KL22 KL23

KL13
T KT

L23 KL33

 (A.30)

,and

K
NL

=


KNL11

KNL22

KNL33

 (A.31)
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Th diagonal and off-diagonal stiffness submatrices can be written as (without loss of gener-

alty, listing KL11,KL12 and KNL11 )

KL11 =
[
(λ+ 2µ) (1 + ux,x)

2 + µux,y
2 + µux,z

2
]
hx,xhx,x

T

+
[
µ(1 + ux,x)

2 + (λ+ 2µ)ux,y
2 + µux,z

2
]
hx,yhx,y

T

+
[
µ(1 + ux,x)

2 + µux,y
2 + (λ+ 2µ)ux,z

2
]
hx,zhx,z

T

+ [(λ+ µ)ux,y (1 + ux,x)]
(
hx,yhx,x

T + hx,xhx,y
T
)

+ [(λ+ µ)ux,z (1 + ux,x)]
(
hx,zhx,x

T + hx,xhx,z
T
)

+ [(λ+ µ)ux,yux,z]
(
hx,yhx,z

T + hx,zhx,y
T
)

(A.32)

KL12 = [(λ+ 2µ)uy,x (1 + ux,x) + µux,y (1 + uy,y) + µux,zuy,z]hx,xhy,x
T

+ [µuy,x (1 + ux,x) + (λ+ 2µ)ux,y (1 + uy,y) + µux,zuy,z]hx,yhy,y
T

+ [µuy,x (1 + ux,x) + µux,y (1 + uy,y) + (λ+ 2µ)ux,zuy,z]hx,zhy,z
T

+ [λ (1 + ux,x) (1 + uy,y) + µux,yuy,x]
(
hx,xhy,y

T + hy,yhx,x
T
)

+ [λ (1 + ux,x)uy,z + µux,zuy,x]
(
hx,xhy,z

T + hy,zhx,x
T
)

+ [λux,yuy,x + µ (1 + ux,x) (1 + uy,y)]
(
hx,yhy,x

T + hy,xhx,y
T
)

+ [λux,yuy,z + µ (1 + uy,y)ux,z]
(
hx,yhy,z

T + hy,zhx,y
T
)

+ [λux,zuy,x + µ (1 + ux,x)uy,z]
(
hx,zhy,x

T + hy,xhx,z
T
)

+ [λ (1 + uy,y)ux,z + µux,yuy,z]
(
hx,zhy,y

T + hy,yhx,z
T
)

(A.33)

KNL11 = S11hx,xhx,x
T + S22hx,yhx,y

T + S33hx,zhx,z
T

+ S12

(
hx,yhx,x

T + hx,xhx,y
T
)

+ S13

(
hx,zhx,x

T + hx,xhx,z
T
)

+ S23

(
hx,yhx,z

T + hx,zhx,y
T
)

(A.34)
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The subvector of the load vector F

F1 = [(1 + ux,x)S11 + ux,yS12 + ux,zS13]hx,x
T

+ [(1 + ux,x)S21 + ux,yS22 + ux,zS23]hx,y
T

+ [(1 + ux,x)S31 + ux,yS32 + ux,zS33]hx,z
T (A.35)

Other parts of the stiffness submatrices have similar expression. To get the formulation of

Kij, for the shape functions, just change the hx,mhx,n
T or hx,mhy,n

T in above equations to

hi,mhj,n
T . Also, for the displacement gradient, change the ux,mux,n or ux,muy,n to ui,muj,n.

The terms associated to normal displacement gradients ui,i should then modified to 1 + ui,i.

Similarly, to get other load subvectors Fi, change hx,n
T to hi,n

T and ux,m to ui,m.
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I Bijelonja, I Demirdžić, and S Muzaferija. A finite volume method for incompressible linear elasticity.

Computer methods in applied mechanics and engineering, 195(44):6378–6390, 2006.
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