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by
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This dissertation contains results that contribute to and use the theory of convex hypersur-
faces in contact manifolds. First, we generalize a 3-dimensional convexity criterion result
of Giroux [Gir91]. Specifically, we show that the criterion holds in contact manifolds of
arbitrary dimension. As an application, we show that a particular closed hypersurface
introduced by A. Mori [Mor11] is C∞-close to a convex hypersurface. Second, inspired
by the techniques of Honda and Huang in [HH19], we develop explicit local operations
that may be applied to Liouville domains with the goal of simplifying the dynamics of
the Liouville vector field. As an application, we show that Mitsumatsu’s well-known
Liouville-but-not-Weinstein domains are stably Weinstein, answering a question posed by
Huang [Hua19].
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CHAPTER 1

Introduction

Symplectic geometry is a type of geometry that exists in even dimensions. Contact geometry is
its natural odd-dimensional counterpart. Each informs the other, and it is difficult to study
just one in isolation. This dissertation contains results that are primarily contact, and also
results that are primarily symplectic, but there is an underlying thread that binds them
together: The notion of convexity. In particular, we contribute to the development of convex
hypersurface theory in contact geometry and leverage its techniques to study questions in
symplectic geometry. Specifically, this dissertation is based on two projects, [Bre21] and
[BC21], the second of which was collaborative work with A. Christian.

Organizational remarks. The present chapter introduces both projects, including the main
results. Background material for all of the concepts discussed here and in the rest of the
dissertation is contained in Chapter 2. Section 1.1 introduces the material from [Bre21]
and Subsection 1.1.1 describes the organization of the material from [Bre21] in the context
of the dissertation. Likewise, Section 1.2 was written in collaboration with A. Christian
and introduces the material from [BC21], and Subsection 1.2.5 describes the organization
of the material from [BC21] in the context of the dissertation.

1.1 Morse-Smale characteristic foliations

In [Gir91], Giroux demonstrated the power of convex surface theory in three dimensional
contact manifolds. Since then, convexity has been an effective tool in this setting; see for
example [Hon00a, Hon00b]. Recently, a systematic development of convex hypersurface
theory in arbitrary dimensions began in works such as [HH18], [HH19], and [Sac]. The

1



goal of the present chapter is to study further one aspect of convexity in higher dimensions.

In particular, one of Giroux’s results in [Gir91] is that a closed surface in a 3 dimensional
contact manifold with Morse-Smale characteristic foliation is convex. We recall the relevant
definition.

Definition. A vector field on an oriented manifold is Morse-Smale if the following condi-
tions are satisfied:

(i) There are finitely many critical points and periodic orbits, each of which is hyperbolic
(in the dynamical systems sense).

(ii) Every flow line limits to either a critical point or an orbit in both forward and backward
time.

(iii) The unstable manifold of any critical point or orbit is transverse to the stable manifold
of any critical point or orbit.

A singular foliation isMorse-Smale if it is directed by a Morse-Smale vector field.

In [HH19], Honda and Huang adapted Giroux’s argument to show that a hypersurface
in a contact manifold of arbitrary dimension with so calledMorse+ characteristic foliation is
convex. TheMorse+ hypothesis, which requires the existence of a Morse function for which
the foliation is gradient-like, precludes the existence of periodic orbits in the characteristic
foliation. Here, we generalize further to include the case where the foliation has periodic
orbits. The main result of this chapter is the following.

Theorem 1.1. Let Σ2n ⊆ (M2n+1, ξ = kerα) be a closed, oriented hypersurface with Morse-Smale

characteristic foliation. Then Σ is convex.

Remark. The + in the Morse+ hypothesis in [HH19] is the assumption that there are no
trajectories from negative singularities to positive singularities. It will be evident from the
proof of Theorem 1.1 that the analogue of this assumption in Definition 1.1 is condition
(iii). Also worth nothing is that Honda and Huang prove that a hypersurface with Morse
characteristic foliation can be smoothly perturbed to have Morse+ characteristic foliation.

2



Remark. When dimM = 3, Theorem 1.1 (i.e., Giroux’s original result) is especially powerful
because Morse-Smale vector fields on 2-manifolds are dense in the C∞-topology (see
[PPM98] and the references within). This implies that a C∞-generic closed surface has
Morse-Smale characteristic foliation, and thus is convex. Morse-Smale vector fields are not
C∞-dense in higher dimensions.

The proof of Theorem 1.1 relies on an understanding of the induced 1-form β = α |Σ of
a contact form α near periodic orbits. The terminology we will use in this paper is:

Definition. Let β := α |Σ. A periodic orbit γ in the characteristic foliation Σξ is Liouville if
gβ is a Liouville form in a neighborhood of γ for some smooth g > 0. We say γ is positive
Liouville if d(gβ)n > 0 and negative Liouville if d(gβ)n < 0.

Remark. Here is a simple criterion for an orbit to be Liouville. Pick any volume form Ω

in a neighborhood of γ and consider the vector field X satisfying iXΩ = β (dβ)n−1 which
directs the characteristic foliation. If divΩX ̸= 0, then γ is Liouville. Indeed,

divΩ(X) Ω = d (iXΩ) = d
(
β (dβ)n−1

)
= (dβ)n

so that dβ is symplectic if divΩ(X) ̸= 0. One may easily check that the sign of divΩ(X) is
independent of the choice of Ω.

The proof that the Morse+ condition implies convexity relies on the fact that β is a
Liouville form in a neighborhood of a critical point of the characteristic foliation. Also
important is the fact that the Morse index of a critical point of a Liouville vector field
satisfies ind(p) ≤ n, where 2n is the dimension of the Liovuille manifold (see Proposition
11.9 of [CE12]). One of the main steps in proving Theorem 1.1 is to show that hyperbolic
periodic orbits exhibit the same behavior.

Proposition 1.2. Let Σ2n ⊆ (M2n+1, ξ = kerα) be an oriented hypersurface. If γ is a hyperbolic

periodic orbit in the characteristic foliation, it is Liouville. Furthermore, if γ is positive Liouville

then ind(γ) ≤ n.

3



With this and a few other ingredients, the proof of Theorem 1.1 is a straightforward
adaptation of Giroux’s argument in three dimensions; see also the proof of Proposition
2.2.3 in [HH19].

As an application of this convexity criterion, we provide some further analysis on a
closed hypersurface Σ0 introduced by Mori in [Mor11]. We will review the definition of
Σ0 in Section 3.2. In [Mor11] it was claimed that Σ0 cannot be smoothly approximated by a
convex hypersurface. Using Theorem 1.1, we will prove:

Corollary 1.3. The closed hypersurface Σ0 is C∞-close to a convex hypersurface.

Remark. We emphasize that our work only shows that the closed hypersurface Σ0 can be
smoothly approximated by a convex hypersurface. In [Mor11], Mori also introduces a
hypersurface with contact type boundary and states a conjectural Thurston-Bennequin-
like inequality for convex hypersurfaces; see also [Mor09]. Theorem 1.1 and the proof of
Corollary 1.3 do not apply to the hypersurface with boundary, or disprove the conjectured
inequality.

1.1.1 Organization

There is one chapter dedicated to Theorem 1.1 and its consequences, Chapter 3.

1.2 Mitsumatsu’s Liouville domains

A basic desire in symplectic geometry is develop a notion of Morse theory which is compati-
ble with the symplectic structure. Morse theory is an indispensable tool in smooth topology,
and one naturally wants to extend its utility to the symplectic setting. Unfortunately, not
all symplectic manifolds admit a natural Morse theoretic description. The precise class of
manifolds which do are called Weinstein manifolds. In this dissertation we are primarily
concernedwith the compact case, in which caseWeinstein domains are exactly the symplectic
manifolds with a compatible Morse theory.

In order to give a precise definition of aWeinstein domain, we begin with exact symplec-
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tic manifolds-with-boundary (W,ω). A Liouville structure on such a manifold is a choice of
symplectic potential λ with the property that Xλ points transversely out of ∂W , where Xλ

is the vector field onW defined by ιXλ
ω = λ. We call Xλ the Liouville vector field associated

to λ, and refer to the pair (W,λ) as a Liouville domain. Flowing along a Liouville vector
field induces a conformal transformation of the symplectic structure, and thus these vector
fields are the natural candidate for gradient-like vector fields in a symplectic Morse theory.
In [Wei91], Weinstein defined such a theory for a restricted class of Liouville domains. We
will call a Liouville structure aWeinstein structure if there exists a Morse function ϕ : W → R

which is locally constant on ∂W and for which Xλ is gradient-like. That is, there is a
constant c > 0 and some Riemannian metric onW for which

dϕ(Xλ) > c(∥Xλ∥2 + ∥dϕ∥2).

Weinstein domains may be built up using Weinstein handles, and thus their study has a
distinctly topological flavor.

Throughout, we will consider Liouville structures (and Weinstein structures) up to
Liouville homotopy. For Liouville domains, a Liouville homotopy is simply a smooth family λt
of Liouville forms. For Liouville manifolds — a noncompact analogue of Liouville domains
— the notion of Liouville homotopy is a bit more subtle, as is the notion of Liouville structure
itself.

With these two definitions in hand, the obvious question is then whether or not a
given Liouville structure is in fact a Weinstein structure, at least up to Liouville homotopy.
In general, the answer is no, and there is a well-known topological obstruction which a
Liouville domain must avoid if it is to admit a Weinstein structure.

Proposition 1.4. Let (W,λ) be a Weinstein domain of dimension 2n, and let ϕ be a Morse function

for which Xλ is gradient-like. Then ϕ admits no critical points of index greater than n.

This means that a Weinstein domain has the homotopy type of a half-dimensional
CW-complex, and thus any Liouville domain without this property cannot possibly be
Weinstein. In particular, as is the case for compact complex manifolds with pseudo-convex
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boundary, Weinstein domains of dimension at least 4must have connected boundaries. The
first examples of Liouville-but-not-Weinstein domains were given by McDuff in [McD91],
who constructed a Liouville structure on DT ∗Σg \N(Σg), the disc cotangent bundle of a
surface of genus g, with a neighborhood of the zero-section removed, for any g > 1.

Further examples of Liouville-but-not-Weinstein domains have been constructed by
Geiges [Gei94], [Gei95], Mitsumatsu [Mit95], Massot-Niederkrüger-Wendl [MNW13],
and Huang [Hua19], with such examples now existing in all even dimensions. To the best
of our knowledge, all existing constructions of Liouville-but-not-Weinstein domains rule
out the existence of a Weinstein structure by appealing to the topology of the Liouville
domain. According to theWeinstein existence theorem (c.f. [CE12, Theorem 13.1]), a Liouville
domain which has the homotopy type of a half-dimensional CW-complex must admit some

Weinstein structure, and thus we are left with the following question.

Question 1.5. Let (W,λ) be a Liouville domain which has the homotopy type of a half-
dimensional CW-complex. Must λ admit a Liouville homotopy to a Weinstein structure?

Wrapped up in this question are very delicate dynamical considerations. In the absence
of a Lyapunov function, there is very limited control over the dynamics of a Liouville vector
fieldXλ, and thus the problem of homotopingXλ into a vector field with severely restricted
dynamical properties — all while maintaining the vector field’s status as Liouville — seems
to be enormously difficult. Our overarching goal is to better understand the extent to
which wild Liouville vector fields may be tamed, provided their underlying domains have
sufficiently simple topology.

1.2.1 Stabilizations and skeleta

Because a Liouville domain has “sufficiently simple topology” whenever it has the homo-
topy type of a half-dimensional CW-complex, we can achieve our topological criterion by
increasing the dimension of our domain. The stabilization of a Liouville domain (W,λ) is
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given by the product

(W,λ)× (r0D2, λstab) = (W × r0D2, λ+ λstab),

for some r0 > 0, where λstab is the standard Liouville form on r0D2, defined by

λstab = 1
2
(p dq − q dp).

The Liouville vector field Xλstab
= 1

2
p ∂p +

1
2
q ∂q expands radially from the origin in r0D2,

and the Liouville vector field of the stabilization is given by Xλ + Xλstab
. It follows that

stabilization does not fundamentally change the dynamics of a Liouville domain.

To make this last statement more precise, we introduce the notion of the skeleton of a
Liouville domain. This is the set defined by

Skel(W,λ) :=
⋂
t<0

ψt(W ),

where ψt : W → W is the time-t flow of the Liouville vector field Xλ. The interesting
dynamics of (W,λ) are encoded on Skel(W,λ), and it is clear that the skeleton of the
stabilization is given by Skel(W,λ)× {(0, 0)}.

For any Liouville domain, one can stabilize sufficiently many times to overcome the
topological obstruction presented by Proposition 1.4, and thus arrive at a weaker version
of Question 1.5.

Question 1.6. Is every Liouville domain stably Weinstein? That is, does every Liouville
structure admit a Liouville homotopy to a Weinstein structure, following sufficiently many
stabilizations?

While allowing stabilizations weakens the hypothesis of Question 1.5, a clear answer to
Question 1.6 would still shed a great deal of light on the difference between Liouville and
Weinstein dynamics. A Liouville domain which is not stably Weinstein would necessarily
feature dynamics far more complicated than any witnessed on a Weinstein domain.
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Figure 1.1: A box fold is installed in dimension 2 by identifying a region as on the left and
replacing it (via a Liouville homotopy) with a region as on the right. Figure credit to A.
Christian.

Wepoint out that in the case of Liouvillemanifolds, an affirmative answer toQuestion 1.6
follows from work of Eliashberg-Gromov [EG91]. In fact, Eliashberg-Ogawa-Yoshiyasu
showed in [EOY21] that if a Liouville manifold of dimension 2n has Morse type at most
n+ 1, then a single stabilization suffices. However, the relevant Liouville homotopies are
not known to be compactly supported, and thus Question 1.6 remains.

1.2.2 Hands-on homotopies

Our strategy for taming wild Liouville dynamics is to deal with the structures directly.
Inspired by the techniques used by Honda and Huang in [HH19] to study hypersurfaces
in contact manifolds, we construct explicit Liouville homotopies which can be installed as
local operations. These local operations are meant to simplify the dynamics of our Liouville
domain, with the goal of producing a Weinstein domain following their installation.

As a first example, consider the two-dimensional box fold, to be carefully defined in
Sections 4.1 and 4.2. To install this operation on a two-dimensional Liouville domain (W,λ),
we first identify a region U ⊂ W of the form

(U, λ|U) ∼= ([0, s0]× [0, t0], e
s dt).

On U , the Liouville vector field Xλ may be identified with ∂s, meaning that flowlines of Xλ

simply pass through U unperturbed. With the goal of interrupting chaotic behavior, the

8



(a) This Liouville structure is not Weinstein, be-
cause the vector field is not gradient-like.

(b) The box fold introduces critical points which
make the vector field gradient-like.

Figure 1.2: A Liouville structure on S1 × [−1, 1], before and after the installation of a box
fold. In both figures, the vertical edges are identified, and the skeleton is S1 × {0}. Figure
credit to A. Christian.

box fold uses a Liouville homotopy to replace Xλ on U with a vector field which has two
critical points — one of index 0 and another of index 1 — and is topologically equivalent
to the vector field depicted in Figure 1.1. In other words, a box fold introduces a pair of
cancelling critical points of index 0 and index 1.

The box fold will be far from sufficient as a general purpose operation on Liouville
domains, but we can use it to demonstrate the spirit of our techniques. Consider a Liouville
structure on S1× [−1, 1]whose Liouville vector field behaves as seen in Figure 1.2a. Namely,
S1 × {0} is a closed orbit of the Liouville vector field, repelling other orbits. The presence
of a closed orbit precludes the existence of a Lyapunov function for our Liouville vector
field, meaning that this structure is not Weinstein. After installing a box fold on a region
which intersects the skeleton S1 × {0}, we obtain a Liouville domain of the type depicted
in Figure 1.2b. By interrupting the backward flow of our Liouville vector field1 we are able
to produce a Weinstein domain.

While the box fold has the helpful feature of interrupting flowlines, it comes at the cost of
a drastic holonomy for uninterrupted flowlines. That is, after the box fold is installed, there
will be flowlines which pass through the region U with very different t-values along {s =

0}× [0, t0] and {s = s0}× [0, t0]. This local perturbation can then have unpredictable effects

1In this toy case, the Liouville vector field is admittedly not so much chaotic as simply not gradient-like.
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on the global dynamics of our Liouville domain, making our increased local understanding
substantially less useful.

Consequently, we see that there are two desired features in any local operation: That
it traps Liouville flowlines in backward time, and that its effect on untrapped flowlines
is controllable. In the analysis we will see that these desires are often at odds with one
another, and that our control over the holonomy of these operations is hampered by the
requirement that they be Liouville homotopies. However, we present in this paper an
important local operation which can be installed in a stabilized setting.

1.2.3 The blocking apparatus

Nowwe introduce the key local operation, which we call the blocking apparatus. As with the
box fold, the blocking apparatus is installed on a region U ⊂ (W,λ) in a Liouville domain
of dimension 2n. We require that this region have the form

(U, λ|U) ∼= ([0, s0]× [0, t0]×W0 × r0D2, es(dt+ λ0 + λstab)),

where (W0, λ0) is some Weinstein domain of dimension 2n− 4, and r0 > 0 is some positive
constant. In words, (U, λ|U) is required to be a symplectization of a contactization of a
stabilization of a Weinstein domain. On U , the Liouville vector field Xλ may be identified
with ∂s, flowing directly from

∂−U := {s = 0} × [0, t0]×W0 × r0D2

to
∂+U := {s = s0} × [0, t0]×W0 × r0D2.

That is, backward Liouville flow induces a trivial holonomy map ∂+U → ∂−U ; following
the installation of the blocking apparatus, there will be a partially-defined holonomy map
∂+U 99K ∂−U which we must consider.
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In order to precisely state the effect of the blocking apparatus, we introduce some
notation.

Definition. For any Liouville domain (W,λ), we let ψs denote the time-s flow of the Liou-
ville vector field Xλ and define ∥ · ∥(W,λ) : W → [0, 1] as follows:

∥x∥(W,λ) :=

 0, x ∈ Skel(W,λ)

e−sx , x ̸∈ Skel(W,λ)
,

where sx > 0 is the unique number such that ψsx(x) ∈ ∂W .

Remark. We will often simply write ∥ · ∥W in place of ∥ · ∥(W,λ).

Definition. On the Weinstein domain (r0D2, λstab), for any r0 > 0, we define ∥(p, q)∥stab =√
p2 + q2.

Remark. Note that ∥ · ∥stab ̸= ∥ · ∥(r0 D2,λstab).

Definition. For any Liouville domain (W,λ) and any parameter 0 < ϵ < 1, we define

Iϵ(W,λ) := ∥ · ∥−1
W ([0, 1− ϵ]),

obtained fromW by removing an open neighborhood of the boundary ∂W .

With this notation established, we can now state the key effects of installing a blocking
apparatus.

Proposition 1.7. Consider the Weinstein cobordism (U = [0, s0]× [0, t0]×W0 × r0D2, es (dt+

λ0 + λstab)). Fix 0 < δ ≪ t0 and 0 < ϵ≪ 1 arbitrarily small. Then if r0 > 0 is sufficiently large, a

blocking apparatus can be installed in U such that there is a neighborhood Utrap of

[δ, t0 − δ]× Iϵ(W0, λ0)× {(0, 0)},

with any flowline passing through {s = s0} × Utrap ⊆ ∂+U converging to a critical point in

backward time. Moreover, the partially-defined holonomy map h : ∂+U 99K ∂−U satisfies

11



(i) for some constant 0 < K < 1, we have ∥h(x)∥W0 ≤ Kes0 ∥x∥W0 ;

(ii) for the same constantK, we have ∥h(x)∥stab ≤ Ke
s0
2 ∥x∥stab, whenever ∥x∥W0 < e−s0 ;

(iii) any element of ([0, δ)∪ (t0− δ, t0])× I1−e−s0 (W0, λ0)×{(0, 0)} in ∂+U which is not trapped

is mapped by h to an element of ([0, 2δ) ∪ (t0 − 2δ, t0])×W0 × {(0, 0)}.

This local operation is somewhat opaque on a first reading, but the important points
are as follows:

• in backward time, a codimension 0 subset of the flowlines intersecting ∂+U will
converge to a critical point in U ;

• for flowlines which are not trapped, the effect of our local operation is controlled
in each of our components. In fact, the effect can be made arbitrarily small in the
t-component near the stabilization origin.

The second remark assumes that s0 > 0 is relatively small, so that the holonomy in theW0-
and D2-components are also relatively small.

As stated here, the major advantage a blocking apparatus holds over a box fold is the
control over the t-holonomy in certain regions. As can be seen in Figure 1.1, flowlines
which are not trapped in backward time are forced by the box fold to fill up the t-interval
[0, t0], wreaking havoc on the global dynamics. The blocking apparatus avoids this by
rebalancing the holonomy in theW0- and D2-components.

1.2.4 Applications

As we have discussed, our local operations are constructed with the goal of making Liou-
ville domains Weinstein; less precisely, these operations are meant to “simplify Liouville
dynamics.” As an example of how such a simplification might play out, in Chapter 6 we
will show that Mitsumatsu’s well-known Liouville domains are stably Weinstein.

Mitsumatsu’s construction will be reviewed in detail in Chapter 6, but for now let us
recall that Mitsumatsu associates to each Anosov map A : T 2 → T 2 a four-dimensional
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Liouville domain (WA, λ) whose skeleton is the mapping torus of A— a smooth, three-
dimensional manifold. It follows thatWA does not admit a Weinstein structure, and thus
(WA, λ) is a Liouville-but-not-Weinstein domain.

However, we might wonder (as did Huang in [Hua19, Question 0.8]), whether (WA, λ)

is stably Weinstein. For instance,WA × r0D2 has the homotopy type of a 3-manifold; can
we conclude that λ+ λstab is Liouville homotopic to a Weinstein structure? In Chapter 6
we will show, using Proposition 1.7, that the answer is yes.

As was pointed out by Huang, this is an interesting phenomenon, becauseWA× r0D2 is
diffeomorphic to the cotangent bundle of Skel(WA, λ), but cannot be symplectomorphic to
this cotangent bundle, since the stabilization component ofWA×r0D2 allows us to displace
the skeleton.

Our expectation is that the technology introduced in this paper can be used to sim-
plify Liouville dynamics in more general settings. For instance, consider a Liouville do-
main (W 2n, λ) that admits a global transversalM2n−1 ⊂ W . That is,M is a codimension 1
submanifold-with-boundary through which all flowlines ofW pass. If the contact mani-
fold (M,λ) admits a partial open book decomposition compatible with the form2 λ, then a
collection of partial blocking apparatuses can be installed on the stabilization of (W,λ) to
interrupt the flow throughM × {(0, 0)}. This ensures that the flowlines of our perturbed
stabilization flow backwards to critical points, and with a bit more care we can argue that
this new domain is also free of broken loops. This strategy is inspired by the example of
Honda-Huang in [HH19, Section 7.3]; continuing the analogy with Honda-Huang, one
would hope to create a “backwards barricade" for an arbitrary (W,λ) — a collection of
local transversals analogous to (M,λ) above — and then install several interrupters. The
difficulty we currently face in carrying out this strategy lies in obtaining partial open book
decompositions compatible with the contact forms on our local transversals. Certainly
the strategy should not work ifW does not have the homotopy type of a CW-complex of
dimension n + 1, and the question of how this topological consideration might interact

2We point out that compatibility with λ is strictly more difficult to achieve than is compatibility with kerλ.
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with the existence of a backwards barricade is the subject of ongoing investigation.

1.2.5 Organization

In Chapter 4 we develop the theory of box folds. This includes an an analysis of piecewise-
linear box folds in Section 4.1 and a description of their smoothing in Section 4.2. Chapter 5
expands on the theory of box folds and develops more complicated variants that are used in
the proof of Proposition 1.7. In particular, Section 5.1 develops the theory of chimney folds,
and Section 5.2 introduces the blocking apparatus and proves Proposition 1.7. In Section
5.4 we begin developing the theory of partial folds, based over cobordisms. Finally, Chapter
6 — which was written in heavy collaboration with A. Christian — uses Proposition 1.7 to
prove that Mitsumatsu’s domains are stably Weinstein.
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CHAPTER 2

Background

This chapter briefly introduces the necessary background on symplectic and contact geom-
etry. More details on all of the concepts covered here can be found in standard references
like [MS98], [Gei08], and [CE12].

2.1 Symplectic geometry

In symplectic geometry, the main objects of interest are symplectic manifolds. Here we
introduce the basic notions and facts we will use, and defer to [MS98] and [CE12] for more
information.

Definition. A symplectic manifold (W,ω) is a smooth manifold with a choice of closed,
nondegenerate 2-form ω ∈ Ω2(W ). The form ω is called a symplectic form. The symplectic
manifold is exact if ω = dλ for some 1-form λ.

It is an exercise in linear algebra to show that any symplectic manifold is necessarily even
dimensional. It is a second exercise via Stokes’ theorem to show that there are no closed
exact symplectic manifolds; exactness forces (W,dλ) to either be open or with boundary.
In this dissertation we will primarily be concerned with exact symplectic manifolds-with-
boundary, and so we introduce some additional language.

Definition. A Liouville form on a symplectic manifold (W,ω) is a 1-form λ such that
ω = dλ. The vector field Xλ such that iXλ

ω = λ is the Liouville vector field of λ.

Remark. Note that such a vector field Xλ exists and is unique by nondegeneracy of ω.
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Definition. A Liouville domain is a compact1 symplectic manifold (W,ω,X) with bound-
ary, together with a globally defined Liouville vector field X which points transversally
out of the boundary.

Remark. The data of a Liouville domain can also be given by (W,λ), where λ is the primitive
1-form of the symplectic form.

As discussed in the introduction, we are generally interested in the difference between
Liouville domains and an upgraded type of symplectic manifold called aWeinstein domain.

Definition. A Weinstein domain (W,ω,X, f) is a Liouville domain (W,ω,X) equipped
with a Morse function f : W → R such that f is locally constant on ∂W and such that X is
gradient-like for f , i.e.,

X(f) ≥ δ(|X|2 + |df |2)

for some choice of Riemannian metric onW and some δ > 0.

Observe that if X is gradient-like for f , then Cauchy-Schawrz gives.

δ|X|2 ≤ δ(|X|2 + |df |2) ≤ |X(f)| ≤ |df ||X| ⇒ δ|X| ≤ |df |.

On the other hand,

δ|df |2 ≤ δ(|X|2 + |df |2) ≤ |X(f)| ≤ |df ||X| ⇒ |df | ≤ 1

δ
|X|.

Thus,
δ|X| ≤ |df | ≤ 1

δ
|X|.

In particular, the zeroes of X occur exactly at critical points of f , and X(f) > 0 away from
critical points. This justifies the terminology. Furthermore, note that if∇f is the gradient

1One can also define (open) Liouville manifolds and also Liouville cobordisms, but for now we will focus
on Liouville domains.
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vector field of f :M → R for some choice of Riemannian metric, then

(∇f)(f) = df(∇f) = |∇f |2 = 1

2
(|∇f |2 + |df |2)

so that gradient vector fields are indeed gradient-like.

Example 2.1. Here is the simplest example of a Weinstein domain. Consider the closed unit
discW = {x2 + y2 ≤ 1} ⊆ R2 together with the standard symplectic form ω = dx ∧ dy. Let
λ = 1

2
(x dy − y dx). Then dλ = ω, hence λ is a Liouville form. An easy computation verifies

that the radial vector field Xλ = 1
2
(x ∂x + y ∂y). Indeed,

i 1
2
(x ∂x+y ∂y)

(dx ∧ dy) = 1

2
x dy − 1

2
y dx = λ.

The Liouville vector field Xλ is outwardly transverse to ∂W = S1, so W is a Liouville
domain.

Let f : W → R be given by f(x, y) = 1
4
(x2 + y2). Then f is Morse and constant on ∂W .

Choose the standard Riemannian metric on R2. Then Xλ = ∇f , hence Xλ is gradient-like
for f and thusW is a Weinstein domain.

This example extends in the obvious way to the closed unit ball in
(
R2n,

∑n
j=1 dxj ∧ dyj

)
.

Weinstein domains have serious topological constraints. The following proposition
describes this, and is a crucial motivating fact for much of the work in this dissertation.

Proposition 2.2. Let (W 2n, ω,X, f) be a Weinstein domain. The index of each critical point of f

does not exceed n.

Proof. First, Cartan’s formula gives

LXλ
ω = iXλ

dω + diXλ
ω = dλ = ω.

The equation LXλ
ω = ω implies that the flow ϕt of Xλ satisfies ϕ∗

tω = etω. In words, the
symplectic form expands as one flows along Xλ.
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Let p be a critical point of f . Let

Λp =
{
q ∈ W : lim

t→∞
ϕt(q) = p

}
be the stable manifold of p. For any q ∈ Λp,

ωq = e−tϕ∗
tωq.

Since ϕt(q) → p as t → ∞, sending t → ∞ in the above equation gives ωq = 0 · ωp = 0.
So ω vanishes on Λp, hence Λp is an isotropic submanifold of W . It is a standard fact
from symplectic linear algebra that an isotropic subspace of a symplectic vector space has
dimension at most half the dimension of the full vector space; thus, dimΛp ≤ n. Since Xλ

is (upward) gradient-like for f , this implies that the index of f at p is ≤ n.

Corollary 2.3. For n ≥ 2, the boundary of a 2n-dimensional Weinstein domain is connected.

Proof. By the previous proposition, every 2n-dimensional Weinstein domain admits a
handle decomposition involving k-handles for k ≤ n. Observe that a 2n-manifold has
disconnected boundary only if it contains a (2n− 1)-handle, since the belt sphere ∂Dℓ of a
handle Dk × Dℓ is disconnected if and only if ℓ = 1. If n ≥ 2, a Weinstein domain has no
(2n− 1)-handles, and hence has connected boundary.

Another class of vector fields that will (implicitly) very important for us is that of
Hamiltonian vector fields.

Definition. Let H : (W,ω) → R be a smooth function, referred to as a Hamiltonian

function. The unique vector field XH satisfying iXH
ω = dH is called the Hamiltonian

vector field of H .
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2.2 Contact geometry

Symplectic structures exist only in even dimensions. The natural odd dimensional counter-
part is a contact structure. This section introduces the basic terminology and concepts that
will be used throughout the dissertation; more details can be found in [Gei08].

Definition. A contact manifold is a pair (M2n+1, ξ) whereM is a smooth manifold of odd
dimension, and ξ is a maximally nonintegrable hyperplane distribution. The distribution
ξ is called a contact structure. When ξ is coorientable, we can write ξ = kerα for some
1-form α ∈ Ω1(M) called a contact form.

Remark. The nonintegrability condition on ξ implies that if ξ = kerα then

α ∧ (dα)n ̸= 0

onM , and hence a choice of contact form induces an orientation ofM . Note also that if α
is a contact form for ξ, then f α is also a contact form for ξ for any smooth f :M → R+.

Example 2.4. The standard contact structure on R2n+1 is given by

ξstd := kerαstd := ker

(
dz −

n∑
j=1

yj dxj

)
.

Example 2.5. Another common contact structure we will use on R2n+1 is the radial standard
contact structure, given by

ξrad := kerαrad := ker

(
dz +

1

2

n∑
j=1

xj dyj − yj dxj

)
.

These two contact structures are actually the “same” from the viewpoint of contact
geometry, in a way that is made precise by the following definition.

Definition. A contactomorphism between contact manifolds is a diffeomorphism ϕ :

(M1, ξ1) → (M2, ξ2) such that ϕ∗ξ1 = ξ2. On the level of contact forms, if ξj = kerαj
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then ϕ : (M1, ξ1) → (M2, ξ2) is a contactomorphism if ϕ∗α2 = f α1 for some smooth
f :M → R+. A contactomorphism satisfyingϕ∗α2 = α1 is called a strict contactomorphism.
Finally, two contact structures ξ1 and ξ2 on the same manifoldM are isotopic if there is a
contactomorphism ϕ : (M, ξ1) → (M, ξ2) that is isotopic (through contactomorphisms) to
the identity.

Generallywe only care about contact structures up to contactomorphism, or even isotopy.
The standard contact structures ξstd and ξrad are contactomorphic, and more generally one
can show that contact structures have no local invariants, just as in symplectic geometry.

Theorem 2.6 (Darboux’s theorem). Let (M2n+1, ξ) be a contact manifold, and let p ∈ M .

There is an open neighborhood p ∈ U and a contactomorphism ϕ : (U, ξ |U) → (R2n+1, ξstd) with

ϕ(p) = 0.

A natural source of examples of contact manifolds, particularly in the context of this
thesis, is as the boundary of a Liouville or Weinstein domain, or more generally as any
hypersurface in an exact symplectic manifold transverse to a Liouville vector field. For
example, suppose that (W,λ) is a Liouville domain with boundary ∂W . Let α := λ |∂W .
Note that

λ ∧ (dλ)n−1 = iXλ
dλ ∧ (dλ)n−1 =

1

n
iXλ

(dλ)n.

Since (dλ)n is a volume form onW and X ⋔ ∂W , iXλ
(dλ)n restricts to a volume form on

∂W , hence α is contact.

More generally, there is a strong interplay between contact and exact symplectic struc-
tures that will be used extensively throughout this dissertation.

Definition. Let (M,α) be a contact manifold. The symplectization of (M,α) is the exact
symplectic manifold

(Rs ×M, λ := es α)

Let (W,λ) be an exact symplectic manifold. The contactization of (W,β) is the contact
manifold

(Rz ×W, α := dz + λ).
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2.2.1 Convex hypersurface theory

There is a certain class of hypersurfaces in contact manifolds of central importance. These
are the so called convex hypersurfaces, first investigated by Eliashberg, Gromov, and Giroux
[EG91, Gir91]. We begin by discussing characteristic foliations of general hypersurfaces.

Definition. If Σ is a hypersurface in a contact manifold (M, ξ = kerα), the characteristic
foliation is the singular 1-dimensional foliation

Σξ = (TΣ ∩ ξ |Σ)⊥

where ⊥ is the symplectic orthogonal complement taken with respect to the conformal
symplectic structure on ξ. If β := α |Σ, then

Σξ = ker (dβ |kerβ) .

If Σ is oriented, Σξ inherits a natural orientation. In this case, a convenient way to
compute the characteristic foliation on an orientable hypersurface Σ2n ⊂M2n+1 is given by
Lemma 2.5.20 in [Gei08].

Lemma 2.7. [Gei08] Let β = α |Σ and let Ω be a volume form on Σ. The characteristic foliation

Σξ is directed by the vector field X satisfying

iXΩ = β (dβ)n−1. (2.1)

In three dimensional contact manifolds, the characteristic foliation alone determines
the contact germ near a hypersurface [Gir91]. In higher dimensions we have the following
weaker fact.

Lemma 2.8. [HH19] Let (M, ξi = kerαi) for i = 0, 1 be two contact structures on the same

manifold. Let βi = αi |Σ and suppose that β0 = gβ1 for some g > 0. Then there is an isotopy

ϕs :M →M such that ϕs(Σ) = Σ, ϕ0 = idM , and (ϕ1)∗(ξ0) = ξ1 in a neighborhood of Σ.

21



Any submanifold of Σ transverse to the characteristic foliation is a contact submanifold
ofM . Furthermore, flowing along the characteristic foliation induces a contactomorphism
of the transversal.

Definition. A contact vector field V in a contact manifold (M, ξ = kerα) is one whose
flow ϕt :M →M is a contactomorphism for all t.

There is a one-to-one correspondence between contact vector fields V and “contact
Hamiltonian functions” C∞(M), see Section 2.3 of [Gei08]. Given H ∈ C∞(M), the corre-
sponding contact vector field is determined uniquely by the conditions

α(XH) = H and iXH
dα = dH(Rα)α− dH. (2.2)

A vector field V is contact if and only if LV α = gα for some smooth g :M → R. The Reeb
vector field Rα is an example of a contact vector field.

Definition. A hypersurface Σ ⊂ (M, ξ) is convex if there is a contact vector field V every-
where transverse to Σ.

One can characterize convexity at the differential form level as follows.

Lemma 2.9. [Gir91] An embedded oriented hypersurface Σ is convex if and only if there is an

neighborhood Σ×R of Σ = Σ×{0} inM such that ξ = ker(u dt+β), where t is the R-coordinate,

β is a (t-independent) 1-form on Σ, and u is a (t-independnet) function u : Σ → R.

Note that any 1-form on R × Σ can be written ut dt + βt for some family of smooth
functions ut : Σ → R and family of 1-forms βt on Σ. Convexity requires a form which is
t-invariant. A convex hypersurface is naturally divided into three regions in the following
way. Write α = u dt+ β near Σ. Then

R+(Σ) = {u > 0} and R−(Σ) = {u < 0}
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are the positive and negative region, respectively, and Γ = {u = 0} is a codimension 1
submanifold of Σ called the dividing set. The dividing set (which depends on the choice
of contact vector field) is well-defined up to isotopy of dividing sets.

Remark. In a convex hypersurface, R+(Σ) and R−(Σ) inherit a Liouville structure from
β = α |R±(Σ). If X denotes the Liouville vector field (for either R+(Σ) or R−(Σ)), then the
characteristic foliation on R+(Σ) is directed by X and the characteristic foliation on R−(Σ)

is directed by −X .

23



CHAPTER 3

Morse-Smale characteristic foliations

In this chapter we study convexity of hypersurfaces in contact manifolds by way of their
characteristic foliations as outlined in Section 1.1. In particular, in Section 3.1 we prove
Theorem 1.1, the generalization of Giroux’s convexity criterion [Gir91]. Specifically, we
prove Proposition 1.2, which classifies the local symplectic behavior of periodic orbits, and
use this to prove Theorem 1.1. In Section 3.2 we analyze the closed hypersurfaces due to
Mori [Mor11] and use Theorem 1.1 to prove their (perturbed) convexity.

3.1 Proof of Theorem 1.1

We begin by proving Proposition 1.2, which allows us to definitively place an orbit in either
the positive or negative region. First, the dynamical systems notion of hyperbolicity will
be central in Chapter 3. We refer to [PPM98] for more details.

Definition. Let γ be a periodic orbit of a vector field X , and let L be a transversal to X
which intersects γ once. The Poincare first return map is the map P : V ⊂ L→ L defined
by following the trajectories ofX from some open subset V of L to their first point of return
to L. The orbit γ is hyperbolic if the eigenvalues µ of TP satisfy 0 < |µ| ≠ 1.

Proof of Proposition 1.2. The general strategy of the proof is to show that the divergence of
a vector field directing the characteristic foliation near the hyperbolic periodic orbit γ is
nonzero. This proves that γ is Liouville.

Step 1: Analyzing the differential of the Poincare first-return map.

Let L be a transversal to the periodic orbit and V ⊂ L an open subset diffeomorphic
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to R2n−1 containing {0} = γ ∩ L such that the Poincare first-return map P : V → L is
defined. Let λ = α |L be the induced contact form on L. Because P is defined by following
the trajectories of the flowlines of Σξ, P is a contactomorphism. Thus, P ∗λ = fλ for some
f > 0.

Next, we compute amatrix representative for T0P : T0V → T0L. LetR = Rλ(0), the Reeb
vector field for λ at 0, and let {R, v1, . . . , v2n−2} be a basis for T0V such that {v1, . . . , v2n−2}

is a symplectic basis for kerλ with respect to the symplectic structure induced by dλ. Write
T0P (R) = C R+ v for some constant C and some v ∈ kerλ. Since P is a contactomorphism,
kerλ is invariant under P . Thus, with respect to the above basis we have

[T0P ] =

C 0

∗ M


where 0 is a 1 × (2n − 2) matrix of zeroes and ∗ is a (2n − 2) × 1 matrix determined by
T0P (v). Since

C = λ(C R + v) = λ(T0P (R)) = P ∗λ(R) = f(0)

it follows that one of the eigenvalues of T0P isC = f(0). The assumption that γ is hyperbolic
is precisely the assumption that the eigenvalues of T0P : T0V → T0L satisfy |µ| ≠ 1 (and
µ ̸= 0). Thus, C > 1 or 0 < C < 1.

Next, since P ∗dλ = df λ+ f dλ,

P ∗dλ |kerλ= f(0) dλ |kerλ .

This implies thatMTJ0M = C J0, where J0 is the skew-symmetric matrix corresponding
to the symplectic structure on kerλ. LetM ′ = C− 1

2M . Then

(M ′)TJ0(M
′) = C−1MTJ0M = J0
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so thatM ′ is a symplectic matrix. Thus, to summarize Step 1:

[T0P ] =

C 0

∗
√
CM ′

 (3.1)

where either 0 < C < 1 or C > 1, andM ′ is a symplectic matrix.

Step 2: Determining the divergence of the characteristic foliation.

Let X be a vector field directing the characteristic foliation near γ. Let θ be a coordinate
on γ. By considering a volume form Ω = dθΩ′ where Ω is a (possibly θ-dependent) volume
form in the transverse direction, we may assume that X = ∂θ + Y where Y is a vector field
in the transverse direction which has a hyperbolic zero at 0. By considering the divergence,
to show that γ is Liouville it suffices to show that div(Y )(= div(X)) is nonzero along γ.

Reparametrizing if necessary, we may further assume that P (x) = ϕt(x), where ϕ1 is
the flow of Y . By the Hartman-Grobman theorem (see Section 2.4 of [PPM98]), in a small
neighborhood of 0 it is sufficient to consider the flow of the linearization of Y , which we
denote by Ax. Here x ∈ R2n−1 and A is a square matrix.

Note that (div Y )(0) = trA(0). Because P (x) = ϕ1(x), by standard linear dynamical
systems theory it follows that [T0P ] = eA(0). Since det(eA) = etrA,

(div Y )(0) = trA(0) = log det[T0P ].

Since the determinant of any symplectic matrix is 1, (3.1) implies det[T0P ] = C ·
√
C

2n−2
=

Cn. Thus,
(div Y )(0) = n logC.

Since C > 1 or 0 < C < 1, this shows that divX ̸= 0 in a sufficiently small neighborhood of
γ.

This proves that a hyperbolic orbit is Liovuille. In particular, if f(0) > 1 then γ is positive
Liouville and if f(0) < 1 then γ is negative Liouville.
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Step 3: Computing the index of a positive orbit.

Suppose that γ is a positive hyperbolic orbit. Consider [T0P ] as in (3.1). Since γ is
positive, C > 1. Let E− denote the subspace of generalized eigenvectors with eigenvalues
of modulus < 1. We claim that dimE− ≤ n − 1. The final claim in the proposition then
follows, as the dimension of the stable manifold is ≤ (n− 1) + 1 = n after accounting for
the orbit direction.

It is a standard fact (see, for example, [MS98]) that if µ′ is an eigenvalue of a symplectic
matrixM ′, then (µ′)−1 is also an eigenvalue with the same multiplicity. This implies that
if µ is an eigenvalue of M =

√
CM ′, then Cµ−1 is also an eigenvalue of M with equal

multiplicity. In particular, if |µ| < 1 then |Cµ−1| > 1. Thus, there are at most n − 1

eigenvalues ofM with modulus less than 1, which proves the claim.

Now we can adapt the arguments in [Gir91] and [HH19] to prove that a Morse-Smale
characteristic foliation is sufficient for convexity in arbitrary dimensions.

Proof of Theorem 1.1. Suppose that Σξ is Morse-Smale. To show that Σ is convex (up to
a contact isotopy ofM which fixes Σ), it suffices by Lemma 2.8 to construct a vertically
invariant contact form α1 on a neighborhood of Σ such that β1 = gβ for some g > 0. Here
β1 = α1 |Σ and β = α |Σ. Throughout the proof we will loosely use g to denote a sufficient
positive function.

Classify each singular point p of Σξ as either positive or negative in the natural way, i.e.,
based on the orientations of ξp and TpΣ. Classify each periodic orbit as either positive or
negative according to Proposition 1.2.

We claim that there is no flow line from a negative critical point or orbit to a positive
critical point or orbit. Indeed, as mentioned in the introduction, the Morse index of a
positive critical point p satisfies ind(p) ≤ n. By Proposition 1.2, the Morse index of any
positive orbit also satisfies ind(γ) ≤ n. The transversality assumption in Definition 1.1
implies that the stable manifold of any positive critical point or orbit and the unstable
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manifold of any negative critical point or orbit either do not intersect, or the dimension of
the intersection is 0. In either case, there can be no flow line (necessarily one-dimensional)
from a negative point or orbit to a positive point or orbit.

Next, we will construct open sets U+ and U− in Σ containing all positive and negative
points and orbits, respectively, and then use the resulting decomposition of Σ to define α1.
In particular, U+ and U− will be “prototypes” for R+(Σ) and R−(Σ).

Step 1: Constructing U+.

For any set S ⊂ Σ, let Op(S) denote a sufficiently small open neighborhood of S in Σ.

Let {x1, x2, · · · , xM} be the list of positive orbits and points (i.e., xi can be a critical point
or an orbit). Let Uk be the union of Op({x1, x2, · · · , xk}) with sufficiently small tubular
neighborhoods of the stable manifolds of x1, . . . , xk−1. Because there is no trajectory from a
negative point or orbit, wemay assume that the list {x1, . . . , xM} is ordered so that a tubular
neighborhood of the stable manifold of xk+1 intersects ∂Uk in a contact submanifold. Here
the contact assumption comes from choosingUk so that ∂Uk is transverse to the characteristic
foliation. Finally, let U+ = UM .

Step 2: Defining β1 on U+.

We will define β1 on U+ by inducting on k. Note that U1 = Op(x1) and by assumption,
β1 := gβ is positive Liouville on U1 for some g > 0. Now suppose that β1 has been
constructed on Uk. By assumption, gβ is Liouville on Op(xk+1). Using the flow of the
characteristic foliation and the above remark about the stable manifold of xk+1, we may
identify

Uk+1 \ (Uk ∪Op(xk+1))

with [0, 1] × L where L is a contact submanifold. Here, {0} × L ⊆ ∂Uk and {1} × L ⊆

∂Op(xk+1). Because L is a contact submanifold ofM , λ = β |L is a contact form on L. Since
the flow of the characteristic foliation is a contactomorphism of L, we have β = hλ on
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[0, 1]s × L for some smooth h > 0. Note that

dβ =
∂h

∂s
ds λ+ dLhλ+ h dλ

and so
(dβ)n = nhn−1 ∂h

∂s
ds λ (dλ)n−1. (3.2)

Thus, β is Liouville if ∂h
∂s
> 0. After scaling β by a sufficiently large constant on Op(xk+1),

the function h can be multiplied by a positive function h1

h
so that ∂h1

∂s
> 0 on [0, 1]s × L.

With β1 defined on Uk+1 in this way, β1 is positive Liouville on Uk+1.

Inductively, this defines β1 on U+ so that β1 = gβ is a positive Liouville form.

Step 3: Constructing U− and defining β1 on U−.

Define an open neighborhood U− together with a negative Liouville form β1 = gβ in
the analogous way using negative singular points and negative periodic orbits together
with the unstable manifolds of each.

Step 4: Defining β1 near the dividing set.

By the above steps, U+ and U− are disjoint open sets in Σ containing all singular points
and orbits. Furthermore, there are no flowlines running from U− to U+. Thus, using the
flow of Σξ we may identify Σ \ (U+ ∪ U−)with [−1, 1]s × Γ for some submanifold Γ, where
{−1}×Γ = ∂U+, {1}×Γ = ∂U−, andΣξ is directed by ∂s. Let λ be the induced contact form
on Γ. On [−1, 1]× Γ, β = hλ. We then have ∂h

∂s
> 0 near {−1} × Γ and ∂h

∂s
< 0 near {1} × Γ

(see the remark after (3.2)). Multiply h by a function h1

h
so that ∂h

∂s
> 0 for −1 ≤ s < 0,

∂h1

∂s
= 0 for s = 0, and ∂h1

∂s
< 0 for 0 < s ≤ 1. Let β1 = hλ.

Step 5: Defining the vertically invariant contact form α1 on R× Σ.

Decompose Rt × Σ as

(
R× U+

)
∪
(
R× U−) ∪ (R× [−1, 1]× Γ) .
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Let α1 = dt + β1 on R × U+ and let α1 = −dt + β1 on R × U−. Since β1 is positive
(negative) Liouville on U+ (U−), α1 defines a contact form on these regions. Furthermore,
by construction, α1 |U±= gβ for some g > 0.

To define α1 on R × [−1, 1] × Γ, let u : [−1, 1] → R be a smooth function such that
u′(s) < 0 for −1 < s < 1, u′(s) = 0 for |s| = 1, u(−1) = 1, u(0) = 0, and u(1) = −1. Let
α1 = u dt+ β1. Then α1 is a smoothly defined 1-form on R× Σ, and

α1 (dα1)
n = n

(
un

∂h1
∂s

− ∂u

∂s
hn1

)
dt ds λ (dλ)n−1.

One may verify that with an appropriate choice of h1 as defined in Step 4,

un
∂h1
∂s

− ∂u

∂s
hn1 > 0. (3.3)

If n is even, then for 0 < s ≤ 1we require
∣∣∣∣∂h1∂s

∣∣∣∣ < ∣∣∣∣∂u∂s
∣∣∣∣ · ∣∣∣∣h1u

∣∣∣∣n
which can be arranged by making h1 sufficiently flat. Otherwise, the definitions of u and
h1 force (3.3) to hold. Thus, α1 is a vertically invariant contact form defined near Σ such
that α1 |Σ= gβ for some positive function g. By the remark at the beginning of the proof, Σ
is convex.

3.2 Applications

In this section we provide some further analysis on a non-convex hypersurface introduced
by A. Mori. We begin with some generalities, and then in 3.2.1 we review the definition of
the hypersurface, the argument for its non-convexity, and then prove that there is C∞-small
perturbation of the hypersurface to a convex hypersurface.

First, a lemma which computes the perturbation of the characteristic foliation in a

30



particular model.

Lemma 3.1. Consider the contact manifold Rt × S1
θ × L2n−1 with contact form α = t dθ + λ,

where λ is a contact form on L. Let H : L → R be a smooth function, and let Σ̃ = {t = H}. Let

XH be the contact vector field corresponding to the contact Hamiltonian H as in (2.2). Then the

characteristic foliation of Σ̃ is directed by ∂θ −XH .

Proof. Let Ω = dθ λ (dλ)n−1. Since λ (dλ)n−1 is a volume form on L and Σ̃ is a graph over
{t = 0}, Ω is a volume form on Σ̃. Using (2.2), one may compute

i∂θ−XH
Ω = λ (dλ)n−1 + dθ iXH

(
λ (dλ)n−1

)
= λ (dλ)n−1 +H dθ (dλ)n−1 + (n− 1) dθ λ dH (dλ)n−2.

On the other hand, let β = α |Σ̃. Then β = H dθ + λ and dβ = dH dθ + dλ so that

β (dβ)n−1 = λ (dλ)n−1 +H dθ (dλ)n−1 + (n− 1) dθ λ dH (dλ)n−2 = i∂θ−XH
Ω.

By Lemma 2.7, ∂θ −XH directs the characteristic foliation.

This lemma becomes useful in the context of Theorem 1.1 whenXH is a pseudo-gradient
for a Morse function on L. In this case, Σ̃ ∼= S1 ×L has Morse-Smale characteristic foliation.
Indeed, there are finitely many hyperbolic periodic orbits directed by ∂θ corresponding to
the zeroes of XH .

The existence of a Morse function admitting a gradient-like contact vector field is the
defining feature of a convex contact structure, first introduced by Eliashberg and Gromov in
[EG91] and studied further by Giroux in [Gir91].

Theorem 3.2 (Giroux, see [CM18, Sac]). Every contact manifold admits a contact vector field

which is gradient-like for some Morse function.

With this fact and Theorem 1.1, we have the following corollary.
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Corollary 3.3. LetΣ2n ⊂ (M2n+1, ξ = kerα) be a hypersurface in a contact manifold diffeomorphic

to S1 × L2n−1 for some closed manifold L. Suppose that the characteristic foliation Σξ consists

of completely degenerate periodic orbits, so that the foliation is directed by ∂θ for some choice of

coordinate θ on S1. Then there is an arbitrarilyC∞-small perturbation ofΣ to a convex hypersurface.

Proof. Because {θ} × L ⊂ Σ is transverse to the characteristic foliation, α |{θ}×L is contact.
By Lemma 2.8, wemay take a sufficiently small neighborhood ofΣ to be contactomorphic to
Rt×S1

θ×L2n−1 with contact formα = t dθ+λ, where λ is a contact formonL andΣ = {t = 0}.
By Theorem 3.2, we may choose a contact vector field XH on Lwhich is gradient-like for
some Morse function on K. By scaling the corresponding contact Hamiltonian H , we may
assume that the C∞ norm of H is as small as we like. Then Σ̃ = {t = H} will be C∞-close
to Σ, and by Lemma 3.1 the characteristic foliation of Σ̃ is directed by ∂θ −XH . Since this
vector field is Morse-Smale, by Theorem 1.1, Σ is convex.

In particular, the proof of this corollary shows that any completely degenerate periodic
orbit in a characteristic foliation can be locally perturbed to be hyperbolic.

3.2.1 Mori’s hypersurface

In [Mor11], Mori introduced a particular non-convex hypersurface. We review the defini-
tion here. Consider

R2n+1 = Rz × R2
r,θ × R2

ρ1,ϕ1
× · · · × R2

ρn−1,ϕn−1

where (r, θ) and (ρi, ϕi) are polar coordinates in their respective planes. Let

α = (2r2 − 1) dz + r2(r2 − 1) dθ +
n−1∑
i=1

ρ2i dϕi. (3.4)

One can check that α is a contact form. Next, for 0 < ε << 1, let

Σ0 =

{
r2 + ε−2

(
z2 +

n−1∑
i=1

ρ2i

)
= 1 + ε

}
.
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z

r

Figure 3.1: The pushforward of X to X̃ on the quarter ellipsoid Σ̃, followed by a further
projection of X̃ to the (z, r)-plane.

Note that Σ0 is diffeomorphic to S2n.

Lemma 3.4. [Mor11] The characteristic foliation on Σ0 ⊂ (R2n−1, kerα) is directed by the vector

field

X =
[
(r2 − 1)2 + (2r2 − 1)(ε−2z2 − ε)

]
∂z

+ ε−2r(r2 − 1)z ∂r + (1 + 2ε− 2ε−2z2) ∂θ

+ ε−2(2r2 − 1)z
n−1∑
i=1

ρi ∂ρi + ε−2(2r4 − 2r2 + 1)
n−1∑
i=1

∂ϕi
. (3.5)

Wemay visualize the characteristic foliation as follows [Mor11]. Observe that the vector
field X from Lemma 3.4 does not depend on θ or ϕi. Thus, if we project P : Σ0 → Σ̃0 to the
quarter ellipsoid Σ̃0 = {z2+r2+ρ2 = 1+ε} ⊆ { (z, r, ρ) : r, ρ ≥ 0 }where ρ2 = ρ11+· · ·+ρ2n−1,
the vector field X has a well-defined pushforward X̃ given by

X̃ =
[
(r2 − 1)2 + (2r2 − 1)(ε−2z2 − ε)

]
∂z

+ ε−2r(r2 − 1)z ∂r +
√
n− 1ε−2(2r2 − 1)zρ ∂ρ.

This pushforward is visualized in Figure 3.1. Observe that X̃ is Morse-Smale.
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In [Mor11] it was proven that Σ0 is not convex. For completeness, we provide the
argument here with some more details.

Lemma 3.5. [Mor11] The hypersurface Σ0 is not convex.

Proof. Let p = (0, r∗, 1 + ε− (r∗)2) denote the point on Σ̃0 which is the hyperbolic zero of
X̃ . Observe that

P−1(p) =
{
(θ, ρ1, ϕ1, . . . , ρn−1, ϕn−1) : ρ2 = 1 + ε− (r∗)2

}
is diffeomorphic to S1

θ × S2n−3. The characteristic foliation along P−1(p) is directed by the
vector field

(1 + 2ε) ∂θ + ε−2(2(r∗)4 − 2(r∗)2 + 1)
n−1∑
i=1

∂ϕi

By adjusting ε if necessary, we may assume that this vector field foliates S1 × S2n−3 with
periodic orbits, hence the characteristic foliation along P−1(p) consists of parallel leaves.

Suppose for the sake of contradiction that Σ0 is convex. Then there is a dividing set Γ.
Because (Σ0)ξ is independent of θ and ϕi, we may isotope Γ so that Γ = P−1(C) for some
multicurve C ⊂ Σ̃0.

We claim that C does not contain p. Suppose it did: then Γ contains the linearly foliated
P−1(p). By [Gir91], there is a function u : Σ → R for which X(u) < 0 on P−1(p), which
contradicts the fact that X has closed orbits on P−1(p). Thus, C avoids p. Finally, note that
the singular points of X are

(z = ±ε
√
1 + ε, r = 0, θ, ρ1 = 0, ϕ1, . . . , ρn−1 = 0, ϕn−1).

For divergence reasons, these must lie in the negative and positive region, respectively. The
remaining singular points of X̃ are

(z = ±ε
√
ε, r = 1, ρ = 0)

which lift under P to periodic orbits that must lie in the positive and negative region,
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respectively. Consequently, C must contain a component which is isotopic to one of the
dashed gray curves in Figure 3.1.

The lift of either of these curves under P is diffeomorphic to S2n−1. Moreover, there
are necessarily other components of Γ. This contradicts a theorem of McDuff [McD91], as
the positive region of Σ0 is then a symplectic manifold with convex boundary of the type
S2n−1 ⊔ S ′ for some other 2n− 1-manifold S ′. Thus, no such dividing set can exist and so
Σ0 is not convex.

Using ideas inspired by the the proof of Corollary 3.3, we prove Corollary 1.3.

Proof of Corollary 1.3. By Theorem 1.1, it suffices to perturb Σ0 so that the resulting char-
acteristic foliation is Morse-Smale. Lemma 3.4, the subsequent discussion, and the proof
of Lemma 3.5 show that the characteristic foliation is close to being Morse-Smale. The
obstruction is P−1(p) ∼= S1×S2n−3, which is foliated by parallel leaves. The pushforward X̃
(in the Σ̃0 direction) is Morse-Smale, so it suffices to perturb the hypersurface near P−1(p)

so that the resulting foliation, when restricted to P−1(p), is Morse-Smale.

Observe that for any fixed θ0, the contact form α in (3.4) restricts to the standard contact
structure on L = {θ0} × S2n−3 ⊆ P−1(p). Let U be a small neighborhood of p in Σ̃0. Then
U × L is transverse to the characteristic foliation and hence is also contact. Using the flow
of the characteristic foliation starting at U × L, we isolate a “column” [0, 1]s × U × L where
the characteristic foliation is directed by ∂s. Note that we may take the foliation on top of
the L component to already be “straight”, so this identification only straightens out the
foliation above the U component. By Lemma 2.8, we may assume that a neighborhood of
the column is given by

Rt × [0, 1]s × U × L with contact form t ds+ λ

where λ is contact on U ×L, λ |L is the standard contact form on S2n−3, and Σ0 is identified
with {t = 0}. Finally, note that [0, 1]s × {p} × L ⊂ P−1(p). Our perturbation will be
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supported in this column.

Pick a C∞-small contact Hamiltonian H : L→ R such that the corresponding contact
vector field XH is gradient-like for a Morse function. In particular, we may choose XH

to be gradient-like for a height function on the sphere ([Gir91], [Sac]) so that XH has
one source singularity and one sink singularity. Extend H to U × L via a bump function
which is constant near p. Finally, extend H in the s direction so that it is supported in
the column [0, 1]s × U × L. Let Σ1 = {t = H}. Because X̃ is hyperbolic at p and thus
structurally stable [PPM98], the location of the zero may shift slightly from p to some other
point p1, when perturbed as above, but the hyperbolic dynamics in the Σ̃0 direction persist
if the perturbation is small enough. As in Corollary 3.3, the degenerate dynamics of the
characteristic foliation on P−1(p1) will be perturbed by the gradient-like vector field XH in
the L direction. As a result, the characteristic foliation of Σ1 is Morse-Smale, as desired.
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CHAPTER 4

Box folds

We now shift our focus toward the study of Liouville domains, with the ultimate goal
of showing that Mitsumatsu’s Liouville domains are stably Weinstein. To begin, in this
chapter we develop the theory of box folds, the basic local perturbation we use to construct
Liouville homotopies. Given a Liouville domain, a box fold is a graphical perturbation in
the contactization of the domain designed to introduce singularities to the Liouville vector
field. In particular, a box fold is a smooth approximation of the indicator function 1B of
some subset B of the Liouville domain. The original idea is due to [HH19].

On a high level, the effect of a graphical perturbation to a Liouville domain is straightfor-
ward. Namely, if (W,λ) is a Liouville domain with Liouville vector fieldXλ and F : W → R

is a smooth function, there is an induced Liouville homotopy from (W,λ) to (W,dF + λ).
The Liouville vector field of the latter isXF +Xλ, whereXF is the Hamiltonian vector field
of F with respect to dλ. Thus, a graphical perturbation simply changes the Liouville vector
field by a Hamiltonian vector field.

The local operation used to prove Proposition 1.7 builds on a careful understanding
of the dynamics of the corresponding Hamiltonian vector field. We need to not only
understand where critical points are introduced and the nature of their stable manifolds,
but also the induced holonomy of nearby points. As such, the next two sections are dedicated
to comprehensively studying all aspects of the dynamics of certain Hamiltonian vector
fields XF . We emphasize that this is sophisticated, but completely elementary.

The philosophy of our analysis, which is central to this chapter and the next, draws
from the techniques developed in [HH19] regarding convex hypersurface theory. Given a
Liouville domain (W,λ), we consider the contactization (Rz ×W,dz + λ). After identifying
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some codimension 0 subset B ⊂ W , we then fix z0 > 0 and consider the piecewise-smooth
hypersurface

WB := graph (z01B) ∪ ([0, z0]× ∂B) .

Inwords,WB is the graph of the (scaled) indicator function ofB togetherwith a verticalwall
connecting the components of the graph. This is not a graphical hypersurface overW , nor
is it smooth, and thus it does not yield a genuine Liouville homotopy of (W,λ). However,
we can consider a smooth function F : W → R such that graph(F ) approximates the
above hypersurface with arbitrary precision. Loosely speaking, the qualitative dynamical
behavior of the Liouville vector fieldXF +Xλ converges to that of the characteristic foliation
ofWB as graph(F ) converges toWB. We remind the reader that we will abuse language
slightly and will make no distinction between an oriented characteristic foliation and a
vector field directing the foliation. Thus, we initiate our box fold analysis by studying the
characteristic foliation of non-graphical piecewise-linear hypersurfaces as defined above. In
the next section, we will discuss the complications arising from taking a smooth, graphical
approximation.

The present chapter is organized as follows. In 4.1.1 we define the piecewise-linear box
fold in a low dimensional model and study its characteristic foliation. In 4.1.2 we extend
this piecewise-linear model to arbitrary dimensions. In 4.1.3 we discuss a variant of a box
fold called a box hole. Finally, in 4.1.4 we introduce a piecewise-linear fold — technically
not a box fold — called a pre-chimney fold. This is preparation for Section 5.1, where we
define the notion of a (full) chimney fold.

4.1 Piecewise-linear box folds

4.1.1 Piecewise-linear box folds in dimension 2

We begin with the piecewise-linear box fold in a standard low dimensional model. In
particular, consider (

R3
z,s,t, α = dz + es dt

)
.
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Here we view R3 as the contactization of (R2, es dt). The surfaceW = {z = 0} represents
a region of a 2-dimensional Liouville domain that we wish to perturb. Observe that the
Liouville vector field of (W, es dt) is ∂s, and that this directs the (unoriented) characteristic
foliation ofW . An important convention throughout the rest of the paper is the following:
we choose to orient all characteristic foliations with respect to the backward Liouville flow. That
is, the Liouville vector field of W is ∂s, and the oriented characteristic foliation of W is
directed by −∂s. We will refer to this choice of orientation throughout as the backward time

or simply backward orientation. This choice of orientation is simply to clarify the arguments
in this section, since our analysis focuses on the backward Liouville flow.

Definition. Fix z0, s0, t0 > 0. A (piecewise-linear, low-dimensional) box fold with pa-

rameters z0, s0, t0, denoted ΠPL, is the surface

ΠPL := ∂ ([0, z0]× [0, s0]× [0, t0]) \ {z = 0}.

We will refer to [0, s0] as the s-support or symplectization length of the fold, and [0, t0] as
the t-support or Reeb length of the fold. Note that this instance of “Reeb” is not referring to
∂z, which is the Reeb vector field of the contactization ofW . We will also use the following
shorthand notation to refer to the various sides of ΠPL:

z = z0 := ΠPL ∩ {z = z0}

and likewise with the other sides t = 0, t = t0, s = 0, and s = s0.

We wish to study the dynamics of the oriented characteristic foliation of ΠPL according
to the convention above. The foliation of each side of ΠPL is given by the following table,
where we have used Lemma 2.7. Note that the orientation of each side is chosen to be
consistent with the backward Liouville flow.

The most important feature of a box fold is that, in backward time, it traps some of
the flowlines entering the fold through z = 0 ∩ s = s0. The flowlines that are not trapped
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Figure 4.1: A box fold with z0 < t0 and the three qualitative types of flowlines entering the
fold according to Lemma 4.1. The flowline in green is trapped in backward time, because
it spirals around t = t0 ∩ z = z0 via the faces s = s0 → z = z0 → s = 0 → t = t0 → s = s0.
The flowline in red passes through the fold, and its holonomy is given by a shift in the
t-direction. The flowline in blue also passes through the fold, but its holonomy is given by
a scaling in the t-direction.

Side Area form Restriction of dz + es dt Characteristic foliation
z = z0 −es ds dt es dt −∂s
s = 0 −dz dt dz + dt ∂t − ∂z
s = s0 −dt dz dz + es0 dt −∂t + es0∂z
t = 0 −ds dz dz −∂s
t = t0 −dz ds dz ∂s

Table 4.1: The oriented characteristic foliation of a box fold in dimension 2.

reach z = 0 ∩ s = 0 and subsequently exit the fold after experiencing some holonomy in
the t-direction; see Figure 4.1. We emphasize that for a flowline to exit the fold, it must
reach z = 0 ∩ s = 0.

The following lemma summarizes all of the induced dynamical behavior of a piecewise-
linear box fold in low dimensions.

Lemma 4.1. Let hPL : {z = 0} × {s = s0} × [0, t0] 99K {z = 0} × {s = 0} × [0, t0] be the

partially-defined holonomy map given by the oriented characteristic foliation of ΠPL. The domain of
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hPL is (
0, e−s0 min(z0, t0)

)
t
∪
(
e−s0 min(z0, t0), t0 − (1− e−s0)min(z0, t0)

)
t

and

hPL(t) =


es0t t ∈ (0, e−s0 min(z0, t0))

t+ (1− e−s0)z0 t ∈ (e−s0 min(z0, t0), t0 − (1− e−s0)min(z0, t0))

.

In particular, if z0 ≥ t0 then the domain of hPL is (0, e−s0t0), and hPL(t) = es0t.

Remark. Before we prove Lemma 4.1, we include some discussion about its statement and
role in the context of this dissertation.

(1) Most of the box folds in this paper will satisfy z0 ≥ t0 (in fact, most will satisfy
z0 ≥ es0t0), so for simplicity, the reader can focus on the “in particular” statement.

(2) We will often abuse notation and refer to the domain of hPL as either {z = 0} × {s =

s0} × [0, t0], {s = s0} × [0, t0], or sometimes simply [0, t0]. The complement of the
domain of hPL in [0, t0] is the set of points whose Liouville flowlines do not pass
through the fold. For example, if z0 ≥ t0 then this region is [e−s0t0, t0]. We will
refer to this as the trapping region of the box fold. Also, because ΠPL is not a smooth
hypersurface, we are abusing the notion of “flowline.” In the present section, this
is unimportant, but it leads to some subtle and significant complications when we
round corners and smooth out the hypersurface in Section 4.2. Another consequence
is that, in the discussion of piecewise-linear folds, we will be sloppy about including
and not including certain t-values like 0, t0, and e−s0t0. For example, we may refer to
a trapping region of ΠPL as (e−s0t0, t0) or [e−s0t0, t0], even though there are technically
no flowlines passing through {s = s0} × ∩{t = t0} or {s = s0} × ∩{t = e−s0t0}

due to edges and corners of the fold. Again, this is unimportant in the context of
piecewise-linear folds.

(3) Both the statement of Lemma 4.1 and the proof presented below may obfuscate the
simplicity and elementary nature of the idea. The picture that the reader should
keep in mind is Figure 4.2. In particular, the proof may seem unnecessarily detailed,
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because the qualitative behavior of the flowlines can be visualized easily and com-
puted algebraically using Figure 4.2 as a reference. However — to state the obvious
— the dynamics become more complicated in higher dimensions, and it becomes
impossible to visualize the behavior in its entirety. Thus, we will need to rely on
casework arguments by working with the characteristic foliation directly. In that
sense, the primary purpose of the proof of Lemma 4.1 is to function as a warm-up for
the more intricate arguments in higher dimensions.

Proof. Assume first that z0 ≥ t0.

Suppose that a flowline enters the fold along z = 0 ∩ s = s0 with initial t-coordinate
t̄ ∈ (0, e−s0t0). The characteristic foliation of s = 0 is directed by −∂t + es0 ∂z. Because
t̄ < e−s0t0 and z0 > t0, the flowline reaches t = 0 before z = z0. It reaches t = 0 with z-
coordinate es0 t̄ < t0 ≤ z0. Along t = 0 the flowline travels via −∂s to s = 0. Here the
characteristic foliation is ∂t − ∂z. Since the z-coordinate es0 t̄ is less than z0, the flowline
reaches z = 0 before t = t0 and exits the fold with t-coordinate es0 t̄. This proves that
hPL(t) = es0t for t ∈ (0, e−s0t0).

Next, suppose that a flowline enters along z = 0 ∩ s = s0 with initial t-coordinate t̄ ∈
(e−s0t0, t0). The characteristic foliation of s = 0 is directed by −∂t + es0 ∂z. The flowline
reaches either t = 0 or z = z0.

Case 1: the flowline reaches t = 0.

The flowline reaches t = 0with z-coordinate es0 t̄ > t0. It travels along t = 0 via −∂s to
s = 0. Here the foliation is directed by ∂t − ∂z. Because es0 t̄ > t0, the flowline reaches t = t0

with z-coordinate es0 t̄− t0 > 0. Along t = t0 it follows ∂s, returning to s = s0. Note that the
z-coordinate has increased from the last time the flowline was on s = s0. Here the flowline
follows −∂t + es0 ∂z and we reach either Case 1 (again) or Case 2. Everytime the flowline
cycles through Case 1, the z-coordinate increases. Thus, eventually, the initial z-coordinate
along s = s0 will be large enough for the flowline to enter Case 2.

Case 2: the flowline reaches z = z0.
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Let t̃ > 0 denote the t-coordinate at which the flowline reaches z = z0. The characteristic
foliation here is directed by −∂s, and so the flowline then reaches s = 0. Since z0 ≥ t0 and
t̃ > 0, the flowline follows ∂t−∂z and reaches t = t0 with z-coordinate z0− (t0− t̃). Here the
foliation is ∂s, and thus the flowline travels to s = s0. The flowline then follows −∂t + es0 ∂z,
returning to z = z0, i.e., returning to Case 2, with t-coordinate t0 − e−s0(t0 − t̃) > t̃. Note
that the t-coordinate has increased upon return to z = z0.

The above analysis shows that every flowline entering the fold with initial t-coordinate
in (e−s0t0, t0) cycles through Case 1 sufficiently many times (if necessary) to reach Case
2, which is then cycled through indefinitely; see Figure 4.2. The flowline spirals around
z = z0 ∩ t = t0, never exiting the fold. This completes the proof of Lemma 4.1 when z0 ≥ t0.

The casework for a fold with z0 < t0 is essentially identical, if not more tedious because
of the presence of a third case. Again, we refer to Figure 4.2.

t

z

t

z

Figure 4.2: A head-on view of two different box folds, one with z0 < t0 (left) and z0 > t0
(right). This is a visual depiction of Lemma 4.1. All of the dashed lines on s = s0 have
(t, z) slope −es0 and all of the solid lines on s = 0 have (t, z) slope −1. The pink flowlines
represent the lower threshold of the trapping region. Observe on the right picture that
increasing z0 beyond t0 (with s0 fixed) does not increase the size of the trapping region.
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Before moving on to piecewise-linear box folds in higher dimensions, we include a
remark on the holonomy of a box fold under a shift in the symplectization direction. We
have definedΠPL as a fold with s-support [0, s0], but it will be necessary for us to install box
folds with symplectization support in some other interval [s1, s2], where s2 − s1 = s0. The
only change to the characteristic foliation is that the (t, z)-slope on s = s1 is −es1 , and on
s = s2 it is−es2 . It should be clear from the proof of Lemma 4.1, and in particular Figure 4.2,
that such a fold with z0 ≥ es1t0 has identical holonomy to a box fold installed with z0 ≥ t0

and symplectization support in [0, s1]. In other words, the holonomy of a box fold only
depends on the symplectization length, and not the actual interval, provided we increase z0
accordingly. This poses no problem for us. In the future, when we say “install a box fold
with s-support [s1, s2]” it will be understood that the z-parameter is adjusted accordingly
to mimic the model computations above.

4.1.2 Piecewise-linear box folds in high dimensions

The box fold defined above yields (or will eventually yield, after smoothing) a Liouville
homotopy of a 2-dimensional Liouville domain. In general, we wish to install box folds on
Liouville domains of arbitrary dimensions. To do this, we will consider folds based over
the symplectization of a contact handlebody.

Definition. A contact handlebody is a contact manifold of the form

(H0 := [0, t0]×W0, dt+ λ0)

where (W0, λ0) is a Weinstein domain.

Remark. Presently, it is important that (W0, λ0) is a domain, as opposed to a cobordism with
nonempty negative boundary. When we discuss pre-chimney folds in 4.1.4 we will weaken
this, but for now our analysis crucially uses the assumption that (W0, λ0) has a skeleton and
outward pointing Liouville vector field. We also point out that we should be including the
data of a Lyapunov Morse function ϕ0 when referring to a Weinstein domain (W0, λ0, ϕ0).
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However, the actual Morse function is unimportant, so we will typically omit it.

The low-dimensional box fold from 4.1.1 is based over the contact handlebody ([0, t0], dt)

whereW0 = {pt}. The standard example of a contact handlebody that the reader should
keep in mind as it pertains to this paper is ([0, t0] × D2, dt + 1

2
r2 dθ); here, the Liouville

vector field of (W0 = D2, λ0 =
1
2
r2 dθ) is the radial vector field 1

2
r ∂r.

Let (H0 = [0, t0]×W 2n−2
0 , dt+ λ0) be a contact handlebody and let

([0, s0]×H0, e
s(dt+ λ0))

be its symplectization. This represents a region in our given 2n-dimensional Liouville
domain that we wish to perturb. Observe, again, that the Liouville vector field of this
model is ∂s. In practice, given an arbitrary Liouville domain we will identify such a region
by finding a contact handlebody transverse to the Liouville vector field and considering its
time-s0 flow.

As before, we realize this region as the hypersurface {z = 0} inside its contactization:

(Rz × [0, s0]×H0, dz + es(dt+ λ0)) .

Definition. Fix z0, s0 > 0, and H0 = [0, t0] × W0 as above. A (piecewise-linear, high-

dimensional) box fold with parameters z0, s0, t0, denoted ΠPL, is the hypersurface

ΠPL := ∂ ([0, z0]× [0, s0]×H0) \ {z = 0}.

We use the same language and notation as before. This time, there is an additional
vertical side to consider:

∂W0 = [0, z0]× [0, s0]× [0, t0]× ∂W0.

The following lemma computes the characteristic foliation of each side of ΠPL, oriented to
be consistent with the backward Liouville flow.
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Lemma 4.2. Let Xλ0 denote the Liouville vector field of (W 2n−2
0 , λ0), let η0 := λ0 |∂W0 be the

induced contact form on the boundary ofW0, and let Rη0 denote the Reeb vector field on ∂W0 of η0.

The backward oriented characteristic foliation of ΠPL is given by Table 4.2.

Side Characteristic foliation
z = z0 −∂s
s = 0 ∂t − ∂z
s = s0 −∂t + es0∂z
t = 0 −∂s +Xλ0

t = t0 ∂s −Xλ0

∂W0 ∂t −Rη0

Table 4.2: The oriented characteristic foliation of a high dimensional box fold.

Remark. Observe that the foliation is identical to the low-dimensional fold on z = z0, s = 0,
and s = s0. On the sides t = 0 and t = t0 there is an additional±Xλ0 term, inducing motion
in theW0 direction. This motion, together with the new side ∂W0, is the key feature that
distinguishes the behavior of the high-dimensional and low-dimensional folds. We also
point out that the vector fields on the latter three sides project to the characteristic foliation
of ∂H0 in H0.

Proof. Wewill consider the sides t = 0, t = t0, and ∂W0 that feature new behavior; the other
three sides are similar. As before, we use Lemma 2.7.

First, consider t = 0. A correctly oriented volume form on this side is

Ω = e(n−1)s dz ds (dλ0)
n−1.

Let β := (dz + es (dt+ λ0)) |t=0= dz + es λ0. Then dβ = es ds λ0 + es dλ0, and so

β (dβ)n−1 = [dz + es λ0]
[
(n− 1)e(n−1)s ds λ0 (dλ0)

n−2 + e(n−1)s (dλ0)
n−1
]

= e(n−1)s
[
(n− 1) dz ds λ0 (dλ0)

n−2 + dz (dλ0)
n−1
]
.
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Note that

ι−∂s+Xλ0
Ω = e(n−1)s

[
dz (dλ0)

n−1 + (n− 1) dz ds λ0 (dλ0)
n−2
]

= β (dβ)n−1.

By Lemma 2.7, it follows that −∂s +Xλ0 directs the characteristic foliation of t = 0. The
computation for t = t0 is identical, using the volume form Ω = −e(n−1)s dz ds (dλ0)

n−1.

Finally, consider ∂W0. A correctly oriented volume form on this side is

Ω = (n− 1)e(n−1)s dz ds dt η0 (dη0)
n−2.

Let β := (dz + es (dt+ λ0)) |∂W0= dz + es(dt+ η0). Then dβ = es ds (dt+ η0) + es dη0, and so

β (dβ)n−1 = [dz + es(dt+ η0)]
[
(n− 1)e(n−1)s ds (dt+ η0) (dη0)

n−2
]

= (n− 1)e(n−1)s
[
dz ds dt (dη0)

n−2 + dz ds η0 (dη0)
n−2
]
.

Note that

ι∂t−Rη0
Ω = (n− 1)e(n−1)s

[
dz ds η0 (dη0)

n−2 + dz ds dt (dη0)
n−2
]

= β (dβ)n−1.

By Lemma 2.7, ∂t −Rη0 directs the characteristic foliation of ∂W0.

As with piecewise-linear box folds in dimension 2, we wish to analyze the dynamics
of this characteristic foliation to identify flowlines that are trapped by the fold, and to
understand the holonomy of flowlines that pass through. Throughout the analysis, the
reader should keep two distinct “contact projections” of ΠPL in mind: the projection to
[0, z0]× [0, s0]× [0, t0], and the projection to H0 = [0, t0]×W0. See, for example, Figure 4.3.

We initiate the analysis with a key lemma that generalizes some of the behavior in the
low dimensional case. As with Lemma 4.1, the proof involves some careful and seemingly
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complicated casework. The reader should reference Figure 4.3 and keep track of the
movement visually in these two contact projections.

Lemma 4.3. Let ΠPL be a high-dimensional box fold (with no assumption on z0). If a flowline

reaches t = t0, it is trapped in backward time by the fold.

Proof. Suppose that a flowline reaches t = t0 with z-coordinate z̄, s-coordinate s̄, andW0-
coordinate w̄. The characteristic foliation here is directed by ∂s − Xλ0 . Since (W0, λ0) is
a domain, the flowline will travel to s = s0, concurrently moving toward Skel(W0, λ0). In
particular, if ψs denote the time-s flow of Xλ0 onW0, then the flowline reaches s = s0 with
W0-coordinate ψ−(s0−s̄)(w̄). Here the foliation is directed by −∂t + es0 ∂z. The flowline then
reaches either t = 0 or z = z0.

Case 1: the flowline reaches t = 0.

The flowline reaches t = 0 with z-coordinate z̄ + es0t0. Here the foliation is directed by
−∂s +Xλ0 . There are two subcases: the flowline reaches either s = 0 or ∂W0.

Case 1A: the flowline reaches s = 0.

In this case, the flowline reaches s = 0 with W0-coordinate ψs0(ψ−(s0−s̄)(w̄)) = ψs̄(w̄).
Note that Case 1A is characterized precisely by the fact that ψs̄(w̄) ∈ W0 \∂W0. Along s = 0

the flowline follows ∂t − ∂z. Since the current z-coordinate is z̄ + es0t0 > t0, the flowline
reaches t = t0 before z = 0, and it does so with z-coordinate z̄ + (es0 − 1)t0 > z̄.

Observe that we return to the hypothesis of the lemma (reaching t = t0) with an in-
creased z-coordinate and a W0-coordinate which is closer to ∂W0, namely, ψs̄(w̄). The
flowline enters either Case 1 or Case 2. If the flowline continues to re-enter Case 1A, the
W0-coordinate will eventually be close enough to ∂W0 to ensure that the flowline reaches
∂W0 before s = 0, entering Case 1B.

Case 1B: the flowline reaches ∂W0.

Here the foliation is directed by ∂t − Rη0 . The flowline travels around ∂W0 via −Rη0

and ultimately reaches t = t0, returning to the hypothesis of the lemma. Note that the
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z-coordinate has increased from z̄ and the s-coordinate has increased from s̄. The flowline
either re-enters Case 1 or enters Case 2. If it continues to re-enter Case 1B, its s-coordinate
will eventually increase to the point where it enters Case 1A.

The upshot of the Case 1A/1B analysis above is the following. If a flowline cycles
through Case 1, it cannot cycle through Case 1A forever or Case 1B forever. The flowline
will cycle through Case 1A sufficiently many times to reach Case 1B, where it cycles through
Case 1B sufficiently many times to reach Case 1A, and so on. Both Case 1A and Case 1B
contribute to a net increase in the z-coordinate. Thus, eventually the flowline will cycle
through Case 1 sufficiently many times for the z-coordinate to be large enough to enter
Case 2.

Case 2: the flowline reaches z = z0.

Let z̃ denote the z-coordinate from which the flowline left t = t0 before reaching z = z0.
Let t̃, w̃ denote the t-coordinate andW0-coordinate at which the flowline reaches z = z0.
Note that t̃ = t0 − e−s0(z0 − z̃). Here the foliation is directed by −∂s, and so the flowline
reaches s = 0. It then follows ∂t − ∂z to t = t0, attaining a z-coordinate of

z0 − (t0 − t̃) = z0 − e−s0(z0 − z̃) > z̃.

The s-coordinate is now 0 and theW0-coordinate is still w̃.

The foliation along t = t0 is directed by ∂s −Xλ0 . Thus, since (W0, λ0) is a domain, the
flowline reaches s = s0 withW0-coordinate ψ−s0(w̃). The flowline travels along −∂t + es0 ∂z

to z = z0 withW0-coordinate ψ−s0(w̃), re-entering Case 2.

The above analysis shows that when a flowline reaches Case 2, it continues to re-enter
Case 2 indefinitely. The flowline does not exit the fold and spirals around t = t0 ∩ z = z0

while limiting towards Skel(W0, λ0). See Figure 4.3.

Lemma 4.3 is our first exposure to the following approximate principle: when a flowline
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Figure 4.3: A visualization of Lemma 4.3. On the left is the (z, s, t) projection, and on
the right is the contact handlebody H0 = [0, t0]×W0. The figure depicts a single sample
flowline beginning on t = t0 at x1. It travels along t = t0 and reaches s = s0 at x2. Here the
flowline is in Case 1, as it reaches t = 0 at x3 before reaching z = z0. Then the flowline is in
Case 1B, because it travels along t = 0 and reaches ∂W0 at x4 before reaching s = 0. Along
∂W0 the flowline swirls around ∂W0 via −Rη0 and reaches t = t0 at x5. From here, the
flowline enters Case 2. The flowline cycles through Case 2 indefinitely, ultimately swirling
around t = t0 ∩ z = z0 on the left and limiting towards Skel(W0, λ0) on the right.

enters a high-dimensional box fold, its trajectory takes turns following the characteristic
foliations in the (z, s, t) and H0 projections. Of course, this is overly simplistic and not
entirely correct, as the proof of Lemma 4.3 demonstrates, but it is a decently accurate visual
principle to keep in mind when deciphering the dynamical casework above and in the
future.

Using Lemma 4.3, we can effectively summarize the holonomy through a piecewise-
linear, high-dimensional box fold. To do so, we introduce some notation that will persist
throughout the rest of the dissertation. Given a Weinstein domain (W0, λ0), let ψs denote
the time-s flow of the Liouville vector fieldXλ0 . Define a distinguished collar neighborhood
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of ∂W0 as follows:
N s0(∂W0) :=

⋃
s∈(−s0,0]

ψs(∂W0).

In words, N s0(∂W0) is the set of points inW0 that reach the boundary after a time-s0 flow
of the Liouville vector field.

The following proposition is the generalization of Lemma 4.1 when z0 ≥ es0t0.

Proposition 4.4. Let ΠPL be a high-dimensional box fold with z0 ≥ es0t0, and let hPL : {z =

0} × {s = s0} ×H0 99K {z = 0} × {s = 0} ×H0 be the partially-defined holonomy map given by

the oriented characteristic foliation of ΠPL. Let x ∈ H0 be the entry point of a flowline in H0, and

let t(x) andW0(x) be the t-coordinate andW0-coordinate of x, respectively.

(i) If either t(x) ∈ (e−s0t0, t0) orW0(x) ∈ N s0(∂W0), then the flowline through x is trapped in

backward time.

(ii) For all (t, w) ∈ H0 in the domain of hPL,

hPL(t, w) = (es0t, ψs0(w)).

Proof. We begin by proving (i).

Suppose first thatW0(x) ∈ N s0(∂W0). Since z0 ≥ es0t0, the flowline enters ΠPL along
s = s0 and travels via −∂t + es0 ∂z to t = 0. Here the foliation is directed by −∂s + Xλ0 .
BecauseW0(x) ∈ N s0(∂W0), the flowline reaches ∂W0 before reaching s = 0. Here it follows
∂t −Rη0 up to t = t0. By Lemma 4.3, the flowline is ultimately trapped.

Next, suppose that t(x) ∈ (e−s0t0, t0). We may further suppose thatW0(x) /∈ N s0(∂W0).
Again by the assumption that z0 ≥ es0t0, the flowline enters ΠPL and travels across s = s0

via−∂t+es0 ∂z to t = 0, attaining a z-coordinate of es0t(x) > t0. BecauseW0(x) /∈ N s0(∂W0),
it then follows−∂s+Xλ0 to s = 0. Here it follows ∂t−∂z. Since the z-coordinate upon entry
to s = 0 exceeds t0, the flowline reaches t = t0 and is ultimately trapped by Lemma 4.3.

Now we prove (ii). By (i) we necessarily have t(x) < e−s0t0 and W0(x) /∈ N s0(∂W0).
The flowline travels along s = s0 via −∂t + es0 ∂z to t = 0 where it attains a z-coordinate
of es0t(x) < t0. Here it follows −∂s +Xλ0 . SinceW0(x) /∈ N s0(∂W0), it reaches s = 0 with
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W0-coordinate ψs0(W0(x)). Here it travels along ∂t−∂z to z = 0, where it exits the fold with
t-coordinate es0t(x) andW0-coordinate ψs0(W0(x)). This proves (ii).

Remark. We make the assumption z0 ≥ es0t0 in Proposition 4.4 mostly for convenience. In
particular, this assumption ensures that every flowline entering the fold first reaches t = 0.
Furthermore, most of the folds we will use in Section 5.2 satisfy this assumption. A more
general statement (similar to Lemma 4.1) can be obtained with more casework.

z

t

s

t

W0

W0

Figure 4.4: A visualization of Proposition 4.4. In particular, the depiction of two flowlines
entering the fold in various projections: on the far left is the (z, s, t) projection, in themiddle
is the H0 = [0, t0] ×W0 projection, and the far right is a further projection of the middle
picture for the sake of clarity. The shaded green regions on the far right are the trapping
regions described in (i), and the gray line indicates Skel(W0, λ0). The blue flowline enters
the fold in N s0(∂W0) and is ultimately trapped. The red flowline enters the fold and passes
through with holonomy given by hPL.

4.1.3 Box holes

Here we briefly discuss the notion of a box hole. The primary function of a box fold
installation as defined in 4.1.1 is to trap a portion of the flowlines entering the fold near
the top of the Reeb chord [0, t0]. Namely, the trapping region of a low-dimensional box
fold (with z0 ≥ t0) is (e−s0t0, t0). For the purpose of our strategy in Section 5.2, it will be
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desirable to instead trap a portion of the flowlines entering a certain fold near the bottom of
the Reeb chord. This is possible by simply mirroring the installation of a box fold with a
box-shaped hole.

Definition. Fix z0, s0, t0 > 0. A (piecewise-linear, low-dimensional) box hole with

parameters z0, s0, t0, denoted
ΠPL, is the surface

ΠPL := ∂ ([−z0, 0]× [0, s0]× [0, t0]) \ {z = 0}.

t

t

z = z0

z = −z0

z = 0

Figure 4.5: A depiction of a box fold on the left and a box hole on the right. The red
flowlines pass through the folds, and the blue flowlines are trapped by the folds. Note that
in a box hole, the flowlines entering near t = 0 are trapped, in contrast to a box fold.

By repeating the same analysis as in 4.1.1, we obtain the following description of the
trapping region and holonomy of a low-dimensional box fold.

Lemma 4.5. Let hPL : {z = 0} × {s = s0} × [0, t0] 99K {z = 0} × {s = s0} × [0, t0] be the

partially-defined holonomy map given by the oriented characteristic foliation of ΠPL. Assume that
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z0 ≥ t0. The domain of hPL is ((1− e−s0)t0, t0) and hPL(t) = t0 − es0(t− t0).

The extension to arbitrary dimensions is identical to 4.1.2. The box holes that we use in
Section 5.2 will be relatively straightforward, so we will not dwell on the details here; the
most important takeaway is simply that the Reeb holonomy mirrors that of a box fold.

4.1.4 Pre-chimney folds

Finally, we close with an analysis of a different kind of piecewise-linear fold, which we call
a pre-chimney fold. We will not ever install a pre-chimney fold as described here, but the
analysis will be helpful in understanding both the function and purpose of a chimney fold
in Section 5.1, as well as in the study of partial folds in Section 5.4.

A box fold as we have defined it is based over (the symplectization of) a contact
handlebody ([0, t0] ×W0, dt + λ0). By definition, we require (W0, λ0) to be a Weinstein
domain. One could relax this requirement and instead allow (W0, λ0) to be a Weinstein
cobordism with nonempty negative boundary. According to the language of [HH19], in
this case ([0, t0]×W0, dt+ λ0) is a generalized contact handlebody and the corresponding
box fold construction yields a partial box fold. In general, the dynamics of such a fold can
differ significantly from a genuine box fold.

Here we wish to do something slightly different. Namely, we allow (W0, λ0) to be a
cobordism between manifolds with boundary. For the purpose of this discussion as it
relates to this paper, we will consider the two-dimensional trivial cobordism

(W0 = [−r0, 0]r × [0, θ0]θ, λ0 = er dθ).

In practice we will identify such a region as a small neighborhood near the boundary of a
Weinstein domain.

With (W0, λ0) as above, let H0 = [0, t]×W0 and consider the model

([0, s0]×H0, e
s (dt+ λ0)) .
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As before, this represents some region of a Liouville domain that we wish to perturb, and
we realize it as the hypersurface {z = 0} inside its contactization:

([0, z0]× [0, s0]×H0, dz + es (dt+ λ0)) .

Definition. A (piecewise-linear) pre-chimney fold, denoted pCΠPL, is the hypersurface

pCΠPL := ∂ ([0, z0]× [0, s0]×H0) \ {z = 0}.

One can check easily enough using the techniques of this section (for example, the
proof of Lemma 4.2) that the backward-oriented characteristic foliation of pCΠPL is given
by the Table 4.3.

Side Characteristic foliation
z = z0 −∂s
s = 0 ∂t − ∂z
s = s0 −∂t + es0 ∂z
t = 0 −∂s + ∂r
t = t0 ∂s − ∂r
r = 0 ∂t − ∂θ
r = −r0 −∂t + er0 ∂θ
θ = 0 −∂r
θ = θ0 ∂r

Table 4.3: The oriented characteristic foliation of a pre-chimney fold.

Observe that the vector fields on the latter six sides project to the characteristic foliation
of ∂H0 inside H0, exactly as before. In particular, this table is consistent with the existing
sides in the usual box fold case, where we have Xλ0 = ∂r and Rη0 = ∂θ.

Before we study the dynamics of pCΠPL, we digress briefly to discuss some heuristics
for context. One might initially expect that a pre-chimney fold as defined above does not
trap any flowlines in backward time; after all, (W0, λ0) is a trivial cobordism and does not
have a skeleton. With a partial box fold over a true generalized contact handlebody, this
can indeed happen: if we were to fold over ([−r0, 0]× S1, er dθ) instead, the fold would not
trap any flowlines in backward time. However, the difference between ([−r0, 0]× S1, er dθ)
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and ([−r0, 0]r × [0, θ0]θ, e
r dθ) is significant enough to change this behavior. As we will see,

a pre-chimney fold does trap some flowlines in backward time, despite H0 being based
over a trivial cobordism. This will suggest the following principle: the mechanism by
which a fold based over a region H0 traps flowlines in backward time depends on the
characteristic foliation of ∂H0. In particular, if H0 is any contact region such that ∂H0 has a
characteristic foliationwith (positive) critical points, it will trap some flowlines in backward
time. In a pre-chimney fold, ∂H0 is diffeomorphic to S2 (up to corner rounding) and has a
singular characteristic foliation with an index 0 and index 2 critical point. In contrast, the
generalized handlebody ([0, t0]× [−r0, 0]×S1, dt+er dθ) has a boundary with non-singular
characteristic foliation (again, up to corner rounding).

The following lemma is similar to Lemma 4.3.

Lemma 4.6. Let pCΠPL be a pre-chimney fold with t0 ≥ θ0. If a flowline reaches t = t0, it is

trapped by the fold in backward time.

Proof. Proving this lemma with backward time casework as in Lemma 4.3 is fairly tedious.
Because of this, we will actually present a forward time argument — this is simpler, at the
cost of slightly obfuscating the nature of the trapping mechanism of pCΠPL. We emphasize
that one can proceed as in Lemma 4.3, and we also refer to Figure 4.6.

To exit the fold, a flowline must reach s = 0with a z-coordinate no greater than t0. In
particular, it must necessarily reach s = 0 from t = 0with a z-coordinate no greater than
t0. Consider such a flowline in forward time, beginning on t = 0 with a z-coordinate no
greater than t0. We will argue that the flowline does not traverse t = t0, which will prove
the lemma.

In forward time, the flowline follows ∂s − ∂r to either s = s0 or r = −r0.

Case 1: the flowline reaches s = s0 in forward time.

Here it follows ∂t − es0 ∂z and subsequently reaches s = s0 ∩ z = 0, because the initial
z-coordinate of the flowline was no larger than t0. In this case, the flowline passes through
the entire fold without traversing across t = t0.
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Case 2: the flowline reaches r = −r0 in forward time.

Along r = −r0 the forward time foliation is directed by ∂t − er0 ∂θ. Because t0 ≥ θ0, the
flowline then reaches θ = 0, where it follows ∂r to r = 0. Here the forward time foliation is
−∂t + ∂θ, so the flowline returns to t = 0, and we re-enter either Case 1 or Case 2. Note that
the s-coordinate has increased from its initial value at the beginning of the proof, and the
z-coordinate has not changed. Note also that the flowline has not traversed across t = t0.

The point of the above casework is that, in forward time, a flowline beginning on t = 0

with z-coordinate no larger than t0 will cycle through Case 2 sufficiently many times until
it reaches Case 1. Thus, any such flowline will pass through the fold without reaching
t = t0, and therefore any flowline that does reach t = t0 is trapped in backward time.

It is possible to identify the trapping region of a pre-chimney fold precisely, but for the
purpose of our arguments in Section 5.1 we will only need Lemma 4.6. For example, in
a piecewise-linear pre-chimney fold with t0 ≥ θ0 and z0 ≥ es0t0, one can show that the
trapping region of the fold is

(
(0, t0)t × (−r0, 0)r × (e−s0θ0, θ0)θ

)
∪
(
(e−s0t0, t0)t × (−r0, 0)r × (0, θ0)θ

)
⊂ H0.

We also remind the reader of the following principle. There are two contact projections of
pCΠPL: the (z, s, t) projection and theH0 projection. A flowline entering the fold essentially
follows the characteristic foliations of both these projections, taking turns with each. A
flowline that is trapped ultimately swirls around z = z0 ∩ t = t0 in the (z, s, t) projection
and swirls around t = t0 ∩ θ = θ0 in the H0 projection. See Figure 4.6.

4.2 Smooth box folds

To induce a genuine Liouville homotopy of a Liouville domain, we need to perform a
smooth, graphical perturbation in the contactization. The piecewise-linear box folds de-
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Figure 4.6: A sample flowline that is trapped by a pre-chimney fold. On the left is the
(z, s, t) projection, and on the right is H0 with coordinates (t, r, θ). The flowline enters the
fold at x1, travels to x2 ∈ t = 0 ∩ s = s0, and then follows the characteristic foliation of
∂H0 all the way to x3 ∈ t = t0 ∩ r = 0. The flowline essentially follows the characteristic
foliations of both contact projections, ultimately swirling around t = t0 ∩ z = z0 on the left
and t = t0 ∩ θ = θ0 on the right.

fined in Section 4.1 are neither smooth nor graphical. In this section, we describe how to
approximate ΠPL with such a perturbation, and discuss the resulting complications.

In general, the process of smoothing a piecewise-linear fold introduces new behavior
to the holonomy which is not present otherwise. This new behavior is concentrated in
arbitrarily small regions, but it has subtle and significant implications that need to be taken
into consideration. Unfortunately, understanding the entire smooth holonomy of a box
fold with precision is in general quite difficult. Thankfully, our strategy in Section 5.2 is
robust enough for us to not need a precise understanding; for the most part, being able to
identify regions where the complicated behavior begins and ends will be sufficient. Thus,
broadly speaking, there are two main goals of this section:
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(1) develop a formal but robust understanding of the dynamics of a smooth box fold,
and

(2) develop a mostly informal understanding of the complications that are not described
by (1).

The purpose of (2) is simply to motivate the strategy in Section 5.2, one that involves a more
complicated fold, at the cost of being robust enough to mostly ignore the complications of
(2).

This section is organized as follows. In 4.2.1, we perform a general Liouville vector field
computation for a large class of smooth perturbations. In 4.2.2, we discuss smooth box folds
in dimension 2, with goal (1) in mind. In 4.2.3, we do the same in arbitrary dimensions.
Finally, in 4.2.4 we consider some complications with goal (2) in mind.

4.2.1 A general computation

We remind the reader of a comment from Section 4.1: from a sufficiently abstract point
of view, the dynamical impact of a smooth box fold installation is immediate. Namely, if
(W,λ) is a Liouville domain and F : W → R is smooth, then a graphical perturbation in
the contactization via F yields a Liouville homotopy to (W,dF + λ), and the new Liouville
vector field is XF +Xλ. In fact, we can explicitly compute the vector field XF in the setting
of a box fold. We wish to consider smooth functions

F : [0, s0]× [0, t0]×W0 → R

that decay quickly near the boundary of the region. The following lemma gives the Liouville
vector field for a wide class of such perturbations.

Lemma 4.7. Let (H0 = [0, t0]×W0, dt+ λ0) be a contact handlebody, and let ([0, s0]×H0, λ =

es (dt+λ0)) be its symplectization. Let F : [0, s0]×H0 → R be smooth, and assume that dW0F = 0

away from a collar neighborhood of ∂W0.
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(i) On the region where dW0F = 0, the Liouville vector field of dF + es (dt+ λ0) is

∂s + e−sXds dt
F − e−s∂F

∂t
Xλ0 .

Here, Xds dt
F is the Hamiltonian vector field of F with respect to the symplectic form ds dt.

(ii) Identify the collar neighborhood of ∂W0 as ([−ε, 0]r × ∂W0, λ0 = er η0) where η0 := λ0 |∂W0 .

Suppose that d∂W0F = 0. On this collar neighborhood, the Liouville vector field of dF +

es (dt+ λ0) is

∂s + e−sXds dt
F − e−s∂F

∂t
∂r − e−s∂F

∂r

(
−∂t + e−r Rη0

)
.

Proof. Wewill prove (i) explicitly, and leave (ii) to the reader. Since the Liouville vector field
of es (dt+λ0) is ∂s, it suffices to prove that theHamiltonian vector field ofF : [0, s0]×H0 → R

with respect to dλ = es ds (dt+ λ0) + es dλ0 is

e−sXds dt
F − e−s∂F

∂t
Xλ0 .

Note that dλ = es ds dt+ es ds λ0 + es dλ0, and so

ιe−s Xds dt
F

(dλ) = dF +
∂F

∂t
λ0.

Similarly,
ιe−s ∂F

∂t
Xλ0

(dλ) =
∂F

∂t
λ0

since λ0(Xλ0) = 0. Thus,
ιe−s Xds dt

F −e−s ∂F
∂t

Xλ0
(dλ) = dF

as desired. This proves (i). The verification of (ii) is similar, using the fact that λ = er η0 in
the corresponding neighborhood.

Remark. In theory, one can deduce all of the dynamics of a smooth box fold — in particular,
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the holonomy described in Section 4.1 — using these formulas. In practice, this is unwieldy,
and the transparency and clarity provided by the piecewise-linear characteristic foliation
approach is evident. With that being said, we will make use of this lemma. It is also a good
exercise to qualitatively reconcile this lemma with the dynamics described in the previous
section. For example, a typical folding function F will have ∂F

∂t
> 0 near t = 0 and ∂F

∂t
< 0

near t = t0. Thus, according to (i), near t = 0 the Liouville vector field has a component in
the negative Xλ0 direction, which means that there is movement in the forwardXλ0 direction
in backward time. This agrees with the fact that the oriented characteristic foliation of t = 0

in Section 4.1 is directed by −∂s +Xλ0 . The roles are reversed accordingly near t = t0.

4.2.2 Smooth box folds in dimension 2

We begin by discussing smooth box folds in the low dimensional model. Broadly speaking,
nothing very interesting occurs in this setting, because we are interested in the holonomy
map {s = s0} × H0 99K {s = 0} × H0, and in 2 dimensions, H0 = [0, t0]. The induced
movement from smoothing is more significant in higher dimensions, whenH0 = [0, t0]×W0.

Consider a piecewise-linear box fold ΠPL with parameters z0, s0, t0 > 0 as defined in
4.1.1. For simplicity, assume that z0 > t0. By Lemma 4.1, any flowline passing through
(e−s0t0, t0)t is trapped by the fold in backward time, and on (0, e−s0t0)t the holonomy map
is given by hPL(t) = es0t0.

Fix a small smoothing parameter τ > 0. Let B = [0, s0]× [0, t0] denote the base of the
box fold, and let Bτ = [τ, s0 − τ ]× [τ, t0 − τ ]. Let F τ

aux : Op(B) → R be a smooth function
such that

(i) the support of F τ
aux is B,

(ii) 0 ≤ F τ
aux ≤ z0 and F τ

aux ≡ z0 on Bτ , and
(iii) if τ1 < τ2 < τ , then we have an inequality of suprema:

sup
B\Bτ1

F τ
aux ≤ sup

B\Bτ2

F τ
aux.
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Here and in the future, Op(·) denotes a small open neighborhood of the input. In words,
F τ
aux is simply an obvious and well-behaved smooth approximation of z0 1B , where there is

no unnecessary wild behavior on B \Bτ . Clearly,

graph(F τ
aux) → ΠPL

as τ → 0.

One could conceivably define a smooth box fold as graph(F τ
aux) in the contactization

(Rz ×B, dz+ es dt). However, because our goal is to produce a Weinstein domain, we want
the new Liouville vector field to have nondegenerate singularities. Since Morse-Smale
vector fields are C∞-generic in two dimensions [PPM98], this is easy enough to achieve.

Definition. A function F : B → R is τ -admissible if ∥F − F τ
aux∥C∞(B) < τ and graph(F )

has Morse characteristic foliation in the contactization of B.

With such an admissible function, the induced Liouville vector field from Lemma 4.7
will have two nondegenerate critical points: an index 0 singularity corresponding to the
piecewise-linear intersection z = z0 ∩ t = t0, and an index 1 singularity corresponding to
the intersection z = 0 ∩ t = t0; see Figure 4.7. Note the important difference between this
and the C-folds of [HH19]: the non-graphical C-fold produces an index 2 singularity. With
Morse Liouville vector fields in two dimensions, it is only possible to introduce singularities
of index 0 or index 1.

Definition. Fix z0, s0, t0, τ > 0 and let F τ : [0, s0]× [0, t0] → R be τ -admissible. A smooth

box fold with parameters z0, s0, t0 and smoothing parameter τ , denoted Πτ , is the surface
graph(F τ ).

Remark. Wewill often suppress the τ in the notationΠτ . It will usually be clear from context
when a box fold is smooth or piecewise-linear, if the distinction matters.

The following lemma is a fairly technical way of summarizing the principle that nothing
interesting happens in 2 dimensions; we present it this way for the purpose of effectively
adapting the statement to higher dimensions.
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Figure 4.7: The effect of a smooth box fold installation in dimension 2. The figures are
increasingly inaccurate from left to right. Before installation, the Liouville vector field is ∂s.
The leftmost figure depicts the (non-Morse) Liouville vector field after perturbing by F τ

aux.
The middle figure depicts the perturbation by the τ -admissible function F τ , with some of
the spiraling behavior unwound for visual convenience. The third picture is the middle
picture, completely unwound for the sake of clarity on the topological nature of the vector
field.

Lemma 4.8. Suppose z0 > t0. Let hτ : {s0} × [0, t0] 99K {0} × [0, t0] be the partially-defined

holonomymap given by backward passage throughΠτ . There are closed intervalsHτ
trap ⊂ (e−s0t0, t0)

and Hτ
pass ⊂ (0, e−s0t0) such that:

(i) Any flowline enteringHτ
trap converges to a critical point inΠτ in backward time; that is,Hτ

trap

is not in the domain of hτ .

(ii) As τ → 0, ∥∥hτ − hPL
∥∥
C0(Hτ

pass)
→ 0.

(iii) As τ → 0,

|(e−s0t0, t0) \Hτ
trap| → 0 and |(0, e−s0t0) \Hτ

pass| → 0.

Here, | · | is the usual measure on [0, t0].

(iv) If t ∈ [0, t0] \ (Hτ
trap ∪ Hτ

pass) is in the domain of hτ , then hτ (t) ∈ Opτ (∂[0, t0]), where

|Opτ (∂[0, t0])| → 0 as τ → 0.

In words, this lemma says the following: given a contact handlebody [0, t0], there are
three fundamental regions: Hτ

trap, H
τ
pass, and [0, t0] \ (Hτ

trap ∪Hτ
pass). Any flowline entering
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the fold via Hτ
trap is trapped in backward time, and any flowline entering the fold via Hτ

pass

passes through the fold with holonomy that is C0-close to the piecewise-linear holonomy.
Flowlines entering the third region — an open region with arbitrarily small measure given
by the complement of the first two regions — exhibit comparatively unidentified behavior.
Such a flowline could either be trapped or pass through the fold, but if it passes through
the fold it exits near the boundary of the handlebody [0, t0]. Of course, this last statement is
uninteresting in this dimension — it will become significant with a handlebody of the form
[0, t0]×W0. Also note that we are not necessarily claiming that Hτ

trap is the entire trapping
region of the fold; we simply need the existence of a such a region that satisfies the lemma.

Proof. Despite a seemingly technical statement, this lemma follows quickly from Lemma
4.1 and the fact that the characteristic foliation of Πτ converges to that of ΠPL as τ → 0

away from the non-smooth corners of ΠPL. In particular, the trapping region of the smooth
fold can be approximated with arbitrary precision, from which the existence of a closed
interval Hτ

trap satisfying (i) and the first part of (iii) follows. Similarly, the piecewise-linear
holonomy away from the trapping region can be approximated with arbitrary precision
on a domain which is arbitrarily close to (0, e−s0t0); this gives (ii) and the second part of
(iii). This leaves the remaining portion of [0, t0]. Since hPL((0, e−s0t0)) = (0, t0), (iv) follows
immediately.

4.2.3 Smooth box folds in high dimensions

We define smooth box folds in arbitrary dimensions in the same fashion. To establish some
convenient notation, define

HPL
trap := [(0, t0)×N s0(∂W0)] ∪

[
(e−s0t0, t0)× (W0 \N s0(∂W0))

]
HPL

pass := (0, e−s0t0)× (W0 \N s0(∂W0)).

The former is the trapping region of a piecewise-linear box fold with z0 > es0t0 as described
in (i) of Proposition 4.4, and HPL

pass is the domain of hPL from the same proposition. Here,
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of course, (W0, λ0) is a Weinstein domain of any dimension.

Fix a small smoothing parameter τ > 0. Let B = [0, s0]× [0, t0]×W0 denote the base of
the box fold and define

Bτ := [τ, s0 − τ ]× [τ, t0 − τ ]×W0 \N τ (∂W0).

Let F τ
aux : Op(B) → R be a smooth function such that

(i) the support of F τ
aux is B,

(ii) 0 ≤ F τ
aux ≤ z0 and F τ

aux ≡ z0 on Bτ , and
(iii) if τ1 < τ2 < τ , then we have an inequality of suprema:

sup
B\Bτ1

F τ
aux ≤ sup

B\τ2
F τ
aux.

Definition. A function F : B → R is τ -admissible if ∥F − F τ
aux∥C∞(B) < τ and graph(F )

has Morse characteristic foliation in the contactization of B.

Definition. Fix z0, s0, t0, τ > 0 and let F τ : B → R be τ -admissible. A smooth box fold

with parameters z0, s0, t0 and smoothing parameter τ , denoted Πτ , is the hypersurface
graph(F τ ) in the contactization of B.

In this higher dimensional setting, we actually only need to perturb F τ
aux in the (s, t)

directions to obtain a τ -admissible function, since (W0, λ0) is a Weinstein domain. Thus, we
can still appeal to C∞-genericity in two dimensions. Indeed, by Lemma 4.7, the Liouville
vector field of dF + es(dt+ λ0) is, away from ∂W0,

∂s + e−sXds dt
F − e−s∂F

∂t
Xλ0 =

(
1 + e−s∂F

∂t

)
∂s − e−s∂F

∂s
∂t − e−s∂F

∂t
Xλ0 .

The first two terms correspond to the Liouville vector field after installing a low-dimensional
box fold as in 4.2.2. The third term is a nonzero multiple of Xλ0 near critical points of the
first two terms, and hence is Morse in this direction.
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Remark. It is important to have a discussion about the indices of the introduced critical
points after a box fold installation. If x ∈ W0 is a critical point of the vector field Xλ0 with
index k, then a smooth box fold installation introduces two associated critical points to the
Liouville vector field of B: one of index k, and one of index k + 1. However, the discussion
from 4.1.4 suggests a more general principle. Suppose that the supporting contact region
H0 has convex boundary, and suppose that the positive region R+(∂H0) of the convex
boundary has a critical point of index k. Then the analogous box fold construction over
H0 produces corresponding critical points of index k and index k + 1. When H0 is a
genuine contact handlebody, both the positive and negative region of ∂H0 are naturally
symplectomorphic toW0, and the initial remark follows. When we define chimney folds
in Section 5.1, we will fold over a region which is not a genuine contact handlebody, and
there will be critical points in the positive region that are not present in the negative region.
This will be important.

The following proposition is the high-dimensional generalization of Lemma 4.8, and
the proof is identical.

Proposition 4.9. Suppose z0 > t0. Let hτ : {s0} × H0 99K {0} × H0 be the partially-defined

holonomy map given by backward passage through Πτ . There are closed regions Hτ
trap ⊂ HPL

trap and

Hτ
pass ⊂ HPL

pass such that:

(i) Any flowline enteringHτ
trap converges to a critical point inΠτ in backward time; that is,Hτ

trap

is not in the domain of hτ .

(ii) As τ → 0, ∥∥hτ − hPL
∥∥
C0(Hτ

pass)
→ 0.

Here, the C0-norm is defined by choosing some auxiliary metric onW0.

(iii) As τ → 0,

|HPL
trap \Hτ

trap| → 0 and |HPL
pass \Hτ

pass| → 0.

(iv) If x ∈ H0 \ (Hτ
trap ∪ Hτ

pass) is in the domain of hτ , then hτ (x) ∈ Opτ (∂H0), where

|Opτ (∂H0)| → 0 as τ → 0.
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In the low-dimensional setting of Lemma 4.8, ∂H0 = {0, t0} and so statement (iv) is
fairly strong (and uninteresting). In the high-dimensional setting when H = [0, t0]×W0,
∂H0 is much larger and consequently the statement that hτ (x) ∈ Opτ (∂H0) is less insightful.
Proposition 4.9 does not give any control over where the flowline exits near the boundary.
This is significant, even though H \ (Hτ

trap ∪Hτ
pass) is an arbitrarily small subset of H0. We

will investigate this more in the next subsection.

Finally, we remark that smooth box holes are defined exactly as above, and the statement
of Proposition 4.9 still holds (with the obvious reinterpretations in terms of the piecewise-
linear box hole holonomy.)

4.2.4 Complications in the smooth holonomy

In Proposition 4.9, there is a regionH0 \(Hτ
trap∪Hτ

pass) for which the nature of the holonomy
is currently unidentified, beyond exiting the fold near ∂H0. This region has arbitrarily
small measure in H0 and acts as a membrane between ∂H0, Hτ

trap, and Hτ
pass. The goal of

this brief subsection is to convince the reader of the following principle: the holonomy of
points entering H0 \ (Hτ

trap ∪Hτ
pass) is influenced by the characteristic foliation of ∂H0. The

gravity of this influence is variable and hard to describe precisely. For our purposes, we
only need a careful understanding of this principle in a one part of H0.

A smooth box fold, by definition, is a smooth approximation of the hypersurface ΠPL.
For now, we will focus on the complications arising from smoothing the edge s = 0 ∩ ∂W0.
Recall that the oriented characteristic foliation on s = 0 is ∂t − ∂z, and on ∂W0 it is ∂t −Rη0 .
Also recall that the characteristic foliation on t = 0 is −∂s +Xλ0 . Thus, in the piecewise-
linear setting, any flowline travelling across t = 0 eventually reaches either s = 0 or ∂W0 (of
course, ignoring the corner). If the flowline reaches s = 0with a small enough z-coordinate
it will then exit the fold. If it instead reaches ∂W0, it will swirl around ∂W0, eventually
reaching t = t0, where it is ultimately trapped.

Oncewe round the corner s = 0∩∂W0, therewill be someflowlines along t = 0 that reach
the rounding region connecting the two sides. Along this rounded side, the characteristic
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foliation will be directed by some interpolation of ∂t − ∂z and ∂t − Rη0 . There will be
some flowlines that, upon reaching the rounded corner, will move in both the negative z-
direction and in the−Rη0 direction. Such a flowline could exit the fold somewhere near ∂H0,
having experienced significant movement in the −Rη0 direction. This type of holonomy
is not present in the piecewise-linear setting, nor is it described by (ii) of Proposition
4.9, and unfortunately it has irritatingly significant implications — for example, see the
piecewise-linear proof of Proposition 1.7 in Section 5.2.

t = 0

Xλ0

s

W0

t

Figure 4.8: A heuristic depiction of complicated smooth holonomy arising from rounding
the edge s = 0 ∩ ∂W0. On the left is the projection of t = 0 to the s and Xλ0 directions; here
the foliation is−∂s+Xλ0 . On the right is the projection toH0 = [0, t0]×W0. The flowline in
blue reaches ∂W0 before s = 0 and is ultimately trapped after reaching t = t0. The flowline
in red reaches s = 0 first, and exits the fold after experiencing the holonomy described
by hPL. The flowline in green reaches the rounded corner in gray, and experiences some
interpolation of ∂t − ∂z and ∂t −Rη0 . In particular, it experiences some motion in the −Rη0

direction before exiting the fold.

For our purposes, we only need to carefully consider those flowlines entering the fold
near t = 0. The following lemma is a technical summary of the following principle: if a
point enters a smooth box fold near t = 0 and passes through the fold with a significant
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increase in t-coordinate, then the holonomy was heavily influenced by the characteristic
foliation of ∂H0. That is, hτ (x) is close to a finite time flow along the characteristic foliation
of ∂H0.

Lemma 4.10. Let Πτ be a smooth box fold, and let ε(τ) > 0 be a quantity such that {0 ≤ t <

ε(τ)} ⊂ H0 \ (Hτ
trap ∪Hτ

pass). Suppose that x ∈ H0 satisfies t(x) ∈ [0, ε(τ)). Let ψs
∂H0

: ∂H0 →

∂H0 be the time-s flow of the characteristic foliation of ∂H0. Let t̄ := t(hτ (x)) and suppose that

t̄≫ ε(τ). Then as τ → 0, there is some s̄ such that

∥∥hτ (x)− ψs̄
∂H0

(t = 0,W0(x))
∥∥→ 0.

Here, the norm is defined by choosing some auxiliary metric onW0.

Proof. This lemma is essentially a formalization of the discussion from above. Let z̄ denote
the maximum z-coordinate of the flowline through x as it passes through Πτ . Since t(x) <
ε(τ) and ε(τ) → 0 as τ → 0, the analysis of 4.1.2 implies that z̄ = O(τ). Since t̄≫ ε(τ), the
interpolation between the vector fields ∂t − ∂z and ∂t −Rη0 near s = 0∩ ∂W0 skews heavily
in favor of the latter, with the disparity increasing as τ → 0.

The usefulness of this fact will become clear in the proof of Proposition 1.7 in Section
5.2. We also emphasize that there is complicated behavior for nearly all flowlines entering
H0 \ (Hτ

trap ∪Hτ
pass), not just those entering near t = 0. For our strategy, it is unnecessary to

dwell on this.

We do, however, wish to obtain an estimate on the strength of the induced movement
in the Weinstein direction away from the skeleton. Recall that in a piecewise-linear fold,
Proposition 4.4 describes the holonomy as

hPL(t, w) = (es0t, ψs0(w))

where ψs is the time-s flow of Xλ0 , the Liouville vector field of the Weinstein base (W0, λ0).
That is, every point experiencing holonomy simply flows for time s0 in the Xλ0 direction.
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In a smooth fold, this is approximately true for a large class of points according to (ii) of
Proposition 4.9, but (iv) of the same proposition leaves open the possibility for erratic
behavior near the boundary as described in the present subsection. However, the time-s0
flow of Xλ0 still provides an “upper bound” for the holonomy in this direction, loosely
speaking.

Lemma 4.11. Let Π0 be a smooth box fold installed over the contact handlebody (H0 = [0, t0]×

W0, dt+λ0)with symplectization length s0. Let h : {s0}×H0 99K {0}×H0 be the partially-defined

holonomy map given by backward passage through Π0. Then

∥h(x)∥W0
≤ es0 ∥x∥W0

.

Proof. To obtain an estimate on ∥h(x)∥W0
we need to estimate the net change in the Xλ0

direction in the statement of Lemma 4.7. According to that lemma, the coefficient in front
of Xλ0 in the Liouville vector field is −e−s ∂F

∂t
, where F is the folding function of Π0. In

particular, when ∂F
∂t
> 0 there is movement away from the skeleton in backward time, and

when ∂F
∂t

< 0 there is movement toward the skeleton. Thus, to obtain an upper bound
∥h(x)∥W0

of a point with holonomy, it suffices to assume ∂F
∂t

≥ 0 for the duration of the
passage through the fold.

Lemma 4.7 also implies that the coefficient in front of ∂s in the Liouville vector field is
1 + e−s ∂F

∂t
. Thus, the two relevant terms for determining the holonomy from {s = s0} →

{s = 0} are (
1 + e−s∂F

∂t

)
∂s − e−s∂F

∂t
Xλ0 .

Since 1 + e−s ∂F
∂t
> 0, we may scale the vector field above to obtain

∂s −
e−s ∂F

∂t

1 + e−s ∂F
∂t

Xλ0 .

Note that
0 ≤

e−s ∂F
∂t

1 + e−s ∂F
∂t

≤ 1.
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Thus, an upper bound for the movement away from the skeleton is given by the time-s0
flow of the vector field Xλ0 . The lemma then follows from the fact that

∥ψs0(x)∥W0
= e−sx+s0 = es0 ∥x∥W0

.

71



CHAPTER 5

Box fold variants

JUST COPY AND PASTED FROMMITSU

5.1 Chimney folds

A box fold is based over the symplectization of a contact handlebody, which, by definition,
is a Reeb-thickened Weinstein domain. The exact behavior of a box fold as described in
Section 4.1 relies on the fact that a contact handlebody has Reeb chords of constant length,
as well as the fact that the Weinstein direction is a domain. However, we have already
seen in 4.1.4 that a fold installed over something other than a genuine contact handlebody
can still trap flowlines in backward time; that is, it is possible to introduce critical points
to the Liouville vector field of a Liouville domain by folding over regions that are more
complicated than ordinary contact handlebodies.

A chimney fold — the main tool used in Section 5.2 to prove Proposition 1.7 — is such
a fold. From one perspective, a chimney fold is simply a box fold based over a subset of
a contact handlebody, rather than the entire contact handelbody. By carefully carving
out the supporting region, we can influence which flowlines are trapped and also direct
the holonomy in an advantageous way. We will define a chimney fold by identifying the
supporting region in a way that is tailored to the proof of Proposition 1.7, but the analysis
in this section should be viewed as a first step toward developing a more sophisticated
understanding of local manipulations of Liouville vector fields.

Our motivation for the design of a chimney fold comes from the need to deal with
complications in the smooth holonomy of a box fold as described in 4.2.4. Indeed, it is
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possible to prove a piecewise-linear version of Proposition 1.7 with a single, ordinary box
fold. For convenience and motivation, we give this proof in 5.2.2 and describe why it breaks
down in the smooth setting. In fact, if the reader would like this motivation before tackling
the details of chimney folds, 5.2.2 can be read independently of the present section.

5.1.1 Piecewise-linear chimney folds

As with box folds, we proceed by defining chimney folds in piecewise-linear form. For
most of the section, we will restrict ourselves to chimney folds defined on 4-dimensional
Liouville domains, where all of the interesting behavior occurs. In 5.1.3 we will extend
chimney folds to arbitrary dimensions, which is a straightforward process and does not
introduce any significant complications.

Fix z0, s0, t0 > 0 and assume that z0 = es0t0. We emphasize the importance of this
last assumption for our setup. Let (W 2

0 , λ0) be a Weinstein domain of dimension 2. For
our purpose, we will also assume that ∂W0 is connected, so that ∂W0

∼= S1. Identify
the collar neighborhood N s0(∂W0) as in Sections 4.1 and 4.2 and recall that N s0(∂W0) is
naturally symplectomorphic to ((−s0, 0]r × ∂W0, e

r η0).We begin by identifying a subset
C ⊂ N s0(∂W0) as follows. Let γC ⊂ ∂W0 be any connected arc, and define

C := [−s0 + εaux, 0]r × γC .

Here εaux is a small, unimportant auxiliary parameter.

As before, we can consider the contact handlebody ([0, t0] ×W0, dt + λ0). Instead of
folding over this entire handlebody, wewill identify a subsetHC

0 ⊂ [0, t0]×W0 that supports
the fold. Fix 0 < t− ≪ t0 and define

HC
0 := ([0, t−]×W0) ∪ ([0, t0]× C).

In words, HC
0 acts as a contact handlebody of sorts with Reeb chords of non-constant

length: over W0 \ C Reeb chords have length t−, and over C they have length t0. From
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another perspective, H is an ordinary contact handlebody [0, t−] ×W0 together with an
appended contact region that resembles the supporting region of a pre-chimney fold (a
Reeb-thickened trivial cobordism C).

Remark. We will refer to the region [0, t0]×C as the chimney ofHC
0 , and to [0, t−]× (W0 \C)

as the stove.

C

t = 0

t = t−

t = t0

W0

C

γC
h∂W0(γC)

h2∂W0
(γC)

hn∂W0
(γC)

Figure 5.1: A depiction of the supporting region HC
0 in a chimney fold. On the left figure,

the characteristic foliation ∂t − Rη0 of ∂W0 is depicted by the dashed red lines; the main
assumption about iterates of γC under h∂W0 is depicted in theW0 projection on the right.
On both figures that dashed gray curve represents N s0(∂W0).

Ultimately, a chimney fold will be given by a smooth approximation of a scaled indicator
function of [0, s0]s × HC

0 , exactly as with an ordinary box fold. However, to achieve the
desired behavior we impose an important assumption.

To state this assumption, we need to introduce some notation. Let h∂W0 : {t = 0} ×

∂W0 → {t = t−} × ∂W0 be the holonomy map given by the backward characteristic
foliation of [0, t−]× ∂W0 in the stove ([0, t−]×W0, dt+ λ0). Recall that this characteristic
foliation is directed by ∂t − Rη0 . As always, we will abuse notation slightly and write
h∂W0 : ∂W0 → ∂W0.

Example 5.1. Suppose that (W0 = r0D2, λ0 =
1
2
r2 dθ). The backward oriented characteristic
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foliation of [0, t−]× ∂W0 is directed by ∂t − 2
r20
∂θ and so

h∂W0(θ) = θ − 2

r20
t−.

The key assumption needed to define a chimney fold is the following.

Main assumption. Let n be the smallest integer so that nt− > t0. Then γC ∩ hj∂W0
(γC) = ∅

for all 1 ≤ j ≤ n.

This assumption ensures two main features of the boundary holonomy h∂W0 :

(1) the map h∂W0 displaces γC , and
(2) the image of γC does not circle around the boundary back to itself after up to n iterates

under h∂W0 .

See Figure 5.1. In practice, we will choose t− ≪ t0 to be very small. Thus, (1) will come
from a combination of γC being small and Rη0 being large near γC , and (2) will come from
ensuring that ∂W0 is long enough. It will become clear as we analyze the dynamics of
a chimney fold why this assumption is necessary. We also remark that, more generally,
this assumption can be stated by requiring n to satisfy nes0t− > z0. Since we are assuming
z0 = es0t0, this simplifies to nt− > t0. The cost of increasing z0 further is an increase in the
value of n.

To define a chimney fold, we consider the contactization of the symplectization of HC
0 :

(
Rz × [0, s0]×HC

0 , dz + es (dt+ λ0)
)

Definition. Fix z0, s0, t0 > 0 with z0 = es0t0, and suppose that HC
0 is defined as above

with the main assumption satisfied. A piecewise-linear chimney fold with parameters

z0, s0, t0, t−, denoted CΠPL, is the hypersurface

CΠPL := ∂([0, z0]× [0, s0]×HC
0 ) \ {z = 0}.
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As with piecewise-linear box folds, we adopt the following notation to refer to the
various sides of CΠPL:

z = z0 := {z = z0} × [0, s0]×HC
0

s = 0 := [0, z0]× {s = 0} ×HC
0

s = s0 := [0, z0]× {s = s0} ×HC
0

t = 0 := [0, z0]× [0, s0]× {t = 0} ×W0

t = t− := [0, z0]× [0, s0]× {t = t−} × (W0 \ C)

t = t0 := [0, z0]× [0, s0]× {t = t0} × C

∂W0 := [0, z0]× [0, s0]× [0, t−]× ∂W0

∂C := [0, z0]× [0, s0]× [t−, t0]× ∂C.

Observe the subtleties in the definition of sides such as t = t− and ∂W0 in comparison to
the ordinary box fold setting. This accounts for the various pieces of ∂HC

0 . As in Section
4.1, we compute the oriented characteristic foliation of each side in Table 5.1.

Side Characteristic foliation
z = z0 −∂s
s = 0 ∂t − ∂z
s = s0 −∂t + es0∂z
t = 0 −∂s +Xλ0

t = t− ∂s −Xλ0

t = t0 ∂s −Xλ0

∂W0 ∂t −Rη0

∂C X∂C

Table 5.1: The oriented characteristic foliation of a chimney fold.

Here, X∂C is simply a placeholder for the backward oriented characteristic foliation of
∂C. For example, we could write X∂W0 = ∂t −Rη0 . The explicit description of X∂C is given
by the table in 4.1.4 that gives the characteristic foliation of a pre-chimney fold. Speaking
loosely, most flowlines of X∂C swirl around ∂C and up in the t-direction toward t = t0.

Our next goal is to prove the following proposition, which is the key feature of a chimney
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fold.

Proposition 5.2. Suppose that x ∈ {z = 0} × {s = s0} × (0, t0) × int(C). Then the flowline

through x of the characteristic foliation of CΠPL is trapped in backward time.

Informally, this proposition says that a chimney fold traps everything entering the
chimney portion of HC

0 . The utility of the chimney fold in comparison to a pre-chimney
fold is evident: with a chimney fold, one can trap everything in the chimney, at the cost of
also folding over a large but t-thin stove [0, t−]× (W0 \C). With a simple pre-chimney fold,
it is obviously impossible to trap everything in the chimney region. The role and impact of
the stove, together with the main assumption, will become clear in the proof of Proposition
5.2.

For convenience, we begin with a lemma. The proof will elucidate how a chimney fold
exhibits the behavior of both an ordinary box fold and a pre-chimney fold in different
regions.

Lemma 5.3. If a flowline reaches z = z0 in a chimney fold, it is trapped in backward time.

Proof. The characteristic foliation of z = z0 is directed by −∂s, so upon reaching z = z0 the
flowline will travel to s = 0. There are two cases to consider: the flowline reaches either
s = 0 ∩ C or s = 0 ∩ (W0 \ C).

Case 1: the flowline reaches s = 0 ∩ C.

Along s = 0 the foliation is directed by ∂t − ∂z. Over C, the length of the Reeb chords is
t0. Since z0 = es0t0 > t0, the flowline will reach t = t0. Because a chimney fold behaves like
a pre-chimney fold near t = t0, and because the flowline came from z = z0, we may apply
Lemma 4.6 to conclude that the flowline is ultimately trapped.

Case 2: the flowline reaches s = 0 ∩ (W0 \ C).

This case essentially follows from Lemma 4.3, with one minor subtlety. For convenience,
we give the argument here. OverW0 \ C, the length of the Reeb chords is t− < z0. Thus,
the flowline follows ∂t − ∂z to t = t−. Here the foliation is directed by ∂s −Xλ0 . Because C
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is defined by the backward flow of some arc in ∂W0, and because the flowline is currently
in W0 \ C, it follows ∂s − Xλ0 to s = s0 (as opposed to potentially reaching ∂C). The
W0-coordinate has moved closer to Skel(W0, λ0), and the flowline is still inW0 \ C.

Along s = s0 the flowline follows −∂t + es0 ∂z. Because the flowline originally reached
t = t− from z = z0, the flowline will then reach z = z0. We return to Case 2. Note that the
t-coordinate has increased, and theW0-coordinate has moved closer to the skeleton. The
flowline cycles through Case 2 indefinitely and never exits the fold.

Proof of Proposition 5.2. Let x ∈ {z = 0} × {s = s0} × (0, t0)× int(C) denote the entry point
of the flowline. The foliation is directed by −∂t + es0 ∂z along s = s0. Since t(x) < t0 and
z0 = es0t0, the flowline reaches t = 0with z-coordinate es0t(x). Here it follows −∂s +Xλ0 .
Since the flowline began in C ⊂ N s0(∂W0), it then reaches ∂W0 before s = 0.

Here it follows ∂t − Rη0 . By the main assumption — in particular, the fact that γC ∩

h∂W0(γC) = ∅— the flowline then reaches t = t− (as opposed to ∂C).

Along t = t− the flowline follows ∂s − Xλ0 . Since the flowline is currently in W0 \ C,
it will reach s = s0 (as opposed to ∂C), as in the proof of Lemma 5.3. Along s = s0, the
flowline follows −∂t + es0 ∂z. If the flowline reaches z = z0, it is ultimately trapped by
Lemma 5.3. Otherwise, it reaches t = 0with z-coordinate es0t(x) + es0t−.

At this point, we essentially return to the beginning of the proof: the flowline has reached
t = 0, but now with an increased z-coordinate of es0t(x) + es0t−. After j cycles through this
process, the flowline will either reach z = z0, or it will reach t = 0with z-coordinate

es0t(x) + jes0t−.

Furthermore, with each cycle through this process, the flowline travels along ∂W0 via
h∂W0 . Recall the main assumption: with n the smallest integer satisfying nt− > t0, we
have γC ∩ hj∂W0

(γC) = ∅ for 1 ≤ j ≤ n. This assumption ensures that the above process
terminates only by reaching z = z0, rather that eventually reaching ∂C. Indeed, after n
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cycles through this process, the z-coordinate of the flowline would otherwise be

es0t(x) + nes0t− > nes0t− > es0t0 = z0.

See Figure 5.2 for a visualization of this argument.

t

γC

Rη0

t = 0

t = t−

t = t0
∂W0

Xλ0

Rη0

C

ψ−s0(∂W0)

Figure 5.2: A flowline entering CΠPL in the chimney that eventually gets trapped according
to Proposition 5.2. It initially travels down to t = 0, then cycles through a process involving
h∂W0 a number of times before reaching z = z0.

Before moving on, we include some further discussion on what goes wrong without
the main assumption as a way to clarify this aspect of the behavior of a chimney fold. In
particular, we identify the regions of HC

0 that “expand” under the holonomy to fill in the
chimney, which is entirely trapped by Proposition 5.2. This discussion is not necessary for
the analysis in Section 5.2; it is simply meant to help the reader understand the role and
function of a chimney fold.

Recall that in an ordinary (piecewise-linear) box fold, any flowline that reaches ∂W0

is ultimately trapped. Indeed, the foliation along this side is directed by ∂t − Rη0 , so the
flowline reaches t = t0 and is trapped by Lemma 4.3. In contrast, it is not the case that any
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flowline reaching ∂W0 in a chimney fold is trapped. Any flowline that reaches ∂W0 via C is
trapped — this is essentially the proof of Proposition 5.2 — but it possible to reach ∂W0

outside of C and eventually exit the fold.

For example, let
h−1
∂W0

(C) := [−s0 + εaux, 0]r × h−1
∂W0

(γC)

and consider a flowline that enters the fold in HC
0 via (0, e−s0t−)× h−1

∂W0
(C). Suppose that

the initial r-coordinate of the flowline is −s̄ for some 0 < s̄ < s0 − εaux. As the flowline
enters the fold, it travels across s = s0 via −∂t + es0 ∂z, reaching t = 0 first. Here it follows
−∂s +Xλ0 . Since s̄ < s0 − εaux, the flowline will reach ∂W0. Note that the new s-coordinate
is s0 − s̄. By definition of h−1

∂W0
(C), the flowline follows ∂t −Rη0 and will eventually reach

∂C, as opposed to t = t−; see Figure 5.3.

The flowline then follows the characteristic foliation of ∂C, and a portion of such
flowlines will reach t = t− rather than spiral up toward t = t0. Note that traversing the
characteristic foliation of ∂C does not change the s-coordinate. Thus, a flowline that reaches
t = t− via ∂C will do so with s-coordinate s0 − s̄. On t = t− the flowline follows ∂s −Xλ0

to s = s0, again due to the definition of C. The r-coordinate (i.e., the Xλ0-coordinate) of
the flowline is now −s0 + εaux − s̄. Here the flowline follows −∂t + es0 ∂z to t = 0 where
it then follows −∂s +Xλ0 . Because the r-coordinate upon reaching t = 0 is −s0 + εaux − s̄,
the flowline reaches s = 0 first, and it will do so with r-coordinate −s̄+ εaux. In particular,
for most values of s̄, theW0-coordinate of the flowline will now be in C. Along s = 0 the
flowline follows ∂t − ∂z. Since the length of the Reeb direction over C is t0, which is larger
than than the current z-coordinate of the flowline, the flowline will travel up the chimney
some distance and exit the fold.

This clarifies how the chimney is “filled in.” Roughly speaking, points that enter in
the chimney get funneled down and pass through the iterates hj∂W0

(C) in the stove for
1 ≤ j ≤ n before ultimately getting trapped. While this is happening, points entering
through a collection of preimages h−j

∂W0
(C) in the stove pass through the various iterates and

eventually travel up the chimney and then exit the fold. As the z-coordinate of a flowline
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Rη0

Rη0

Xλ0

t

t

γCh−1
∂W0

(γC)

x1

x1

x2

x2

x3

C

Figure 5.3: A depiction of a flowline that enters the fold in the stove above h−1
∂W0

(C) and
ultimately exits the fold after traveling up the chimney some distance. Two different phases
of the flowline are color coded in green and pink for visual clarity, with the rightmost
projection containing only the green phase. The flowline enters the fold at x1 and exits the
fold at x3.

increases with each application of h∂W0 , it follows that points entering h−(j+1)
∂W0

(C) with
holonomy fill in a portion of the chimney above points entering h−j

∂W0
(C)with holonomy.

Thus, the role of the t-thin stove is two-fold: it provides enough room to funnel points
entering the chimney away to be trapped, and it also provides a repository of points that
will ultimately fill in the trapping region in the chimney. The main assumption in defining
a chimney fold simply gaurantees that these two features function independently of each
other.

Once again, we emphasize that this discussion is not important for the proof of Proposi-
tion 1.7; its purpose is simply to bolster intuition about the dynamics of a chimney fold. We
do not need to carefully study the holonomy of points enteringHC

0 away from the chimney
region.

81



Rη0

C h∂W0(C) hn∂W0
(C)

∂W0

ψ−s0(C)

h−n
∂W0

(C) h−1
∂W0

(C) Xλ0

Figure 5.4: Various iterates of C under h∂W0 . Points entering the fold above C are funneled
down and pass through the forward iterates, depicted in green. Some points entering the
fold in the stove above the red regions ultimately fill in the chimney and exit the fold. The
region ψ−s0(C) fills in the lowest portion of the chimney; the first backward iterate h−1

∂W0
(C)

fills in the next lowest portion of the chimney, and the highest order backward iterate fills
in the top part of the chimney.

5.1.2 Smooth chimney folds

Now we briefly discuss smooth chimney folds. As we have mentioned, we are fortunate to
have a relatively robust strategy and thus it is unnecessary to study the smooth holonomy
in detail: it will suffice to identify a smooth trapping region in the chimney.

Let τ > 0 be a small smoothing parameter, and define Bτ := [τ, s0 − τ ]×Hτ
0 where Hτ

0

is an inner approximation of HC
0 defined as follows:

Hτ
0 :=

(
[τ, t− − τ ]×W0 \N τ (∂W0)

)
∪ ([τ, t0 − τ ]× [−s0 + εaux + τ,−τ ]r × γτC) .

Here, γτC is an inner approximation of γC such that γτC → γC as τ → 0. In words, Hτ
0 is

simply a contracted version of HC
0 such that Hτ

0 → HC
0 as τ → 0. As before, we let F τ

aux be
an appropriate smooth function with support in B and F τ

aux ≡ z0 on Bτ , and we further
define τ -admissibility.

Definition. A function F : B → R is τ -admissible if ∥F − F τ
aux∥C∞(B) < τ and graph(F )
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has Morse characteristic foliation in the contactization of B.

Definition. Fix z0, s0, t0, t−, τ > 0 with t− ≪ t0 and z0 = es0t0, and let F τ : B → R

be τ -admissible. A smooth chimney fold with parameters z0, s0, t0, t− and smoothing

parameter τ , denoted CΠτ , is the hypersurface graph(F τ ) in the contactization of B.

We remind the reader that this definition implicitly includes the main assumption about
h∂W0 . The next proposition identifies part of the trapping region of a smooth chimney fold
in similar fashion to Proposition 4.9. The statement is immediate from Proposition 5.2.

Proposition 5.4. Let CΠτ be a smooth chimney fold. There is a closed set intτ (C) ⊂ int(C) and a

function ε(τ) > 0 such that:

(i) Any flowline entering [ε(τ), t0 − ε(τ)] × intτ (C) converges to a critical point in CΠτ in

backward time.

(ii) As τ → 0, ε(τ) → 0 and |int(C) \ intτ (C)| → 0.

We remark that the region [ε(τ), t0 − ε(τ)]× intτ (C) described in (i) does not identify
the entire trapping region of the chimney fold. There are certainly other flowlines that are
trapped. For our purpose, it is only necessary to identify part of the trapping region in the
chimney.

The one nontrivial aspect of the smooth holonomy of a chimney fold we need for our
strategy in Section 5.2 is the following lemma. In words, it says that if a flowline exits the
fold anywhere in or on the central chimney portion (above the stove, and below the top of
the chimney), the initialW0-coordinate of the flowline was not in intτ (C).

Lemma 5.5. Let hτ : {s = s0} ×HC
0 99K {s = 0} ×HC

0 be the partially-defined holonomy map

given by the oriented characteristic foliation of CΠτ . If t(hτ (x)) ∈ (2t−, t0 − t−) then W0(x) ∈

W0 \ intτ (C).

Remark. The exact threshold that defines the central part of the chimney in this lemma
(namely, the extra factor of t− in the interval (t− + t−, t0 − t−) is not so important for our
application. We also stress that this lemma is primarily meant to rule out the possibility that
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a flowline enters the fold inside intτ (C) near t = 0 (below the trapping region) and exits
the fold somewhere near the boundary of the central part of the chimney. The importance
of this exclusion will become clear in Section 5.2.

Proof. To prove the lemma it suffices to show that if W (x) ∈ intτ (C), then t(hτ (x)) /∈

(2t−, t0 − t−). By Proposition 5.4, [ε(τ), t0 − ε(τ)]× intτ (C) is not in the domain of hτ (these
points are trapped), so we only need to consider points with t(x) > t0 − ε(τ) or t(x) < ε(τ).

This is where the discussion in 4.2.4 enters the play. In order for such points to exit
the fold after experiencing significant movement in the t-direction, they must be heavily
influenced by the characteristic foliation of ∂HC

0 . For points x entering the fold near t = 0,
the main assumption — specifically, the fact that γC ∩ h∂W0(γC) = ∅ — ensures that any
flowline through x will, at worst, follow the characteristic foliation of ∂W0 up to t = t−,
missing the central part of the chimney; see Figure 5.1. In particular, t(hτ (x)) < 2t−. For
points near t = t0, a flowline of the characteristic foliation of ∂HC

0 beginning on t = t0

descends no further than t = t0 − t−, again by the fact that γC ∩ h∂W0(γC) = ∅. See also the
analysis of the pre-chimney fold characteristic foliation in 4.1.4. Thus, provided τ is small
enough, we have t(hτ (x)) > t0 − t− as desired.

We close this subsection with a remark about the subset C ⊂ W0. We defined C by
choosing an arc γC ⊂ ∂W0 and setting C := [−s0 + εaux, 0]r × γC . It should be clear from
the analysis presented above that we are in fact free to let C be any (simply connected,
codimension 0) subset of [−s0 + εaux, 0]r × γC . The qualitative behavior of the fold does not
change in any significant way, besides altering the shape of the chimney portion of the fold.

5.1.3 High-dimensional chimney folds

The chimney folds we have discussed so far are based over

[0, s0]×HC
0 ⊂ [0, s0]× [0, t0]× W̃0

2
.
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Here, at the risk of confusing the reader, we now refer to the preferred 2-dimensional
Weinstein domain in the definition of a chimney fold as (W̃ 2

0 , λ̃0), rather than (W 2
0 , λ0). This

is with an eye towards Proposition 1.7, where (W̃ 2
0 , λ̃0) = (r0D2, λstab). In particular, we

would like to define a chimney fold based in a region of the form

[0, s0]×HC
0 ×W0 ⊂ ×[0, t0]× W̃0

2 ×W0

where (W0, λ0) is a Weinstein domain of arbitrary dimension, distinct from (W̃0
2
, λ̃0). This

newW0 direction will correspond to theW0 in the statement of Proposition 1.7. In short,
we will extend the definition of a chimney fold to this setting by constructing a chimney
fold as before in [0, s0]× [0, t0]× W̃ 2

0 and simply decaying near the boundary of the new
Weinstein directionW0.

Definition. Fix z0, s0, t0, t− > 0 with z0 = es0t0, and define HC
0 ⊂ [0, t0] × W̃ 2

0 as before.
A (high-dimensional) piecewise-linear chimney fold with parameters z0, s0, t0, t−0, de-
noted CΠPL, is the hypersurface

CΠPL := ∂([0, z0]× [0, s0]×HC
0 ×W0) \ {z = 0}.

The following proposition is the high-dimensional generalization of Proposition 5.2.
Informally, it says that nothing interesting happens to the trapping behavior of a chimney
fold in this high-dimensional extension: every flowline entering the chimney and anywhere
inW0 is trapped.

Proposition 5.6. Suppose that x ∈ {z = 0} × {s = s0} × (0, t0)× int(C)× int(W0). Then the

flowline through x of the characteristic foliation of CΠPL is trapped in backward time.

Proof. The proof is essentially identical to the proof of Proposition 5.2. Initially, the foliation
along s = s0 is directed by −∂t + es0 ∂z, so the flowline will reach t = 0. Here the foliation
is −∂s + Xλ̃0

+ Xλ0 . The flowline will either reach ∂W̃0
2 or ∂W0. In the former case, the

same analysis in the proof of Proposition 5.2 shows that the flowline is trapped; the only
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additional behavior is some inconsequential back and forth movement in theW0-direction
before ultimately limiting towards Skel(W0, λ0).

In the latter case — when the flowline reaches ∂W0 — it then follows ∂t −Rη0 , where
Rη0 is the Reeb vector field of η0 := λ0 |∂W0 . Note that this Rη0 is not the Rη0 of the previous
subsection, which is now Rη̃0 . Since the W̃0-coordinate of the flowline is in C, where Reeb
chords have length t0, the flowline follows ∂t−Rη0 and ultimately reaches t = t0. By Lemma
4.3 and Lemma 4.6, the flowline is trapped.

The smoothing of chimney folds in arbitrary dimensions works exactly as in Section 4.2
and in 5.1.2. The following proposition is the high-dimensional generalization of Proposi-
tion 5.4, and the statement is immediate from Proposition 5.6. There is one complication
regarding smoothing near ∂W0 which we will discuss after the statement of the proposition.

Proposition 5.7. Let CΠτ be a smooth, high-dimensional chimney fold. There is a closed set

intτ (C) ⊂ int(C) and a function ε(τ) > 0 such that:

(i) Any flowline entering

[ε(τ), t0 − ε(τ)]× intτ (C)×
(
W0 \N ε(τ)(W0)

)
converges to a critical point in CΠτ in backward time.

(ii) As τ → 0, ε(τ) → 0 and |int(C) \ intτ (C)| → 0.

Finally, we point out that the smooth decay of the fold near ∂W0 introduces a compli-
cation in the smooth holonomy which explains the qualifier ∥x∥W0

< e−s0 in part (ii) of
the statement of Proposition 1.7. According to the discussion in 4.2.4, after smoothing,
a flowline can have a significant interaction with ∂W0, yet still exit the fold. This can
produce some unintended t-holonomy. In particular, the main concern is is a flowline
entering the chimney fold near the very bottom of the chimney, along the t-axis, yet very
close to the boundary of ∂W0. If such a flowline is not trapped, it could experience sig-
nificant t-holonomy after being influenced by the characteristic foliation of ∂W0. In the
low-dimensional chimney projection, the flowline would move a minor amount away
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from the stabilization origin and then straight up the chimney. The significance of this
complciation will be explained in Section 5.2. However, if ∥x∥W0

< e−s0 , then the flowline
passing through x does not interact with ∂W0 in this way.

5.2 The blocking apparatus and proof of Proposition 1.7

In this section we prove Proposition 1.7, the local operation that drives the strategy of
Section 6. Recall that Proposition 1.7 describes the installation of a blocking apparatus in a
trivial Weinstein cobordism of the form

(
U = [0, s0]× [0, t0]×W0 × r0D2, es (dt+ λ0 + λstab)

)
.

According to the statement of the proposition, a blocking apparatus should trap a neigh-
borhood of [δ, t0 − δ]× Iϵ(W0, λ0)× {(0, 0)} in ∂+U = {s = s0} in backward time, and the
holonomy hU : ∂+U 99K ∂−U of flowlines that pass through needs to satisfy the following
three conditions:

(i) for some constant 0 < K < 1, we have ∥h(x)∥W0 ≤ Kes0 ∥x∥W0 ;
(ii) for the same constantK, we have ∥h(x)∥stab ≤ Ke

s0
2 ∥x∥stab, whenever ∥x∥W0 < e−s0 ;

(iii) any element of ([0, δ) ∪ (t0 − δ, t0]) × I1−e−s0 (W0, λ0) × {(0, 0)} in ∂+U which is not
trapped is mapped by h to an element of ([0, 2δ) ∪ (t0 − 2δ, t0])×W0 × {(0, 0)}.

Note that I1−e−s0 (W0, λ0) = W0 \N s0(∂W0). The point here is that when we apply Propo-
sition 1.7 in Section 6, the skeleton of the ambient stabilized Liouville domain intersects U
somewhere in

[0, s0]× [0, t0]× (W0 \N s0(∂W0))× {(0, 0)}.

Thus, roughly, a blocking apparatus traps a local neighborhood of the skeleton of the
stabilized domain such that the induced holonomy is controllable.

This section is organized as follows. In 5.2.1, we state a low-dimensional version of
Proposition 1.7, which most of the section will be dedicated to proving. In 5.2.2, as a
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means of motivation for the definition of a blocking apparatus, we prove a piecewise-linear
version of the low-dimensional version of Proposition 1.7 and explain why the proof fails
in the smooth setting. In 5.2.3 we define the low-dimensional blocking apparatus and in
5.2.4 we prove the low-dimensional version of Proposition 1.7. Finally, in 5.2.5 we define
the high-dimensional blocking apparatus and prove that the low-dimensional version of
Proposition 1.7 implies the full statement.

5.2.1 A reduction

Wewill spendmost of this section proving the following proposition, a low-dimensional ver-
sion of Proposition 1.7. Then in 5.2.5 we will show that Proposition 5.8 implies Proposition
1.7.

Proposition 5.8 (Low-dimensional blocking apparatus). Consider the Weinstein cobordism

(U = [0, s0]× [0, t0]× r0D2, es (dt+ λstab)). Fix 0 < δ ≪ t0 arbitrarily small. Then if r0 > 0 is

sufficiently large, a blocking apparatus can be installed in U such that there is a neighborhood Utrap

of

[δ, t0 − δ]× {(0, 0)},

with any flowline passing through {s = s0} × Utrap ⊆ ∂+U converging to a critical point in

backward time. Moreover, the partially-defined holonomy map h : ∂+U 99K ∂−U satisfies

(i) for some constant 0 < K < 1, we have ∥h(x)∥stab ≤ Ke
s0
2 ∥x∥stab;

(ii) any element of ([0, δ) ∪ (t0 − δ, t0])× {(0, 0)} in ∂+U which is not trapped is mapped by h

to an element of ([0, 2δ) ∪ (t0 − 2δ, t0])× {(0, 0)}.

5.2.2 The piecewise-linear case

In this subsection we provide a straightforward proof of the piecewise-linear version of
Proposition 5.8 to motivate the more complicated strategy of 5.2.4, and we describe why it
breaks down in the smooth setting. This proof also serves as a warm-up to the argument
in 5.2.4, which shares many of the same ideas.
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One of the key ideas is the following. To install a box fold, one needs to first identify a
contact handlebody. There is an obvious choice of handlebody given by ([0, t0]× r0D2, dt+

λstab), but we are actually interested in folding over other contact handlebodies that are
subsets of [0, t0]× r0D2. Given any surfaceW1 ⊂ [0, t0]× r0D2 transverse to the Reeb vector
field ∂t, we can build a handlebody inside [0, t0]× r0D2 by flowingW1 along ∂t for some
amount of time. The point here is that with different choices ofW1, the movement induced
by the fold in the Weinstein direction can be manipulated in advantageous ways.

Proof of the piecewise-linear Proposition 5.8. Fix s1 < s0 and δ1 < δ. Ultimately, we will install
an ordinary piecewise-linear box fold with symplectization support [0, s1] ⊂ [0, s0] such
that the Weinstein domain baseW1 of the supporting contact handlebody H1 is given by

W1 = {t = δ1 − c1p} ∩ {−p1 ≤ p ≤ p1} ∩ {−q− ≤ q ≤ q+}

for some choice of c1, p1, q−, q+ > 0; see Figure 5.5. The contact form dt+ λstab restricts to a
Liouville structure onW1, and one can check that the vector field

X1 :=
1

2
p ∂p +

(
1

2
q + c1

)
∂q

is the resulting Liouville vector field.

We choose all of the necessary parameters needed to define the fold, and we include
some informal explanation of each.

(1) Choose c1 > 0.
This determines the strength of the tilt of the Weinstein baseW1, which determines
the location of the isolated, index 0 critical point ofX1. In particular, the critical point
is located at (p = 0, q = −2c1).

(2) Choose p1 > 0 so that c1p1 < δ1.
This determines the p-width ofW1 and further ensures that the base has t-variation
less than δ1. This is necessary for the handlebody to be a subset of [0, t0]× r0D2.

(3) Choose q− > 2c1.
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−q−
p1−p1

p

t
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0

δ1

t0

t0 − δ1

Figure 5.5: The contact handlebody H1, visualized in various projections in [0, t0]× r0D2.
On the left is the Weinstein baseW1 with flowlines of the induced Liouville vector fieldX1.

This determines the negative q boundary ofW1, and the inequality ensures that X1

will be outward pointing to ∂W1.
(4) Set q+ = 2c1

1−e−
s1
2

1+e−
s1
2
.

This determines the positive q boundary ofW1, and ensures that the trapping region
of the box fold is placed correctly, in a way which is compatible with the desired
radial estimate in (i). In particular, if ψs denotes the time-s flow of (1

2
q + c1

)
∂q on R,

this ensures that
ψ−s1(q+) = −q+.

Indeed, an elementary calculation shows that

ψs1(−q+) = e
s1
2 (−q+ + 2c1)− 2c1.

Thus, ψs1(−q+) = q+ is equivalent to

e
s1
2 (−q+ + 2c1)− 2c1 = q+
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which simplifies to q+ = 2c1
1−e−

s1
2

1+e−
s1
2
.

(5) Choose r0 >
√
p21 + q2−.

This is simply to ensure that r0D2 is large enough to support a fold with the above
parameters.

With these choices, letW1 := {t = δ1 − c1p} ∩ {−p1 ≤ p ≤ p1} ∩ {−q− ≤ q ≤ q+}. We
use (p, q) coordinates onW1. The contact form dt+ λstab restricts to

1

2
p dq −

(
1

2
q + c1

)
dp

onW1, and henceW1 is a Weinstein domain (up to corner rounding) with Liouville vector
field X1. Define a contact handlebody H1 by flowingW1 along the Reeb vector field ∂t for
time t0 − 2δ1. Finally, let ΠPL

1 be a piecewise-linear box fold installed over [0, s1]×H1 with
z-parameter z1 > es1t1. Observe that the induced holonomy {s0} → {s1} is trivial.

First, we prove that any flowline entering a neighborhood of [δ, t0 − δ]× {(0, 0)} in ∂+R
is trapped in backward time. Since δ1 < δ, it follows that

[δ, t0 − δ]× {(0, 0)} ⊂ H1.

Next, let ψs
X1

denote the time-s flow ofX1. By Proposition 4.4, any flowline passing through
a point x ∈ {s1}×H1 with (p(x), q(x)) ∈ N s1(∂W1) converges to a critical point in backward
time in ΠPL

1 . By choice (4),

ψ−s1
X1

({q = q+}) ⊂ {q = −q+}.

In particular, {(0, 0)} ∈ N s1(∂W1). Thus, any flowline passing through a point x ∈ {s1} ×

[δ0, t0 − δ0]× {(0, 0)} converges to a critical point in R in backward time without passing
through ∂−R. This proves the first part of the proposition.

The claim in (ii) is immediate from the definition of ΠPL
1 , as the holonomy for such

points is trivial, if defined. Thus, it remains to prove (i). Note that if a flowline passes
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p

q

q

t−q+

Figure 5.6: Visualizing the trapping region of ΠPL
1 . On the left, the dashed gray line is the

preimage of ∂W1 under the time s1 flow of X1, and the shaded pink region is N s1(∂W1).
On both figures are sample points that enter the fold and pass through without being
trapped. The green point corresponds to Case 1 and the red point corresponds to Case 2.
In the statement of the proposition, (i) essentially says that the holonomy on the left figure
induced by ΠPL

1 is radially dominated by the time s0 flow of 1
2
p ∂p +

1
2
q ∂q.

through {s0} away from H1, the holonomy is trivial. That is, if

x ∈ {s0} ×
((
[0, t0]× r0D2

)
\H1

)
then ∥h(x)∥stab = ∥x∥stab and (i) holds trivially. Thus, it suffices to consider a point
x ∈ {s0} ×H1. By the above remark, if (p(x), q(x)) ∈ N s1(∂W1) then x is not in the domain
of h, so it suffices to consider x ∈ {s0}×H1 with (p(x), q(x)) ∈ W1 \N s1(∂W1). In particular,
it suffices to consider points with q(x) < −q+. By Proposition 4.4 and the fact that the Reeb
vector field is ∂t,

∥h(x)∥stab = ∥ψs1
X1
(x)∥stab

92



where, on the right side of the equality, we are abusing notation and writing x in place of
(p(x), q(x)). In words, this simply says that the change in stabilization coordinate of the
flowline as it exits R is given by the time-s1 flow of X1. Note that

ψs1
X1
(p, q) =

(
e

s1
2 p, e

s1
2 (q + 2c1)− 2c1

)
.

We claim that, on [−p1, p1]× [−q−, q+], we have ∥ψs1
X1
(p, q)∥stab < e

s1
2 ∥(p, q)∥stab. We consider

two cases.

Case 1: e s1
2 (q + 2c1)− 2c1 ≤ 0.

Note the trivial inequality

e
s1
2 q < e

s1
2 (q + 2c1)− 2c1 ≤ 0.

This is immediate from the observation that 2c1(e
s1
2 − 1) > 0. Thus,

∥ψs1
X1
(p, q)∥stab =

∥∥∥(e s1
2 p, e

s1
2 (q + 2c1)− 2c1

)∥∥∥
stab

<
∥∥∥(e s1

2 p, e
s1
2 q
)∥∥∥

stab

= e
s1
2 ∥(p, q)∥stab

as desired.

Case 2: e s1
2 (q + 2c1)− 2c1 > 0.

Recall that it suffices to assume q(x) < −q+. Furthermore, by definition of H1, we
necessarily have

e
s1
2 (q + 2c1)− 2c1 < q+.

Thus,
0 < e

s1
2 (q + 2c1)− 2c1 < q+ < |q| < e

s1
2 |q|.
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It again follows that

∥∥ψs1
X1
(p, q)

∥∥
stab

=
∥∥∥(e s1

2 p, e
s1
2 (q + 2c1)− 2c1

)∥∥∥
stab

<
∥∥∥(e s1

2 p, e
s1
2 |q|

)∥∥∥
stab

= e
s1
2 ∥(p, q)∥stab .

With this claim, we then have

∥h(x)∥stab =
∥∥ψs1

X1
(x)
∥∥
stab

< e
s1
2 ∥x∥stab < e

s0
2 ∥x∥stab

and (i) is proven.

Now we describe why the above proof fails in the smooth setting, if implemented as
described. As we discussed in 4.2.4, in the smooth setting there will be a membrane of
points between Hτ

trap and Hτ
pass that may experience holonomy with significant influence

from the characteristic foliation of ∂H1. In particular, points near ψ−s1
X1

(∂W1)may exit the
fold near ∂H1 after travelling along the characteristic foliation to some degree. This is
a concern in proving (i) of Proposition 5.8, because a flowline could enter the fold near
{q = −q+} and exit as far away as {q = −q−}. In fact, this will almost certainly happen:
since δ > 0 is small, this generally forces the characteristic foliation of ∂H1 to intensely
spiral around ∂W1, almost certainly lending to erratic behavior of the flowlines entering
near ψ−s1

X1
(∂W1). One might hope to deal with this by balancing the parameters of the fold

differently, but this phenomenon persists under such perturbations. The point of a chimney
fold is to drastically redirect this traffic along the long and thin base [0, t−]×W0. Even more
uncontrollable is the smooth holonomy of flowlines entering the fold along the t-axis near
t = δ1 and t = t0 − δ1. Again, there will be such flowlines that are heavily influenced by the
characteristic foliation of ∂H1, exiting the fold far away from the t-axis. This violates both
(i) and (ii) of Proposition 5.8, and no amount of parameter tweaking can fix this.
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There is another subtle but fundamental reason why this strategy is ultimately futile in
the smooth setting, and it has to do with the index of introduced critical points. In many
of our applications, we ultimately need to introduce critical points of index n, where the
dimension of the stabilized domain is 2n. For example, when we apply Proposition 1.7 to
Mitsumatsue’s examples, the low-dimensional blocking apparatus of Proposition 5.8 needs
to introduce a critical point of index 2. The positive region of ∂H1 in the above piecewise-
linear strategy only has a critical point of index 0, and so the resulting critical points of
the Liouville vector field are of index 0 and index 1. In contrast, a blocking apparatus as
defined in the next subsection does introduce a critical point of index 2. Indeed, one of
the components of a blocking apparatus is a chimney fold, and the positive region of the
boundary of the supporting contact region in a chimney fold necessarily has a critical point
of index 1, leading to an overall critical point of index 2.

5.2.3 The low-dimensional blocking apparatus

In this subsection we define a blocking apparatus in 4 dimensions, which is is a two-fold
apparatus installed in a model Weinstein cobordism. The design is such that it leads to a
smooth proof of Proposition 5.8. Briefly, a blocking apparatus will consist of a chimney fold
CΠ1 and an ordinary box hole Π2. The chimney fold will be installed so that the chimney
portion traps the t-axis in [0, t0]× r0D2, and the trapping region of the box hole is lined up
to engulf the stove of the chimney fold. The construction of the chimney fold is similar to
the piecewise-linear box fold defined in 5.2.2. The details of this construction are explained
in this subsection, and the proof of its effectiveness towards Proposition 5.8 is given in the
next subsection.

As before, we consider the cobordism

(
[0, s0]× [0, t0]× R2, es (dt+ λstab)

)
.

For now we use an infinite stabilization direction. We are also given 0 < δ ≪ t0 as in
the statement of Proposition 5.8. First, we choose the parameters necessary to define
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the chimney fold CΠ1 and provide some informal explanation for each. Note that our
convention in this section is as follows, in contrast to the chimney fold model: parameters
with a 0 subscript (like s0, t0) correspond to the given model cobordism, parameters with
a 1 subscript correspond to the chimney fold CΠ1, and parameters with a 2 subscript
correspond to the box hole Π

2. Furthermore, we will often use the radial coordinate
r =

√
o2 + q2.

(1) Fix s1 < s0 and 0 < δ1 < δ.
The parameter s1 will be the symplectization length of the chimney fold, and δ1 is
simply a smaller δ-like parameter meant to introduce some wiggle room to account
for smoothing.

(2) Fix c1 > 0.
This will be the (negative) p-slope of the Weinstein baseW1 ⊂ [0, t0]× R2

p,q that will
define the chimney fold.

(3) Choose p1 > 0 such that c1p1 < δ.
This will determine the p-thickness of the Weinstein base W1, ensuring that the
support of the chimney fold is a subet of [0, t0]× r0D2.

(4) Set t1 = t0 − 2δ and t1,− = δ.
These parameters are the lengths of the Reeb chords of the chimney and stove of CΠ1,
respectively.

(5) Choose 0 < ρ1 < p1 sufficiently small to satisfy the requirements described below.
This will be the radius of the chimney. Ultimately,W1 will be of the form

W1 = {t = −c1p} ⊂ [0, t0]× R2
p,q for (p, q) ∈ ([−p1, p1]× [−q1, 0]) ∪ ({r ≤ ρ1})

for some q1 > 0 to be chosen later; see Figure 5.7. We require ρ1 to be small enough
so that:
(5a) {r ≤ ρ1} ⊂ N s1(∂W1).

This ensures that C1 := {r ≤ ρ1} is a viable chimney region.
(5b) p (h∂W1(p = −ρ1, q = 0)) > ρ1.
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Here h∂W1 is the boundary holonomy map of the stove as in Section 5.1. This
ensures that γC1 ∩ h∂W1(γC1) = ∅, part of the main assumption needed to define
CΠ1.

Both (5a) and (5b) are trivially true as ρ1 → 0.
(6) Define γC1 as described below.

Let γC1 ⊂ ∂W1 be an arc containing {r = ρ1} ∩ {q ≥ 0} ∩ ∂W1 such that γC1 ∩

h∂W1(γC1) = ∅ and {r ≤ ρ1} ⊂ N s1(γC1). Again, refer to Figure 5.7.
(7) Choose q1 > 2c1 > 0 large enough so that the main chimney fold assumption holds.

In other words, we choose the q-length of W1 large enough to ensure that γC1 ∩

hj∂W1
(γC1) = ∅ for all 1 ≤ j ≤ n, where n satisfies nt1,− > t1.

It is possible to give a precise quantitative estimate on q1, but it isn’t necessary. We
need q > 2c1 to ensure thatW1 is a domain (the critical point of the Liouville vector
field ofW1 will be at (p = 0, q = −2c1)), and we simply need q1 to be large enough so
that hn∂W1

(γC1) does not circle all the way around ∂W1 back to γC1 . It is clear that such
a q1 exists, provided we have an arbitrarily large stabilization direction.

With these choices, we can formally define the Weinstein base

W1 := {t = δ1 − c1p} ⊂ [0, t0]× R2
p,q for (p, q) ∈ ([−p1, p1]× [−q1, 0]) ∪ {r ≤ ρ1}

and the setC1 := W1∩{r ≤ ρ1}. We then define H̃C1
1 ⊂ [0, t0]×R2 by flowingW1 along ∂t for

time t1,− and C1 for time t1 to generate the stove and chimney, respectively. We then define
a region HC1

1 as a slight modification of H̃C1
1 , mostly for convenience. In particular, we may

assume that the chimney region extends up to t = t0 − δ1 and that HC1
1 ⊂ {t ≤ t0 − δ}; see

Figure 5.7. Strictly speaking, this contact region HC1
1 is more complicated than the model

region that supports a chimney fold as defined in Section 5.1, because the Reeb chords have
variable length over C1. It should be clear from the analysis of Section 5.1 that this does
not result in any significant change to the dynamics of the resulting chimney fold. It is also
possible to instead use H̃C1

1 in accordance with the strict model of Section 5.1. The blocking
apparatus would require an extra ordinary box fold to account for this. We will not describe
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the details here, and we choose to instead use HC1
1 for convenience. The intention of this

choice is to ensure that the index 2 critical point of the characteristic foliation of ∂HC1
1 at

the top of the chimney coincides with the t-axis.

q

ρ1

p1

p

−2c1

C1

−q1
q

t

t0 − δ1

t0 − 2δ1

3δ1

2δ1

δ1

Figure 5.7: Two projections of HC1
1 . On the left, γC1 is the thick red curve, and the region

N s1(γC1) is given by the dashed red region. On the right, the outline of H̃C1
1 near t = t0 − δ1

is given by the dashed purple line to contrast with the outline ofHC1
1 . The dashed red lines

indicate the characteristic foliation of ∂W1.

Let CΠ1 be a chimney fold installed over HC1
1 with symplectization length s1. This fold

is the main component of a blocking apparatus. The point is that the chimney region of
HC1

1 is lined up to trap a large portion of the t-axis in [0, t0]× r0D2.

Next, we define the second component of a blocking apparatus: a box hole Π2 placed
behind CΠ1 (in the s-sense) to trap points exiting CΠ1 along the stove.

(1) Pick s2 > 0 such that s1 + s2 < s0.
This will be the symplectization length of Π2.

(2) Pick r2 > 0 such that
√
p21 + q21 < r2 < r0.

This will be the radius of the stabilization support of Π2, which needs to be large
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enough to engulf the stove of HC1
1 .

(3) Set t2 = t0
2
and pick z2 < t2

2
. Assume that (1− e−s2)z2 > 3δ1.

These will be the Reeb length and z-parameter of Π2. We choose z2 to be smaller than
t2
2
to ensure that there is no interaction between the two components of the trapping

region of Π2. The assumption is to ensure that the Reeb-thickness of the trapping
region of Π2 is large enough to engulf the stove ofHC1

1 . We are free to make δ1 smaller
in our earlier choice, so this is certainly possible to achieve. The cost of decreasing
δ1 is an increase in the stabilization footprint of the stove. In particular, there is an
increase in n in the main assumption needed to define CΠ1, and thus an increase in
q1 and r0.

With these choices, define W2 := {t = 0} ∩ {r ≤ r2} ⊂ [0, t0] × r0D2 and let Π2 be an
ordinary box hole installed overH2 := [0, t2]×W1 with z-parameter z2 and symplectization
length s2.

Definition. Let σ1, σ2 ⊂ [0, s0] be intervals such that |σj| = sj and supσ2 < inf σ1. A
blocking apparatus consists of the fold CΠ1 installed over σ1 × HC1

1 and the fold Π
2

installed over σ2 ×H2.

Before formally proving Proposition 5.8 in the next subsection, we emphasize the basic
idea of the blocking apparatus. The first step isCΠ1, in the sense thatCΠ1 is installed closest
to ∂+U = {s = s0}. By construction the chimney portion of CΠ1 traps a neighborhood of a
large part of the t-axis, at the cost of introducing a great deal of complicated holonomy,
most of which is funneled along the stove of HC1

1 . With just CΠ1, the norm estimate (i) in
Proposition 5.8 is aggressively violated. However, the ordinary box hole Π2 is conveniently
placed behind CΠ1 to trap any flowlines exiting along the stove. Furthermore, the design of
CΠ1 and

Π
2 will be such that their interaction is compatible with the desired norm estimate

of Proposition 5.8. See Figure 5.8.
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q p

t t

Figure 5.8: A (not to scale) depiction of the supporting contact regions of a blocking
apparatus. The region HC1

1 is in purple, and the handlebody H2 is in orange. The various
trapping regions of Π2 are shaded in light orange. In particular, the stove of HC1

1 is entirely
contained in the lower trapping region of Π2.

5.2.4 The low-dimensional smooth case

In this subsection we prove Proposition 5.8, the low dimensional version of Proposition
1.7. We begin with a lemma which is an immediate corollary of Lemma 4.11, which gives
an estimate on the induced movement in the Weinstein direction of an ordinary box fold.
The following lemma gives an explicit interpretation of this for an ordinary box fold in the
stabilization direction.

Lemma 5.9. Let Π0 be a smooth box fold installed over the contact handlebody (H0 = [0, t0] ×

r0D2, dt + 1
2
r2 dθ) with symplectization length s0. Let h : {s0} × H0 99K {0} × H0 be the

partially-defined holonomy map given by backward passage through Π0. Then

∥h(x)∥stab ≤ e
s0
2 ∥x∥stab.

Remark. The slogan of this lemma is that an ordinary box fold with flat base can be installed
“for free” with respect to the radial holonomy. That is, in the quest to prove an estimate of
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the form ∥h(x)∥stab ≤ K e
s0
2 ∥x∥stab as in (i) of Proposition 5.8, one can install such a fold

and remain compatible with the radial estimate. In contrast, the installation of the chimney
fold CΠ1 by itself does not come for free, because the holonomy through CΠ1 aggressively
violates any estimate of the form ∥h(x)∥stab ≤ K e

s0
2 ∥x∥stab. Also observe that the lemma

applies to an ordinary box hole with flat base as well, so that the second fold Π
2 of the

blocking apparatus can be installed for free.

Proof. Observe that the Liouville vector field of the base (r0D2, 1
2
r2 dθ) is Xλ0 =

1
2
r ∂r. An

elementary calculation shows that the time-s0 flow of 1
2
∂r induces an expansion by a factor

of e s0
2 . Thus, by Lemma 4.11,

∥h(x)∥stab ≤ e
s0
2 ∥x∥stab.

Proof of Proposition 5.8. Install a blocking apparatus as defined in 5.2.3. To prove the propo-
sition we need to verify three things. First, that there is a neighborhood Utrap of [δ, t0 − δ]×

{(0, 0)} with any flowline passing through {s = s0} × Utrap ⊆ ∂+U converging to a critical
point in backward time. This is immediate from the definition of CΠ1 and Proposition
5.2: by construction, the chimney fold in a blocking apparatus traps a neighborhood of
[δ, t0 − δ]× {(0, 0)}.

Secondly and thirdly, we need to prove that the partially-defined holonomy map h :

∂+U 99K ∂−U given by backward passage through the blocking apparatus satisfies the
following two properties:

(i) ∥h(x)∥stab ≤ Ke
s0
2 ∥x∥stab for some constant 0 < K < 1, and

(ii) h({[0, δ) ∪ (t0 − δ, t0]} × {(0, 0)}) ⊂ {0} × {[0, δ) ∪ (t0 − δ, t0]} × {(0, 0)}.

We will prove (i) first. Fix smid ∈ (supσ2, inf σ1). Let h1 : {s = s0} 99K {s = smid} and
h2 : {s = smid} 99K {s = 0} be the individual holonomy maps through the regions of U
containing CΠ1 and

Π
2, respectively, so that h : ∂+U 99K ∂−U is given by h = h2 ◦ h1. By

Lemma 5.9, ∥h2(x)∥stab ≤ e
s2
2 ∥x∥stab, and so ∥h(x)∥stab ≤ e

s2
2 ∥h1(x)∥stab whenever h1(x) is
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in the domain of h2. Thus it suffices to prove that if h1(x) is in the domain of h2, then
∥h1(x)∥stab ≤ e

s1
2 ∥x∥stab. This is trivial for points that are not influenced by CΠ1, so it

remains to consider such points that are influenced by CΠ1.

By design of the blocking apparatus, points that are influenced by CΠ1 and not trapped
by Π

2 satisfy t(h1(x)) > (1 − e−s2)z2 (up to an arbitrarily small perturbation, due to
smoothing) because the lower trapping region of the ordinary box hole Π2 has t-thickness
(1− e−s2)z2. In particular, any flowline exiting CΠ1 along the stove ofHC1

1 is trapped by Π
2,

so we only need to consider points that pass through CΠ1 and exit above the stove. Such
points necessarily exit CΠ1 in the chimney portion of HC1

1 .

Recall thatHC1
1 was defined in a slightlymodifiedway from that of Section 5.1, so that the

top of HC1
1 is parallel to {t = t0}. Locally, the holonomy through CΠ1 for points beginning

and exiting near this region comes for free — that is, it satisfies ∥h1(x)∥stab ≤ e
s1
2 ∥x∥stab —

by Lemma 5.9. Therefore, it suffices to consider points that pass through CΠ1 and exit in
the central portion of the chimney, say, those satisfying

t(h1(x)) ∈ [3δ1, t0 − 3δ1].

This is where Lemma 5.5 enters the play. According to that lemma, if t(h1(x)) ∈ [3δ1, t0−3δ1]

andW1(h1(x)) ∈ intτ (C1), thenW1(x) ∈ W1 \ intτ (C1). In words, if a flowline exits CΠ1 in
the central portion of the chimney in intτ (C1), then it necessarily began its journey from
outside intτ (C1). Since intτ (C1) is an arbitrarily close approximation of the disc C1 centered
at the stabilization origin, it follows that the estimate ∥h1(x)∥stab ≤ e

s1
2 ∥x∥stab holds trivially

for these points.

The remaining points to consider fall into the following worst-case scenario: those that
enter CΠ1 near ∂intτ (C1) and exit with t(h1(x)) ∈ [3δ1, t0 − 3δ1] as far away as possible in
the stabilization direction, necessarily near ∂C1. Because intτ (C1) → int(C1) as τ → 0, by
choosing a sufficiently small smoothing parameter τ for CΠ1 we can ensure the estimate
∥h1(x)∥stab ≤ e

s1
2 ∥x∥stab holds for these points. This proves that if h1(x) is in the domain of
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h2, then ∥h1(x)∥stab ≤ e
s1
2 ∥x∥stab. Thus,

∥h(x)∥stab ≤ e
s2
2 ∥h1(x)∥stab ≤ e

s1+s2
2 ∥x∥stab.

Since s1 + s2 < s0, e
s1+s2

2 < e
s0
2 and so (i) is proven.

Finally, we prove (ii). Note that, abusing notation slightly, h((t0− δ, t0]) = h1((t0− δ, t0]).
This is because the supporting handlebody of Π2 is contained below t = t0

2
. By Lemma

5.9 and Proposition 4.9, essentially nothing interesting happens near t0 and in particular
h1((t0 − δ, t0]) ⊂ (t0 − δ, t0]. The matter is slightly more complicated near [0, δ) because the
holonomy induced by CΠ1 is nontrivial along the t-axis near t = δ. However, by Lemma
5.5, any nontrivial CΠ1-holonomy beginning near t = δ is funneled along the stove of HC1

1 ,
where it is ultimately trapped by Π

2. The holonomy near t = 0 along the t-axis induced by
Π

2 is trivial, and so h([0, δ)) ⊂ [0, δ). This proves (ii).

We again emphasize the idea of the proof, which can get lost in the details. The chimney
fold CΠ1 traps a neighborhood of the t-axis, at the same time introducing complicated
holonomy along the stove of HC1

1 . The ordinary box hole Π2 is placed behind CΠ1 to trap
all of this complicated holonomy. Consequently, the only possible way to violate the main
radial estimate in Proposition 5.8 is for a flowline to enter CΠ1 sufficiently close to the t-axis
near the bottom of HC1

1 and exit CΠ1 above the trapping region of Π2, necessarily in the
chimney. But the main assumption of a chimney fold — in particular, Lemma 5.5 — rules
out this possibility.

5.2.5 The high-dimensional smooth case

In this subsection we extend the definition of a blocking apparatus to arbitrary dimensions
and prove that Proposition 5.8 implies Proposition 1.7. Both of these tasks are straightfor-
ward.
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In general, wish to install a blocking apparatus in a cobordism of the form

(
U = [0, s0]× [0, t0]×W0 × r0D2, es (dt+ λ0 + λstab)

)
where (W0, λ0) is a Weinstein domain of arbitrary dimension. Let HC1

1 , H2 ⊂ [0, t0]× r0D2

be constructed exactly as in 5.2.3. Let CΠ1 be a high-dimensional chimney fold as defined
in 5.1.3 over HC1

1 ×W0 with symplectization length s1, and let Π2 be a box hole installed
over H2 ×W0 with symplectization length s2. The definition of a blocking apparatus is the
same as before.

Definition. Let σ1, σ2 ⊂ [0, s0] be intervals such that |σj| = sj and supσ2 < inf σ1. A
blocking apparatus consists of the fold CΠ1 installed over σ1 × HC1

1 and the fold Π
2

installed over σ2 ×H2.

In words, we have extended the two folds comprising a low-dimensional blocking
apparatus to the additionalW0 direction as simply as possible, using all ofW0 to support
each fold.

Proof of Proposition 1.7. First, observe that Proposition 5.7 implies that a the smooth chimney
fold CΠ1 traps a neighborhood of [δ, t0 − δ]× Iϵ(W0, λ0)× {(0, 0)}; this gives the trapping
statement of Proposition 1.7.

Next, we prove (iii) of Proposition 1.7. This follows immediately from (ii) of Proposition
5.8 and the discussion at the end of 5.1.3; namely, if theW0-coordinate of the entry point
of the flowline avoids N s0(∂W0) — that is, if W0(x) ∈ I1−e−s0 (W0, λ0) — then there is no
unexpected dynamical behavior arising due to the extraW0 direction, as the flowline stays
far enough away from ∂W0.

It remains to prove the norm estimates in (i) and (ii) of Proposition 1.7.

We begin by proving (ii), the stabilization estimate ∥h(x)∥stab ≤ Ke
s0
2 ∥x∥stab provided

∥x∥W0
< e−s0 . The assumption ∥x∥W0

< e−s0 is equivalent to W0(x) /∈ N s0(∂W0). By
Lemma 4.11, this ensures that, as the flowline through x enters the chimney fold, there is
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no interaction with ∂W0. In particular, the t-holonomy of any flowline that passes through
the chimney fold is entirely dictated by the low-dimensional chimney fold behavior in
HC1

1 ⊂ [0, t0] × r0D2. We may then apply Proposition 5.8 to conclude that ∥h(x)∥stab ≤

Ke
s0
2 ∥x∥stab. To rephrase this part of the argument, the only way that the stabilization

estimate of Proposition 5.8 could failwhen extended to higher dimensions is if the flowline’s
trajectory is significantly perturbed in the t-direction by smoothing near ∂W0, which does
not exist in a low-dimensional blocking apparatus. A flowline entering the chimney fold
near the bottom of the chimney, but very close to ∂W0, could experience significant t-
holonomy after being influenced by the characteristic foliation of ∂W0, potentially avoiding
the trapping the box hole behind the chimney. The almost-negligible movement away from
the stabilization origin followed by avoidance of the trapping region of the box hole results
in a flowline that does not technically satisfy the ∥h(x)∥stab < e

s0
2 ∥x∥stab estimate. However,

for a flowline sufficiently far from ∂W0, this does not occur. See also the discussion in 5.1.3.

The argument to show that theW0 estimate holds in Proposition 1.7 also is immediate
from Lemma 4.11. In particular, after installation of a high-dimensional blocking apparatus,
points with holonomy satisfy

∥h(x)∥W0
≤ es1+s2 ∥x∥W0

because the total symplectization length of CΠ1 and
Π

2 is s1 + s2.

This completes the proof of Proposition 1.7.

5.3 Some technical properties of the blocking apparatus

In this section, we state a few more technical properties of the blocking apparatus. Their
utility will become clear in Section 6, in particular for the purpose of ruling out the existence
of broken loops. First, we introduce some terminology to identify certain critical points in
a blocking apparatus.
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Definition. Let CΠ1 be the chimney fold of a blocking apparatus. A stove critical point of
CΠ1 is a critical point with a t-coordinate satisfying t∗ < 3δ1.

Informally, a stove critical point is — unsurprisingly — a critical point of a chimney
fold located sufficiently close to the stove region of the fold. We simply want to consider
critical points other than the ones occurring at the very top of the chimney.

Proposition 5.10. A stove critical point in a blocking apparatus cannot be included in a broken

loop.

Proof. We make the trivial observation that any critical point of index 0 cannot be included
in a broken loop. Thus, it suffices to prove the following. If γ is a broken flowline involving
a stove critical point, then every broken flowline containing γ is further contained in a
broken flowline that involves a critical point of index 0. Indeed, if this is the case, then
there are no broken loops containing stove critical points.

First, note that the dynamics of a chimney fold are Morse-Smale, and thus there are
no broken loops contained entirely inside CΠ1. It therefore suffices to consider a broken
flowline that contains a stove critical point and exits the stove region in backward time.

In this case, consider a low-dimensional blocking apparatus installed over [0, s0] ×
[0, t0]× r0D2, with noW0-component. In this setting, the main trapping region of the box
hole Π

2 is an {s = s0
2
} cross section of the unstable manifold of a critical point of index

0. By design of a blocking apparatus, the entire stove region of the chimney fold CΠ1 is
a subset of this Π2 trapping region. In particular, any broken flowline emanating from a
stove critical point in backward time and exiting the stove, if extended sufficiently far, will
intersect this trapping region and ultimately converge to a critical point of index 0.

In the high-dimensional setting — when the blocking apparatus is installed with a
W0 component — the proposition follows almost immediately from the low-dimensional
case, because critical points of the blocking apparatus project to critical points ofXλ0 inW0.
In particular, any sufficiently extended broken flowline emanating from the stove region
via a stove critical point in backward time is ultimately engulfed by the main trapping
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region of Π2, hence by a critical point with 0 index in the [0, t0]× r0D2 projection. In theW0

projection, becauseW0 is a Weinstein domain, Xλ0 has Morse dynamics, and every broken
flowline descends to a critical point with 0 index inW0. As such, every broken flowline
then eventually reaches a critical point of total index 0, as desired.

Corollary 5.11. After applying Proposition 1.7 to a Weinstein cobordism

(U = [0, s0]× [0, t0]×W0 × r0D2, es (dt+ λ0 + λstab))

there are no broken loops contained in U .

Proof. By the previous proposition, no stove critical point can be involved in any broken
loop, let alone one contained in U . Thus, a broken loop contained in U must be contained
either entirely in Π

2, or must involve one of the critical points corresponding to the top of
the chimney. By definition of a box fold — which requires Morse-Smale dynamics — there
are no broken loops entirely contained in Π

2. Finally, none of the critical points near the
top of the chimney interact with any critical point in Π

2, so these critical points can not be
involved in a broken loop contained in U . Thus, there are no broken loops contained in
U .

The ultimate efficacy of Proposition 5.10 is due to the following observation about the
main trapping mechanism of a blocking apparatus.

Proposition 5.12. After applying Proposition 1.7, any flowline which passes through {s = s0} ×

Utrap ⊆ ∂+U converges in backward time to a stove critical point.

Proof. This is immediate from the design and definition of a chimney fold in Section 5.1. In
particular, in a low-dimensional piecewise-linear chimney fold, any flowline entering the
chimney region is trapped in the stove region. The extension to higher dimensions does
not impact this behavior, and Utrap, by definition, is a set approximating the interior of the
chimney region.
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Remark. We remind the reader that the trapping neighborhood {s = s0} × Utrap ⊆ ∂+U in
the statements of Proposition 1.7 and Proposition 5.12 is not the entire trapping region of
the blockng apparatus. There are a number of other codimension 0 regions that are trapped
by other critical points of the apparatus. We are simply identifying one such region — a
region approximating the chimney region of CΠ1 — which is ultimately trapped in the
stove.

Finally, we have the following proposition which concerns the behavior of flowlines
entering a blocking apparatus in forward time. Note that the perspective of this proposition
is drastically different than the backward time analysis that permeates the majority of the
previous sections.

Proposition 5.13. After applying Proposition 1.7 to a Weinstein cobordism (U = [0, s0]× [0, t0]×

W0 × r0D2, es (dt+ λ0 + λstab)) with parameters δ and ϵ, consider a point (0, t∗, x, p, q) ∈ ∂−U .

If the flowline through this point converges to a critical point of the blocking apparatus in forward

time, then x ∈ Skel(W0), (p, q) = (0, 0), and t∗ ∈ [0, 2δ) ∪ (t0 − 2δ, t0].

We begin with a lemma that concerns the forward time trapping behavior of a normal
box fold.

Lemma 5.14. Let Πτ be a smooth box fold installed over ([0, s0]× [0, t0]×W0, e
s (dt+ λ0)). Let

X denote the perturbed Liouville vector field, and suppose that (0, t∗, x) ∈ {s = 0} × [0, t0]×W0

is a point such that the flowline of X through (0, t∗, x) converges to a critical point in forward time.

Then x ∈ Skel(W0, λ0) and t∗ > t0 − ε(τ), where ε(τ) is an arbitrarily small parameter dependent

only on the smoothing parameter τ .

Proof. Recall that the Liouville vector field after installing a box fold is, away from ∂W0,

X = ∂s + e−sXds dt
F − e−s∂F

∂t
Xλ0 .

Rewriting this gives

X =

(
1 + e−s∂F

∂t

)
∂s − e−s∂F

∂s
∂t − e−s∂F

∂t
Xλ0 .
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Similarly, identify the collar neighborhood of ∂W0 as ([−ε, 0]r × ∂W0, λ0 = er η0) where
η0 := λ0 |∂W0 . Assuming that d∂W0F = 0, the Liouville vector field here is

X =

(
1 + e−s∂F

∂t

)
∂s − e−s∂F

∂s
∂t − e−s∂F

∂t
Xλ0 − e−s∂F

∂r

(
−∂t + e−r Rη0

)
.

We may also assume without loss of generality that Skel(W0, λ0) ∩ ([−ε, 0]r × ∂W0) = ∅.
This assumption implies that

((πW0)∗X) |Skel(W0,λ0)= −e−s∂F

∂t
Xλ0 .

In words, theW0-projection of X to (a neighborhood of) the skeleton of (W0, λ0) is parallel
toXλ0 throughout the entire box fold. This implies that if x /∈ Skel(W0, λ0), then the flowline
of X through (0, t∗, x) never traverses Skel(W0, λ0).

Next, observe that if p is a critical point of X , then ∂F
∂t
(p) < 0. Thus, in a neighborhood

of p, (πW0)∗X is a positive multiple of Xλ0 . In particular, πW0(p) is a critical point of Xλ0 .
Moreover, this implies that if the flowline of X through (0, t∗, x) converges to a critical
point in forward time, then flowline must eventually reach Skel(W0, λ0). By the above
remark, it follows that x ∈ Skel(W0, λ0). Finally, the fact that t∗ > t0 − ε(τ) is immediate
from the observation that in a piecewise-linear box fold, every flowline passing through
{s = 0} × (0, t0)×W0 travels through the fold and reaches {s = s0} in forward time. This
behavior is C0-approximated by a smooth box fold, and hence t∗ > t0 − ε(τ). This proves
the lemma.

Proof of Proposition 5.13. We claim that such a flowline (0, t∗, x, p, q) is not trapped by a stove
critical point. That is, the critical point must either be inΠ

2, the box hole, or the critical point
at the top of the chimney ofCΠ1. Assuming this, Proposition 5.13 follows immediately from
the previous lemma: indeed, Π2 is an ordinary fold, and near the top of the chimney of CΠ1

the chimney fold is locally an ordinary fold. In particular, the skeleton of the stabilization
direction component of each of these folds is the origin and the t-coordinates are arbitrarily
close to t = 0 and t = t0 − δ1, respectively.
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Thus, it suffices to show that the flowline through (0, t∗, x, p, q) cannot converge to a
stove critical point in forward time. But this is immediate from the design of a blocking
apparatus: in backward time, every flowline emanating from a stove critical point enters
the trapping region of Π2; see the proof of Proposition 5.10. This implies that all flowlines
through {s = 0} avoid stove critical points of CΠ1 in forward time.

5.4 Partial folds

Earlier, we developed the theory of box folds based over symplectizations of genuine
contact handlebodies, i.e., Reeb-thickened Weinstein domains. We then generalized the
construction to define a chimney fold in low dimensions, based over the symplectization
of a region which is not literally a contact handlebody. However, the generalization of a
chimney fold to higher dimensions involved an extra directionW0 which is a Weinstein
domain, so that a high-dimensional chimney fold is based over the symplectization of a
product of a certain contact manifold with a Weinstein domain. We are now interested in
defining the notion of a partial chimney fold, where the extraW0 direction is allowed to be a
Weinstein cobordism with nonempty negative boundary. This has the effect of changing the
dynamical behavior of a chimney fold in significant fashion, depending on the topology of
W0. In particular, ifW0 has no skeleton, then the resulting partial chimney fold will not trap
any flowlines in backward time. Still, a partial fold can be useful for directing holonomy in
specific ways.

5.4.1 Partial box folds

One of the principles from the previous sections is that the behavior of a high-dimensional
chimney fold in theW0 direction is similar to that of a normal box fold, and the “interesting”
behavior of a chimney fold is focused in the [0, t0]× r0D2 direction. As such, we begin by
studying partial box folds. This is similar to the notion of a partial C-fold in [HH19].
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Definition. A generalized contact handlebody is a contact manifold of the form

(H0 := [0, t0]×W0, dt+ λ0)

where (W0, λ0) is a Weinstein cobordism, possibly with nonempty negative boundary.

Let (H0 = [0, t0]×W 2n−2
0 , dt+ λ0) be a generalized contact handlebody and let

([0, s0]×H0, e
s(dt+ λ0))

be its symplectization. This represents a region in our given 2n-dimensional Liouville
domain that we wish to perturb. As before, we realize this region as the hypersurface
{z = 0} inside its contactization:

(Rz × [0, s0]×H0, dz + es(dt+ λ0)) .

A partial box fold is defined identically to a normal box fold. The important difference is
the presence of a new side, ∂−W0.

Definition. Fix z0 > 0. A (piecewise-linear, high-dimensional) partial box fold with

parameters z0, s0, t0, denoted ΛPL, is the hypersurface

ΛPL := ∂ ([0, z0]× [0, s0]×H0) \ {z = 0}.

The following lemma is immediate from the techniques of previous sections.

Lemma 5.15. Let Xλ0 denote the Liouville vector field of (W 2n−2
0 , λ0), let η±0 := λ0 |∂±W0 be the

induced contact forms on the positive and negative boundary ofW0, and letRη±0
denote the respective

Reeb vector fields on ∂±W0 of η±0 . The backward oriented characteristic foliation of ΛPL is given by

Table 5.2.

Before we state the main proposition describing the dynamical impact of a partial box
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Side Characteristic foliation
z = z0 −∂s
s = 0 ∂t − ∂z
s = s0 −∂t + es0∂z
t = 0 −∂s +Xλ0

t = t0 ∂s −Xλ0

∂+W0 ∂t −Rη+0

∂−W0 −∂t +Rη−0

Table 5.2: The oriented characteristic foliation of a partial box fold.

fold, we introduce some more notation to deal with the cobordismW0. First, define

∥W0∥ := inf
x∈∂−W0

− ln ∥x∥W0
.

In words, ∥W0∥ is simply the time-length of the shortest flowline ofXλ0 from ∂−W0 to ∂+W0.
For reasons that will eventually become clear, we will typically require ∥W0∥ > 2s0. We
also remind the reader of the following notation:

N s0(∂+W0) :=
⋃

s∈(−s0,0]

ψs(∂+W0)

N s0(∂−W0) :=
⋃

s∈[0,s0)

ψs(∂−W0).

Here, ψs is the time-s flow of Xλ0 , and N s0(∂±W0) is a distinguished collar neighborhood
of ∂±W0 determined by the time-s0 flow. Observe that the assumption ∥W0∥ > 2s0 implies
that N s0(∂+W0) ∩N s0(∂−W0) = ∅.

Proposition 5.16. Let ΛPL be a high-dimensional partial box fold with z0 ≥ es0t0 and ∥W0∥ > 2s0,

and let hPL : {z = 0} × {s = s0} × H0 99K {z = 0} × {s = 0} × H0 be the partially-defined

holonomy map given by the oriented characteristic foliation of ΛPL. Let x ∈ H0 be the entry point

of a flowline in H0, and let t(x) andW0(x) be the t-coordinate andW0-coordinate of x, respectively.

(i) If either t(x) ∈ (e−s0t0, t0) or W0(x) ∈ N s0(∂+W0), then the flowline through x is either
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trapped in backward time or

W0(h
PL(x)) ∈ N s0(∂−W0).

(ii) For all (t, w) ∈ (0, e−s0t0)× (W0 \N s0(∂+W0)),

hPL(t, w) = (es0t, ψs0(w)).

Proof. First, we remark that the statement and proof of (ii) is identical to the holonomy
of a piecewise-linear box fold. Indeed, for such a flowline, because t(x) < e−s0t0 and
W0(x) /∈ N s0(∂+W0), the flowline never reaches t = t0 and so there is no interaction with
∂−W0.

Next, we consider (i). IfW0 has a skeleton, then someflowlines exhibit identical behavior
to a normal box fold and are trapped in backward time. Thus, it is sufficient to prove (i)
in the case thatW0 is a trivial Weinstein cobordism with no skeleton. Suppose first that
t(x) ∈ (e−s0t0, t0). In backward time, the flowline first travels along s = s0 via −∂t + es0 ∂z

and reaches t = 0. The flowline then travels along t = 0 via −∂s +Xλ0 , and there are two
possibilities: either the flowline reaches ∂+W0, or s = 0. Both of these possibilities result in
the flowline reaching t = t0 by the assumption t(x) ∈ (e−s0t0, t0), just as with a box fold.

Thus, from this point we consider a flowline on t = t0. It travels via ∂s −Xλ0 to either
s = s0 or ∂−W0. If the flowline reaches s = s0 first, the typical cycling process from t = t0 to
t = 0 and back while spiraling up in the z-direction will repeat — as in a normal box fold —
until the flowline eventually reaches z = z0. When this happens, the cycling process will
no longer involve t = 0, and so the only movement in theW0 direction will occur on t = t0

via ∂s − Xλ0 . Thus, such a flowline will eventually reach ∂−W0 with some s-coordinate
s∗ ∈ (0, s0). In particular, the flowline reaches ∂−W0 at point K.

In a normal box fold (where there is no negative boundary ofW0), the cycling process
would continue forever and the flowline would be trapped. But a partial box fold has a
second phase of movement which is not present in a normal box fold, beginning with
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movement along ∂−W0 via −∂t +Rη−0
. The flowline reaches t = t0, without having traveled

along s = s0. This latter point is crucial, as the z-coordinate of the flowline does not increase.
Along t = t0 the flowline travels via −∂s +Xλ0 and reaches s = 0. Note that this induces
precisely a time-s∗ flow along Xλ0 . The flowline then traverses s = 0 via ∂t − ∂z either to
s = s0 —where the just described downward cycling process repeats — or to z = 0∩ s = 0,
where the flowline exits the fold withW0(h

PL(x)) ∈ N s0(∂−W0), as desired.

It is clear that if instead we assumeW0(x) ∈ N s0(∂+W0) in (i) then the conclusion is the
same, as such a flowline will eventually reach t = t0 via ∂+W0.

In words, the above proposition says that a partial box fold functionally behaves like a
normal box fold, with the trapping region being replaced by a region whose holonomy
(when defined) exits in the collar neighborhood N s0(∂−W0).

The smoothing of a partial fold carries the same type of complications as with normal
box folds, but with more subtle behavior. We hope to carefully investigate the holonomy of
smooth partial folds in a future work. For now, we point out that the statement of Lemma
4.11 still holds, namely, the estimate ∥h(x)∥W0

≤ es0 ∥x∥W0
for all x in the generalized

contact handlebody.

Finally, we remark that one can define a partial box hole, which we will denote ΛPL, in
the same way. The analysis of partial box holes is the exact analogue of partial box folds
given above, reinterpreted correctly. We omit the details.

5.4.2 Partial chimney folds

Next, we extend the notion of a partial box fold to that of a chimney fold. While one could
define a partial chimney fold in full generality, wewill define such a fold with a stabilization
direction in mind, as in Section 5.1. The extension is identical, in the sense that we consider
the low-dimensional chimney-stove region

[0, s0]×HC
0 ⊂ [0, s0]× [0, t0]× W̃ 2

0
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where (W̃ 2
0 , λ̃0) is a Weinstein domain of dimension 2, and in higher dimensions we replace

the additional Weinstein domainW0 with a Weinstein cobordism. In particular, we make
the following definition.

Definition. Let (W̃ 2
0 , λ̃0) be aWeinstein domain, and let (W0, λ0) be aWeinstein cobordism.

Fix z0, s0, t0, t− > 0 with z0 = es0t0, and define HC
0 ⊂ [0, t0] × W̃0

2 as in Section 5.1. A
piecewise-linear partial chimney fold with parameters z0, s0, t0, t−, denoted CΛPL, is the
hypersurface

CΛPL := ∂([0, z0]× [0, s0]×HC
0 ×W0) \ {z = 0}.

As before, the only difference between this and a normal chimney fold is the presence
of the side ∂−W0. The main feature of a piecewise-linear partial chimney fold is given by
the following proposition.

Proposition 5.17. Let CΛPL be a partial chimney fold with ∥W0∥ > 2s0, and let hPL : {s =

s0} 99K {s = 0} be the partially-defined holonomy map given by the oriented characteristic foliation

of CΛPL. Suppose that x ∈ {s = s0} × (0, t0)× int(C)×W0. Then either the flowline through x

is trapped in backward time, or

W0(h
PL(x)) ∈ N s0(∂−W0) and t(hPL(x)) ∈ (0, t−).

Before we prove this proposition, we record the notation for each side of CΛPL, as well
as the corresponding oriented characteristic foliation on each side.
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z = z0 := {z = z0} × [0, s0]×HC
0 ×W0

s = 0 := [0, z0]× {s = 0} ×HC
0 ×W0

s = s0 := [0, z0]× {s = s0} ×HC
0 ×W0

t = 0 := [0, z0]× [0, s0]× {t = 0} × W̃0 ×W0

t = t− := [0, z0]× [0, s0]× {t = t−} × (W̃0 \ C)×W0

t = t0 := [0, z0]× [0, s0]× {t = t0} × C ×W0

∂W̃0 := [0, z0]× [0, s0]× [0, t−]× ∂W̃0 ×W0

∂C := [0, z0]× [0, s0]× [t−, t0]× ∂C ×W0

∂+W0 := [0, z0]× [0, s0]×HC
0 × ∂+W0

∂−W0 := [0, z0]× [0, s0]×HC
0 × ∂−W0.

Table 5.3 gives the oriented characteristic foliation on each of the above sides.

Side Characteristic foliation
z = z0 −∂s
s = 0 ∂t − ∂z
s = s0 −∂t + es0∂z
t = 0 −∂s +Xλ̃0

+Xλ0

t = t− ∂s −Xλ̃0
−Xλ0

t = t0 ∂s −Xλ̃0
−Xλ0

∂W̃0 ∂t −Rη̃0

∂C X∂C

∂+W0 ∂t −Rη+0

∂−W0 −∂t +Rη−0

Table 5.3: The oriented characteristic foliation of a partial chimney fold.

Here, X∂C is simply a placeholder for the backward oriented characteristic foliation of ∂C
(which does not matter for the purpose of our discussion), and η̃0 = λ̃0 |∂W̃0

.

Proof of Proposition 5.17. The holonomy analysis is very similar to that of Proposition 5.16
and also the analysis of a normal chimney fold, but we give explicit details here for the
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sake of clarity on how the design of a (partial) chimney fold influences the dynamics.

Suppose that x ∈ {s = s0} × (0, t0)× int(C)×W0. In other words, suppose we begin
with a point that enters in the chimney region. The flowline initial travels along s = s0 via
−∂t + es0 ∂z to t = 0. From here it travels via −∂s +Xλ̃0

+Xλ0 . There are two possibilities.
Either the flowline reaches ∂W̃0 first or ∂+W0. In particular, if ∥x∥W̃0

> ∥x∥W0
, then the

former will occur, and vice versa if ∥x∥W̃0
< ∥x∥W0

.

Assume first that ∥x∥W̃0
> ∥x∥W0

, so that the flowline reaches ∂W̃0. Later, we will reduce
the case ∥x∥W̃0

< ∥x∥W0
to the present one. Along ∂W̃0. the flowline travels via ∂t − Rη̃0

to t = t−. From here, the flowline cycles around the stove (the cycling happens in the
[0, t−]× W̃0 direction) with an increasing z-coordinate, just as in a normal chimney fold,
until reaching z = z0. One slight difference here is that there is movement back and forth
in theW0 direction, concurrent with the back and forth movement in the W̃0 direction. But
by the assumption ∥x∥W̃0

> ∥x∥W0
, there is no interaction with ∂W0 in this stage.

When the flowline reaches z = z0, the it ceases cycling around the stove via ∂W̃0 and
begins primarily flowing via ∂s −Xλ̃0

−Xλ0 on t = t−. We refer the reader to the proof of
the trapping behavior of a normal chimney fold, as this stage of the dynamics is exactly
the same. The difference in this situation is the presence of ∂−W0. Again we assume
for simplicity that W0 is a trivial cobordism with no skeleton. Under this assumption,
the flowline will eventually reach ∂−W0. From this point the behavior is identical to that
of Proposition 5.16 with a t-thickness of t− and we have W0(h

PL(x)) ∈ N s0(∂−W0) and
t(hPL(x)) ∈ (0, t−) as desired.

Next we prove that if ∥x∥W0
> ∥x∥W̃0

, then the flowline eventually enters the case
described above. For such a flowline, it will reach ∂+W0 (with a W̃0-coordinate still in
C) and will travel via ∂t −Rη+0

up to t = t0, in contrast to the previous situation where it
reaches t = t−. Upon reaching t = t0, the dynamics are identical to that of a pre-chimney
fold as in 4.1.4. In particular, it will cycle around the edge of the chimney region with a
net negative movement in theW0 direction. Eventually the flowline will reach ∂−W0. Here
it will follow −∂t +Rη̃0 down to t = 0, and now we are in the case where W̃0(x) ∈ C and
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∥x∥W̃0
> ∥x∥W0

. By the earlier case work, we are done.

Like with the complications of smooth partial folds, we hope to thoroughly understand
the complications of smooth chimney folds in a future work.
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q

Figure 5.9: A visualization of the proof of Proposition 5.8. Pictured is HC1
1 with a few

sample trajectories of points with holonomy. The shaded region indicates the trapping
region of the chimney. The green point enters the fold in the stove and exits somewhere
in the chimney; this is clearly compatible with the statement of the proposition. The red
point enters along the t-axis near t = δ1, is heavily influenced by the characteristic foliation
of ∂HC1

1 , and exits far away in the stove. By itself, this violates the desired properties of
Proposition 5.8, but Π2 will trap such a point. The blue point enters near ∂intτ (C1), is
influenced by the characteristic foliation of ∂HC1

1 , and exits near ∂C1. This is compatible
with the statement of the proposition, provided τ is small enough.
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CHAPTER 6

Mitsumatsu’s Liouville domains

In this chapter we use Proposition 1.7 to show that the Liouville-but-not-Weinstein domains
constructed byMitsumatsu in [Mit95] are in fact stablyWeinstein. This gives an affirmative
answer to Question 0.8 of [Hua19].

We begin by giving a criterion for determining when a Liouville domain is Weinstein
in Section 6.1. We then restate Proposition 1.7 for standard stabilized regions in Section 6.2.
These are regions U ⊂ (W,λ) in a Liouville domain that have the form

(U, λ|U) ∼= ([0, s0]× [0, t0]×W0 × r0D2, es (dt+ λ0) + λstab),

for some Weinstein domain (W0, λ0). That is, (U, λ|U) is a region that is a stabilization of a
symplectization of a contact handlebody. These regions appear naturally in the stabilization
of a Liouville domain, and thus a version of Proposition 1.7 stated for such regions will be
useful to us in this section.

After restating Proposition 1.7 in this manner, we will recall the definition of Mit-
sumatsu’s domains, identify the standard stabilized regions on which we want to perturb
the Liouville form, and finally verify that this perturbed domain is in fact Weinstein.

6.1 A Weinstein criterion

Our end goal in this chapter is to conclude that a certain Liouville domain admits a
Weinstein structure. Though the definition of a Weinstein domain is simple from an
abstract point of view, when handed an arbitrary Liouville domain it may not be clear how
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to verify that it admits a Weinstein structure. Thus, we begin with a Weinstein criterion
based on the dynamics of the Liouville vector field.

Proposition 6.1. A Liouville domain (W,λ), with Liouville vector field Xλ, is Weinstein if and

only if the following conditions are satisfied:

(1) for any zero p ∈ W ofXλ, there is a neighborhood of p on whichXλ admits a Morse Lyapunov

function;

(2) for any p ∈ W , the unique flowline of Xλ passing through p converges to a zero of Xλ in

backward time;

(3) the vector fieldXλ does not admit any broken loops, where a broken loop is a map c : R/Z →

W with 0 = a0 < a1 < · · · < aN = 1 such that c(ai) is a zero of Xλ and c(ai, ai+1) is an

oriented flowline of Xλ from c(ai) to c(ai+1).

Remark. Proposition 6.1 and its proof are adapted from [HH19, Proposition 2.1.3], which
gives criteria for a vector field on a closed manifold to be Morse.

Proof of Proposition 6.1. If (W,λ) is Weinstein, then certainly conditions (1)-(3) are satisfied,
since in this case Xλ admits a globally-defined Morse Lyapunov function. Let us assume
that these conditions hold and show that (W,λ) is Weinstein. For this, it suffices to construct
a handle decomposition ofW which is compatible with Xλ.

Let C(Xλ) = {p1, . . . , pk} be the zeros of Xλ, a finite set by the compactness ofW and
(1). Criterion (3) allows us to put a partial order on C(Xλ), with pi ≺ pj whenever Xλ

admits a (possibly broken) flowline from pi to pj . Criterion (2) then implies that any
minimal element of C(Xλ) is a critical point of index 0. We let C0 denote the set of minimal
elements of C(Xλ), and for j ≥ 0 we let Cj+1 be the union of Cj and the minimal elements
of C(Xλ) \ Cj . Our handle decomposition ofW can then be constructed inductively: we
begin with a standard neighborhood of C0, then attach the handles corresponding to C1,
then those of C2, and so on.

Because we are considering Liouville domains up to Liouville homotopy, we will always
assume that criterion (1) is satisfied. Indeed, standard transversality arguments show that

121



a generic vector field has only nondegenerate critical points. Thus, with Xλ as above, we
may choose an arbitrarily small vector field X̃ onW so thatXλ+ X̃ has only nondegenerate
critical points. We choose X̃ small enough to ensure that Xt := Xλ + tX̃ is outwardly
transverse to ∂W , for t ∈ [0, 1]. Then

λt := ιXtω

defines a Liouville homotopy from (W,λ) to (W,λ1), the latter of which has Liouville vector
field Xλ + X̃ .

Verifying that a given Liouville domain is Weinstein will thus consist of verifying two
criteria: first, that all flowlines converge to critical points in backward time; second, that the
domain contains no broken loops. Our local operations are developed with these criteria
in mind — the operations aim to trap large sets of flowlines in backward time, and to do so
with a holonomy which prevents broken loops from developing. In the rest of this chapter
we will verify these criteria in the specific case of Mitsumatsu’s examples.

6.2 The local operation for standard stabilized regions

Proposition 1.7 perturbs the Liouville form on the symplectization of a stabilized contact
handlebody. When modifying the Liouville dynamics of a stabilized Liouville domain, we
will often find it more convenient for the stabilization and symplectization to be decoupled.
Precisely, we are interested in regions which appear to be stabilizations of symplectizations
(rather than symplectizations of stabilizations).

Definition. Given a Liouville domain (W,λ), a standard stabilized region is a subset U ⊂

(W,λ) such that there exists a diffeomorphism

φ : [0, s0]s × [0, t0]t ×W0 × r0D2 → U,

with φ∗(λ|U) = es (dt+ λ0) + λstab, for some Weinstein domain (W0, λ0) and some choice of
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constants s0, t0, r0 > 0. If U ⊂ (W,λ) is a standard stabilized region, we will typically write

(U, λ|U) ∼= ([0, s0]s × [0, t0]t ×W0 × r0D2, es (dt+ λ0) + λstab),

making no mention of the diffeomorphism φ.

Note that the Liouville vector field in a standard stabilized region is given by ∂s+ 1
2
(p ∂p+

q ∂q); with a careful choice of coordinates, we may identify a subregion of a standard
stabilized region to which Proposition 1.7 applies. The upshot is that some version of
Proposition 1.7 holds for standard stabilized regions, with minor modifications to the
holonomy statements.

Corollary 6.2. Let (U = [0, s0]× [0, t0]×W0×r0D2, es (dt+λ0)+λstab) be a standard stabilized

region in a Liouville domain (W,λ). Fix 0 < δ ≪ t0 and 0 < ϵ ≪ 1 arbitrarily small. If

e−s0/2 r0 > 0 is sufficiently large, a blocking apparatus can be installed in U such that there is a

neighborhood Utrap of

[δ, t0 − δ]× Iϵ(W0, λ0)× {(0, 0)},

with any flowline passing through {s = s0} × Utrap ⊆ ∂+U converging to a critical point in

backward time. Moreover, the partially-defined holonomy map h : ∂+U 99K ∂−U satisfies

(i) for some constant 0 < K < 1, we have ∥h(x)∥W0 ≤ K es0 ∥x∥W0 ;

(ii) for the same constantK, we have that ∥h(x)∥stab ≤ K ∥x∥stab, whenever ∥x∥W0 < e−s0 ;

(iii) any element of ([0, δ) ∪ (t0 − δ, t0]) × (W0 \ N s0(∂W0)) × {(0, 0)} in ∂+U which is not

trapped is mapped by h to an element of ([0, 2δ) ∪ (t0 − 2δ, t0])×W0 × {(0, 0)}.

Proof of Corollary 6.2. The corollary follows quickly from Proposition 1.7 once we identify
a standard subregion in (U, λ|U). In particular, consider the subset

U := {(s, t, w, p, q) ∈ U | e(s0−s)/2 ∥(p, q)∥ ≤ r0} ⊂ U.
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We can give U coordinates via a map

ψ : [0, s0]s × [0, t0]t ×W0 × e−s0/2 r0D2 → U ⊂ U

defined by
ψ(s, t, w, p, q) := (s, t, w, es/2 p, es/2 q).

Note that ψ∗(λ|U) = es (dt+ λ0 + λstab), and thus that (U, λU) is a Weinstein cobordism of
the type hypothesized in Proposition 1.7. If the stabilization radius e−s0/2 r0 is sufficiently
large, then Proposition 1.7 gives us the conclusions of Corollary 6.2.

In particular, part (ii) of Proposition 1.7 tells us that if ∥x∥W0 < e−s0 , then ∥h(x)∥stab ≤

K ∥x∥stab, for a constant 0 < K < es0/2. This inequality holds in the coordinates on U given
by ψ. Because x is an element of ∂+U and h(x) is an element of ∂−U , we have

∥h(x)∥stab = ∥ψ(h(x))∥stab and ∥x∥stab = e−s0/2 ∥ψ(x)∥stab,

so
∥ψ(h(x))∥stab = ∥h(x)∥stab ≤ K ∥x∥stab = K e−s0/2 ∥ψ(x)∥stab,

giving us part (ii) of Corollary 6.2.

6.3 The domains

In [McD91], McDuff gave the first examples of symplectic structures with contact-type
boundaries on compact 4-manifolds with disconnected boundaries. Such examples distin-
guish symplectic geometry from complex geometry, as a complex manifold with convex
boundary cannot have a disconnected boundary. Mitsumatsu presented a variation on
this theme in [Mit95], where he constructed a 4-dimensional Liouville domainWA with
disconnected boundary for any Anosov map A : T 2 → T 2. We recall this construction here,
borrowing heavily from the exposition in [Hua19, Example 0.7].

Let T 2 = R2/Z2 denote the torus, and consider a linear Anosov map A : T 2 → T 2.
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That is, we may take A to be an element of SL(2,Z) with eigenvalues λu and λs, with
0 < λu < 1 < λs. We may then choose linearly independent linear 1-forms βu and βs on T 2

satisfying
A∗βu = λu βu and A∗βs = λs βs.

Now consider the 3-manifold-with-boundaryM := [−1, 1]τ × T 2. We define a contact form
onM by

α := βu + τ βs,

and define a map ϕA : M →M by

ϕA(τ, x) := (λ2u τ, Ax).

Observe that ϕA is a diffeomorphism onto its image [−λ2u, λ2u]×T 2 ⊂M , and that ϕ∗
Aα = λu α.

In the language of [Hua19], this makes ϕA a contraction of (M,α), and thuswemay use ϕA to
define a Liouville domainWA as a partialmapping torus. We beginwith the symplectization
(Rs ×M,d(es α)) ofM and consider the map ΦA : R×M → R×M defined by

ΦA(s, τ, x) := (s+ ln(λs), λ
2
u τ, Ax).

Then
Φ∗

A(e
s α) = es+ln(λs) ϕ∗

Aα = λs λu e
s α = es α,

so the Liouville 1-form es α descends to the partial mapping torus

WA := ([0, ln(λs)]s ×M)/(0, τ, x) ∼ ΦA(0, τ, x).

Of course, the vector field dual to λ := es α via d(es α) is ∂s, which does not point out of the
vertical boundary [0, ln(λs)] × ∂M ofWA. This is easily fixed with a small perturbation of
the vertical boundary, and the precise choice of perturbation does not affect the Liouville
homotopy class of the resulting Liouville domain (WA, λ).
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It is clear from this construction that the skeleton of (WA, λ) is given by

Skel(WA, λ) = ([0, ln(λs)]s × {0}τ × T 2)/(0, 0, x) ∼ (ln(λs), 0, Ax),

which, topologically, is simply the mapping torus of A : T 2 → T 2. Our 4-dimensional
Liouville domain (WA, λ) thus has the homotopy type of a 3-manifold, and therefore fails
to admit a Weinstein structure. Our goal is to show that (WA, λ) is stably Weinstein — i.e.,
that (WA × r0D2, λ+ 1

2
(p dq − q dp)) is Weinstein, up to homotopy, for some r0 > 0.

6.4 Identifying standard stabilized regions

Stabilization does not fundamentally alter the skeleton of our Liouville domain; we have

Skel(WA × r0D2, λ+ 1
2
(p dq − q dp)) = Skel(WA, λ)× {(0, 0)}.

As outlined in Section 1.2, our strategy for simplifying Liouville dynamics focuses on using
local perturbations to interrupt the Liouville flow along the skeleton of our domain. When
identifying the standard stabilized regions that will support our perturbations (i.e., where
Corollary 6.2 will be applied), it is thus important to consider how these regions intersect
our skeleton.

Because our skeleton has no interesting behavior in the stabilization direction, our
search for standard stabilized regions will be guided only by the nature of the initial
domain (WA, λ) and its skeleton. This search is eased considerably by the fact that (WA, λ)

agrees locally with the symplectization of (M,α). This allows us to construct a standard
stabilized region by identifying a contact handlebody ([0, t0]×W0, dt+ λ0) in (M,α) and
then considering the standard stabilized region

(σ0 × [0, t0]×W0 × r0D2, es(dt+ λ0) +
1
2
(p dq − q dp)) ⊂ WA,

for some closed interval σ0 ⊂ (0, ln(λs)) and some r0 > 0. The contact handlebody arises as a
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standard neighborhood of a closed Legendrian in (M,α), chosen so that this neighborhood
meets Skel(WA, λ) in a desirable manner.

6.4.1 Identifying contact handlebodies

Note that the intersection of Skel(WA, λ)with a contact slice

Ms := {s} × [−1, 1]τ × T 2 ⊂ (WA, λ), 0 ≤ s < ln(λs)

is given by {s} × {0}τ × T 2. As a hypersurface in the contact manifold (Ms, αs := es (βu +

τ βs)), this intersection has a linear characteristic foliation, directed by the eigenvector
−Vs of A. However, because A is Anosov, Vs has irrational slope, and thus the leaves of
this foliation will not be closed. This means that the closed Legendrians whose standard
neighborhoodswill be our contact handlebodies cannot lie on the intersection of Skel(WA, λ)

withMs. Nonetheless, we can identify closed Legendrians in (Ms, αs) that are arbitrarily
close to this intersection. We may choose τ0 ̸= 0 arbitrarily close to 0 such that τ0 Vu − Vs

has rational slope and consider the foliation of T 2 directed by τ0 Vu − Vs. By construction,
the leaves of this foliation are closed, and for any leaf L, the knot

{s} × {τ0} × L ⊂ (Ms, αs)

is Legendrian. With some choice of τ0 ̸= 0 fixed1, we now construct a standard neighbor-
hood of a Legendrian such as this.

Let us denote by L0 the leaf which passes through (0, 0) in T 2 and consider a strip
S0 ⊂ T 2 centered on L0. That is, S0 has coordinates (t, θ), with ∂t = Vu and ∂θ = τ0 Vu − Vs,
and we write S0 = [0, t0] × L0, with the original leaf L0 given by {t0/2} × L0. The strip
S0 is chosen so that its area is at least 2/3 in the flat metric on T 2 = R2/Z2. Now N0 :=

{s} × [−1, 1]τ × S0 ⊂ (M,α) is a contact handlebody; in the natural coordinates (τ, t, θ) on

1In practice, this choice doesn’t matter, provided it’s between −1 and 1.
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this neighborhood, we have
α|N0 = dt+ (τ0 − τ) dθ.

At last we may choose a closed interval σ0 ⊂ (0, ln(λs)) and define

V0 := σ0 × [0, t0]t × L0 × [−1, 1]τ ⊂ WA,

so that λ|V0 = es (dt+(τ0− τ) dθ). We emphasize that (V0, λ|V0) is a region in the unstabilized
domain (WA, λ). It remains to choose a radius r0 > 0 and define a standard stabilized
region U0 := V0 × r0D2. Before doing so, we point out that a second region, (V1, λ|V1), may
be constructed by letting L1 ⊂ T 2 be the unique leaf directed by τ0 Vu−Vs with the property
that the two components of T 2 \ (L0 ∪ L1) are annuli of equal area. We then construct a
strip S1 = [0, t0]× L1 ⊂ T 2 of the same Reeb thickness t0 as S0, with coordinates (t, θ). At
last we define

V1 := σ1 × [0, t0]t × L1 × [−1, 1]τ ⊂ WA,

where σ1 is an as-yet-undetermined closed subinterval of (0,min(σ0)).

6.4.2 Choosing parameters for Corollary 6.2

At this stage, we are treating the quantities t0 > 0 and τ0 ̸= 0 as fixed; it remains to choose
the intervals σ0 and σ1, as well as the radius r0 > 0 that will be used for our standard
stabilized regions. Moreover, applying Corollary 6.2 to Ui := Vi × r0D2, i = 0, 1, will
require the choice of some parameters δ > 0 and ϵ > 0. Our plan is to carefully choose ϵ
and δ, then the intervals σ0 and σ1, and finally r0.

For any 0 < δ ≪ t0, let us denote by Sδ
i the strip

Sδ
i := [δ, t0 − δ]× Li ⊂ Si ⊂ T 2,

for i = 0, 1. We then choose δ > 0 sufficiently small to ensure that S2δ
0 ∪ S2δ

1 = T 2. This
accounts for the “Reeb stretching” that is induced by Corollary 6.2. Next, we consider the
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codimension 2 domains underlying V0 and V1. That is, we have

(Wi, λi) = (Li × [−1, 1]τ , (τ0 − τ) dθ),

the skeleton of which is given by Li×{τ0}. We choose ϵ > 0 sufficiently small to ensure that
the band Li× [0, τ0] is contained in the interior of Iϵ(Wi, λi). This is because the intersection
of Skel(WA, λ)with Vi is given by σi × [0, t0]×Li ×{0}; by choosing ϵ > 0 sufficiently small,
we ensure that this intersection is trapped when Corollary 6.2 is applied.

With δ > 0 and ϵ > 0 chosen, we now set about defining the intervals σ0 and σ1. We
have already insisted that σ1 come “before” σ0, in the sense that max(σ1) < min(σ0). We
now place some restrictions on the lengths of these intervals; beyond the order and lengths,
the precise choice for these intervals is unimportant. Our first restriction on the lengths
is simple: we require that |σi| < − ln(1 − ϵ), for i = 0, 1. This restriction allows us to
conclude that N |σi|(∂Wi) is a strict subset of Wi \ Iϵ(Wi, λi). So Iϵ(Wi, λi) is contained in
Wi \N |σi|(∂Wi), and thus part (iii) of Corollary 6.2 (regarding the Reeb holonomy) applies
to any point whoseWi-component is contained in Iϵ(Wi, λi).

The second restriction on the lengths of σ0 and σ1 is quite a bit more complicated to
state. We begin with the observation that the Liouville flow ψs : Wi → Wi is given by

ψs(θ, τ) = (θ, τ0 + es (τ − τ0)),

for i = 0, 1. We could use this to explicitly compute the norm ∥·∥Wi
, but the important point

is that this norm depends only on τ . Now Corollary 6.2 considers the partially-defined
holonomy map h : ∂+U 99K ∂−U as consisting more-or-less of three distinct components: a
component in the stabilization direction, another in the Weinstein direction, and a third in
the Reeb direction. Consider the following three maps h• : Wi → Wi:

hi(θ, τ) := (θ, τ0 + e|σi| (τ − τ0)), i = 0, 1, hg(θ, τ) := (θ, λ2u τ).

According to Corollary 6.2, h0 and h1 represent a sort of worst-case Weinstein τ -holonomy
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for points which are not trapped (ignoring any changes which might happen in the θ-
component). The final map, hg, comes from the global holonomy of (WA, λ). We observe
that h0 and h1 have an unstable fixed point at (θ, τ0), while hg brings the τ -component closer
to 0, since |λu| < 1. By our choice of ϵ > 0, the band inWi bounded by τ = 0 and τ = τ0

is contained in the interior of Iϵ(Wi, λi), and thus we can choose |σ0| and |σ1| sufficiently
small to ensure that the image of (hg ◦ h1 ◦ h0)k is contained in Iϵ(Wi, λi), for some k ≥ 1.
This constitutes our second requirement on |σ0| and |σ1|.

Our third and final requirement on |σ0| and |σ1| is that these quantities be chosen
sufficiently small to ensure that (h0 ◦ hg ◦ h1)(θ, τ) is contained in the interior of Iϵ(Wi, λi),
for any 0 ≤ τ ≤ τ0. This condition will be used when verifying that our perturbed Liouville
domain contains no broken loops.

Finally, we choose r0 > 0 sufficiently large, given our choices of ϵ and δ, so that the
conclusions of Corollary 6.2 hold for both (U0, (λ+

1
2
(p dq− q dp))|U0) and (U1, (λ+

1
2
(p dq−

q dp))|U1).

Remark. It is worth pointing out one small wrinkle with our standard stabilized regions:
the domains (Wi, λi) are not technically Weinstein domains. However, these particular
domains can be made Weinstein via arbitrarily small perturbations supported in arbitrarily
small neighborhoods of their skeleta. The argument given below does not concern itself
with the precise dynamics of (Wi, λi) near the skeleton, and thus we may treat (Wi, λi) has
having been made Weinstein.

6.5 Verifying the Weinstein criteria

Let (WA × r0D2, λ̃) denote the Liouville domain which results from applying Corollary 6.2
to each of the regions U0 and U1 identified above. We now verify that every flowline of this
domain limits to a critical point in backward time, and that this domain has no broken
loops. According to Proposition 6.1, this will allow us to conclude that (WA × r0D2, λ̃) is a
Weinstein domain.
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6.5.1 The critical points criterion

Notice that if a flowline of the perturbed Liouville domain fails to limit to a critical point
in backward time, then this flowline must pass through the sliceMln(λs) × r0D2 of (WA ×

r0D2, λ̃). The same is true before perturbation (in which case our domain has no critical
points), and thus we consider a point (ln(λs), τ, x, y, p, q) in WA × r0D2. We let ℓ denote
the flowline through this point before perturbation, while ℓ̃ is the flowline through the
point after perturbation. Our goal is to show that ℓ̃must converge to a critical point of our
modified Liouville domain in backward time.

We first observe that, since the strips S0 and S1 in T 2 on which U0 and U1 are modeled
cover T 2, the flowline ℓmust intersect at least one of ∂+U0 and ∂+U1 in backward time. Our
hope, of course, is that the perturbations installed on U0 and U1 will cause the new flowline
ℓ̃ to limit to a critical point in one of these regions without returning to the sliceMln(λs), but
there are several ways in which this might fail to occur.

The τ holonomy

First, if τ is near one of the extreme values of −1 or 1, then our perturbations cannot be
expected to trap ℓ̃. However, the global holonomy ofWA ensures that τ cannot stay near−1

or 1. In particular, we have chosen the lengths of the intervals σ0 and σ1 so that the global
holonomy,which tends to shrink the absolute value of τ , dominates the holonomydue to our
perturbations onU0 andU1. Eventually, if ℓ̃ does not first limit to a critical point, wewill have
τ sufficiently near τ0 so that ℓ̃ intersects either ∂+U0 or ∂+U1 in {max(σi)}× [0, ti]×Iϵ(Wi, λi).
For this reason we may assume that ∥x∥W0 ≤ e−|σ0|(1− ϵ) < 1− ϵ.

The stabilization holonomy

According to the first condition placed on σ0 and σ1, we have 1− ϵ < e−|σi| for i = 0, 1. Thus
we know that ∥x∥W0 < e−|σi|, allowing us to use part (ii) of Corollary 6.2 to analyze the
behavior of ℓ̃ in the stabilization direction. Specifically, Corollary 6.2 associates a constant
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0 < Ki < 1 to Ui and ensures that if ℓ̃ is not trapped as it passes through Ui, then the
stabilization norm of the point through which it passes will be scaled by a factor of Ki.
That is, the holonomy associated to Ui brings untrapped flowlines closer toWA × {(0, 0)}.
We may therefore restrict our attention to the case where (p, q) = (0, 0); if all flowlines
through such points limit to critical points in backward time, then in fact all flowlines of
our perturbed Liouville domain limit to critical points in backward time.

The Reeb holonomy

We are now considering a flowline ℓ̃which passes through a point (ln(λs), τ, x, y, 0, 0), with
τ sufficiently close to τ0 to ensure that ∥x∥W0 ≤ e−|σ0|(1− ϵ). Because S2δ

0 and S2δ
1 cover T 2,

we know that the original flowline ℓ encounters the trapping region of either U0 or U1 in
backward time. If ℓmeets the trapping region of U0, then the new flowline ℓ̃will be trapped
in U0 in backward time, and we are finished. If ℓ does not intersect U0, then this flowline
must intersect U1 in its trapping region, and thus ℓ̃ will be trapped by U1 in backward time.
The only potentially troubling possibility is the case where the unperturbed flowline ℓ
intersects U0 somewhere outside its trapping region and then meets the trapping region
of U1. We need to verify that the holonomy induced by our perturbations on U0 does not
cause ℓ̃ to miss the trapping region of U1. But this is ensured by our choice of δ and the
holonomy statement in part (iii) of Corollary 6.2. Because ℓmeets ∂+U0 somewhere outside
its trapping region, we know that the T 2-component of this intersection is in S0 \ Sδ

0 , and
thus the relevant holonomy statements are in parts (i) and (iii) of Corollary 6.2. Namely,
part (i) ensures that theW0-norm of ℓ̃maintains an upper bound of 1− ϵ, while part (iii)
ensures that the holonomy induced by our perturbations on U0 keeps the T 2-component
of ℓ̃ outside of S2δ

0 . But T 2 is covered by S2δ
0 and S2δ

1 , and thus the T 2-component of the
intersection between ℓ̃ and ∂−U0 will be contained in S2δ

1 , and ℓ̃will meet ∂+U1 in its trapping
region.

We conclude that every flowline of (W × r0D2, λ̃) limits to a critical point in backward
time.
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6.5.2 The broken loops criterion

With the above preparations, it is very easy to verify that (W × r0D2, λ̃) contains no broken
loops. Suppose that a broken loop c did exist in this Liouville domain. Because we know
that all flowlines limit in backward time to critical points, c must be genuinely broken
— that is, at least one critical point is party to the broken loop. This means that c must
intersect at least one of U0 and U1; recall, however, that Corollary 5.11 ensures that c is not
contained entirely in either U0 or U1.

Recall that our Liouville domain is a quotient of the product [0, ln(λs)]s × [−1, 1]τ ×

T 2
x,y × r0D2

p,q and consider a flowline γ of cwhich is not entirely contained in either U0 or
U1. In forward time, γ converges to a critical point of the blocking apparatus installed on
Ui for i = 0 or i = 1, and thus intersects ∂−Ui in a point (s∗, τ ∗, x, y, p, q) satisfying τ ∗ = τ0

and (p, q) = (0, 0). This conclusion follows from Proposition 5.13, as well as the fact that
Skel(Wi) = Li × {τ0}.

Now consider flowing backwards from (s∗, τ0, x, y, 0, 0) along γ until either limiting to
a critical point or reaching the slice Mln(λs) × r0D2. Notice that flowing backwards will
not change the stabilization coordinates (p, q) = (0, 0) of γ whenever γ is outside of U0

and U1. Within U0 and U1, part (iii) of Corollary 6.2 ensures that if γ is not trapped in
backward time, it will exit the region with (p, q) = (0, 0). For these reasons, we won’t
concern ourselves with the stabilization coordinates.

We now know that γ converges in forward time to a critical point of the blocking
apparatus installed on Ui, for i = 0 or i = 1. If i = 1, then γ reachesMln(λs) × r0D2. As we
move backwards along γ, the τ -coordinate may be drawn towards 0, but cannot leave the
interval [0, τ0]. If i = 0we must consider the possibility that γ limits to a critical point in U1.
The previous observations about the (p, q)- and τ -coordinates apply in this case as well,
and we see that γ intersects ∂+U1 in the set

{s = s1} × [0, t0]× Iϵ(W1, λ1)× {(0, 0)}.
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We can be sure that the W1-coordinate of this intersection point will be contained in
Iϵ(W1, λ1) because the τ -coordinate is contained in [0, τ0]. According to Corollary 6.2 and
Proposition 5.12, there are then three possibilities as we flow backwards into U1 along γ:

• γ limits in backward time to a stove critical point of U1;

• γ limits in backward time to a non-stove critical point of U1;

• γ exits ∂−U1 with τ -coordinate in the interval [(1− e|σ1|)τ0, τ0], and with (p, q) = (0, 0).

Proposition 5.10 excludes the first case, as stove critical points cannot be party to a broken
loop. In the second case, we may simply recast γ as the flowline of c which limits in
forward time to a non-stove critical point of U1 and resume the above analysis. In particular,
a flowline which limits in forward time to a non-stove critical point cannot be entirely
contained in a blocking apparatus region. In the final case, we see that γ will reach
Mln(λs) × r0D2 with τ -coordinate in [(1− e|σ1|)τ0, τ0] and with (p, q) = (0, 0).

We now continue our analysis at a point (ln(λs), τ, x, y, 0, 0)where γmeetsMln(λs)×r0D2,
with the knowledge that, following the global holonomy, τ is contained in the interval
[λ2u(1 − e|σ1|)τ0, λ

2
uτ0]. Recall that the quantities |σ0| and |σ1| were chosen to ensure that

any point inWi with τ -coordinate in this interval is contained in Iϵ(Wi, λi), for i = 0, 1. It
follows that if (x, y) is contained in Sδ

0 , then γ will meet ∂+U0 in its trapping region and,
according to Proposition 5.12, limit in backward time to a stove critical point. If (x, y) is not
contained in Sδ

0 , then, by construction, (x, y) is contained in S2δ
1 .

We have now reduced our analysis to flowing backwards fromapoint (ln(λs), τ, x, y, 0, 0),
with (x, y) contained in T 2 − Sδ

0 and τ contained in [λ2u(1− e|σ1|)τ0, λ
2
uτ0]. There are three

possibilities for the behavior of our flowline γ as we flow backwards from this point:

• γ misses U0 entirely;

• γ passes through U0 without encountering a critical point;

• γ converges in backward time to a non-stove critical point of U0.
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The first case is the simplest: because (x, y) is contained in Sδ
1 , γ will meet ∂+U1 in its

trapping region and, according to Proposition 5.12, converge to a stove critical point of U1.

In the second case, we note that (x, y) is in fact contained in S2δ
1 , and thus Corol-

lary 6.2(iii) ensures that, following the holonomy induced by U1, our the T 2-coordinates
of γ will be contained in Sδ

1 . Moreover, part (i) allows us to bound the τ -coordinate of γ
following this holonomy. In particular, γ will exit U0 through ∂−U0 with τ -coordinate con-
tained in the interval [τ0+ e|σ0|(λ2u(1− e|σ1|)τ0− τ0), λ2uτ0]. Despite being wholly unattractive,
this interval is useful for us: the quantities |σ0| and |σ1| were chosen sufficiently small as to
ensure that (h0 ◦ hg ◦ h1)(θ, τ) is contained in the interior of Iϵ(Wi, λi), for any 0 ≤ τ ≤ θ.
The τ -interval we now have precisely matches this description. The upshot is that as we
continue flowing backwards along γ from ∂−U0, γ will eventually encounter ∂+U1 in its
trapping region, and thus converge in backward time to a stove critical point.

At last we consider the case where γ converges in backward time to a non-stove critical
point of U0. In this case, we change our focus once again, thinking instead about the
flowline of c which limits in forward time to the non-stove critical point which serves
as the backwards limit of γ. Proposition 5.13 tells us that this flowline meets ∂−U0 with
τ -coordinate τ0, and with T 2-coordinate contained in T 2 − S2δ

0 . As a result, this flowline
will meet ∂+U1 in its trapping region, and thus will converge in backward time to a stove
critical point.

The conclusion of this analysis is that any broken loop c in our Liouville domain
must contain a flowline which limits in backward time to a stove critical point. Because
Proposition 5.10 tells us that stove points cannot appear in broken loops, we conclude that
our Liouville domain is free of broken loops.

Per Proposition 6.1, we conclude that (WA × r0D2, λ̃) is a Weinstein domain.
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