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ABSTRACT OF THE DISSERTATION

Forecasting for power grids with high solar penetration

by

Amanpreet Kaur

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2015

Professor Carlos F.M. Coimbra, Chair

Global solar photovoltaic capacity increased by 35% from 2013 to 2014, and

this upward growth trend is likely to continue. Power grids must adapt to accom-

modate increasing shares of renewable energy penetration. The impact of increas-

ing solar penetration is quantified in terms of the variability and the predictability

of net load behavior. As expected, due to variable nature of solar technologies,

the predictability of net load decreases with increasing penetration. The need for

novel net load forecasting techniques that allow for improved management of grids

with high solar penetration is discussed. Integrated net load forecasting methods

(solar power forecasts are used as inputs) are recommended for grid operators and

utilities. Analysis of forecast performance reveals that the solar variability plays a

dominant role in driving the forecasting errors, even more so than the penetration
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levels. Net load and solar forecast errors are found to be co-integrated, sharing

a common stochastic drift. Thus, the solar irradiance time series is sufficient to

provide necessary information for the future planning of reserve allocation and

storage design for power grids. The benefits of proposed techniques are presented

for real-time energy imbalance markets. Design variables regulating the electricity

markets and grid timelines govern the system dynamics, which in turn highlight

the benefits of forecasting. Increased flexibility of operations at shorter time-scales

emerges as a key factor for the reliable and efficient management of power grids.
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Chapter 1

Introduction

Global electricity demand grows by an average of 0.8% every year [1]. To

meet the increasing demand in a sustainable manner, it is imperative that we

exploit renewable resources. Amongst all the renewable energy sources, it is ex-

pected that the larger shares of renewable energy will come from solar and wind

energy technologies [1]. Global solar energy capacity has increased from 1.28 GW

to 138.86 GW over the past decade (2000-2013) [2], and this upward growth trend

is expected to continue. In the future, we will see an increase in grids with high

solar and wind energy penetration. However, due to increasing variability and un-

certainty in load demand and power generation, the intermittent nature of these

technologies presents many challenges in maintaining the grid reliability and stabil-

ity. Various solutions to compensate for the intermittency have been proposed e.g.

hybrid energy systems, storage, demand response, resource sharing, etc. The inte-

gration of all these proposed solutions is dependent on the quality of the available

information retrieved by forecasting.

Forecasting is a fundamental decision making tool for management and

operation of power grids. Intra-year and intra-month forecast is used for long term

strategic planning for construction and maintenance of the grid infrastructure,

intra-week forecast is used for electricity market participation, resource allocation

and unit commitment, intra-hour forecasting is applied for real-time scheduling,

load following and automatic generation control, etc.

With the changing power grid infrastructure, forecasting needs are also

1
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evolving to accommodate higher penetration of intermittent renewable energy

sources for instance solar and wind energy. There is a need to understand and

characterize changing net load profiles with increasing renewable energy penetra-

tion where net load represents the load that is traded between the power grids (e.g.

between a microgrid and a utility grid). This is important for resource sharing and

reserves allocation at the point of common coupling between the interconnected

grids and integration of fleet of microgrids with the macrogrid. For such future

grid scenarios, the standard forecasting methods need to be replaced with net load

forecasting i.e., a combination of load and solar forecasting.

1.1 Notation for forecasting

Three parameters that characterize a forecast are forecast horizon (k), fore-

cast interval (fi) and forecast resolution (fr) . For a given time t, the forecast

horizon is how many steps/time ahead a forecast needs to be issued. Forecast inter-

val is defined as the time range up to which the forecast is issued i.e [t+k, t+k+fi)

and lastly, the forecast resolution fr denotes the frequency at which the forecasts

are issued. The technical details of a forecast issued will be denoted as k/fifr. For

instance 15/105 in minutes implies that a given time t, the forecast is issued 15

minutes ahead for the forecast interval [t + 15, t + 25) minutes and the resolution

of forecasts is 5 minutes i.e. two forecast {[t+15,t+20), [t+20,t+25)} in minutes

are issued.

1.2 Organization of the thesis

A review on state-of-the-art load forecast models and proposed ensemble

re-forecast method is presented in Chapter 2. Chapter 3 characterizes the impact

of an increasing solar penetration on load forecast capabilities and highlights the

need for solar forecasting. Various solar forecasting techniques for forecast horizons

ranging from intra day to intra-hour are presented in Chapter 4. Chapter 5 covers

the optimal methods to integrate solar and load forecasting. The applications and
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benefits of the proposed forecasting methodologies are quantified and discussed in

Chapter 6. Lastly, the conclusions are drawn in Chapter 7.
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Chapter 2

Load forecasting

Load forecast plays a key role in operation, control, and management of

the grid. Each forecast depending on its forecast horizon has a specific application

for grid balancing and scheduling. Day-ahead market (DAM) load forecasts are

required by Independent System Operators (ISOs), utilities, and electricity market

participants for operation planning and unit commitment of generating plants.

Hour-ahead market (HAM) load forecasts are needed for real-time control and

load following. To compensate for the uncertainty in load forecasts ISO maintains

an operating reserve [3], which increases cost for ISOs, utilities, and customers [4].

Continuous research is being conducted to lower the uncertainty and in-

crease the accuracy of load forecasts. Various methodologies based on time-series,

regression, fuzzy logic, Artificial Neural Networks (ANNs), expert systems, hybrid

models, etc., have been proposed [5]. Most of these methods rely on external inputs

such as meteorological forecasts, temperature, dew point, etc., [6, 7]. Since no fore-

cast is completely accurate, the errors in meteorological forecasts are propagated

to the load forecasts [6]. Thus, the analysis of the forecast error distribution is

essential to reveal the error structure which, if systematic and non-random, could

be refined for better prediction.

We propose refining techniques that extracts the information from the struc-

tured forecast error needed to enhance forecast accuracy. The predictions are en-

sembled using optimized weights for the models, depending on their global, hourly,

and weekly performance. The proposed methodology is applied to forecast load.

4
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DAM load estimates provided by the ISOs are used as an exogenous input to

re-forecast HAM and DAM loads.

The major contribution of this study is the demonstration that with the

proper re-forecasting and ensemble techniques it is possible to substantially im-

prove publicly available utility and ISOs load forecasts. Moreover, we demonstrate

that it can be achieved without requiring any additional information (such as

weather forecast). Another contribution is that our algorithms can be used to

produce short-term forecasts based on the utility predictions, without requiring

exogenous information. The proposed ensemble re-forecast methods for load pre-

diction have several advantages: 1) methods are independent of seasonal cycles;

rather they depend on the structure in the forecast residues. However, seasonal

effects in the base forecast may influence the re-forecast produced by the proposed

algorithm 2) the weights of the time-variant model are updated as the new data

becomes available, so, the model is robust for the frequent changes in the time-

series, and 3) the models can make predictions for any forecast horizon given that

it is equal to or smaller than the forecast horizon of the input estimate.

The load data used in this study is from California Independent System

Operator (CAISO) and Electric Reliability Council of Texas (ERCOT). Real-time

load measurements, DAM and HAM load forecasts are publicly available on their

websites [8, 9].

The organization of the study is as follows: literature review about the load

forecast, ensemble methods, and re-forecast is presented in section 2.1; proposed

methodology is described in section 2.2; dataset used for validation is explained in

section 2.3; results are discussed in section 2.4 and the conclusions are drawn in

section 2.5.

2.1 Related research

Several comprehensive reviews on load forecasting techniques have been

published as research has progressed in this field. Comprehensive reviews on time-

series modeling and forecasting can be found in [6, 10, 11]. The authors in [11]



6

concluded that Box-Jenkins time-series models are well suited for Short Term Load

Forecast (STLF), but they do not capture the non-linearities in the load time-series.

To circumvent this problem, they proposed a polynomial regression to linearize the

relationship between load and temperature before using the time-series models.

A comparative evaluation of linear regression, stochastic time-series, general

exponential smoothing, states-space methods, and knowledge-based approaches

was presented in [12] by comparing their performance for the same load time-

series. They showed that the regression and state space methods do not respond

to sudden changes in load. Hence, the authors recommended to update the model

parameters automatically and develop models specific to weekends and holidays.

In the 1990s, Artificial Neural Networks (ANNs), fuzzy logic, and Compu-

tational Intelligence (CI) techniques became popular and several studies reviewing

their application for load forecasting were published [7, 13, 14, 15]. The studies

[7, 16] emphasized the need for more rigorous standard tests to compare the ANN

model performance and check for over-fitting and over-parameterization. Despite

these concerns, [13] stated that ANNs capture the non-linearities in load data bet-

ter than time-series based regression methods, and the potential of ANNs should

not be overlooked.

Results from the Artificial Neural Networks & Computational Intelligence

Forecasting competition (NN3 competition) were presented in [17] with a detailed

discussion on merits, demerits, and performance of CI and statistical methods. It

was observed that ensemble models outperformed the individual models. More

recent forecast and optimization methods like support vector regression (SVR),

simulated annealing, ant colony optimization, and other hybrid methods for energy

forecasting were reviewed in [18, 5, 19]. All these reviews highlight the promising

application of optimized hybrid and ensemble methods in load and other areas of

energy forecasting [20, 21, 22, 23, 24].

Following the conclusions that combining several methods outperform sin-

gle methods, we focus on ensemble optimization. Ensemble methods have been

rigorously applied and tested for load forecasting (see Table 2.1). For instance

in [25], local predictors were trained on selected inputs using k Nearest Neighbors



7

(kNN). This was beneficial because local predictors were able to retain the forecast

accuracy for longer lead times than global predictors. The studies [26, 27] proposed

using forecasted weather ensembles for load prediction. In [28], different training

sets were used to train a network committee. The study [29] could be seen as a

hybrid of [27, 28]. In this work various weather forecasts from different forecast

services were combined using adaptive weights and an ensemble comprised of five

ANNs.

The study [30] proposed an ensemble of kernels-based gaussian processes

(GPs) where the linear model parameters were selected using genetic algorithm

(GA), and showed that the ensemble outperforms SVR and ARMA. Various en-

semble methods like simple averaging, singular value decomposition (SVD) based

weighted averaging (for each hour separately), principal component analysis (PCA),

and blind source separation were investigated in [31]. The best results were ob-

tained by blind source separation method, where the data was decomposed into

statistically independent components and the time-series was reconstructed by fil-

tering the noise.

The studies [32, 33] proposed using selective ensemble techniques, i.e., a

combination of models was optimally selected to form an ensemble. A discrete

differential algorithm was used in [32] to select a combination of ANN models

whereas a meta-learning technique was applied in [33] to select models based

on meta-features like highest ACF, granularity, fickleness, etc. Results for vari-

ous load profiles with different forecast horizons were presented to show that the

meta-learning based ensemble is independent of load profile, forecast horizon, and

outperforms various well established load forecasting models.

Motivated by the results from ensemble methods we propose novel re-

forecast ensemble methods that filters the structured noise from a given estimate

to produce a better prediction. We address the issue of extracting the informa-

tion from non-random errors to further improve the forecasts. Previously, the

re-forecast concept was investigated by [34] for DAM load forecast, where the fore-

cast was updated to account for sudden changes in the weather. In this study no

sudden update is made once the forecast has been issued.
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Table 2.1: Ensemble models applied for short term load forecasting.

Ref. Exogenous inputs Input se-

lection

No. of

models

Forecast models Ensemble methods

[25] Average temperature,

maximum and mini-

mum temperature

k Near-

est

Neighbor

2 ANNs Mean

[26] 51 Forecasted weather

ensembles for temper-

ature, wind speed, and

cloud cover

51 Regression model Mean

[27] 51 Forecasted weather

ensembles for temper-

ature, wind speed, and

cloud cover

51 ANNs Mean

[28] Temperature and day-

type variables

3 ANN committee, abduc-

tive network committees

Mean

[35] Temperature, rainfall

index, & holiday index

Fuzzy hyperrectangular

composite neural network

Chaos-search genetic

algorithm and simu-

lated annealing

[29] Forecasted weather

from different ser-

vices combined using

adaptive weights

Bootstrap

sampling

5 ANNs Median

[32] Temperature 20 ANNs Mean and entropy

weighted method for

models selected us-

ing discrete differen-

tial algorithm

[31] Type of the day, sea-

son of the year

3 Multilayer perceptron

layer (MLP), self orga-

nizing map (SOM), and

fuzzy SOM

Mean, singular value

decomposition based

weighted averaging

(for each hour sep-

arately), principal

component analy-

sis decomposition,

and blind source

separation

[30] 3 Kernel-based gaussian

processes regression

Evolutionary opti-

mization

[33] Temperature (if avail-

able)

7 Random walk algorithm,

autoregressive moving av-

erage, similar days al-

gorithm, layer recurrent

neural network, MLP, ν-

support vector regression,

and robust LS-SVM

Meta learning
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2.2 Proposed methodology

The schematic for the proposed methodology to improve the accuracy of

publicly available utility and ISOs load forecasts and generate forecasts for shorter

forecast horizon with no exogenous input is shown in Fig. 2.1. A base forecast

with given forecast horizon k′ is required to apply this methodology to produce k

steps ahead forecast s.t. k ≤ k′. For k = k′, if the forecast residuals are white then

it is considered as the final forecast otherwise re-forecast and ensemble techniques

are applied unless the residuals are white. Similarly, for k < k′, re-forecast and

ensemble technique are applied directly to produce a short-term forecast and then

again the residues are checked for whiteness. In this study, the proposed method-

ology is applied for k = 1 and k ∈ {1, 2, · · · , 24} forecast horizon (in hours), the

forecast interval and forecast resolution is 1 hour for both cases. The details are

explained below.

2.2.1 HAM re-forecast

Using real-time system measurements, a given input u(t) is processed every

hour by ensemble re-forecast models (m) to produce HAM forecast ŷ(t+ k),

ŷ(t+ k) = m(y(t), y(t− 1), · · · , u(t), u(t− 1), u(t− 2), · · ·), (2.1)

where t is time and k = 1 is the forecast horizon. We use 24-hourly DAM

load estimates provided by the ISO as an exogenous input, filter it every hour

and produce HAM load forecasts for the system. For example, ISO DAM forecast

produced on June 11, 2013 for the following 24 hours is corrected hourly by our

re-forecast in order to produce HAM point forecast.

2.2.2 DAM re-forecast

The above idea is extended for DAM load prediction with forecast horizons

k ∈ {1, 2, · · · , 24}. In this case, hourly forecasts are made at midnight for each

hour h ∈ {1, 2, · · · , 24}, i.e., Ŷ =
[
ŷ(t+ 1), ŷ(t+ 2), · · · , ŷ(t+ 24)

]T
. The time-

series models m(h) are built specific for each hour of the day with an exogenous
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Base forecast 
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Figure 2.1: Schematic of the proposed methodology for ensemble re-forecasting.
A base forecast upto k′ steps ahead forecast horizon is required to produce k steps
ahead forecast s.t. k ≤ k′. If the forecast residuals are white then it is consider as
the final forecast else re-forecast and ensemble techniques are applied unless the
residuals are white.
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input consisting of estimates for that hour only u(t−24n)|n=0,1,··· and corresponding

actual measurements y(t−24n)|n=1,2,···. In summary, we use the twenty-four hourly

DAM estimated load provided by the ISO as an input, refine it by applying the

models developed for each hour, combine the forecast from all the models and

produce a vector of 24 load forecasts corresponding to all the hours of the next

day.

2.2.3 Preprocessing

The time-series is preprocessed to remove the outliers and days with missing

data. After preprocessing, the hourly time-series is generated and separated into

three disjoint datasets: training set (T), simulation set (S) and validation set (V).

The data points in T were used to derive a polynomial fit to detrend the time-series

and develop the models which were then tested using the S dataset. The forecasts

from T and S were combined to optimize the weights for the ensemble.

2.2.4 Detrending

In this work we applied a simple polynomial fit that captures the daily trend

for the electric load. Using a simple least squares method (from the Curve Fitting

toolbox available in Matlab) we determine that daily trends are best fitted by a

6th order polynomial as a function of time of the day t, specific for each weekday

w ∈ {1, 2, · · · , 7} where Sunday is represented as 1, Monday as 2, and so on. The

actual load data can be expressed as a sum of the polynomial fit and the detrended

load, i.e.,

y(t, w) = ψ(t, w) + δ(t, w), (2.2)

where y represents the actual load and ψ is the corresponding detrended

load using a polynomial fit for each day of the week δ(t, w). Similarly, the input

for the models, i.e., a given estimate u is detrended,

u(t, w) = µ(t, w) + δ(t, w), (2.3)

where µ is the detrended input using the polynomial fit δ(t, w).
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2.2.5 Re-forecast models

This study focuses on extracting the information from non-random noise

to produce better forecasts using time-series models with the assumption that the

model’s residue is a white Gaussian noise. The filtered output produced by any of

the models is called a re-forecast.

Various time-series models are applied at re-forecast stage. The linear and

non-linear time-series models used in this work are well defined in the literature

[6, 10, 11, 36]. Only a brief description is provided here.

Linear models

A generalized model (GM) that linearly combines current and past values

of the input µ(t) and past values of the output ψ(t) to model current output can

be defined as [36],

A(q)ψ(t) =
B(q)

F (q)
(q)µ(t− nk) +

C(q)

D(q)
(q)ε(t), (2.4)

where t represents time, nk is the input-output delay parameter, ε is assumed to

be white noise, q is a shift operator, and A(q), B(q), C(q), D(q), and F (q) are the

polynomials of order na, nb − 1, nc, nd, and nk, i.e.,

q±Nψ(t) = ψ(t±N), (2.5)

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na , (2.6)

B(q) = b1 + · · ·+ bnb
q−nb+1, (2.7)

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc , (2.8)

F (q) = 1 + f1q
−1 + · · ·+ fnf

q−nf , (2.9)

D(q) = 1 + d1q
−1 + · · ·+ dnd

q−nd . (2.10)

Based on the application of GM and information about the physical system

one or many polynomials can be fixed to unity. In this study we also apply the

other forms of GM such as Autoregressive model with exogenous input (ARX),
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Autoregressive moving average model with exogenous input (ARMAX), and Box-

Jenkins model (BJ). Table 2.2 lists the polynomials used in each one of these

models.

Table 2.2: Polynomials used for various model structures

Model Parameters A(q) B(q) C(q) D(q) F (q)

ARX X X

ARMAX X X X

BJ X X X X

GM X X X X X

Non-linear model

To model the non-linearities in the load time-series we use the Non-linear

Autoregressive model (NARX). In this model the current output is expressed as a

non-linear combination of the input and the past values of the output,

ψ(t) = f(ψ(t− 1), ψ(t− 2), · · · , µ(t), µ(t− 1), µ(t− 2), · · ·), (2.11)

where f(·) can be computed using any non-linear estimator. In this study,

we use a wavelet network non-linear estimator. The prediction error method

(PEM) is applied to derive the model parameters that minimize the weighted

norm of the prediction error for the dataset T.

2.2.6 Ensemble re-forecast

Ensemble re-forecast is produced by combining the above re-forecasts. The

trend δ(t, w) is added to the re-forecast ψ̂(t) to produce a final re-forecast ŷ(t),

ŷ(t, w) = ψ̂(t, w) + δ(t, w). (2.12)

We investigate three ways of forming an ensemble by optimizing the weights

based on global, hourly, and weekly performance of the models. The mathematical

details about the proposed ensembles are provided in the next subsections.
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Least squares model ensemble (LS-ME)

An ensemble forecast φ̂ for any given time t is produced by linearly com-

bining forecasts from n forecasting models for k forecast horizons,

Ŷ =


ŷ1,1 ŷ1,2 · · · ŷ1,n

ŷ2,1 ŷ2,2 · · · ŷ2,n

...
...

. . .
...

ŷk,1 ŷk,2 · · · ŷk,n

 , (2.13)

using the weights W =
[
ω1, ω2, · · · , ωn

]T
, i.e.,

φ̂ = Ŷ W (2.14)

For HAM load prediction k = 1 and for DAM k = {1, 2, · · · , 24}. The

weights ωi are optimized based on the global performance of the models ap-

plied to the T and S datasets, which consist of p actual load measurements

Y =
[
y1, y2, · · · , yp

]T
. Each measurement can be uniquely identified by a times-

tamp T =
[
t1, t2, · · · , tp

]T
. Correspondingly, there are p hourly forecasted data

points from n forecasting models ŷi,j for i = 1, 2, · · · , p and j = 1, 2, · · · , n,

Ŷ =


ŷ1,1 ŷ1,2 · · · ŷ1,n

ŷ2,1 ŷ2,2 · · · ŷ2,n

...
...

. . .
...

ŷp,1 ŷp,2 · · · ŷp,n

 . (2.15)

The forecasted data points Ŷ are combined using W =
[
ω1, ω2, · · · , ωn

]T
to

produce a final forecast φ̂ =
[
φ̂1, φ̂2, · · · , φ̂p

]T
with an error E =

[
e1, e2, · · · , ep

]T
,

y1

y2

...

yp

 =


ŷ1,1 ŷ1,2 · · · ŷ1,n

ŷ2,1 ŷ2,2 · · · ŷ2,n

...
...

. . .
...

ŷp,1 ŷp,2 · · · ŷp,n




ω1

ω2

...

ωn

 +


e1

e2

...

ep

 =


φ̂1

φ̂2

...

φ̂p

 +


e1

e2

...

ep

 , (2.16)
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such that E = Y − Ŷ W , where W is approximated using linear least squares with

an objective function of minimizing the sum of squares of errors, i.e., G(T,W ) =

1
2
ETE, whose global solution is W = (Ŷ T Ŷ )−1Ŷ TY ∈ Rn.

Least squares hourly ensemble (LS-HE)

In this model an ensemble forecast φ̂(h) depends on the hour of the day h,

which can be easily retrieved from the timestamp t, i.e., h ⊂ t. φ̂(h) is produced

by linearly combining forecasts for the hth hour from n forecasting models with

k forecast horizons ŷij(h), i ∈ {1, 2, · · · , k} and j ∈ {1, 2 · · · , n} using the weights

ωj(h),

φ̂(h) =
k∑
i=1

n∑
j=1

ŷi,j(h)ωj(h). (2.17)

Using the timestamps T , only q data points with q ≤ p corresponding to hth hour

are considered to compute the weights wi(h) and the same procedure as defined

above is followed, i.e.,


y1(h)

y2(h)
...

ŷq(h)

 =


ŷ1,1(h) ŷ1,2(h) · · · ŷ1,n(h)

ŷ2,1(h) ŷ2,2(h) · · · ŷ2,n(h)
...

...
. . .

...

ŷq,1(h) ŷq,2(h) · · · ŷq,n(h)




ω1(h)

ω2(h)
...

ωn(h)

+


e1(h)

e2(h)
...

eq(h)

 =


φ̂1(h)

φ̂2(h)
...

φ̂q(h)

 +


e1(h)

e2(h)
...

eq(h)

 . (2.18)

The above algorithm is repeated twenty-four times ∀h ∈ {1, 2, · · · , 24} to

compute individual weights for each hour of the day for all n models. In this case,

W ∈ Rn,h.

Least squares weekday ensemble (LS-WE)

This model produces ensemble forecast φ̂(d) depending on the day of the

week d ∈ {1, 2, · · · , 7}, which can be computed from the timestamp t, i.e., d ⊂ t.
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φ̂(d) is produced by linearly combining forecasts from n forecasting models with

k forecast horizons ŷij(h), i ∈ {1, 2, · · · , k} and j ∈ {1, 2 · · · , n} using the weights

ωi(d) specific for each weekday,

φ̂(d) =
k∑
i=1

n∑
j=1

ŷi,j(d)ωj(d). (2.19)

In this case, from the dataset using T , only r data points with r ≤ p corresponding

to d are considered to compute the weights ωi(d),


y1(d)

y2(d)
...

ŷr(d)

 =


ŷ1,1(d) ŷ1,2(d) · · · ŷ1,n(d)

ŷ2,1(d) ŷ2,2(d) · · · ŷ2,n(d)
...

...
. . .

...

ŷr,1(d) ŷr,2(d) · · · ŷr,n(d)




ω1(d)

ω2(d)
...

ωn(d)

+


e1(d)

e2(d)
...

er(d)

 =


φ̂1(d)

φ̂2(d)
...

φ̂r(d)

 +


e1(d)

e2(d)
...

er(d)

 . (2.20)

The above algorithm is repeated seven times ∀d ∈ {1, 2, · · · , 7} to compute

individual weights for each weekday and forecasting model. For this ensemble

W ∈ Rn,d.

2.2.7 Recursive least squares model ensemble (RLS-ME)

This method only applies to point forecast with one forecast horizon. For

real-time application, this model produces an hourly ensemble forecast φ̂(t) de-

pending on the time of the forecast t. φ̂(t) is produced by linearly combining

forecasts from n forecasting models, ŷi(t), i ∈ {1, 2, · · · , n} using the weights wi(t)

updated based on the last measurement,

φ̂(t) =
n∑
i=1

ŷi(t)ωi(t). (2.21)
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The model is initialized using the weights computed by the LS-ME method

as they represent the best estimate of weights for the individual model. The weights

wi(t) are updated using the following RLS algorithm [37],

ω(t) = ω(t− 1) +K(t)(y(t)− ŷ(t)′)ω(t− 1), (2.22)

K(t) =
P (t− 1)ŷ(t)

1 + ŷ(t)′P (t− 1)ŷ(t)
, (2.23)

and

P (t) = (I −K(t)ŷ(t)′)P (t− 1). (2.24)

2.3 Data

As explained in section 3.3, the collected data was preprocessed and sepa-

rated into three disjoint datasets: training set (T), validation set (V), and testing

set (T). For details see Table 2.3 and Fig. 2.2. The results presented in this

study are for the T dataset. As mentioned above, we implemented load re-forecast

models for two ISOs: CAISO and ERCOT.

Table 2.3: Details for the dataset used for HAM and DAM forecast.

Data

source

Dataset

label

Time-period Data

points

CAISO

T 11/2/2012 to 2/28/2013 2256

V 3/1/2013 to 3/17/2013 360

T 3/18/2013 to 6/11/2013 2016

ERCOT

T 12/01/2012 to 04/14/2013 1848

V 04/15/2013 to 04/30/2013 336

T 05/01/2013 to 06/20/2013 528

2.3.1 California Independent System Operator (CAISO)

CAISO operates the power grid and electricity market for California (CA).

It covers almost 80% of the California-Mexico (CAMX) power area [38, 39]. The
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Figure 2.2: The CAISO time-series (top) shows load measurements from Novem-
ber 2, 2012 to June 11, 2013. The ERCOT time-series (bottom) shows load mea-
surements for Texas, ranging from December 1, 2012 to June 20, 2013. The mea-
surements on the left of the shaded region represent training set T, the shaded
portion highlights validation set V, and the time-series on the right of the shading
region is testing set T. The influence of heat and summer weather can be seen
in T with sudden spikes and increase in load demand. It can be observed that
the ERCOT load profile is highly variable and even daily trends are change as the
seasons change from winter to summer season.
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remaining 20% of CA’s state load is covered by the Los Angeles Department of

Water and Power, the Sacramento Municipal Utility District, and the Imperial

Irrigation District. Their load forecasts are based on the weather data provided

by the NOAA National Weather Service for various stations in CA.

2.3.2 Electric Reliability Council of Texas (ERCOT)

ERCOT covers almost 85% of Texas’ load [40]. With centralized control

ERCOT is responsible for transmission reliability, wholesale open access, and man-

agement of wholesale market for balancing energy and ancillary services for Texas.

2.4 Results and discussion

The above methods were implemented in Matlab using the system identifi-

cation toolbox. The results and discussion presented here are for the re-forecasts

and ensemble re-forecasts produced for the validation set, i.e., ŷ, φ̂ ∈ T. For the

RLS algorithm, the HAM re-forecast started two days before the validation set to

discard the initial effect of sudden unstable changes in weights. However, only the

results from V were used in the error analysis.

For HAM, the parameters of the CAISO time-series model were selected

using minimum description length (MDL) criterion. Using those parameters as

reference, similar parameters were selected for ERCOT with small changes (Table

2.4). For DAM, global search was performed using data points in T and S. Before

applying least squares ensemble methods for DAM load, the forecast vector was

produced by combining the re-forecast from various models. They are denoted as

ARX-E, ARMAX-E, BJ-E, GM-E, and NARM-E to represent their ensemble for

DAM load forecasts.

2.4.1 Error statistics

Standard error metrics commonly used to compare the performance of the

forecast models are: Mean Absolute Percentage Error (MAPE), Mean Absolute
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Table 2.4: Number of model parameters used for CAISO and ERCOT re-forecast
time-series models.

Model Parameters na nb nc nd nf nk

CAISO-HAM 2 3 5 5 3 24

ERCOT-HAM 2 3 5 5 3 23

CAISO-DAM 2 2 2 2 2 0

ERCOT-DAM 2 2 2 2 2 0

Table 2.5: Statistical error metrics for HAM load forecast using various models
for CAISO (3-18-2013 to 06-11-2013) and ERCOT (05-01-2013 to 06-20-2013).

Model
CAISO ERCOT

MAPE (%) MBE (MW) MAE (MW) RMSE (MW) MAPE (%) MBE (MW) MAE (MW) RMSE (MW)

ISOs 1.57 255.64 379.99 519.05 2.20 26.32 798.75 1009.12

ARX 0.88 45.99 224.13 303.66 1.91 286.80 695.64 897.12

ARMAX 0.88 39.06 224.37 303.48 1.74 225.46 630.53 818.15

BJ 0.90 34.63 228.67 306.75 1.77 211.65 644.91 836.70

GM 0.90 -0.03 229.52 308.60 1.68 203.95 614.67 792.07

NARX 0.84 34.60 215.42 292.90 1.79 313.26 650.85 853.72

LS-ME 0.85 31.70 218.09 294.37 1.63 217.28 593.16 769.44

LS-DE 0.89 28.76 225.52 304.72 1.64 214.80 598.57 771.69

LS-HE 0.88 52.43 227.42 300.11 1.39 201.37 518.64 707.58

RLS-ME 0.88 58.65 224.77 302.63 1.70 231.16 650.03 815.37

Error (MAE), Mean Bias Error (MBE), and Root Mean Square Error (RMSE).

MAPE measures the accuracy of a method in terms of percentage error. A MAPE

of zero implies a perfect fit, but there is no upper bound on its value. The mean

of absolute errors is represented by MAE and bias in the forecast is represented by

MBE. RMSE measures the average squared distance between the measured and

forecasted load. The results after applying these metrics for the proposed models

are presented in Table 2.5 and 2.6. The individual models are well-established base

models for load forecasting. They were evaluated before combining to compare the

re-forecasts using a single model and ensemble model. This gives an insight to the

reader how much improvement is achieved by re-forecast using a single model and

then further by combining them.

HAM re-forecast

For CAISO, NARX performed the best with a MAPE of 0.85% which

presents a 47% improvement over the internal HAM forecast produced by CAISO.
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Table 2.6: Statistical error metrics for the DAM load forecast using various models
for CAISO (3-18-2013 to 06-11-2013) and ERCOT (05-01-2013 to 06-20-2013).

Model
CAISO ERCOT

MAPE (%) MBE (MW) MAE (MW) RMSE (MW) MAPE (%) MBE (MW) MAE (MW) RMSE (MW)

ISOs 2.26 370.37 570.55 718.86 3.76 -108.48 1359.71 1663.55

ARX-E 1.64 155.61 437.30 604.51 2.81 430.22 1098.04 1669.98

ARMAX-E 1.99 -52.29 518.97 683.69 2.98 522.77 1173.04 1667.83

BJ-E 1.48 55.71 393.91 558.10 2.76 129.95 1026.14 1357.29

GM-E 1.47 55.25 391.04 545.81 2.00 64.09 776.37 1140.42

NARX-E 1.61 72.91 429.30 597.77 3.00 703.77 1183.02 1778.51

LS-ME 1.47 8.87 391.11 544.35 2.15 49.94 819.27 1142.21

LS-DE 1.54 13.33 407.95 562.36 2.31 143.02 889.64 1283.66

LS-HE 1.55 2.27 411.30 563.74 2.38 293.66 920.19 1337.18

The GM forecast had the lowest bias in the forecast. NARX and LS-ME perfor-

mance is almost the same in terms of RMSE. Although BJ showed improvement

in forecast when compared to CAISO, it performed the worst out of the other

re-forecast models.

For ERCOT, the re-forecast showed an improvement of 36% over the ex-

isting HAM forecast produced by the ISO. Compared to all the models, LS-HE

performed the best with the lowest MAPE of 1.39% and RMSE of 707.58 MW. As

in the previous case, all the models showed improvement over the internal forecast

provided by the ISO. Amongst all the forecast methods implemented in this study,

ARX performed the worst. In terms of MBE, no model was able to perform better

than the ERCOT forecast. In both cases, the RLS-ME forecast model performed

similar to any other LS-based ensemble model.

DAM re-forecast

The re-forecasts combined from various GM models (GM-E) showed the

best results with a MAPE of 1.47% and 2.00% in comparison to all other methods

for both CAISO and ERCOT datasets. In terms of MBE, LS-based ensemble

methods performed the best for both cases.

Comparing the results from both HAM and DAM re-forecasts, it can be

inferred that ensemble methods are robust for any forecast horizon or error statis-

tics. This highlights the promising application of ensemble re-forecasting for better

prediction. Moreover, all the time-series models used are based on the assumption
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that ε is white-noise which is validated using a correlation analysis presented in

the next section.

2.4.2 Residual analysis

Correlation analysis

The assumption in time-series forecasting is that the residue of the forecast

should be a white noise. If the residues are not white, then the information in the

residues can be used to enhance model performance. In our experience the residuals

from CAISO and ERCOT forecasts showed a periodic correlation in ACF that

served as a motivation to apply re-forecast. The autocorrelation function (ACF)

and partial correlation function (PCF) of the forecast residuals produced by the

ISO and the re-forecast model for HAM are shown in Fig. 2.4. The residuals

from the re-forecast are white and performance of the models shows improvement,

which validates the assumption. One drawback of this analysis is that it does

not provide any information about the time of the errors which is very important

in load forecasts as the errors during peak times have higher implications on the

stability of the grid than off-peak times. Thus, a temporal analysis of errors is

discussed below.

Temporal analysis

For CAISO load demand, midnight to 5:00 am PDT in the morning is

considered super off-peak time, 6:00 am to 12:00 noon and 8:00 pm to midnight

PDT is considered off-peak time, and noon to 8:00 pm PDT is considered an on-

peak time. The grid is very sensitive during on-peak times because of high demand.

Figure 2.5 shows the mean and standard deviation in HAM load forecast errors

from CAISO and re-forecast model (NARX). This analysis shows that the CAISO

forecast is the worst during super off-peak times. As the time-period changes to

off-peak and on-peak times, the forecast improves significantly. Hence, the forecast

error is smallest during on-peak times with the lowest standard deviation.

The performance of the re-forecast model is consistent throughout the day.
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Figure 2.3: Time-series of actual CAISO load and HAM load prediction for
several days in 2013 by CAISO and NARX re-forecast model (top) and the instan-
taneous absolute error (bottom). The time-series shows change in load profiles for
weekdays and weekends. In addition, it can be seen that a day like 05-13-2013 has
a different load profile than the rest of the days, which can be attributed to the
weather conditions. The CAISO model does not perform well during off-peak hours
(22:00-8:00 PDT) and the forecast for this period is corrected by the re-forecast
model.
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Figure 2.4: Autocorrelation and partial autocorrelation for the residuals from
CAISO and NARX re-forecast models for HAM load prediction. The dashed line
represents the 95% confidence interval. It can be noticed that the residuals from
re-forecast model are white whereas the ACF for CAISO residuals is greater than
0.05 which implies the presence of structured systematic errors. Similar pattern
was observed for the ERCOT dataset.
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Figure 2.5: Temporal distribution of the mean error (actual load-forecast HAM
load) over the day for CAISO (left) and ERCOT (right). The error-bar shows the
standard deviation in error for that hour of the day where 0 represents a perfect
forecast with 0 MW error. It can be noticed that the accuracy of the CAISO model
significantly improves during on-peak times than super off-peak and off-peak times
whereas the performance of the re-forecast model (NARX) is consistent over the
day. A similar pattern can be observed for ERCOT where re-forecast (LS-HE)
shows improvement only for partial hours during on-peak times (5:00 pm to 9:00
pm) and significant improvement during super off-peak and off-peak times.

The re-forecast model significantly improves the forecast in super-off peak and

off-peak times. During on-peak times, the re-forecast shows improvement only for

certain hours (6:00 pm to 8:00 pm PDT). The variance in the CAISO forecast is

smaller than the re-forecast with almost the same mean value. It can be inferred

that for on-peak times CAISO forecast is the best (12:00 noon- 6:00 pm PDT)

compared to any re-forecasts whereas for all other times the re-forecast has poten-

tial to improve the forecast produced by the ISO. Similar results were found for

ERCOT (see Fig. 2.5) and DAM load forecasts.

2.5 Summary

We proposed a re-forecast methodology to enhance performance of STLF

load prediction by extracting the information from the structured non-random er-

rors in the given estimate. The re-forecast ensembles consist of various time-series

models combined using least squares optimization. Different ensemble combina-

tions, with the weights optimized based on global, hourly, and weekday perfor-

mance of the models, are proposed and investigated in this study. For real-time

load prediction, the weights are updated at every time-step new data becomes
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available using recursive least squares. The results are presented for two types of

load forecasts: HAM and DAM load for both CAISO and ERCOT. For HAM,

point load forecast is produced at every hour. For DAM point forecasts are pro-

duced at midnight for all twenty-four hours of the next day. The re-forecast results

showed an improvement over the internal forecast provided by the ISOs.

For HAM, NARX and LS-ME performed the best for CAISO. For ERCOT,

LS-HE performed the best with a MAPE of 1.49% as compared to ERCOT forecast

MAPE of 2.24%. RLS-ME improved forecast accuracy with a MAPE of 0.88% for

CAISO and 1.70% for ERCOT. Similarly, for DAM load prediction, GM-E and

LS-ME performed the best for both CAISO and ERCOT dataset. Therefore, we

can conclude that the methods proposed in this study can significantly enhance

the accuracy of load prediction. This facilitates prospective improvements in all

aspects of grid management and operations.

Correlation analysis of the forecast residuals from ISOs revealed structured

non-random errors in their estimates. Application of re-forecast refined the fore-

cast with white noise errors. Temporal analysis of the residuals showed that the

internal forecasts by the ISOs have the highest error during off-peak times and

their forecast accuracy significantly improves for on-peak times. The re-forecast

refines the forecast with significant improvements during off-peak times and small

improvements during on-peak times. Similar results from two ISOs with different

load profiles and forecast horizons validates the robustness of our models. Hence,

the proposed methodology is applicable to ISOs and power utilities, and has the

ability to substantially enhance the accuracy of current load forecasts.
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Chapter 3

Impact of increasing solar

penetration on load forecasting

California generated approximately 20% of its in-state power using renew-

able energy resources in 2011 [41]. This percentage must increase substantially by

2020 if the state is to meet the guidelines mandated by its Renewable Portfolio

Standard (RPS), which stipulates that a minimum of 33% of in-state electricity

must originate from renewable resources like solar, wind, tidal and small hydro-

electric power plants. To achieve this aggressive goal of RPS, California’s AB 920

assembly bill allows customer-generators to receive a financial credit for the power

fed back into the grid by their renewable generation system. Due to the inherent

variability of renewable resources, most notably solar and wind, the increase in re-

newable energy penetration results in additional variability and uncertainty in the

power put into the electric grid [42, 43]. This situation can also result in additional

variability and uncertainty in customer demand if the onsite power generation is

not enough to meet the customer’s demand. Given that the concept of onsite re-

newable energy generation is relatively new, its impact on customer demand and

load forecast is unclear. This impact needs to be well understood to ensure a

reliable grid operation as the planning of resource allocation depends greatly on

demand load forecast. Accurate load forecasts are important given that, accord-

ing to Western Electricity Coordinating Council (WECC)[3], the power systems

must maintain an operating reserve to balance against the forecasting error and

26
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other unexpected power source failures in the electric grid. To fill this gap, we

present a comprehensive case study of UC Merced campus with 1 MW of onsite

solar generation plant.

Through a Power Purchase Agreement UC Merced campus contracted a

single-axis tracking solar farm that annually produces 3-54% of the daily daytime

campus power demand, making the campus a good proxy to study the impact

of onsite solar generation. The centralized HVAC (Heating, Ventilation and Air

Conditioning) system for the campus includes a Thermal Energy Storage (TES)

water tank that operates at night when electricity prices and ambient temperature

are lowest. For these reasons the load profile of UC Merced has a lower power

demand during the day and higher power demand during the night which, generally

speaking, is inverted with respect to the usual load profile for similar facilities [44]

– see Fig. 3.1. With current efforts to integrate more solar energy into the power

grid, such as the net energy metering, we expect that such load profiles will become

more common in the future. The additional variability in the demand load together

with diurnal and annual solar cycles results in bigger challenges in load forecasting,

balancing the power grid and managing ancillary systems [42, 45, 46]. Accurate

forecasts of both demand and supply profiles are being pursed to mitigate these

issues and guarantee adequate supply of electricity and reliable grid operation.

The earliest efforts to forecast electrical demand go back to the 1960s [47].

Several reviews on load forecasting methods have been published [15, 18, 10, 48,

12, 49, 50, 7, 13, 5] and there is continuous research to develop better methods [51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. Because load profiles are expected to

change with onsite renewable energy generation especially with intermittent solar

generation [45]. It is very important to analyze the forecast model performance

for such scenarios. Therefore, two cases were studied for 15-minute and 1-hour

forecasting horizon: onsite generation and no onsite generation. Onsite generation

case represents the campus power demand from the grid after consuming all the

solar power produced on campus. No generation refers to the power demand

that campus would have extracted from the electric grid if there was no solar

generation on the campus. As seen in Fig. 3.1 the former is greatly affected
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Figure 3.1: UC Merced load profile for 06-Oct-2010 through 09-Oct-2010. The
UC Merced campus has a unique load shape because the majority of the HVAC
load (LCP ) has been shifted to the night time using Thermal Energy Storage
(TES). The total energy consumed by the campus (Lng), comprise of the energy
from the solar farm and energy from electric grid, is comparatively smoother than
the demand load (Lg) that is affected by onsite solar generation.

by the variability of the solar resource. Several well established Short-Term Load

Forecast (STLF) methods were applied to predict these two time-series: persistence

models, regression based models and machine learning models. To make it simple

and rely less on inputs, methods with non-exogenous inputs were applied in line

with some of our previous work [23]. Like previous works that have studied the

error distribution for wind forecasts [64, 65, 66, 67], we characterized the error

distribution of our predictions in order to understand the impact of additional

variability in forecast accuracy.

The data used for this study is presented in section 3.1. The models are

described in section 3.2. Results and discussion are presented in section 3.3, where

the accuracy of the forecasting models is evaluated and compared using standard

statistical error metrics. The forecast error distribution is presented and charac-

terized for the two scenarios, and the impact of onsite solar generation on forecast

error is analyzed for different solar power variability levels. The main conclusions

of this study are presented in section 3.4.
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3.1 Data

In this work we used two datasets: UC Merced demand load from the grid

(campus demand after consuming all the solar power produced on campus) which

represents the onsite generation case (Lg) and total UC Merced power demand

(demand that the campus would extract from the grid if there was no solar power

plant), which represents the no onsite generation case (Lng). Lng was obtained by

adding the power consumed from the grid and the solar farm power output, that

is Lng(t) = Lg(t)+LPV (t) where LPV represents the solar power generation on the

campus. For all cases the data points consisted of 15 minute backward averages.

3.1.1 Preprocessing data

The time-series was decomposed by removing the daily trend calculated

over the whole year. A 6th order polynomial (P ) was fit to both cases as shown in

Fig. 3.2. The detrended demand loads can be represented as no onsite generation

Ldtng(t) = Lng(t)− Png(t) and onsite generation Ldtg (t) = Lg(t)− Pg(t).
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Figure 3.2: Daily demand load profile for the UC Merced campus with no onsite
power generation (top) and onsite solar power power generation (bottom). The
trend in the daily load profile is computed by fitting a 6th order polynomial (P ) to
daily load profile over the whole year.
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3.1.2 Training and testing datasets

Throughout this study we assumed the following:

1. At UC Merced, the solar power produced is consumed at the time of pro-

duction (there is no storage). Therefore, given that the focus of this study

is to analyze the impact of onsite solar generation, only daytime hours were

considered.

2. The TES load at UC Merced is a deterministic load, that is, it is always

known beforehand. Therefore, the load demand due to TES is removed from

the datasets. Since the TES is operated at night this assumption is included

in the previous one.

3. Like any office or school building UC Merced has different load profiles for

weekdays, weekends and holidays. Because we wanted to isolate the impact

of onsite generation from the other factors (such as school occupancy) we

only considered work days for the year 2010 in our dataset.

After taking into account the above assumptions the resulting time-series

was further separated into two disjoint datasets:

1. Training or model evaluation set: it consists of data from Jan 2010 to Dec

2010 minus a week from each month.

2. Testing set: data used to test the models performance and robustness for

different times of the year. This dataset consists of a week from each month

(the data not included in the training set).

3.2 Load forecast methods

Forecasting models for time-series often use the series’ past values as inputs.

Because of that, it is useful to introduce the forward shift operator (qN) and

backward shift operator (q−N)[36]

q±NL(t) = L(t±N) (3.1)
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where L(t) represents the load demand time-series for both cases, and N is the

number of 15-minute time steps (because the time-series consists of 15-minute time

averages).

3.2.1 Persistence-Load (PL)

The Persistence Model is one of the simplest forecasting model. It is based

on the assumption that the current state of the system persists between the present

time and the time of the forecast. Mathematically, the forecasted load (L̂) can be

represented as

L̂(t) = q−NL(t) (3.2)

where N is 1 for the 15-minute and 4 for the 1-hour forecast horizons, respectively.

3.2.2 Smart Persistence-Load (SPL)

The performance of the Persistence Model can be improved by using in-

formation about the time-series trend. Such a model is termed Smart Persistence

(SPL) model. The additional information can be added in two ways:

1. SP1L: this model assumes that the difference, with respect to the trend,

persists to the future. In mathematical terms it can be represented as

L̂(t) = q−NL(t)− q−NP (t) + qNP (t). (3.3)

2. SP2L: a second variation of the persistence model assumes that the ratio

between the time-series and its trend remains unchanged in the future. This

persistence model can be represented as

L̂(t) =
q−NL(t)

q−NP (t)
qNP (t). (3.4)

3.2.3 Autoregressive (AR)

Another model tested in this work is the autoregressive model. This model

is a generalization of the persistence model in the sense that it may involve any
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lagged past values of the time-series. Mathematically, it can be presented as [36]

L(t) + a1L(t− 1) + · · ·+ anaL(t− na) = e(t). (3.5)

Introducing the polynomial A(q) which contains lagged values given by

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na , (3.6)

the AR-model becomes

A(q)L(t) = e(t) (3.7)

where e(t) is the disturbance in the time-series which cannot be characterized by

the lagged past values of the time-series.

3.2.4 Autoregressive Moving Average (ARMA)

In ARMA models, information about the lagged past values of the distur-

bance term, e(t) is added to the model. The mathematical expression for ARMA

models is

L(t) + a1L(t− 1) + · · ·+ anaL(t− na) = e(t) + c1e(t− 1)+

· · ·+ encL(t− nc), (3.8)

which, with the introduction of the operators A(q) and C(q)

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na , (3.9)

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc , (3.10)

can be rewritten as

A(q)L(t) = C(q)e(t). (3.11)

3.2.5 k-th Nearest Neighbor (kNN)

The kNN algorithm is one of the simplest methods among the machine

learning algorithms. It is a pattern recognition method for classifying patterns or

features [68]. The classification is based on the similarity of a pattern of current
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values with respect to training samples in the feature’s space. For the purpose of

forecasting time-series, the kNN model looks into the series’ history and identifies

the timestamps that resemble the current conditions most closely. Once the best

matches are found the forecast is determined using values from the time-series

subsequent to the matches.

In this work the patterns, or features, consisted of the past hour values.

The features for time t are assembled in the vector ~p(t) with components pj. The

features for historical data are assembled in a matrix Aij whose rows correspond

to the vector of features for each time in the historical dataset. Once the matrix

Aij is assembled, we compared the vector of features pj against all the rows in Aij

ei =

√∑
j

(Aij − pj)2. (3.12)

The list of errors was sorted in ascending order and the indices correspond-

ing to the first N elements (where N = 10 in this case) of the sorted list were

taken as the best matches. With the sets of best matches determined, the forecast

for time t is calculated as

L̂(t) =

∑N
i=1wiLtrain,i∑N

i=1wi
, (3.13)

which involves only data in the training set. Different forecasted values can be

obtained depending on the weights wi. In this work we used two distributions for

wi.

kNN1

In the first one, every term Ltrain,i is weighted equally that is ~w = {1, 1, · · · , 1}.

kNN2

For the second kNN forecast the weights vary linearly, with the highest

weight attributed to the term associated with smallest error (first term of Ltrain,i)

and the lowest weight attributed to term with the largest error (the last term),

that is, ~w = {10, 9, · · · , 2, 1}.
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3.2.6 Error metrics

The different models presented above were compared quantitatively with

standard statistical analysis of the forecast error, which is calculated as the differ-

ence between the forecasted value and the measured value. In this work we used:

Mean Absolute Error (MAE), Mean Bias Error (MBE), Root Mean Square Error

(RMSE) and Coefficient of determination (R2). The MBE is a measure of system-

atic errors (or bias), the RMSE is a measure of random errors and the MAE is the

magnitude of the forecasting error. The coefficient of determination R2 measures

the level of dispersion about the 1:1 line in a scatter plot of measured vs. forecasted

values. A coefficient of determination of 1 means a perfect forecast. In addition to

these error metrics, a new metric known as forecast skill (s) [69] is used to compare

the accuracy of the forecasting models with respect to the persistence model

sModel ≈ 1− RMSEModel

RMSEPersistence

. (3.14)

3.3 Results and discussion

The forecasting models explained above were implemented in Matlab. The

persistence models and the kNN models are fully specified with the information

supplied above. On the other hand, the actual form of the AR and ARMA models

(the values of the coefficients in the polynomials A(q) and C(q)) was computed

using the System Identification toolbox in Matlab. For this process, following the

parsimony principle, only 4 parameters were used in these models. For AR, the

coefficients of the polynomial A(q) are listed in Table 3.1 and for ARMA, the

coefficients for A(q) and C(q) are listed in Table 3.2.

These results were obtained with the detrended training dataset. However,

for the error analysis that follows next, the trend was added to the results and the

error was calculated using actual and forecasted demand loads.
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Table 3.1: The coefficients of the polynomial A(q) for AR model for the two cases:
no onsite generation (no) and onsite solar generation (yes).

Forecast horizon Case A(q)

1-hour
no 1− 0.72q−1 − 0.07q−2 − 0.12q−3 − 0.06q−4

yes 1− 0.89q−1 + 0.03q−2 − 0.07q−3 − 0.01q−4

15-minute
no 1− 0.79q−1 − 0.11q−3 − 0.06q−4

yes 1− 0.92q−1 + 0.05q−2 − 0.08q−3

Table 3.2: The coefficients of the polynomials A(q) and C(q) for ARMA model
for the two cases: no onsite generation (no) and onsite solar generation (yes).

Forecast horizon Case A(q) C(q)

1-hour
no 1− 0.93q−1 − 0.06q−2 1− 0.21q−1 − 0.14q−2

yes 1− 1.8q−1 + 0.85q−2 1− 0.96q−1

15-minute
no 1− 1.14q−1 + 0.15q−2 1− 0.35q−1 − 0.13q−2

yes 1− 0.95q−1 1− 0.03q−1 − 0.08q−2

3.3.1 1-hour forecasts

The results for various statistical error metrics for this forecasting horizon

are tabulated in Table 3.3. From the results listed for no onsite generation we can

conclude that the best models are the Smart Persistence models and the regression

models (AR and ARMA) which perform similarly in terms of R2. On the other

hand, the kNN2 model performs the worst with a negative forecast skill. From this

table we conclude that in terms of MAE and RMSE, SP1 and SP2 models perform

the best. These observations show that for no onsite generation case (smoother

load curves), simple models based on persistence can perform very well with the

highest forecast skill of 0.24.

In the case of onsite solar power generation case, for the 1-hour demand

forecast, the regression based models AR and ARMA both capture the relationship

in the time-series better than the other models in terms of R2 (see Table 3.3). In

terms of forecast skill the AR model performs the best with s = 0.1. However,

in terms of MAE and RMSE, the error is smallest in case of the SP2. As in the

previous case, the kNN models perform the worst with negative forecast skill, s
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Table 3.3: Statistical error metrics for the 1-hour demand load forecasting with
no onsite generation and with onsite solar generation.

Model
Without onsite generation With onsite solar generation

MAE (kW) MBE(kW) RMSE (kW) R2 s MAE(kW) MBE(kW) RMSE(kW) R2 s

P 38.18 11.21 49.66 0.92 0 117.79 15.05 178.62 0.73 0

SP1 28.45 -5.67 37.52 0.95 0.24 110.73 -6.75 166.29 0.77 0.07

SP2 28.93 -6.04 38.05 0.95 0.23 108.29 -9.17 161.35 0.78 0.09

kNN1 39.40 -17.81 56.26 0.90 -0.13 127.48 -33.25 177.68 0.73 0.01

kNN2 39.89 -18.31 57.13 0.89 -0.15 128.28 -33.37 179.30 0.73 0.00

AR 31.02 -10.36 40.60 0.95 0.18 116.21 -19.75 158.34 0.79 0.11

ARMA 30.58 -9.41 40.02 0.95 0.19 116.18 -18.92 159.04 0.79 0.10

Table 3.4: Statistical error metrics for 15-minute demand load forecasting With-
out onsite generation and with onsite solar generation.

Model
Without onsite generation With onsite solar generation

MAE (kW) MBE(kW) RMSE (kW) R2 s MAE(kW) MBE(kW) RMSE(kW) R2 s

P 20.08 1.93 26.54 0.98 0 62.81 8.82 101.12 0.92 0

SP1 18.86 -0.11 24.71 0.98 0.06 60.58 2.28 98.24 0.92 0.03

SP2 18.96 -0.13 24.79 0.98 0.06 59.91 1.98 97.48 0.92 0.03

kNN1 28.84 -11.41 45.10 0.94 -0.69 68.23 -9.62 103.87 0.91 -0.02

kNN2 28.77 -11.14 44.64 0.94 -0.71 68.25 -9.16 103.58 0.91 -0.02

AR 18.97 -1.69 24.87 0.98 0.06 62.27 -0.33 96.16 0.93 0.04

ARMA 20.09 -0.92 26.18 0.98 0.01 61.58 -0.28 96.75 0.93 0.04

=-0.003. The reason for such poor performance could be related to the absence of

similar patterns in the training set.

3.3.2 15-minute forecasts

The results for various statistical error metrics for this forecast horizon are

tabulated in Table 3.4. For this horizon and no onsite generation case, it is harder

to beat the persistence model than in the previous case. The highest forecast

skill was found to be 0.06 for SP1 and SP2. However, in terms of MAE, the AR

model shows the best performance. From these results, it can be inferred that for

the 15-minute forecast with no onsite generation, there is very low variability and

the assumption about persistence holds. For this reason P, SP1 and SP2 models

perform equally well as compared to the other models.

For the onsite solar generation case, AR and ARMA models perform better

than all the other models with s=0.04. In this case, due to high solar penetra-
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Figure 3.3: Error distribution for 15-minute load forecasting with solar penetra-
tion. The bins for the dataset are defined using Freedman-Diaconis rule. With high
solar penetration the error distribution is better characterized by t-distribution.

tion, the basic assumption behind the persistence model does not hold because of

variability in solar power output for the 15-minute time scale and the persistence

model (P) does not perform as well as in the previous case.

From the various error metrics for the scenarios discussed above, it can be

seen that AR models perform the best and exhibit the highest forecasting skill for

all the studied cases. For the no onsite generation case, persistence models also

perform well but the performance degrades substantially once the variability of

the solar resource becomes a factor. As expected, it can be observed that as the

variability increases, the performance of the models degrades. The same is true

for the 1-hour case with the only difference that the performance decrease is not

as pronounced. However, in order to fully characterize the forecast error we need

to study its distribution, which we do in the next section.

3.3.3 Error distribution

In order to analyze the forecast error distribution for the two cases, we

started by computing the mean forecasting error Eavg, that is the average of the

error for all the models. With this approach the resulting differences in Eavg de-

pend solely on the variability of the time-series and the forecast horizon. Given
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Table 3.5: Statistics of average error distribution for no onsite generation and
onsite solar generation case for 1-hour and 15-minute lead times.

Moment Eavgng,1hr Eavgg,1hr Eavgng,15min Eavgg,15min

µ -7.05 -13.27 -2.94 -0.79

σ 33.88 137.12 23.04 83.58

s -0.06 -0.46 -0.25 -0.38

k 4.92 6.01 3.66 9.15

that we have two cases and two forecast horizons, this operation results in 4 dif-

ferent error time-series. The mean (µ), standard deviation (σ), skewness (s) and

kurtosis (k) for each case are tabulated in Table 3.5. As expected the σ, s and k

values are much higher for the high solar penetration scenario.

Another way of studying the forecasting error distribution is to determine

which statistical distribution model best describes it. The normal or Gaussian

distribution is one of the most popular distributions to characterize the distribution

of a random variable in terms of mean and standard deviation. It is not well-suited

for distributions with heavy tails and high skewness which are often observed in

forecast error distributions. Heavy tails are due to the presence of high magnitude

errors in the forecast and skewness is caused by the forecast’s bias. For these

reasons we can anticipate that the normal distribution will not characterize the

forecasting error distribution properly for onsite solar generation case.

In order to identify the best matching distribution, various distributions

were compared with the error distribution as shown in Fig. 3.3. We used a Q-Q

plot (where Q stands for “Quantile”) [65, 70] to analyze the distribution fit more

accurately. In the Q-Q plots, scattered points originated from two distributions

are plotted against each other. If the two distributions are linearly related they

will lie on the same straight line.

Fig. 3.4 shows the Q-Q plots of the error distribution for the 2 datasets and

the 2 forecasting horizons. The sample Gaussian quantile for each error distribution

is computed using µ and σ of the Eavg for each case, and Degrees of Freedom

(v) for the sample t-distribution quantile were computed based on the Maximum

Likelihood principle.
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Figure 3.4: Error distribution for 1-hour and 15-minute load forecasting with
and without solar penetration. With no solar penetration the error distribution
can be perfectly characterized by the Gaussian distribution as shown in the first
and second plot. Whereas with solar penetration the error distribution can be
better characterized by t-distribution. Third and fourth plot shows the sample
t-distribution Q-Q plots for 1-hour and 15-minute cases with v = 2.6 and v = 1.8.

These plots allow us to observe that with no onsite generation, the error

distribution quantile has a linear relationship with a sample Gaussian quantile for

both forecast horizon, which means that the error distribution can be character-

ized by a normal distribution. However, the same does not hold for onsite solar

generation case. As shown in Fig. 3.3, t-distribution captures the tails and the

peak of the distribution for high solar penetration much better than the Gaussian

and the Logistic distribution. This observation is validated by the Q-Q plots in

Fig. 3.4. These findings are in agreement with the results published for wind error

forecasting distribution [64, 65, 66, 70].

From this analysis we can observe the effect of the solar power on the
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distribution of the forecasting error. This effect can also be explained by analyzing

the Cumulative Distribution Function (CDF) of normalized 15-minute step change

in load with (VLg) and without (VLng) onsite solar generation as shown in Fig.3.5.

It can be observed that the probability for VLng > 100 kW/15min is 0.03 whereas

in case of VLg it is 0.2. These large step changes are more challenging to forecast

resulting in heavy tails in error distribution of load demand with solar generation.
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Figure 3.5: Cumulative Distribution Function of absolute value of step change in
load demand with (VLg) and without (VLng) onsite solar generation. The data is
divided into 100 bins. The probability of step change in load for more than 100
kW/15min is 0.03 for no generation case and its 0.2 for onsite generation case. The
inset plots shows the Probability Density Function of the absolute value of step
changes in load. It can be noticed that the PDF of step changes in load with onsite
generation is wider than the PDF of step changes in load with no site generation
which implies that the probability of larger step changes in Lg is higher than Lng.
Due to these higher step changes the error in load forecast is larger for onsite solar
generation system.

3.3.4 Effect of solar penetration on the forecast error

As stated above, the main goal of this work is to explain the impact on the

load forecast accuracy when we include highly variable solar resource in the energy

budget. This is very important because the solar variability is always mentioned

as one of the major challenges in promoting higher levels of solar penetration
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Figure 3.6: Error distribution as a function of penetration with different levels of
variability. The dashed line shows the maximum variability that can happen for a
given daily penetration. The black markers shows the actual error for 15 minute
forecast and the surface plot shows the computed surface fit between the error,
daily solar penetration and solar power variability for 15 minute time steps. It
shows that the error is directly related to solar variability. High magnitude error
occurs during medium penetration level (20%-40%) which is caused by big ramps
events due to clouds.

[42]. For this purpose we defined daily solar penetration (SPV (d)) and solar power

variability (VPV,N) as

SPV (d)(%) =

∑
t∈DT Ld(t)∑
t∈DT LPV (t)

(%) (3.15)

where t is any time instant and it belongs to DT which is a set of all the daytime

hours when solar power is produced for a given day (d).

VPV,N =

√
1

N

∑
(∆LPV (t)−∆LPV (t))2 (3.16)

where N = 4 for the 1 hour forecast and N = 1 for the 15-minute forecast. LPV (t)

is net solar power produced at time instant t and ∆LPV (t) is the difference between

LPV (t) and LPV (t− 1) and ∆LPV (t) is the mean of the difference.

The net error, i.e., the absolute difference between the load forecast error

with and without onsite solar generation can be used to assess the effect of solar

penetration. Figure 3.6 shows the distribution of net error as a function of increas-

ing solar penetration with different levels of solar variability for the 15 minute

horizon. The solar power variability for 1 hour horizon varies between 0.01 kW/hr
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to 399.58 kW/hr and for 15 minute horizon it varies from 0 kW/15 min to 800

kW/15 min. The smaller range for the 1 hour horizon is due to the fact that as

the time horizon increases solar variability reduces due the the averaging. For the

1-hour onsite solar generation case the average error values vary between -153.65

kW and 200.11 kW and for 15 minute they vary between -109.35 kW and 91.92

kW. The daily solar penetration varies between 3% to 54%. The variability is also

different for each day and its daily range depends on the daily penetration. For

low (<10%) and high (>48%) penetration levels, solar variability is small. This

is expected, given that these penetration levels are associated with overcast or

clear days where fast ramp rates on the PV power are rare. For medium values of

daily penetration, large ramping events lead to high variability. The dashed line in

Fig. 3.6 shows the maximum magnitude of solar variability that can occur for the

given daily penetration. The polynomial fit for the dashed line was computed using

all the solar power output data for the year 2010. In addition Fig. 3.6 shows that

error magnitude increases with increasing solar variability but not with increasing

solar penetration.

Finally, Fig. 3.7, shows the campus load time-series of load and forecast

error profiles for clear, cloudy and overcast days. Solar variability is lowest for

sunny and overcast days, resulting in low forecast error regardless of solar pene-

tration levels. On the cloudy day, penetration is medium and the forecast error is

very high due to the variability in solar power output. This analysis demonstrates

again, that it is the solar variability that affects the forecast error magnitude rather

than the penetration level. In [71] it was shown that variability in PV is directly

proportional to variability in Global Horizontal Irradiance (GHI). Combining the

result from [71] with the present observation, it can be said that the error distri-

bution for a given time horizon can be characterized directly from the variability

in solar irradiance for a given time horizon for that particular site.
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Figure 3.7: Time-series of load and error profiles for a clear, cloudy and overcast
day for 1 hour forecast case. For sunny and overcast day, solar variability is the
lowest and hence, the error is low too for both high and low solar penetration
levels. Whereas on a cloudy day, penetration is medium but error is very high due
to variability in solar power output.
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3.4 Summary

The performance of STLF models with and without onsite generation is

compared. For the 1-hour forecast horizon with onsite solar generation, forecasting

skill for the best model (ARMA) is reduced by 9% and R2 decreases from 0.95 to

0.79 and for 15-minute ahead case the forecast skill is reduced by 3% and R2

decreases from 0.98 to 0.93. As expected, forecast accuracy decreases as forecast

horizon and onsite solar generation increase. Similar conclusions have been made

for high wind penetration cases [67]. For no onsite generation case, the assumption

of persistence holds for the 15-minute horizon and the SP models perform as well as

AR and ARMA models with R2 = 0.98. Comparing all the models, the AR model

performs better in terms of forecast skill. We also showed that the forecast error

distribution with onsite solar generation is best characterized by a t-distribution,

which reflects the heavy tails in the error distribution due to high ramping events

in the solar power output.

The impact of solar penetration level on the forecast error was studied for

different levels of solar power variability and penetration level. For low variability

levels, the error magnitude is mostly uniform and invariant with solar penetra-

tion level. As the solar power variability increases the error magnitude increases

proportionally as a function of solar penetration, which shows that the solar vari-

ability has a more pronounced effect on the error magnitude than the level of

penetration. This highlights the need for solar forecasting. All the results and

analyses presented in this work hold for any type of onsite solar generation if it

is contributing significantly to the power demand without any storage. Therefore,

for long term planning and energy management of sites with expected onsite solar

generation both solar penetration level and ground solar irradiance variability of

the site should be taken into account.

Acknowledgments

This chapter contains work previously published in:

• A. Kaur, H.T.C. Pedro, and C.F.M. Coimbra, “Impact of onsite solar gener-



45

ation on system load demand forecast”, Energy Conversion and Management

75 (0) (2013) 701 - 709.



Chapter 4

Solar resource forecasting

Increasing awareness about the adverse effects of conventional energy re-

sources have accelerated the penetration of renewable energy resources. Although

solar energy has a high potential to meet human energy needs, the variable and

uncertain nature of solar energy has impeded the growth of large-scale solar farms.

Solar irradiance forecast is a viable solution to cope with this stochastic nature

of solar energy and a necessary tool to manage and operate large solar farms in

deregulated electricity market. Utilizing the forecasts, the large-scale solar farm

operators can bid predicted solar energy in the electricity market and make smart

decisions about curtailment and storage systems to avoid sudden ramps in the

solar power output. Depending on the forecast horizon, different methods are

applied for solar forecasting. For intra-week forecasts, Numerical Weather Predic-

tion (NWP) models are known to generate good results. This usually holds true

for horizons greater than 4 hours. For intra-day forecasts below 4 hours, mostly

satellite image based prediction methods are used [72]. For intra-hour forecasts,

local sky conditions and sky images are utilized along with other available mete-

orological data for the site [73, 21, 22, 24, 74, 75, 76, 77, 78]. Furthermore, the

forecast models with no external inputs are also suggested [23] for solar power for

intra-hour forecasts where information is derived from the various characteristics

in the time-series. Also, forecast models are suggested that selects inputs based

on spatial and temporal distributions [79]. A detailed review on solar forecasting

methodologies can be found in [19].

46
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Datasets used in this study are described in section 4.1, forecasts models

are defined in section 4.2, results are provided in section 4.3 and and conclusions

are drawn in section 4.4.

4.1 Data sets

4.1.1 NWP data

Day-ahead Global Horizontal Irradiance (GHI) forecasts generated at the

00:00 coordinated universal time (UTC) are downloaded from National Oceanic

and Atmospheric Administration (NOAA) servers for December 2012 to December

2013 and degribed for Folsom, CA. This forecast is generated with the Numerical

Weather Prediction (NWP) based on the North American Model (NAM). Forecast

horizons ranging from 9 - 35 hours with hourly time-resolution are used. The

performance of the NAM model is extensively evaluated. A general over-prediction

of GHI is well known [80, 81, 82]. A reforecasting technique is applied on the GHI

time-series forecast to remove the bias and structured errors. To evaluate the

model performance, the data set is divided into three disjoint data sets: training

set (12-20-2012 to 1-15-2013), validation set (1-16-2013 to 1-31-2013) and the test

set (2-1-2013 to 12-31-2014). The training set is used to train the models, the

validation set is used for optimization as well as for feature selection for the forecast

model. The testing set is always kept as an independent set to access the model

performance and report results.

4.1.2 Ground data

GHI and Direct Normal Irradiance (DNI) data were collected at Folsom,

CA, (located at 38.63◦ N and 121.14◦ W) using a rotating shadow-band radiometer

(RSR). A CR1000 data logger from Campbell Scientific running on a one minute

sampling rate was used to store the data. The sensor of the RSR is a Licor-200SZ

photodiode, periodically shaded to provide diffuse irradiance values. DNI values

are calculated from GHI and diffuse irradiance values, with a program embedded
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in the data logger. Sky imagery was acquired with an off-the-shelf fish-eye lens se-

curity camera (Vivotek, model FE8171V) fixed on a horizontal surface and pointed

to the zenith, providing one picture every minute. The total costs for the deployed

instruments are below $10, 000 USD. The data sets of irradiance and sky imagery

cover December 2012 to December 2013.

Data preprocessing

The collected ground data and sky images are pre-processed to represent

5 and 15 minute averages. Irradiance time-series and images are time-matched

and divided into three disjoint data sets: training, validation and testing set as

discussed above. In this case, each data set contains subsets of all available months

to capture the full seasonal variation and various sky conditions.

Feature definitions

Using the time-series and the sky images, features are calculated to be used

an input for the forecast models. To calculate the features, the clearness index for

GHI and DNI is defined as kt = GHI
GHIcs

and kb = DNI
DNIcs

. The computed features

include entropy, backward averages, and variability for both kt and kb.

Entropy is defined as,

Ei = −
n∑

j=1;pij 6=0

pijlog2(pij), i = (1, 2, ..., 24) (4.1)

where pij is the relative frequency for the jth bin out of the 200 bins in the range

[0,2] for data in the interval [t − iδ,t] and δ = 5 minutes is the minimum window

size. The index i ranges from 1 to 24, indicating the smallest window is 5 minutes

and the largest is 120 minutes.

Backward averages are defined as,

Bi(t) =
1

N

∑
t∈[t−iδ,t]

kt(t), i = (1, 2, ..., 24) (4.2)

where N is the number of data points in the interval [t− iδt, t].
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Variability is defined as:

Vi(t) =

√
1

N

∑
t∈[t−iδ,t]

∆kt(t)2, i = (1, 2, ..., 24) (4.3)

where ∆kt(t) = kt(t)− kt(t− δt).
The imagery features include entropy, mean, and standard deviation for

blue channel, green channel, red channel, red/blue ratio, and normalized red/blue

ratio. All imagery features have minimum window sizes of 1 minute, maximum

window sizes of 10 minutes, window increments of 1 minute, and feature length of

24. More details can be found in [83].

4.1.3 Solar power modeling

The PVwatts tool, available from the National Renewable Energy Labo-

ratory (NREL), is applied to get solar data for 1 MW fixed, (open rack) array,

commercial solar plant for the same location as the irradiance data sets. The char-

acteristics chosen for the power plant are: array tilt = 20 degrees, array azimuth

= 180 degrees, and system losses = 14%. The data provided by this software is

hourly data. A model is derived between the solar power produced and GHI to be

able to work with a higher temporal resolution.

The data sets generated by PVwatts are divided into two disjoint data sets.

One data set is used to derive the curve fit for the model, whereas the second data

set is used to test the goodness of fit. The model fit m is computed as a function

of ground GHI and day of the year (DOY) i.e. m = f(GHI,DOY). DOY is used to

account for the seasonal variations. The fit was calculated using polynomial fitting

with degree 6. The results obtained using the fit function are given in table 4.1.

Results show that the coefficient of determination is 1, with very low MBE and

RMSE. This means that all the ramps in solar power are captured by the model

fit. The derived fit is used to model solar power P for the given location, which is

then used in the analysis to draw conclusions from the perspective of a solar power

producers. The solar power forecast P̂ is computed as P̂ = f(ĜHI, DOY ).
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Table 4.1: Statistical error metrics for GHI to PV output modeling for 1 MWp

capacity fixed-array PV plant.

Model
MAE MBE RMSE rRMSE R2

(kW) (kW) (kW) - -

GHI-PV model 9.27 -0.71 16.81 9.21 1.00

4.2 Solar forecast methods

4.2.1 Persistence (P)

The persistence model is used as the basic reference model. It is based on

the assumption that the current conditions will persist so that,

Îp(t+ k) = I(t), (4.4)

where Îp(t) represents a GHI prediction from the persistence model, k represents

the forecast horizon, and I(t) is the measured GHI value at time t.

4.2.2 Smart Persistence (SP)

The smart persistence model is based on the same assumption as persistence

model but it corrects for the deterministic diurnal variation in solar irradiance. It

is defined as,

Îsp(t+ k) = kt(t) ∗ ICS(t+ k), (4.5)

where Îsp(t) represents a GHI prediction, and ICS represents the estimated clear

sky solar irradiance [84, 85, 86].

4.2.3 Support Vector Regression (SVR)

Support vector regression is a machine learning technique [87], [88]. Using

a set of training inputs U , the objective is to find a function f(u) using weights w

that has ε deviation from the actually obtained targets kt

f(u) = 〈w, u〉+ b with w ∈ U, b ∈ R. (4.6)
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In this study, time-series formulation is applied kt(t) = f(u(t)). To select

the inputs and parameters for SVR model, Genetic Algorithms are applied. Hence,

this method is refered to as SVR-GA.

Genetic algorithm is solution space search technique inspired in natureal-

selection and the survival of the fittest [89, 90]. The algorithm starts with a

population of individuals that encodes the parameters that determine an individual

layout in the population. In this work the parameters consist of binary values that

control the inclusion/exclusion of the various input variables, and real values that

determined the SVR parameters. The MSE between the measured values and the

forecasted values is used as the fitness of the GA individual. The GA optimizes

these parameters by evolving an initial population based on the selection, crossover

and mutation operators with the objective to minimize the MSE forecast error.

4.2.4 Reforecast

The reforecast model proposed for refining day-ahead load prediction by

correcting for structured errors and bias in the forecast is applied here [91]. We ap-

ply the auto-regressive (AR) model which is a linear, time-series regression model.

Using this model, the output can be expressed as a linear combination of past

outputs and measured values,

A(q)Ir(t) = B(q)INAM(t− nk)(t) + e(t) (4.7)

where qN is the shift operator, q±N = I(t±N), A(q) that represents the combina-

tion of past values of output using coefficients, a1, a2, · · · , ana , A(q) = 1 + a1q
−1 +

· · · + anaq
−na, B(q) = b1 + · · · + bnbq

−nb+1 and nk is time delay parameter. The

part of the time-series not modeled is represented as e(t). For more details refer

to [36]. In this study, the external input INAM(t) consists of GHI forecast values

predicted by NAM.
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4.3 Forecast results

The results obtained using the test set are reported and discussed. The

statistical metrics used to compare the forecast results are: Mean Absolute Er-

ror (MAE), Mean Bias Error (MBE), Root Mean Square Error (RMSE), rela-

tive RMSE (rRMSE), standard deviation (σ), coefficient of determination (R2)

and forecast skill (s). MAE provides the mean of the absolute forecast error,

MBE gives information about the bias in forecast error (Measured - Forecast).

A negative MBE error indicates over prediction whereas positive MBE indicates

under-prediction. RMSE gives information about the spread of the forecast errors,

rRMSE is the RMSE normalized by mean annual GHI, and R2 shows the rela-

tion between actual and forecast value. For a perfect forecast R2 = 1. Forecast

skill is a measure to compare the performance of the proposed model against the

benchmark model [92].

4.3.1 Intra-week forecast (day-ahead)

For the day-ahead reforecast model, the Akaike information criterion (AIC)

was applied to select the number of lagged inputs for the model and na = nb =

nk = 1 were selected as the model parameters. Using the NAM forecast issued at

00:00 UTC as an input and actual hourly GHI measured at ground, the day-ahead

forecasts are issued at midnight for the following day.

As stated above, the NAM model tends to over-predict irradiance. For the

chosen location, the performance of the NAM model is even lower than that of the

smart persistence model. To correct for this bias, a reforecast model was applied

(see figure 4.1). The reforecast model corrects the bias by learning from continuous,

structured errors, occurring in the forecast. After applying the reforecast, the bias

was reduced by 67.21% and the deviation in forecast errors was reduced from

151.72Wm−2 to 78.91Wm−2.

The distribution of forecast errors for the hours of day are shown in fig-

ure 4.2. An analysis of errors reveals that the NWP tends to overestimated GHI

before noon and underestimates the GHI after 14:00 PST. After the application
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Figure 4.1: Sample day of GHI forecast by NAM and reforecast model. The
reforecast model corrects for the bias in the NAM forecast. If ramps are not
predicted in NAM, it is unlikely that the reforecast model captures them. Both,
NAM and reforecast model, tend to over predict. The bottom plot shows the
reduction in absolute error. For clear days, the error is close to zero. Most high
magnitude errors occur during overcast and cloudy conditions.

Table 4.2: Statistical error metrics for day-ahead GHI forecasts in hourly
intervals.

Model
MAE MBE RMSE σ R2 Skill

(Wm−2) (Wm−2) (Wm−2) (Wm−2) - s(%)

SP 37.04 -0.69 96.07 96.08 0.91 -

NAM 109.86 -69.65 166.94 151.72 0.72 -

NAM-Reforecast 31.66 -22.84 82.14 78.91 0.93 14.5

of the reforecast model, this bias is reduced. The magnitude of bias in refore-

cast errors remains unchanged over the day except for sunrise and sunset times.

This consistent error can be accounted for during market operations and reserve

allocation.

4.3.2 Intra-hour forecast

The intra-hour forecasts are implemented using a well known, open source

machine learning library (LIBSVM) [93]. For intra-hour forecasts, the optimiza-

tion is performed once for one step ahead prediction. The features and lag of the
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Figure 4.2: Mean and standard deviation of day-ahead forecast errors for GHI as
a function of hour of the day. The NAM tends to over-predict until noon and then
under-predicts later. The reforecast model corrects for the bias in the forecast and
achieves consistent performance throughout the day.

Table 4.3: Features selected by GA for 15 minute and 5 minute forecast intervals
for the SVR-GA model.

15-minute intervals 5-minute intervals

Features Lag Features Lag

GHI, Backward Average 6 GHI, Backward Average 2

GHI, Lagged values 3 GHI, Lagged Values 1

Image, Blue Average 1 Image, Blue Average 1

Images, nRedBlue Entropy 2 Image, RedBlue Entropy 8

Image, Red Entropy 1 Image, Red Entropy 1

Image, Red Std 3 DNI, Lagged values 1

DNI, Backward Average 3 DNI,Variability 1

DNI, Lagged Value 3 - -
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Table 4.4: Statistical error metrics for short-term solar irradiance forecast in 15
minute intervals.

Forecast Persistence Smart Persistence SVR-GA

horizon MAE MBE RMSE rRMSE MAE MBE RMSE rRMSE Skill-P MAE MBE RMSE rRMSE Skill-P Skill-SP

(minutes) (Wm−2) (Wm−2) (Wm−2) (-) (Wm−2) (Wm−2) (Wm−2) (-) (%) (Wm−2) (Wm−2) (Wm−2) (-) (%) (%)

15 24.95 1.59 44.17 9.32 15.01 0.35 41.21 8.70 6.70 13.55 0.97 35.22 7.43 20.26 14.53

30 36.41 2.41 57.69 12.15 19.36 0.58 51.18 10.78 11.28 16.86 0.54 42.56 8.97 26.22 16.64

45 46.63 2.99 68.24 14.36 22.26 0.79 57.20 12.04 16.18 19.01 0.57 46.66 9.82 31.62 18.42

60 56.18 3.35 77.61 16.32 24.38 0.99 61.19 12.87 21.16 20.53 0.04 49.25 10.36 36.54 19.51

75 65.43 3.50 86.63 18.21 26.06 1.22 64.14 13.48 25.96 21.74 0.04 51.24 10.77 40.85 20.11

features selected by the GA are given in table 4.3. General practice in forecasting

is to propagate the 1 step ahead forecast into the forecast model as an input to

forecast the next steps. Doing so, the errors in the forecasts are also propagated

into next intervals and the forecasts become correlated. To avoid this correlation

between various forecasts, the features selected by the GA are used to train the

models specific for each forecast horizon and forecast interval. This ensures that

each forecast is independent of each other and they can be studied independently.

The persistence and smart persistence models are implemented according to equa-

tion 4.4 and 4.5.

15-minute interval forecasts

The forecasts in 15 minute intervals are produced for forecast horizon: 15,

30, 45, 60, and 75 minutes. The statistics on the forecast errors are reported in

table 4.4. The trend in RMSE and standard deviation of the forecast errors for

persistence, smart persistence and state of art forecast model is shown in figure

4.3. With increasing forecast horizon, the RMSE and standard deviation increases

linearly for the P model, whereas in case of SP and SVR-GA, after the forecast

horizon of 45 minutes, the RMSE converges with small change in magnitude. The

skill achieved by SVR-GA model, with respect to the P and SP models, ranges

from 20.26-40.86% and 14.53-20.11% respectively.

5-minute interval forecasts

The 5 minute interval forecasts are produced up to a forecast horizon of 5 to

75 minutes. The error statistics for all the forecast horizons are provided in table
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Figure 4.3: RMSE and standard deviation for short-term GHI forecasts for the
15 minute forecast interval with forecast horizon ranging from 15 to 75 minutes.
With increasing forecast horizon, the standard deviation for the P model increases
linearly. For the SP and SVR-GA model, the increase in RMSE and standard
deviation is very small for the 45 - 75 minute forecast horizon.

4.5. For the P model, the RMSE error increases from 40.43 to 173.61 Wm−2 as the

forecast horizon increases from 5 to 75 minute. The trend in error is linear. In case

of SP, there is steep increase in RMSE from 5 to 20 minutes and afterwards the

error magnitude starts converging and the increase in error is only 10 Wm−2 as the

forecast horizon changes from 25 to 75 minute. Similar patterns are observed in the

results for SVR-GA. Furthermore, the SP always underestimates GHI irrespective

of the forecast horizon whereas the SVR-GA initially underestimates for 5 - 25 min

forecast horizon. Afterwards, it overestimates GHI resulting in a negative bias.

Using P as a reference model, the forecast skill achieved by SP and SVR

ranges between 3.41 to 56.21% and 17.86-61.74% respectively. Comparing the

rRMSE forecast errors to evaluate the performance of P and SP for 5 to 25 minute

forecast horizon, the improvements are marginal. As the forecast horizon starts

to increase, the improvements start increasing linearly. There is clear benefit in

using smart persistence over persistence model and in using SVR-GA over smart

persistence. A skill of 14.49% can be expected using SVR-GA over SP. After a

forecast horizon of 40 minutes, the improvements achieved by the forecast model

are not consistent as the forecast age increases and ground imagery is not sufficient

enough to capture cloud dynamics outside this time horizon. For forecast horizon

greater than 40 minutes, additional data such as satellite imagery can be taken

into account if higher accuracy is required.
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Figure 4.4: RMSE and standard deviation for short-term solar forecasts with
horizons of 5 to 75 minutes in 5 minute intervals. With increasing forecast horizon
the error in Persistence (P) model increases linearly. The error is almost constant
after a 25 minute forecsat horizong for the Smart Persistence (SP) and SVR-GA
forecast model.

Table 4.5: Statistical error metrics for short-term solar irradiance forecast in
5-minute intervals.

Forecast Persistence Smart Persistence SVR-GA

horizon MAE MBE RMSE rRMSE MAE MBE RMSE rRMSE Skill-P MAE MBE RMSE rRMSE Skill-P Skill-SP

(minutes) (Wm−2) (Wm−2) (Wm−2) (-) (Wm−2) (Wm−2) (Wm−2) (-) (%) (Wm−2) (Wm−2) (Wm−2) (-) (%) (%)

5 19.81 1.13 40.43 8.54 13.42 0.24 39.05 8.25 3.41 12.62 1.35 33.21 7.02 17.86 14.95

10 32.26 2.06 55.52 11.71 18.87 0.47 51.28 10.81 7.64 17.05 0.89 44.33 9.35 20.15 13.55

15 42.77 2.75 66.25 13.95 22.17 0.68 58.06 12.22 12.36 19.40 0.83 48.45 10.20 26.87 16.55

20 52.58 3.22 75.78 15.94 24.62 0.89 62.74 13.20 17.21 21.44 0.95 52.34 11.01 30.93 16.57

25 61.80 3.47 84.41 17.74 26.33 1.10 65.70 13.81 22.17 22.91 0.11 55.33 11.63 34.45 15.78

30 70.93 3.52 93.32 19.61 27.96 1.33 68.40 14.38 26.70 24.27 -0.37 57.45 12.08 38.44 16.01

35 80.01 3.35 101.71 21.39 29.20 1.56 69.86 14.69 31.31 25.42 -0.50 59.46 12.50 41.14 14.89

40 88.80 2.98 110.05 23.16 30.12 1.81 70.74 14.89 35.72 26.21 -0.72 60.37 12.70 45.14 14.66

45 97.42 2.38 118.75 25.02 30.87 2.04 71.76 15.12 39.57 26.96 -0.87 61.69 13.00 48.05 14.03

50 106.02 1.53 127.38 26.89 31.38 2.23 72.15 15.23 43.36 27.42 -1.47 62.49 13.19 50.94 13.39

55 114.97 0.45 136.73 28.93 32.15 2.39 73.48 15.55 46.26 28.08 -0.96 63.53 13.44 53.54 13.54

60 123.87 -0.86 146.02 30.98 32.81 2.52 74.48 15.80 48.99 28.43 -0.86 64.50 13.68 55.83 13.40

65 132.63 -2.37 155.31 33.06 33.28 2.60 75.30 16.03 51.52 28.99 -0.94 65.07 13.85 58.10 13.59

70 141.24 -4.07 164.50 35.14 33.78 2.65 75.66 16.16 54.00 29.22 -0.46 65.19 13.93 61.37 13.84

75 149.79 -5.96 173.61 37.23 34.16 2.63 76.03 16.31 56.21 30.97 -0.14 66.42 14.24 61.74 12.64

The cumulative frequency distribution (CDF) for the forecast errors is

shown in figure 4.5. Using SP and SVR-GA reduce the spread in the forecast

model. Comparing all the three models, there is 0.3-0.6 probability that error will

be between ±1% for P, ±0.1% for SP and 0− 0.2% for the forecast model. Since

positive error means underestimation, there is excess of energy as compared to es-

timated. This kind of forecast is beneficial for the market participant as they can

curtail extra energy. More details about the value of these forecasts for real-time

energy imbalance markets is discussed next.
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Figure 4.5: Cumulative frequency distribution (CDF) of the solar forecast errors
in five minute intervals for the Persistence (P), Smart persistence (SP) and forecast
model (SVR-GA) for the forecast horizon ranging from 5 minutes to 75 minutes.
The color bar represents the CDF ranging from 0 to 1. The spread of errors in the
P model is reduced by the SP and SVR-GA. For the 5 minute forecast horizon,
there is 0.4 to 0.6 probability that there will be ±1% error whereas with SP it is
only ±0.1%.

4.4 Summary

Day-ahead and short-term solar resource forecasts covering forecast hori-

zons ranging from 1 day to 5 minute in 1 hour, 15 and 5 minute intervals are

proposed and validated. State-of-the-art forecasts (with reforecast enhancements)

are shown. The reforecast methodology reduces the bias in day-ahead forecast

by 67.21% in NAM forecast and achieves a forecast skill of 14.5% over the smart

persistence model. The error of the persistence model increases linearly, whereas

smart persistence and the SVR-GA model, the error converges by forecast horizon

of 25 minutes for 5 minute resolution. The skill achieved by SVR-GA ranges be-

tween 14.53-20.11% and 12.64-16.75% for 15 minute and 5 minute forecast intervals

(forecast horizons ranging from 5 to 75 minutes). For forecasts, covering greater

than or equal to 35 minute forecast horizons, the skill drops implying that more

sophisticated methods e.g. including satellite imagery are required in addition to

ground data.
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Chapter 5

Net load forecasting for power

grids with high solar penetration

The power grid is undergoing an inevitable change. With the increasing

awareness about the adverse effects of conventional energy resources, policies are

being developed to accelerate the penetration of renewable energy. The biggest po-

tential for further capacity installation are intermittent renewable sources, mainly

wind and solar. Based on data from the World Wind Energy Council, 320 GW

are currently installed with a prospective increase up to 2000 GW by 2030. Due

to the stochastic nature of solar and wind power, this increasing renewable pen-

etration presents various types of management and operational challenges for the

reliable operation of the electric grid on both production and consumption side

[82, 94]. On the demand side, it is challenging for grid operators, (e.g. the Inde-

pendent System Operators (ISOs) or the utilities) to match variable production

from intermittent sources with the net load of the customers or the microgrid. This

problem intensifies with customers-generators and microgrids with onsite variable

generation since the stochasticity in onsite power generation translates into the net

load demand from the macro grid. To mitigate these adverse effects, forecasts for

expected power generation and net load are needed. There have been significant

advancements in the field of load and renewable energy forecasting. Comprehen-

sive reviews are available on load forecasting [5, 18, 91], solar forecasting [19, 95]

and wind forecasting methods [96, 97]. However, the integration of these fore-

60
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casting methods in the operational practices of system operators has gained little

attention.

The major contributions of this study are (1) the introduction of the con-

cept of net load forecasting for grids with high renewable energy penetration; (2)

the implementation of a solar power prediction algorithm optimized with decision

heuristics based on no-exogenous inputs only. This forecast has competitive ac-

curacy in comparison to more complex models and can be used by commercial

solar power producers to manage solar power production and plan ahead for the

expected ramps in solar energy in data poor environments independently of the

integration to a net load forecast; (3) preposition of methods to integrate load and

solar forecasts to create the net load forecast. The net load forecast concept can

be adapted for wind forecasting as well and (4) validating the beneficial character-

istics of net load forecasting with data from a microgrid with high penetration of

solar power (up to 33% annually).

The paper is structured as follows: section 5.1 provides the background

of load, demand and production forecasts and introduces the concept of net load

forecasting. Section 5.2 explains the data sets utilized in this study and why a

microgrid is used as a testbed. Section 5.3 contains the proposed methodology.

Section 5.4shows details of the model implementation. Section 5.5 discusses results

and uncertainty of the net load forecast. Section 5.6 presents the relationship

between the occurring solar and net load forecast errors. Final conclusions are

drawn in section 5.7.

5.1 Background

This section gives a short review of relevant previous work, categorized

into solar power generation and load forecasting for power grids. The concept of

net load forecasting merging production and load forecasts is presented and its

technical and economical benefits for current and future grids are discussed.
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5.1.1 Solar power generation forecasting

Various solar irradiance forecasting techniques using Artificial Neural Net-

works, sky imagery, numerical weather prediction, etc., have been proposed [24,

22, 21, 74, 98, 72, 99, 100]. An extensive review on solar forecasting techniques

can be found in [19, 95]. While all solar irradiance forecasting methods can be

used as an input to forecast solar power output, there have been studies directly

forecasting output of solar power plants. Application of regression methods to

forecast solar power using weather forecast as an exogenous input was shown in

[101, 102, 103] and [101] concluded that the accuracy of solar power forecasts can

be increased by 10% by using more accurate weather forecast. Moreover, [102]

showed that the past values of solar power contribute to the accuracy of forecast

model with up to 2 hour forecast horizon, thus the use of weather forecasts as

an input is recommended for forecast horizons greater than 24 hours. A Kalman

filter was designed to forecast solar power for cloudy days in [104]. A methodology

to predict solar power forecasting up to 2 days forecast horizon using European

Centre for Medium-Range Forecasts (ECMWF) as an input was presented in [105]

and results showed that the proposed methodology adapted to changing weather

conditions but overestimated solar production for the snow cover on the modules.

Furthermore, Artificial Neural Networks (ANNs) based on self-organizing

maps using weather forecasts and past power generation as inputs were applied in

[106]. Support Vector Machines (SVM) were used in [107] for solar power forecast-

ing by classifying the days as clear, cloudy, foggy, and rainy day. Fuzzy theory and

ANN based method was proposed in [108] and the results were validated through

computer simulation. Similarly, weather based hybrid method consisting of self-

organizing maps and linear vector quantization networks was proposed in [109] for

day ahead hourly solar power prediction. The results showed that hybrid method

outperformed simple SVR and traditional ANN methods. All the forecast meth-

ods discussed above use exogenous inputs like weather forecasts, sky imagery, etc.

Various methods with no exogenous inputs were investigated in [23]. The study

concluded that the ANN based method outperformed all other methods i.e. per-

sistent model, Autoregressive Integrated Moving Average model (ARIMA), and
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k-Nearest Neighbors (kNNs). Significant improvements can be achieved by opti-

mizing ANN parameters with Genetic Algorithms. All mentioned studies related

to solar power forecasting are listed in table 5.1.

None of these studies take into account soiling effects, varying aerosol con-

tent in the atmosphere and efficiency degradation of the solar panels over time

[110, 111]. In section 5.3, we propose a solar power output forecast model that

includes heuristics to account for the changing solar power profiles due to change

in seasons, aerosol content in the atmosphere, soiling, etc.

5.1.2 Load forecasting

Most previously proposed techniques for load forecast for power grids are

based on artificial intelligence [7], ensemble methods [91, 57, 27], Support Vector

Regression [112, 113, 114], and hybrid models [115]. Optimization techniques are

applied to select the input variables and hyper-parameters for the forecast model.

In many recent studies, application of biologically inspired optimization algorithms

are shown for load forecasting problem [116, 117]. The focus of all these studies

has been to provide more accurate and reliable load forecasts. The problem of

forecasting net load for power grids with high renewable energy penetration has not

been addressed, yet. In [20] it was shown that onsite solar PV generation impacts

the load forecast accuracy when conventional methods are used. An accuracy

drop of 3% and 9% for 1-hour and 15-minute forecast horizon respectively has

been reported driven by the variability of the solar resource rather than the solar

penetration level. Thus, current industrial forecasting practices have to be updated

to accommodate increasing renewable energy penetration.

5.1.3 Net load forecasting

A recent study investigating the interconnection of distributed generation

in Massachusetts by [118] highlights the need for more accurate intra-day and

day-ahead resource forecasting capabilities and conclude that load and generation

forecasts could be combined to reflect the net load for areas. [119] quantified the



64

Table 5.1: Forecast models proposed for solar power forecasting.

Ref. Inputs Forecast models Forecast

horizon

Data forecast Location

[101] Weather forecast

and temperature

forecast

Regression method 1h Solar power Expo 205,

Aichi Japan

[102] Weather forecast Autoregressive and Autore-

gressive with exogenous input

upto 36h Solar power

from 21 PV

stationson

rooftops

Denmark

[105] Forecasts from

European Center

for Medium-

Range Forecasts

(ECMWF)

Physical model upto 2d Solar power Oldenburg,

Germany

[106] Past measurements

and meterological

forecasts of solar

irradiance, relative

humidity and tem-

perature

Self-organized map (SOM) and

ANN

24 h Solar power Huazhong,

China

[107] Temperature Support Vector Machine 1 day Solar power China

[23] Time-lagged in-

puts, no-exogenous

inputs

Persistent model, Autore-

gressive Integrated Moving

Average model (ARIMA),

k-Nearest Neighbor (kNNs),

ANN and ANN-GA

1h and 2h Hourly av-

eraged solar

power data

from 1 MW

solar farm

Merced CA,

USA

[108] Weather reported

data i.e. clouds,

humidity and tem-

perature

Fuzzy theory and Recurrent

Neural Networks

24h Hourly solar

power simula-

tions

-

[109] Historical PV and

weather predic-

tion by Taiwan

Central Weather

Bureau (TCWB)

e.g. tempera-

ture,probability of

precipitation and

solar irradiance

Weather-based hybrid method

consisting of Self-Organizing

Map (SOM), Learning Vector

Quantization (LVQ), Support

Vector Regression (SVR) and

fuzzy inference method

1-d; every

3-h

Hourly solar

power

Taiwan
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uncertainty of net load caused by inaccurate wind power output predictions. In this

study, we pick up the concept of net load uncertainty from [119, 20] and combine it

with the suggestion from [118] to aggregate several forecasts to a net load forecast.

While this study is based on data from a microgrid with high solar penetration

(section 5.2.1), the concept of net load forecasting is equally valuable for all kind of

power grids with high renewable energy penetration from intermittent generators,

explicitly also for interconnected grids with distributed generation from wind and

solar energy converters.

In general, the need and value of net forecasting heavily relies on the inter-

connection regulations and tariffs under which distributed resources or microgrids

are tied to a macrogrid or transmission grid. For example, the California Public

Utility Commission (CPUC) currently only recognizes three types of tariffs for mi-

crogrid interconnection: (1) net-metering, (2) self-generation (impedes export of

generated energy and is usually combined with a time-of-use (TOU) tariff when

energy has is purchased from the macrogrid) and the (3) wholesale distribution ac-

cess tariff (WDAT) [120]. All of these interconnection options impede to take full

advantage of beneficial technical capabilities a microgrid can provide in the energy

system since they do not facilitate a bidirectional flow of energy. Many studies

highlight the need for better interconnection regulations and tariffs that enable a

better integration of microgrids within the macrogrid, while sharing costs and ben-

efits fairly [121, 122, 120, 123, 124]. Therefore, under current conditions, net load

forecasting solely creates economic value by reducing energy purchasing costs for

the microgrid operator (optimized load shifting, see section 5.2 for details). Under

future scenarios, with regulations in place that enable microgrids to draw energy

from and provide services to the macrogrid, accurate net load prediction becomes

important since the load uncertainty at the point of common coupling is an im-

portant variable for all interconnection regulations. Market participation and the

necessity to minimize the uncertainty introduced by large fleets of interconnected

microgrids also requires accurate net load forecasting.
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5.2 Microgrids as testbeds

Various operational decisions of any power grid rely on forecasting. While

the findings of this study are generally valid for all power grids with high pene-

tration from intermittent energy sources, the validation of the proposed methods

relies on data and findings from microgrids since they provide an excellent testbed

for future utility-scale power grids with high renewable generation (e.g. the UC

Merced microgrid, see section 5.2.1). Experience from existing microgrids and

proof-of-concept studies show the need for accurate forecasting of several variables

such as demand, available demand response capacity and power-generation for

optimized operations [125, 118, 126]. For example, in the case study of Borrego

Springs, a microgrid installed and operated as described in [125], customer load

could be curtailed when the forecasting algorithm found benefits for curtailment.

Interconnected load forecast is a parameter driving the optimization of microgrid

controls and the energy management system [126]. They mention a campus micro-

grid system with forecasting based optimized resource dispatching, self generation,

and grid purchases at Princeton University, New Jersey. Using the load and price

forecasts, the mentioned microgrid can buy electricity from the macrogrid based

on the hourly wholesale electricity market prices. Optimized purchasing during

low energy price times resulted in $2.5 to $3.5 million annual savings. As another

example, they mention that the Burrstone Energy Center (3.6MWp generation)

operates under similar conditions to maximize the economic value of their micro-

grid. The details about the microgrid used in this study are provided in the next

subsection.

5.2.1 Testbed data

The proposed methodology is applied to forecast solar power and net load

demand of University of California, Merced (UCM) situated in San Joaquin val-

ley (see figure 5.1). This community is an ideal test bench to study prospective

micro-grids with high solar penetration because it meets 33% of its annual and

3-55% of it’s daily power demand by solar energy produced by an onsite 1 MW
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Figure 5.1: Block diagram for net load for UC Merced system, lnet is the net load
demand of the campus from the grid, lHV AC is the heating, ventilation and air-
conditioning load; and lPV is the solar power output. The intermittence observed
in solar power is translated into load demand. Furthermore, at the end of the
day the sudden increase in the load demand, also known as duck curve is a major
concern for the utilities.

single axis tracking solar power plant [20]. The Heating Ventilation and Air Con-

ditioning (HVAC) load for the campus is a time-independent load. Under current

market conditions as discussed above, the advantageous characteristics of net load

forecasting as proposed in this study root in the opportunity under tariff option

(2) to shift load (e.g. for Heating Ventilation and Air Conditioning (HVAC)) to

off-peak hours due to TOU pricing which are lowest at night-time. Hourly data

sets consisting of solar energy production, HVAC load and load demand from the

grid are utilized for this study.

The data was time synchronized and pre-processed to remove outliers. Data

for the year 2010 consisting of 5546 data-points are considered as a training set

and data for the year 2011 with 7548 data-points are considered as a testing set.

Using data sets for the whole year as training and test sets encompass all seasonal

variations for the given location.

5.3 Proposed methodology

The net load from the grid lnet for any given time t can be expressed as,

lnet(t) = lT (t)− lPV (t), (5.1)
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where lT (t) is the total UCM load, lPV is the load demand met by an onsite

solar generation i.e., lPV is equal to the onsite solar power generation pPV . Since,

thermal storage plant for HVAC load is operated manually, it is assumed to be a

deterministic load for this study. Thus, total load demand from the grid lT (t) can

be decomposed into deterministic and stochastic part ls(t),

lT (t) = ls(t) + lHV AC(t). (5.2)

Comparing equation 5.1 and 5.2, forecasting net load simplifies to forecast-

ing stochastic part which is equivalent to,

l̂net(t) = l̂s(t) + lHV AC(t)− l̂PV (t), (5.3)

where ·̂ represents the forecast of ·. The algorithms to forecast solar power

and net load are discussed in the next subsection.

5.3.1 Solar power forecast

Solar power pPV (t) at any time t can be considered as a sum of deterministic

clear sky solar power pCS(t) and stochastic component i.e.,

ps(t) = pPV (t)− pCS(t). (5.4)

The clear sky solar power pCS(t) is a function of day of the year, latitude, lon-

gitude of the location which are all deterministic factors. But it is also affected

by various daily and seasonal processes due to changing linke-turbidity factor and

temporal degradation of solar panel efficiency [110, 111]. To account for these fac-

tors, adaptive clear sky solar power identification to update daily clear solar power

is presented. To correct for overcast conditions, morning and evening time values

heuristics are proposed.

Clear sky solar power identification

Clear sky solar irradiance is deterministic and can be modeled as a function

of hour of the day τD, day of the year τY , latitude and longitude of the location.
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But in case of clear sky solar power pCS along with the deterministic part, pCS is

continuously affected by the seasonal change, aerosol content in the atmosphere,

dust accumulating on the solar panel, temperature dependent efficiency of solar

panel, solar panel degradation over the time and so on [110]. This continuous

change adds to the forecast errors. These factors can be accounted empirically

based on most recent available information about the system. Thus, adaptive

clear model paCS that takes into account the recent changes in clear sky solar

power is proposed here. This step ensures an accurate separation of deterministic

and random components of the solar power after deterending. Solar power based

clearness index, kt,PV = pPV

paCS
is defined and the value of kt,PV range between 0 and

1. At the end of the day, five clear sky criteria introduced by [127] are applied to

check if the clear sky model should be updated or not. The five criteria are briefly

defined below.

1. Mean solar power value during the time period,

G =
1

N

N∑
t=1

pPV (t). (5.5)

2. Maximum irradiance value in the time-series,

M = max{pPV (t)} ∀t ∈ {1, 2, · · · , N}. (5.6)

3. Length of the line formed by pPV values in the time-series,

L =
N∑
t=1

√
(pPV (t+ ∆t)− pPV (t))2 + (∆t)2. (5.7)

4. Maximum deviation from the clear sky slope,

S = max{|s(t)− sc(t)|} ∀t ∈ {1, 2, · · · , N}, (5.8)

where,

sc(t) = pCS(t+ ∆t)− pCS(t). (5.9)
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Table 5.2: Thresholds for clear sky solar power identification.

Gt Mt Lt St σt kt N ∆t

150 220 220 120 0.12 0.90 3 1 h

5. Variance in the time-series,

σ =

√
1

N−1

∑N−1(s(t)−s)2
t=1

1
N

∑N
t=1 pPV (t)

, (5.10)

where,

s(t) = pPV (t+ ∆t)− pPV (t) ∀t ∈ {1, 2, · · · , N}, (5.11)

and

s =
1

N − 1

N−1∑
t=1

s(t). (5.12)

To make the identification criteria more robust, after checking for threshold,

the measured values of the clearness index are also considered. If the clearness

index values for the day time are greater than 0.90 then the day is considered as

clear day and the clear sky solar power model is updated. The steps for clear solar

power identification are given in the algorithm 1.

Heuristics

Solar power forecast is produced using a base model. In this study we

consider Support Vector Regression model as a base model. The forecast model

produces de-trended solar output and the adaptive clear sky solar power is added

at the end i.e.,

p̂PV (t) = p̂S(t) + paCS(t). (5.13)

Adding clear solar power always tends to overestimate solar irradiance for

overcast conditions (see figure 5.3 for early morning period on 03/02/2011 and

03/06/2011). To correct for this issue, heuristics based on persistence assump-

tion are applied for solar elevation angle αs > −2. It assumes that for overcast

conditions i.e. ktpv(t − 1) < 0.30, the forecast will be a sum of past values and
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Algorithm 1: Clear sky solar power identification

Inputs : Hourly values of solar power pPV

Output: Identified clear sky solar power paCS

1 initialize paCS;

2 for all unique days do

3 compute G,M,L, S, σ and kt at the end of the day;

4 if G < Gt & M < Mt & L < Lt& S < St& σ < σt then

5 update clear sky model, paCS;

6 else

7 if kt,PV > 0.90 then

8 update clear sky model, paCS;

9 end

10 end

11 end

current weather conditions times the base model forecast value. For details refer

to algorithm 2.

The base model used in this paper depends on the past lagged values.

Since, at the beginning of the day (sunrise) the inputs are past night time values

which are equal to zero, there is a discontinuity in data as night values do not

give any useful information about the first hour of the sun rise. Most of the solar

irradiance forecast studies ignore the solar irradiance/power values for solar zenith

angle less than 5 or 15 degrees [74] because the values of solar irradiance/solar

power are negligible as compared to rest of the day time values. But in the case

of net load forecasting, a continuous forecast of solar power for all the hours is

needed. Therefore, we assume the first morning value to be the clear sky solar

value. Similarly, the last value before the sunset is so small that the affect of

atmospheric condition is negligible and hence, it is assumed to be equal to the

clear sky value.
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Algorithm 2: Heuristics

Inputs : p̂PV , kt,PV , αs

Output: Updated solar forecast, p̂hPV

1 initialization;

2 while αs > −2 do

3 if ktPV (t− 1) < 0.30 then

4 p̂hPV (t, αs) = p̂PV kt,PV (t− 1) + ppv(t− 1);

5 else

6 p̂hPV (t, αs) = p̂PV ;

7 end

8 end

5.3.2 Net load forecast

We compare two approaches to perform net load forecasting : additive and

integrated model. In case of additive model, the net load forecast is performed as,

l̂net(t) = l̂T (t)− l̂PV (t). (5.14)

Whereas in the integrated model, solar power forecast is used as an input

to net load forecasting model. Deterministic lHV AC is added to the net load fore-

cast at the end. Both the methods are tested by implemented time-series and

machine learning based forecast models i.e. Autoregressive model and Support

Vector Regression model.

Autoregressive model (AR)

AR model is a linear time-series regression model. Using this model, the

output can be expressed as linear combination of past outputs/measured values

i.e.,

A(q)y(t) = e(t) (5.15)

where qN is shift operator i.e., q±N = lnet(t ± N), A(q) represents the

combination of past values of output using coefficients, a1, a2, · · · , ana and A(q) =
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1 + a1q
−1 + · · ·+ anaq

−na. The part of the time-series not modeled is represented

as e(t). For more details refer to [36].

Autoregressive model with exogenous input (ARX)

ARX model is an extension of AR model with an addition of external inputs.

In this study the external input, u(t) consists of solar power forecast values and

past measured solar power. Mathematically, it can represented as,

A(q)y(t) = B(q)u(t− nk)(t) + e(t) (5.16)

where B(q) = b1 + · · ·+ bnbq
−nb+1, nk is time delay parameter, it is equal to

zero for solar power forecast and 1 for the past values of the measured solar power.

Support Vector Regression (SVR)

Support Vector Regression technique is based on supervised machine learn-

ing algorithm [87, 88]. It has been widely applied for forecasting time-series[128,

129, 130, 114]. Given the training data {(u1, y1), · · · , (ul, yl)} ⊂ U × R where U

denotes the space of input pattern. The goal is to find a function f(u) that has

at-most ε deviation from the actually obtained targets yi,

f(u) = 〈w, u〉+ b with w ∈ U, b ∈ R. (5.17)

Support Vector regression solves the following optimization problem,

min
x

1

2
wTw + C

∑
0<i<m

(ξi + ξ∗i ),

subject to yi − (wTφ(ui) + b) ≤ ε+ ξ∗,

(wTφ(ui) + b)− yti ≤ ε+ ξ∗,

ξi, ξ
∗
i ≥ 0, i = 1, · · · , l,

(5.18)

where φ(u) is maps ui to a higher dimensional space using a kernel function

and the training errors are subject to ε-insensitive tube yi − (wTφ(ui) + b) ≤ ε.

Cost of the error, C, width of the tube and the mapping function φ controls the

regression quality.
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Table 5.3: Output and input variables for the SVR model.

Forecast model y(t) u(t)

Solar power ps(t) ps(t− 1), ps(t− 2), · · · , ps(t− nps)

Additive model lt(t) lt(t− 1), lt(t− 2), · · · , lt(t− nlt)
Integrated lnet(t) lnet(t− 1), lt(t− 2), · · · , lt(t− nlnet

), p̂s(t), · · · ,
p̂s(t− n′ps), ps(t− 1), ps(t− 2), · · · , ps(t− n′′ps)

For this study, time series formulation is applied i.e.,

yt = f(u(t)). (5.19)

The details about y(t) and u(t) are given in table 5.3, where n∗ represents

the number of lagged values of the variable ∗. Because of the use of external input

into the SVR model for integrated net load forecasting model, we term it as SVRX

to avoid ambiguity.

5.4 Model implementation

For the clear sky identification model, the thresholds for Gth, Lth, Mth, Sth

and σth were obtained using the training set given Table 5.2. These thresholds can

be updated for other sampling frequencies for both solar power and solar irradiance.

For the forecast model, LIBSVM : A Library for Support Vector Machines

[93] was used. Parameter were selected using grid search by ν- fold cross validation

technique. The SVR optimization problem was simplified to finding C and γ values

as discussed in [114]. The solar power data was scaled linearly in the range of [0.1 1].

For the SVR model, a radial basis kernel function was used. To select the number

of lagged inputs Rissanen’s Minimum Description Length (MDL) criterion was

applied. The model with derived parameters was trained using the whole training

set and was validated using the testset.

For integrated net load forecasting, the solar power forecast produced using

the above algorithm was used as one of the input parameter for the training model.

Also, note that there were some days in the training and test set when net load

was negative due to excessive solar generation. To account for negative values, the

net load was scaled linearly between [-1 1].
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5.5 Results and discussion

Various statistical metrics are applied to quantify the results. The forecast

results are reported in terms of Mean Absolute Percentage Error (MAPE), Mean

Bias Error (MBE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE)

and coefficient of determination (R2). MAPE is very sensitive to high magnitude

errors when actual value is very small. In this work, the forecast and actual value

are removed in computing MAPE when actual value for net load or solar power

are less than 0.05 kW.

Furthermore, Persistence model , is implemented based on the assumption

of that current conditions are likely to persist in future,

ŷ(t) = y(t− 1). (5.20)

An extension of persistence model is Smart Persistence (SP) model that

takes into account for deterministic information available about the system. For

this model, the forecast is sum of present stochastic component of solar power that

is assumed to persist in future and deterministic future clear sky solar power value

i.e.,

p̂pv(t) = ps(t− 1) + pCS(t). (5.21)

SP is used as a reference model to validate the goodness of solar forecast

models. The performance of the proposed model is compared to that of a SP model

in terms of forecast skill (s) [69], which is defined as,

s = 1− RMSEmodel
RMSESP

. (5.22)

5.5.1 Clear sky identification

The clear sky identification algorithm was applied to identify the clear days

and update the clear sky solar irradiance model, paCS. The results for the identi-

fication algorithm are given on table 5.4). For the training set, there were total

of 228 days, out of which 109 were clear days. The algorithm identified a total

of 115 clear days, out of which 101 days were truly clear days, whereas 14 days
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Table 5.4: Clear sky identification results

Data set
Total Actual Clear days identified

days clear days Total True False Missed

Tset 228 109 115 101 14 8

Vset 300 119 126 116 10 3

Table 5.5: Statistical error metrics for hour-ahead solar power forecast (01-01-
2011 to 12-31-2011).

Model
MAPE MBE MAE RMSE R2 Skill

(%) (kW) (kW) (kW) - s(%)

Using clear sky model based on τD and τY

SP 349.08 -9.15 74.44 113.78 0.90 0

SVR 291.18 -12.92 72.08 109.04 0.91 4.17

Using adaptive clear sky model

SPα 144.78 -9.30 52.29 103.08 0.92 9.40

SVRα 113.47 -16.17 52.19 100.80 0.92 11.41

Applying heuristics

SPα,h 101.36 -2.37 44.76 88.06 0.94 22.61

SVRα,h 101.12 -5.82 44.33 86.24 0.94 24.20

were falsely identified as clear and 8 days were missed. Given that the accuracy

of the algorithm is defined as percentage of actual clear in total number of clear

days identified, for the training set the accuracy is 87.82% and for the testing set

it is 84.12%. Incorrect identification happens for the days with very small ramps

that do not exceed the threshold range as shown in figure 5.2. The disadvantage

of identifying incorrect days is that unnecessary ramps in the solar power are in-

troduced which affect the accuracy of the forecast. This does not happen very

often as the model auto-corrects itself (e.g. in figure 5.2 it can be observed that

07-11-2011 was identified incorrectly as clear day and a false ramp was introduced

for 07-12-2011, but this was autocorrected by 07-13-2011). The errors introduced

by identifying incorrect days can be ignored because they are small in magnitude

as compared to the improvements achieved in forecasting as discussed in the next

section.
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Figure 5.2: Time series for the solar power generated for the 10 consecutive days
from the year 2011. Dashed line indicates a reference level at 900 kW and it can
be observed that after 07/08 the maximum solar power exceeds the reference level.
Adaptive clear sky model takes into account these kind of changes and updates
the clear sky model. Even though 07/11 is a cloudy day, it was identified as a clear
day. However, the adaptive clear sky identification algorithm autocorrects itself
and it was updated by another clear sky model for 07/13.
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Figure 5.3: Time series for the actual solar power and forecast for 1-h forecast
horizon (top) and absolute error, AE (bottom) with night values removed. Here we
can compare the results from SVRα and SVRα,h model. For the overcast period,
SVRα,h is able to correct for the over-predicted solar power by SVRα. For a cloudy
day with ramps (03/01/2011 and 03/05/2011), both the models have similar errors.
The SVRα,h model works better than SVRα model in detecting overcast conditions
and correcting for errors in the morning time (03/02/2011 and 03/06/2011).
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5.5.2 Solar power forecast

An hour ahead solar forecast was implemented using SP and SVR as base

model. Firstly, the forecast models based on clear sky solar power using τD and τY

were implemented. In the next step, the basic clear sky model was replaced with

the adaptive clear sky model as explained in section 5.3.1. The improved models

were termed as SPα and SVRα. Finally, heuristics as proposed in section 5.3.1

were applied to the models and termed as SPα,h and SVRα,h. All the results and

corresponding improvements are listed in table 5.5. MAPE significantly reduces for

models with adaptive clear sky model and heuristics. MBE gives the information

about the bias in the error. For all the results reported in this study MBE error

is negative which suggests that the forecast models always overestimate the power

forecast. Furthermore, the MAE gives information about the net error in forecast

which is about 44.33 kW i.e., 4.4% of the maximum rating capacity of the power

plant. The deviation in forecast values as compared to the actual values is given

by the RMSE. It is a scale dependent measure and gives the information in terms

of standard deviation w.r.t. the mean.

An adaptive clear sky model ensures that daily variability is taken into

account. Thus, by its application the RMSE reduces from 113.78 kW to 103.08

kW for SP and 109.04 kW to 100.80 kW for SVR which is an improvement of

9.40% for SP model and 7.56% for SVR model. Since, the night values give no

information about the overcast in the morning, major error was observed in the

morning. To correct for such error heuristics were applied and an improvement of

14.57% for SP and 14.44% for SVR model was observed. The statistical metrics

show the improvements achieved by using the adaptive clear sky model and then

further possible improvements by applying heuristics. Since all these results are

achieved without using any exogenous input, the proposed technique can serve as

reference to compare the forecast models with exogenous inputs.

5.5.3 Net load forecast

The net load forecast was implemented using: 1) additive model where

solar and load forecast were produced individually and then combined at the end
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Figure 5.4: Time series for the net load and solar power forecast for six consec-
utive days (11/06/2011 to 11/12/2011) from the testset. The absolute error (AE)
in the forecasts is shown in the figure below. It can noticed that the solar forecast
error directly influences the net load forecast. Solar power is always over-predicted
for the days with overcast conditions (11/07/2011 and 11/11/2011). Heuristics are
introduced to correct for these errors. Magnitude of net load forecast error is less
for clear (11/08/2011) and overcast days (11/11/2011) as compared to the cloudy
days.
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Table 5.6: Statistical error metrics for UCM load demand forecast (01-01-2011
to 12-31-2011).

Model
MAPE MBE MAE RMSE R2

(%) (kW) (kW) (kW) -

PV forecast including night time values

SVRα,h 141.07 -2.20 25.59 65.06 0.97

Persistence model for net load forecast

Persistence 10.93 0.07 152.77 240.92 0.83

Additive model : Model - SVRα,h

AR 13.98 4.58 64.99 93.83 0.97

SVR 30.47 3.76 63.88 92.48 0.97

Integrated solar power (SVRα,h) and net load forecast

ARX 4.60 4.60 57.75 85.06 0.98

SVRX 5.47 5.47 54.74 82.59 0.98

and 2) integrated model where the solar power forecast was used as input into

the load forecast model. The forecast error statistics for the additive model and

the proposed integrated net load forecasting model are listed in table 5.5.2. The

stationarity of errors is shown in figure 5.5 as there is no correlation over the hourly

time lags. This validates the model identification because all the information in

the time-series has been captured.

The results show that the integrated model outperforms the additive models

marginally in terms of all error metrics (see figure 5.6). In case of Autoregressive

model, integrated ARX model performs 9.35% better than the additive AR model

and SVRX performs 10.69% better than the SVR model in terms of RMSE. Figure

5.6 shows that the spread of additive model forecast errors is more than the inte-

grated model. This validates the lower RMSE for integrated model as compared

to the additive model. Thus, integrated model should be preferred for the grid

applications.

If compared in terms of MAPE and MBE, time-series based AR model al-

ways perform better than the SVR model. Whereas in case of MAE and RMSE,

SVR model outperforms the AR model for both additive and integrated case. Sam-
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Figure 5.5: Error correlation for net load forecast models. After zero lag, there
is no correlation in forecast errors. This establishes that all the information in
time-series have been captured by the forecast model and the forecast residues are
randomly distributed.

ple results are shown in figure 5.4. For overcast days (11-07-2011 (early morning)

and 11-11-2011), it can be observed that the solar power model tends to over-

predict the initial value. This is due to addition of clear sky solar power and

discontinuity in solar data at early morning hours. The forecast error uncertainty

is quantified in the next section.

5.5.4 Assessment of forecast uncertainty

The forecast uncertainty can be quantified using the 95% confidence in-

terval. Using the inverse Cumulative Distribution Frequency, the 95% confidence

interval corresponds to 2.5 to 97.5 percentile of the distribution reflecting the un-

certainty. Freedman-Diaconis rule is applied to define the number of bins for the

data sets and the results are shown in figure 5.7. Based on the previous discussions

and comparison, it is expected that the uncertainty range for the additive model

will be larger than the integrated model. The results show that the uncertainty

range for additive model is between -218 kW to 241 kW and for the integrated

model the range is from -214.5 kW to 198.6 kW. The maximum value of the net

load during the daytime is 2.07 MW. Taking the absolute values, the uncertainty

increases by 46 kW for the additive model as compared to the integrated model

which is equivalent to 2.2% of maximum net load. Furthermore, for the solar fore-
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Figure 5.6: Comparison of net load forecast errors for both additive and inte-
grated models w.r.t. the solar forecast errors from SVRα,h model during daytime.
Night time values have been removed for this plot and analysis. The net load
forecast errors are inversely proportional to solar forecast errors. The linear fit
predicts 98% variance of the integrated forecast errors and 83.59% variance of the
additive model forecast errors.

casting errors, the uncertainty range is between -213 kW to 195 kW. This is very

close to the range of integrated model and it could be a good approximation for the

net load forecast errors. The relationship between the solar and net load forecast

errors is established in the next section.

5.6 Solar and net load forecast errors

For future planning and modeling for the grids with expected high solar

penetration, it is important to quantify the relationship between the solar and

net load forecast errors. However, as shown in figure 5.5 and discussed previously,

both solar and net load errors are stationary and yet figure 5.6 shows that the solar

forecast and net load forecast errors are inversely proportional to each other. To

test for hidden correlation between these time-series, cointegration test is applied

and discussed below.
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Figure 5.7: Net load and solar forecast uncertainty assessment by applying inverse
CDF during daytime. The quantile represents the forecast errors in kW. The upper
and lower inset plots show upper and lower bound for the 95% confidence interval
for the forecast errors. The 95% confidence interval for the additive net load
forecast model ranges between -218 kW to 241 kW (black), for the integrated
model this range is -214.5 kW to 198.6 kW (dark grey) and for the solar forecast
errors the range is -213 kW to 195 kW (light grey). Thus, the uncertainty range
decreased by 46 kW by using the integrated model.
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5.6.1 Cointegration of solar and net load forecast errors

The concept of spurious regression and cointegration was first introduced by

[131, 132]. It is used to define statistical properties of the time-series. Time-series

are cointegrated if they share a common stochastic drift. Two random variables

are cointegerated if one random variable, x(t) can be expressed linearly in terms

of second random variable, w(t) using some coefficient β i.e.,

x(t)− βw(t) = e(t) (5.23)

such that the residue, e(t) after fitting is stationary [133, 134, 135]. e(t) is

also known as cointegrating relation. Here, we apply this concept on net load and

solar forecast errors. This step ensures that the correlation between two random

variable is not spurious and furthermore, error-correction models can be applied

for modeling such pair of time-series.

The Engle-Granger cointegration test was applied with the null hypothesis

that the net load and solar forecast error time-series are not cointegrated. Results

(see figure 5.8) were against the hypothesis with stationary cointegrating relation.

Hence, net load and solar forecast errors are co-integrated time-series. This vali-

dates the correlation presented in figure 5.6. Therefore, the relationship between

net load and solar forecast errors can be represented as

ê(t)integrated = −0.77e(t)solar − 0.56, (5.24)

and

ê(t)additive = −0.46e(t)solar − 0.46. (5.25)

Using the equations presented above, 98% of the variance of integrated

net load forecast errors can be predicted using solar forecast errors whereas only

83.59% of the variance of additive net load forecast errors can be predicted using

solar forecast errors.
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Figure 5.8: Cointegrating relation between the hourly integrated net load and
solar forecast errors during the daytime for the first consecutive 50 hours. Inset
plot shows the cointegrating relation for the whole time-series. The combination is
indeed stationary, which validates the cointegration of the time-series and negates
the possibility of spurious regression.

5.7 Summary

This concept of net load forecasting is introduced and its technical and eco-

nomical benefits for interconnected grids are discussed. An exemplary implementa-

tion of the proposed concept is shown for a microgrid with high solar penetration.

Two different net load forecasting approaches using load and a solar power output

forecast are implemented and evaluated: integrated and additive.

To predict solar power a heuristics based approach with no exogenous input

is presented. The proposed approach takes changing atmospheric clearness and

efficiency degradation of PV panels into account using adaptive clear sky model

and heuristics. The accuracy of clear sky solar identification was found to be

84.12%. Adaptive clear sky solar power showed an improvement of 9.4% and the

heuristics proposed in this study further showed an improvement of 22.61% for the

smart persistence model. For the SVR model, the improvement was 11.41% for the

adaptive clear sky model and 24.20% after the heuristics were applied. Thus, the

adaptive clear sky model and the heuristics proposed in this study can be applied

to any solar forecast algorithm to enhance the forecast accuracy.

As stated above, the solar power forecast is applied for two different net load
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forecasting approaches. The integrated solar and load forecast model outperformed

the additive model by 10.69 % in terms of Root Mean Square Error for the SVR

and SVRX models.The implemented forecast model tends to over-predict solar

power for overcast period on early morning time and hence, under-predict net load

for the corresponding time. Over the day, frequent forecast errors were observed

during cloudy periods as compared to overcast periods which is in agreement with

[20].

The uncertainty ranges for the net load and solar power forecast errors were

analyzed. The 95% confidence interval for the additive model is larger than the

the integrated forecast model by 2.2% of the maximum net load demand. The 95%

confidence interval of solar forecast can be used as an approximation for the ex-

pected accuracy of the net load forecasts. There is high correlation between the net

load forecast errors and solar forecast errors. To validate the correlation between

the solar and net load error time-series, the Engle-Granger cointegration test was

applied. The two stationary time-series are indeed cointegrated and hence, share

the common stochastic drift. Using solar forecast errors, 98% variance of net load

forecast errors can be predicted. Thus, solar power time-series is sufficient to pro-

vide necessary information to characterize the expected variance and uncertainty

in the net load time-series.

Therefore, for utility scale grid and microgrid applications, it is suggested

to use an integrated net load forecast model to reduce the uncertainty at the point

of coupling between the interconnected grids. The net load forecasting model

can also be adapted for grids with high wind energy penetration using a wind

forecast method as an input. The proposed concept will enable the grid operators

to efficiently manage grids with high intermittent renewable energy penetration

and participate in electricity market for economical benefits.
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Chapter 6

Benefits of forecasting

The electricity system is undergoing an inevitable change to address in-

creased variability in generation and net load, introduced by intermittent genera-

tors, mainly wind and solar. Many approaches to mitigate the adverse effects of

ramping have been proposed, e.g. increased storage capabilities, resource and net

load forecasting, demand response, etc. The core of all solutions for integrating

higher levels of variable wind and solar generation is to increase the flexibility op-

tions available in the grid [136, 137]. Recently, regulating authorities in several

jurisdictions reorganized the market environments to allow flexible energy trading

schedules, designed to better exploit spatial and temporal diversity in generation

and demand. Historically, this reorganization started in Northern Europe by al-

lowing short-term, cross-border electricity trading, driven by the need to integrate

increasing shares of variable wind generation.

In October 2014, the Energy Imbalance Market (EIM) in the Western In-

terconnection was opened in United States of America interconnecting over 30

participating balancing authorities (BAs) in USA and Canada. This allows for

generation and demand balancing across Balancing Authority Areas (BAA) on 15

minute and 5 minute time-scales with California Independent System Operator

(CAISO) oversight. Previous to the opening, all the Balancing Authorities (BA)

were responsible to balance generation and demand for their own area. Now, the

ISO can dispatch and share resources across the participating BAAs to balance en-

ergy of all BAs. All EIM market participants are mandated to provide a continuous

89
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feed of specified forecasts to the ISO. Energy imbalances caused by errors in the

forecasts and bidding are settled by the defined settling regulation e.g. according

to the United States Federal Energy Regulatory Commission (FERC) Order 890,

for intermittent renewable generators, imbalances greater than 7.5% or 10 MW are

settled at 125 percent incremental cost or 75 percent decremental cost of provid-

ing the imbalance energy. In contrast to the dominance of wind as intermittent

generator in Northern Europe, solar is the dominating intermittent energy source

in many regions in the Western Interconnection with tremendous expected growth

rates (e.g. California).

In this context, we aim to analyze and quantify the benefits of solar forecast-

ing for EIM operations. The solar forecasts are implemented to cover all necessary

forecast horizons for EIM operations. All the implemented forecasts are state-

of-the-art methodologies based on broadly available methods, relying on low-cost

instrumentation and publicly available data. The contributions of this study are:

1) reforecast methodology to forecast day-ahead global irradiance 2) features based

optimized short-term solar forecasting 3) analysis of solar forecast errors for the

forecast horizons related to electricity markets, especially the short-term EIM mar-

ket in the Western Interconnection and 4) detailed analysis on the role of solar

forecasting in EIM in terms of uncertainty and estimation of flexibility reserves

from the perspective of market operator and participants.

More detailed discussion on the EIM and previous work on solar resource

forecasting are provided in section 6.1, the data sets used are described in previous

chapter section 4.1, methods for solar forecasting and corresponding results are

provided in previous chapter sections 4.2 and 4.3, the value of forecasting for EIM

is shown in section 6.2 and the conclusions are drawn in section 6.3.

6.1 Energy imbalance markets

6.1.1 Goals

The main objective for the introduction of EIMs is to reduce imbalances

between demand and generation without ancillary services or additional reserves
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by enabling regulated, short-term energy trading between interconnected balancing

areas. Without EIMs, resources were not shared between the balancing areas. The

individual balancing area authorities had to schedule and keep operating reserves to

handle imbalances. For the EIM in the Western Interconnection, after scheduling

for 15 minute market, the 5 minute market is executed to automatically procure

resources to balance expected imbalances between generation and demand in 5

minute time intervals. Taking the advantage of increased geographical diversity in

generation and load profiles, the main benefits of this market are reduced operating

reserves capacity, enhanced reliability, reduced costs and automatic dispatch, and

real-time visibility.

6.1.2 Previous work

This section covers a short summary of previous work, relevant for EIMs.

A review on real-time markets is presented in [138]. An overview of previous EIM

studies can be found in [139]. They include a comparison of market regulations

based on assumptions, annual benefits, and geographic scope. The study includes

benefits of the implemented EIM between ISO and PacifiCorp. The impact for

EIM, for grids with high levels of wind penetration, was studied in [140]. They

show that the introduction of EIMs enables reserve requirement reductions which

is beneficial for all EIM participants. Furthermore, they show that the failure or

refusal of participation by as little as one entity can reduce the benefits for all other

participants in the market. Using forecasts as a decision variable the bidders and

market operator can commit or de-commit in case of high or low energy production

[141]. An evaluation of energy balance and imbalance settlements in Europe is

presented in [142].

A general framework for analyzing various components of market partici-

pation for wind generators was proposed in [143]. They discuss the value of infor-

mation contained in forecasts for grids with high wind penetration. Conclusions

cover that forecasting has a high economic value for variable wind energy sources.

For current status of wind penetration in CAISO, investment in short-term wind

forecasting is precarious, whereas in future scenarios with high wind penetration
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levels, forecasting can evolve into an important decision variable for real-time mar-

ket operation, e.g. economic dispatch in the CAISO area [144]. A detailed anal-

ysis on organized markets in the Western Interconnection can be found in [145].

It highlights the factors influencing the success of EIMs, such as cost allocation,

transmission rights, participation of various BAAs, stakeholders and discusses the

alternatives to organized markets, for instance Intra-hour Transaction Accelerator

Platform, the Dynamic Scheduling System, Balancing Authority Reliability-based

Control, Area Control Error Diversity Interchange, Enhance Curtailment Calcu-

lator, etc. While these alternative market setups might be beneficial in certain

cases, the regulating authorities decided to operate an EIM in the Western Inter-

connection. The focus of our work is the EIM in the Western Interconnection in

the United States.

Most of the studies on the impact of EIM on Western and Eastern In-

terconnection assume forecasts to be persistent [141]. However, there has been

tremendous progress in the field of solar energy resource forecasting over the past

decade. Hence, previous studies provide a conservative estimate of reserves. In

this study, we seek to quantify the benefits of state-of-art-solar solar forecasts for

the EIM. The next section covers key design variables of EIMs and current solar

forecasting methods that can be utilized for EIM participation and operation.

6.1.3 Market design variables

The two fundamental concepts for energy imbalance markets are balance

responsibility and imbalance settlements [142]. Balancing responsibility covers the

processes from market opening, to binding and market execution. The key variables

for balance responsibilities are: (1) program time unit (PTU), defined as the time

window for which bids are submitted and base schedules are awarded. (2) Scope

of balancing, defined as the magnitude of necessary generation change. (3) Gate

closure time (GCTp/o); defining the time when the option to submit or modify a

bid expires. The GCTp is for market participants while the GCTo is time when

schedules are binded from the operator. (4) Types of imbalances, depending on if

over- or under-generation occurs. (5) Closed (zero imbalance) or open (occurring
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imbalance) portfolio positions and (6) look ahead time (LAD), defining the ahead

time horizon considered for running the optimization to schedule awards.

The design of imbalance settlements define the detailed setup of penalties

associated with wrong forecasts and market bids. Details about imbalance settle-

ments can be found in [142]. In general, it covers the frequency of settlements,

regulations and pricing of imbalances for each market participant.

The discussed variables allow for broadly varying market designs. The

specific regulation of EIMs vary greatly for different world regions. For instance,

in Norway, the first GCT of market execution is 7 pm local time on the day before

the market is executed. In Sweden, it is 4 pm and in Finland it is 4:30 pm.

The PTU in these regions ranges between 60 and 15 minutes. In the Western

Interconnection the first GTC before market execution is 40 minutes and PTUs

are 15 to 5 minutes. More details for European EIMs can be found in [142] and

for the Western Interconnection, the in-depth details are provided below.

The PTU and GCT are the key technical drivers of imbalance markets.

6.1.4 EIM in Western Interconnection

The Western Interconnection Energy Imbalance Market (WI EIM) is a cen-

tralized and coordinated real-time energy market, operating at 15 and 5 minute

time intervals. Before the introduction of the WI EIM, resources were not shared

between the participating BAAs. Each BA had to independently schedule oper-

ating reserves and backup resources. With the introduction of the WI EIM with

over 30 participating BAAs, generation and demand can be exchanged between

participating entities with CAISO oversight. Hence, imbalances can be corrected

for within almost the full Western Interconnection. For instance, under-forecasts

of generation by wind in the Seattle area could be balanced with over-forecasts of

power output from solar plants in the Mojave Desert.

The following groups actively participate in the WI EIM: EIM entity (over

30 participating BAAs) represented by an entity scheduling coordinator (ESC), the

market operator (CAISO), and participating resources represented by a scheduling

coordinator. Non-Participating resources are also playing a role in the EIM since
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it was shown that the highest benefits are achieved if all resources participate in

the market [140].

EIM WI market operation

To determine the most economic dispatch, CAISO automatically accesses

the following variables: generation and demand forecasts, outages, resource sched-

ules, economic bids, dynamic contingencies and interchange schedules to run a

multi-objective optimization for future planning and scheduling. The detailed

time lines of WI EIM market operations are visualized in figure 6.1. The WI EIM

process starts 7 days before the operating day, D. The ESC starts submitting the

base schedules and can update the base schedule up to a day before the operating

day i.e. D − 1. On D − 1, 10:00 am local time, ISO evaluates the base schedules

to determine the energy balance, congestion and flexible ramping capacity. This

serves as an advisory information for the day-ahead market (DAM). At D−1, 1:00

pm local time, ISO runs the sufficiency test and provides the information to the

scheduling coordinators. The base schedules and operating bids from the schedul-

ing operators are due 75 minutes before the operating hour i.e. T − 75 minutes

where T represents the start of the operating hour. At T − 60 minutes, ISO runs

the sufficiency test and publish results. Based on these results, the updated base

schedules and energy bids are due by T − 55 minutes. Again, a sufficiency test

is run and results are published. The final base schedules and the energy bids

are due by T − 40 minutes. The optimization for the 15 minutes energy market

starts at T − 37.5 minutes. Scheduling awards are published at T − 22.5 minutes.

The deadline for confirmation between the generator and the market operator (re-

ferred to as e-tagging) is due at T − 20 minutes. This process is repeated for every

operating hour.

Of all the timelines discussed above, T − 75 minutes is crucial because by

this time all interested market participants are required to submit their bids. The

T − 40 minutes horizon is the final opportunity (GCTp) for the participants to

update their bids based on the sufficiency test results.

For the 5-minute real-time dispatch market, the optimization is run at T −
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Figure 6.1: Timeline for the real-time Energy Imbalance Market in the Western
Interconnection for the operating hour beginning at time T (Market 1). First
the schedules are awarded for 15 minutes market and then 7.5 minutes before the
operating hour another optimization is executed and energy is dispatched at T−2.5
minutes to balance the difference in demand and production for Interval 1.

7.5 minutes interval and at T −2.5 minutes the resources are dispatched to balance

the demand and generation for [T, T +5) minute interval. This process is repeated

for every 5 minute time intervals.

6.1.5 Forecasting for EIMs

The decisions for the market operations are based on forecasts. The op-

timization problem for the 15 minute market looks ahead up to 4.5 hours in 15

minute time intervals. For the 5 minutes market, the optimization looks ahead

up to 65 minutes in 5 minute intervals. These forecasting horizons are of crucial

importance for efficient EIM market operation and management. Thus the time-

line at which forecast is issued before GTCp/o and then applied by the vendor or

market operator to bid into the market or award base schedules for the given PTU
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i.e. the interval of forecast highly influence the dynamics of the market.

In this study we focus on k = 24 hours, 75− 5 minutes, fi, fr = 1 hour,15

and 5 minutes. In general, for market application k ≥ GTCp/o and fi ≥ PTU.

To be able to participate in EIM, all the participants are required to provide

their resource and load forecasts to the ISO. Since, EIM is designed to balance

demand and resource at shorter time scales, in this study we focus on variable

energy resource i.e. solar energy that is likely to play an important role in EIM at

high penetration levels.

6.2 Implications on EIMs

To analyze the implications of solar forecasting for EIM, the forecasts dis-

cussed in chapter 4 are used henceforth. For more details about the method,

datasets, forecast models and solar forecasting refer to chapter 4.

6.2.1 Reserve scheduling

In the United States, all ISOs are required by FERC to keep additional

operating reserves to account for errors and any sudden changes in load. Reserve

requirements also apply for EIMs and the costs for backup resources effect all

market participants. There are various methods in practice to compute reserves

[146, 147, 139].

The dominant approach is the n-sigma method, where reserves are cal-

culated by assessing the standard deviation in generation and demand forecast.

Based on the forecast above, we can quantify the required resources necessary to

cover the uncertainty introduced into the EIM by solar generators with the P, SP

and SVR-GA models. Figure 6.2 shows the standard deviations and respective

error reduction achieved by SP and SVR-GA model for 1 day and 75 to 5 minute

forecast horizons in the intervals of 1 hour, 15 minute and 5 minute averages. As

expected, the standard deviation for 15 minute averages is lower than for 5 minute

averages. A 15 minute market operation disregards large shares of variance occur-

ring under 5 minute market operation, suggesting that lower reserves have to be
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scheduled. This is counter intuitive but can be explained by the fact that temporal

smoothing disregards large shares of variability (the solution is discussed further

in section 6.2.3). This shows that the dynamics and operations of the market are

highly influenced by the PTUs and GCTs.

Depending on GCT, reserves are scheduled. For GCT > 75 minutes, re-

quired relative reserve are defined. For GCT < 75 minutes, flexibility reserves are

scheduled.

6.2.2 EIMs with GCT greater than 75 minutes

The scheduled relative reserve Rr for GCT > 75 minutes is by definition a

function of standard deviation of forecast errors σ(e) occurring for a given PTU,

normalized by the mean annual solar irradiance (GHI) received on a given location

i.e.,

Rr =
σ(e)

GHI
. (6.1)

This approach enables to compare reserve required for different resource

forecast approaches. In practice, the standard deviation of power forecast errors

is considered (this requires knowledge of specific system characteristics). Resource

forecasts directly translate into power forecasts which validates our use of relative

reserve as an estimation for operating reserves. For large GCT, NWP predictions

have to be used for the resource forecast. As shown above, reforecasting signifi-

cantly enhances the performance of NWP based GHI prediction. Hence, required

reserves can be significantly reduced by the proposed reforecast method (see sec-

tion 4.2.4). Using the SP model the required reserve is 0.39. Using the NWP

reforecast model it decreases to 0.32 which is a reduction of 17.84%.

6.2.3 EIMs with GCT lower than 75 minutes

For markets with GCT <= 75 minutes, the concept of flexibility reserves

allocation is used. Flexibility reserves are scheduled as a function of change in stan-

dard deviation with respect to the magnitude of solar power production [141]. To
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Figure 6.2: Standard deviation in forecast error for forecast horizons ranging
from 1 day to 5 minutes ahead forecast horizons in 1 hour, 15 minute and 5 minute
resolution. The total height of the bar represents the standard deviation in the P
forecast errors and then the stacks within a bar shows the reduction in σ by the SP
and SVR-GA model. For the one day-ahead forecast, the standard deviation is the
highest for the plain NAM forecast, followed by P model. The best performance
is achieved by the reforecast model. This chart can be used for any solar forecast
application study to design the modeling parameters for the uncertainty at various
time-horizons.

show the comparison with GCT > 75 minutes, relative reserves are also computed.

As discussed above, to account for the problem of temporal smoothing the

resolution of the forecast fr has to be considered i.e., for a given fr and fi there

will be n number of forecasts such that n = fi
fr

. The forecast errors for all these

n forecasts are represented as el such that l ∈ {1, 2, · · · , n}. Then, the standard

deviation used to compute the relative reserve has to be greater than or equal to

the maximum of standard deviation of el forecast errors,

σ(e)fr ≥ maxl(σ(el)), (6.2)

where σ(e)fr is the standard deviation in n forecast errors occurring in a

given PTU with a forecast resolution fr. For example, if the market operates

on PTU = 15 minutes, and the reserves allocated need to cover the variance up

to 5 minute time resolution, then n = 3. Figure 6.3 shows the relative reserves

allocation for various forecast-horizons in 5 and 15 minute intervals, considering the

5 minute variance. The reduction of reserve required using P model compared to

SP and SVR-GA is shown. The grey-scale bar represents the reserve allocation for

15 minute interval. Colored bars represent the reserve allocation for the 5 minute
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Figure 6.3: Benefits of 5 minute versus 15 minute reserve allocation for real-
time markets considering 5 minute data interval. The grey-scale bar plots shows
the relative reserve required for the 15 min-time intervals whereas the colored bar
represents the reserves required for the 5 minute time-intervals. The total height
of the bar represents the total reserve required using the persistence model and
reduction in the magnitude of reserves is shown by the stacks within each bar.

time interval. It is beneficial for the market operator to allocate resources on

shorter time horizons. For short-term forecast horizon (5-15 minute), the reduction

is smaller whereas for the higher forecast horizons, the benefits of using SP and

forecast model become apparent. The relative reserved can be reduced by 28.5%

on average. For 45 minutes forecast horizon, the relative reserve required is 0.25

and it can be reduced by 40% using the SP model.

Market operator - schedulers

The computed flexibility reserves are shown in figure 6.4). The reduction

of flexibility reserves using the P model, compared to SP and SVR-GA are sum-

marized in table 6.1. Using the SP model the improvement ranges between 5.83%

to 59.97% for the 5 to 75 minutes forecast horizon, respectively. The reductions

using SVR-GA ranges between 22.62% and 67.47%, respectively. Using SVR-GA

instead of SP, the flexibility reserves can be reduced by 21%, on average. However,

reductions are lower for the 15 minutes forecast intervals. This is expected because

at 15 minute resolution the resource variability is lower than for 5 minutes.
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Figure 6.4: Flexibility reserve required for 1 MW solar plant for 5 minute inter-
vals. The total magnitude of the bar represents the flexibility reserve needed using
the Persistence model and the inner stack represents the magnitude reduction by
Smart persistence and the forecast model. Beginning from forecast horizon of 5
minutes to 55 minutes, the improvements in reducing flexibility reserves increase
and for the forecast horizons greater than 55 minutes, the improvements starts
decreasing due to reduced forecast skill.

Market participant - power generators

The technical requirements of the power grid depend upon very small dis-

crepancies between generation and load. This drives the need for imbalance settle-

ments. For intermittent renewable generators, FERC defines errors in market bids

larger than 7.5 percent as a benchmark for penalties. Hence, we define errors larger

than 7.5% as occurring imbalance. To quantify the likelihood that imbalances will

occur, the probability of wrong bids through errors in forecasts for 5 minute in-

tervals for a 1MW solar plant are calculated. For 5 to 75 minutes forecast, the

probability ranges between 0.15 to 0.41, 0.08 to 0.17, and 0.07 to 0.14 for persis-

tence, smart persistence and forecast model, respectively (see Figure 6.5). Thus,

the probability of imbalance can be reduced by 66.93% using SVR-GA instead of

P (or 19.65% instead of SP model). Similar results are achieved for the 15 minute

forecast resolution, where the probability of an imbalance is reduced by 15.12% by

replacing SP with SVR-GA.

6.2.4 Implications for the Western Interconnection EIM

Most imbalance markets around the world are operated at 15 minute or

greater PTU, however the Energy Imbalance Market in the Western Interconnec-
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Table 6.1: Summary of benefits of solar forecasting for the real-time energy mar-
kets with respect to the Persistence (P) and Smart persistence (SP) forecast model
using solar power data for 1MW plant.

Forecast Reduction w.r.t. P model [%] Reduction w.r.t. SP model [%]

horizon Flexibility reserve p(Error > 7.5%) FR p(Error > 7.5%)

(minutes) SP SVR-GA SP SVR-GA SVR-GA SVR-GA

fr − 5 minutes

5 5.83 22.62 44.38 53.04 17.83 15.64

10 11.23 26.41 53.66 62.40 17.11 18.85

15 16.99 33.89 59.32 66.03 20.36 16.48

20 22.18 39.76 62.01 68.20 22.59 16.30

25 27.65 41.93 63.43 69.06 19.73 15.38

30 31.80 46.63 63.47 69.80 21.74 17.32

35 35.51 50.02 63.19 69.91 22.49 18.25

40 39.31 54.70 62.35 70.20 25.36 20.85

45 42.89 56.01 60.79 70.55 22.97 24.89

50 46.49 57.69 59.51 68.89 20.94 24.82

55 49.24 60.10 59.26 68.89 21.40 25.64

60 52.69 63.43 58.65 67.88 22.71 23.32

65 56.27 65.16 58.02 67.32 20.32 22.15

70 58.19 67.16 57.62 66.39 21.45 20.68

75 59.97 67.47 57.47 64.45 18.75 16.41

fr − 15 minutes

15 10.20 22.29 50.02 59.30 13.47 18.57

30 15.72 29.27 57.43 63.38 16.09 13.96

45 20.91 36.32 61.16 66.25 19.48 13.11

60 26.19 42.67 63.12 68.42 22.34 14.33

75 30.99 47.19 63.72 69.40 23.48 15.65
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Figure 6.5: Energy imbalances (probability for the error to exceed 7.5%) for 1
MW solar plant for 5-75 minutes and 15-75 minutes forecast horizon with 5 minute
and 15 minute resolution. The probability of imbalance greater than 7.5% can be
reduced by an average of 19.65% and 15.12% by using a forecast model instead of
a SP model.

tion is a unique platform where after a 15 minute market, another 5 minute market

is operated. This section present results with respect to the timescales for West-

ern Interconnection from the perspective of both, the market operator and market

participants.

Let assume the market operator starts the optimization to execute the WI

EIM at T − 37.5 minutes to plan for the interval [T, T + 15) using the state-of-

the-art forecast issued at T − 45 minute. Then, in this time interval the forecast

error lies between -0.8 to 0.09 kWm−2 for a 90% confidence interval. Therefore, if

another state-of-the art forecast for a forecast horizon of T − 10 minutes is added

to the system before the optimization runs for T − 7.5 minute, the uncertainity

of over-prediction can be reduced from -0.6 to 0.04 kWm−2, representing a 25%

reduction and 41% overall reduction of variance (see Figure 6.6).

For WI EIM participation, market participants are mandated to submit a

bid at T − 75 minute for the [T, T + 15 minute) time-interval. Using a forecast

model instead of SP model, the chances of getting penalized reduces by 15.65%.

Furthermore, if the bid is updated T − 45 minute, there is a 13.11% reduction in

chances of getting penalized using SVR-GA as compared to the SP model.
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Figure 6.6: Inverse cumulative frequency distribution of the expected forecast
errors that market operator has to optimize for in 5-minute market after scheduling
the awards for 15 minute market using the forecast model. Results show that if a
forecast model is applied at 10 minutes forecast horizon in five minute resolution
the uncertainty can be reduced from -0.08 to -0.06 kW m−2 and from 0.09 to 0.04
kWm−2 for 90% of the time.

6.3 Summary

A review about energy imbalance markets is presented. The key design

variables are explained and their significance is discussed. It is shown that the

program time unit as well as the gate closure time are the key variables controlling

the market dynamics. The process of imbalance settlements are the key regulatory

and economical drivers for market participants and the operator.

The application of the discussed forecasts reduce the relative reserve require-

ment for participation in imbalance markets with day-ahead gate closure time by

17.84%. Similarly for EIMs with shorter gate closure time, the flexibility reserves

for an explanatory 1 MW solar plant can be reduced by 21% on average, for the 5

minute forecast-intervals. For 15 minute forecasts, the improvements are 16.14%

compared to the smart persistence model. The improvements for the 15-minute

intervals are smaller than for 5 minute intervals due to variability smoothing. For

participating commercial solar producers, the probability of causing an imbalance

is reduced by 19.65% and 15.12% for 5 minute and 15 minute forecast intervals.

The improvements achieved through forecasting depend on market operation time

scales.
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Chapter 7

Conclusions

The electric power industry is changing rapidly, mainly driven by new tech-

nologies, consumer demand and new environmental regulations. Solar and wind

power plants are appearing everywhere, conventional vehicles are being replaced

with electric plug-in vehicles, etc. With all these changes, our net load demand

profiles are transforming with a lot of uncertainty. For a smooth transition and

reliable integration of various renewable technologies, there is a need to quantify

the effects of these technologies to develop solutions. This study focused on elec-

tric grids with high solar penetration and proposed various forecasting methods to

reduce the associated uncertainty in net load and solar generation.

We reviewed the current state of the art for load and solar forecasting and

proposed ensemble re-forecasting methods that further refine the existing forecasts

by learning from the past structured errors. Correlation analysis of the forecasts

issued by Independent System Operators revealed presence of structured errors,

especially at off-peak hours. The proposed ensemble re-forecast HAM predictions

show an improvement of 47% and 36% in terms of Mean Absolute Percentage Error

over the forecasts provided by CAISO and ERCOT. For DAM, the improvements

are 34% for CAISO and 47% for ERCOT. Temporal analysis comparing the inter-

nal forecast produced by the ISOs and re-forecast shows significant improvement

during off-peak hours and small improvement for on-peak hours.

The application of our proposed ensemble reforecast on solar irradiance

previously predicted by NAM model achieved a skill of 14.5% at 1-24 hours lead
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times. Results validate the potential of the proposed methodology to enhance the

forecast accuracy, independent of time-series profile (load and solar) or forecast

horizon.

Next, the models for short-term solar forecasting are proposed and validated

using ground data and imagery as inputs. The skill achieved by features-based

forecasting model ranges between 14.53-20.11% and 12.64-16.75% for 15 minute

and 5 minute forecast intervals (forecast horizons ranging from 5 to 75 minutes).

For forecasts with forecast horizon greater than or equal to 35 minutes, the skill

drops implying that more information is required e.g. satellite imagery.

For remote solar power plants with no additional inputs, heuristics based

approach is proposed. The proposed method takes into account the changing

atmospheric clearness and efficiency degradation of PV panels due to dust, high

temperature, etc. The adaptive clear sky model and heuristics proposed can be

applied to any solar forecast algorithm to enhance the forecast accuracy. For

instance, when applied to smart persistence, the adaptive clear sky and heuristics

enhanced forecast accuracy by 9.4% and 22.6% respectively, and the improvements

for SVR based model were 11.41% and 24.20% respectively.

Furthermore, we quantified the impact of solar power on our net load de-

mand and deduced that it is solar variability that drives the forecast error for high

penetration communities. We showed that the forecast error distribution for grids

with solar generation is best characterized as a t-distribution, where heavy tails

reflect errors due to high ramping events in the solar power output.

To mitigate this effect of increasing solar penetration, we propose integrat-

ing solar and load forecasts within a single platform. Optimal methods to combine

solar and load forecasting are compared: additive and integrated net load forecast

models. For utility-scale grids and microgrid based applications, an integrated fore-

cast model is recommended because the 95% confidence interval of the net load

errors for the additive model is greater than the integrated model by 2.2% of the

maximum net load demand. The net load and solar forecasting errors exhibited

correlation which was validated with Engle-Granger cointegration test. Indeed,

the two time-series are cointegrated with common stochastic drift. Therefore, so-
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lar time-series suffice to characterize the expected variability and uncertainty in

the net load and solar power generation.

The benefits of the proposed solar forecasting techniques are quantified for

real-time energy imbalance market. The benefits of 5-minute forecast are higher

than the benefits of 15-minute forecast due to higher variability at 5-minute resolu-

tion and better information at shorter forecast horizon. Thus, the benefits of fore-

casting for grid applications are dependent upon the market operation timescales.

In a nutshell, reforecast is a powerful technique to enhance forecast ac-

curacy for any time-series independent of forecast horizon. The solar resource

variability has a more pronounced effect on forecast errors rather than the pen-

etration level. Our capabilities to mitigate intermittence are influenced by local

solar micro-climate. Hence, for future planning and siting of local solar farms,

the solar variability of a given location should be considered in addition to solar

resource assessment. The proposed forecast methods will enable the grid operators

and power generators to efficiently manage the grids with increasing intermittent

renewable generation and participate in electricity markets for economical benefits.

The design variables regulating the electricity markets, power grid time lines, the

bidding and the binding schedules, govern the dynamics of power grids and drive

the benefits of forecasting. Therefore, having the flexibility to operate on shorter

time-horizons is the key to optimally manage such grids with high intermittent

renewable penetration.
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