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ABSTRACT OF THE DISSERTATION

Three Essays on Nonparametric Hypothesis Testing

by

Seolah Kim

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2020

Professor Aman Ullah, Chairperson

Nonparametric approaches have widely been used due to their advancement in not mak-

ing assumptions on the distribution of the data. Even with their extensive development,

nonparametric hypothesis testing has not been developed as much as a nonparametric es-

timation even though it is one of the key components of the econometric analysis. This

dissertation has mainly two parts. I first explore the systematic development of the current

nonparametric tests and provide results on testing linearity as an illustration. Then I de-

velop new nonparametric tests for detecting endogeneity in cross-sectional data and panel

data respectively.

Elaborating each test’s performance can be meaningful in that it allows us to

decide on which test to use depending on the hypothesis and even construct a new test

based on such a relationship. Under the hypotheses for linearity, Chapter 2 will categorize

the types of nonparametric tests and discuss the analytical relationship of those tests. By

imposing some conditions, I can compare the local power of each test asymptotically. While
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examining the analytical relationship, I also develop a nonparametric Rao-Score test and

show that it is equivalent to the Su and Ullah (2013) test.

Once analyzing the analytical relationship of the current nonparametric tests, I

focus on developing a new nonparametric test for endogeneity. Since endogeneity is com-

monly observed in many economic contexts, detecting its presence is a preliminary step for

choosing an estimation strategy. In Chapter 3, I construct a test using the control function

approach under a triangular simultaneous equations model. My test can be summarized as

being simple to implement as a test and being able to capture the locally nonlinear correla-

tion with kernel weighting. Furthermore, I will apply these tests to the empirical analyses

and show the contradicting results with the parametric test.

Not only in triangular simulation equations model, but also is endogeneity im-

portant model specification issue in panel data setting. The estimation strategy differs

depending on the presence of endogeneity between the individual-specific components and

the variable. I propose a new estimation method for the nonparametric panel random ef-

fects model and construct a new test for endogeneity using the residuals from the proposed

estimation method. By obtaining the individual-specific effects in the random effects model,

I construct a test over the i index instead of the i index and time. With a large T , the test

performs well in terms of size and power.
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Chapter 1

Introduction

Since the nonparametric methods have been introduced in statistics and econometrics, they

have been powerful in econometric analyses due to their advancement in not making as-

sumptions on the distribution of the data. Extensive development of the estimation methods

range from a density estimation to a single index model (Rosenblatt (1956), Rao (1985),

Silverman (1986), Ullah (1985, 1988), Horowitz (1992), Klein and Spady (1993), Ichimura

(1993), Linton and Nielson (1995), Fan and Gijbels (1996), Newey et al. (1999), Li and

Racine (2003), Fan and Yao (2005), among others). On the consolidated background, there

is an ongoing research about a consistent nonparametric estimation.

Once running the estimation, a hypothesis testing is one of the key components

of the econometric analysis to analyze the effect with the statistical significance. However,

nonparametric hypothesis testing has not been developed systematically and the current

nonparametric tests are ad-hoc. Elaborating each test’s performance will allow us to un-

derstand the principles of the test statistic and even construct a new test based on such a
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relationship. For example, Ullah and Zinde-Walsh (1984) compared the robustness both in

small and large sample between the likelihood function based tests. Therefore, the goal of

this dissertation is to propose a systematic approach in a nonparametric hypothesis test-

ing for linearity and then develop new nonparametric tests for the model specification and

endogeneity as an illustration.

In Chapter 2, I investigate the analytical relationship between the existing non-

parametric test statistics for the linearity test. Among many different nonparametric hy-

pothesis tests, I focus on Li-Wang type conditional moment test, Su-Ullah type goodness-of-

fit test, Yao-Ullah type goodness-of-fit test, and F type test. I present which nonparametric

test is locally most powerful, which can be useful for empirical researchers in conducting a

test for model specification. By imposing some conditions, I can compare the local power

of each test asymptotically. Furthermore, I develop a nonparametric Rao-Score test for the

model specification and show its equivalence to Su-Ullah type goodness-of-fit test. While

a nonparametric test is superior over parametric tests due to its consistency, the Rao-

Score test has not been developed yet in a fully nonparametric context. Using the local

log-likelihood functions, I can develop a fully nonparametric Rao-Score test.

Chapter 3 introduces a consistent nonparametric test for endogeneity using a trian-

gular simultaneous equations model. In such a setting, I take the control function approach

to obtain the conditional moment of interest E[U |V ], where U is the error term of the struc-

tural equation and V is the error term from the reduced-form equation. This conversion

opens a new way of constructing a test because it significantly reduces the dimension when

estimating the conditional moment, which can alleviate the curse of dimensionality. In con-
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structing a test, I use nonparametric residuals to obtain the consistency of the test. My test

has strengths in that it is easy to implement as its asymptotic distribution is the standard

normal and it can capture the locally nonlinear correlation with kernel weighting. Then, I

apply this test using the data from Autor, Dorn, Hanson (2013) and get the contradicting

results with the parametric test.

Endogeneity issue is important both in cross-sectional and panel data settings.

While I develop a new nonparametric test for endogeneity with cross-sectional data, Chapter

4 proposes a new estimation method for the nonparametric panel random effects model and

develops a new nonparametric test for endogeneity. In a panel data setting, testing for

endogeneity in an individual fixed effects determines whether to use the fixed effects or the

random effects model. There has been a difficulty in testing this hypothesis mainly because

these individual fixed effects under the random effects model cannot be obtained. However,

I extend the approach of Huang et al. (2019), then the individual fixed effects model can

be estimated even under the random effects. With this estimation, I construct a test using

the residuals from the proposed estimation strategy. Using this test, I also apply to the

empirical data analyzing the productivity of the public capital in the United States.

3



Chapter 2

Systematic Development of

Nonparametric Testing for

Linearity: Small and Large Sample

Properties

2.1 Introduction

Testing for linearity is an important subject in model specification, as it can prevent an

estimator from being inconsistent due to misspecification of a functional form. Since a

nonparametric test has superiority over any parametric tests due to its consistency, non-

parametric hypothesis testing methods have been extensively developed until now. However,

analytical comparisons of the local power between nonparametric tests have not been made.
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The elaboration of these tests’ performance is meaningful in that it can be practical for em-

pirical researchers in specifying the model and even propose a new path for nonparametric

hypothesis testing. In this regard, this paper proposes a systematic approach in current

nonparametric hypothesis testing.

There are two main contributions of this paper. First, this is the first paper that

categorizes the four popular nonparametric tests under the same hypotheses— Li-Wang type

conditional moment test, Su-Ullah type goodness-of-fit test, Yao-Ullah type goodness-of-fit

test, and F-type test. Since these tests are based on the kernel sum of squared residuals, I can

compare them analytically. Since the currently developed tests are ad-hoc, this systematic

development can propose a new path for the development of nonparametric hypothesis

testing by providing the analytics of these tests. Second, I analyze how the relationship

between these four tests is shown in their asymptotic power and different depending on

the estimation method in simulations. I suggest under which conditions this inequality

holds. Based on both the analytical and numerical results, I show which nonparametric

test is locally most powerful for each estimation method, which can be useful for empirical

researchers testing for the correct model specification.

Since the nonparametric methods have been introduced in econometrics, there has

been an extensive evolution of nonparametric tests ranging from a distributional test to

testing for serial correlation (Whang and Andrews (1993), Fan and Ullah (1999), Fan et

al. (2001), Hsiao and Li (2001), Horowitz and Spokoiny (2001), Linton et al. (2005), Su

and Ullah (2008), Mishra et al. (2010), Su et al. (2013), among others). Among many

different nonparametric hypothesis tests, I focus on four nonparametric tests, which use the
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kernel sum of squared residuals. These four tests are Li-Wang type conditional moment

test, Ullah-type F test, Su-Ullah type goodness-of-fit test, and Yao-Ullah type goodness-of-

fit test (See Ullah (1985), Fan and Li (2002), Li and Wang (1998), Su and Ullah (2013),

and Yao and Ullah (2013)).

The Li-Wang type test is based on the moment condition of interest. It has an

advantage for is simplicity among nonparametric tests in that it only requires the null

hypothesis. For example, the parametric specification will only be needed to test for the

parametric specification against the nonparametric specification. Since this requirement

facilitates the procedure of constructing a test, Li-Wang type test has been used in testing

a wide range of null hypotheses (See Hidalgo (1995), Zheng (1996), Lavergne and Vuong

(2000), Hsiao and Li (2001), Henderson et al. (2008) among others). When constructing a

test statistic, the conditional moment is converted to another one so that the test statistic

can be derived for the second-order U-statistics.

The second type is the goodness-of-fit test, which corresponds to Su-Ullah type

and Yao-Ullah type tests. The goodness-of-fit in the model specification is constructed using

the ANOVA decomposition (See Doksum and Samarov (1995) and Huang and Chen (2008)

among others), which contains the residual sum of squares. The only difference between the

Su-Ullah type and Yao-Ullah type is that the former uses the local ANOVA decomposition

while the latter uses the global ANOVA decomposition. An interesting approach with the

goodness-of-fit is that the goodness-of-fit will be zero under the null hypothesis. The F-

type test and goodness-of-fit test are similar in that these types require the estimation both

under the null and the alternative hypothesis.
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The third type is the F-type test. It is first proposed by Ullah (1988), and then

was extended by Fan and Li (2002). The form of this F-statistic is similar to the parametric

version of the F-test, but it is different in that it does not contain the degrees of freedom due

to nonparametric estimation. The null hypothesis in this type of test is that the difference

between the sum of parametric residuals and the sum of nonparametric residuals is equal

to zero. Yatchew (1992) develops the F-type test using the sample splitting.

In addition to these four types of nonparametric tests, I construct a nonparametric

Rao-Score (RS) test using two steps. Using the local log-likelihood function, I construct

a local RS and then I set up the global RS by integrating the local test statistics over

the support of a variable of interest. Once obtaining the global RS, I construct a fully

nonparametric RS test. This type of test has not been developed in the literature, but I

show the equivalence in test statistics between a nonparametric RS test and Su-Ullah type

test asymptotically.

The evaluation of different test statistics has been accumulated over time in a

parametric context. For example, Ullah and Zinde-Walsh (1984) showed the relationship

between F, Wald, Lagrange Multiplier, and Likelihood Ratio tests, where they provided a

way of developing a test statistic for any given problem based on the principles of the test.

Unlike parametric hypothesis testing, any systematic development among nonparametric

tests in hypothesis testing has not been done much due to its complexity. By extending

the tests of Fan et al. (2001) and Fan and Yao (2008), Hong and Lee (2013) showed the

approximate relationship between the F-type test and the general likelihood ratio test. Also,

Su and Ullah (2013) compared the asymptotic local power between the method of moment
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test and their goodness-of-fit test. In this regard, I generalize the relationship of different

nonparametric tests asymptotically by investigating their alternatives or modifications and

present the inequality between them by their asymptotic local power.

The structure of this paper is as follows. Sections 2.2-2.3 introduce model and

hypotheses as well as the examples of nonparametric test statistics. After comparing the

local power of each test statistic asymptotically in Section 2.4, I present the simulation

results of the different test statistics in testing for linearity with the bootstrap procedure in

Section 2.5. Section 2.6 concludes the paper.

2.2 Model and Hypotheses

In this section, the general model will be discussed for testing linearity. Based on this

general model, I introduce different types of kernel-based nonparametric tests using the

kernel sum of squared residuals, and show how they are linked to each other asymptotically.

Consider the model as follows:

yi = m(xi) + ui (2.1)

for i = 1, . . . , n, where yi is an observable scalar random variable and x′i is a p× 1 vector of

regressors with the unknown functions m : Rp → R1. All the variables are i.i.d. over i. ui is

disturbance term such that E[ui | xi] = 0 is satisfied. Based on this model, The hypotheses

for linearity are as follows.


H0 : m(xi) = E[yi | xi] = xiβ

H1 : m(xi) = E[yi | xi] 6= xiβ

8



The model (2.1) can be re-written by accommodating the given null hypothesis, which

allows constructing a goodness-of-fit test.

yi = m(xi) + ui

yi − xiβ = m(xi)− xiβ + ui (2.2)

Using the model (2.2), the ANOVA decomposition of variance following Doksum and

Samarov (1995) is given as E[(yi − xiβ)2] = E[(m(xi)− xiβ)2] + E[u2
i ]. Under the null

hypothesis, the second term becomes zero if the null is true. Following the given model,

the goodness-of-fit R2 can be constructed as R2 = E[(m(xi)− xiβ)2]
/
E[(yi − xiβ)2]. Then

another set of hypotheses for testing linearity can be set up.


H0 : R2 = 0

H1 : R2 6= 0

These hypotheses will used for the Su-Ullah type and the Yao-Ullah type tests. When

R2 = 0, it implies that the model does not explain any variation of y, which suggests that

the model is linear.

For the asymptotic properties of each test, the assumptions will be characterized

as follows.

Assumptions

(A1) {yi, xi}ni=1 is independently and identically distributed.

(A2) 0 < V (y) <∞.

9



(A3) The marginal density f(x) is differentiable, 0 < f(x) ≤ Bf <∞, and |f(x)− f(x′)| <

mf |x− x′| for some 0 < mf <∞ is satisfied.

(A4) Let σ2(x) = E
[
u2| x

]
, and σ4(x) = E

[
u4| x

]
. σ2(x) is continuous at x, E[σ2(x)] <∞,

and E[σ4(x)] <∞. In addition, both E[σ2(x)] and E[σ4(x)] satisfy the Lipschitz-type

condition, where |µ(x+ u)− µ(x)| ≤ ϑ(x) ‖u‖ with E[ϑ2(x)] <∞ for µ = σ2, and σ4.

(A5) i) β̂ − β = O(n−1/2) under H0. ii) m(x) is twice differentiable in R such that m(1)(x)

and m(2)(x) are continuous, and dominated by functions with finite second moments,

respectively.

(A6) The kernel function K(·) is continuous, symmetric, and bounded with
∫
K(x)dx = 1.

For ∀x ∈ R , |K(x)| < Bk < ∞. I assume
∣∣Kj(u)−Kj(v)

∣∣ ≤ C1 |u− v| , for j =

0, 1, 2, 3.

(A7) As n→∞, h→ 0, nhp →∞, nh3p/2 →∞, nhp+2/(log n)2 → c ∈ (0,∞].

The model assumes the i.i.d. distribution of {yi, xi}ni=1. By (A3), the conditional variance

σ2(x) is continuous at x and its expectation is finite. (A2) is required to construct the

globally constructed goodness-of-fit test (Yao-Ullah type). In (A3), the conditional density

f(x) satisfies the Lipschitz continuous condition. (A5)-ii) is the standard assumptions

for nonparametric estimation, which are required for all the tests except the conditional

moment test (Li-Wang type). In constructing all types of test, the kernel function is used

as a weighting function. Regarding properties of the kernel function, it is bounded and

symmetric by (A6). As in f(x) , the kernel function satisfies the Lipschitz continuous

function. (A7) is on the restriction of the bandwidth.
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2.3 Examples of Nonparametric Test Statistics

Based on the suggested models (2.1) and (2.2), I present four types of nonparametric tests—

Conditional moment test (Li-Wang type), locally constructed goodness-of-fit test (Su-Ullah

type), globally constructed goodness-of-fit test (Yao-Ullah type), and F-type test.

2.3.1 Conditional Moment Test (Li-Wang Type)

The conditional moment test is first developed by Zheng (1996), and widely used in different

contexts (See Li and Wang (1998), Hsiao and Li (2001), and Henderson et al. (2008) among

others). As discussed earlier, the advantage in constructing this type of test lies in its

simplicity that the test required only the null hypothesis.

Under H0, there is no misspecification, and it contains the moment condition,

which becomes E[ui | xi] = 0, where ui = yi − xiβ. Instead of directly testing the moment

condition, the converted condition will be used for constructing a test statistic, which is

E[uiE[ui | xi]f(xi)] = 0. The equivalence of two moment conditions is simply derived.

E [f (xi)uiE[ui|xi]] =

∫∫
u1

(∫
u2f (x, u2) du2

)
f (x, u1) du1dx

=

∫ (∫
u1f (u1|x) du1

)(∫
u2f (u2|x) du2

)
f2 (x) dx

=

∫ (∫
uf (u|x) du

)2

f2 (x) dx,

since ui is i.i.d. over i. Therefore, E[ui|xi] =
∫
uf (u|x) du = 0 iff E[f (xi)uiE[ui|xi]] = 0

since f (x) > 0. �

11



Define f̂(xi) = 1
(n−1)hp

∑n
j 6=iK

(
xj−xi
h

)
(See Rosenblatt (1956)). Then, the sample analogue

of the moment condition, In, and its standardized test statistic Jn are proposed as follows.

In = Ê[ûiÊ[ûi | xi]f̂(xi)]

=
1

n

n∑
i=1

ûi

 1

(n− 1)hp

n∑
j 6=i

ûjK

(
xj − xi
h

)
=

1

n(n− 1)hp

n∑
i=1

n∑
j 6=i

ûiûjK

(
xj − xi
h

)
,

where ûi = yi − m̂(xi). Note that ûi = yi − xiβ̂ under the null.

Define Ω̂Jn = 2
nhp

∑n
i=1

∑n
j 6=i û

2
i û

2
jK
(
xj−xi
h

)
. Then,

Jn =
√
n2hpIn/Ω̂Jn ∼ N(0, 1)

Following Zheng (1996) and Li and Wang (1998), Jn asymptotically follows N(0, 1) with

the consistency of Ω̂Jn .

2.3.2 Locally Constructed Goodness-Of-Fit Test (Su-Ullah Type)

This test is initially proposed by Su and Ullah (2013) for testing heteroskedasticity. The es-

timation strategy for this type is weighted least squares (WLS) with using kernel weighting.

The estimation is done at the local x, which allows obtaining local estimators δ(x).

yi − xiβ̂ = m(xi)− xiβ̂ + ûi

εi = Xi(x)δ̂(x) + ûi (2.3)

12



Note that δ̂(x) becomes a local constant estimator if Xi(x) = 1, and δ̂(x) becomes a local

linear estimator if Xi(x) = (1, xi−x)′. Then, the local R2 will be calculated in this setting.

As the first step, the local ANOVA (Analysis of Variance) decomposition can be derived

from estimated model.

TSS(x) = ESS(x) +RSS(x)

n∑
i=1

(yi − xiβ̂)2K

(
xi − x
h

)
=

n∑
i=1

(Xi(x)δ̂(x))
2
K

(
xi − x
h

)
+

n∑
i=1

û2
iK

(
xi − x
h

)

The local goodness-of-fit R̂2(x) can be obtained.

R̂2(x) = 1− RSS(x)

TSS(x)
=
ESS(x)

TSS(x)
=

∑n
i=1(Xi(x)δ̂(x))2K

(
xi−x
h

)∑n
i=1(yi − xiβ̂)2K

(
xi−x
h

)
Once the local R̂2(x) is constructed, the second step is to obtain the global R̂2 by integrating

the local ANOVA decomposition over χn, a compact subset of the support of the probability

distribution function of x. The advantage of using a local ANOVA decomposition over the

global ANOVA decomposition is that the probability of the global R̂2 being negative is zero.

∫
χn

TSS(x)dx =

∫
χn

ESS(x)dx+

∫
χn

RSS(x)dx

TSS = ESS +RSS

Define Wx = diag(K1x, ...,Knx). At the global level, H∗ =
∫
χn
Hxdx, where Hx =

WxXi(x)(X ′i(x)WxXi(x))−1X ′i(x)Wx.

13



The Su-Ullah type test statistic is then constructed by standardizing the estimated

R2 with its bias adjustment term and the variance.

Tn =

√
n2hpR̂2 − B̂n√

Ω̂Tn/(n−1TSS)2

,

where B̂n ≡ hp/2
∑n

i=1 û
2
iH
∗
ii/(n

−1TSS) and Ω̂Tn ≡ 2n−1hp
∑n

i=1

∑n
j 6=i û

2
i û

2
j (nH

∗
ij)

2. Follow-

ing the similar proofs of Su and Ullah (2013), Tn asymptotically follows N(0, 1).

Rao-Score Test

Before introducing the next type of the test, I will propose a nonparametric Rao-Score test

and show its equivalence to Su-Ullah type test. Then, the new hypotheses under the new

model will be given as below. 
H0 : δ(x) = 0

H1 : δ(x) 6= 0

Under the null hypothesis, the model is correctly specified. Under the alternative, the model

is incorrect. Consider a local log-likelihood function given in Fan et al. (2001).

l(δ(x), σ2(x);h, x) = −n
2

log(2π)− n
2

log σ2(x)− 1

2σ2(x)hp
(ε̂−X(x)δ(x))′Wx(ε̂−X(x)δ(x))

The score function is given as

S(δ(x)) =
∂(δ(x), σ2(x);h, x)

∂δ(x)
=

2

2σ2(x)hp
X(x)′Wx(ε̂−X(x)δ(x))

S(σ2(x)) =
∂(δ(x), σ2(x);h, x)

∂σ2(x)
= −n

2

1

σ2(x)
+

1

2σ4(x)hp
(ε̂−X(x)δ(x))′Wx(ε̂−X(x)δ(x)).

14



Based on the score functions, the second-order derivative of the local log-likelihood function

with respect to δ(x) is

∂S(δ(x))

∂δ(x)
=
∂2(δ(x), σ2(x);h, x)

∂δ(x)∂δ(x)′
= − 1

σ2(x)hp
X(x)′WxX(x)

Note that the conditional variance under the null σ̃2(x) is obtained by the first-order con-

dition as follows:

σ̃2(x) =
(ε̂−X(x)δ(x))′Wx(ε̂−X(x)δ(x))

nhp

∣∣∣∣
H0

=
1

nhp
ε̂′Wxε̂.

Based on the obtained score function and σ̃2(x), I can construct the local Rao-Score:

R̂S(x) = (S(δ(x)) |H0)′ [I−1(δ(x)) |H0 ] (S(δ(x)) |H0)′

= (S(δ(x)) |H0)′
(
∂S(δ(x))

∂δ(x)

∣∣∣∣
H0

)−1

(S(δ(x)) |H0)

=

(
1

σ̃2(x)hp
X(x)′Wxε̂

)′( 1

σ̃2(x)hp
X(x)′WxX(x)

)−1( 1

σ̃2(x)hp
X(x)′Wxε̂

)
=

1

hp
ε̂′WxX(x)(X(x)′WxX(x))−1X(x)′Wxε̂

σ̃2(x)

=
1

hp
ε̂′Hxε̂

1
nhp ε̂

′Wxε̂

= n
ε̂′Hxε̂

ε̂′Wxε̂

As R̂2(x) =
∑n

i=1(Xi(x)δ̂(x))2K
(
xi−x
h

)
/
∑n

i=1(yi − xiβ̂)2K
(
xi−x
h

)
, it is easy to show that

R̂S(x) = nR̂2(x) at the local level.
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Once constructing a local measure, the global Rao-Score can be constructed by integrating

the local measures over χn. Using σ̃2 = 1
nhp ε̂

′Wε̂,

R̂S =

∫
χn

1

hp
ε̂′Hxε̂

σ̃2(x)
dx

=

∫
χn

1

hp
ε̂′Hxε̂
1
nhp ε̂

′Wε̂
dx

= n

∫
χn

ε̂′Hxε̂

ε̂′Wε̂
dx

= n
ε̂′Hε̂

ε̂′Wε̂

The difference between the global goodness-of-fit and the global Rao-Score is that the global

goodness-of-fit is established by integrating the ESSx and TSSx respectively. On the other

hand, the global Rao-Score is constructed by integrating the n(ESSx/TSSx). I can show

in Theorem 1 that both global measures are equivalent. The proof of Theorem 1 is given

in Appendix A.

Theorem 1 As n→∞,
∫
χn

(
ε̂′Hxε̂

/
(n−1ε̂Wxε̂)

)
dx =

∫
χn
ε̂′Wxε̂ dx

/
(n−1

∫
χn
ε̂Wxε̂dx).

Using Theorem 1, asymptotically at the global level,

R̂S = nR̂2

To derive the asymptotic distribution of Rao-score Type test, I modify the global Rao-Score

following the similar proofs from Theorem 5 in Fan et al. (2001).
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Then, the standardized Rao-Score test statistic Sn can be derived. Define µ̂n =∑n
i=1 û

2
iH
∗
ii/(n

−1TSS) = h−p/2B̂n and Γ̂n = 2n−2
∑n

i=1

∑n
j 6=i û

2
i û

2
j (nH

∗
ij)

2 = h−pΩ̂n.

Sn =
nR2 − µ̂n√

Γ̂n/(n−1TSS)2

=
nR2 − µ̂n√

Γ̂n/(n−1TSS)2

∼ N(0, 1)

The modification of the test statistic Sn gives the equivalence to the test statistic Tn.

Sn =
h−p/2(nhp/2R2 − hp/2µ̂n)√

h−phpΓ̂n/(n−1TSS)2

=
h−p/2√
h−p

Tn

= Tn

Therefore, even though both test statistics are constructed from the weighted least squares

and the local log-likelihood function respectively, they are equivalent and follow the standard

normal distribution asymptotically.

2.3.3 Globally Constructed Goodness-Of-Fit Test (Yao-Ullah Type)

This type of test is constructed by the global ANOVA decomposition, which was proposed

by Yao and Ullah (2013) for testing relevant variables in the model. Different from the

locally constructed goodness-of-fit test, this test is directly constructed from the global R2
G.

For testing linearity, the global R2
G and R̂2

G are derived as below. Note that R2
G is always

between 0 and 1, but R̂2
G may not lie between 0 and 1. Given the ANOVA decomposition,
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E[(yi − xiβ̂)2] = E[(m̂(xi)− xiβ̂)2] +E[(yi − m̂(xi))
2] + 2E[(yi − m̂(xi))] · E[m̂(xi)− xiβ̂].

But, 2
∑n

i=1[(yi− m̂(xi))] ·E[m̂(xi)] might not be equal to zero. Due to this potential issue,

it is necessary to impose a condition in constructing the test statistic.

R2
G = 1−

E
[
u2
i

]
E
[
(yi − xiβ̂)2

] = 1−
E
[
(yi −m(xi))

2
]

E
[
(yi − xiβ̂)2

]
R̂2
G = 1−

E
[
û2
i

]
E
[
(yi − xiβ̂)2

] = 1−
E
[
(yi − m̂(xi))

2
]

E
[
(yi − xiβ̂)2

] .

Define Ân = 1
n3h2p

∑n
i=1

∑n
j 6=i

û2i
f̂(xi)2

K2
(
xj−xi
h

)
1. The estimated goodness-of-fit

and test statistic are given as follows.

R̂2
G =

[
1−

1
n

∑n
i=1 (yi − m̂(xi))

2

1
n

∑n
i=1(yi − xiβ̂)2

]
· I

(
1

n

n∑
i=1

(yi − xiβ̂)2 ≥ 1

n

n∑
i=1

(yi − m̂(xi))
2

)

TGn =
nhp/2√
V̂G

{
R̂2
G + I

(
1

n

n∑
i=1

(yi − xiβ̂)2 ≥ 1

n

n∑
i=1

(yi − m̂(xi))
2

)
Ân

1
n

∑n
i=1(yi − xiβ̂)2

}

∼N(0, 1)

Note that second term of TGn is bias adjustment term for TGn, and it is defined differently

depending on the estimation method. Also, V̂G is shown as

V̂G =
σ̂2
φG

1
n

∑n
i=1(yi − xiβ̂)2

,

where σ̂2
φG =

[
1
n2

∑n
i=1

∑n
j 6=iK

(
xj−xi
h

)
û2i û

2
j

hpf̂(xi)2

] (∫
2(2K(ψ)− κ(ψ))2dψ

)
, and κ (ψ) is

two-fold convolution kernel of K(·).

1In Yao and Ullah (2013), there is an additional bias adjustment term, but it is cancelled out because
the estimation in this setting is leave-one-out estimation.
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2.3.4 F-Type Test

Ullah (1985) initially introduced a nonparametric F-type test by using the kernel squared

sum of residuals. In Ullah (1985), the following statistic Un was proposed, which has a

similar form to the parametric F-test.

Un =
RSS1 −RSS0

RSS0
=

∑n
i=1(yi − m̂(xi))

2 −
∑n

i=1(yi − xiβ̂)2∑n
i=1(yi − xiβ̂)2

Based on this test statistic, Fan and Li (2002) derived asymptotic normality of Un and

developed the new test statistic Fn.

Define Ω̂Fn = 1
n3h2p

∑n
i=1

∑n
j 6=i

1
f̂2i (xi)

û2
i û

2
j (κ (ψ) − 2K(

xj−xi
h ))2, BFn is a bias adjustment

term, where BFn = 1
n3h2p

∑n
i=1

∑n
j 6=i

û2i
f̂(xi)2

K2(
xj−xi
h ), and ûi = yi − xiβ̂ under the null.

Fn = nhp/2
Un +BFn√

Ω̂Fn

∼ N(0, 1)

By Fan and Li (2002), Fn follows the standard normal distribution under the null.

2.4 Asymptotic Local Power Properties

With the test statistics from the Section 2.3, I focus on deriving the relationship of the

given four test statistics—Li-Wang type test, Su-Ullah type goodness-of-fit test, Yao-Ullah

goodness-of-fit test, and F-type test. Even though it is difficult to compare these test

statistics, it is feasible to directly compare the test statistics asymptotically to analyze the

asymptotic local power of each test statistic. When the conditions are imposed as below,

then the inequality among the test statistics can be obtained.
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For the asymptotic properties under the alternative, I introduce the Pitman local

alternatives as follows:

H1(δn) : m1(xi) = xiβ + δnl(xi) ,

where l(·) is continuously differentiable and bounded, and δn = n−1/2h−p/4. Due to their

complicated form, two conditions will be imposed for comparing the asymptotic local power

of the test statistics.

(B1) E [l(xi)] = 0.

(B2) X is uniformly distributed.

If (B1) holds, this means that V (m1(xi)) = E[(m1(xi))
2]. Also, the uniformly

distribution of xi implies that f(xi) = 1/vol(χ). In the following sections 2.4.1-2.4.4, the

asymptotic mean and the variance will be shown. In all calculations, the Gaussian kernel

is used and p = 1 for the simplicity.2

2.4.1 Method of Moment Test Statistic

With the two conditions above, the test statistic can be simplified as below. I will present

the mean, the variance, and the test statistic in order.

E
[
nh1/2In

]
= lim

n→∞
E[l2(xi)f(xi)]

=
1

vol(X)
lim
n→∞

E[l2(xi)]

2The detailed derivation for each type of the test in this section will be given in Appendix A.

20



ΩJn = 2 lim
n→∞

E[σ4(xi)f
2
(xi)]

∫
K2(u)du

=
2

(vol(X))2
lim
n→∞

E[σ4(xi)]

∫
K2(u)du

=
1

2
√
π
· 2

(vol(X))2
lim
n→∞

E[σ4(xi)]

' 0.2821
2

(vol(X))2
lim
n→∞

E[σ4(xi)]

Define Γ = limn→∞E[l2(xi)]/
√

2limn→∞E[σ4(xi)]. Based on the above information,

Jn =
nh1/2In√

ΩJn

' 1√
0.2821

lim
n→∞

E[l2(xi)]/
√

2 lim
n→∞

E[σ4(xi)]

= 1.882Γ

2.4.2 Locally Constructed R2 Test Statistic

Likewise, the asymptotic mean and the asymptotic variance will be calculated. Define

σ2
ε = E[(yi − xiβ)2] ,and µq(x) refers to the stack of xj , 0 ≤ |j| ≤ q in the lexicographical

order. The local constant least squares estimation is when q = 0, and the local linear least

squares estimation is when q = 1.

E[nh1/2R̂2 − B̂n] = lim
n→∞

E
[
l2(xi)

]
/σ2

ε

ΩTn,q = 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

∫
(

∫
K(z)µq(z)

′µq(z + x)K(z + x)dz)2dx
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Note that the value of ΩTn
3 changes depending on the estimation method, and I present

the variance when the local constant least squares estimation (Tn,0) and the local linear

least squares estimation (Tn,1) are applied respectively.

ΩTn,0 = 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

∫
(

∫
K(z)µ0(z)′µ0(z + x)K(z + x)dz)2dx

= 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

∫
κ2(u)du

=
1

2
√

2π
· 2 lim

n→∞
E[σ4(xi)]/σ

2
ε

' 0.1995 · 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

ΩTn,1 = 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

∫ (∫
K(z)µ1(z)′µ1(z + x)K(z + x)dz

)2

dx

= 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

∫ (∫
κ(x)(1 + z(z + x))dz

)2

dx

=
27

32
√

2π
· 2 lim

n→∞
E[σ4(xi)]/σ

2
ε

' 0.3366 · 2 lim
n→∞

E[σ4(xi)]/σ
2
ε

Then, there are two versions of the test based on the estimation methods.

Tn,0 =
nh1/2R̂2 − B̂n√

ΩTn,0

' 1√
0.1995

lim
n→∞

E[l2(xi)]/
√

2 lim
n→∞

E[σ4(xi)]

= 2.238Γ

3As the estimation methods used are the local constant and local linear estimations, the given variance
formula is a simplified version of that in Su and Ullah (2013).
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Tn,1 =
nh1/2R̂2 − B̂n√

ΩTn,1

' 1√
0.3366

lim
n→∞

E[l2(xi)]/
√

2 lim
n→∞

E[σ4(xi)]

= 1.723Γ

From this calculation, the power of the locally constructed R2 test increases when using the

local constant estimator due to its relatively smaller variance than that of the local linear

estimator. This result has been also shown in Su and Ullah (2013).

2.4.3 Globally Constructed R2 Test Statistic

Under the alternative, the probability of I
(

1
n

∑n
i=1(yi − xiβ̂)2 ≥ 1

n

∑n
i=1(yi − m̂(xi))

2
)

be-

comes 1 as n→∞4. Then, the second term of TGn converges to zero.

E
[
nh1/2R̂2

G

]
= lim

n→∞

1

σ2
ε

E

[
l2(xi)

f(xi)

]
= vol(X)· lim

n→∞
E
[
l2(xi)

]
/σ2

ε

ΩTGn = 2 lim
n→∞

(vol(X))2E[σ4(xi)]

∫
(κ(u)− 2K(u))2du/σ4

ε

=

√
3 + 4

√
6− 8

2
√

6π
· 2(vol(X))2 lim

n→∞
E[σ4(xi)]/σ

4
ε

' 0.4065 · 2(vol(X))2 lim
n→∞

E[σ4(xi)]/σ
4
ε

4Please refer to the proof of Theorem 3 in Yao and Ullah (2013).
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Different from the locally constructed goodness-of-fit test (Su-Ullah type test), the variance

formula stays the same when R2 is globally constructed.

TGn =
nh1/2R̂2

G√
ΩTGn

' 1√
0.4065

lim
n→∞

E[l2(xi)]/
√

2 lim
n→∞

E[σ4(xi)]

= 1.568Γ

2.4.4 F-Type Test Statistic

The asymptotic mean and the variance of of F-Type test can be written as follows.

E[nh1/2(Un +BFn)] = E

[
l2(xi)

f(xi)

]
= vol(X) · E[l2(xi)]

ΩFn = 2 lim
n→∞

E

[
σ4(xi)

f2(xi)

] ∫
(κ(u)− 2K(u))2du

= 2(vol(X))2 lim
n→∞

E[σ4(xi)]

∫
(κ(u)− 2K(u))2du

' 0.4065 · 2(vol(X))2 lim
n→∞

E[σ4(xi)]

As P
(
I
(

1
n

∑n
i=1

(
yi − xiβ̂

)
2 ≥ 1

n

∑n
i=1(yi − m̂(xi))

2
))

p→ 1 asymptotically under the al-

ternative, the F-type test becomes identical to the globally constructed R2 test.

Fn =
nh1/2(Un +BFn)√

ΩFn

' 1√
0.4065

lim
n→∞

E[l2(xi)]/
√

2 lim
n→∞

E[σ4(xi)]

= 1.568Γ
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2.4.5 Asymptotic Local Power

Depending on the estimation method, each test statistic is ranked based on its asymptotic

local power given (B1) and (B2). For the local constant least squares estimation,

TGn ≤ Fn < Jn < Tn,0

⇐⇒ 1.568Γ ≤ 1.568Γ < 1.882Γ < 2.238Γ

The inequality between TGn and Fn is due to the indicator function term in TGn, which can

increase the variance and make the test statistic decrease. For the local linear least squares

estimation, the rank of the asymptotic local power between Jn and Tn is switched.

TGn ≤ Fn < Tn,1 < Jn

⇐⇒ 1.568Γ ≤ 1.568Γ < 1.723Γ < 1.882Γ

Based on the asymptotic relationship, I can conclude that the locally constructed R2 test

is most powerful for the local constant estimation while the conditional method of moment

test is most powerful for the local linear estimation.

2.5 Simulation

This section will show how the analytical results from the previous section match in the

simulations for a small sample and large sample. In addition, I present the simulation

results using a wild bootstrap procedure to improve the test performance in a finite sample.
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2.5.1 Data Generating Processes

For calculating the size, I follow the data generating process of Hardle and Mammen (1993)

and Li and Wang (1998), where xi ∼ U [0, 1] and ui ∼ N(0, .1). DGP1 is to estimate the

size of the test under the null hypothesis. I also construct DGP2 to estimate the power of

each test by applying the same data generating process for xi and ui as DGP1, but xi is

not linear in yi anymore. Note that the uniform distribution of xi is the key condition in

comparing the test statistics.

DGP1 : yi = 1 + xi + ui

DGP2 : yi = xi − x2
i + ui

I consider two samples sizes, 100 with 1000 repetitions and 400 with 500 repetitions. Wild

bootstrap is applied and its procedure will be introduced in the following session. The

number of bootstrapping B is fixed as 399. I implement both local constant (LC) and local

linear (LL) least-squares estimation. The Gaussian kernel is chosen for the estimation and

test statistics. The rule-of-thumb bandwidths are used for xi, h = c · std(xi) · n−1/5 by

taking different values of c = 0.5, 1, and 1.5. For the conditional moment test, as it is

constructed under the null, using either LC or LL method does not affect the test statistic.

2.5.2 Bootstrap Procedure

To improve the test performance in a small sample, I propose a wild bootstrap test as an

alternative. I apply a wild bootstrap method using Mammen’s distribution. Steps to get a

bootstrap test statistic are given below.

26



1. Estimate m̂(xi) = xiβ̂, where β̂ is the estimates from the linear regression under the

null hypothesis.

2. Generate u∗i as the wild bootstrap error. I construct u∗i = 1−
√

5
2 ûi with the probability

of 1+
√

5
2 and u∗i = 1+

√
5

2 ûi with the probability of 1 − 1+
√

5
2 . It is easy to show

E [u∗i ] = 0, E
[
u∗2i
]

= û2
i , and E

[
u∗3i
]

= û3
i .

3. Generate y∗i , where y∗i = xiβ̂ + û∗i .

4. Using the bootstrap sample {y∗i , xi}ni=1, regress y∗i on xi to obtain m̂∗(xi) = xiβ̂
∗, and

get û∗i = y∗i − m̂∗(xi).

5. Compute the bootstrap test statistic and repeat above procedure for B times. In this

simulation, the number of bootstrapping is 399.

6. Based on the empirical distribution of each test, calculate the critical value c∗ and

obtain the p-value. If p-value is less than 0.05 at 5% significance level, the null is

rejected.

Following these bootstrap procedures, I can obtain the asymptotic distribution of each test.

The results will be given in Table 2.1-2.4. Following the asymptotic properties of each test

statistic, the bootstrap tests are consistent.

2.5.3 Simulation Results

The simulation results are given in Table 2.1-2.4 to compare the test performance by differing

the estimation methods. The size performance is shown in Table 2.1 and Table 2.2. For

Table 2.1, the size of each test under the local constant least squares estimation is presented
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for each sample size, bandwidth, and the significance level. While each bootstrap test seems

oversized in a finite sample, it gets closer to the correct size in a large sample. For the Yao-

Ullah type test, the size is undersized even in a bootstrap test when the bandwidth is large.

This can be explained by the fact that the Yao-Ullah type test includes an indicator function

to prevent the goodness-of-fit from being negative, which can happen as the local constant

estimator gets closer to the parametric linear model with the increase in a bandwidth.

However, each test’s size performs well overall.

The size performance using a local linear estimator in Table 2.2 is similar to the

results in Table 2.1. At each significance level, the estimated size is better in a large sample

for all tests. In particular, the bootstrap size of the Yao-Ullah type test is recovered in a

larger bandwidth. In addition, the noticeable result is that the asymptotic size is better

when implementing a local linear estimation than implementing a local constant estimation

even though the bootstrap size is still closer to the correct size.

More importantly, Table 2.3-2.4 presents the power of each test, which can verify

the analytical comparison between tests in Section 2.4.5. Table 2.3 presents the power of

each test using the local constant estimator. At all significance levels and all sample sizes,

the Su-Ullah Type test is the most powerful, followed by the Li-Wang type test, the Yao-

Ullah type test, and F-Type test. As the sample size increases, the difference in the power

performance between the Su-Ullah type test and the Li-Wang type test becomes narrower.

Also, asymptotically the F-Type and the Yao-Ullah test are equivalent. On the other hand,

the bootstrap power of Yao-Ullah test is smaller because of the indicator function element

in their test statistic. Both tests become almost identical with a larger sample size.
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In Table 2.4, the power of each test when using the local linear estimator is shown.

The interesting aspect of the test comparison is that the Li-Wang type test outperforms the

Su-Ullah type test in both sample sizes with a smaller bandwidth. When the bandwidth

increases, the power of the Su-Ullah type test is higher than that of Li-Wang type test. This

can be because the estimation gets closer to the local constant estimator with the increase

in bandwidth. This tendency is consistent for each sample size and the significance level.

In summary, I analyze the numerical relationship among four types of nonpara-

metric tests. For all tests, the bootstrap size performs better than the asymptotic size as

it is closer to the correct size. Each test performs almost equally well, and its performance

varies with the bandwidth. However, there is a clear difference between the tests in esti-

mating the power, and the power comparison between these test statistics matches with

the analytical comparison in Section 2.4.5. One interesting result is that the Su-Ullah type

test outperforms the Li-Wang type test in power as the bandwidth increases with the local

linear least squares estimation. When using the local constant least squares estimation, the

numerical comparison of the four tests is identical to the analytical comparison for any level

of bandwidth.

2.6 Conclusion

Since the extensive development in nonparametric hypothesis tests, there has not been any

systematic development in nonparametric hypothesis testing due to its complexity. Such
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Table 2.1: Size of Each Test Using Local Constant Estimation

Bootstrap Test Asymptotic Test

α Tests c = 0.5 c = 1.06 c = 1.5 c = 0.5 c = 1.06 c = 1.5

n = 100 1% Jn 0.008 0.010 0.012 0.001 0.000 0.000

Tn 0.007 0.012 0.012 0.000 0.000 0.000

TGn 0.008 0.014 0.013 0.001 0.002 0.000

Fn 0.008 0.014 0.013 0.001 0.002 0.000

5% Jn 0.051 0.051 0.060 0.012 0.003 0.000

Tn 0.052 0.050 0.061 0.010 0.000 0.000

TGn 0.048 0.059 0.052 0.002 0.009 0.004

Fn 0.048 0.059 0.058 0.002 0.009 0.004

10% Jn 0.101 0.107 0.113 0.024 0.008 0.002

Tn 0.106 0.111 0.111 0.020 0.002 0.000

TGn 0.103 0.112 0.067 0.007 0.018 0.013

Fn 0.103 0.112 0.108 0.007 0.018 0.013

n = 400 1% Jn 0.016 0.014 0.012 0.010 0.002 0.000

Tn 0.014 0.010 0.010 0.004 0.000 0.000

TGn 0.016 0.008 0.008 0.002 0.000 0.000

Fn 0.016 0.008 0.008 0.002 0.000 0.000

5% Jn 0.050 0.034 0.042 0.020 0.008 0.002

Tn 0.038 0.040 0.048 0.018 0.002 0.000

TGn 0.044 0.048 0.022 0.004 0.006 0.000

Fn 0.044 0.048 0.044 0.004 0.006 0.000

10% Jn 0.088 0.084 0.072 0.028 0.016 0.004

Tn 0.080 0.078 0.084 0.022 0.004 0.000

TGn 0.100 0.062 0.022 0.008 0.010 0.002

Fn 0.100 0.084 0.078 0.008 0.010 0.002

Note: α denotes the significance level. The different level of bandwidth depends on
the value of c, where h = c · std(xi)n

−1/5.
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Table 2.2: Size of Each Test Using Local Linear Estimator

Bootstrap Asymptotic

α Tests c = 0.5 c = 1.06 c = 1.5 c = 0.5 c = 1.06 c = 1.5

n = 100 1% Jn 0.008 0.010 0.012 0.001 0.000 0.000

Tn 0.008 0.015 0.013 0.003 0.001 0.001

TGn 0.008 0.011 0.012 0.003 0.012 0.020

Fn 0.008 0.011 0.012 0.003 0.012 0.020

5% Jn 0.051 0.051 0.060 0.012 0.003 0.000

Tn 0.047 0.054 0.062 0.014 0.013 0.005

TGn 0.047 0.056 0.060 0.010 0.039 0.050

Fn 0.047 0.056 0.060 0.010 0.039 0.050

10% Jn 0.101 0.107 0.113 0.024 0.008 0.002

Tn 0.105 0.106 0.108 0.031 0.024 0.011

TGn 0.107 0.110 0.108 0.022 0.062 0.084

Fn 0.107 0.110 0.108 0.022 0.062 0.084

n = 400 1% Jn 0.016 0.014 0.012 0.010 0.002 0.000

Tn 0.014 0.006 0.010 0.010 0.004 0.000

TGn 0.014 0.006 0.008 0.002 0.006 0.008

Fn 0.014 0.006 0.008 0.002 0.006 0.008

5% Jn 0.050 0.034 0.042 0.020 0.008 0.002

Tn 0.042 0.038 0.042 0.018 0.014 0.008

TGn 0.052 0.044 0.044 0.010 0.024 0.030

Fn 0.052 0.044 0.044 0.010 0.024 0.030

10% Jn 0.088 0.084 0.072 0.028 0.016 0.004

Tn 0.096 0.080 0.080 0.036 0.022 0.012

TGn 0.102 0.088 0.074 0.016 0.036 0.044

Fn 0.102 0.088 0.074 0.016 0.036 0.044

Note: α denotes the significance level. The different level of bandwidth depends on
the value of c, where h = c · std(xi)n

−1/5.
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Table 2.3: Power of Each Test Using Local Constant Estimator

Bootstrap Asymptotic

α Tests c = 0.5 c = 1.06 c = 1.5 c = 0.5 c = 1.06 c = 1.5

n = 100 1% Jn 0.319 0.414 0.470 0.239 0.222 0.155

Tn 0.385 0.456 0.501 0.267 0.137 0.014

TGn 0.309 0.421 0.381 0.137 0.277 0.192

Fn 0.309 0.421 0.382 0.137 0.277 0.192

5% Jn 0.547 0.659 0.704 0.383 0.344 0.251

Tn 0.617 0.688 0.729 0.400 0.235 0.067

TGn 0.517 0.636 0.588 0.230 0.399 0.293

Fn 0.517 0.636 0.596 0.230 0.399 0.293

10% Jn 0.662 0.757 0.799 0.464 0.423 0.334

Tn 0.722 0.793 0.822 0.474 0.321 0.116

TGn 0.653 0.735 0.642 0.307 0.479 0.364

Fn 0.653 0.738 0.702 0.307 0.479 0.364

n = 400 1% Jn 0.974 0.988 0.992 0.962 0.976 0.968

Tn 0.986 0.992 0.992 0.974 0.968 0.932

TGn 0.970 0.988 0.982 0.910 0.974 0.946

Fn 0.970 0.988 0.982 0.910 0.974 0.946

5% Jn 0.990 0.998 0.998 0.984 0.990 0.984

Tn 0.996 0.998 0.998 0.990 0.986 0.968

TGn 0.986 0.996 0.990 0.942 0.986 0.974

Fn 0.986 0.996 0.994 0.942 0.986 0.974

10% Jn 1.000 0.998 0.998 0.984 0.992 0.990

Tn 1.000 0.998 0.998 0.990 0.990 0.980

TGn 0.994 0.996 0.990 0.962 0.988 0.982

Fn 0.994 0.998 0.996 0.962 0.988 0.982

Note: α denotes the significance level. The different level of bandwidth depends on
the value of c, where h = c · std(xi)n

−1/5.
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Table 2.4: Power of Each Test Using Local Linear Estimator

Bootstrap Asymptotic

α Tests c = 0.5 c = 1.06 c = 1.5 c = 0.5 c = 1.06 c = 1.5

n = 100 1% Jn 0.319 0.414 0.470 0.239 0.222 0.155

Tn 0.304 0.440 0.508 0.235 0.326 0.299

TGn 0.267 0.411 0.489 0.181 0.455 0.573

Fn 0.267 0.411 0.489 0.181 0.455 0.573

5% Jn 0.547 0.659 0.704 0.383 0.344 0.251

Tn 0.521 0.678 0.722 0.395 0.442 0.428

TGn 0.486 0.655 0.712 0.306 0.617 0.708

Fn 0.486 0.655 0.712 0.306 0.617 0.708

10% Jn 0.662 0.757 0.799 0.464 0.423 0.334

Tn 0.645 0.777 0.826 0.474 0.530 0.510

TGn 0.614 0.764 0.795 0.391 0.685 0.770

Fn 0.614 0.764 0.795 0.391 0.685 0.770

n = 400 1% Jn 0.974 0.988 0.992 0.962 0.976 0.968

Tn 0.962 0.990 0.992 0.960 0.984 0.986

TGn 0.966 0.986 0.994 0.922 0.986 0.994

Fn 0.966 0.986 0.994 0.922 0.986 0.994

5% Jn 0.990 0.998 0.998 0.984 0.990 0.984

Tn 0.988 0.998 0.998 0.984 0.992 0.996

TGn 0.986 0.998 0.998 0.960 0.994 0.996

Fn 0.986 0.998 0.998 0.960 0.994 0.996

10% Jn 1.000 0.998 0.998 0.984 0.992 0.990

Tn 0.998 0.998 0.998 0.988 0.996 0.996

TGn 0.992 0.998 0.998 0.976 0.996 0.998

Fn 0.992 0.998 0.998 0.976 0.996 0.998

Note: α denotes the significance level. The different level of bandwidth depends on
the value of c, where h = c · std(xi)n

−1/5.
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development is important because the most powerful test can be identified and even a new

test can be proposed based on the obtained analytical results.

Among many different nonparametric hypothesis tests, I focus on four nonpara-

metric tests—Li-Wang type conditional moment test, Su-Ullah type goodness-of-fit test,

Yao-Ullah type goodness-of-fit test, and the F-type test—because they have in common in

that they are based on residual sums of residuals using kernel weighting methods. Under

some conditions, I found the inequality between these four tests in their asymptotic power

and it becomes different depends on the estimation method.

In simulations, both the size and power are estimated for a small and large sample

by differing the estimation methods. Overall, the bootstrap size is better than the asymp-

totic size for all tests. The size performance between the tests is almost equal to each

other. For the power analysis, the numerical results match with the analytical results. At

all significance levels and all sample sizes, the Su-Ullah Type test is the most powerful when

the local constant estimator is used. When implementing the local linear estimation, the

Li-Wang type test outperforms the Su-Ullah type test in both sample sizes with a smaller

bandwidth.

To conclude, I propose a systematic development of a nonparametric hypothesis

testing focusing on the tests by providing information about the asymptotic local power

analysis. This systematic approach can propose a new path for nonparametric hypothesis

testing in the future. Furthermore, it can be practically used for empirical researchers in

conducting a model specification test for linearity.
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Chapter 3

A Consistent Nonparametric Test

for Endogeneity

3.1 Introduction

Endogeneity is commonly observed in many economic contexts. While assuming endogene-

ity by economic theory, econometricians have focused on developing consistent estimation

methods to tackle endogeneity (See Card (2001), Miguel et al. (2004), and Coglianese et al.

(2017) among others). However, variables can be exogenous in one setting, but endogenous

in another setting even in the same data context (See Kocherlakota and Yi (1996), Semyk-

ina (2018) among others). Therefore, detecting the presence of endogeneity is important as

a preliminary step for determining the estimation strategy in any empirical analysis. Due

to a challenging testing procedure, there are only a few tests for endogeneity. This paper
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develops a consistent nonparametric test for endogeneity to aid in more accurate estimation

strategy of the model.

My nonparametric test is based on a nonparametric triangular simultaneous equa-

tions model from Newey et al. (1999) and Su and Ullah (2008). This model is essential

to incorporate endogeneity by introducing instrumental variables. Triangular simultaneous

equations consist of a structural equation (or second-stage equation) and a reduced-form

equation (or first-stage equation). In addition, nonparametric estimation in each equation

is run to overcome the weaknesses of a parametric estimation because the misspecification

of a model undermines the consistency of a test.

Under the given setting, I take the control function approach (CFA), which allows

an endogenous factor to enter the structural equation. This endogenous factor in the struc-

tural equation is presented as the conditional moment E[U |V ], where U is the error terms

from a structural equation and V is the error terms of a reduced-form equation. The CFA is

practical in that it is equivalent to a two-stage least squares estimation but simpler in that

the estimation can be done only through the structural equation (See Blundell and Powell

(2003), Das et al. (2003), Horowitz (2011), Kasy (2011), Murtazashvilli and Wooldridge

(2016) among others).

Another advantage of implementing the CFA also relates to constructing a test

for endogeneity, and it has not been used for any nonparametric test for endogeneity. In

a conventional triangular simultaneous equations setting, the moment condition of interest

for testing endogeneity is E[U |X,Z] = 0, where X is a set of potentially endogenous vari-

ables, and Z is a set of potential instruments. With the CFA, I can convert the moment
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condition of interest to a simpler form to construct a test with the reduced dimension. This

contributes to resolving the curse of dimensionality in a nonparametric setting as well as

the computational burden in the estimation of the conditional moment.

Using the converted moment condition, I set up the null hypothesis as no endo-

geneity against a presence of endogeneity. Then I construct a conditional moment test using

kernel weighting (Li and Wang (1998), Hsiao and Li (2001), Henderson et al. (2008), Wang

et al. (2018) among others). The conditional moment test is simple to construct as it only

requires the null hypothesis compared to other nonparametric tests using the estimation

under the alternatives (See Gonzalo (1993), Fan and Li (2002), Su et al. (2013), Lee et

al. (2015), Yao and Ullah (2013), Chen and Pouzo (2015) among others). In addition, the

kernel weighting enables the local approximation of the conditional moment.

Once constructing a test, I introduce a Wild bootstrap procedure using Mammen’s

distribution to improve the finite-sample performance of a test. Wild bootstrap is resam-

pling residuals using a two-point distribution, which allows heteroskedasticity as well as

non-i.i.d. structure (See Wu (1983), Liu (1988), Mammen (1993), Davidson and Flachaire

(2008) among others). Since Wild bootstrap is more robust than a pair bootstrap and

resampling bootstrap (See Efron (1979), Horowitz (2001, 2003) among others), it has been

used in many previous studies (See Li and Wang (1998), Fan and Li (2002) among others),

but not in a simultaneous equations model.

There are two main contributions of this paper to econometrics. For one part is in

the estimation in that I take the control function approach in a nonparametric triangular

simultaneous equations model. By applying the nonparametric estimation, this nonpara-
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metric test overcomes the chronic limitations of a misspecification of the functional form.

The nonparametric estimation improves the power of the test because a correct model spec-

ification under the alternative ensures the consistency of a test. In addition, I can convert

the conditional moment of interest E[U |X,Z] to E[U |V ] by taking the control function

approach. I reduce the dimension of a conditional moment of interest, which is important

to resolve a potential problem of curse of dimensionality. This converted moment condition

has not been used for testing in the current literature and makes the estimation of the

conditional moment simpler.

The other part of the contributions lies in the simple construction and implemen-

tation of the test by using a kernel weighting. Even though there are some test statistics

that are difficult to implement despite their advantages in accuracy, my test statistic is

easy to implement because it only requires the null hypothesis. Furthermore, I can capture

nonlinear correlations with the kernel weighting. Using the kernel increases the accuracy

for detecting endogeneity as local approximation of the correlation between U and V be-

comes possible. In addition to the improvement in accuracy, it can be a useful test due to

its simplicity since it follows the standard normal under the null. I also introduce a Wild

bootstrap procedure to enhance the finite-sample performance.

A large literature has been developed on estimation methods of nonparametric

simultaneous equations (See Newey et al. (1999), Su and Ullah (2008), Matzkin (2008),

Berry and Haile (2018), Hahn et al. (2018), Imbens and Newey (2009) among others).

However, as my test requires only the null hypothesis, I do not need to implement these

nonparametric two-stage estimation methods. Rather, I can apply conventional nonpara-
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metric estimation methods to obtain Nadaraya-Watson estimator or local linear estimator

(See Pagan and Ullah (1999), and Li and Racine (2007) among others).

For the current parametric tests for endogeneity, the Hausman test and Wu test

are the most popular endogeneity test in a parametric regression setting (See Wu (1973),

Hausman (1978)). Even though both tests are constructed in a different way, they are

analogous in that the model specification under the alternative is confined to parametric

estimation. As noted earlier, the power of a test inevitably declines if the model specification

under the alternative is incorrect. Acknowledging this, many empirical papers instead report

the difference between OLS estimates and 2SLS estimates as an alternative (Angrist and

Evans (1998), Autor et al. (2013), Coglianese et al. (2017), Semykina (2018) among others).

There have been a few papers on nonparametric tests for endogeneity (See Blun-

dell and Horowitz (2007), Breunig (2015)). The advantage of these tests lies in their great

performance in size and power in a finite sample and they are good for a global approx-

imation. Meanwhile, a kernel weighting method is suited for the local approximation. If

the data have nonlinear elements in a small range of a variable, then local approximation

with the kernel can capture the endogeneity more accurately. The use of kernel weighting

in constructing my test can require additional computational burden. However, as I reduce

the dimension in the conditional moment of interest, such computational burden of using

the kernel function is lessened. Also, my test can enhance the finite-sample performance

with bootstrapping.

The paper is organized as follows. Section 3.2 introduces a model, hypotheses,

and the test statistic for endogeneity. In Section 3.3, I conduct Monte Carlo simulations
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with other current test statistics for endogeneity. Once introducing the extension of the

conditional moment test to include other exogenous variables in Section 3.4, I then apply

the test to the empirical data in Section 3.5. I will test the endogeneity of Chinese import

shock to the US with the US local unemployment share using Autor et al. (2013). Section

3.6 concludes the paper.

3.2 A Consistent Nonparametric Test for Endogeneity

In this section, I introduce a triangular simultaneous equations model and hypotheses.

Then, I propose the test statistic for endogeneity and its asymptotic properties. Lastly, a

wild bootstrap procedure is proposed to improve the test’s performance in a finite sample

using Mammen’s distribution.

3.2.1 Model and Hypotheses

In constructing a test for endogeneity, I consider a triangular nonparametric simultaneous

equations model of Newey et al. (1999) and Su and Ullah (2008), which is given as


yi = m (xi) + ui

xi = g (zi) + vi,

(3.1)

for i = 1, . . . , n, where yi is an observable scalar random variable, xi is a dx × 1 vector of

regressors, and zi is a dz × 1 vector of instrumental variables with the unknown functions

m : Rdx → R1 and g : Rdz → Rdx . All the variables are i.i.d. over i. ui and vi are

disturbances such that E[ui | xi, zi] = 0 and E[vi | zi] = 0 are satisfied. From equation
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(3.1), the moment condition of interest in the structural equation is E[ui | xi, zi] = 0.

Assuming the exogeneity of instrumental variables, the moment condition itself can be used

to test for endogeneity (Blundell and Horowitz (2007) and Breunig (2015)).

As an alternative to estimate this triangular simultaneous equations model, the

structural equation can be re-written as follows by taking the control function approach

(Blundell and Powell (2003), Das et al. (2003), Horowitz (2011), Kasy (2011), Murtazashvilli

and Wooldridge (2016) among others):

yi = m(xi) + ui

= m(xi) + E[ui | vi] + ui − E[ui | vi] (3.2)

= m(xi) + h(vi) + εi, where εi = ui − E[ui | vi]

= m1(xi, vi) + εi

It is easy to show E[εi | vi] = E[ui − E[ui | vi] | vi] = E[ui | vi] − E[ui | vi] = 0.

More importantly, for testing endogeneity, the moment condition E[ui | xi, zi] can be also

expressed from the equation (3.2) as

E[ui | xi, zi] = E[ui | xi − g(zi), zi]

= E[ui | vi]

The two moment conditions are equivalent under the exogeneity of Z. But the latter

condition can be useful because this conversion reduces the dimension, which can resolve

curse of dimensionality to some degree. Based on the re-written model, I develop a direct
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test for the endogeneity under the assumptions above, i.e., whether E[ui|vi] = 0 a.s. or not.

The testing hypotheses are as follows:


H0 : Pr (E [ui|vi] = 0) = 1

H1 : Pr (E [ui|vi] = 0) < 1

Under H0, if E[ui | vi] = 0, this implies that there is no endogeneity in the model. If not,

there exists endogeneity. The test results will suggest which estimation strategy can give a

consistent and most efficient estimator.

I will first show E [ui|vi] = 0 is equivalent to E[f (vi)uiE[ui|vi]] = 0 since I use

the latter moment condition in constructing a test statistic. This has been used in other

nonparametric test literature as well (Li and Wang (1998), Hsiao and Li (2001), Henderson

et al. (2008), Wang et al. (2018) among others). Showing the equivalence of two moment

conditions is given in Theorem 2. Even though they are equivalent, the latter condition has

an advantage by simplifying the form of the test statistic by cancelling out the marginal

density of vi in the denominator for estimating E [ui|vi]. I will use the moment condition

in Theorem 2 in constructing a test for endogeneity.

Theorem 2 E[ui|vi] = 0 iff E[f (vi)uiE[ui|vi]] = 0, where f (·) is the density function of

vi that is bounded away from zero for all v.

Proof of Theorem 2 I let f (v) and f(u|v) be the marginal density of vi and the condi-

tional density of ui given vi = v, respectively.
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E [f (vi)uiE[ui|vi]] =

∫∫
u1

(∫
u2f (v, u2) du2

)
f (v, u1) du1dv

=

∫ (∫
u1f (u1|v) du1

)(∫
u2f (u2|v) du2

)
f2 (v) dv

=

∫ (∫
uf (u|v) du

)2

f2 (v) dv,

since ui is i.i.d. over i. Therefore, E[ui|vi] =
∫
uf (u|v) du = 0 iff E[f (vi)uiE[ui|vi]] = 0

since f (v) > 0. �

3.2.2 Test Statistic and Asymptotic Properties

Define the probability density function of v̂i as f̂(v̂i) = 1
n−1

∑n
j 6=iK

(
H−1
v (v̂j − v̂i)

)
. The

sample analogue of E[uiE[ui | vi]f(vi)] = 0 can be derived as follows:

In = Ê[f̂ (v̂i) ûiÊ[ûi|v̂i]]

=
1

n

n∑
i=1

ûif̂ (v̂i)

 1

(n− 1) |Hv| f̂ (v̂i)

n∑
j 6=i

ûjK
(
H−1
v (v̂j − v̂i)

) (3.3)

=
1

n

n∑
i=1

ûi

 1

(n− 1) |Hv|

n∑
j 6=i

ûjK
(
H−1
v (v̂j − v̂i)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1
v (v̂j − v̂i)

)
,

where K is a non-negative dx-variate kernel function, and Hv is a dx×dx bandwidth matrix

that is symmetric and positive definite; |Hv| is the determinant of Hv.
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The difference from the Li-Wang type test is that I use generated regressors inside

the kernel function1. Then, the estimates can be obtained as below.

ûi = yi − m̂ (xi) ,

v̂i = xi − ĝ (zi)

where m̂(·) and ĝ (·) are consistent estimators under H0 using the conventional nonparamet-

ric regression (either local constant or local linear). Since the test statistic is constructed

under the null hypothesis, I do not consider instrumental variable estimation. For charac-

terizing the asymptotic distribution, the following assumptions will be used.

(A1) {yi, Xi, Zi}ni=1 is independently and identically distributed (IID).

(A2) E[u | z] = 0, σ2(v) = E[u2 | v], σ2(v) is continuous at v and E[σ2(v)] <∞.

The model assumes the i.i.d. distribution of {yi, Xi, Zi}ni=1. Also, as my interest

lies in testing the endogeneity of X, I assume the exogeneity of Z. The conditional variance

σ2(v) is continuous at v and its expectation is finite. I do not assume the homoskedasticity

for the conditional variance.

(A3) f(x) is uniformly continuous at x,∀x ∈ G,G compact subset of R, 0 < f(x) ≤ Bf <

∞, and |f(x)− f(x′)| < mf |x− x′| for some 0 < mf <∞ is satisfied.

1Li and Wang (1998) use fixed regressors X inside the kernel function. Theorem 5 from Hsiao and Li
(2001) suggests a test using generated regressors inside the kernel function, but those generated regressors
are from the parametric estimation.
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(A4) The kernel function K(·) is bounded and symmetric density function with com-

pact support such that
∫
K(ψ)dψ = 1. For ∀x ∈ R , |K(x)| < Bk < ∞. I assume∣∣Kj(u)−Kj(v)

∣∣ ≤ C1 |u− v| , for j = 0, 1, 2, 3.

In (A3), the conditional density f(x) satisfies the Lipschitz continuous condition.

In addition, as it is smooth and bounded, a Taylor expansion can be applied. When con-

structing the test, I use the kernel function as a weighting function. Regarding properties of

the kernel function, it is bounded and symmetric. As in f(x) , the kernel function satisfies

the Lipschitz continuous function.

(A5) As n→∞, each element of Hv, Hz, Hx → 0. i) It satisfies n1/2 |Hz| |Hv|1/2 / lnn→∞,

n |Hv|2 →∞, and n |Hv|6 → 0. ii) n |Hz| / lnn→∞ and n |Hx| / lnn→∞.

This assumption is on the restriction of the bandwidth. A5-i) is for the asymp-

totic properties of the proposed test statistic and A5-ii) is the standard assumptions for

nonparametric estimation. (A5)-i) are the additional assumptions because I apply the non-

parametric estimation to obtain the residuals inside the kernel function. For parametric

residuals, this assumption is not needed as seen in Hsiao and Li (2001).

(A6) m(·) and g(·) are continuous and twice differentiable in X and Z respectively.

The last assumption (A6) is to allow for the differentiability of g(·) is necessary in

terms of applying a Taylor expansion inside the kernel function of the test statistic for all

the following theorems. Based on these assumptions, I standardize the estimator,

Jn =
√
n2 |Hv|In/

√
Ω̂,where Ω̂ =

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2
i û

2
jK
(
H−1
v (v̂j − v̂i)

)
.
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Theorem 3 shows that the asymptotic distribution of this test statistic follows the stan-

dard normal distribution. Based on this, the asymptotic critical value of the test can be

calculated. Therefore, when Jn is large enough to exceed the critical value of N(0, 1) at

α-percent level, then I reject the null hypothesis, meaning that the variable of our interest

is not endogenous. Otherwise, I accept the null hypothesis.

Theorem 3 Under H0, as Ω̂ is a consistent estimator of Ω = 2[
∫
K2(ψ)dψ]E[σ4(v)f(v)],

Jn → N(0, 1) as n→∞.

For the asymptotic properties under the alternative, I introduce the Pitman local

alternatives as follows:

H1(δn) : m1(xi, vi) = m(xi) + δnl(vi) ,

where l(·) is continuously differentiable and bounded, and δn = n−1/2 |Hv|−1/4. Based on

the equation (2), note that l(·) does not include the elements of xi because m1(xi, vi) is

separable by construction of the model2.

Theorem 4 Under the Pitman local alternative, if δn = n−1/2 |Hv|−1/4, then

Jn
d→ N(E[l(vi)

2f(vi)]/
√

Ω, 1) as n→∞.

2This is different from Yao and Ullah (2013) which tests for a relevant variable. Under the alternative, as
they do not assume the separability of two sets of variables x1i and x2i ,m(x1i, x2i) = m(x1i) + δn l(x1i, x2i)
under the alternative.
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Then, as the magnitude of E[l(vi)
2f(vi)]/

√
Ω increases, the test statistic deviates

farther from the zero mean, and the local power increases. However, the variance remains

at one for both hypotheses.

Theorem 5 Assuming (A1)-(A6) and under H1, Pr[Ĵn > Bn] → 1 for any non-stochastic

sequence {Bn : Bn = o(
√
n2 |Hv|)}. Under H1, În = In + op((n |Hv|1/2)−1), where In =

E[(h(vi))
2f(vi)], and Ω̂ = Ω + op(1).

Theorem 5 suggests the consistency of the test statistic. Under H1, the probability

of rejecting the null will converge to 1.

3.2.3 Bootstrap Method

As the asymptotic normal approximation does not perform well in small sample settings,

I propose a wild bootstrap test as an alternative. Hardle and Mammen (1993) proposed a

wild bootstrap method using two-point distribution. Wild bootstrap method has advantages

among different bootstrap methods in that it can generate the non-i.i.d. samples as well as

allowing heterogeneity in the sample. Among the choices for a two-point distribution, I use

Mammen’s distribution rather than Rademacher distribution because it does not require

the symmetry of a distribution. In this regard, I apply a wild bootstrap method using

Mammen’s distribution. Steps to get a bootstrap test statistic are given below.

1. Estimate ĝ(zi) and m̂(xi) by a nonparametric kernel estimation (either LCLS or LLLS)

for a structural and reduced-form equation respectively. Note that this is not an

instrumental variable (IV) estimation.
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2. Generate u∗i as the wild bootstrap error. I construct u∗i = 1−
√

5
2 ûi with the probability

of 1+
√

5
2 and u∗i = 1+

√
5

2 ûi with the probability of 1− 1+
√

5
2 . It is easy to show E[u∗i ] = 0,

E
[
u∗2i
]

= û2
i , and E

[
u∗3i
]

= û3
i .

3. Generate y∗i , where y∗i = m̂(xi) + û∗i under the null hypothesis.

4. Using the bootstrap sample {y∗i , xi, zi}ni=1, regress y∗i on x∗i to obtain m̂∗(x∗i ), and get

û∗i = y∗i −m̂∗(xi). Under the null, the variable of interest lies in the structural equation

by taking a control function approach. Thus, I do not generate the wild bootstrap

sample on {xi, zi}ni=1. Therefore, v̂∗i = v̂i.

5. With {û∗i , v̂∗i }ni=1, compute the bootstrap test statistic J∗n and repeat above procedure

for B times. In the simulation, the number of bootstrapping used is 399.

6. Based on the empirical distribution of J∗n, calculate the critical value c∗ and obtain

the p-value, which is P (Jn ≥ c∗). If p-value is less than 0.05 at 5% significance level,

the null is rejected.

Following these bootstrap procedures, I can obtain the asymptotic distribution of J∗n. I will

show how the bootstrap test performs in the Monte Carlo Simulations. The asymptotic

distribution of bootstrap test under the null is shown in Theorem 6.

Theorem 6 Let the bootstrap statistic be defined as J∗n = n |Hv|1/2 I∗n/
√

Ω̂∗, where Ω̂∗ =

2
n(n−1)|Hv |

∑n
i=1

∑n
j 6=i û

∗2
i û
∗2
j K(H−1

v (v̂∗j − v̂∗i )). Under H∗0, as Ω̂∗ is a consistent estimator

of Ω = 2[
∫
K2(ψ)dψ]E[f(v)σ4(v)], J∗n → N(0, 1) in distribution as n→∞.
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The proofs of Theorem 6 will follow similarly to those of Theorem 3. Under the

H1(δn), P (Jn > c∗) → 1 asymptotically, where c∗ denotes the bootstrap critical valude

based on the boostrap samples. This shows the consistency of the bootstrap test statistic.

3.3 Simulations

3.3.1 Data Generating Processes

Now, I perform the test for endogeneity using three different data generating processes.

For DGP1, I followed data generating process from Newey and Powell (2003). Here,

{Yi, Xi, Zi}ni=1 does not have a bounded support.

DGP1:


Yi = m(Xi) + Ui = log(| Xi − 1 | +1)sgn(Xi − 1) + Ui

Xi = g(Zi) + Vi = Zi + Vi

,

where i = 1, ..., n, and errors Ui Vi, and Zi are generated as
Ui

Vi

Zi

 ∼ i.i.d. N


1 θ 0

θ 1 0

0 0 1


Next, I do the simulations where {Yi, Xi, Zi}ni=1 has a bounded support in DGP2 and DGP3.

DGP2 is from Su and Ullah (2008) and DGP3 is modified from DGP2.
Yi = 1 + 2exp(Xi)/(1 + exp(Xi)) + Ui

Xi = Zi + Vi

,

where i = 1, ..., n, errors Vi, and Zi are generated as

Vi = 0.5wi + 0.2vx, Zi = 1 + 0.5vz,
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in which vy, vx, wi are i.i.d. sum of 48 independent random variables each uniformly dis-

tributed on [-0.25,0.25].

DGP2 : Ui = θwi + 0.3vy

DGP3 : Ui = θ(wi + 2w2
i ) + 0.3vy

For all three data generating processes, θ = 0, 0.2, 0.5, and 0.8, which indicates no endo-

geneity, weak endogeneity, medium endogeneity and strong endogeneity, respectively. In

particular, when θ = 0, note that it refers to no endogeneity and DGP2 and DGP3 become

identical. The main difference between two data generating processes is how Ui and Vi are

correlated in terms of a functional form in the presence of endogeneity while the model is

still correctly specified. In this regard, the simulation results for DGP3 will present how my

nonparametric test captures such nonlinear terms under the alternative.

For bandwidth selection, I use rule-of-thumb bandwidths for both the estimation

and the test. For the estimation, I use local linear estimation with a second-order Epanech-

nikov kernel by using a rule-of-thumb bandwidth3, which is hx = 2.34std(xi)n
−1/5 and

hz = 2.34std(zi)n
−1/5 for the structural equation and reduced-form equation respectively. I

obtain m̂(xi) = α̂ from (α̂, β̂) = arg max
α,β

∑n
t=1(yt−α−β(xi−xt))2. For the test bandwidth,

hv = c · std(xi)n
−1/5 and c = 0.5, 1.06, 1.5. For the Blundell and Horowitz (2007) test, I

use the cross-validation bandwidth for estimating the joint density of (X,Z), and obtain the

bandwidth by multiplying n1/5−7/24 times the cross-validation bandwidth. For the Breunig

3This rule-of-thumb bandwidth when using a second-order Epanechnikov kernel is suggested by Hender-
son et al. (2012).
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test (2015), I use series estimation based on his simulation settings. Since both tests use a

Fourier series as a basis function, and I implement cosine basis functions given by fj(t) =

√
2 cos(jπt) for j = 1, 2, ...M . I set M = 40 and the smoothing parameter as τj = j−1. The

number of repetition is 1000 for the sample size of 100, and 500 for the sample size of 400.

The number of bootstrap repetitions is 399 for both sample sizes.

3.3.2 Simulation Results

For each data generating process, both the size and the power are estimated by changing

the strength of endogeneity (the value of θ). I then compare my test’s performance with the

Hausman test, the Blundell and Horowitz (2007) test (BHn), and the Breunig (2015) test

(Bn). The Hausman test is a parametric test, where it measures the difference between OLS

and 2SLS estimates. While Blundell and Horowitz (2007) apply a kernel-based estimation

and Breunig (2015) applies a series-based estimation, both use Fourier series in constructing

a test statistic.

Table 3.1-3.4 represent both size and power for each data generating process with

different values of bandwidth. Other than my conditional moment test (Jn and J∗n), all

other tests’ performance does not vary with the bandwidth.4 In addition, I apply bootstrap

procedure to the conditional moment test (Jn and J∗n) as its asymptotic distribution follows

the standard normal as in Theorem 6 to improve a finite-sample performance. However, as

the asymptotic distribution for both BHn and Bn is not pivotal, I do not apply bootstrap

procedure.

4Even though Blundell and Horowitz (2007) applies a kernel-based estimation, they construct a series-
based test. Thus, different bandwidths for the test only applied to the conditional moment test.
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Table 3.1 presents the estimated size for all cases. As mentioned earlier, DGP2

and DGP3 results are identical when there exists no endogeneity. The bootstrap size of my

conditional moment test is close to the correct size at each significance level although Jn is

undersized in the asymptotic test5. For different bandwidths, their estimated size is close to

the nominal size in all significance levels and its performance improves with the increase in

size. Overall, the size of the Hausman test is close to the correct size for other significance

levels. In addition, the BHn and Bn tests are undersized, but their performance is better

in the bounded support of {Yi, Xi, Zi}ni=1 since both tests assume the bounded support.

In Table 3.2, the power of DGP1 is shown for a different level of endogeneity under

an unbounded support of {Yi, Xi, Zi}ni=1. With weak endogeneity, the power of the test is

slightly over the nominal size. As the strength of endogeneity increases, the test becomes

more powerful. Furthermore, the power increases as the bandwidth increases, which can be

explained by Theorem 4. In all sample sizes, the Hausman test performs better than the

conditional moment test except when there is a stronger endogeneity (θ = 0.8). While the

rejection probabilities of BHn, and Bn test rise as the sample size as well as the level of

endogeneity increase, it does not perform as well as the conditional moment test.

The power of DGP2 is presented in Table 3.3. In a small sample, my conditional

moment test is the most powerful at each level of endogeneity among all tests. The power

of the conditional moment test is almost equal to 1 with the sample size of 400 even in

the presence of weak endogeneity with the bounded support case. Hausman test performs

equally as well as the conditional moment test except when under the weak endogeneity

for both small and large sample sizes. Overall, BHn test performs better mostly in a large

5This underestimation of the size has been also noted in Li and Wang (1998) and Hsiao and Li (2001).
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sample. However, the power of BHn is slightly over the nominal size in a small sample.

BHn test outperforms Bn both in small and large samples.

Table 3.4 presents the power of DGP3, where a nonlinear correlation between Ui

and Vi is present. Considering that my nonparametric test can capture the nonlinear rela-

tionship between Ui and Vi, the test performance compared to Hausman test is noticeable

in estimating the power for all sample sizes. First, due to a presence of the nonlinear term

in the data generating process, my test’s power reaches almost 1 even in a small sample size

as well as the weak endogeneity. In contrast, as Hausman test cannot capture the nonlinear

relationship, power falls compared to DGP2 in a small sample. In addition, the Hausman

test’s power is less than its performance with the presence of a linear correlation. This

implies that the Hausman test can be inconsistent if the model specification is incorrect

under the alternative.

In summary, even though I observed the undersized test for Jn using asymptotic

critical values, the estimated size based on bootstrap procedure is close to the nominal size

for all the data generating processes. As the strength of endogeneity increases, the test

becomes more powerful. At the same time, as the sample size increases, the tests become

more powerful for all cases. Compared to the Hausman test, BHn, and Bn tests, my

conditional moment test performs the best in that it can detect the nonlinear relationship

between Ui and Vi and it is robust to any choice of bandwidth.

Furthermore, I can compare clearly the nonparametric tests’ performance between

a kernel method and a series-based method. BHn test uses a series method for the test

but still applies a kernel method in the estimation while Bn test is solely on series-based
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estimator. As kernel-based method performs well in a local approximation, BHn test is

better than Bn test overall. However, the current test dominates all the other tests in both

sample sizes in that I use kernel techniques in running an estimation and constructing a

test to capture the local correlation.

3.4 Extension: The Case with Other Exogenous Variables

Extending the previous model, I consider a case with both endogenous and exogenous

regressors. 
yi = m (xi1, xi2) + ui

xi = g (zi, xi2) + vi,

where i = 1, ..., n, yi is an observable scalar random variable, m(·) denotes a structural

function of unknown form, xi1 is a dx1 × 1 vector of endogenous regressors, and xi2 is a

dx2×1 vector of exogenous regressors. g(·) is a dx1×1 vector of functions of the instruments.

zi is a dz × 1 vector of instrumental variables. ui and vi are disturbances such that E[ui |

zi, xi1, xi2] = 0 and E[vi | zi, xi1, xi2] = 0 are satisfied. Additional assumptions are needed

for this extension.

(B1) {Yi, X1i, X2i, Zi}ni=1 is independent and identically distributed.

(B2) E [u| z, x1, x2] = 0.σ2(v) = E[u2 | v], σ2(v) is continuous at v and E[σ2(v)] <∞.

(B3) f(x) is differentiable, 0 < f(x) ≤ Bf < ∞, and |f(x)− f(x)| < mf |x− x′| for some

0 < mf <∞ is satisfied.
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Table 3.1: Size of Each Test

DGP1 DGP2 DGP3

c 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 100 J∗n 0.5 0.011 0.048 0.093 0.015 0.053 0.102 0.015 0.053 0.102

1.06 0.011 0.045 0.084 0.009 0.050 0.106 0.009 0.050 0.106

1.5 0.009 0.043 0.089 0.005 0.048 0.089 0.005 0.048 0.089

Jn 0.5 0.007 0.022 0.042 0.013 0.028 0.053 0.013 0.028 0.053

1.06 0.006 0.010 0.018 0.008 0.014 0.022 0.008 0.014 0.022

1.5 0.004 0.005 0.010 0.002 0.007 0.011 0.002 0.007 0.011

BHn − 0.000 0.002 0.004 0.004 0.005 0.008 0.004 0.005 0.008

Bn − 0.026 0.040 0.053 0.034 0.051 0.061 0.034 0.051 0.061

Hn − 0.009 0.047 0.099 0.007 0.055 0.103 0.007 0.055 0.103

n = 400 J∗n 0.5 0.010 0.058 0.090 0.008 0.048 0.098 0.008 0.048 0.098

1.06 0.008 0.046 0.098 0.010 0.044 0.104 0.010 0.044 0.104

1.5 0.012 0.046 0.100 0.010 0.030 0.088 0.010 0.030 0.088

Jn 0.5 0.010 0.026 0.058 0.004 0.014 0.050 0.004 0.014 0.050

1.06 0.010 0.018 0.028 0.002 0.008 0.016 0.002 0.008 0.016

1.5 0.004 0.010 0.018 0.002 0.006 0.006 0.002 0.006 0.006

BHn − 0.000 0.006 0.022 0.004 0.020 0.042 0.004 0.020 0.042

Bn − 0.000 0.002 0.008 0.000 0.004 0.004 0.000 0.004 0.004

Hn − 0.018 0.050 0.100 0.014 0.050 0.098 0.014 0.050 0.098

Note: Note that there is no difference in size between DGP2 and DGP3 because the difference
between the two data generating processes comes from the non-zero value of θ. Except for Jn
and J∗n, all other tests are not constructed based on the kernel techniques. Therefore, the test
performance does not vary with the bandwidth choice.
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Table 3.2: Power of Each Test of DGP1

θ = 0.2 θ = 0.5 θ = 0.8

n c 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 J∗n 0.5 0.009 0.054 0.116 0.084 0.206 0.313 0.675 0.884 0.936

1.06 0.013 0.065 0.121 0.174 0.379 0.506 0.901 0.981 0.996

1.5 0.017 0.085 0.138 0.254 0.491 0.621 0.958 0.998 0.998

Jn 0.5 0.007 0.023 0.055 0.091 0.174 0.233 0.772 0.888 0.933

1.06 0.005 0.020 0.033 0.138 0.224 0.290 0.931 0.973 0.981

1.5 0.005 0.015 0.023 0.135 0.227 0.302 0.955 0.981 0.990

BHn − 0.015 0.067 0.141 0.029 0.107 0.190 0.008 0.016 0.022

Bn − 0.020 0.034 0.043 0.018 0.037 0.045 0.078 0.110 0.144

Hn − 0.497 0.635 0.711 0.558 0.678 0.752 1.000 1.000 1.000

400 J∗n 0.5 0.030 0.118 0.190 0.708 0.908 0.966 1.000 1.000 1.000

1.06 0.068 0.192 0.300 0.948 0.994 0.998 1.000 1.000 1.000

1.5 0.100 0.272 0.360 0.978 1.000 1.000 1.000 1.000 1.000

Jn 0.5 0.042 0.094 0.146 0.788 0.908 0.950 1.000 1.000 1.000

1.06 0.070 0.128 0.180 0.954 0.982 0.994 1.000 1.000 1.000

1.5 0.070 0.144 0.188 0.972 0.994 1.000 1.000 1.000 1.000

BHn − 0.472 0.636 0.730 0.564 0.724 0.798 0.052 0.068 0.090

Bn − 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.028 0.046

Hn − 0.936 0.960 0.974 0.946 0.976 0.982 1.000 1.000 1.000

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel
techniques. Therefore, the test performance does not vary with the bandwidth choice.
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Table 3.3: Power of Each Test of DGP2

θ = 0.2 θ = 0.5 θ = 0.8

n c 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 J∗n 0.5 0.372 0.621 0.730 0.995 1.000 1.000 1.000 1.000 1.000

1.06 0.601 0.827 0.888 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0.722 0.882 0.939 1.000 1.000 1.000 1.000 1.000 1.000

Jn 0.5 0.443 0.597 0.677 0.997 0.999 1.000 1.000 1.000 1.000

1.06 0.604 0.756 0.808 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0.640 0.780 0.839 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.004 0.005 0.008 0.016 0.036 0.056 0.026 0.048 0.077

Bn − 0.034 0.051 0.061 0.062 0.091 0.114 0.065 0.100 0.128

Hn − 0.007 0.055 0.103 1.000 1.000 1.000 1.000 1.000 1.000

400 J∗n 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Jn 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.004 0.020 0.042 0.726 0.756 0.802 0.744 0.802 0.830

Bn − 0.000 0.004 0.004 0.006 0.016 0.044 0.010 0.024 0.048

Hn − 0.014 0.050 0.098 1.000 1.000 1.000 1.000 1.000 1.000

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel
techniques. Therefore, the test performance does not vary with the bandwidth choice.
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Table 3.4: Power of Each Test of DGP3

θ = 0.2 θ = 0.5 θ = 0.8

n c 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 J∗n 0.5 0.993 0.996 0.998 0.999 1.000 1.000 0.999 1.000 1.000

1.06 0.994 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000

1.5 0.995 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000

Jn 0.5 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000

1.06 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.004 0.005 0.008 0.029 0.107 0.190 0.034 0.116 0.206

Bn − 0.034 0.051 0.061 0.018 0.037 0.045 0.020 0.038 0.047

Hn − 0.007 0.055 0.103 0.558 0.678 0.752 0.562 0.691 0.748

400 J∗n 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Jn 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BHn − 0.472 0.636 0.730 0.564 0.724 0.798 0.578 0.734 0.810

Bn − 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hn − 0.936 0.960 0.974 0.946 0.976 0.982 0.952 0.976 0.982

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel
techniques. Therefore, the test performance does not vary with the bandwidth choice.
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(B4) The kernel function K(·) is bounded and symmetric density function with com-

pact support such that
∫
K(ψ)dψ = 1. For ∀x ∈ R , |K(x)| < Bk < ∞. I assume∣∣Kj(u)−Kj(v)

∣∣ ≤ C1 |u− v| , for j = 0, 1, 2, 3.

(B5) As n → ∞, |Hv| , |Hz| , |Hx1 | , |Hx2 | → 0. i) It satisfies n1/2 |Hz| |Hv|1/2 / lnn → ∞,

n |Hv|2 →∞, and n |Hv|6 → 0. ii) n |Hz| / lnn→∞ and n |Hx| / lnn→∞.

(B6) m(·) and g(·) are continuous and twice differentiable in X and Z respectively.

Note that the moment condition of interest with other exogenous variables are identical to

the previous case.

E[ui | x1i, x2i, zi] = E[ui | x1i − g(zi, x2i), x2i, zi]

= E[ui | vi]

The test statistic will be written as follows:

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1
v (v̂j − v̂i)

)
,

where ûi = yi − m̂(xi1,xi2), v̂i = x1i − ĝ(zi, xi2), and both m̂(·) and ĝ(·) are nonparametric

estimates.Then, The standardized test statistic is

Jn =
√
n2 |Hv|In/

√
Ω̂,

where Ω̂ = 2
n(n−1)|Hv |

∑n
i=1

∑n
j û

2
i û

2
jK
(
H−1 (v̂j − v̂i)

)
. The extension of the test statistic

is not complicated because the test statistic does not change as it analyzes the correlation
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between ui and vi. The only difference is how the residuals are obtained from the estimation,

where ûi = yi − m̂(xi) and v̂i = xi − ĝ(zi). In the next section, I will apply the test for

endogeneity using the extension.

3.5 Application

By extending the empirical analysis of Autor, Dorn, and Hanson (ADH, 2013), I apply my

test for endogneity. In their paper, they analyze the impact of Chinese import exposure

on the US local labor market outcomes including employment share and wages. I mainly

focus on the US local employment share in manufacturing. The triangular simultaneous

equations are set up is as follows.


∆Lmit = αt + β1∆IPWuit +X ′itβ2 + uit

∆IPWuit = γt + δ1∆IPWoit +X ′itδ2 + vit,

where ∆Lmit is decadel change in the manufacturing share of the working-age population

in commuting zone i. ∆IPWuit is the change in import exposure to the US. ∆IPWoit is

the change in import exposure to other high-income markets. Following the same model

specifications given in ADH (2013), my main interest is on testing the endogeneity of US

trade exposure, ∆IPWuit.

For the testing, two model specifications are considered: One (Model 1) is includ-

ing only a time dummy, and the other (Model 2) is including ∆(imports from China to

US)/worker, percentage of employment in manufacturing in the previous period, and cen-

sus division dummies. For the parametric estimation, the pooled 2SLS is used as in ADH
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(2013) for constructing the Hausman test. As I did in simulations, I present the results

of my test in comparison with the Blundell and Horowitz (2007) test (BHn), the Breunig

(2015) test (Bn), and the Hausman test (Hn). For the nonparametric tests, local linear es-

timation is used and its bandwidth is chosen with cross-validation. For Breunig (Bn) test, I

run the local polynomial estimation in getting the residuals. I report both asymptotic and

bootstrap p-values. The number of bootstrap is 399. For a test statistic, the rule of thumb

bandwidth is used for constructing a test statistic using a Gaussian kernel.

Before presenting the test results, Figure 3.1 and Figure 3.2 gives an idea how the

residuals ui and vi are correlated when they are estimated differently either in parametric

or in nonparametric estimation. The dotted line is to denote the 95% confidence interval.

If the zero line is inside the confidence interval, it implies no significant correlation. For

Figure 3.1, both parametric and nonparametric residuals present a positive significant cor-

relation. In terms of nonparametric residuals, the positive correlation is more present where

the data are concentrated. However, the correlation between parametric residuals and non-

parametric residuals is shown differently for Model 2 in Figure 3.2. While I can observe a

positive correlation using parametric residuals, I do not see any significant correlation in

nonparametric residuals ui,NP and vi,NP . This contradicting pattern of the correlation can

imply a potential problem of misspecification.

The test results are given in Table 3.5. For the test bandwidth of my test, I use

hv = c ·std(vi)n
−1/5 and c = 0.5, 1.06, 1.5. For Model 1, I reject the null hypothesis both in

asymptotic and bootstrap test at 5% significance level. This result is also consistent with the

Hausman test, the Blundell and Horowitz (2007) test, and the Breunig (2015) test. However,
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Figure 3.1: Correlation between ûi and v̂i in Model 1

Figure 3.2: Correlation between ûi and v̂i in Model 2
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I have a contradicting test result with Hausman test in Model 2. All nonparametric tests

do not reject the null hypothesis with the high p-values while the Hausman test still rejects

the null hypothesis at 5% significance level.

Table 3.5: P-Values of Each Model

J∗n Jn BHn Bn Hn

c 0.5 1.06 1.5 0.5 1.06 1.5 − − −

Model 1 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.034 0.000

Model 2 0.115 0.499 0.679 0.232 0.487 0.616 0.120 1.000 0.000

Note: Except for Jn and J∗n, all other tests are not constructed based on the kernel
techniques. Therefore, the test performance does not vary with the bandwidth choice.

There can be two possible explanations why I have such a contradicting test results

for endogeneity. Considering that Model 2 is estimated by adding other exogenous variables,

some factors which cause endogeneity of Chinese import variable might have been filtered

out by those variables. In addition, there could the misspecification of the model in terms

of the functional form. While the nonparametric tests are not confined to a functional form

of the model, parametric tests are. Thus, the misspecification of the functional form can

result in the inaccurate detection of endogeneity.

Based on the test results, I further estimate the marginal effect of the Chinese

import exposure to US local employment share in manufacturing to discuss the potential

bias for both models. The estimation results are given in Figure 3.3. For Model 1, the

nonparametric instrumental variable estimation is applied following Darolles et al. (2011).

The global nonparametric estimate is -0.883 while the estimate in ADH (2013) is -0.746.

This implies that the estimate is overestimated in ADH (2013).
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For Model 2, I apply conventional nonparametric estimation because the null hy-

pothesis is not rejected. The global nonparametric estimate is -0.06 and the 2SLS estimate

in ADH (2013) is -0.538. The difference between the global nonparametric estimate and

2SLS estimate becomes larger because I do not implement the nonparametric instrumental

variable estimation. Even with the parametric OLS estimate, -0.183, it is underestimated

in this model specification. In brief, this estimation result implies that the presence of

endogeneity is a preliminary step and then the functional form of the estimation strategy

is the secondary step in reducing the potential bias of an estimator.

The economic intuition why Chinese import exposure may not be endogenous lies

in the inclusion of a variable for the percentage of employment in manufacturing in the pre-

vious period. By controlling the percentage of employment in manufacturing in the previous

period, this can reflect the shift in the US demand curve to the left, which accompanies

the decrease in income. Then, the Chinese import exposure shifts the domestic supply to

the left, but it may not further increase Chinese imports because of a decrease domestic

demand, which can cut down the simultaneous causality of Chinese import exposure and

the current US local employment share.

3.6 Conclusion

Endogeneity is commonly observed in economics by assumption and estimated with instru-

mental variables in many applied economic papers (Angrist and Evans (1998), Autor et al.

(2013), among others). However, testing for the presence of endogeneity cannot be under-

estimated due to consistency and efficiency issues. Moreover, not every variable which has
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Figure 3.3: Marginal Effect of Chinese Import Exposure

been believed to be endogenous is endogenous in every context. Even though there is a large

literature on how to deal with the endogeneity in the estimation, testing for endogeneity

should be a priority for a more efficient estimator. In this paper, I propose a consistent

nonparametric test for endogeneity.

By introducing an alternative way of using the conditional moment in a triangular

equations model by taking the control function approach, I can convert the conditional

moment for endogeneity test E[U | X,Z] = 0 to E[U | V ] = 0. As the dimension of V is

smaller than that of X and Z, it suffers less from the curse of dimensionality. Based on

the modified moment condition, I construct a Li-Wang type test. The advantages of the

current test are; i) it follows the standard normal distribution under the null hypothesis,

and ii) it can capture the nonlinear correlation between the disturbances U and V aside

from the advantage of a nonparametric estimation over a parametric estimation.
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As with other nonparametric conditional moment tests (Zheng (1996), Li and

Wang (1998), Hsiao and Li (2001), among others), I introduce a wild bootstrap method

using Mammen’s distribution to improve the finite-sample performance. In simulations, I

show that my bootstrap test performs better in finite samples than the asymptotic test for

both size and power. In particular, when I have a bounded support for {Yi, Xi, Zi}ni=1, my

test statistic performed better both in estimating size and power than having a unbounded

support. Compared to the Hausman, the Blundell and Horowitz (2007), and the Breunig

(2015) test, my test statistic outperforms them when the error terms are nonlinearly cor-

related with each other at all levels of endogeneity. When the error terms are nonlinearly

correlated, it seems that the test statistic using a kernel method is better than the statistics

using a series estimator.

I also apply this test to the empirical analysis of Autor, Dorn, and Hanson (2013)

to test endogeneity of Chinese import exposure with the US local employment. As this

estimation includes other exogenous variables, I use the extension of the test statistic given

in Section IV. When including a variable for the percentage of employment in manufacturing

in the previous period, I obtain a contradicting result between the Hausman test and my

test. There can be the cases where the model might have a functional form misspecification

or the nonlinear correlation between the error terms U and V . For these two possible

reasons, my nonparametric test can be used more accurately for testing for endogeneity.

With the comparison in the estimates based on the test results, the potential bias can

occur.
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In summary, the proposed nonparametric test can be useful in many aspects since

endogeneity can be present in different forms and contexts. In addition to a triangular

simultaneous equations setting, I can observe endogeneity when having measurement errors

in the data or when misspecifying the model by omitting a variable. In this regard, my test

statistic can provide a generic approach to test endogeneity in other econometric problems

in future research.
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Chapter 4

A Nonparametric Panel Estimation

for Random Effects and a

Consistent Nonparametric Test for

Endogeneity

4.1 Introduction

There are many interesting testing problems in panel data for model specification such as

cross-sectional independence (Chen et al. (2012)), the time trend (Zhang et al. (2012)),

and linearity (Lin et al. (2014)). Among them, endogeneity is important in determining the

model specification. In a panel data setting, there are two strands of endogeneity—one is

the endogeneity of a variable, and the other is the endogeneity of an individual fixed effect.
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When ruling out the possibility of the former, testing for endogeneity in an individual fixed

effect plays an important role in determining whether to use the fixed effects or the random

effects model. Regarding this issue, there is a trade-off between consistency and efficiency.

Under the null hypothesis, which is no endogeneity, the random effects model will be used.

With the presence of endogeneity, the fixed effects model will be chosen, giving a consistent

but less efficient estimator.

Despite the importance of detecting endogeneity of an individual fixed effect, there

has been a difficulty in testing this hypothesis mainly because these individual fixed effects

under the random effects model cannot be obtained. Unlike the fixed effects model where the

individual fixed effects can be separately estimated, the random effects model is estimated

by including individual fixed effects into the error terms. However, if the objective function

is defined differently as in Huang et al. (2019), the individual fixed effects model can be

estimated even under the random effects.

There are two main contributions of this paper. First, this paper develops a new

estimation method to obtain individual-specific components under the random effects by

extending Huang et al. (2019). While Huang et al. (2019) impose a parametric specifica-

tion, I implement the nonparametric random effects panel estimation. This minimizes the

chance of having endogeneity of a variable, which can be caused by the misspecification of

a functional form. As I can obtain the individual-specific components under the random

effects model, the accuracy of a test can be improved instead of testing with the residuals

from the random effects model as a unity. Second, I construct a test by converting the

moment condition of interest. Because the individual-specific components can be obtained,
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I construct a test over the i index instead of the i index and time. Then, the rate of

convergence can be faster than the previous test statistics.

I set up the null hypothesis as no endogeneity against the presence of endogeneity.

Then I construct a conditional moment test using kernel weighting (Li and Wang (1998),

Hsiao and Li (2001), Henderson et al. (2008), Wang et al. (2018) among others). One

difference is that I use the mean of a fixed variable over time instead of a fixed variable itself.

The conditional moment test is simple to construct as it only requires the null hypothesis.

If I construct a test using an estimation under the alternative, the nonparametric fixed

effects estimation must be applied. Once constructing a test, I introduce a wild cluster

bootstrap procedure using Mammen’s distribution in a nonparametric random effects model

to improve the finite-sample performance of a test. Wild cluster bootstrap is similar to a

wild bootstrap, but it resamples clusters of residuals using a two-point distribution (See

Wu (1983), Liu (1988), Mammen (1993), Davidson and Flachaire (2008) among others).

There has been literature on wild cluster bootstrap such as its asymptotics as well as its

procedure with different cluster sizes (See Cameron et al. (2008), Mackinnon et al. (2017),

Djogbenou et al. (2019) among others).

As mentioned earlier, there is a trade-off between the random effects and the fixed

effects model. Since the fixed effects estimators are consistent both under the null and

the alternative, the nonparametric methods estimation methods are heavily based on fixed

effects estimation. Regarding the nonparametric panel fixed effects estimation, there has

been extensive literature from a standard panel estimation to a dynamic panel estimation

(See Lin and Carroll (2000), Su and Ullah (2006), Su and Lu (2013), Lee and Robinson
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(2015), Lee et al. (2019) among others). For the random effects model, the nonparametric

panel random effects estimation methods have evolved toward obtaining a more efficient

estimator (See Henderson and Ullah (2005), Mukherjee (2006), Ma et al. (2015) among

others). While there exist extensive estimation methods for the panel, this paper’s test for

endogeneity can play a role as a preliminary step for the model specification.

Regarding the endogeneity tests, the most popular parametric test is the Hausman

test. This compares the random effects estimates and the fixed effects estimates under the

parametric specification. With the chronic problem of the Hausman test which suffers

from the misspecification of a functional form, Henderson et al. (2008) constructed a Li-

Wang type test. In constructing their nonparametric test, the residuals which include the

individual fixed effects are used due to the difficulty of obtaining the individual-specific

components under the null. This implies that this test improves the accuracy of a test

compared to the Hausman test but may fail when the endogeneity of a variable occurs.

The paper is organized as follows. Section II introduces a model, hypotheses,

estimation method, and the test statistic for endogeneity. In Section III, I conduct Monte

Carlo simulations and compare the test results with the currently developed endogeneity

tests. I then apply the test to the empirical data in Section IV. I test the endogeneity of an

individual fixed effect by implementing it to the US state-level public capital data. Section

V concludes the paper.
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4.2 Model and Hypotheses

Consider a nonparametric random effects model for panel data as follows:

yit = m(Xit) + uit, where uit = αi + vit, i = 1, ..., n and t = 1, ..., T (4.1)

In this model, yit is an observable scalar random variable, m(·) is an unknown function, Xit

is a dx×1 vector of regressors, and uit is the random disturbance such that E [uit | Xit] = 0.

The data is independent across the i index. For the disturbance term, I assume that αi ∼

i.i.d.N(0, σ2
α), vit ∼ i.i.d.N(0, σ2

v), αi and vjt are uncorrelated for i, j = 1, · · · , n, and Σ ≡

E[uiu
′
i] = σ2

αIT + σ2
viT iT , where IT is a T × T identity matrix and iT is a T × 1 vector of

ones.

Assuming the exogeneity of the random errors where E [vit | Xi1, ..., XiT ] = 0 is

satisfied, the assumption of interest for testing in this paper is whether the individual specific

effects, αi, is exogenous or not. The testing hypotheses are given as follows:


H0 : E[αi | Xit] = 0

H1 : E[αi | Xit] 6= 0

Under the null, the random effects estimation can be implemented as there is no endogeneity

problem in the estimation. Under the alternative, the fixed effects estimation will be applied

due to an inconsistency problem of the random effects estimators. Testing for its presence

is important because there is a consistency/efficiency trade-off between the random effects

and the fixed effects estimators.
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Since the individual-specific component varies over the i index only, the moment

condition of interest under the null can be converted to another form, which is E[αi | X̄i] =

0, where X̄i = 1
T

∑T
t=1Xit. The equivalence of the two conditions can be simply shown as

below. Suppose X̄i = r(Xit) and there exists g(·) such that E[αi | Xit] = g(r(Xit)). Then,

E[αi | X̄i] = E[E[αi | r(Xit), Xit] | r(Xit)] (4.2)

= E[E[αi | Xit] | r(Xit)]

= E[g(r(Xit)) | r(Xit)]

= g(r(Xit))

= E[αi | Xit]

The second line of the equation (4.2) holds by the tower property of the conditional ex-

pectation as σ(X̄i) ⊂ σ(Xit). With this converted moment condition, I can set up new

hypotheses for testing endogeneity of individual-specific components.


H0 : E[αi | X̄i] = 0

H1 : E[αi | X̄i] 6= 0

One obstacle in directly testing for this null hypothesis is the difficulty in esti-

mating αi in the random effects model unlike the fixed effects model. Therefore, both the

Hausman test and the nonparametric test of Henderson et al. (2008) for endogeneity are

constructed by assuming E[uit | Xit] = 0. However, Huang et al. (2019) set up a new

objective function to obtain a random effects model estimator in a parametric context,
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which allows the derivation of the individual-specific component in a random effects panel

model. By extending their estimation strategy to a nonparametric context, I can obtain

the individual specific components in a nonparametric random effects panel model.

4.2.1 Estimation

Extending Huang et al. (2019), I define a new objective function to derive (αi,m(x)) under a

nonparametric random effects panel data model. First, I re-write the model in the previous

section as follows:

y = m(x) + U, where U = Dα+ V (4.3)

y = (y11, · · · , y1T , · · · , yn1, · · · , ynT ), x = (x11, · · · , x1T , · · · , xn1, · · · , xnT ), D = In ⊗ ιT ,

α = (α1, · · · , αn), and V = (v11, · · · , v1T , · · · , vn1, · · · , vnT ). Then the objective function is

introduced as

Min
αi,m(x)

n∑
i=1

T∑
t=1

α2
iK
(
H−1(Xit − x)

)
Tσ2

α

+

n∑
i=1

T∑
t=1

(yit −m(x)− αi)2K
(
H−1(Xit − x)

)
σ2
v

⇔ Min
αi,m(x)

1

Tσ2
α

α′D′W (x)Dα+
1

σ2
v

(y −m(x)−Dα)′W (x) (y −m(x)−Dα) ,

where K is a non-negative dx-variate kernel function, H = diag(h1, · · · , hdx) is a dx × dx

bandwidth matrix that is symmetric and positive definite, W (x) = diag(K(H−1(X11 −

x)), · · · ,K(H−1(X1T − x)), · · · ,K(H−1(Xn1 − x)), · · · ,K(H−1(XnT − x))), ι = (1, · · · , 1)′

is a n× 1 matrix, |H| is the determinant of H, and m(x) is a nonparametric estimator.
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There are three steps to obtain m̂(x). As the variance structure is unknown, there

are additional steps to follow to estimate it. The procedure is as follows:

1. From the equation (4.3), obtain the usual LCLS estimator, m̃(x), and ũit = yit−m̃(x),

where m̃(x) = (ι′W (x)ι)−1ι′W (x)y. Note that this estimator is not a random effects

estimator.

2. Define σ2
1 = σ2

v + Tσ2
α. Using the residuals ũit’s, both σ̂2

1 and σ̂2
v can be simply

obtained as follows1:

σ̂2
1 =

T

n

n∑
i=1

¯̃u2
i

σ̂2
v =

1

n(T − 1)

n∑
i=1

T∑
t=1

(ũit − ¯̃ui)
2
,

where ¯̃ui =
∑T

t=1

∑T
s=1 ũitK(Xit −Xis)

/∑T
t=1

∑T
s=1K(Xit −Xis). Once estimating

σ̂2
1 and σ̂2

v , I can obtain α̂i using σ̂2
α = 1

T (σ̂2
1 − σ̂2

v).

3. With Σ̂ = σ̂2
αIT + σ̂2

viT iT , the nonparametric random effects estimator m̂(x)2 and the

individual specific effects α̂ can be estimated, which can be easily derived from the

first order conditions from the objective function above.

ûit = yit − m̂RE(x)

α̂i =
T σ̂2

α

T σ̂2
α + σ̂2

v

¯̂ui, where ¯̂ui =

∑T
t=1

∑T
s=1 ûitK(Xit −Xis)∑T

t=1

∑T
s=1K(Xit −Xis)

.

1The consistency of these variance has been shown in Henderson and Ullah (2005).
2This can be obtained either from Henderson and Ullah (2005) or Su and Ullah (2007). For a more

efficient estimator, I apply Su and Ullah (2007) random effects estimator.
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4.2.2 Test Statistic and Its Asymptotic Properties

In this section, I construct a test statistic and derive its asymptotic properties.

yit = m(Xit) + uit

= m(Xit) + E[αi | Xit] + uit − E[αi | Xit]

= m(Xit) + E[αi | X̄i] + uit − E[αi | X̄i]

= m1(Xit, X̄i) + ηit, where ηit = uit − E[αi | X̄i] (4.4)

It is easy to show E[ηit | Xit, X̄i] = E[ηit | Xit] = E[uit−E[αit | X̄i] | Xit] = E[vit | Xit] = 0.

The last equality holds by assumption. Using the equivalence of the moment condition

from the previous section, I can construct a Li-Wang type test statistic. E[αi | X̄i] = 0

implies E[αiE[αi | X̄i]] = 0. Then, the conditional moment condition under the null

implies E[αiE[αi | X̄i]f(X̄i)] = 0.

Theorem 7 E[αi | X̄i] = 0 iff E[f
(
X̄i

)
αiE[αi | X̄i]] = 0, where f (·) is the density

function of X̄i that is bounded away from zero for all X̄i.

Proof of Theorem I let f
(
X̄i

)
and f(α|x̄) be the marginal density of X̄i and the con-

ditional density of αi given X̄i = x̄, respectively.

E
[
f
(
X̄i

)
αiE[αi|X̄i]

]
=

∫∫
α1

(∫
α2f (x̄, α2) dα2

)
f (x̄, α1) dα1dx̄

=

∫ (∫
α1f (α1|x̄) dα1

)(∫
α2f (α2|x̄) dα2

)
f2 (x̄) dx̄

=

∫ (∫
αf (α|x̄) dα

)2

f2 (x̄) dx̄,
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since αi is i.i.d. over i. Therefore, E[αi | X̄i] =
∫
αf (α|x̄) dx̄ = 0 iff E[f

(
X̄i

)
αiE[αi |

X̄i]] = 0 since f (x̄) > 0. �

Define f(X̄i) = 1
n|H̄|

∑n
j=1K

(
H̄−1(X̄j − X̄i)

)
, where H̄ = diag(h̄1, · · · , h̄dx) is a

dx × dx bandwidth matrix that is symmetric and positive definite,
∣∣H̄∣∣ is the determinant

of H̄. These bandwidths are different from the bandwidths for the estimation because the

regressors are X̄i, not Xit. Throughout the paper, the bandwidths for testing are calculated

using the rule-of-thumb. The test statistic In is obtained as follows:

In = E[α̂iE[α̂i | X̄i]f(X̄i)]

=
1

n

n∑
i=1

α̂i

 1

(n− 1)
∣∣H̄∣∣

n∑
j 6=i

α̂jK
(
H̄−1(X̄j − X̄i)

)
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂iα̂jK
(
H̄−1(X̄j − X̄i)

)

For characterizing the asymptotic distribution, the following assumptions will be used.

(A1) {Ui, Xi}ni=1 is i.i.d., where Ui = (ui1, · · · , uiT )′ and X = (Xi1, · · · , XiT )′.

(A2) E[u | x] = 0, σ2(x) = E[u2 | x], σ2(x) is continuous at x and E[σ2(x)] <∞.

The model assumes the i.i.d. distribution of {Ui, Xi}ni=1. Also, as my interest lies in testing

the endogeneity of α, I assume the exogeneity of V. The conditional variance σ2(x) is con-

tinuous at x and its expectation is finite. I assume the homoskedasticity for the conditional

variance.
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(A3) f(x) is differentiable, 0 < f(x) ≤ Bf <∞, and |f(x)− f(x′)| < mf |x− x′| for some

0 < mf <∞ is satisfied.

(A4) The kernel function K(·) is bounded and symmetric density function with com-

pact support such that
∫
K(ψ)dψ = 1. For ∀x ∈ R , |K(x)| < Bk < ∞. I assume∣∣Kj(u)−Kj(v)

∣∣ ≤ C1 |u− v| , for j = 0, 1, 2, 3.

In (A3), the conditional density f(x) satisfies the Lipschitz continuous condition. In ad-

dition, as it is smooth and bounded, a Taylor expansion can be applied. In constructing

my test, I use the kernel function as a weighting function. Regarding properties of the

kernel function, it is bounded and symmetric. As in f(x) , the kernel function satisfies the

Lipschitz continuous function.

(A5) As n→∞, |H| ,
∣∣H̄∣∣→ 0. It satisfies n

∣∣H̄∣∣2 →∞, n ∣∣H̄∣∣6 → 0, and n |H| / lnn→∞.

(A6) m(·) is continuous and twice differentiable in X respectively.

The assumption (A5) is on the restriction of the bandwidth for the asymptotic properties

of the proposed test statistic and the standard assumptions for nonparametric estimation.

The test statistic then can be standardized as follows:

Tn = n
∣∣H̄∣∣1/2 In/√Ω̂,where Ω̂ =

2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂2
i α̂

2
jK
(
H̄−1(X̄j − X̄i)

)
.

Theorem 8 Under H0, as Ω̂ is a consistent estimator of Ω = 2[
∫
K2(ψ)dψ]E[σ4(X̄)f(X̄)],

Tn → N(0, 1) as n→∞.
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For the asymptotic properties under the alternative, I introduce the Pitman local alterna-

tives as follows:

H1(δn) : m1(XitX̄i) = m(Xit) + δnl(X̄i) ,

where l(·) is continuously differentiable and bounded, and δn = n−1/2
∣∣H̄∣∣−1/4

. Based on

the equation (4.4), note that l(·) does not include the elements of Xit because m1(Xit, X̄i)

is separable by construction of the model.

Theorem 9 Under the Pitman local alternative, if δn = n−1/2
∣∣H̄∣∣−1/4

, we have

Tn
d→ N(E[l(X̄i)

2f(X̄i)]/
√

Ω, 1) as n→∞.

Then, as the magnitude of E[l(X̄i)
2f(X̄i)]/

√
Ω increases, the test statistic deviates farther

from the zero mean, and the local power increases. However, the variance remains at one

for both hypotheses.

Theorem 10 Assuming (A1)-(A6) and under H1, Pr[T̂n > Bn]→ 1 for any non-stochastic

sequence {Bn : Bn = o(
√
n2
∣∣H̄∣∣)}. În = In+op((n

∣∣H̄∣∣1/2)−1), where In = E[(l(X̄i))
2f(X̄i)],

and Ω̂ = Ω + op(1).

Theorem 10 suggests the consistency of the test statistic. Under H1, the probability of

rejecting the null will converge to 1.

4.2.3 Bootstrap Procedure

In order to increase the test’s performance in a finite sample, I introduce a wild cluster

bootstrap for the test statistic as below.
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1. Estimate m̂(x) and α̂i for a nonparametric random effects model following the esti-

mation method given in Section 4.2.1.

2. Generate u∗i as the wild bootstrap error, where u∗i = (u∗i1, · · · , u∗iT )′. I construct

u∗i = 1−
√

5
2 ûi with the probability of 1+

√
5

2
√

5
and u∗i = 1+

√
5

2 ûi with the probability

of 1 − 1+
√

5
2
√

5
, where ûi = (ûi1, · · · , ûiT )′ and ûit = yit − m̂(x). It is easy to show

E [u∗it] = 0, E
[
u∗2it
]

= û2
it, and E

[
u∗3it
]

= û3
it.

3. Generate y∗it, where y∗it = m̂(x) + û∗it under the null hypothesis.

4. Use the bootstrap sample {y∗i , Xi}ni=1 to obtain m̂∗(x), and get α̂∗i = (T σ̂2
α/(T σ̂

2
α +

σ̂2
v))

¯̂u∗i .

5. With {α̂∗i , Xi}ni=1, compute the bootstrap test statistic T ∗n and repeat above procedure

for B times. In this simulation, the number of bootstrapping is 300.

6. Based on the empirical distribution of T ∗n , calculate the critical value c∗ and obtain

the p-value, which is P (Tn ≥ c∗). If p-value is less than 0.05 at 5% significance level,

we reject the null.

Following these bootstrap procedures, I can obtain the asymptotic distribution of T ∗n . I will

show how the bootstrap test performs in the Monte Carlo Simulations. The asymptotic

distribution of bootstrap test under the null is shown in Theorem 11.

Theorem 11 Define Ω̂∗ = 2
n(n−1)|H̄|

∑n
i=1

∑n
j α̂
∗
i

2α̂∗j
K
(
H̄−1(X̄j − X̄i)

)
. Let the bootstrap

test statistic be T ∗n = n
∣∣H̄∣∣1/2 I∗n/√Ω̂∗, where Under H∗0, as Ω̂∗ is a consistent estimator of

Ω = 2[
∫
K2(ψ)dψ]E[f(x̄)σ4(x̄)], T ∗n → N(0, 1) in distribution as n→∞.
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The proofs of Theorem 11 will follow similarly to those of Theorem 8. In addition, when

the null hypothesis is false, P (Tn > T ∗n) → 1 asymptotically, which shows the consistency

of the bootstrap test statistic.

4.3 Simulations

4.3.1 Data Generating Processes

I perform the test for endogeneity using two different data generating processes. I follow

Henderson et al. (2008) for DGP2.

DGP1 :


Yit = 1 + 2Xit −X2

it + αi + vit, vit ∼ i.i.d.N(0, 1)

αi = ξi + θ(X̄i + 2X̄i)
3

DGP2 :


Yit = sin(2Xit) + αi + vit, vit ∼ i.i.d.N(0, 1)

αi = ξi + θX̄i,

where Xit is i.i.d. U [−1, 1], ξi ∼ i.i.d.U(0, 1), and X̄i = 1
T

∑T
t=1Xit.

For both data generating processes, θ = 0, 0.4, and 0.8, which indicates no en-

dogeneity, weak endogeneity, and strong endogeneity, respectively. For DGP1, the model

is correctly specified in both the parametric and nonparametric specification but the cor-

relation between αi and X̄i is nonlinear. For DGP2 follows the specification from Wang

(2003). In this case, the model is nonlinearly specificed while the correlation between αi

and X̄i is linear. For bandwidth selection, I use rule-of-thumb bandwidths for both the es-

timation and the test. For the estimation, I use local linear estimation with a second-order
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Gaussian kernel by using a rule-of-thumb bandwidth, which is h = 1.06std(Xit)(nT )−1/5.

I obtain m̂(Xi) from m̂(x) = arg max
m(x)

1
Tσ2

α

∑n
i=1

∑n
t=1 α

2
iK(Xit−xh ) + 1

σ2
v

∑n
i=1

∑n
t=1(yit −

m(x)− αi)2K(Xit−xh ). For the test bandwidth, h̄ = c · std(Xi)n
−1/5 and c = 0.5, 1.06, 1.5.

The number of repetition is 1000 for both sample sizes of 50 and 100. T is fixed as 3

throughout the simulations. The number of bootstrap repetitions is 300 for both samples.

4.3.2 Simulation Results

For each data generating process, both the size and the power are estimated by changing

the strength of endogeneity (the value of θ). I then compare my test’s performance with the

Hausman test (Hn) and the Li-Wang type test (Jn) using the αi’s from the nonparametric

fixed effects estimation. In this paper, I use the Su and Ullah (2006) nonparametric fixed

effects estimation method. The Hausman test is a parametric test, where it measures

the difference between fixed effects panel and random effects estimates. First, Table 4.1-

4.3 represent both size and power for each data generating process with different values of

bandwidth. Both nonparametric tests’ performance varies with the bandwidth. In addition,

I apply a wild cluster bootstrap procedure for both test statistic.

Table 4.1 and 4.2 presents the size and power when the model is correctly specified

but the endogenous correlation is nonlinear. The bootstrap size of my conditional moment

test is close to the correct size at each significance level although Tn is undersized in the

asymptotic test. For different bandwidths, their estimated size is close to the nominal size

in all significance levels and its performance improves with the increase in size. For the fixed
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Table 4.1: Size of Each Test

1% 5% 10%

n c 0.5 1.06 1.5 0.5 1.06 1.5 0.5 1.06 1.5

DGP1 50 T ∗n 0.012 0.010 0.020 0.044 0.054 0.048 0.082 0.094 0.094

Tn 0.010 0.004 0.004 0.022 0.010 0.008 0.038 0.016 0.010

J∗n 0.002 0.004 0.004 0.032 0.028 0.022 0.072 0.070 0.072

Jn 0.004 0.006 0.006 0.020 0.006 0.008 0.038 0.014 0.010

Hn 0.024 0.024 0.024 0.052 0.052 0.052 0.094 0.094 0.094

100 T ∗n 0.016 0.014 0.014 0.062 0.070 0.064 0.116 0.122 0.138

Tn 0.010 0.004 0.002 0.022 0.010 0.004 0.060 0.016 0.012

J∗n 0.004 0.002 0.000 0.040 0.046 0.038 0.096 0.096 0.080

Jn 0.002 0.002 0.002 0.020 0.014 0.006 0.050 0.030 0.010

Hn 0.002 0.002 0.002 0.036 0.036 0.036 0.084 0.084 0.084

DGP2 50 T ∗n 0.012 0.006 0.012 0.034 0.036 0.030 0.082 0.080 0.070

Tn 0.002 0.000 0.000 0.018 0.002 0.002 0.034 0.004 0.002

J∗n 0.002 0.004 0.004 0.030 0.032 0.024 0.076 0.076 0.080

Jn 0.004 0.006 0.006 0.020 0.006 0.008 0.038 0.014 0.010

Hn 0.014 0.014 0.014 0.060 0.060 0.060 0.098 0.098 0.098

100 T ∗n 0.012 0.014 0.004 0.042 0.050 0.050 0.112 0.110 0.110

Tn 0.004 0.000 0.000 0.018 0.000 0.000 0.044 0.008 0.000

J∗n 0.004 0.004 0.004 0.040 0.046 0.040 0.088 0.094 0.090

Jn 0.002 0.002 0.002 0.020 0.016 0.006 0.050 0.030 0.010

Hn 0.002 0.002 0.002 0.034 0.034 0.034 0.088 0.088 0.088

Note: c is for different bandwidth sizes, T ∗n is a bootstrap test, Tn is an asymptotic test,
J∗n is a bootstrap test for fixed-effects αi, Jn is an asymptotic test for fixed-effects αi, and
Hn is the Hausman test.
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Table 4.2: Power of Each Test under DGP1

1% 5% 10%

θ n c 0.5 1.06 1.5 0.5 1.06 1.5 0.5 1.06 1.5

0.4 50 T ∗n 0.018 0.022 0.024 0.056 0.068 0.090 0.096 0.138 0.156

Tn 0.008 0.006 0.004 0.034 0.018 0.014 0.060 0.026 0.028

J∗n 0.012 0.028 0.034 0.062 0.090 0.102 0.132 0.180 0.216

Jn 0.026 0.034 0.032 0.062 0.066 0.060 0.102 0.098 0.082

Hn 0.148 0.148 0.148 0.298 0.298 0.298 0.382 0.382 0.382

100 T ∗n 0.018 0.026 0.042 0.074 0.088 0.112 0.122 0.154 0.190

Tn 0.016 0.014 0.010 0.048 0.040 0.032 0.078 0.062 0.060

J∗n 0.070 0.116 0.122 0.134 0.220 0.250 0.224 0.286 0.362

Jn 0.082 0.118 0.128 0.142 0.172 0.178 0.204 0.222 0.224

Hn 0.312 0.312 0.312 0.504 0.504 0.504 0.640 0.640 0.640

0.8 50 T ∗n 0.034 0.060 0.098 0.104 0.176 0.208 0.170 0.272 0.328

Tn 0.036 0.032 0.032 0.070 0.074 0.064 0.102 0.114 0.106

J∗n 0.108 0.200 0.252 0.300 0.422 0.498 0.416 0.528 0.590

Jn 0.206 0.290 0.300 0.298 0.386 0.394 0.386 0.452 0.452

Hn 0.620 0.620 0.620 0.778 0.778 0.778 0.846 0.846 0.846

100 T ∗n 0.066 0.148 0.216 0.190 0.352 0.444 0.298 0.498 0.584

Tn 0.076 0.118 0.130 0.158 0.220 0.238 0.224 0.294 0.332

J∗n 0.402 0.602 0.706 0.638 0.810 0.874 0.744 0.908 0.924

Jn 0.504 0.674 0.708 0.648 0.778 0.814 0.712 0.840 0.864

Hn 0.954 0.954 0.954 0.982 0.982 0.982 0.990 0.990 0.990

Note: c is for different bandwidth sizes, T ∗n is a bootstrap test, Tn is an asymptotic
test, J∗n is a bootstrap test for fixed-effects αi, Jn is an asymptotic test for fixed-effects
αi, and Hn is the Hausman test.
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Table 4.3: Power of Each Test under DGP2

1% 5% 10%

θ n c 0.5 1.06 1.5 0.5 1.06 1.5 0.5 1.06 1.5

0.4 50 T ∗n 0.016 0.022 0.032 0.044 0.066 0.092 0.098 0.132 0.148

Tn 0.002 0.000 0.000 0.024 0.012 0.006 0.052 0.020 0.016

J∗n 0.008 0.014 0.016 0.064 0.050 0.058 0.104 0.102 0.114

Jn 0.010 0.018 0.014 0.038 0.032 0.028 0.068 0.050 0.042

Hn 0.052 0.052 0.052 0.146 0.146 0.146 0.228 0.228 0.228

100 T ∗n 0.018 0.028 0.058 0.078 0.114 0.138 0.118 0.182 0.224

Tn 0.014 0.012 0.002 0.046 0.034 0.026 0.066 0.048 0.040

J∗n 0.034 0.064 0.068 0.090 0.138 0.150 0.152 0.196 0.220

Jn 0.052 0.068 0.062 0.080 0.094 0.092 0.110 0.130 0.116

Hn 0.100 0.100 0.100 0.220 0.220 0.220 0.338 0.338 0.338

0.8 50 T ∗n 0.030 0.056 0.084 0.078 0.150 0.214 0.146 0.250 0.320

Tn 0.014 0.016 0.014 0.054 0.042 0.034 0.076 0.064 0.056

J∗n 0.046 0.066 0.088 0.142 0.224 0.274 0.230 0.336 0.380

Jn 0.082 0.100 0.084 0.152 0.178 0.178 0.204 0.250 0.234

Hn 0.254 0.254 0.254 0.414 0.414 0.414 0.546 0.546 0.546

100 T ∗n 0.060 0.136 0.216 0.160 0.306 0.406 0.272 0.430 0.522

Tn 0.058 0.076 0.066 0.104 0.160 0.148 0.164 0.202 0.202

J∗n 0.164 0.274 0.332 0.316 0.472 0.562 0.422 0.604 0.660

Jn 0.206 0.298 0.310 0.320 0.420 0.430 0.386 0.486 0.522

Hn 0.524 0.524 0.524 0.742 0.742 0.742 0.842 0.842 0.842

Note: c is for different bandwidth sizes, T ∗n is a bootstrap test, Tn is an asymptotic
test, J∗n is a bootstrap test for fixed-effects αi, Jn is an asymptotic test for fixed-effects
αi, and Hn is the Hausman test.
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effects based test, the test is oversized. For the Hausman test, the size of the test is close

to the correct size, but still undersized. As the level of endogeneity becomes stronger, the

power of all test increases. My conditional moment test does not reject the null hypothesis

as much as the other two tests do, and this may lie in the fact that the individual-specific

components are obtained with the T = 3 observations.

Table 4.1 and 4.3 presents the size and power when the model is mis-specified but

the endogenous correlation is linear. In this case, my nonparametric bootstrap size is close

to the nominal size when the sample size is 100. As the strength of endogeneity increases,

the test becomes more powerful. However, as the endogenous correlation is linear, the

Hausman test performs the best among the three tests.

In summary, even though I observed the undersized test for Tn using asymptotic

critical values, the estimated size based on bootstrap procedure is close to the nominal

size for all the data generating processes. As the strength of endogeneity increases, the

test becomes more powerful. Furthermore, I can compare clearly the nonparametric tests’

performance when constructing a test between using individual-specific components only

and using random effects residuals. In this regard, the current test dominates all the other

tests in terms of accuracy in capturing the endogeneity of individual-specific components

by kernel techniques to capture the local correlation.

4.4 Application

In this section, I analyze the productivity of public capital in the economy. In a large

literature, there has been a deviate over whether the public capital productivity contributes
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to the private sector, but the focus of my application lies in whether the model is correctly

specified–between fixed effects and random effects.

Following Baltagi and Pinnoi (1995), Henderson and Ullah (2005), and Su et al.

(2013), I consider the following one-way random effects nonparametric model:

log(Yit) = m(log(KGit), log(KPRit), log(Lit), UNEMit) + αi + vit,

where i = 1, · · · , 48, t = 1, · · · , 17, Yit denotes the GDP of state i in period t, KG denotes

public capital, KPR denotes the prival captial stock estimated from the Bureau of Economics

Analysis, L is employment, and UNEM stands for the unemployment rate used to control for

business cycle effects. The panel data is for the US 48 continuous states over the period 1970-

1986. For the test bandwidth of my test, I use h = c · std(X̄i)n
−1/5 and c = 0.5, 1.06, 1.5

for using the second-order Gaussian kernel. The number of bootstrap repetition is 300.

Before presenting the test results, Figure 4.1 and Figure 4.2 show the correlation

between individual-specific components and each variable from the panel random effects

estimation. From both figures, it is easily to note that there is almost no correlation

detected. In Figure 4.3, there seems to be nonzero correlation between the individual-

specific components and the unemployment rate, the correlation is almost zero in value.

The test results are given in Table 4.4. The null hypothesis is rejected both in

asymptotic and bootstrap test at 5% significance level. This result is also consistent with

the test using α̂FE ’s. However, I have a contradicting test result with Hausman test. All

nonparametric tests do not reject the null hypothesis with the high p-values while the

Hausman test still rejects the null hypothesis at 5% significance level.
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Table 4.4: P-Values of Each Test

c T ∗n Tn J∗n Jn Hn

0.5 0.470 0.677 0.357 0.481 0.000

1.06 0.520 0.578 0.547 0.840 0.000

1.5 0.567 0.530 0.560 0.842 0.000

Note: c is for different bandwidth sizes, T ∗n is a bootstrap test, Tn is an asymptotic test,
J∗n is a bootstrap test for fixed-effects αi, Jn is an asymptotic test for fixed-effects αi, and
Hn is the Hausman test.

4.5 Conclusion

In a panel data, testing for endogeneity in an individual-specific component plays

an important role in determining whether to use the fixed effects or the random effects

model. In this regard, testing for the presence of endogeneity of individual-specific compo-

nents cannot be underestimated due to consistency and efficiency issues. In this paper, I

propose a consistent nonparametric test for endogeneity.

By introducing a new objective function to obtain a nonparametric random ef-

fects estimator, I can extract the individual-specific components in the random effects and

construct a new nonparametric test for endogeneity. I can convert the conditional moment

for endogeneity test E[α | X] = 0 to E[α | X̄] = 0. Based on the modified moment

condition, I construct a Li-Wang type test which follows the standard normal distribution

asymptotically under the null hypothesis.
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Figure 4.1: Correlation between Individual-Specific Effects and Each Variable from Para-
metric Regression
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Figure 4.2: Correlation between Individual-Specific Effects and Each Variable from Para-
metric Regression
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Figure 4.3: Correlation between Individual-Specific Effects and Each Variable from Non-
parametric Regression
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As with other nonparametric conditional moment tests (Zheng (1996), Li and

Wang (1998), Hsiao and Li (2001), among others), I introduce a wild cluster bootstrap

method using Mammen’s distribution to improve the finite-sample performance. In simula-

tions, I show that my bootstrap test performs better in finite samples than the asymptotic

test for both size and power. Compared to the Hausman and fixed-effects individual specific

components tests, my test statistic outperforms them when the individual-specific terms are

not correlated but error terms are correlated with a variable. This addresses the advantage

of my test by using the estimated individual-specific components instead of the residuals

which include both individual-specific components as well as the random errors.

I also apply this test to the empirical analysis anayzing the effect of public capital

to the economy. Following the same specification of Su et al. (2013), I tested for endogeneity

and I obtain a contradicting result between the Hausman test and the nonparametric tests

including my test. There can be the cases where the model might have a functional form

misspecification or the nonlinear correlation between the individual-specific components and

the variables a and X. For these two possible reasons, my nonparametric test can be used

more accurately for testing for endogeneity.
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Chapter 5

Conclusions

A hypothesis testing is one of the key components of the econometric analysis to analyze

the effect with the statistical significance. However, nonparametric hypothesis testing has

not been developed systematically and the current nonparametric tests are ad-hoc. The

objective of this dissertation is to explore these issues and provide results on testing linearity

as an illustration and develop new nonparametric tests for endogeneity in a cross-sectional

data and a panel data respectively.

In Chapter 2, I analyze the relationship of the current nonparametric tests for

linearity. By imposing some conditions, I obtained which test is locally most powerful both

analytically and numerically. I can compare the local power of each test asymptotically.

Furthermore, by developing a nonparametric Rao-Score test for the model specification, I

show its equivalence to Su-Ullah type goodness-of-fit test.

Chapter 3 develops a consistent nonparametric test for endogeneity under a tri-

angular simultaneous equations model. After taking the control function approach, I use
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nonparametric residuals in constructing a test to obtain the consistency of the test. My test

has strengths in that it is easy to implement as its asymptotic distribution is the standard

normal and it can capture the locally nonlinear correlation with kernel weighting.

Chapter 4 proposes a new estimation method for the nonparametric panel random

effects model and develops a new nonparametric test for endogeneity. Extending Huang et

al. (2019) to a nonparametric context, the individual fixed effects model can be estimated

under the random effects and they are used to construct a test. With a large T , the test

performs well in terms of size and power.
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Appendix A

Appendix for Chapter 2

This Appendix is for the derivation of the comparison between test statistics for 2.4.5. Note

that it is done when p = 1, and the Gaussian kernel is used. Define K(u) as the standard

Gaussian kernel function and κ(u) as the convolution kernel as follows.

K(u) =
1√
2π

exp

(
−u

2

2

)
, κ(u) =

1√
4π

exp

(
−u

2

4

)

For the following derivations/calculations of the test statistics, please note that only the

kernel components are extracted for simplicity.
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A.1 Li-Wang Type Test

∫
K2(u)du =

∫
1

2π
exp

(
−u2

)
du =

√
π

2π

∫
1√
π

exp
(
−u2

)
du︸ ︷︷ ︸

∼N(0, 1
2

)

=
1

2
√
π

= 0.2821

A.2 Su-Ullah Type Test

For a local constant estimator,

∫
κ2(u)du =

∫
1

4π
exp

(
−u

2

2

)
du

=

√
2π

4π

∫
1√
2π

exp

(
−u

2

2

)
du︸ ︷︷ ︸

∼N(0,1)

=
1

2
√

2π

= 0.1995

For a local linear estimator,

∫ (∫
κ(z)(1 + z(x+ z))dz

)2

dx

=

∫ (∫
1√
2π

exp

(
−z

2

2

)
1√
2π

exp

(
−(z + x)2

2

)
(1 + z(x+ z))dz

)2

dx
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=

∫ (
1

2π
exp

(
−1

4
x2

)[√
π

∫
1√
π

exp
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−
(
z +

1

2
x

)2
)
dz

+
√
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∫
1√
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z2 exp
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√
πx

∫
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z exp
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√
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4
x2

)[
3

2
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4
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])2
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dx
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8
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2π
+

3

32
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2π
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A.3 Yao-Ullah Type Test and F-Type Test

∫
(κ(u)− 2K(u))2du

=

∫
(κ2(u)− 2κ(u)K(u) + 4K2(u))du

=

∫
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+
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A.4 Proof of Theorem 1

Let f̂(x) = ε̂′Hxε̂ and ĝ(x) = n−1ε̂′Wxε̂. I claim

plim

∫
f̂(x)

ĝ(x)
dx = plim

∫
f̂(x)dx∫
ĝ(x)dx

, and lim
n→∞

E

[
f̂(x)

ĝ(x)

]
= lim

n→∞

E[f̂(x)]

E[ĝ(x)]
.

By Taylor expansion,

E

[
f̂(x)

ĝ(x)

]
= E

[
f̂(x)

ĝ(x)− E[ĝ(x)] + E[ĝ(x)]

]

= E

[
f̂(x)

E[ĝ(x)]

E[ĝ(x)]

(ĝ(x)− E[ĝ(x)] + E[ĝ(x)])

]

= E

[
f̂(x)

E[ĝ(x)]

(
ĝ(x)− E[ĝ(x)] + E[ĝ(x)]

E[ĝ(x)]

)−1
]

= E

[
f̂(x)

E[ĝ(x)]

(
1 +

ĝ(x)− E[ĝ(x)]

E[ĝ(x)]

)−1
]

= E

[
f̂(x)

E[ĝ(x)]

(
1− ĝ(x)− E[ĝ(x)]

E[ĝ(x)]
+

(
ĝ(x)− E[ĝ(x)]

E[ĝ(x)]

)2

− · · ·

)]

' E[f̂(x)]

E[ĝ(x)]
−
E
[
f̂(x)(ĝ(x)− E[ĝ(x)])

]
(E[ĝ(x)])2 +

E
[
f̂(x)(ĝ(x)− E[ĝ(x)])2

]
(E[ĝ(x)])3

By Cauchy-Schwarz Inequality,

E
[
f̂(x)(ĝ(x)− E[ĝ(x)])

]
≤
√
E[f̂2(x)]E[(ĝ(x)− E[ĝ(x)])2] =

√
E[f̂2(x)]V(ĝ(x))

E
[
f̂(x)(ĝ(x)− E[ĝ(x)])2

]
≤
√
E[f̂2(x)]E[(ĝ(x)− E[ĝ(x)])4] =

√
E[f̂2(x)] V(ĝ(x))

∴

∣∣∣∣∣E
[
f̂(x)

ĝ(x)

]
− E[f̂(x)]

E[ĝ(x)]

∣∣∣∣∣ ≤ 1

(E[ĝ(x)])2

∣∣∣∣−√E[f̂2(x)]V(ĝ(x)) +

√
E[f̂2(x)] V(ĝ(x))

∣∣∣∣
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It will be sufficient to show that the above claim holds by showing

f̂(x) = ε̂′Hxε̂ = (ε̂− ε+ ε)′Hx(ε̂− ε+ ε)

= (ε− (g(X, θ̂)− g(X, θ)))′Hx(ε− (g(X, θ̂)− g(X, θ)))

= ε′Hxε− (g(X, θ̂)− g(X, θ))′Hxε− ε′Hx(g(X, θ̂)− g(X, θ))

+ (g(X, θ̂)− g(X, θ))′Hx(g(X, θ̂)− g(X, θ))

= ε′Hxε+O((nhp/2)−1)

= n−1ε′H̄xε+ ε′(Hx − n−1H̄x)ε+ op(1), where H̄x = ZxWx(E[Z ′xWxZx])−1WxZx

= n−1ε′H̄xε+ op(1)

ĝ(x) = n−1ε̂′Wxε̂

= n−1(ε̂− ε+ ε)′Wx(ε̂− ε+ ε)

= n−1ε′Wxε− n−1(g(X, θ̂)− g(X, θ))′Wxε− n−1ε′Wx(g(X, θ̂)− g(X, θ))

+ n−1(g(X, θ̂)− g(X, θ))′Wx(g(X, θ̂)− g(X, θ))

= ε′Wxε+O(n−1)

∴ f̂(x)− E[f̂(x)] = op(1), and g(x)− E[g(x)] = op(1)

lim
n→∞

∣∣∣∣∣E
[
f̂(x)

ĝ(x)

]
− E[f̂(x)]

E[ĝ(x)]

∣∣∣∣∣ ≤ lim
n→∞

1

(E[ĝ(x)])2

∣∣∣∣−√E[f̂2(x)]V(ĝ(x)) +

√
E[f̂2(x)] V(ĝ(x))

∣∣∣∣
= 0 �
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Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 3

I let

∆̂ij = v̂j − v̂i and ∆ij = vj − vi.

I also let ∆∗ij be a vector between ∆̂ij and ∆ij . Note that

∆̂ij −∆ij = (ĝ (zi)− g (zi))− (ĝ (zj)− g (zj)) ,

ûi = yi − m̂ (xi) = ui − (m̂ (xi)−m (xi)) .

Assuming that K (·) is twice continuously differentiable, I expand:

K
(
H−1
v ∆̂ij

)
= K

(
H−1
v ∆ij

)
+K(1)

(
H−1
v ∆ij

)′
H−1
v

(
∆̂ij −∆ij

)
+

1

2

(
∆̂ij −∆ij

)′
H−1
v K(2)

(
H−1
v ∆∗ij

)
H−1
v

(
∆̂ij −∆ij

)
,
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The test statistic In can be written as follows:

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1
v ∆̂ij

)

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1
v ∆ij

)
+

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(1)
(
H−1
v ∆ij

)′
H−1
v

(
∆̂ij −∆ij

)

+
1

2n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûj

(
∆̂ij −∆ij

)′
H−1
v K(2)

(
H−1
v ∆∗ij

)
H−1
v

(
∆̂ij −∆ij

)

≡ I1n + I2n + I3n.

To derive the asymptotic distribution of In, I will show

(I)
√
n2 |H|I1n

d→ N(0,Ω)

(II) I2n = O

((
lnn

n3/2
√
|Hv |1/2|Hz |

) 1
2

)
+O

(
|Hz |2

n|Hv |1/2

)
= op((

√
n2 |Hv|)−1) by (A5)

(III) I3n = O

(
lnn

n2
√
|Hv |1/2|Hz |

)
+O

(
|Hz |4√
n2|Hv |

)
+O

(
(lnn)1/2|Hz |3/2

n3/2|Hv |1/2

)
= op((

√
n2 |Hv|)−1)

(IV) Ω̂ = Ω + op(1)

(I) Let µn (x) = m̂ (x)−m (x). I first decompose

I1n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(ui − µn (xi)) (uj − µn (xj))K
(
H−1∆ij

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1
v ∆ij

)
+

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiµn (xj)K
(
H−1
v ∆ij

)
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+
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

µn (xi)µn (xj)K
(
H−1
v ∆ij

)
≡ I11n + I12n + I13n.

(I)-(A) Following Lemma 1 from Yao and Ullah (2013), define second-order U-statistic

Un = 1
n(n−1)

∑n
i=1

∑n
j=1

i<j

φn(Xi, Xj), where φn(Xi, Xj) is symmetric function of Xj and Xi,

where {Xi}ni=1 is a sequence of IID random variables. E[φn(Xi, Xj) | Xj ] = 0. I can easily

verify that I11n is a degenerated second order U-statistic.

I11n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1
v ∆ij

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[uiujK
(
H−1
v ∆ij

)
+ ujuiK

(
H−1
v ∆ij

)
]

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)], where Wi = (ui, vi)

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)

As E[φ2
n(Wi,Wj)] =E[ψ2

n(Wi,Wj)]+E[ψ2
n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1

|Hv|
E[ψ2

n(Wi,Wj)] =
1

|Hv|
E[ψ2

n(Wj ,Wi)]

=
1

|Hv|
E[K2

(
H−1
v ∆ij

)
u2
iu

2
j ]

=
1

|Hv|
E[K2

(
H−1
v ∆ij

)
σ2(vi)σ

2(vj)]

=
1

|Hv|

∫
K2
(
H−1
v ∆ij

)
σ2(vi)σ

2(vj)f(vi)f(vj)dvidvj
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=

∫
K2(ψ)σ2(vi +Hvψ)σ2(vi)f(vi)f(vi +Hvψ)dvidψ

→
∫
K2(ψ)dψE[σ4(vi)f(vi)] <∞

2

|Hv|
E[ψn(Wi,Wj)ψn(Wj ,Wi)] =

2

|Hv|
E[K2

(
H−1
v ∆ij

)
σ4(vi)f(vi)]

→ 2

∫
K2(ψ)dψE[σ4(vi)f(vi)] <∞

Then, I have
(
E[φ2

n(Wi,Wj)]
)2

= O(|Hv|2). By Cr inequality,

E[φ4
n(Wi,Wj)] ≤ C

[
E[ψ4

n(Wi,Wj)] + E[ψ4
n(Wj ,Wi)]

]
.

1

|Hv|
E[ψ4

n(Wi,Wj)] =
1

|Hv|
E
[
E
[
K4
(
H−1
v ∆ij

)
u4
iu

4
j | vi, vj

]]
=

1

|Hv|
E
[
σ4(vi)σ

4(vj)K
4
(
H−1
v ∆ij

)]
=

∫
K4(ψ)σ4(vi)σ

4(vi +Hvψ)f(vi)f(vi +Hvψ)dvidψ

=

∫
K4(ψ)σ8(vi)f

2(vi)dvidψ

=

(∫
K4(ψ)dψ

)(∫
σ8(vi)f

2(vi)dvi

)

Here, I have 1
nE[φ4

n(Wi,Wj)] = O(n−1 |Hv|).

110



Gn(Wi,Wj) =E [φn(Wt,Wi)φn(Wt,Wj) |Wi,Wj ]

=E [(ψn(Wt,Wi) + ψn(Wi,Wt))(ψn(Wt,Wj) + ψn(Wj ,Wi)) |Wi,Wj ]

=E[ψn(Wt,Wi)ψn(Wt,Wj) |Wi,Wj ] + E[ψn(Wt,Wi)ψn(Wj ,Wt) |Wi,Wj ]

+E[ψn(Wi,Wt)ψn(Wt,Wj) |Wi,Wj ] + E[ψn(Wi,Wt)ψn(Wj ,Wt) |Wi,Wj ]

=G1(Wi,Wj) +G2(Wi,Wj) +G3(Wi,Wj) +G4(Wi,Wj)

By Cr inequality,

E
[
G2
n(Wi,Wj)

]
= E[(G1(Wi,Wj) +G2(Wi,Wj) +G3(Wi,Wj) +G4(Wi,Wj))

2]

≤ C
[
G2

1(Wi,Wj) +G2
2(Wi,Wj) +G2

3(Wi,Wj) +G2
4(Wi,Wj)

]

E[G2
1(Wi,Wj)]

= E
[
E [ψn(Wt,Wi)ψn(Wt,Wj) |Wi,Wj ]

2
]

= E
[
E
[
K
(
H−1
v ∆it

)
K
(
H−1
v ∆jt

)
uiuju

2
t | vi, vj

]2]
= E

[(
uiujE

[
K
(
H−1
v ∆it

)
K
(
H−1
v ∆jt

)
σ2(vt) | vi, vj

])2]
= E

[(
uiuj

∫
K
(
H−1
v ∆it

)
K
(
H−1
v ∆jt

)
σ2(vt)f(vt)dvt

)2
]

= E

[
E

[
u2
iu

2
j

(∫
K (ψ1)K

(
ψ1 +H−1

v ∆ij

)
σ2(vi +Hvψ1)f(vi +Hvψ1) |Hv| dψ1

)2

| vi, vj

]]

= E

[
σ2(vi)σ

2(vj)

(∫
K (ψ1)K

(
ψ1 +H−1

v ∆ij

)
σ2(vi +Hvψ1)f(vi +Hvψ1) |Hv| dψ1

)2
]
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= |Hv|2
∫
σ2(vi)σ

2(vj)

(∫
K (ψ1)K

(
ψ1 +H−1

v ∆ij

)
σ2(vi +Hvψ1)f(vi +Hvψ1)dψ1

)2

× f(vi)f(vj)dvidvj

= |Hv|2
∫
σ2(vi)σ

2(vi −Hvψ2)

(∫
K (ψ1)K (ψ1 + ψ2)σ2(vi +Hvψ1)f(vi +Hvψ1)dψ1

)2

× f(vi)f(vi −Hvψ2) |Hv| dvidψ2

= |Hv|3
∫
σ4(vi)

(∫
K (ψ1)K (ψ1 + ψ2)σ2(vi)f(vi)dψ1

)2

f2(vi)dvidψ2

= |Hv|3
(∫

σ8(vi)f
4(vi)dvi

)∫ (∫
K (ψ1)K (ψ1 + ψ2) dψ1

)2

dψ2

= O(|Hv|3)

I can conclude that

E[G2
n(Wi,Wj)] + n−1E[φ4

n(Wi,Wj)]

(E[φ2
n(Wi,Wj)])

2 =
O(|Hv|2) + n−1O(|Hv|)

O(|Hv|2)

= O(|Hv|) +O((n |Hv|)−1)

→ 0 as n→∞

Also, I have 1
|Hv |E[φ2

n(Wi,Wj)] → Ω, where Ω ≡ 2
∫
K2(ψ)dψE[σ4(vi)f(vi)]. By applying

Hall’s Central Limit Theorem,

√
n2 |Hv|I11n

d→ N(0,Ω)
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(I)-(B) As m̂(xi) is a local linear estimator and z′t = (1, xt−xihx
),

m̂(xi)−m(xi)

=e′1
1

2

(
n∑
t=1

z′tK
(
H−1
x (xt − xi)

)
zt

)−1 n∑
t=1

z′tK
(
H−1
x (xt − xi)

)
(xi − xt)m(2)(xit)(xi − xt)′

+e′1

(
n∑
t=1

z′tK
(
H−1
x (xt − xi)

)
zt

)−1 n∑
t=1

z′tK
(
H−1
x (xt − xi)

)
ut

=e′1

(
n∑
t=1

z′tK
(
H−1
x (xt − xi)

)
zt

)−1 n∑
t=1

z′tK
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)
,

where m∗(xit) = (xi − xt)m(2)(xit)(xi − xt)′ and xit = λxi + (1− λ)xt. Define

µ̂n(xi) = m̂(xi)−m(xi) = µn(xi) + µ̂n(xi)− µn(xi),

where µn(xi) = 1
n|Hx|f(xi)

∑n
t=1K

(
H−1
x (xt − xi)

)
(1

2m
∗(xit) + ut).

I12n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj(m̂(xi)−m(xi))K
(
H−1
v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

[
e′1

(
n∑
t=1

ztK
(
H−1
x (xt − xi)

)
zt

)−1

×
n∑
t=1

ztK
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)]
K
(
H−1
v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj µ̂n(xi)K
(
H−1
v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj (µn(xi) + µ̂n(xi)− µn(xi))K
(
H−1
v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

n|Hx|f(xi)

n∑
t=1

K
(
H−1
x (xt − xi)

) 1

2
m∗(xit)

)
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×K
(
H−1
v (vj − vi)

)
− 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

n|Hx|f(xi)

n∑
t=1

K
(
H−1
x (xt − xi)

)
ut

)

×K
(
H−1
v (vj − vi)

)
+

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj (µ̂n(xi)− µn(xi))K
(
H−1
v (vj − vi)

)
≡ S1n + S2n + S3n

(I)-(B)-(i)

S1n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

n |Hx| f(xi)

n∑
t=1

K
(
H−1
x (xt − xi)

) 1

2
m∗(xit)

)

×K
(
H−1
v (vj − vi)

)
= − 2

n2(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

n∑
t=1

1

2f(xi)
ujm

∗(xit)K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
= − 2

n2(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

n∑
t=1

1

2f(xi)
ujm

∗(xit)K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)

1) i = t

S1n = − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

1

2f(xi)
ujm

∗(xi)K(0)K
(
H−1
v (vj − vi)

)
= 0

∵ m∗(xi) = (xi − xi)m(2)(xi)(xi − xi) = 0

2) j = t, j 6= i, t 6= i

S1n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

1

2f(xi)
ujm

∗(xij)K
(
H−1
x (xt − xi), H−1

v (vj − vi)
)

114



Given E[u | x, v] = 0,

S1n = − 1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
1

2f(xi) |Hv|
ujm

∗(xij)K
(
H−1
x (xt − xi), H−1

v (vj − vi)
)

+
1

2f(xj) |Hv|
uim

∗(xji)K
(
H−1
x (xt − xi), H−1

v (vj − vi)
)]

By letting Wi = (ui, xi, vi),

S1n = − 1

n(n− 1)

n∑
i=1

n∑
j 6=i

[ψ(Wi,Wj) + ψ(Wj ,Wi)]

= − 1

n(n− 1)

n∑
i=1

n∑
j 6=i

φn(Wi,Wj)

= − 2

n(n− 1)

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)

By applying Lemma 1 of Yao and Ullah (2013),

S1n −

[
2

n(n− 1)

n∑
i=1

∫
φn(Wi,Wj)dP (Wj)− n−1E[φn(Wi,Wj)]

]

= Op

(
n−1(E[φ2

n(Wi,Wj)]
1
2

)

Note that E[φn(Wi,Wj)] = 0 (∵ E[ui | xi, vi] = 0). By Lipschitz-condition,

E[φ2
n(Wi,Wj)] ≤ C

[
E[ψ2(Wi,Wj)] + E[ψ2(Wj ,Wi)]

]
.
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E[ψ2(Wi,Wj)]

= E

[
1

4f(xi)2 |Hv|2
u2
j (m

∗(xij))
2K2

(
H−1
x (xt − xi), H−1

v (vj − vi)
)]

= E

[
|Hx|4

4f(xi)2 |Hv|2
u2
j

(
H−1
x (xj − xi)

)2
(m(2)(xij))

2
(
H−1
x (xj − xi)

)2
K2
(
H−1
x (xt − xi), H−1

v (vj − vi)
)]

=

∫
|Hx|4

4f(xi)2 |Hv|2
σ2(wj)

(
H−1
x (xj − xi)

)2
(m(2)(xij))

2
(
H−1
x (xj − xi)

)2
×K2

(
H−1
x (xt − xi), H−1

v (vj − vi)
)
f(wi)f(wj)dwidwj

Let ψx = H−1
x (xj − xi), ψv = H−1

v (vj − vi), and ψ = (ψx, ψv).

=

∫
|Hx|4

4f(xj +Hxψx)2 |H|2
σ2(wj)ψ

2
x(m(2)(xj + (1− λ)Hxψx))2ψ2

xK
2 (ψx, ψv)

× f(ψ)f(wj +HxHvψ) |H| dψdwj

=

∫
|Hx|4

4f(xj)2 |Hv|
σ2(wj)ψ

2
x(m(2)(xj))

2ψ2
xK

2 (ψx, ψv) f(wj)
2dψdwj + o(1)

=
|Hx|4

|Hv|

(∫
K2(ψ)ψ4

xdψ

)(∫
1

f(xj)2
σ2(wj)(m

(2)(xj))
2f(wj)

2dwj

)

Then, I have

n−1
(
E[φ2

n(Wi,Wj)]
) 1

2 = Op(n
−1 |Hv|−1/2 |Hx|2).

3) j 6= t, t 6= i

S1n = − 2

n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

1

2f(xi) |Hv|
ujm

∗(xit)K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
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By letting Wi = (ui, xi, vi),

= − 2

3n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

[ψn(Wi,Wj ,Wt) + ψn(Wj ,Wt,Wi) + ψn(Wt,Wi,Wj)]

= − 2

n2(n− 1)

n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

=

(
− 2

n2(n− 1)
−
(
n

3

)−1

+

(
n

3

)−1
)

n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

E[φ2
n(Wi,Wj ,Wt)] ≤ C

[
E[ψ2(Wi,Wj ,Wt)] + E[ψ2(Wj ,Wt,Wi)] + E[ψ2(Wt,Wi,Wj)]

]
By H-decomposition,

E[φn(Wi,Wj ,Wt) |Wj ,Wt]

= ujE

[
1

2f(xi) |Hv|
m∗(xit)K

(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
|Wj ,Wt

]
= φ2n(Wj ,Wt)

E[φ2
2n(Wj ,Wt)]

= E

[(
ujE

[
1

2f(xi) |Hv|
m∗(xit)K

(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
|Wj ,Wt

])2
]

= E

[
uj

(
E

[
|Hx|4

2f(xi) |H|
(
H−1
x (xt − xi)

)2
(m(2)(xit))

2
(
H−1
x (xt − xi)

)2
× K

(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
|Wj ,Wt

])2]
= E

[
σ2(vj)

(∫
|Hx|4

2f(xi) |H|
(
H−1
x (xt − xi)

)2
(m(2)(xit))

2
(
H−1
x (xt − xi)

)2
× K

(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
f(wi)dwi

)2]
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= E

[
σ2(vj)

(∫
|Hx|4

2f(xt −Hxψx,1) |H|
ψ2
x,1(m(2)(xt − λHxψx,1))2ψ2

x,1K (ψx,1)

× K
(
ψv,1 +H−1

v (vj − vt)
)
f(wt −HHxψ1) |H| dψ1

)2]
=

∫
σ2(vj)

(∫
|Hx|4

2f(xt − hxψx,1)
ψ2
x,1(m(2)(xt − λHxψx,1))2ψ2

x,1K (ψx,1)

×K
(
ψv,1 +H−1

v (vj − vt)
)
f(wt −HHxψ1)dψ1

)2
f(wj)f(wt)dwjdwt

=

∫
σ2(vt +Hvψv,2)

(∫
|Hx|4

2f(xt −Hxψx,1)
ψ2
x,1(m(2)(xt − λHxψx,1))2ψ2

x,1K (ψx,1)

×K (ψv,1 + ψv,2) f(wt −Hψ1)dψ1)2 f(wj)f(wt)dwjdwt

=
|Hx|8 |H|

4

∫
σ2(vt)

f4(wt)

f2(xt)
(m(2)(xt))

2dwt

∫ (∫
ψ4
x,1K (ψx,1)K (ψv,1 + ψv,2) dψ1

)2

dψ2

= O(|Hx|8 |H|)

∴ S1n = O(n−2 |H|1/2 |Hx|4)

(I)-(B)-(ii)

S2n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

n |Hx| f(xi)

n∑
t=1

K
(
H−1
x (xt − xi)

)
ut

)
K
(
H−1
v (vj − vi)

)
= − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

n∑
t=1

1

f(xi)
ujutK

(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)

= − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

1

f(xi)

 n∑
j 6=i

n∑
t=1

ujutK
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)

+

n∑
j 6=i

n∑
t=1

utujK
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
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1) i = t

S2n = − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

1

f(xi)
ujuiK

(
H−1
x (xj − xi), H−1

v (vj − vi)
)

= − 2

n(n− 1) |Hv| |Hx|

n∑ n∑
i<j

[
1

f(xi)
ujuiK

(
H−1
x (xj − xi), H−1

v (vj − vi)
)

+
1

f(xj)
uiujK

(
H−1
x (xj − xi), H−1

v (vj − vi)
)]

By letting Wi = (ui, xi, vi),

= − 2

n(n− 1)

n∑ n∑
i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)]

= − 2

n(n− 1)

n∑ n∑
i<j

φn(Wi,Wj)

As E[φ2
n(Wi,Wj)] =E[ψ2

n(Wi,Wj)]+E[ψ2
n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1

|Hv| |Hx|
E[φ2

n(Wi,Wj)]

=
1

|Hv| |Hx|
E[φ2

n(Zj , Zi)]

=
1

|Hv| |Hx|
E

[
1

f(xi)2
u2
ju

2
iK

2
(
H−1
x (xj − xi), H−1

v (vj − vi)
)]

=
1

|Hv| |Hx|

∫
1

f(xi)2
σ2(wi)σ

2(wj)K
2
(
H−1
x (xj − xi), H−1

v (vj − vi)
)

× f(wi)f(wj)dwidwj

=
1

|Hv| |Hx|

∫
1

f(xi)2
σ2(wi)σ

2(wi +Hψ)K2 (ψ) f(wi)f(wi +Hψ) |H| |Hx| dwidψ

=

∫
1

f(xi)2
σ4(wi)K

2 (ψ) f(wi)
2dwidψ

=

(∫
K2(ψ)dψ

)(∫
1

f(xi)2
σ4(wi)f(wi)

2dwi

)
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∴ n (|Hv| |Hx|)1/2 S2n
d→ N(0,Σ),

where Σ =
(∫
K2(ψ)dψ

) (∫
1

f(xi)2
σ4(wi)f(wi)

2dwi

)
.

n |Hv|1/2 S2n = (n−1 |Hx|−1/2)(n (|Hv| |Hx|)1/2 S2n)

→ 0 as n→∞

2) t = j, j 6= i, t 6= i

S2n = − 2

n(n− 1) |Hv| |Hx|

n∑
i=1

n∑
j 6=i

1

f(xi)
u2
jK
(
H−1
x (xj − xi), H−1

v (vj − vi)
)

E[ψ2
n(Wi,Wj)] = E

[
1

f2(xi) (|Hv| |Hx|)2u
2
jK

2
(
H−1
x (xj − xi), H−1

v (vj − vi)
)]

=

∫
1

f2(xi) (|Hv| |Hx|)2σ
2(vj)K

2
(
H−1
x (xj − xi), H−1

v (vj − vi)
)

× f(wi)f(wj)dwidwj

=

∫
1

f2(xi) (|Hv| |Hx|)2σ
2(vi +Hvψv)K

2 (ψ) f(wi)f(wi +HHxψ)hdwidψ

=
1

|H|

∫
1

f2(xi)
σ2(vi)K

2 (ψ) f2(wi)dwidψ

=
1

|Hv| |Hx|

(∫
K2 (ψ) dψ

)∫
1

f2(xi)
σ2(vi)f

2(wi)dwi

= O((|Hv| |Hx|)−1)

∴ S2n = n−1
(
E[ψ2

n(Wi,Wj)]
)1/2

= O(n−1 (|Hv| |Hx|)−1/2)
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3) j 6= t, t 6= i

S2n = − 2

n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

1

f(xi) |Hv| |Hx|
ujutK

(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)

= − 2

3n2(n− 1)

n∑
i=1

n∑
j=1

n∑
t=1

i 6=j 6=t

[ψn(Wi,Wj ,Wt) + ψn(Wj ,Wt,Wi) + ψn(Wt,Wi,Wj)]

= − 2

n2(n− 1)

n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

=

(
− 2

n2(n− 1)
−
(
n

3

)−1

+

(
n

3

)−1
)

n∑ n∑ n∑
i<j<t

2φn(Wi,Wj ,Wt)

By H-decomposition,

E[φn(Wi,Wj ,Wt) |Wj ,Wt]

= ujutE

[
1

f(xi) |Hx| |Hv|
K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
|Wj ,Wt

]
= φ2n(Wj ,Wt)

Then, I can write U-statistic

Un =
6

n(n− 1)

n∑ n∑
j<t

φ2n(Wj ,Wt) +Op(H
(3)
n )
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E[φ2
2n(Wj ,Wt)]

= E

[(
ujutE

[
1

f(xi) |Hv| |Hx|
K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
| Zj , Zt

])2
]

= E

[
u2
ju

2
t

(∫
1

f(xi) |Hv| |Hx|
K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)
f(wi)dwi

)2
]

= E

[
E

[
u2
ju

2
t

(∫
1

f(xt −Hxψx,1) |Hv| |Hx|
K (ψx,1)K

(
ψv,1 +H−1

v (vj − vt)
)

× f(wt −HvHxψ1) |Hv| |Hx| dψ1

)2

| Zj , Zt

]]

= E

[
σ2(vj)σ

2(vt)

(∫
1

f(xt −Hxψx,1)
K (ψx,1)K

(
ψv,1 +H−1

v (vj − vt)
)

× f(wt −HvHxψ1)ψ1

)2
]

=

∫
σ2(vj)σ

2(vt)

(∫
1

f(xt −Hxψx,1)
K (ψx,1)K

(
ψv,1 +H−1

v (vj − vt)
)

× f(wt −HvHxψ1)dψ1

)2

f(wj)f(wt)dwjdwt

=

∫
σ2(vt)σ

2(vt +Hψv,2)

(∫
1

f(xt −Hxψx,1)
K (ψx,1)K (ψv,1 + ψv,2)

× f(wt −HvHxψ1)dψ1

)2

f(wt)f(wt +HvHxψ2) |Hv| |Hx| dψ2dwt

= |Hv| |Hx|
(∫

σ4(vt)
f4(wt)

f2(xt)
dwt

)∫ (∫
K (ψx,1)K (ψv,1 + ψv,2) dψ1

)2

dψ2

= O(|Hv| |Hx|)

I have σ2
3n = O(1), V ar(H

(3)
n ) = O(n−3) = o(n−2 |Hv|2).

∴ S2n = O(n−2 |Hv|1/2)
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(I)-(B)-(iii)

Note that 1
f̂(xi)

− 1
f(xi)

= Op

((
lnn
n|Hx|

)1/2
)

+Op(|Hx|).

S3n = − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj (µ̂n(xi)− µn(xi))K
(
H−1
v (vj − vi)

)
= − 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

f̂(xi)
− 1

f(xi)

)
K
(
H−1
x (xt − xi)

)
×
(

1

2
m∗(xit) + ut

)
K
(
H−1
v (vj − vi)

)
≤

(
Op

((
lnn

n |Hx|

)1/2
)

+Op(|Hx|)

)− 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj

(
1

2
m∗(xit) + ut

)

× K
(
H−1
x (xt − xi)

)
K
(
H−1
v (vj − vi)

)]
= Op(n

−5/2 |Hx|−1 |Hv|−1/2 (lnn)1/2) +Op(n
−2 |Hx|1/2 |Hv|−1/2)

= o((n |Hv|1/2)−1)

(I)-(C)

By letting Sn(zt) = (
∑n

t=1 ztKitzt)
−1 and S(zt) =

f(xt) 0

0 f(xt)σ
2
k

 ,

|µ̂n(xi)− µn(xi)|

=
1

n |Hx|

∣∣∣∣∣e′1Sn(zt)
−1

n∑
t=1

ztK
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)

− 1

f(xi)

n∑
t=1

ztK
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
=

1

n |Hx|

∣∣∣∣∣e′1(Sn(zt)
−1 − S(zt)

−1)

n∑
t=1

ztK
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
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≤ 1

|Hx|
((1, 0)(Sn(zt)

−1 − S(zt)
−1)2(1, 0)′)1/2

× 1

n

(∣∣∣∣∣
n∑
t=1

K
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
t=1

(
H−1
x (xt − xi)

)′
K
(
H−1
x (xt − xi)

)(1

2
m∗(xit) + ut

)∣∣∣∣∣
)

I follow Lemma 2 of Martins-Filho and Yao (2007) to obtain

|µ̂n(xi)− µn(xi)| = O

(
|Hx|

(
lnn

n |Hx|

) 1
2

)
+O(|Hx|3).

Then, I have

sup |m̂(xi)−m(xi)| = O

((
lnn

n |Hx|

) 1
2

)
+O(|Hx|2)

Using m̂(xi) = m(1)(xij)(xi − xj), where xij = λxi + (1− λ)xj ,

I13n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

µ̂n(xi)
′µ̂n(xj)K

(
H−1
v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(µn(xi) + µ̂n(xi)− µn(xi))
′

× (µn(xj) + µ̂n(xj)− µn(xj))K
(
H−1
v (vj − vi)

)

sup |µn(xi) + µ̂n(xi)− µn(xi)| ≤ sup |µn(xi)|+ sup |µ̂n(xi)− µn(xi)|

= Op

((
lnn

n |Hx|

)1/2
)

+Op(|Hx|2)
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sup
∣∣(µn(xi) + µ̂n(xi)− µn(xi))

′(µn(xj) + µ̂n(xj)− µn(xj))
∣∣

≤ (sup |µn(xi) + µ̂n(xi)− µn(xi)|)2

= Op

(
lnn

n |Hx|

)
+Op

(
|Hx|4

)

I13n ≤ (sup |µn(xi) + µ̂n(xi)− µn(xi)|)2 1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

K
(
H−1
v (vj − vi)

)
= Op

(
n−2 |Hv|

(
lnn

n |Hx|

))
+Op

(
n−2 |Hv|−1 |Hx|4

)

(II)

sup |ĝ(zi)− g(zi)− (ĝ(zj)− g(zj))| ≤ sup |ĝ(zi)− g(zi)|+ sup |ĝ(zj)− g(zj)|

= O

((
lnn

n |Hz|

) 1
2

)
+O(|Hz|2),

Î2n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(1)
(
H−1
v (vj − vi)

)′
H−1
v (ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))

∣∣∣Î2n

∣∣∣ ≤ sup
∣∣H−1

v (ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))
∣∣

× 1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(1)
(
H−1
v (vj − vi)

)
=

((
lnn

n |Hz| |Hv|2

) 1
2

)
+O

(
|Hz|2

n |Hv|

)

= o((n |Hv|1/2)−1)
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(III)

sup |ĝ(zi)− g(zi)− (ĝ(zj)− g(zj))| ≤ sup |ĝ(zi)− g(zi)|+ sup |ĝ(zj)− g(zj)|

= O

((
lnn

n |Hz|

) 1
2

)
+O(|Hz|2),

Î3n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûj(ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))
′

×H−1
v K(2)

(
H−1
v (vj − vi)

)
H−1
v (ĝ(zi)− g(zi)− (ĝ(zj)− g(zj)))

∣∣∣Î3n

∣∣∣ ≤ C 1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

∣∣ûiûjG (H−1
v

(
v∗j − v∗i

))∣∣ · (H−1
v sup |ĝ(zi)− g(zi)|)2

= O

(
lnn

n |Hz| |Hv|2

)
+O

(
|Hz|4

n |Hv|2

)
= o((n |Hv|1/2)−1)

(IV)

Ω̂ =
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2
i û

2
jK

2
(
H−1
v (v̂j − v̂i)

)
=

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2
i û

2
jK

2
(
H−1
v (vj − vi)

)
+ op(1)

=
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

u2
iu

2
jK

2
(
H−1
v (vj − vi)

)
+ op(1)

=
2

n(n− 1) |Hv|

n∑ n∑
i<j

[
u2
iu

2
jK

2
(
H−1
v (vj − vi)

)
+ u2

ju
2
iK

2
(
H−1
v (vi − vj)

)]

By using the properties of U-statistics, Ω = 2
∫
K2(ψ)dψE[σ4(v)f(v)].
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B.2 Proof of Theorem 4

Under the alternative, m1(xi, vi) = m(xi) + δnl(vi). Then, ui = εi + δnl(vi), where εi =

yi −m(xi, vi) and δn = n−1/2 |Hv|−1/4 .

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK̂
(
H−1
v (vj − vi)

)
= Î1nG + o((n |Hv|1/2)−1)

Î1nG =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1
v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1
v (vj − vi)

)
− 2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uj(m̂(xi)−m(xi))K
(
H−1
v (vj − vi)

)
+

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(m̂(xi)−m(xi))(m̂(xj)−m(xj))K
(
H−1
v (vj − vi)

)
= I11nG + I12nG + I13nG

For the following sections, I will show

n |Hv|1/2 I11nG
d→ N(0,Ω)
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I11nG =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1
v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(εi + δnl(vi))(εj + δnl(vj))K
(
H−1
v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

εiεjK
(
H−1
v (vj − vi)

)
+

2δn
n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

εil(vj)K
(
H−1
v (vj − vi)

)
+

δ2
n

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

l(vi)l(vj)K
(
H−1
v (vj − vi)

)
= Q1n + 2δnQ2n + δ2

nQ3n

(I)-(A)

Q1n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

εiεjK
(
H−1
v (vj − vi)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[
εiεjK

(
H−1
v (vj − vi)

)
+ εjεiK

(
H−1
v (vi − vj)

)]

By letting Wi = (vi, εi),

Q1n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)]

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)
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As E[φ2
n(Wi,Wj)] =E[ψ2

n(Wi,Wj)]+E[ψ2
n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1

|Hv|
E[ψ2

n(Wi,Wj)]→
(∫

K2 (ψv) dψv

)
E
[
σ4(vi)f(vi)

]
<∞

2

|Hv|
E[ψn(Wi,Wj)ψn(Wj ,Wi)]→ 2

(∫
K2 (ψv) dψv

)
E
[
σ4(vi)f(vi)

]

∴ n |Hv|1/2Q1n
d→ N(0,Ω),

where Ω = 2
(∫
K2 (ψv) dψv

)
E
[
σ4(vi)f(vi)

]
.

(I)-(B)

Q2n =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

1

|Hv|
εil(vj)K

(
H−1
v (vj − vi)

)
=

1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
1

|Hv|
εil(vj)K

(
H−1
v (vj − vi)

)
+

1

|Hv|
εjl(vi)K

(
H−1
v (vj − vi)

)]

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

[ψn(Wi,Wj) + ψn(Wj ,Wi)] , where Wi = (vi, εi)

E[ψn(Wi,Wj)] = 0. By applying Lipschitz condition,

E[ψ2
n(Wi,Wj)] = E

[
1

|Hv|2
ε2
i l(vj)

2K2
(
H−1
v (vj − vi)

)]
=

1

|Hv|2

∫
σ2(vi)l(vj)

2K2
(
H−1
v (vj − vi)

)
f(vi)f(vj)dvidvj

=
1

|Hv|

∫
σ2(vi)l(vi +Hvψ)2K2 (ψ) f(vi)f(vi +Hvψ)dvidψ

=
1

|Hv|

(∫
K2 (ψ) dψ

)(∫
σ2(vi)l(vi)

2f(vi)
2dvi

)
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As Q2n = n−1
(
E[φ2

n(Wi,Wj)]
) 1

2 = O(n−1 |Hv|−1/2),

∴ n |Hv|1/2 δnQ2n = n−1/2 |Hv|−1/4 p→ 0

(I)-(C)

Q3n =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

l(vi)l(vj)K
(
H−1
v (vj − vi)

)

1

|Hv|
E
[
l(vi)l(vj)K

(
H−1
v (vj − vi)

)]
=

1

|Hv|

∫
l(vi)l(vi +Hvψ)K (ψ) f(vi)f(vi +Hvψ) |Hv| dvidψ

=

∫
l(vi)

2K (ψ) f(vi)
2dvidψ

=

(∫
K (ψ) dψ

)(∫
l(vi)

2f(vi)
2dvi

)
=E[l(vi)

2f(vi)]

=Op(1)

n |Hv|1/2 δ2
nQ3n = n |Hv|1/2 (n−1 |Hv|−1/2)Q3n = Q3n

p→ E[l(vi)
2f(vi)]

∴ n |Hv|1/2 I11nG
d→ N(E[l(vi)

2f(vi)],Ω)
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B.3 Proof of Theorem 5

Under H1,

ûi = yi − m̂(xi)

= yi −m(xi, vi) +m(xi, vi)− m̂(xi)

= εi +m(xi, vi)− m̂(xi)

= εi + (m(xi, vi)−m(xi))− (m̂(xi)−m(xi))

= ui − (m̂(xi)−m(xi))

The test statistic is then written as follows:

In =
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

ûiûjK
(
H−1
v (v̂j − v̂i)

)
=

1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

uiujK
(
H−1
v (vj − vi)

)
+ o(

(
n |Hv|1/2

)−1
)

=
1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

(εi + h(vi))(εj + h(vi))K
(
H−1
v (vj − vi)

)

Define φn(Wi,Wj) = 1
|Hv |h(vi)h(vj)K

(
H−1
v (vj − vi)

)
.

E[φn(Wi,Wj)] = E[E[φn(Wi,Wj) |Wi,Wj ]]

= E

[
1

|Hv|
K
(
H−1
v (vj − vi)

)
h(vi)h(vj)

]
=

1

|Hv|

∫
K
(
H−1
v (vj − vi)

)
h(vi)h(vj)f(vi)f(vj)dvidvj

=

∫
K (ψ)h(vi)h(vi +Hvψ)f(vi)f(vi +Hvψ)dvidψ
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=

∫
K (ψ) dψ

∫
(h(vi))

2f(vi)
2dvi

= E[(h(vi))
2f(vi)]

Ω̂ =
2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2
i û

2
jK

2
(
H−1
v (v̂j − v̂i)

)
=

2

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

û2
i û

2
jK

2
(
H−1
v (vj − vi)

)
+ o

(
(n |Hv|)−1

)

E [φn(Wi,Wj)] = E [E [φn(Wi,Wj) | vi]]

= E

[
1

|Hv|
K2
(
H−1
v (vj − vi)

) (
σ2(vi) + (h(vi))

2
) (
σ2(vj) + (h(vj))

2
)]

=
1

|Hv|

∫
K2
(
H−1
v (vj − vi)

) (
σ2(vi) + (h(vi))

2
) (
σ2(vj) + (h(vj))

2
)
f(vi)f(vj)dvidvj

=

∫
K2 (ψ)

(
σ2(vi) + (h(vi))

2
) (
σ2(vi +Hvψ) + (h(vi +Hvψ))2

)
f(vi)f(vi +Hvψ)dvidψ

=

(∫
K2(ψ)dψ

)(∫ (
σ2(vi) + (h(vi))

2
)2
f(vi)

2dvi

)
=

(∫
K2(ψ)dψ

)[
E
[
σ4(vi)f(vi)

]
+ 2E

[
σ2(vi)(h(vi))

2f(vi)
]

+ E
[
(h(vi))

2f(vi)
]]

= B1

Ω̂
p→ 2B1

Jn =
n |Hv|1/2 In√

Ω̂
> cn = op(n |Hv|1/2)
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Appendix C

Appendix for Chapter 4

C.1 Proof of Theorem 8

An estimated individual-specific component under the random effects model as follows:

α̂i =
T σ̂2

α

T σ̂2
α + σ̂2

v

∑T
s=1

∑T
t=1 ûit(H

−1(Xis −Xit)∑T
s=1

∑T
t=1K(H−1(Xis −Xit)

Define ρ̂ = T σ̂2
α

T σ̂2
α+σ̂2

v
, and ¯̂ui =

∑T
s=1

∑T
t=1 ûit(H

−1(Xis−Xit)/
∑T

s=1

∑T
t=1K(H−1(Xis−Xit).

α̂i = ρ¯̂ui + (ρ̂− ρ)¯̂ui

= ρ(¯̂ui − ūi + ūi) + (ρ̂− ρ)(¯̂ui − ūi + ūi)

= ρūi − ρ( ¯̂mi(x)− m̄i(x)) +Op(nT
−1)

= ρūi − ρµ̂n,i(x) +Op((nT )−1)
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The test statistic is given as below.

In =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂iα̂jK
(
H̄−1(X̄j − X̄i)

)
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

(ρūi − ρµ̂n,i(x))(ρūj − ρµ̂n,j(x))K
(
H̄−1(X̄j − X̄i)

)
=

ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūiūjK
(
H̄−1(X̄j − X̄i)

)
− 2ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūiµ̂n,j(x)K
(
H̄−1(X̄j − X̄i)

)
+

ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

µ̂n,i(x)µ̂n,j(x)K
(
H̄−1(X̄j − X̄i)

)
≡ I1n + I2n + I3n

Following Lemma 1 from Yao and Ullah (2013), define second-order U-statistic Un =

1
n(n−1)

∑n
i=1

∑n
j=1

i<j

φn(Xi, Xj), where φn(Xi, Xj) is symmetric function of Xj and Xi, where

{Xi}ni=1 is a sequence of IID random variables. E[φn(Xi, Xj) | Xj ] = 0. I can easily verify

that I1n is a degenerated second order U-statistic.

I1n =
ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūiūjK(H̄−1(X̄j − X̄i))

=
ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j=1

i<j

[ūiūjK(H̄−1(X̄j − X̄i)) + ūj ūiK(H̄−1(X̄i − X̄j))]

=
ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j=1

i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)], where Wi = (ūi, X̄i)

=
ρ2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)
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As E[φ2
n(Wi,Wj)] = E[ψ2

n(Wi,Wj)] + E[ψ2
n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1∣∣H̄∣∣E [ψ2
n(Wj ,Wi)

]
=

1∣∣H̄∣∣E [K2(H̄−1(X̄j − X̄i))ū
2
i ū

2
j

]
=

1∣∣H̄∣∣E [K2(H̄−1(X̄j − X̄i))σ
4
]

=
1∣∣H̄∣∣σ4

∫
K2(H̄−1(X̄j − X̄i))f(X̄i)f(X̄j)dX̄idX̄j

= σ4

∫
K2(ϕ)f(X̄i)f(X̄i + H̄ϕ)dϕdX̄i

→ σ4

∫
K2(ϕ)dϕE[f(X̄i)] <∞

∴
1∣∣H̄∣∣E [ψn(Wi,Wj)ψn(Wj ,Wi)] =

1∣∣H̄∣∣E [K2(H̄−1(X̄j − X̄i))σ
4
]

→ σ4

∫
K2(ϕ)dϕE[f(X̄i)] <∞,

which results in (E[φ2
n(Wi,Wj)])

2 = O(
∣∣H̄∣∣2).

By Cr inequality,

E[φ4
n(Wi,Wj)] ≤ C

[
E[ψ4

n(Wi,Wj)] + E[ψ4
n(Wj ,Wi)]

]
.

1∣∣H̄∣∣E[ψ4
n(Wi,Wj)] =

1∣∣H̄∣∣E [E [K4
(
H̄−1(X̄j − X̄i)

)
ū4
i ū

4
j | X̄i, X̄j

]]
=

1∣∣H̄∣∣E [σ4(X̄i)σ
4(vj)K

4
(
H̄−1(X̄j − X̄i)

)]
=

∫
K4(ϕ)σ4(X̄i)σ

4(X̄i + H̄ϕ)f(X̄i)f(X̄i + H̄ϕ)dX̄idϕ
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=

∫
K4(ϕ)σ8(X̄i)f

2(X̄i)dX̄idϕ

=

(∫
K4(ϕ)dϕ

)(∫
σ8(X̄i)f

2(X̄i)dX̄i

)

Here, I have 1
nE[φ4

n(Wi,Wj)] = O(n−1
∣∣H̄∣∣).

Lastly, define

Gn(Wi,Wj) = E [φn(Wt,Wi)φn(Wt,Wj) |Wi,Wj ]

= E [(ψn(Wt,Wi) + ψn(Wi,Wt))(ψn(Wt,Wj) + ψn(Wj ,Wi)) |Wi,Wj ]

= E[ψn(Wt,Wi)ψn(Wt,Wj) |Wi,Wj ] + E[ψn(Wt,Wi)ψn(Wj ,Wt) |Wi,Wj ]

+ E[ψn(Wi,Wt)ψn(Wt,Wj) |Wi,Wj ] + E[ψn(Wi,Wt)ψn(Wj ,Wt) |Wi,Wj ]

= G1(Wi,Wj) +G2(Wi,Wj) +G3(Wi,Wj) +G4(Wi,Wj)

By Cr inequality,

E
[
G2
n(Wi,Wj)

]
= E[(G1(Wi,Wj) +G2(Wi,Wj) +G3(Wi,Wj) +G4(Wi,Wj))

2]

≤ C
[
G2

1(Wi,Wj) +G2
2(Wi,Wj) +G2

3(Wi,Wj) +G2
4(Wi,Wj)

]

E[G2
1(Wi,Wj)]

=E
[
E [ψn(Wl,Wi)ψn(Wl,Wj) |Wi,Wj ]

2
]

=E
[
E
[
K
(
H̄−1(X̄j − X̄i)

)
K
(
H̄−1(X̄j − X̄l)

)
ūiūj ū

2
l | X̄i, X̄j

]2]
=E

[(
ūiūjE

[
K
(
H̄−1(X̄i − X̄l)

)
K
(
H̄−1(X̄j − X̄l)

)
σ2(X̄l) | X̄i, X̄j

])2]
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=E

[(
ūiūj

∫
K
(
H̄−1(X̄i − X̄l)

)
K
(
H̄−1(X̄j − X̄l)

)
σ2(X̄l)f(X̄l)dX̄l

)2
]

=E

[
E

[
ū2
i ū

2
j

(∫
K (ϕ1)K

(
ϕ1 + H̄−1(X̄i − X̄j)

)
σ2(X̄i + H̄ϕ1)f(X̄i + H̄ϕ1)

∣∣H̄∣∣ dϕ1

)2

×
∣∣∣∣X̄i, X̄j

]]

=E

[
σ2(X̄i)σ

2(X̄j)

(∫
K (ϕ1)K

(
ϕ1 + H̄−1(X̄i − X̄j)

)
σ2(X̄i + H̄ϕ1)f(X̄i + H̄ϕ1)

×
∣∣H̄∣∣ dϕ1

)2
]

=
∣∣H̄∣∣2 ∫ σ2(X̄i)σ

2(X̄j)

(∫
K (ϕ1)K

(
ϕ1 + H̄−1(X̄i − X̄j)

)
σ2(X̄i + H̄ϕ1)

× f(X̄i + H̄ϕ1)dϕ1

)2

f(X̄i)f(X̄j)dX̄idX̄j

=
∣∣H̄∣∣2 ∫ σ2(X̄i)σ

2(X̄i − H̄ϕ2)

(∫
K (ϕ1)K (ϕ1 + ϕ2)σ2(X̄i + H̄ϕ1)f(X̄i + H̄ϕ1)dϕ1

)2

× f(X̄i)f(X̄i − H̄ϕ2)
∣∣H̄∣∣ dX̄idϕ2

=
∣∣H̄∣∣3 ∫ σ4(X̄i)

(∫
K (ϕ1)K (ϕ1 + ϕ2)σ2(X̄i)f(X̄i)dϕ1

)2

f2(X̄i)dX̄idϕ2

=
∣∣H̄∣∣3(∫ σ8(X̄i)f

4(X̄i)dX̄i

)∫ (∫
K (ϕ1)K (ϕ1 + ϕ2) dϕ1

)2

dϕ2

=O(
∣∣H̄∣∣3)

I can conclude that

E[G2
n(Wi,Wj)] + n−1E[φ4

n(Wi,Wj)]

(E[φ2
n(Wi,Wj)])

2 =
O(
∣∣H̄∣∣2) + n−1O(

∣∣H̄∣∣)
O(
∣∣H̄∣∣2)

= O(
∣∣H̄∣∣) +O((n

∣∣H̄∣∣)−1)

→ 0 as n→∞
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Also, 1

|H̄|E[φ2
n(Wi,Wj)] → Ω, where Ω ≡ 2

∫
K2(ϕ)dϕE[σ4(X̄i)f(X̄i)]. By applying Hall’s

Central Limit Theorem, √
n2
∣∣H̄∣∣I1n

d→ N(0,Ω)

(I)-(B)

As m̂(xit) is a local linear estimator and z′ls = (1, xls−xith ),

m̂(xit)−m(xit)

= e′1
1

2

(
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
zls

)−1 n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
× (xls − xit)m(2)(xls,it)(xls − xit)′

+ e′1

(
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
zls

)−1 n∑
l=1

T∑
s=1

z′itK
(
H−1(xls − xit)

)
uls

= e′1

(
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
zls

)−1 n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
×
(

1

2
m∗(xls,it) + uls

)
,

where m∗(xls,it) = (xls − xit)m(2)(xls,it)(xls − xit)′ and xls,it = λxls + (1− λ)xit.

¯̂mi − m̄i =
T∑
t=1

T∑
r=1

(m̂(xit)−m(xit))wir(xit)

=

T∑
t=1

T∑
r=1

(
e′1

(
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
zls

)−1

×
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

))
wir(xit),

where wir(xit) = K(H−1(xir − xit))
/∑T

t=1

∑T
r=1K(H−1(xir − xit)).
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Define

µn,i =

T∑
t=1

T∑
r=1

1

nT 2 |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

))

×K(H−1(xir − xit))

µ̂n,i = ¯̂mi − m̄i = µn,i + µ̂n,i − µn,i.

I2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj( ¯̂mi(xit)− m̄i(xit))K
(
H̄−1(X̄j − X̄i

)
)

= − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

[
T∑
t=1

T∑
r=1

e′1

(
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)
zls

)−1

×
n∑
l=1

T∑
s=1

z′lsK
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

)
wir(xit)

]
K
(
H̄−1(X̄j − X̄i

)
)

= − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

T∑
t=1

ūj µ̂n,iK
(
H̄−1(X̄j − X̄i

)
)

= − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

T∑
t=1

ūj (µn,i + µ̂n,i − µn,i)K
(
H̄−1(X̄j − X̄i

)
)

= − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2nT 2 |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)
×m∗(xls,it)

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

− 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

nT 2 |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)
uls

)

×K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

− 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj (µ̂n,i − µn,i)K
(
H̄−1(X̄j − X̄i

)
)

≡ S1n + S2n + S3n
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(I)-(B)-(i)

1) (l = i, i 6= j, r = s = t), (l = i, i 6= j, s = t, r 6= t)

S1n = 0 ∵ m∗(xit,it) = (xit − xit)m(2)(xit)(xit − xit) = 0.

2) (l = i, i 6= j, r = s, r 6= t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2T |H|2 fif(xit)
K
(
H−1(xir − xit)

)
×m∗(xir,it)K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2)−1|H|1/2)

3) (l = i, i 6= j, r = t, s 6= r)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

2T |H|2 fif(xit)

T∑
s=1

K
(
H−1(xis − xit)

)
×m∗(xis,it)

)
K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2)−1|H|1/2)
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4) (l = i, i 6= j, r 6= s 6= t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2T 2 |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xis − xit)

)
×m∗(xis,it)

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT 2|H̄|2)−1|H|)

5) (l = j, l 6= i, r = s = t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

2 |H|2 fif(xit)
K
(
H−1(xjt − xit)

)
m∗(xjt,it)

×K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((n|H̄|2)−1|H|1/2)

6) (l = j, l 6= i, r = s, r 6= t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2T |H|2 fif(xit)
K
(
H−1(xjr − xit)

)
×m∗(xjr,it)K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2)−1|H|)
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7) (l = j, l 6= i, s = t, r 6= s)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2T |H|2 fif(xit)
K
(
H−1(xjt − xit)

)
×m∗(xjt,it)K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2)−1|H|)

8) (l = j, l 6= i, r = t, s 6= r)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

2T |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xjs − xit)

)
×m∗(xjs,it)

)
K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2)−1|H|)

9) (l = j, l 6= i, r 6= s 6= t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2T 2 |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xjs − xit)

)
×m∗(xjs,it)

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT 2|H̄|1/2)−1|H|)
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10) (i 6= j 6= l, r = s = t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

2n |H|2 fif(xit)

(
n∑
l=1

K
(
H−1(xlt − xit)

)
×m∗(xlt,it)

)
K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((T 2|H̄|1/2)−1|H|1/2)

11) (i 6= j 6= l, r = s, r 6= t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2nT |H|2 fif(xit)

(
n∑
l=1

K
(
H−1(xlr − xit)

)
×m∗(xlr,it)

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/4)−2|H|)

12) (i 6= j 6= l, s = t, r 6= s)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2nT |H|2 fif(xit)

(
n∑
l=1

K
(
H−1(xlt − xit)

)
×m∗(xlt,it)

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((n2T |H̄|1/2)−1|H|)
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13) (i 6= j 6= l, r = t, s 6= r)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

2nT |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)
×m∗(xls,it)

)
K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((n2T |H̄|1/2)−1|H|1/2)

14) (i 6= j 6= l, r 6= s 6= t)

S1n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

2nT 2 |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)
×m∗(xls,it)

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((n2T |H̄|1/2)−1|H|)

(I)-(B)-(ii)

1) (l = i, i 6= j, r = s = t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

|H|2 fif(xit)
uit(K (0))2

)
K
(
H̄−1(X̄j − X̄i

)
)

= 0 ∵ E[uit | xit] = 0
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2) (l = i, i 6= j, s = t, r 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

T |H|2 fif(xit)
uitK (0)K(H−1(xir − xit))

)

×K
(
H̄−1(X̄j − X̄i

)
)

= 0 ∵ E[uit | xit] = 0

3) (l = i, i 6= j, r = s, r 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

T |H|2 fif(xit)
uirK

2
(
H−1(xir − xit)

))

×K
(
H̄−1(X̄j − X̄i

)
)

= 0 ∵ E[uir | xit] = 0

4) (l = i, i 6= j, r = t, s 6= r)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

T |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xis − xit)

)
uis

)

×K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2|H|3/2)−1)
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5) (l = i, i 6= j, r 6= s 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

T 2 |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xis − xit)

)
× uis

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT 2|H̄|1/2|H|)−1)

6) (l = j, l 6= i, r = s = t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

|H|2 fif(xit)
K
(
H−1(xjt − xit)

)
ujtK(0)

)

×K
(
H̄−1(X̄j − X̄i

)
)

= O((n|H̄|1/2|H|3/2)−1)

7) (l = j, l 6= i, r = s, r 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

T |H|2 fif(xit)
K
(
H−1(xjr − xit)

)
ujr

×K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2|H|)−1)
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8) (l = j, l 6= i, s = t, r 6= s)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

T |H|2 fif(xit)
K
(
H−1(xjt − xit)

)
ujt

×K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2|H|)−1)

9) (l = j, l 6= i, r = t, s 6= r)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

T |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xjs − xit)

)
ujs

)

×K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT |H̄|1/2|H|3/2)−1)

10) (l = j, l 6= i, r 6= s 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

T 2 |H|2 fif(xit)

(
T∑
s=1

K
(
H−1(xjs − xit)

)
ujs

)

×K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((nT 2|H̄|1/2|H|)−1)
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11) (i 6= j 6= l, r = s = t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

n |H|2 fif(xit)

(
n∑
l=1

K
(
H−1(xlt − xit)

)
ult

)

×K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= 0 ∵ E[ult | xit] = 0

12) (i 6= j 6= l, r = s, r 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

nT |H|2 fif(xit)

(
n∑
l=1

K
(
H−1(xlr − xit)

)
ulr

)

×K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((n2T |H̄|1/2|H|)−1)

13) (i 6= j 6= l, s = t, r 6= s)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

nT |H|2 fif(xit)

(
n∑
l=1

K
(
H−1(xlt − xit)

)
ult

)

×K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= O((n2T |H̄|1/2|H|)−1)
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14) (i 6= j 6= l, r = t, s 6= r)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

1

nT |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)
× uls

)
K(0)

)
K
(
H̄−1(X̄j − X̄i

)
)

= 0 ∵ E[ult | xit] = 0

15) (i 6= j 6= l, r 6= s 6= t)

S2n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj

(
T∑
t=1

T∑
r=1

1

nT 2 |H|2 fif(xit)

(
n∑
l=1

T∑
s=1

K
(
H−1(xls − xit)

)
× uls

)
K(H−1(xir − xit))

)
K
(
H̄−1(X̄j − X̄i

)
)

= 0 ∵ E[ult | xit] = 0
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(I)-(B)-(iii)

Note that 1
f̂(xit)

− 1
f(xit)

= Op

((
lnnT
nT |H|

)1/2
)

+Op(|H|).

S3n = − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

T∑
t=1

ūj (µ̂n,i − µn,i)K
(
H̄−1(X̄j − X̄i

)
)

= − 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

n∑
l=1

ūj

(
1

f̂(xit)
− 1

f(xit)

)
K
(
H̄−1(X̄j − X̄i

)
)

×
(

1

2
m∗(xls,it) + uls

)
K
(
H−1(xls − xit)

)
≤

(
Op

((
lnnT

nT |H|

)1/2
)

+Op(|H|)

)− 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

n∑
l=1

ūj

×
(

1

2
m∗(xls,it) + uls

)
K
(
H̄−1(X̄j − X̄i

)
)K
(
H−1(xls − xit)

) ]

= O((nT |H̄|−1/2|H|3/2)−1(lnnT )1/2) +O(nT |H̄|)−1)

(I)-(C)

By letting Sn(zls) =
(∑n

l=1

∑T
s=1 zlsKit,lszls

)−1
and S(zls) =

f(xls) 0

0 f(xls)σ
2
k

 ,

|µ̂n,i − µn,i|

=
1

nT 2 |H|2

∣∣∣∣∣e′1Sn(zls)
−1

n∑
l=1

T∑
s=1

T∑
r=1

zlsK
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

)

×K(H−1(xir − xit))−
1

fif(xi)

n∑
l=1

T∑
s=1

T∑
r=1

zlsK
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

)

×K(H−1(xir − xit))

∣∣∣∣∣
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=
1

nT 2 |H|2

∣∣∣∣∣e′1(Sn(zls)
−1 − S(zls)

−1)
n∑
l=1

T∑
s=1

T∑
r=1

zlsK
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

)

×K(H−1(xir − xit))

∣∣∣∣∣
≤ 1

|H|2
((1, 0)(Sn(zls)

−1 − S(zls)
−1)2(1, 0)′)1/2

× 1

nT 2

(∣∣∣∣∣
n∑
l=1

T∑
s=1

T∑
r=1

zlsK
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

)
K(H−1(xir − xit))

∣∣∣∣∣
+

∣∣∣∣∣
n∑
l=1

T∑
s=1

T∑
r=1

(
H−1(xls − xit)

)′
K
(
H−1(xls − xit)

)(1

2
m∗(xls,it) + uls

)

(H−1(xir − xit))′K(H−1(xir − xit))

∣∣∣∣∣
)

I follow Lemma 2 of Martins-Filho and Yao (2007) to obtain

|µ̂n,i − µn,i| = O

(
|H|2

(
lnnT

nT |H|

) 1
2

)
+O(|H|4)

sup
∣∣ ¯̂mi −mi

∣∣ = O

((
lnnT

nT |H|

) 1
2

)
+O(|H|2)

Using m̂(xi) = m(1)(xij)(xi − xj), where xij = λxi + (1− λ)xj ,

I13n =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

µ̂′n,iµ̂n,jK
(
H̄−1(X̄j − X̄i)

)
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

(µn,i + µ̂n,i − µn,i)′

× (µn,j + µ̂n,j − µn,j)K
(
H̄−1(X̄j − X̄i)

)
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sup |µn,i + µ̂n,i − µn,i)| ≤ sup |µn,i|+ sup |µ̂n,i − µn,i|

= Op

((
lnnT

nT |H|

)1/2
)

+Op(|H|2)

sup
∣∣(µn,i + µ̂n,i − µn,i))′(µn,j + µ̂n,j − µn,j)

∣∣ ≤ (sup |µn,i + µ̂n,i − µn,i|)2

= Op

(
lnnT

nT |H|

)
+Op(|H|4)

I13n ≤ (sup |µn,i + µ̂n,i − µn,i|)2 1

n(n− 1) |Hv|

n∑
i=1

n∑
j 6=i

K
(
H̄−1(X̄j − X̄i)

)
= Op

(
n−2

∣∣H̄∣∣ ( lnnT

nT |H|

))
+Op

(
n−2

∣∣H̄∣∣−1 |H|4
)

(IV)

Ω̂ =
2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂2
i α̂

2
jK

2
(
H̄−1

(
X̄j − X̄i

))
=

2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ū2
i ū

2
jK

2
(
H̄−1

(
X̄j − X̄i

))
+ op(1)

=
2

n(n− 1)
∣∣H̄∣∣

n∑ n∑
i<j

[
ū2
i ū

2
jK

2
(
H̄−1

(
X̄j − X̄i

))
+ ū2

j ū
2
iK

2
(
H̄−1

(
X̄i − X̄j

))]

By using the properties of U-statistics, Ω = 2
∫
K2(ψ)dψE[σ4(x̄)f(x̄)].
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C.2 Proof of Theorem 9

Under the alternative, m1(Xit) = m(Xit) + δnl(X̄i). Then, uit = ηit + δnl(X̄i), where

ηit = yit −m(Xit) and δn = n−1/2
(∣∣H̄∣∣)−1/4

.

In =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂iα̂jK
(
H̄−1

(
X̄j − X̄i

))
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūiūjK
(
H̄−1

(
X̄j − X̄i

))
− 2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūj( ¯̂mi − m̄i)K
(
H̄−1

(
X̄j − X̄i

))
+

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

( ¯̂mi − m̄i)( ¯̂mj − m̄j)K
(
H̄−1

(
X̄j − X̄i

))
= I1nG + I2nG + I3nG

For the following sections, I will show

n
∣∣H̄∣∣1/2 I1nG

d→ N(0,Ω)

I1nG =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūiūjK
(
H̄−1

(
X̄j − X̄i

))
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

(η̄i + δnl(X̄i))(η̄j + δnl(X̄j))K
(
H̄−1

(
X̄j − X̄i

))
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

η̄iη̄jK
(
H̄−1

(
X̄j − X̄i

))
+

2δn

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

η̄il(X̄j)K
(
H̄−1

(
X̄j − X̄i

))

153



+
δ2
n

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

l(X̄i)l(X̄j)K
(
H̄−1

(
X̄j − X̄i

))
= Q1n + 2δnQ2n + δ2

nQ3n

(I)-(A)

Q1n =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

η̄iη̄jK
(
H̄−1

(
X̄j − X̄i

))
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j=1

i<j

[
η̄iη̄jK

(
H̄−1

(
X̄j − X̄i

))
+ η̄j η̄iK

(
H̄−1

(
X̄i − X̄j

))]

By letting Wi = (η̄i, X̄i),

Q1n =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j=1

i<j

[ψn(Wi,Wj) + ψn(Wj ,Wi)]

=
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j=1

i<j

φn(Wi,Wj)

As E[φ2
n(Wi,Wj)] = E[ψ2

n(Wi,Wj)] + E[ψ2
n(Wj ,Wi)] + 2E[ψn(Wi,Wj)ψn(Wj ,Wi)],

1∣∣H̄∣∣E[ψ2
n(Wi,Wj)]→

(∫
K2 (ϕ) dϕ

)
E
[
σ4(X̄i)f(X̄i)

]
<∞

2∣∣H̄∣∣E[ψn(Wi,Wj)ψn(Wj ,Wi)]→ 2

(∫
K2 (ϕ) dϕ

)
E
[
σ4(X̄i)f(X̄i)

]
∴ n

∣∣H̄∣∣1/2Q1n
d→ N(0,Ω), where Ω = 2

(∫
K2 (ϕ) dϕ

)
E
[
σ4(X̄i)f(X̄i)

]
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(I)-(B)

Q2n =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

1∣∣H̄∣∣ η̄il(X̄j))K
(
H̄−1

(
X̄j − X̄i

))
=

1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
1∣∣H̄∣∣ η̄il(X̄j)K

(
H̄−1

(
X̄j − X̄i

))
+

1∣∣H̄∣∣ η̄jl(X̄i))K
(
H̄−1

(
X̄j − X̄i

)) ]

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

[ψn(Wi,Wj) + ψn(Wj ,Wi)] , where Wi = (η̄i, X̄i).

E[ψn(Wi,Wj)] = 0. By applying Lipschitz condition,

E[ψ2
n(Wi,Wj)] = E

[
1

|Hv|2
η̄2
i l

2(X̄j)K
2
(
H̄−1

(
X̄j − X̄i

))]
=

1∣∣H̄∣∣2
∫
σ2(X̄i)l

2(X̄j)K
2
(
H̄−1

(
X̄j − X̄i

))
f(X̄i)f(X̄j)dX̄idX̄j

=
1∣∣H̄∣∣
∫
σ2(X̄i)l

2(X̄i + H̄ϕ))K2 (ϕ) f(X̄i)f(X̄i + H̄ϕ)dX̄idϕ

=
1∣∣H̄∣∣
(∫

K2 (ϕ) dϕ

)(∫
σ2(X̄i)l

2(X̄i)f(X̄i)
2dX̄i

)

Q2n = n−1
(
E[φ2

n(Wi,Wj)]
) 1

2 = O(n−1
∣∣H̄∣∣−1/2

)

∴ n
∣∣H̄∣∣1/2 δnQ2n = n−1/2

∣∣H̄∣∣−1/4 p→ 0
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(I)-(C)

Q3n =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

l(X̄i)l(X̄j)K
(
H̄−1

(
X̄j − X̄i

))

1∣∣H̄∣∣E [l(X̄i)l(X̄j)K
(
H̄−1

(
X̄j − X̄i

))]
=

1∣∣H̄∣∣
∫
l(X̄i)l(X̄i + H̄ϕ)K (ϕ) f(X̄i)f(X̄i + H̄ϕ)

∣∣H̄∣∣ dX̄idϕ

=

∫
l2(X̄i)K (ϕ) f(X̄i)

2dX̄idϕ

=

(∫
K (ϕ) dϕ

)(∫
l2(X̄i)f(X̄i)

2dX̄i

)
=E[l2(X̄i)f(X̄i)]

=Op(1)

n
∣∣H̄∣∣1/2 δ2

nQ3n = n
∣∣H̄∣∣1/2 (n−1

∣∣H̄∣∣−1/2
)Q3n = Q3n

p→ E[l2(X̄i)f(X̄i)]

n
∣∣H̄∣∣1/2 I11nG

d→ N(E[l2(X̄i)f(X̄i)],Ω)
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C.3 Proof of Theorem 10

Under H1,

¯̂ui = ȳi − ¯̂mi(Xit)

= ȳi − m̄1(Xit) + m̄1(Xit)− ¯̂mi(Xit)

= η̄i + m̄1(Xit)− ¯̂m(Xit)

= η̄i + (m̄1(Xit)− m̄(Xit))− ( ¯̂m(Xit)− m̄(Xit))

= ūi − ( ¯̂m(Xit)− m̄(Xit))

The test statistic is then written as follows:

In =
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂iα̂jK
(
H̄−1

(
X̄j − X̄i

))
=

1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

ūiūjK
(
H̄−1

(
X̄j − X̄i

))
+ o((n

∣∣H̄∣∣1/2)−1)

=
1

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

(η̄i + h(X̄i))(η̄j + h(X̄j))K
(
H̄−1

(
X̄j − X̄i

))

Define φn(Wi,Wj) = 1

|H̄|h(X̄i)h(X̄j)K
(
H̄−1

(
X̄j − X̄i

))
.

E[φn(Wi,Wj)] = E[E[φn(Wi,Wj) |Wi,Wj ]]

= E

[
1∣∣H̄∣∣K (H̄−1

(
X̄j − X̄i

))
h(X̄i)h(X̄j)

]

=
1∣∣H̄∣∣
∫
K
(
H̄−1

(
X̄j − X̄i

))
h(X̄i)h(X̄j)f(X̄i)f(X̄j)dX̄idX̄j

=

∫
K (ϕ)h(X̄i)h(X̄i + H̄ϕ)f(X̄i)f(X̄i + H̄ϕ)dX̄idϕ
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=

∫
K (ϕ) dϕ

∫
(h(X̄i))

2f(X̄i)
2dX̄i

= E[(h(X̄i))
2f(X̄i)]

∴ Ω̂ =
2

n(n− 1)
∣∣H̄∣∣

n∑
i=1

n∑
j 6=i

α̂2
i α̂

2
jK

2
(
H̄−1

(
X̄j − X̄i

))

E [φn(Wi,Wj)] = E
[
E
[
φn(Wi,Wj) | X̄i

]]
=E

[
1∣∣H̄∣∣K2

(
H̄−1

(
X̄j − X̄i

)) (
σ2(X̄i) + (h(X̄i))

2
) (
σ2(X̄j) + (h(X̄j))

2
)]

=
1∣∣H̄∣∣
∫
K2
(
H̄−1

(
X̄j − X̄i

)) (
σ2(X̄i) + (h(X̄i))

2
) (
σ2(X̄j) + (h(X̄j))

2
)

× f(X̄i)f(X̄j)dX̄idX̄j

=

∫
K2 (ψ)

(
σ2(X̄i) + (h(X̄i))

2
) (
σ2(X̄i + H̄ψ) + (h(X̄i + H̄ψ))2

)
× f(X̄i)f(X̄i + H̄ψ)dX̄idψ

=

(∫
K2(ψ)dψ

)(∫ (
σ2(X̄i) + (h(X̄i))

2
)2
f(X̄i)

2dX̄i

)
=

(∫
K2(ψ)dψ

)[
E
[
σ4(X̄i)f(X̄i)

]
+ 2E

[
σ2(X̄i)(h(X̄i))

2f(X̄i)
]

+ E
[
(h(X̄i))

2f(X̄i)
]]

=B1

Ω̂
p→ 2B1

Jn =
n
∣∣H̄∣∣1/2 In√

Ω̂
> cn = op(n

∣∣H̄∣∣1/2)
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