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Abstract

OBJECTIVE—Our objective was to develop a generalized linear mixed model for predicting 

seizure count that is useful in the design and analysis of clinical trials. This model also may benefit 

the design and interpretation of seizure recording paradigms. Most existing seizure count models 

do not include children and there is currently no consensus regarding the most suitable model that 

can be applied to children and adults. Therefore, an additional objective was to develop a model 

that accounts for both adult and pediatric epilepsy.

METHODS—Using data from SeizureTracker.com, a patient-reported seizure diary tool with over 

1.2 million recorded seizures across 8 years, we evaluated the appropriateness of Poisson, negative 

binomial, zero inflated negative binomial, and modified negative binomial models for seizure 

count data based on minimization of the Bayesian Information Criteria. Generalized linear mixed-

effects models were used to account for demographic and etiological covariates and for 

autocorrelation structure. Hold-out cross-validation was used to evaluate predictive accuracy in 

simulating seizure frequencies.

RESULTS—For both adults and children, we found that a negative binomial model with 

autocorrelation over one day was optimal. Using hold-out cross validation, the proposed model 

Corresponding Author: Daniel Goldenholz, National Institutes of Health, NINDS, Clinical Epilepsy Section, CNP, DIR, 10 Center 
Drive, 10-CRC, Room 5S-207, MSC 1408, Bethesda MD 20892-0001, Fax: (301) 402-2871, Phone: (301) 435-3613, 
daniel.goldenholz@nih.gov. 

Ethics statement
We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent 
with those guidelines.

Disclosures
R. Moss is the cofounder/owner of Seizure Tracker and received personal fees from Cyberonics, UCB, Courtagen and grants from 
Tuberous Sclerosis Alliance.
The remaining authors disclose no conflicts of interest.

HHS Public Access
Author manuscript
Epilepsia. Author manuscript; available in PMC 2018 May 01.

Published in final edited form as:
Epilepsia. 2017 May ; 58(5): 835–844. doi:10.1111/epi.13727.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was found to provide accurate simulation of seizure counts for patients with up to 4 seizures per 

day.

SIGNIFICANCE—The optimal model can be used to generate more realistic simulated patient 

data with very few input parameters. The availability of a parsimonious, realistic virtual patient 

model can be of great utility in simulations of phase II/III clinical trials, epilepsy monitoring units, 

outpatient biosensors, and mobile Health (mHealth) applications.
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Epilepsy; Generalized linear mixed-effects modeling; clinical trial simulation

Introduction

Statistical seizure count models can provide insight into epilepsy burden and treatment, and 

are useful for phase II/III clinical trial design and analysis1,2. Such models can assist studies 

in epilepsy monitoring units, by predicting time to epileptic seizures3,4. Evaluation of newer 

mobile health (mHealth) tools and outpatient biosensors5–8 will require accurate models of 

seizure count. A large proportion of clinical trial placebo effect may be due to natural 

seizure count fluctuations9. Accounting for natural fluctuations when planning future trials 

would improve modeling of both intervention and placebo arms10. Many existing seizure 

count models (Table 1), developed using small datasets, show limited ability to assess 

covariate effects11,12. Other models, unsuited to clinical trial simulators, do not allow 

generation of simulated data13,14.

Most existing models have been developed using adult data (Table 1). Most others exclude 

younger children, developing only one model for childhood and adult epilepsy. However, 

differences between childhood and adult epilepsies should be considered in model 

construction15,16.

We evaluated several new mixed-effects models for seizure count data in large datasets of 

children and adults, respectively. In predicting seizure count, we evaluated the effect of 

previous seizure history, as well as demographic and etiological covariates. We assessed the 

utility of the proposed model for simulating clinical trial seizure count data through hold-out 

cross-validation.

Methods

Preprocessing

Data was taken from SeizureTracker.com, a free online seizure diary tool9. In addition to 

seizure occurrences, demographic information and self-reported etiologies were available 

(Figure 1a). Additional demographic data have been published9. Data were de-identified and 

unlinked, as required by the Office of Human Research Protection, OHSR #12301.

For each eligible patient, a seven-day “pre-baseline” period, a six-week “baseline” period, 

and a 12-week “intervention” period were selected for analysis, representing the temporal 

relationship typically employed in clinical trials; no actual intervention was performed, 
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though changes in medication might have occurred. Similar time periods are used in many 

clinical trials for anti-epileptic drugs17–20. Inclusion criteria were similar to many clinical 

trials: patients were required to have at least seven seizures over the 49-day period including 

seven-day “pre-baseline” and six-week “baseline”21. Exclusion criteria included: patient 

diaries suggesting generalized epilepsy (see9 for details), status epilepticus within the 49-day 

eligibility period, no reported seizures after the 12 week intervention period, and no 

reporting of age or gender. Status epilepticus was defined as any seizure lasting more than 

five minutes, overlapping seizures with total duration over five minutes, or a set of non-

overlapping seizures separated by less than five minutes, with a combined duration of over 

five minutes22. Erroneous data entry, such as seizures reported as occurring past the date of 

data export were ignored. The recording of one seizure after the 12-week trial period was 

required to eliminate patients who ceased using SeizureTracker.com during that period.

For each patient, the first 49-day period in which eligibility criteria were met and the 

following 12-weeks were used for analysis. Only one trial-sized excerpt was selected from 

each seizure diary. Allowing more excerpts would have overrepresented patients with longer 

seizure diaries.

Models

Models described in this paper belong to a class known as “mixed-effects models,” where 

the probability of Y seizures occurring during a given day is a function of mean number of 

seizures, . The natural log of  ( ) is the sum of (1) a constant 0, describing the 

population as a whole, (2) a constant b, differing across individuals, and (3) other variables 

1…n, which may vary with time.

The models are built from the Poisson (PS) distribution, commonly used to model count 

data23 assuming the mean number of seizures equals the variance. However, seizure count 

data is often overdispersed, such that the variance in seizure counts exceeds the mean11. Our 

PS model describes the probability of Y seizures occurring on a given day as a function only 

of , the mean number of events. Formally,

where .  is the intercept term and b is the subject specific, normally-

distributed random effects term, with standard deviation .

The negative binomial (NB) distribution is an extension of the PS distribution frequently 

used for overdispersed count data11. As in our PS model,  is composed of population- and 

subject-specific constants. The NB differs from the PS model in that the probability of Y 

seizures occurring in a day is a function of  and an additional parameter, , which 

determines overdispersion. Formally,
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NB models for seizure count data are limited, assuming independently distributed seizure 

counts. Several groups have reported clustered seizure counts, finding models with memory 

(where past results affect probability of future results) perform better than those 

without13,14,24. Improvements over the NB model include an NB generalized linear mixed 

model (GLMM), with effect of treatment or placebo as covariates in the linear predictor.12 A 

zero-inflated NB model (ZINB) accounted for Markovian patterns with two sets of mean 

and overdispersion parameters, one corresponding to days following days without reported 

seizures, and one corresponding to days following days with reported seizures.24 Similar 

models have used modified autocorrelation terms1. We extend these models to account for 

patient-level demographic and etiological covariates, effects unexplored in the 

literature1,2,11,12,24–30.

Our ZINB model is similar to our NB model, but for a certain percentage of days, denoted 

by p, seizure number is set to zero regardless of probabilities given by the NB formula. 

Formally,

 is the probability of x seizures occurring, according to the NB model.

The negative binomial with autocorrelation number (NBAN) model is identical to the NB 

model, except that mean seizure frequency is a function of the number of seizures on the 

previous day, as well as of the population constant and the subject-specific constant. 

Formally, .  is the number of seizures on the previous day.  is 

the corresponding coefficient.

The negative binomial with autocorrelation presence (NBAP) model is similar to the NBAN 

model, but the binary presence/absence of seizures on the previous day is used instead of 

seizure count. Formally, .  is the binary presence/absence of 

seizures on the previous day.  is the corresponding coefficient.

The negative binomial with autocorrelation and covariates (NBAC) models add several 

terms to the formula for  in the negative binomial autocorrelation model. Each additional 

variable corresponds to the binary presence/absence of a certain etiological factor, or to 

patient age.

Model Fitting/selection

Data for adults and children were analyzed separately. Models were fitted to seizure counts 

from six-week baseline period and 12-week trial periods only; the seven-day pre-baseline 

period was used so values for autoregressive terms would be available for the first seven 

baseline days, as described below. Because parsimony was valued, models were compared 
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using Bayesian Information Criteria (BIC), rewarding better fit and penalizing addition of 

each covariate31,32.

Model fitting, selection, and evaluation were conducted as shown (Figure 1b). The 

appropriateness of a zero-inflated model was assessed by comparing model fit of a zero-

inflated negative binomial (ZINB) to a negative binomial (NB) model based on the Bayesian 

information criterion (BIC); the need to account for overdispersion was assessed by 

comparing the model with better fit (ZINB vs. NB) to either the zero-inflated Poisson (ZIP) 

or the Poisson (PS) model, respectively.

In order to model effects of prior seizure history on current seizure count, seizure count 

stationarity was evaluated through the empirical autocorrelation function. A negative 

binomial autoregressive model based on the number of seizures on previous days (NBAN) 

was first fit. The maximum autoregressive order considered was seven days, determined by 

evaluation of inter-seizure interval (ISI) distribution (Supplemental Figure S-4). Lag order 

was selected based on the BIC and empirical partial autocorrelation functions (PACF) for 

individual patients. We used residual analysis and the empirical autocorrelation function of 

fitted residuals to check that autoregressive processes adequately modeled seizure count 

time-series. In order to account for the relative reliability of self-reported seizure count8, a 

second model with autoregressive structure based on the presence/absence of seizures on 

previous days (NBAP) was fitted, with lag order selected based on BIC.

The results of this analysis were used to identify which demographic and etiological 

covariates further improved model fit (Table 2). Forward selection with backward 

elimination (FSBE) of these covariates was performed. Variable selection was carried out 

using “forward.lmer”33 with lag terms identified above as the initial model in the stepwise 

search and using an improvement in BIC of at least 1% as a threshold for addition or 

deletion of covariates. Since the FSBE algorithm has deficiencies, including the possibility 

of reaching local rather than global extrema, a backwards elimination algorithm starting with 

all covariates, followed by sequential removal of terms improving BIC by less than 1%, was 

employed to verify results.

To assess the potential utility of the identified model to serve as a clinical trial simulator of 

seizure count data, hold-out cross validation was used to evaluate predictive performance. 

The data were separated into two subsets: a training set, consisting of the first interval in 

which each patient met eligibility criteria, and a testing set, consisting of the second interval 

in which each patient met eligibility criteria. The model fitting and selection procedure was 

performed on patients in the training set, and used to predict seizure counts for patients in 

the testing set. To assess predictive performance, the mean squared prediction error (MSE) 

and quantile-quantile (QQ) plots were used to compare the distribution of the predicted to 

observed seizure counts in the testing set. To provide a baseline for comparison, we 

compared our model to a negative binomial model with no autocorrelation using the mean 

squared prediction error.

MATLAB v. 2015b was used for preprocessing, and R34 v3.2.2 was used for model fitting. 

Computation was performed on the NIH HPC Biowulf computer cluster.
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Results

Adult data (age ≥ 18 years) were separated into training (30,022 seizures from 682 patients) 

and testing (15,602 seizures from 354 patients) sets. Pediatric data (age < 18 years) were 

separated into a training set of 52,596 seizures (844 patients) and a testing set of 20,297 

seizures (334 patients). Parameter estimates and BIC values for all models are listed (Table 

3).

Although histograms of seizures per patient and the proportion of days without reported 

seizures suggested zero-inflation (Supplemental Figures S1 and S2), the zero-inflation 

parameter was estimated as ~10−6 among both adults and children, suggesting that zero-

inflation was not required. As there was only marginal improvement in BIC of the ZINB 

over the NB model (Table 3), the benefit of accounting for zero-inflation was considered 

minimal. The NB model was significantly superior to the PS model (p < .001, ANOVA) in 

both adults and children. In both cases, the overdispersion parameter  was greater than 0, 

implying data were overdispersed (Table 3, Figure S3).

Empirical autocorrelation functions suggested stationarity in seizure counts for both adults 

and children. Analysis of each patient’s PACF found that for 62% of adults and 52% of 

children, an AR(0) or AR(1) autoregressive structure would be appropriate. Addition of a 

second autoregressive term improved BIC by less than 1% for NBAN and NBAP models; a 

better model fit was obtained for the NBAP than NBAN model (Table 3). Residuals plots 

and autocorrelation plots of fitted residuals were assessed to confirm appropriateness of 

model fit.

For adults and children, both FSBE and backwards elimination algorithms showed no 

demographic or etiological covariate improved BIC by more than 1% over the NBAP model.

While the model tends to under-predict seizure counts when patients have greater than 4 

seizures per day, nearly all of the data (>99% from adults, and >97% from children) lies 

within one unit of the y=x line (Figure 2a and 2b). Moreover, a minority of patients (<20% 

adults, <25% children) have any days with more than four seizures. Among these, the 

median number of days per diary with seizure counts greater than four is negligible (adults: 

1, children: 2.5, from a total of 133 days/diary) (Table 4). For seizure frequencies of ≤4 

seizures per day, QQ plots suggest the proposed model provides accurate seizure count 

prediction (Figure 2a and 2b).

For the NBAP model, MSE was calculated by simulating testing set data, with new patient-

specific random-effects terms, and was found to be superior to the NB model (Supplemental 

Table S1). When MSE was calculated using existing random-effects values, the NB model 

performed slightly better than the NBAP (Table 3).

Discussion

We propose a novel model for daily seizure counts that successfully models complete trial 

data from 82% of adults and 76% of children. For the remaining patients, the model is 

generally successful, with seizure rates <= 4 seizures/day (the level for which the model is 
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accurate) in a median of 132.0 of 133.0 days (99.3%) in adults and 130.5 of 133.0 days 

(98.1%) in children. The models account for system memory, and provide new associations 

between demographic and etiological covariates with seizure count, and differences between 

children and adults. Excluding the extreme upper range of seizure count data, the model was 

validated in a separate data set. Under certain conditions, the NBAP model did not perform 

better than the NB model; the degree of difference in predictive power suggests that under 

these conditions, choice of model makes little impact. The NB and NBAP models therefore 

appear interchangeable under certain conditions, while the NBAP provides larger increases 

in predictive power under others.

Despite the presence of a large proportion of zeroes in both adult and pediatric seizure count 

data, zero-inflated models were found to provide minimal improvement over more 

parsimonious, non-zero-inflated models.

Choice of model

As expected, seizure count data was overdispersed, and the NB model a significantly better 

fit than the PS model. Other models built on the NB that account for autocorrelation, such as 

those developed by Ahn et. al.1 and Troconiz et. al.24, allow for nonlinear autocorrelation 

structure and a more mechanistic interpretation of autocorrelation, respectively, but are 

limited by computational inefficiency, as addition of every two Markov elements (i.e. one 

day of autocorrelation) increases computational time exponentially. Fitting such a model for 

autocorrelation over a larger number, such as the seven days identified here, is 

computationally infeasible in larger datasets. Based on the appropriateness of linear 

autoregressive models from residual analysis and the results of a Brock-Dechert-

Scheinkman test, we chose not to investigate nonlinear autocorrelation structure. While such 

models might be appropriate, they seem unnecessary for most patients.

In our study, we focus on negative binomial models for seizure count data. Other research 

suggested using mixture models to account for data heterogeneity. Hougaard et. al. found 

that NB models attain superior performance to the Poisson model, and that a generalized 

Poisson mixture model attains superior performance to NB model for overdispersed data11. 

We find NB models accounting for autocorrelation may provide improved model fit 

compared to NB models as well as standard Poisson modeling. While Poisson mixtures may 

have been useful in modeling our data, fitting Poisson mixtures requires either specification 

or estimation of the number of components, with the advantage of flexibility but 

disadvantage of needing to either fix the number of components a priori or explore 

transdimensional parameter spaces. Misspecification of either the mixing distribution or the 

random effects distribution has little impact on parameter estimation35, supporting the 

selection of the NB as a base model.

Autocorrelation terms

As expected, autocorrelation was useful over only one day because the plurality of patients 

had median inter-seizure intervals of less than one day. Separation of patients by appropriate 

autoregressive order may be a useful avenue for future research. Increasing the lag order 

beyond one day improved BIC by less than 1%. As PACF suggested a lower lag order was 
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appropriate, we decided addition of higher-order autocorrelation terms was not warranted. 

The superiority of the NBAP model to the NBAN model differs from previous results1, 

likely due to the nature of the dataset. Because patients tend not to report all seizures8,36, it 

is possible that some diaries are inaccurate.

We found NBAP models for both adults and children provided accurate prediction of seizure 

counts for the majority of patients. With the exception of a limited subset of patients 

experiencing >4 seizures per day, our use of hold-out cross-validation shows a similar 

distribution of seizure counts between simulated and observed seizure data (Figure 2). Even 

within this limited subset, seizure counts >4 per day occur in only a small fraction of trial 

days, indicating our model is usually accurate for these patients as well. We do not expect 

the inability of our model to predict the extreme upper range of seizure count data will have 

a significant impact on simulation studies utilizing our model. Moreover, as our models were 

built using data meeting clinical trial eligibility criteria, the simulated patients generated by 

our model would have relatively high seizure counts. We expect that for most applications, 

the seizure count required of a simulated patient will be lower than those generated by our 

model.

Children vs adults

For all models developed in this paper, fit to adult data was much better than to pediatric 

data in the training data, though the MSE was typically lower for children in the testing set. 

Variance in the random-effects term was greater for children, and effect of prior seizures was 

approximately 40% larger in children than adults. This is particularly surprising, given that 

median inter-seizure interval was lower in children than adults. Possible explanations for this 

are the differences in seizure patterns between children and adults or a nonlinear effect of 

age for children. Seizure counts in children might be recorded more accurately, as parents or 

caregivers kept records rather than children themselves. Conversely, seizures might be 

undercounted in children when their primary caregiver is not available. We recognize that 

different results might have been obtained had we used another age cutoff to separate adults 

and children. As many clinical trials accept only patients aged 18 or older, our cutoff is 

relevant to clinical trial simulation17,20,37. Further study of pediatric data is warranted, as 

our model is one of the few in which childhood seizures are considered separately, and it 

uses by far one of the largest databases of childhood seizures (Table 1). Separation of 

pediatric and adult data will allow clinical trial simulation parameters to be changed to 

reflect different patient populations.

Lack of demographic/etiological covariates

Neither demographic nor etiological covariates were useful in modeling seizure count. 

Although stepwise variable selection procedures have the benefit of computational speed, 

particularly important in large datasets, stepwise procedures tend to pick models smaller 

than desirable for prediction, and may be influenced by the number of candidate variables 

and algorithm used, and subject to local optima. Although such issues were mitigated by 

confirming results through multiple stepwise algorithms, inclusion of additional covariates 

and other variable selection techniques may be useful in future research. Additionally, 

automated variable selection approaches such as that employed here tend to choose 
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parsimonious models that optimize model fit. This potentially excludes covariates which 

may have clinical significance but do not improve model fit. An alternative approach which 

is occasionally employed is to include clinically significant variables regardless of effect on 

fit. However, this approach may lead to large standard errors of parameter estimates, and 

numerical instability. Algorithmic variable selection techniques would ideally outperform 

variable selection based on clinical knowledge in data with a large number of features, as is 

increasingly common in “Big Data” analyses. This is because clinical knowledge may 

prevent highly relevant variable inclusion, or may recommend variables that are highly 

collinear. We therefore relied on algorithmic variable selection techniques.

The absence of demographic/etiological covariates seems to indicate that these covariates 

have no influence on seizure count. However, conclusions regarding relationships between a 

particular etiology and seizure count are limited by accuracy of self-reported etiologies, and 

the low number of patients reporting some etiologies (Table 2). The absence of demographic 

covariates in the final model does not suggest absent age-related differences in seizure 

count; there is a clear difference between adults and children. To a first approximation, our 

results suggest differences in age, gender, and etiology may not have a strong linear 

contribution to seizure count. Further investigation of contributions of these covariates is 

warranted.

Limitations

The SeizureTracker.com database represents purely patient reported data; inaccuracies may 

be present in recorded seizure counts. Our view of this database is one of true signal (true 

seizure counts), and additional noise (from inaccurate recordings, etc.). The database 

contains more noise than what might be found in a clinical trial. However, without whole 

brain cellular-level chronic recordings, inaccurate measures may never be fully mitigated8.

Neither epilepsy diagnosis nor self-reported etiologies are physician-verified. Some patients 

in the database may have psychogenic non-epileptic seizures (PNES). However, mean 

seizure durations in patients with PNES are over five minutes38, the threshold for our screen 

for status epilepticus. While patients with PNES may nevertheless be included, and 

misdiagnosed etiologies are not accounted for at all, misdiagnosis remains an issue in 

clinical trials as well38.

Our analysis is limited because effects of medication changes were not assessed. Were 

patients with verifiable medication changes identifiable, noise could have been reduced by 

excluding them, possibly increasing predictive power. Patients who do get a true intervention 

will have different final summary statistics (i.e., their overall seizure frequencies would be 

described by different parameters than otherwise), but those new values would be 

superimposed upon the natural variability of disease.

Seizure miscounting may affect our results. Miscounting may be compounded in patients 

with cognitive difficulties, who may not recognize their seizures, and in children, who may 

be in the care of different individuals throughout the day. Adding physician validation 

options to Seizure Tracker and related seizure diary systems may allow construction of more 

reliable models, improving data quality using knowledge of seizures clinical features and 
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mimics, and corroborating diagnostic information. Virtually all clinical trials rely on patient-

reported seizure counts, so this limitation is applicable (albeit mitigated by training of 

clinical trial patients) to prior studies, and relates to all future clinical trials that use patient-

reporting for the outcome measure.

Future Directions

Using the optimal models from this study, future investigators will have an opportunity to 

model a wider range of epilepsy than previously possible. Children and adults can be studied 

together or independently. For example, when planning a phase II or phase III clinical trial, 

questions of expected seizure count ranges and expected outcomes can be addressed using 

these models.

The development of these models is a crucial step towards completion of a full clinical trial 

simulator. As selection of covariates was performed systematically and with a large number 

of potential choices, and as the models were developed using one of the largest seizure diary 

databases in the world, a clinical trial simulator based on these data is expected to be more 

accurate than those already developed. Including patient population characteristics in the 

model may improve statistical power predictions for human trials. If early data from phase I 

trials finds 40% efficacy, one could predict the expected number of patients needed to show 

effects in phase II and III trials. Virtual trials could allow planners to determine necessary 

trial length, and optimal inclusion/exclusion criteria; this could save money40 and accelerate 

drug discovery.

In biosensor and mHealth arenas, developers can use optimal models to determine what 

kinds of operating characteristics to expect from their users. For example, if a wearable 

device tends to have reduced accuracy after a certain number of events, it would be very 

valuable to know how many seizures to expect from typical and extreme cases, and likely 

combinations of seizure frequencies.

A key feature of this model is that it is readily implementable on a personal computer 

without access to private datasets from drug companies or even Seizure Tracker, and can be 

used by the widest possible set of investigators.

Conclusions

Our optimized models reveal details on the effects of previous seizures on daily seizure 

count. They provide new information on relationships among demographics, etiologies and 

seizure count in children and adults. Models can be used to generate data for trial 

simulations and novel mHealth and biosensor devices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

mHealth Mobile health

GLMM Generalized Linear Mixed Model

PS Poisson

ZIP Zero-inflated Poisson

NB Negative Binomial

ZINB Zero-inflated Negative Binomial

NBAN Negative Binomial with autocorrelation (number)

NBAP Negative binomial with autocorrelation (presence/absence)

NBAC Negative binomial with autocorrelation and covariates

BIC Bayesian Information Criteria

ISI Inter-Seizure Interval

PACF Partial Autocorrelation Function

FSBE Forward Selection with Backward Elimination

MSE Mean Squared Error

QQ Quantile-quantile

AR Autoregression

PNES Psychogenic Non-Epileptic Seizure
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Key Points

• A mixed-effects negative binomial model considering autocorrelation was 

superior to models without autocorrelation.

• Neither zero-inflation nor demographic/etiological covariates improved model 

strength.

• In both adults and children, autocorrelation is useful over one day, and 

presence/absence of seizures is more useful than number of seizures.

• This model can be of use in simulations of clinical trials, epilepsy monitoring 

units, outpatient biosensors, and mHealth applications.
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Figure 1. 
(a) Data selection procedure. Data was recorded from patients meeting common clinical trial 

eligibility criteria. One 18-week “trial” was recorded from each eligible patient, along with 1 

week of “pre-baseline” data. (b) Model selection and analysis procedure. Models were fitted 

to the data and model fit compared based on the Bayesian Information Criterion (BIC). 

Models were evaluated sequentially, with more complex models built around the optimal 

model determined by the previous step. NB = negative binomial. ZINB = zero inflated 

negative binomial. PS = Poisson. NBAP = negative binomial with autocorrelation on 

presence/absence of prior day seizures. NBAN = negative binomial with autocorrelation on 

number of prior day seizures. AR = autoregressive.
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Figure 2. 
(a) Quantile-quantile (QQ) plot for adult data, comparing distribution of simulated seizure 

count data from our model to observed seizure count data in the testing set. Two distinct 

regimes are highlighted: For ≤4 seizures per day, the data closely follows the one-to-one 

line, indicating that our model is valid for this range; above this point, data is nonlinear. (b) 

QQ plot for pediatric data. As in the adult data, there are two distinct regimes; the model is 

adequate for the lower regime.
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Table 1

Literature search for models currently used to model seizure frequency data. The column “Model” does not 

include pharmacokinetic models developed in the paper. One number of patients is listed per model developed. 

PS: Poisson. NB: Negative binomial. PCB: Placebo

First Author, Year 
(Reference) Model

Separates 
children 

and adults?
Number of patients

Minimum Age in 
years (mean if 

reported)

Ahn, 2012 (1) NB with nonlinear covariate based on number 
of seizures on previous day No 1053 12 (mean 38.2)

Albert, 1991 (13) PS with two-state Markov adjustment No 13 21

Albert, 2000 (20) PS with dropout and treatment/pcb term No 40 14

Alosh, 2009 (21) PS with Bernoulli thinning No 59 18

Balish, 1991 (14) Quasi-likelihood regression No 13 21

Delattre, 2012 (22) Hidden mixed Markov No 788 None reported 
(mean 33)

Deng, 2016 (23) Dynamic Inter-Occasion Variability No 551 8 (mean 33)

Hougaard, 1997 (11) Generalized Poisson mixture No 59 18

Molenberghs, 2007 (17) NB with treatment/pcb term No 89 18

Nielsen, 2015 (2) NB with nonlinear covariate based on number 
of seizures on previous day Yes 265 children 356 adults 3 18

Thall, 1990 (24) Quasi-likelihood regression No 59 18

Troconiz, 2009 (18) NB with two-state Markov adjustment No 551 8 (mean 33)
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Table 2

Demographic and etiological covariates evaluated in NBC and NBAC models. All covariates reported by at 

least 9 children and 9 adults (approximately 1% of each sample) were evaluated. Number of patients reporting 

each covariate is shown.

Covariate Adults reporting covariate Children reporting covariate

Demographic covariates

Age 682 (100%) 844 (100%)

Gender 682 (100%) 844 (100%)

Etiology

Tuberous Sclerosis (TS) 9 (1.3%) 79 (9.3%)

Brain Trauma 90 (13%) 45 (5.3%)

Hematoma 26 (3.8%) 15 (1.8%)

Infectious Disease 58 (8.5%) 33 (3.9%)

Stroke 15 (2.2%) 26 (3.1%)

Genetic Abnormalities 15 (2.2%) 25 (3.0%)

Lack of oxygen at birth 20 (2.9%) 28 (3.3%)

Fever, Metabolic Disorder, or Electrolyte disturbance 13 (1.9%) 15 (1.8%)

Brain malformation or injury during fetal development 48 (7.0%) 73 (8.6%)

Brain tumor or surgery 119 (17%) 58 (6.9%)

Maternal drug use or unspecified congenital disorder 49 (7.2%) 95 (11%)
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Table 4

Percentage of patients who have at least one day with more than four seizures, and the median number of days 

with more than 4 seizures in those patients.

Adults Children

Patients with >4 sz on at least 1 day 18% 24%

Of these, median number of days with >4 sz 1 2.5

Epilepsia. Author manuscript; available in PMC 2018 May 01.


	Abstract
	Introduction
	Methods
	Preprocessing
	Models
	Model Fitting/selection

	Results
	Discussion
	Choice of model
	Autocorrelation terms
	Children vs adults
	Lack of demographic/etiological covariates
	Limitations
	Future Directions
	Conclusions

	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4



