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Abstract

Performance in estimating the depth and shape of an
ellipse on the basis of stereo, motion, and vergence an-
gle information was compared for three models of visual
depth cue combination. The three models were a weak
model (strict modularity, with no interaction between
motion and stereo cues), a modified weak model (re-
stricted interaction allowed between motion and stereo
cues), and a strong model (unconstrained interaction
between all visual cues). Results are that the modified
weak model performed best overall indicating that its
structure, which contains both modular and interactive
features, has advantages over both the extreme modular
organization of the weak model and the extreme inter-
active organization of the strong model. In addition,
the different weighting of motion and stereo cues by the
modified weak model in the depth and shape judgment
tasks provides a motivation for multiple visual represen-
tations of three-dimensional space.

Introduction

Recent years have seen a proliferation of new models of
visual cue combination, especially in the domain of depth
perception. This proliferation is due to a poor under-
standing of existing models, and to a lack of comparative
studies that reveal the strengths and weaknesses of com-
peting models. This paper studies how multiple visual
cues may be combined to provide information about the
three-dimensional structure of the environment. We are
particularly concerned with two related computational
issues.

The first issue concerns the relationship between rep-
resentations of three-dimensional space and the task that
an observer performs. There is often an implicit assump-
tion in the literature that people use a single represen-
tation of space. Such a view has been put forward ex-
plicitly by Gogel (1990), and is often taken as a default
simplification by other investigators.

Psychophysical and physiological evidence suggests,
however, that different tasks may involve the use of d-
ifferent spatial representations. Philbeck and Loomis
(1997) found that observers were capable of accurate-
ly estimating the egocentric viewing distance to a point
when asked to walk to it blindfolded, but showed system-
atic biases that were dependent upon viewing distance
when asked to verbally estimate the depth-to-width ratio
of a pair of perpendicular sticks. They suggested that
different representations of 3-D space were involved in
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the two judgments. Gross and Graziano (1994) found
neural maps in the parietal cortex of monkeys that were
centered on different body parts, such as the arm or eye.
They argued that different tasks place different demands
on the monkey’s sensorimotor system. These demands
are met through the use of multiple neural maps repre-
senting objects in space using coordinate frames centered
on different body parts.

This paper examines a second motivation for multiple
representations of three-dimensional space. besides that
suggested by Graziano and Gross. We examined differ-
ences in the weighting of motion and stereo in object
shape and object depth judgment tasks, and concluded
that the need to weight the two depth cues differently for
the two tasks provides a motivation for having separate
representations for the shape and depth of objects. It
is sensible to use different combinations of motion and
stereo cues for shape and depth judgments. Motion sig-
nals provide a cue to shape that do not need to be scaled
with viewing distance, whereas stereo signals do need to
be appropriately scaled (see below). Consequently, mo-
tion signals should be weighted more heavily than stereo
signals for all viewing distances when performing a shape
judgment task. In contrast, both motion and stereo sig-
nals need to be scaled with viewing distance when judg-
ing the depth of an object. Therefore stereo should be
weighted more heavily when making depth judgments
than shape judgments. The fact that motion provides a
scale-invariant cue for shape suggests that shape judg-
ments should be easier to make than depth judgments.

A second issue addressed in this paper is the ques-
tion of how representations of 3-D space are construct-
ed from the many visual depth cues that are available.
We focus on the trade-off between modularity and fu-
sion. Investigators have long been aware that modular
systems have -=veral advantages over non-modular sys-
tems. First, some components of modular systems op-
erate relatively independently of other components, and
so modular designs tend to have fewer pararieters than
non-modular designs. Their more parsimonious orga-
nization makes them more constrained, and simpler to
understand. Second, modular systems often learn faster
and recover from damage more quickly. Because the pa-
rameters associated with one module are relatively de-
coupled from the parameters associated with other mod-
ules, changes in one portion of the system do not neces-
sitate changes in other portions. Lastly, some theorists
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have argued that modular designs make more efficient
use of neural hardware than non-modular designs (e.g.,
Barlow, 1986; Cowey, 1981). For these reasons, many re-
searchers have favored cue combination models in which
modularity is preserved. These models typically possess
a separate processing module for each visual cue. In-
formation gained from each cue processed in isolation is
only combined in the last stage of the system.

Unfortunately, highly modular systems tend to be
non-robust because visual cues considered in isolation
can be highly ambiguous. Consequently, other re-
searchers have favored combination schemes that encour-
age interactive processing of multiple cues so that infor-
mation based on one cue may be used to disambiguate
the interpretations of other cues. Interactive models al-
low the visual system to combine information based on a
range of cues in order to eliminate, or at least ameliorate,
the ambiguity inherent in the information carried by a
single cue. However, such models are difficult to study;
their highly nonlinear nature makes them unconstrained
and difficult to analyze. The choice of a model often in-
volves a compromise between the competing advantages
of modularity and cue fusion. Ideally, one might wish
to characterize visual processing using a model that has
both interactive and modular features.

Landy, Maloney, Johnston, and Young (1995) defined
three classes of models for combining visual cues for
depth. Strong models estimate depth by combining the
information from different cues in an unrestricted man-
ner. Weak fusion models compute a separate estimate of
depth based on each cue considered in isolation. These
estimates are then linearly averaged to yield a composite
depth estimate. The coefficients of the linear weighting
of the different cues are proportional to each cue’s reli-
ability. Modified weak fusion models combine aspects of
interactive and modular processing. Constrained nonlin-
ear interaction, described as cue promotion, is permit-
ted between different cues. Most cues are incapable of
providing absolute depth information when considered
in isolation; for example, occlusion only provides depth
order information, and motion parallax only provides
shape information. However, once the necessary miss-
ing parameters are specified, these cues become capable
of providing absolute depth information. Cue promotion
allows the determination of these missing parameter val-
ues through the use of other cues. For example, motion
parallax is an absolute depth cue only if the viewing dis-
tance is known. Two ways this missing information could
be specified are through knowledge of the vergence angle,
or through a combination of stereo and motion parallax
information. In a modified weak model, nonlinear cue
promotion, in which information from different cues is
combined in order to promote each cue so that it can
provide an absolute depth map, is followed by a linear
stage in which a weighted average is taken of the depth
map estimates of the different cues.

Landy et al. (1995) argued that the existing psy-
chophysical literature was compatible with the class of
modified weak fusion models. However, this is an ex-
tremely broad class of models, and it is hard to evaluate
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the compatibility of psychophysical data with this class
of models without selecting a particular instance from
this class, and studying it in detail. A motivation of
this paper is to investigate fully implemented versions of
weak, modified weak, and strong fusion models.

This paper reports the results of simulations of three
models for the combination of stereo, motion, and ver-
gence angle cues for depth. The models were instances of
a strong fusion model, a weak fusion model, and a mod-
ified weak fusion model, and were implemented through
the use of artificial neural networks. The goal of the ex-
periment was to compare the performances of the three
models so as to evaluate their relative plausibility as
models of cue combination for both object depth and
object shape perception. A variety of noise conditions
such as flat noise and Weber noise were simulated, as
the noise model might be expected to have a signifi-
cant effect on performance. Results indicate that the
shape task was significantly easier than the object depth
task, The modified weak fusion model showed the best
performance on the absolute depth task, and both the
strong and the modified weak model performed equally
well at the shape task. The superior performance of the
modified weak model suggests that constrained nonlinear
interaction provides a good model of depth cue combi-
nation, combining good performance with parsimonious
design. It was also found that the relative weighting of
motion and stereo was strongly affected by the task as
well as by the viewing distance and, to a lesser degree,
the noise condition.

General Methods

Stimulus

The simulated stimulus was a two-dimensional ellipse
whose width varied along the frontoparallel plane and
whose depth varied along the line of sight. Sixteen differ-
ent ellipses were presented; the width and depth of each
ellipse varied independently and took values between 12
and 48 cm. The ellipse was positioned at one of eight
viewing distances from the simulated observer, ranging
between 72 and 408 cm. We simulated a point traveling
around the perimeter of the ellipse at a constant velocity
instead of modeling the ellipse itself rotating. An advan-
tage of this stimulus is that it avoided artifactual depth
cues resulting from changes in retinal angle subtended
by the ellipse over time. For each of twenty time slices
of the point traveling around the perimeter of the ellipse
three sources of information were given to the simulated
observers: retinal motion, stereo disparity, and vergence
angle. These quantities were computed based on the rel-
evant geometric equations.

The viewing distance was the distance from the ob-
server to the ellipse’s center. The observer fixated the
center of the ellipse and, therefore, the vergence angle
was inversely related to the viewing distance. Stereo
information consisted of the stereo disparity angle sub-
tended by the point on the ellipse at each moment in
time. Motion information consisted of the monocular
retinal velocity, expressed in degrees of retinal angle, of
the point at each moment in time. The velocity of the



point was proportional to the perimeter of the ellipse,
thereby removing artifactual distance cues based on the
overall magnitudes of the retinal velocities.

Three noise conditions were examined: a Weber noise
condition, a flat noise condition, and a velocity uncer-
tainty noise condition. In the Weber noise condition, the
motion, stereo, and vergence angle cues were corrupt-
ed by additive Gaussian noise whose distribution had a
mean of zero and whose variance was proportional to the
magnitude of the signal (e.g., the disparity angle or the
retinal velocity). In the flat noise condition, motion and
stereo cues were corrupted by additive Gaussian noise
with mean zero and constant variance. Note that in
the Weber and flat noise conditions, motion uncertainty
was modeled as uncertainty about the retinal velocity.
An alternative is to consider noise as arising from un-
certainty about the velocity of the moving point in the
environment. In the velocity uncertainty condition, mo-
tion noise was modeled in this way, while stereo and ver-
gence cues were corrupted by Weber noise. In both the
flat noise model and the velocity uncertainty model (as
well as the Weber noise model) vergence noise was mod-
eled as being Weber noise. This was because a Weber
noise model is a conservative one, due to the vergence
angle being inversely related to viewing distance. In ad-
dition, a fourth condition was considered as a control.
In this no noise control condition, noise was not added
to any of the cues. This condition was used as a check to
make sure that it was added noise that limited observers’
performances. In all conditions, motion and stereo noise
levels were equated to make the two cues approximate-
ly equally reliable for judging the depth of an ellipse.
Approximately equally reliable motion and stereo cues
is consistent with psychophysical data (Rogers and Gra-
ham, 1982; Turner, Braunstein, and Anderson, 1997).

Tasks

The depth of an ellipse is the distance from the point on
the ellipse closest to the observer to the point furthest
away; the width is the distance from the leftmost point to
the rightmost point. The shape of an ellipse, sometimes
referred to as the form ratio, is defined as the ratio of the
ellipse’s depth to it’s width. Cues from which shape can
be calculated independently of absolute depth, width, or
viewing distance are known as scale-invariant cues. Cues
from which shape cannot be computed independently
of such information are known as scale-dependent cues.
Motion is a scale-invariant cue because both width and
depth scale linearly with viewing distance. For example,
an object of 40 cm depth at a viewing distance of 240
c¢m produces the same retinal motion signal as an object
of 20 cm depth at half that viewing distance. Because
width from motion also scales linearly with viewing dis-
tance, shape can be directly computed without explic-
it knowledge of the viewing distance. However motion
alone only provides a shape cue; without information
about the viewing distance, size, or velocity of the ob-
Ject there is no way of inferring the absolute depth of the
object.

In contrast to motion, stereo is not a scale-invariant
cue. Though the width of an object indicated by reti-

nal stereo disparities scales linearly, the depth indicated
by a given retinal signal scales with the square of the
viewing distance. Stereo disparities are therefore scale-
dependent cues; there is no way of inferring shape infor-
mation independently of the viewing distance. Though
stereo disparities are occasionally described as absolute
depth cues, it is necessary to have an estimate of the
vergence angle or the viewing distance to provide either
object depth or shape information from disparities. This
need to scale disparities by the viewing distance is re-
ferred to as the stereo scaling problem.

Differences in the geometrical information provided
by the scale-invariant cue of motion and the scale-
dependent stereo cue motivated us to examine both an
object depth task and an object shape task.

Models of Cue Combination

A set of artificial neural networks trained using the back-
propagation algorithm was used to simulate the different
models. Each network performed a regression, possibly
nonlinear, that mapped inputs to outputs. The instances
of the strong fusion, weak fusion, and modified weak fu-
sion models used in our simulations are illustrated in the
three panels of Figure 1. Each box in thesé panels rep-
resents an independent network, and the labeled lines
represent the flow of information between the networks.

Figure 1, Panel A illustrates the strong fusion model.
This model consisted of two networks. The first network
received an estimate of the vergence angle (v ) as input,
and calculated an estimate of viewing distance (d,). The
second network received as input a set of twenty stereo
disparities (Si,? = 1,...,20), a set of twenty retinal ve-
locities (M;,i = 1,...,20), and the viewing distance es-
timate produced by the preceding network. The output
was an estimate of either the depth or the shape of the
ellipse (only the depth estimate is shown in the figure).
The model was relatively unconstrained and could for-
m high-order nonlinear combinations of stereo, motion,
and vergence angle information.

The weak fusion model (Panel B) consisted of four
networks. The first network, like the first network in
the strong model, received as input the vergence angle
(7v) and computed an estimate of the viewing distance
(dy). The stereo computation network used the view-
ing distance computed by the initial network (d,) with
the set of stereo disparities (S;) to estimate either the
depth or the shape of the ellipse. The motion compu-
tation network used the viewing distance computed by
the initial network (d,) in conjunction with the set of
twenty retinal velocities (M;) to provide an independent
estimate of ellipse depth or shape. The weighting net-
work was given the viewing distance computed by the
initial network (d,) as input, and it computed the lin-
ear coefficients used to average the stereo and motion
components’ outputs. For the object depth task, for ex-
ample, the network computed the weights w, and w,, as
a function of the vergence angle in the equation

depth = (w, x depth,) + (wm x depthm)

where depth is the weak fusion model’s estimate of object
depth, depth, is the output estimate of the underlying
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Figure 1: Strong, weak, and modified weak models.

stereo computation network, depth, is the output es-
timate of the underlying motion network, and w, and
Wy, are the weights used to average the output depth
estimates of the stereo and motion networks.

Four of the five underlying networks of the modified
weak fusion model (Panel C) were nearly identical to the
weak fusion model. It differed from the weak model in
including one additional network that was used to mod-
el an instance of cue promotion. Johnston (1991) found
that the combination of stereo and motion cues helped
solve the stereo scaling problem when human subjects
were asked to choose which of a set of cylinders appeared
circular. We modeled this combination of motion and
stereo by including a network that mapped sets of stereo
disparities (5;) and retinal velocities (M;) to an addition-
al estimate of the viewing distance (d,;). As discussed
above, retinal velocities scale inversely with viewing dis-
tance whereas stereo disparities scale inversely with the
square of the viewing distance. Consequently, there is
only one object depth at one viewing distance that is
consistent with both motion and stereo retinal signal-
s. By combining motion and stereo disparity informa-
tion, through this intersection of constraints, both objec-
t depth and viewing distance can be computed without
any additional information such as the vergence angle.
In the modified weak model, limited nonlinear interac-
tion between motion and stereo was used to compute
this additional estimate of the viewing distance, labeled
d,.,. This viewing distance estimate was generally more
accurate than the vergence angle estimate (d,) under the
noise conditions studied. This improved viewing dis-

tance estimate was used as an additional input to the
motion, stereo, and weighting networks of the modified
weak fusion model.

Experiment

Figures 2 and 3 show the performances of the weak, mod-
ified weak, and strong models on the object shape and
object depth tasks, respectively. (Results reported in
this paper are based on test patterns that were not used
when training the models.) The four graphs in each fig-
ure correspond to the four noise conditions studied.

The first major result is that the models learned to
perform the shape task better than the object depth task
(compare Figures 2 and 3). The shape task was easier
for all three models suggesting that it was not a specif-
ic property of a particular model that was responsible.
This result was also independent of the noise model used.
We believe that this result can be understood by not-
ing that motion is a scale-invariant cue to object shape,
but that there is no scale-invariant cue to object depth.
This provides a motivation for separate shape and depth
representations. Because object depth representations
are necessarily susceptible to uncertainty in the viewing
distance estimate, making shape judgments dependent
on object depth estimates would unnecessarily corrup-
t shape estimates. Separate representations could re-
strict the effects of uncertainty in viewing distance so
that representations of scale-invariant properties are not
needlessly corrupted.

The second main result is that the modified weak mod-
el showed the best performance in the object depth task
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Mean squared error of the different
models for the object shape task.
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Figure 2: Performances of the weak (W), modified weak
(MW), and strong (S) models on the object shape task.

Mean squared error of the different
models for the object depth task.
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Figure 3: Performances of the weak (W), modified weak
(MW), and strong (S) models on the object depth task.
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and showed comparable performance to the strong mod-
el in the shape task. In theory the strong model should
always be able to perform at least as well as the modified
weak model, because it is less constrained. Interestingly,
the strong model did not perform best; it seems that the
complexity of the object depth task meant that the ab-
sence of built-in structure in the strong model allowed it
to frequently fall into relatively poor local minima of the
error surface in the presence of noise during training. It
should be emphasized that no strong conclusions can be
drawn concerning the superiority of the modified weak
model over the strong model. We suggest, however, that
the good performance of the modified weak model pro-
vides evidence that the constraints imposed upon it are,
at least, not overly restrictive. The modified weak mod-
el performed significantly better than the weak model
in the object depth task. Constraints imposed upon the
weak model prevented any interaction between motion
and stereo cues. Ih the case of the modified weak model,
constrained interaction between motion and stereo sig-
nals provided a relatively accurate estimate of the view-
ing distance. This second source of information about
the viewing distance reduced susceptibility to vergence
angle noise, thereby giving the modified weak model a
significant advantage over the weak model in the depth
task. The superiority of the modified weak model sug-
gests that the modularity constraints imposed upon it
(the model contains separate stereo and motion depth
computation networks) do not prevent it from finding a
relatively good solution. The architecture of the mod-
ified weak model provides an adequate compromise be-
tween modularity and the power to combine cues.

Figure 4 indicates the weighting of motion and stereo
as a function of viewing distance for both depth and
shape tasks for the modified weak model. The horizontal
axis represents the viewing distance, and the vertical axis
represents the relative weighting assigned to motion and
stereo (i.e. wy, and w,).

In the case of the shape task (Panel A), motion in-
formation was weighted far more heavily than stereo in-
formation for all three noise conditions. This is consis-
tent with the fact that retinal velocities, but not stereo
disparities, provide a scale-invariant cue to shape. In-
terestingly, the weight assigned to stereo increased with
viewing distance in all three noise conditions. In the
object depth task (Panel B), the opposite results were
found; stereo was weighted more heavily than motion for
all three noise conditions. Again, the weight assigned to
stereo increased with distance for all three noise models.

The relative weighting of motion and stereo was signif-
icantly different for shape and depth tasks. This differ-
ence provides a source of motivation for having separate
representations of object depth and object shape. Landy
et al. (1995) proposed the existence of a “depth map” to
which all cues were promoted. Our results motivate the
additional existence of a separate “shape map.” Separate
representations for the depth and shape of an object per-
mit independent cue weighting functions, allowing depth
and shape to be separately computed so as to minimize
the effects of noise for each judgment.
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Figure 4: Weighting of motion and stereo as a function of viewing distance for both depth and shape tasks for the

modified weak model.

Conclusion
We evaluated the overall performance of strong, weak,
and modified weak models of depth cue integration and
found that overall the modified weak fusion model out-
performed the other two models. Performance in this
domain therefore supports more general claims about
the advantages of modified weak fusion as a compromise
between modularity and fusion. Stereo and motion were
weighted differently for shape and depth tasks suggest-
ing the need for separate representations for shape and

depth.

As can be seen from our results, neural nets provide
a good means of quantitatively modeling highly non-
linear problems such as depth cue combination to re-
veal hidden or underspecified properties of qualitatively-
described theoretical models.
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