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Abstract: Progressive airflow obstruction is a classical hallmark of chronic lung disease,
affecting more than one fourth of the adult population. As the disease progresses, the
inner layer of the airway wall grows, folds inwards, and narrows the lumen. The critical
failure conditions for airway folding have been studied intensely for idealized circular
cross-sections. However, the role of airway branching during this process is unknown.
Here, we show that the geometry of the bronchial tree plays a crucial role in chronic airway
obstruction and that critical failure conditions vary significantly along a branching airway
segment. We perform systematic parametric studies for varying airway cross-sections using
a computational model for mucosal thickening based on the theory of finite growth. Our
simulations indicate that smaller airways are at a higher risk of narrowing than larger
airways and that regions away from a branch narrow more drastically than regions close to a
branch. These results agree with clinical observations and could help explain the underlying
mechanisms of progressive airway obstruction. Understanding growth-induced instabilities
in constrained geometries has immediate biomedical applications beyond asthma and chronic
bronchitis in the diagnostics and treatment of chronic gastritis, obstructive sleep apnea and
breast cancer.

Keywords: material modeling; biomaterials; instability; buckling; folding; growth;
remodeling; finite element method; airway wall remodeling; chronic lung disease
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1. Motivation

Asthma and chronic bronchitis are the most prominent obstructive lung diseases affecting millions
of people worldwide. Asthma affects 8% of the adult population and 20% of children [1]. Chronic
bronchitis, a manifestation of chronic obstructive pulmonary disease, affects 25% of the adult population
and is the fourth leading cause of death [2]. Asthma is generally classified as reversible, triggered by
allergens, weather or exercise [3], while chronic bronchitis is irreversible, triggered by pollutants, toxins
and smoke [4,5].

Figure 1 illustrates the two common features of asthma and chronic bronchitis: airway constriction
associated with smooth muscle thickening at the outer airway wall; and airway inflammation associated
with mucosal growth at the inner airway wall [6]. These two phenomena manifest themselves
mechanically in an increase in pressure from active smooth muscle cell contraction and an increase in
volume from an influx of mononuclear cells flooding the inner wall lining. Collectively, both phenomena
initiate an inward folding of the airway wall, ultimately resulting in a narrowing of the lumen and
progressive airflow obstruction [7,8].

Figure 1. Airway wall remodeling in chronic lung disease. In contrast to the healthy
airway wall, the airway wall in asthma, left, and chronic bronchitis, right, displays airway
constriction, associated with smooth muscle thickening at the outer airway wall, and airway
inflammation, associated with mucosal growth at the inner airway wall. These changes
manifest themselves in an increase in pressure at the outer wall and an increase in volume
at the inner wall, resulting in a narrowing of the lumen and progressive airflow obstruction;
adapted from [1,4].

healthy healthyasthma bronchitis

Figure 2 displays a schematic of the human lungs. The trachea, the root of the respiratory tree,
branches into two main bronchi, which enter the left and right lungs. In the lungs, the bronchial
tree continues to branch in humans into 23 to 27 generations, yielding approximately 17 million
branches [9]. The final generation of terminal bronchioles opens into the alveolar space, the region where
gas transfer takes place [6]. Airway wall remodeling affects the small airways between the fourth and
fourteenth generation [4]. Healthy small airways are less than 2 mm in diameter, non-cartilaginous and
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compliant [10]. In chronic lung disease, the dimensions of the small airways roughly double, resulting
in a loss of structural compliance, airflow obstruction and difficulties in breathing [11].

Figure 2. Schematic of the lungs. The trachea, the root of the respiratory tree, branches
into two main bronchi, which enter the left and right lungs. In the lungs, the bronchial tree
continues to branch in humans into 23 to 27 generations, yielding approximately 17 million
branches. The final generation of terminal bronchioles opens into the alveolar space, where
gas transfer occurs. Airway wall remodeling affects the small airways between the fourth and
14th generation. Healthy small airways are less than 2 mm in diameter, non-cartilaginous and
compliant. In chronic lung disease, the small airways experience smooth muscle thickening
and mucosal growth, resulting in progressive airflow obstruction.
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airway inflammation
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Figure 3 illustrates a typical cross-section of the small airway wall with its three distinct layers. The
mucosa, the innermost layer, consists of the epithelium, the basement membrane and a subepithelial
collagen layer. The stiffness of the mucosa depends primarily on the subepithelial collagen layer, whose
thickness ranges from 4–5 µm in healthy to 7–23 µm in diseased airways [12]. The submucosa, the
middle layer, consists of fibroblasts and proteoglycans embedded in a loose, irregular network of elastin
and collagen. Although the submucosa is about an order of magnitude softer than the mucosa [6],
it contributes significantly to the overall stiffness of the airway wall because of its considerable thickness.
The smooth muscle layer, the outermost layer, consists of spirally arranged smooth muscle cells.
In the healthy airway, these smooth muscle cells regulate the amount of airflow through active cellular
contraction. In the diseased airway, smooth muscle thickening and uncontrolled muscle contraction
generate an elevated contractile force, resulting in an increased wall stiffness and a decreased lumen.
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Figure 3. Schematic of the airway wall. Small airways consist of three distinct layers, the
mucosa, the submucosa and the smooth muscle layer. In chronic lung disease, the smooth
muscle layer thickens and creates an elevated pressure at the outer wall, while the mucosal
layer experiences inflammation and increases in volume at the inner wall. The airway wall
folds inwards, resulting in progressive airflow obstruction.
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The numerous fatalities and sheer number of people whose lives are impacted daily by asthma and
chronic bronchitis motivate the need to understand the microstructural mechanisms of chronic lung
disease. The past two decades have seen a tremendous progress in the mathematical and mechanical
analysis of airway constriction and airway inflammation [6,13]. Table 1 classifies the most prominent
analytical and computational models of chronic lung disease. While earlier approaches focus primarily
on airway constriction and smooth muscle thickening modeled through an increased pressure of the outer
layer [14,15], recent approaches focus on airway inflammation and mucosal thickening modeled through
an increased volume of the inner layer [8,16]. Few studies combine both mechanisms to explore whether
the associated structural alterations have a positive or negative feedback on one another [13,17].

Analytical modeling can provide valuable insight into the critical failure mode [18,19]. Using
classical bifurcation analysis [20], analytical models can help identify critical conditions, such as the
critical pressure [14,21] or the critical amount of growth [8,16] at the onset of failure. However,
analytical models fall short of predicting the progression of failure throughout the post-failure
regime [22,23]. This is particularly important, since complications in chronic lung disease are typically
associated with the later stages of failure rather than with the onset of folding. In addition, analytical
models are typically limited to simplified constitutive models and regular geometries. It is thus
not surprising that all existing models of airway wall thickening are restricted to regular, circular
cross-sections [24].

Numerical modeling cannot only predict the onset of failure, but also the structural response
throughout the entire post-failure regime [25,26]. For example, they can predict the critical growth
at first contact, which serves as a valuable clinical metric to characterize the severe stages of airway
obstruction. Using finite element analysis, numerical models can easily incorporate more realistic
constitutive models and complex patient-specific geometries [27,28]. Computational modeling has been
intensely used to simulate growth within the vascular tree [29,30]. Yet, to date, there are no compelling
computational models to simulate growth within the bronchial tree. This is particularly important, since
the bronchial tree branches a lot more frequently than the vascular tree. In fact, airway branching occurs
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once every two to four airway diameters [6]. This implies that only a small fraction of the bronchial
tree is in fact a circular cross-section, and irregular, non-circular cross-sections might play an important,
yet underestimated, role.

Table 1. Classification of existing models of chronic lung disease.

analysis microstructural analytical solution numerical solution
symptoms mechanism onset of failure post-failure regime
airway smooth muscle thickening bifurcation analysis finite element analysis
constriction → increased pressure → folding pressure pfold → contact pressure pcrit

on submucosal layer → number of folds nfold → folded configuration
[13,14,15,17] [14,15]

airway mucosal inflammation bifurcation analysis finite element analysis
inflammation → volume growth → folding growth ϑfold → contact growth ϑcrit

of mucosal layer → number of folds nfold → folded configuration
[8,13,16,17,23,24] [8,16,23,25,31,32]

We hypothesize that the geometry of the bronchial tree plays a crucial role in chronic airway
obstruction and that critical failure conditions vary significantly along a branching airway segment.
To test this hypothesis, we introduce a continuum model for mucosal thickening based on the theory of
finite growth [33,34] and establish a computational model for its numerical solution using nonlinear finite
element analysis. We represent growth through the multiplicative decomposition of the deformation
gradient [35] into an elastic tensor, which induces stress [36], and a growth tensor, which we prescribe
constitutively [37,38]. To mimic chronic disease progression up to and beyond the onset of airway
wall folding, we gradually increase the amount of growth [31,39]. Although the underlying concept
is generally applicable to both isotropic and anisotropic growth [40,41], here, we assume that growth
is purely isotropic. We represent it through a spherical tensor scaled by the amount of volume
growth [42]. We embed the resulting growth model into a nonlinear finite element setting and solve
it using an incremental iterative Newton–Raphson solution scheme [43,44]. In the sequel, we outline the
details of our model.

The remainder of this manuscript is organized as follows: We briefly summarize the continuum
and computational modeling of finite growth in Section 2. To identify critical regions of airway
narrowing, we perform systematic studies along a branching airway segment in Section 3: First, we
visualize the rich variety of possible failure modes along a branching airway segment by inducing
prescribed failure modes in elliptical cross-sections through sinusoidal perturbations in Section 3.1.
Next, we explore the role of the relative mucosal thickness by inducing natural failure modes in circular
cross-sections through random perturbations in Section 3.2. Last, we explore the role of the relative
mucosal thickness by inducing natural failure modes in elliptical cross-sections without perturbations in
Section 3.3. We compare the results against the literature and discuss the limitations of our study in
Section 4. Finally, we conclude with a brief discussion in Section 5.
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2. Methods

2.1. Continuum Modeling of Growth

We denote the mapping from a point X in the healthy configuration B0 to corresponding point x in
the diseased configuration Bt at any given time t by the mapping x = ϕ(X, t). Its material gradient
F = ∇Xϕ maps infinitesimal line elements dX from the healthy configuration to infinitesimal line
elements dx = F · dX in the diseased configuration. Central to modeling finite growth of the airway
wall is the multiplicative decomposition of the deformation gradient F into an elastic part F e and a
growth part F g,

F = ∇Xϕ = F e · F g . (1)

The Jacobian J = det (F ) maps infinitesimal volume elements dV from the healthy configuration to
infinitesimal volume elements dv in the diseased configuration dv = J dv. Similar to the deformation
gradient, we decompose the total volume change J multiplicatively into a reversible elastic volume
change Je = det (F e) and an irreversible growth volume change Jg = det (F g),

J = det (F ) = Je Jg . (2)

We assume that the airway wall grows isotropically and introduce its growth tensor F g as the identity
tensor I scaled by the scalar-valued growth multiplier ϑ,

F g = ϑ I . (3)

In chronic lung disease, growth is primarily driven by non-mechanical, chemical or biochemical stimuli.
Here, we propose a growth rate, which exponentially evolves with time, ϑ̇ = 1

τ
[ϑmax− 1 ] [ exp (−t/τ) ],

where t is the time; τ is a time constant;and ϑmax is the asymptotic value for maximum growth at t→∞.
Integrating in time yields an explicit expression for the growth multiplier,

ϑ = 1 + [ϑmax − 1 ] [ 1− exp (−t/τ) ] . (4)

For the particular format of the growth tensor F g in Equation (3), the growth multiplier ϑ takes the
physical interpretation of the third root of the grown volume, Jg = ϑ3. Using the inverse of the growth
tensor, F g−1 = I/ϑ, we obtain explicit formulations for the elastic tensor, F e = F · F g−1,

F e = F / ϑ , (5)

for the elastic Jacobian, Je = J / Jg,
Je = J / ϑ3 , (6)

and for the elastic left Cauchy-Green deformation tensor, be = F e · F e t,

be = F · F t / ϑ2 (7)

as the growth-scaled total deformation gradient F , total Jacobian J , and total left Cauchy-Green
deformation tensor b = F · F t. We idealize the airway wall as isotropic, hyperelastic Neo-Hookean
material with Lamé constants λ and µ. Its Helmholtz free energy function,

ψ = 1
2
λ ln2(Je) + 1

2
µ [ Ie1 − 3− 2 ln (Je) ] , (8)
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depends exclusively on the elastic invariants Ie1 = be : i and Je = det(F e), where i is the spatial unit
tensor. The Kirchhoff stress,

τ = 2
∂ψ

∂be
· be = [λ ln (Je)− µ ] i+ µ be , (9)

follows thermodynamic considerations, and introduces the Eulerian constitutive moduli,

c = 4 be · ∂2ψ

∂be ⊗ ∂be · b
e = λ i⊗ i+ [µ− λ ln(Je)][ i⊗ i+ i⊗ i] . (10)

Here we have used the following abbreviations for the non-standard fourth order tensor products
according to {•⊗◦}ijkl = {•}ij {◦}kl and {•⊗◦}ijkl = {•}ik {◦}jl and {•⊗◦}ijkl = {•}il {◦}jk.

2.2. Computational Modeling of Growth

To solve the underlying boundary value problem, we implement the equations of finite growth as
a constitutive subroutine into a nonlinear finite element solver. For every time step, we successively
calculate the growth multiplier ϑ from Equation (4), the growth tensor F g from Equation (3), the
elastic tensor F e from Equation (5), the elastic left Cauchy-Green tensor be from Equation (7), the
Kirchhoff stress τ from Equation (9), and the modified Eulerian tangent moduli c from Equation (10).
The constitutive subroutine returns the local stress τ and the tangent moduli c, which enter the global
righthand side vector and iteration matrix for the global Newton-Raphson iteration.

Since the common underlying mechanism of mucosal folding is a nonlinear instability problem, the
computational solution is highly sensitive, in particular at the onset of failure. It proves critical to adopt
an adaptive time stepping scheme, which decreases the time step size in the proximity of the instability.
Here we automatically adjust the time step size in response to the convergence behavior of the global
Newton Raphson iteration. In particular, we divide the current time step size by two if more than six
Newton iterations are required to reach the incremental equilibrium state within a tolerance of 10−10,
and otherwise increase the current time step size by one fourth.

3. Results

To identify critical regions of airway narrowing, we perform systematic parameter studies for varying
cross-sections within the bronchial tree. Figure 4 illustrates four representative elliptical cross-sections
along a branching airway segment. In analogy with the literature [8,15], we introduce the airway radius
R as the distance from the airway center to the closest point on the mucosal-submucosal interface. We
denote the mucosal and submucosal thicknesses as tm and ts, such that the inner and outer radius of a
circular cross-section are R− tm and R+ ts. For elliptical cross-sections, we characterize the degree of
ellipticity through the semi-major and semi-minor axesRI andRII of the submucosal-muscular interface,
where the semi-minor axis is identical to the outer radius of submucosal layer RII = R + ts. We model
the mucosal and the submucosal layers as elastically incompressible with stiffnesses µm and µs and the
idealize the smooth muscle layer as rigid. While the mucosa is allowed to grow at a speed of τ towards
a maximum growth of ϑmax, the submucosa remains purely elastic.
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Figure 4. Branching airway segment. Along the bronchial tree, the airway cross varies
substantially in geometry. We characterize each cross-section through the semi-major-to-
semi-minor-axis ratio RI : RII and through the mucosal-thickness-to-radius ratio tm : R.
The ratio RI : RII is larger close to and smaller away from a branching region. The ratio
tm : R is smaller close to and larger away from the trachea.

Version August 31, 2013 submitted to Materials 7 of 15

2.2. Computational Modeling of Growth89

To solve the underlying boundary value problem, we implement growth as a user defined material
subroutine UMAT into the commercial finite element package Abaqus/Standard Version 6.12 [? ].
Abaqus/Standard utilizes the Cauchy or true stress, σ = τ/J ,

σabaqus = [ [λ ln (Je)− µ ] i+ µ be ] / J , (11)

and the Jauman rate of the Kirchhoff stress divided by the Jacobian, which requires the following
modification of the tangent moduli [46],

cabaqus = [ c+ 1
2
[ τ ⊗ i+ i⊗ τ + τ ⊗ i+ i⊗ τ ]] / J . (12)

For every time step, we calculate the growth multiplier ϑ from equation (4), the growth tensor F g
90

from equation (3), the elastic tensor F e from equation (5), the elastic left Cauchy-Green tensor be from91

equation (7), the Cauchy stressσabaqus of equation (11), and the modified Eulerian tangent moduli cabaqus92

of equation (12). The user subroutine returns the local stress and the tangent moduli, which enter the93

global righthand side vector and iteration matrix for the global Newton-Raphson iteration.94

3. Results95

To investigate the sensitivity of airway wall remodeling with respect to clinically relevant parameters,96

we explore the influence of the cross section area, the influence of the mucosal thickness, and the97

combined influence of the cross section area and the mucosal thickness on the resulting failure mode. We98

model the airway wall as bi-layered elliptical cross section consisting of an outer elastic submucosal layer99

of thickness ts and an inner growing mucosal layer of thickness tm. At the mucosal-submucoal interface,100

the initial major diameter of the ellipse is Rx =
√
νrR and the initial minor diameter is Ry = 1/

√
νrR,101

where the ratio νr = Rx/Ry denotes the degree of ellipticity.102

Figure 5. Failure Modes for Varying Cross Section Area

varying cross sections along the bronchus 

branching airway

1.0 1.5 2.0 1.0 RI :RII

0.07 0.08 0.10 0.10 tm :R

To characterize the individual cross-sections in terms of non-dimensional parameters, we introduce
the mucosal-thickness-to-radius ratio tm : R, the submucosal-thickness-to-radius ratio ts : R, the
ellipticity ratio RI : RII, and the mucosal-to-submucosal stiffness ratio µm : µs. Since previous studies
have shown that the failure mode is more sensitive to the ratio tm : R than to the ratios ts : R and
µm : µs [8,15], we fix the latter two to ts : R = 0.5 and µm : µs = 10 : 1 [6]. In the following studies,
we vary the relative mucosal thickness ratio between tm : R = [ 0.01, ..., 0.20 ] and the ellipticity ratio
between RI : RII = [ 1.00, ..., 2.25 ].

We discretize each cross-section using classical tri-linear brick elements and assume plane strain
conditions along the airway’s long axis. Since the smooth muscle layer is significantly stiffer than the
mucosal and submucosal layers, we represent it implicitly through homogeneous Dirichlet boundary
conditions at the submucosal-mucosal interface. We allow the mucosal layer to grow and fold inward.
Once we detect the first contact between two folds, we terminate the simulation and record the
corresponding growth factor as the critical growth at first contact. To explore regional variations of
growth along the bronchial tree, we perform three sets of simulations: In Section 3.1, for varying
elliptical cross-sections with sinusoidal perturbations, we demonstrate how growth drives the solution
along the prescribed failure mode, which is a priori defined by the corresponding perturbation. In
Section 3.2, for circular cross-sections and random perturbations, we demonstrate how growth drives
the solution into the natural failure mode, which is governed by the relative mucosal thickness. In
Section 3.3, for varying elliptical cross-sections without perturbations, we demonstrate how growth
drives the solution into the natural failure mode, which is induced naturally by curvature heterogeneity
and governed by the relative mucosal thickness.
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3.1. Sensitivity of Failure Mode with Respect to Ellipticity

The first set of examples in Figure 5 visualizes the wealth of failure modes for different ellipticity
ratios. From a mechanical point of view, this study is closely related to the buckling of elliptical tubes
under radial compression [45]. We explore six different cross-sections with ellipticity ratios varying as
RI : RII = [ 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 ], where the limits of RI : RII = 1.00 and RI : RII = 2.25

mimic cross-sections away from and close to a branching region. To trigger a specific, prescribed failure
mode, we perturb the homogeneous elliptical cross-section with sinusoidal perturbations of a magnitude
of one fourth of the mucosal thickness, 0.25 tm, and a frequency of nfold modes along the inner mucosal
surface. To visualize potential failure modes, we vary the mode number as nfold = [ 4, 5, 6, 7 ] and
perform two simulations for each mode: Simulation I is at least symmetric to the semi-major axis and has
at least one fold along the axis of symmetry; Simulation II is at least symmetric to the semi-minor axis.

Figure 5. Sensitivity of the failure mode with respect to ellipticity. Smaller ellipticity
ratios represent circular cross-sections away from a branching region; larger ellipticity ratios
represent elliptical cross-sections close to a branching region. With increasing ellipticity, the
heterogeneity of the failure mode increases. With increasing heterogeneity, the lumen area at
the first contact remains significantly larger. This might indicate that circular cross-sections
away from the branching region are at a higher risk of to airflow obstruction than elliptical
cross-sections close to a branching region.

Version August 31, 2013 submitted to Materials 8 of 15

3.1. Influence of Cross Section Area on Failure Mode103

Figure 6. Failure Modes for Varying Cross Section Area

RI :RII 1.00 1.25 1.50 1.75 2.00 2.25
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3.2. Influence of Mucosal Thickness on Failure Mode104

3.3. Influence of Cross Section Area and Mucosal Thickness on Failure Mode105

4. Discussion106

[Mona]107

- how do the results compare to the existing clinical literature108

- how do the results compare to the existing modeling literature109

- what is the future perspective of this model110

mucosal folding and the various airway physical properties that may lead to distinct buckling modes.111

Wiggs et al. performed a parametric study to quantify the difference between normal and asthmatic112
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Figure 5 illustrates the different failure modes for varying ellipticity ratios RI : RII and varying mode
numbers nfold. The color code reflects the circumferential stress with red values at the inner mucosa
corresponding to high circumferential traction and blue values at the outer submucosa corresponding to
low traction. As the ellipticity ratio increases, from left to right, the heterogeneity of the failure mode
increases. Notably, all folding patterns, from top to bottom, display a discontinuous alteration in the
underlying failure mode as the ellipticity increases: Mode 4I, displayed in the first row, changes from a
double horizontal double vertical contact mode at RI : RII = 1.00 via a double horizontal contact mode
atRI : RII = 1.25 to a double vertical contact mode atRI : RII ≥ 1.50. Mode 4II, displayed in the second
row, changes from a quadruple-diagonal contact mode at RI : RII = 1.00 via a single vertical contact
mode at RI : RII = 1.25 and RI : RII = 1.50 to a double vertical contact mode at RI : RII ≥ 1.75.
Mode 6II, displayed in the sixth row, changes from a sextuple contact mode at RI : RII = 1.00 via a
double horizontal contact mode from RI : RII = 1.25 to RI : RII = 2.00 to a double vertical contact
mode at RI : RII = 2.25. Mode 7II, displayed in the eighth row, changes from a septuple contact mode
at RI : RII = 1.00 via a single vertical contact mode from RI : RII = 1.25 to RI : RII = 2.00 to a double
horizontal contact mode at RI : RII = 2.25. With increasing ellipticity, from left to right, the lumen
area at the first contact remains significantly larger. This might indicate that circular cross-sections away
from the branching region are at a higher risk of airflow obstruction than elliptical cross-sections close
to a branching region.

3.2. Sensitivity of the Failure Mode with Respect to Relative Mucosal Thickness

The second set of examples in Figure 6 probes the sensitivity of the failure mode for different
relative mucosal thickness ratios in a circular cross-section with RI : RII = 1.0. From a mechanical
point of view, this study is closely related to the buckling analysis of circular tubes under an external
pressure [17]. We explore eight different cross-sections with relative mucosal thickness ratios varying as
tm : R = [ 0.200, 0.100, 0.075, 0.050, 0.040, 0.030, 0.020, 0.010 ]. As illustrated in Figure 4, variations
of tm : R occur not only in similar generations of bronchi with the same radius R and varying
initial mucosal thickness tm, but also in different airway generations along the bronchial tree with
varying radius R and similar mucosal thickness tm. In fact, the overall wall-thickness-to-radius
ratio was measured to vary from 0.044 in the first generation of bronchi to 0.075 in the sixteenth
generation [6], indicating that the relative thickness increases as we descend down the bronchial tree.
To trigger the natural failure mode, we perturb the homogeneous circular cross-section with random
perturbations of one percent of the mucosal thickness, 0.01 tm. To mimic the onset of failure, we take
snap shots at ϑ = [ 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0 ], which correspond to the first points of contact of
the eight different cross-sections.

Figure 6 illustrates the evolution of the different failure modes for varying relative mucosal
thicknesses tm : R and for different first points of contact ϑ. The upper right section displays
the circumferential stress; the lower left section displays the three-dimensional failure mode, both
synchronized at the same time point. Figure 6 demonstrates that the relative mucosal thickness
determines the failure mode and the number of folds, irrespective of the small initial random perturbation.
As growth progresses, the folds become more and more pronounced until first contact occurs.
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Figure 6. Sensitivity of failure mode with respect to relative mucosal thickness for a
circular cross-section with RI : RII = 1.0. Larger relative mucosal thicknesses represents
smaller bronchi away from the trachea; smaller relative mucosal thicknesses represents larger
bronchi close to the trachea. With increasing relative mucosal thickness, the number of folds
decreases. With the decreasing number of folds, the critical growth ϑ at the first contact
becomes significantly smaller. This might indicate that smaller bronchi with a larger relative
mucosal thickness are at a higher risk of airflow obstruction than larger bronchi with a smaller
relative mucosal thickness.

Version August 31, 2013 submitted to Materials 13 of 15

Figure 6. caption...
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Figure 6 confirms that circular cross-sections with random perturbations can generate both even and
odd failure modes. As the relative mucosal thickness decreases, the number of folds increases from
nfold = 4 at tm : R = 0.200 to nfold = 16 at tm : R = 0.010. For cross-sections with relatively
thin mucosal layers, towards the right column and the bottom row, more growth is required to form the
first contact. The overall mucosal thickness at this first contact point, however, is remarkably similar
for all eight cross-sections, as shown along the diagonal. In summary, with increasing relative mucosal
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thickness, from top right to left, the required growth to form the first contact decreases. This might
indicate that smaller bronchi with larger relative mucosal thickness, displayed towards the left, are at a
higher risk of airflow obstruction than larger bronchi with a smaller relative mucosal thickness, displayed
towards the right.

3.3. Sensitivity of Failure Mode with Respect to Ellipticity and Relative Mucosal Thickness

The third set of examples in Figures 7 and 8 probes the sensitivity of the failure mode for
both different ellipticity ratios and different relative mucosal thickness ratios. We compare a
moderately elliptical cross-section with RI : RII = 1.50 and a severely elliptical cross-section
with RI : RII = 2.00 to the circular cross-section with RI : RII = 1.00 discussed
in the previous subsection. For each cross-section, we vary the relative mucosal thickness as
tm : R = [ 0.075, 0.050, 0.035, 0.0275, 0.020, 0.0175, 0.015, 0.0125 ]. Elliptical cross-sections display
a natural heterogeneity as the curvature varies along the circumference. To trigger the natural failure
mode, we can thus simulate the plain elliptical cross-section without perturbations. To mimic the onset
of failure, we take snap shots at ϑ = [ 1.8, 2.0, 2.3, 2.5, 2.7, 3.0 ] for the moderately elliptical cross-section
and at ϑ = [ 1.5, 1.7, 1.9, 2.0, 2.2, 2.4 ] for the severely elliptical cross-section. These correspond to the
first points of contact of the six different cross-sections of each set.

Figures 7 and 8 illustrate the evolution of the different failure modes for varying relative mucosal
thickness ratios tm : R and for different first points of contact ϑ. Similar to Figure 6, the upper
right section displays the circumferential stress; the lower left section displays the three-dimensions
of the failure mode. Again, red circumferential stress values at the inner mucosa correspond to
high traction and blue values at the outer submucosa correspond to low traction. In elliptical
cross-sections, the curvature is highest towards the long ends of the semi-major axis. This is where
the initial instability occurs naturally. As growth progresses, the instability gradually propagates
inward along the semi-major axis and forms additional folds until it reaches the semi-minor axis.
As growth progresses further, the folds become more and more pronounced until first contact
occurs. For regular ellipses, first contact always occurs at the long ends of the semi-major axis.
Because of their inherent geometric heterogeneity, elliptical cross-sections tend to fold naturally in a
double-symmetric folding pattern with naturally occurring outward folds along their semi-major axis.
This implies that unperturbed simulations of elliptical cross-sections only generate even failure modes,
nfold = [ 8, 10, 12, 14, 16, 18 ]. As the relative mucosal thickness decreases, the number of folds
increases from nfold = 8 at tm : R = 0.050 and tm : R = 0.075 to nfold = 18 at
tm : R = 0.0125 and tm : R = 0.0175, illustrated in the top and bottom rows of Figures 7 and 8.
In agreement with Section 3.2, cross-sections with a relatively thin mucosal layer, towards the right
column and the bottom row, require more growth to form the first contact. As the ellipticity increases,
RI : RII = [ 1.0, 1, 5, 2.0] the underlying failure mode at the first contact becomes more localized.
Accordingly, cross-sections with larger ellipticity, from Figures 6 through 8, require less growth to
form the first contact. However, in agreement with Section 3.1, since contact occurs only locally in
cross-sections with larger ellipticity, the lumen area at the first contact remains significantly larger. This
might indicate that circular cross-sections obstruct more drastically than elliptical cross-sections.



Materials 2013, 6 5651

Figure 7. Sensitivity of the failure mode with respect to relative mucosal thickness for
moderately elliptical cross-section with RI : RII = 1.5. The instability occurs naturally
at regions of highest curvature along the semi-major axis and propagates inward until it
reaches the semi-minor axis. First contact occurs at regions of highest curvature and induces
a moderately localized failure mode. This might indicate that airway obstruction is less
drastic in moderately elliptical cross-sections than in circular cross-sections.
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Figure 8. Sensitivity of the failure mode with respect to relative mucosal thickness for
severely elliptical cross-section with RI : RII = 2.0. The instability occurs naturally
at regions of highest curvature along the semi-major axis and propagates inward until it
reaches the semi-minor axis. First contact occurs at regions of highest curvature and induces
a severely localized failure mode. This might indicate that airway obstruction is less drastic
in severely elliptical cross-sections than in circular and moderately elliptical cross-sections.
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Figure 9 summarizes the above observations in two graphs to quantify the number of folds and
the critical growth for varying ellipticity and varying relative mucosal thickness. With increasing
relative mucosal thickness, the number of folds and the critical growth at the first contact decrease.
With increasing ellipticity, the number of folds increases, while the critical growth at the first contact
decreases. In view of the folded elliptical configurations displayed in Figures 5, 7 and 8, this decrease
of critical growth seems less alarming, since contact occurs only locally at the two outermost folds,
while the lumen area remains relatively large. Overall, the two graphs confirm that smaller airways are
at a higher risk of airflow obstruction than larger airways and that circular cross-sections obstruct more
drastically than elliptical cross-sections.

Figure 9. Number of folds and critical growth for varying ellipticities and varying relative
mucosal thicknesses. With increasing relative mucosal thickness, the number of folds and
the critical growth at the first contact decrease. With increasing ellipticity, the number of
folds increases, while the critical growth decreases. This might indicate that smaller airways
are at a higher risk of airflow obstruction than larger airways and that circular cross-sections
obstruct more drastically than elliptical cross-sections.
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4. Discussion

The objective of this study was to elucidate the role of mechanics in chronic lung disease.
We have reviewed the key mechanisms of asthma and chronic bronchitis: airway constriction associated
with smooth muscle thickening and airway inflammation associated with mucosal growth. Since the
recent literature focuses primarily on the latter mechanism, we have restricted our analysis exclusively
to mucosal growth. We have summarized the continuum modeling of finite growth and its computational
realization using finite element analysis. Our computational model allowed us to explore the pre- and
post-failure behavior of cross-sections of varying ellipticities and varying relative mucosal thicknesses
to identify critical regions of airway narrowing along the bronchial tree. Our simulations confirmed
our hypothesis that the geometry of the bronchial tree plays a crucial role in chronic airway obstruction
and that critical failure conditions vary significantly along a branching airway segment. In particular,
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we found that smaller bronchi away from the trachea are at a higher risk of airflow obstruction than
larger bronchi close to the trachea and that circular cross-sections away from a branching region obstruct
more drastically than elliptical cross-sections close to a branching region.

4.1. Comparison with Previous Studies

The sensitivity of the failure mode with respect to the relative mucosal thickness in circular
cross-sections has been studied intensely throughout the past two decades. Studies of airway constriction,
represented through an elevated external pressure, revealed similar trends as the present study [14,15].
In particular, these analytical studies demonstrated an exponential decay of the number of folds with an
increasing relative mucosal thickness [6], in agreement with Figure 9. Our computationally predicted
failure mode of nfold = 5 at tm : R = 0.1, illustrated in Figure 6, agrees nicely with the analytically
predicted value [15]. However, our computational solution behaves slightly more stiffly than the
analytical solution, and the number of folds increases slower with decreasing mucosal thicknesses than
predicted analytically. This discrepancy might be attributed to both the relatively coarse finite element
discretization and the use of lower order elements, which collectively behave poorly in the context
of bending.

Studies of airway inflammation, represented through mucosal growth, also agree nicely with the
present study, both analytically [8,17] and numerically [8,16]. Again, the exponential decay of the
number of folds for an increasing relative mucosal thickness is in nice agreement with Figure 9. Yet, the
decay is slightly more pronounced in the literature, most likely because of the use of enhanced hybrid
elements [8]. The problem of airway folding falls into the broad category of constrained growth in
tubular geometries, which has recently received increasing attention [25]. For example, recent studies
of folding of intestinal villi have revealed a similar exponential dependence of the number of folds
on the thickness of the growing layer [22]. Overall, there is general agreement that the relative mucosal
thickness is a critical parameter in chronic lung disease [6]: bronchial cross-sections with a larger relative
mucosal thickness typically generate less folds [46] and require a smaller amount of growth to narrow
than cross-sections with a smaller relative mucosal thickness. These findings are in general agreement
with the clinical observation that smaller airways with a larger relative mucosal thickness are more
severely affected by airway obstruction than larger airways [10,12,46]. This agrees nicely with Figures
6 and 9 and with the results documented in Sections 3.2 and 3.3 of the current study.

While many studies focus on the sensitivity of the failure mode for varying mucosal thicknesses
in circular cross-sections, the sensitivity of the failure mode for varying ellipticities has long been
underestimated and remains severely understudied [6]. This is not surprising, since most existing models
are based on analytical or semi-analytical solutions, which are typically restricted to idealized circular
or tubular geometries [24]. However, cross-sectional ellipticity seems to play a critical role in airway
obstruction. Since the bronchial tree branches once every two to four airway diameters, only a small
fraction of bronchi is of a circular cross-section [6]. In pulmonary fluid mechanics, airway branching
has long been recognized to play an important role [47]. Yet, in pulmonary solid mechanics, it has
been conveniently neglected to date. Because of their lower symmetry, elliptical cross-sections display
a richer variety of failure modes, as illustrated in Figure 5. By triggering specific failure models through
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small sinusoidal perturbations, we were able to create both even and odd elliptical failure modes through
constrained growth. In particular, failure modes 4I, 5I, 5II and 6II, illustrated in the first, third, fourth
and fifth rows in Figure 5, agree nicely with the most relevant shell-type failure modes, 9, 11, 10
and 13, reported for elliptical hollow sections under external pressure [45]. Overall, we conclude that
cross-sectional ellipticity is another critical parameter in chronic lung disease: bronchial cross-sections
with a larger ellipticity require a smaller amount of growth to form the first contact than cross-sections
with a smaller ellipticity. However, the failure mode becomes more localized with increasing ellipticity,
and the cross-section narrows less drastically. These general observation are documented in Figures 6 to
9 and throughout Sections 3.1 and 3.3 of the current study.

4.2. Limitations

In the clinical literature, chronic alterations in the diseased airway wall are collectively referred
to as airway wall remodeling. Our computational predictions of mucosal folding, progressive lumen
narrowing and airflow obstruction are in general agreement with clinical observations during airway
wall remodeling in both asthma [1] and chronic bronchitis [4]. For conceptual simplicity, we have
initiated these alterations exclusively through the growth of the mucosal layer, while in reality, airway
wall remodeling is a multifactorial process. In future studies, we will include the effects of the
thickening of the smooth muscle layer [13,32] and of gradual alterations in composition across all
three layers [3]. A more realistic model might also require us to incorporate the effects of anisotropic
elasticity and anisotropic growth [41,48], for example, through an independent representation of surface
growth [43,49] and thickness growth [40,44]. Since pathological studies have reported growth to be
localized primarily in the basement membrane [3], we could even represent the basement membrane as
a growing surface equipped with its own potential energy [31,39]. Ultimately, it would be interesting to
show how mucosal growth is correlated to prestrain and residual stress in the airway wall [50], concepts
that have recently been identified to play a crucial role in living systems in health and disease [51].

While our model is inherently three-dimensional, the results discussed here assume plane strain
conditions. This implies that growth-induced instabilities are restricted to cross-sectional folding
and do not account for longitudinal folding modes [22,23]. However, the simulation of general
three-dimensional failure modes is conceptually straightforward, although, of course, computationally
more expensive. From a numerical point of view, the next step would be to adopt softer, enhanced
elements to represent incompressibility [52] and bending [8] more accurately. This will become crucial
when moving to three-dimensional simulations of physiologically realistic airway bifurcations [47] and,
eventually, of image-based patient-specific models. While all these refinements are reasonable and
logical next steps, we believe that they will not affect the general trends of the present study.

5. Conclusions

Chronic lung disease is the fourth leading cause of death, and mild airflow obstruction affects
more than one quarter of the adult population. Mechanical factors induced through smooth muscle
thickening and mucosal growth play a crucial role in chronic lung disease. Yet, the spatio-temporal
evolution of mechanical factors along the bronchial tree is not fully understood. Here, we have
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adopted a computational model for finite growth to identify critical regions of airway narrowing along a
branching airway segment. Our simulations indicate that smaller bronchi are at a higher risk of airflow
obstruction than larger bronchi and that circular cross-sections obstruct more drastically than elliptical
cross-sections. These results agree excellently with clinical observations and could help explain the
underlying mechanisms of progressive airway narrowing. Understanding growth-induced instabilities
in constrained geometries could have immediate biomedical applications beyond asthma and chronic
bronchitis in the diagnostics and treatment of gastritis, obstructive sleep apnea and breast cancer.
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