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Abstract 
The often fragmented process of online spatial data retrieval remains a barrier to domain 
scientists interested in spatial analysis. Although there is a wealth of hidden spatial information 
online, scientists without prior experience querying web APIs (Application Programming 
Interface) or scraping web documents cannot extract this potentially valuable implicit 
information across a growing number of sources. In an attempt to broaden the spectrum of 
exploitable spatial data sources, this paper proposes an extensible, locational reference deriving 
model that shifts extraction and encoding logic from the user to a preprocessing mediation layer. 
To implement this, we develop a user interface that: collects data through web APIs and 
scrapers, determines locational reference as geometries, and re-encodes the data as explicit 
spatial information, usable with spatial analysis tools, such as those in R or ArcGIS. 

1. Introduction 
GIS advancements have produced a growingly complex general-purpose toolbox rather than 
functionality tailored to domain-specific questions. Frequently, domain scientists including 
Green (2015: 717) highlight the salient lagging data and tool limitations associated with GIS. As 
Kuhn (2012: 2267) notes, it is essential to rethink the fundamentals of spatial information while 
promoting clarity that cuts across technical boundaries and broadens spatial literacy for non-
experts. Contributing to the work by Kuhn and Ballatore (2015: 219) and Vahedi et al. (2016) to 
design an intuitive GIS language for question-driven spatial studies, we focus on bridging the 
gaps between data discovery and spatial analysis tools by broadening the spectrum of exploitable 
spatial data sources. 

Compared to the vast amount of implicit spatial data (hidden location attributes often in the 
form of metadata, auxiliary place names, and geotagged attributes (Heinzle and Sester 2003: 
335)), there remains a relatively limited quantity of online explicit spatial data (georeferenced 
geometry-based features (Brisaboa et al. 2011: 358)). When available, explicit data are typically 
served from a limited number of administrative portals or require intensive energy and time from 
a user searching, exporting, encoding and cleaning before being usable (Munson 2013: 65). 
These preprocessing requirements limit the feasibility of question-driven spatial analysis (Vahedi 
et al. 2016) and force domain scientists to base their studies on data availability. 

It is clear that implicit spatial data is an attractive alternative. However, as the numerous 
research challenges associated with GIR (geographic information retrieval) suggest (Jones and 
Purves 2008: 219), current methods do not provide adequate solutions to navigate, gather or 
utilize the mass of heterogeneous implicit spatial data spread across the array of online 
repositories. Custom-constructed web API requests and scrapers can help retrieve and process 
this unpublished information. Yet, without technical expertise to build new or use existing 
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modules, this information remains unobtainable. This begs the question, why so few GIR studies 
have focused on aiding implicit spatial data retrieval. 

To explore this idea, we propose an extensible locational reference deriving model that shifts 
extraction and encoding logic from the user to preprocessing software. In the following sections, 
we describe previous work and provide a prototype architecture with applications to test the 
plausibility of a model that adopts the core concepts of spatial information (Kuhn 2012: 2267). 

2. Previous Work & Limitations 
There have been many notable efforts to address the difficulties of GIR, but few have focused on 
the extraction and encoding of implicit spatial data. INSPIRE1, NSDI2, and SPIRIT (Jones et al. 
2004: 125) for example, are spatial data infrastructure and search engine projects that focus on 
standardizing and indexing web documents rather than broadening access to new faster-growing 
data repositories (Jones et al. 2004: 125; Brisaboa et al. 2011: 358). 

Google’s Fusion Tables3 have simplified data integration and ArcGIS Online has grown 
online spatial catalogs through user sharing and publishing. Yet, these tools do not aid in data 
extraction from external sources. Enterprise products like Crimson Hexagon4 and Temboo5 
respectively provide users with spatial social media analytics and code snippets to ease web API 
querying. But these solutions provide neither data source extensibility, nor recognize multiple 
location types. Furthermore, studies on linked data, the semantic web, and semantic gazetteers 
(Cardoso et al. 2016: 389; Gao et al. 2014) propose a traversable data-centric organization of the 
web (Kuhn et al. 2014: 173; Wiegand and García 2007: 355). But until a semantic model broadly 
leverages new and existing data, significant user effort will remain necessary for collecting and 
preprocessing. The following architecture aims to address these issues and bridge the gap 
between discovered data and analysis tools. 

3. Architecture 
The proposed model’s implementation will be accessible via web interface and GIS plugins. It is 
not an independent search engine, but rather works as mediation layer once a desirable data 
source has been found and a user supplies the text parameters noted in Table 1. It does not aim to 
replace, but rather leverage, existing extraction and encoding methods as well as supply 
locational reference deriving logic not present in current systems. Illustrated in Figure 1, the 
mediation layer divides preprocessing (extracting and encoding) into four sequential tasks: 
extraction, context building, geometry matching, and encoding. 

Table 1. User interface and plugin input parameters 
Mandatory Optional 
Extraction source (e.g. URL or API endpoint) Basic aggregation (e.g. state-level) 
Source type (e.g. Twitter tweets or hashtags) Basic conditionals (e.g. exclude attributes) 
Output geometry type (e.g. point, polygon) Error handling (e.g. toponym conflicts) 
Output file format (e.g. .shp, .kml, .geoJSON)  
                                                        
1 http://inspire.ec.europa.eu/ 
2 http://www.fgdc.gov/nsdi/ 
3 https://support.google.com/fusiontables/answer/2571232?hl=en 
4 http://www.crimsonhexagon.com/ 
5 https://temboo.com/ 
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The Extraction task makes up the majority of the codebase, which will expand as interest in new 
data sources emerge. It leverages parameterized HTTP requests constructed by web APIs (for 
database retrieval) and scrapers (for document text retrieval). The result will often be a structured 
or semi-structured tree of attributes (e.g. .json, .xml) presented to the user for accuracy feedback. 

The second task searches the data for potential location characteristics in the form of raw 
geometry or toponyms using a combination of text matching and natural language processing 
paired with gazetteer lookups (e.g. GeoIP, GeoNames, Getty Thesaurus of Geographic Names). 
When applicable, user feedback will be necessary for place name disambiguation, scoping, and 
aggregation.  

The third task handles geometry pairing and the fourth, output file formatting. Once location 
characteristics have been determined, associated geometries are retrieved from repositories (e.g. 
TIGER/Line, Open Street Map) and paired with the data. Additionally, rudimentary spatial 
extent and relationship logic is supported (using ESRI’s Java geometry API, GDAL, etc.), such 
that a within operation could aggregate geotagged Flickr photo points to a bounding county 
polygon. Finally, conversion tools (e.g. GDAL ogr2ogr, Python pyshp), encode the data in an 
array of formats (e.g. .shp, .kml)., resulting in a spatially explicit data product usable in analysis. 

 
Figure 1. Examples of leveraged services between implicit data and analysis tools 

 
4. Application 
To articulate the model’s potential, we present working and hypothetical examples where 
domain scientists encounter data retrieval problems. In our working example, a social scientist 
wants to examine the spatial interaction between crime incidents and income across Seattle, 
USA. She has statistical experience with R and has imported a block-group median household 
income shapefile, but cannot find explicitly spatial crime data. She has, however, found a well 
formatted crime statistics table on Seattle’s web portal, and wants to extract the time, crime type, 
and charge attributes by city-block. Traditionally, to integrate this information, she would have 
to download and import the table, for example, into ArcGIS, remove unwanted attributes, 
download a block-group shapefile, aggregate the crime points, and handle geocoding anomalies. 
Alternatively, the previous steps are simplified by supplying the model’s web interface with the 

Data	Source Preprocessing	Mediation	Layer Output	Format
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table’s API endpoint, specifying which attributes to keep at which aggregation level, and 
specifying polygon shapefile as the output. On the back end, the software retrieves the data as 
JSON objects, determines street address as its location reference, geocodes and aggregates these 
points to block-group geometry served by data.gov, and produces a shapefile using ogr2ogr. 

Our hypothetical example adds complexity when a user requires data from social media. A 
political scientist wanting to understand spatial voting trends between Californian counties 
during a presidential primary, decides to use trending Twitter hashtags as predictors. Without 
programming experience, he is limited to Twitter’s simple query building wizards that returns 
unwieldy and spatially unreferenced tweet data. Instead, by providing twitter API credentials, 
hashtags of interest, and California counties as text parameters to the interface, the model can 
filter by hashtag, extract user’s location information (through geotags or home locations) and 
aggregate tweet count to the county level, producing a .kml file from OpenStreetMap geometry. 

5. Conclusions 
We have presented a locational reference deriving model and associated prototype preprocessing 
layer that has the potential to promote critical spatial thinking by expanding data source options. 
Currently, the model’s integrity is limited by the credibility of its data retrieval sources, and 
limited to handling vector data. Therefore, future research will investigate integrating new data 
sources, analyzing feedback to promote VGI (volunteered geographic information) supported 
gazetteers, as well as integrating data credibility metrics. 

References 
Brisaboa N, Luaces M, and Seco D, 2011, New Discovery Methodologies in GIS. Geographic Information Systems, 

358–376. 
Cardoso S, Amanqui F, Serique K, dos Santos J, and Moreira D, 2016, SWI: A Semantic Web Interactive Gazetteer 

to Support Linked Open Data. Future Generation Computer Systems, 54:389–398. 
Gao S, Li L, Li W, Janowicz K, and Zhang Y, 2014, Constructing Gazetteers from Volunteered Big Geo-Data based 

on Hadoop. Computers, Environment and Urban Systems. 
Green T, 2015, Places of Inequality, Places of Possibility: Mapping “Opportunity in Geography” Across Urban 

School-Communities. Urban Review, 47(4), 717–741. 
Heinzle F and Sester M, 2003, Derivation of Implicit Information from Spatial Data Sets with Data Mining. 

Cartography, 35(4)335–340. 
Jones C and Purves R, 2008, Geographical information retrieval. International Journal of Geographical Information 

Science, 22(3):219–228. 
Jones C, Abdelmoty A, Finch D, Fu G, and Vaid S, 2004, The SPIRIT Spatial Search Engine: Architecture, 

Ontologies and Spatial Indexing. Geographic Information Science, Proceedings, 3234:125-139. 
Kuhn W and Ballatore A, 2015, Designing a Language for Spatial Computing. AGILE 2015, Lecture Notes in 

Geoinformation and Cartography, 219–234. 
Kuhn W, Kauppinen T, and Janowicz K, 2014, Linked Data- A Paradigm Shift for Geographic Information Science. 

Proceedings of The 8th International Conference on Geographic Information Science, Vienna, AUT, 173–186. 
Kuhn W, 2012, Core Concepts of Spatial Information for Transdisciplinary Research. International Journal of 

Geographical Information Science, 26(12):2267–2276. 
Munson M, 2012, A study on the Importance of and Time Spent on Different Modeling Steps. ACM SIGKDD 

Explorations Newsletter, 13(2):65–71. 
Vahedi B, Kuhn W, and Ballatore A, Question Based Spatial Computing - A Case Study. AGILE 2016 (in press). 
Wiegand N and García, C, 2007, A Task-Based Ontology Approach to Automate Geospatial Data Retrieval. 

Transactions in GIS, 11(3):355–376. 

GIScience 2016 Short Paper Proceedings

125




