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ABSTRACT OF THE DISSERTATION

Analysis and Application

of Graph-Based Semi-Supervised Learning Methods

by

Xiyang Luo

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Andrea Bertozzi, Chair

In recent years, the need for pattern recognition and data analysis has grown exponentially

in various fields of scientific research. My research is centered around graph Laplacian based

techniques for image processing and machine learning. Three papers pertaining to this theme

will be presented in this thesis.

The first work is an application of graph Laplacian regularization to the problem of

convolutional sparse coding. The additional regularization improves the robustness of the

sparse representation with respect to noise, and has empirically shown to improve the per-

formance of denoising on several well-known images. Efficient algorithms for computing the

eigen-decomposition of the graph Laplacian were also incorporated to the solver for fast

implementations of the method.

The second piece of work studies the convergence of the graph Allen-Cahn scheme. A

technique inspired by the maximum principle for the heat equation is used to show stability of

the convex-splitting numeric scheme. This coupled with techniques from convex optimization

allows for a proof of convergence under an a-posteriori condition. The analysis is then

generalized to handle spectral trunction, a common method to save computational cost, and

also to the case of multi-class classification. In particular, the results for spectral trunction

are drastically different from that of the original scheme in the worst case, but does not

present itself in practical applications.
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The third piece of work combines two fields of research, uncertainty quantification, and

semi-supervised learning on graphs. The work presents a unified Bayesian framework that

incorporates most previous methods for graph-based semi-supervised learning. A Bayesian

framework allows for the computation of uncertainty for certain quantities under the pos-

terior distribution. We show via solid numerical evidence that for a few carefully designed

quantities, the expectations computed under the posterior yields meaningful notions of un-

certainty for the classification problem. Efficient numerical methods were also devised to

make possible the evaluation of these quantities for large scale graphs.
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CHAPTER 1

Introduction

1.1 Convolutional Laplacian Sparse Coding

In Chapter 3, we present the Convolutional Laplacian Sparse Coding (CLSC) model. Con-

volutional sparse coding [ZKT10] is a variant of sparse coding. In classical sparse coding,

a signal is decomposed into a sum of products between a set of real-valued coefficients and

a corresponding set of dictionary filters. For convolutional sparse coding, we replace the

coefficients by coefficient maps with the same size as the original signal, and convolve with

the dictionary filters instead.

We introduce the concept of discrete convolution between a coefficient map x ∈ RN and

filter d ∈ Rd.

[d ∗ x]i :=
∑
k

xi−kdk.

Define the vector p− norm as

‖x‖p =

(∑
i

xpi

)1/p

.

One of the most prominent formulations of this problem is Convolutional Basis Pursuit

DeNoising (CBPDN)

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2

2
+ λ

∑
m

‖xm‖1 , (1.1)

where {dm} is a set of M dictionary filters, ∗ denotes convolution, and {xm} is a set of

coefficient maps. Recent fast algorithms [Woh14] for solving this problem have begun to

make it a viable approach for a wider variety of applications.

Convolutional sparse representations have a number of advantages over the standard

approach of independently sparse coding of overlapping image patches. Convolutional repre-

1



sentations are inherently invariant to translation. Moreover, CBPDN provides a single-valued

representation that is optimal over the entire image instead of just locally within each patch.

There are, however, also some challenges to using this representation, aside from the com-

putational cost. One of these is the tendency for the set of coefficient maps to be sparse

both down the stack of maps at each pixel location, as well as spatially within each map.

This particular property of spatial sparsity is undesirable in some applications, including de-

noising of Gaussian white noise, where the spatial averaging of independent pixel estimates

obtained from the standard patch-based method is beneficial, or in dictionary learning where

high spatial sparsity reduces the number of patches in the training images that play a role

in forming the dictionary.

The Convolutional Laplacian Sparse Coding (CLSC) model represents an attempt to

remedy this weakness by incorporating a non-local regularization that reduces the spatial

sparsity in an appropriate way, while retaining the local sparsity of the representation at each

pixel location. Non-local methods have shown to improve white noise denoising among other

tasks in many classical applications of dictionary learning. This method therefore could be

seen as a natural extension of this approach to a convolutional setting.

In particular, this model can be considered as a convolutional variant of the previously-

proposed Laplacian Sparse Coding method [GTC10], which has been applied to image clas-

sification tasks [GTC10, GTC13] as well as image restoration tasks [ZBC11, DLZ11]. The

key difference between the proposed approach and the patch based Laplacian Sparse Coding

in [GTC10] is that the sparse code is learned over every single patch and jointly over the

entire image, due to the nature of the convolutional model. Thus unlike [GTC10, GTC13],

there is no need to use the SIFT local descriptor to pre-define a set of patches to learn on,

and there is no need for patch averaging to resolve the multi-valued estimation as in [ZBC11].

The proposed model is to augment Eq. (3.1) with the graph Dirichlet energy
∑

m〈xm, Lxm〉,

where L is the graph Laplacian [Von07] of the image non-local graph [MBP09]. Each image

patch corresponds to a vertex of the graph, and the weights wij between vertices represent

the similarity between the corresponding image patches, typically computed as

wij = exp
(
−d2

ij/τ
)
, (1.2)

2



where dij is some metric (typical choices are Euclidean or Cosine) between an image patch

centered at pixel i and that at pixel j , and τ controls the scaling of the metric. Given the

weight matrix W = (wij), the graph Laplacian L is defined as L = D − W , where D is

the diagonal matrix Dii =
∑

i 6=j wij. The model is motivated by the non-local smoothing

properties of the Dirichlet energy, which are apparent from the equation

〈u, Lu〉 =
∑
α,β∈V

wαβ(uα − uβ)2 . (1.3)

Here α, β range through all vertices on the graph, and u is any real-valued function defined

on the graph. Since wαβ is smaller if the vertices α, β are more similar, the Dirichlet energy

will be small if similar vertices have similar u values.

In this context, the vertices α are image patches indexed by their spatial location (i, j),

and the u corresponds to the sparse coefficients xm. Thus by the analysis above, the regu-

larizer is an explicit penalty to force similar image patches to have similar sparse representa-

tions. In practice, we actually use the normalized Laplacian Ls = I−D−1/2WD−1/2 [Von07],

since it handles outliers better and is the more common choice for non-local image graphs.

However, the motivation remains the same and we will not make a distinction from here on.

Using this model, we are able to improve resistance to both white noise and salt and

pepper noise compared to the standard convolutional sparse coding model. This is demon-

strated via better PSNR scores on a selection of images, and also dictionary filters learned

on the Flickr dataset [MST10].

1.2 Convergence of the Graph Allen-Cahn Equation

In Chapter 4, we present the study of the convergence of the graph Allen-Cahn scheme.

Diffuse interface model has been used widely in material science to model the free bound-

ary of interfaces [TC94,CN94]. One of these models is the Allen-Cahn equation [CN94], the

L2 gradient flow of the Ginzburg-Landau functional which is defined as:

GL(u) =
ε

2

∫
|∇u|2 +

1

ε

∫
W (u(x))dx. (1.4)

3



Another commonly used model is the Cahn-Hilliard equation [BLO97, BHS09]. The diffuse

interface models can often be used as a proxy for TV minimization since the Γ-limit of the

Ginzburg-Landau functional is shown to be the TV semi-norm [KS89].

In [BF12], the Allen-Cahn equation has been generalized to weighted graphs, establish-

ing a connection between the classical diffuse interface model and the graph cut problem.

Following this line of work, a series of new algorithms were developed for semi-supervised

and unsupervised classification problems on weighted graphs [MKB13, HLP13], applying

techniques for TV minimization to the setting of weighted graphs.

The graph cut problem originated in computer science for the purpose of partitioning

nodes on a graph [BVZ01]. It is tightly related to statistical physics due to its connections

with Markov random fields, and spin systems. In particular, the maximum a posterior es-

timation of the Ising model can be formulated in terms of a graph cut problem [GPS89].

The results also generalizes to multiclass graph cut by extending to the generalized Potts

model [BVZ98]. This idea has been applied to computer vision for the task of image seg-

mentation, and image denoising [KT07]. Efficient solutions to the graph cut problem has

also lead to efficient inference in certain types of Markov random fields [FGB11], in com-

parison to other techniques such as belief propagation [Yed11, Zha12], and semi-analytic

methods [FD16].

The key observation linking the diffuse interface model with the graph cut problem is

that the TV semi-norm, when suitably generalized to weighted graphs, coincides with the

graph cut functional for discrete valued functions on graphs [GGO14]. Hence techniques

for TV minimization can also be applied to solve the graph cut problem. This was made

rigorous by the result that the graph Ginzburg-Landau functional Γ converges to the graph

TV functional [GGO14].

In Chapter 4, we present the conditions for the discrete graph Allen-Cahn scheme to

converge. The main conclusion presented is that the stepsize dt to ensure convergence is

independent of the graph size N . This has the practical implication that the numerical

scheme scales well with respect to the size of the graph.
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The two central idea to this technique are the following. First, we observe that for

the unnormalized graph Laplacian, the maximum principle for heat equation holds on the

graph. This provides us with an L∞ estimate on the iterates uk. The second observation is

that the semi-implicit discretization of the Allen-Cahn Equation coincides with the forward-

backward splitting method [BV09] for minimizing a sum of convex functions. Combining

existing technique for the foward-backward split together with the maximum principle gives

as a convergence result for the scheme.

The same convergence analysis is also carried out for the scheme under spectral truncation

using similar techniques. A surprising conclusion was that the stepsize needs to be scaled

O(N−1) in order to ensure convergence uniformly across all graphs. This estimate is proved

to be sharp by a carefully constructed series of graph. The result is also generalized for

multiclass classification.

In addition to the theoretical analysis, a variety of numerical examples are also presented

to complement the theory.

1.3 Uncertainty Quantification for Graph-based Semi-supervised

Learning

In Chapter 5, we present a work in which Uncertainty Quantification (UQ) is applied to the

problem of graph-based semi-supervised learning. The starting point of the work presented

revolves around the following objective function which incorporates many graph-based semi-

supervised algorithms

J(w) =
1

2
〈w,Lw〉+ Φ(w; y),

where Φ(w; y) encompasses the information on the labelled nodes. Minimizing this objective

function gives an approach towards solving the classification problem. However, in many

classification problems, it is also important to assign a reliable uncertainty measure to the

labels predicted by the model. Therefore, it is natural to consider a Bayesian interpretation

of the optimization problem.
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A unified Bayesian framework is presented in this chapter, which incorporates a variety

of previous methods for graph semi-supervised learning. In addition, the value of the ad-

ditional information gained is presented in detail. In particular, two metrics are presented

that quantify 1) the uncertainty of the classification prediction for individual labels, 2) the

aggregated uncertainty for the learning problem as a whole. Results from various numerical

examples aim to demonstrate that the metrics provide us with additional insights to the

classification problem.

From a computational point of view, it is essential to efficiently model the posterior

densities P(w). Therefore in addition to the model, we present several efficient numerical

algorithms to efficiently infer the posterior distribution. The first technique introduced

is the pCN algorithm, an Markov Chain Monte Carlo (MCMC) method which, based on

analogies with its use for PDE-based inverse problems [CRS13], has the potential to sample

the posterior distribution in a number of steps which is independent of the number of graph

nodes. Secondly, we introduce approximations exploiting the empirical properties of the

spectrum of the graph Laplacian, generalizing methods used in the optimization context

in [BF12], allowing for computations at each MCMC step which scale well with respect to

the number of graph nodes.
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CHAPTER 2

Background

2.1 Graph Semi-supervised Learning

Graphs are a powerful method of representing relational data [HN04], and could be applied

to a variety of problems such as clustering [Von07], item recommendation [KSO16] and

multivariate time series prediction [WLZ18]. Central to many graph-based learning methods

is the graph Laplacian. In this section, we give a brief introduction to the graph Laplacian,

and its application to semi-supervised learning.

Let G be a weighted graph on the set of nodes Z = {1, . . . , N}. The weights of the

graph can be written in the form of a matrix W = (wij), where wij often characterizes the

similarities or connections between two nodes i and j. Given a weight matrix W , one can

construct three different kinds of graph Laplacians:

Lu = D −W Unnormalized Laplacian, (2.1)

Ls = I −D−1/2WD−1/2 Symmetric Laplacian, (2.2)

Lrw = I −D−1W Random Walk Laplacian, (2.3)

where D is the diagonal matrix dii =
∑

iwij.

All three Laplacian matrices are commonly used in graph learning problems. In partic-

ular, the graph Dirichelet energy for the unnormalized graph Laplacian has the following

property as shown in equation (2.4).

1

2
〈u, Luu〉 =

1

2

∑
ij

wij(u(i)− u(j))2. (2.4)

Similar to the classical Dirichelet energy, the graph Dirichelet energy penalizes similar nodes
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(i.e. pairs such that wij is large) from having different function values, bringing a notion of

“smoothness” for functions defined on the graph.

One of the most common ways of obtaining a graph Laplacian is via a kernel distance

function on a set of feature vectors in Rd. Given a set of feature vectors

X = {x(1), . . . , x(j), . . . , x(N)},

where x(j) is an element of Rd, we can construct a weighted graph via the following

wij = h(‖xi − xj‖), (2.5)

where h is some kernel such as the exponential function exp(−x2

σ
). This representation

effectively removes the dimensionality of the original data, while only keepin the similarity

information between different instances of the feature set.

2.1.1 Continuum Limits of Graph Laplacian

The study of discrete objects/algorithm from a continuum point of view is an interesting.

For example, the recent formulation of Deep Residual Networks (ResNets) [HZR16] to a

dynamical system [CMH17] allows for more principled methods of designing networks and

activation functions [WLL18]. The same line of thinking could be applied to the study

of graph Laplacians. If we assume the features {xi} are sampled i.i.d. from some a priori

distribution ρ is non-vanishing and compactly supported on a bounded domain D ⊂ RN , then

for a fixed distance metric, the graph converges to a non-local operator on the Euclidean

domain [VBB08]. Furthermore, if the distance metric is scaled in a proper manner with

respect to the number of sample size, then the graph Laplacian converges to an elliptic

diffusion operator in a sense made precise in [TS16]. We illustrate this effect in Figure 2.1.

Namely, Let hε(x) = 1
εn
h
(
x
ε

)
. Define the sequence of graph weights wij by the following

scaling,

wij =
1

N2ε2N
hεN (‖xi − xj‖) , (2.6)

where εN satisfies εN � log(N)p

N1/m , and p = 1/d if d ≥ 3, p = 3/4 if d = 2. Then the
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Figure 2.1: Fourth eigenvector of the unnormalized Graph Laplacian for graphs constructed

from i.i.d. samples {xi} with N = 6000, N = 12000, N = 24000.

unnormalized graph Laplacian LN converges to the continuum operator

L = − 1

ρ2
div(∇u). (2.7)

The convergence implies the following:

• For fixed k, the eigenvalues λ
(k)
N → λ(k) almost surely as N →∞.

• For fixed k, the discrete eigenvectors are close to the continuous eigenvectors restricted

to the sample points {x(i)}.

Numerically, this implies that under such a scaling, the eigenvectors and eigenvalues con-

verges to its continuum limits under large N . Therefore, algorithms that are well-defined on

the continuum problem have the potential to scale independently of dimension.

2.1.2 Semi-supervised Learning

There are numerous methods designed to leverage unlabelled data into the prediction model.

The graph Laplacian-based methods aim to do exactly so by utilizing the similarity infor-

mation between labelled and unlabelled instance. The fundamental assumption for all these

models is that the signals to be predicted are “smooth” along the graph, i.e., similar nodes

should have similar labels.

At the heart of many graph-based semi-supervised methods is the following functional

J(u) =
1

2
〈u, Lu〉+ Φ(u; y).

9



This is a typical fidelity + regularization framework where the term Φ(u; y) measures the

fidelity of u with respect to observed label y, and 1
2
〈u, Lu〉 provides the regularization. From

an optimization point of view, the graph Laplacian provides an augmented loss function

better suited to the semi-supervised learning task. This approach of designing loss function

more suitable to the task at hand could be found in [BCM12,YFR07], and has more recently

been applied to neural networks [MLE18,ESM17].

Below we also present a brief overview of the development of semi-supervised methods

on graphs. The review [Zhu] provides an excellent overview of this topic up to 2007. A

more recent review of graph semi-supervised methods could be found in [BF16]. Early

graph-based learning were based on combinatorial approaches. Blum et al. posed the binary

semi-supervised classification problem as a Markov random field (MRF) over the discrete

state space of binary labels, the MAP estimation of which can be solved using a graph-cut

algorithm in polynomial time [Zhu] . In general, inference for multi-label discrete MRFs is

intractable [DJP92]. However, several approximate algorithms exist for the multi-label case

[BVZ01,BVZ98,Mad10], and have been applied to many imaging tasks [BJ01,BKY96,Li12].

A different line of work is based on using the affinity function on the edges to define a

real-valued function u on the nodes of the graph. The Dirichlet energy J0(u) := 1
2
〈u, Pu〉,

with P proportional to the graph Laplacian formed from the affinities on the edges, plays

a central role. A key conceptual issue in the graph-based approach is then to connect the

labels, which are discrete, to this real-valued function. Strategies to link the discrete and

continuous data then constitute different modeling assumptions. The line of work initiated

in [ZGL03] makes the assumption that the labels are also real-valued and take the real values

±1, linking them directly to the real-valued function on the nodes of the graph. This may be

thought of as a continuum relaxation of the discrete state space MRF in [BC01]. The basic

method is to minimize J0(u) subject to the hard constraint that u agrees with the label values.

Alternatively this constraint may be relaxed to a soft additional penalty term added to J0(w).

These methods are a form of krigging, or Gaussian process regression [Wah90, WR96], on

a graph. A Bayesian interpretation of the approach in [ZGL03] is given in [ZLG03] with

further applications in hyper-parameter tuning given in [KQA05]. The Laplacian based
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approach has since been generalized in [ZBL04,BNS06,TC09,SB11,LP11]; in particular this

line of work developed to study the transductive problem of assigning predictions to data

points off the graph. A formal framework for graph-based regularization, using J0(u), can

be found in [BMN04, SBN06]. We also mention related methodologies such as the support

vector machine (SVM) [Bis07] and robust convex minimization methods [AFS16a,AFS16b]

which may be based around minimization of J0(u) with an additional soft penalty term;

however since these do not have a Bayesian interpretation we do not consider them here.

Other forms of regularization have been considered such as the graph wavelet regularization

[SFV11,HVG11].

The underlying assumption in much of the work described in the previous paragraph is

that the labels are real-valued. An arguably more natural modelling assumption is that there

is a link function, such as the sign function, connecting a real-valued function on the graph

nodes with the labels via thresholding. This way of thinking underlies the probit approach

[WR96] and the Bayesian level set method [ILS15, DIS16]. Lying between the approaches

initiated by [ZGL03] and those based on thesholding are the methods based on optimization

over real-valued variables which are penalized from taking values far from ±1. This idea was

introduced in the work of Bertozzi et al. [BF12, VB12]. It is based on a Ginzburg-Landau

relaxation of the discrete Total Variation (TV) functional, which coincides with the graph

cut energy. This was generalized to multiclass classification in [GMB14]. Following this

line of work, several new algorithms were developed for semi-supervised and unsupervised

classification problems on weighted graphs [HSB15,MKB13,OWO14,LB17,MBC16]. These

methods have also lead to various practical applications [GHM17] such as network science

[BBT17] and image segmentation [Men18,MMK17,MKH16].

2.1.3 Low Rank Approximations

For graphs with a large number of nodes N , it is sometimes prohibitively costly to directly

perform computations on the graph Laplacian L, as is required in theory for in many of the

algorithms presented in this thesis.
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A method that is frequently used in classification tasks is to restrict the support of u

to the eigenspace spanned by the first ` eigenvectors with the smallest non-zero eigenvalues

of L. This is justified by the low rank properties of the weight matrix W for many of the

graphs risen from practical applications. Moreover, the geometric information associated

with the graph is mostly contained in the leading eigenvectors of the graph Laplacian. The

second eigenvector, named the Fiedler vector, approximates the solution to the problem

of the normalized cut on the graph. Spectral clustering [Von07] takes advantage of this

phenomenon and produces a non-linear embedding of the graph to the components of its

leading eigenvectors.

In many applications, the full weight matrix of the graph is so large that exact com-

putations of the eigeivectors are computationally too expensive. This motivates the search

for efficient methods of computing the leading eigevectors of the graph Laplacian L. A

popular technique for approximating the leading eigenvectors of the graph Laplacian is the

Nyström method [FBC04], and has been successfully applied to many classification prob-

lems on graphs. We describe the algorithm for Nyström extension in Algorithm 1 for the

symmetric graph Laplacian as described in [BF16] below.

Another commonly used technique is to sparsify the graph via some approximate nearest

neighbor search method [CFS09, HAS11]. There are many open source software, such as

VLFeat [VF10] and PyFlann [ML09] that contains fast and robust implementations of these

algorithms. Once the graph is constructed, efficient methods such as the Rayleigh-Chebyshev

method [And10] designed for Hermitian sparse matrices could be used to compute the leading

eigenvectors of the graph Laplacian.

2.2 Uncertainty Quantification

Uncertainty quantification (UQ) [Stu10] is a mathematical framework for inverse problems,

which provides a tool for determining an unknown field from a set of finite measurements. In

the most general of settings, let X, R be Banach spaces, and G be a forward map G : X → R.

The forward map typically takes u ∈ X, the input data to a particular Partial Differential
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Algorithm 1 Nyström Extension for Symmetric Laplacians

1: Input: A set of features {xi}.

2: Output: K Approximate eigenvectors and eigenvalues {φi}, λi.

3: Define: α(u, v) = min{1, exp(Φ(u; y)− Φ(v; y)}.

4: Partition Z = X ∪ Y , where X contains M randomly sampled nodes from the set Z.

5: Compute the adjacency matrix WXX and WXY .

6: dX = WXX1L +WXY 1N−L.

7: dY = WY X1L +WY XW
−1
XY 1N−L.

8: sX =
√
dX , and sY =

√
dY .

9: WXX = WXX ./(sXs
T
X), and WXY = WXY ./(sXs

T
Y ).

10: Apply SVD to matrix WXX , obtain BXΓBT
X = WXX , and compute S = W

−1/2
XX .

11: Q = WXX + SWXYWY X , S and compute SVD AΣAT = Q.S

12: Compute Φ = (BXΓ1/2,WY XBXΓ−1/2)TBT
XAΣ−1/2. The columns of Φ are the approxi-

mate eigenvectors.

13: λi = 1− σi, where σi is the diagonal entries of the matrix Σ.

Equation (PDE) problem, and outputs the solution r ∈ R. Observations (such as evaluation

on a finite set of points) are often made on the output solution r, and we denote the map

from the solution to the space of observation as Q : R→ Q, with Q again being some Banach

space. Bayesian inverse problems are concerned with the determination of the randomness

in u from the observations in Q. To make this more precise, we are given a prior measure

µ on X on the space of input functions. Let F = Q ◦ G, and y = F (u) + η, where η is the

observational noise. The fundamental quantity of interest is the posterior distribution P(u|y).

Uncertainty quantification on a computational level involves with computing expectations

under this specific posterior distribution.

Uncertainty quantification is most widely applied to subsurface geophysics and atmo-

spheric and ocean sciences. The observational maps correspond to physical measurements

of some quantity of interest, and the input data u is often some field of interest that is not

directly measureable. More recently, Bayesian inverse problems has also been applied to

image processing tasks such as de-noising and in-painting.
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There is also a very natural way of associating the UQ framework with semi-supervised

classification problems on graphs. Let G be a graph with nodes Z = {1, . . . , N}. We

define u ∈ RN as a real-valued function on u. We define the forward observational map via

thresholding, i.e., y = Sign(u+ η), where η denotes the observational noise. The prior for u

can be chosen as

µ = N(0, C),

where C = (α + L)−1, α > 0 and L is the graph Laplacian. This prior is analogous to the

Gaussian prior measure defined on the continuous domain for a range of classical inverse

problems. In fact, the connection can be made rigorous in the large graph limit as in Section

4.1. Other priors instead of the Laplacian can also be considered. For example, one could

consider Besov type priors, or taking a power of the graph Laplacian.

The idea of low rank approximations could also be applied in the context of UQ. This is

made clear by the Karhunen-Loeve (KL) expansion for any Gaussian prior. Namely, for any

u ∼ ξN(0, C)

u =
N∑
i=1

λ
1/2
i ψiξi, (2.8)

where ψi, λi are the eigenvectors and eigenvalues of the covariance matrix C, and ξi ∼

N(0, 1) independently.

Through the KL expansion, a truncated version of the Gaussian prior could be obtained

by simply truncating the terms in Eq.2.8, i.e., setting y =
∑K

i=1 λ
1/2
i ψiξi. The truncation

level K should be treated as another hyper-parameter of the model, and ideally tuned with

respect to the data. Empirically, we have found that only very few eigenvectors compared

to the number of nodes are needed, and that setting K � N acts as a necessary regularizer

for the model to perform well.
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CHAPTER 3

Graph Laplacian Regularization on Convolutional

Sparse Coding

3.1 Background

In this chapter, we study the application of graph-Laplacian based regularization to the

problem of convolutional sparse coding. Below, we present the convlutional sparse coding

model:

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2

2
+ λ

∑
m

‖xm‖1 , (3.1)

where {dm} is a set of M dictionary filters, ∗ denotes convolution, and {xm} is a set of

coefficient maps. Recent fast algorithms [Woh14] for solving this problem have begun to

make it a viable approach for a wider variety of applications.

While having multiple advantages, the method has many challenges aside from the com-

putational cost. One such problem is the sensitivity to noise in the input. The extra repre-

sentability obtained from the convolutional model results in a tendency to overfit to noise.

Therefore, it is natural to consider additional regularizations to the original model. The

method presented in this section adds a non-local Laplacian regularization to the original

functional. The non-local functional encourages smoothing between similar image patches

for the learned sparse coefficients, resulting in more robustness towards noise.

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2

2
+ λ

∑
m

‖xm‖1

+
µ

2

∑
m

〈xm, Lxm〉 . (3.2)

We also give a brief introduction to the classical Alternating Direction Method of Multi-
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pliers (ADMM) method [BPC10]. ADMM is an algorithm designed for optimizing objectives

of the form

min{f(x) + g(z)} s.t. Ax+Bz = c

The algorithm preserves the robustness of the dual gradient descent algorithm, while having

superior convergence properties. The exact algorithm consists of alternatively minimizing

the Augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖2.

The ADMM algorithm consists of iterations

xk+1 = arg min
x

Lρ(x, z
k, yk),

zk+1 = arg min
z

Lρ(x
k+1, z, yk),

yk+1 = yk + ρ(Axk+1 +Bzk+1 + c).

3.2 Algorithm

We present two alternative algorithms for solving Eq. (3.2) are both based on the Alter-

nating Direction Method of Multipliers (ADMM) [BPC10] framework. Their differences

correspond to whether we perform an additional splitting in 〈xm, Lxm〉, or include it in the

`1 subproblem.

3.2.1 ADMM Double-Split

In this approach, we perform an additional splitting to give

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2

2
+ λ

∑
m

‖ym‖1 +
µ

2

∑
m

〈zm, Lzm〉

s.t. xm = ym, xm = zm . (3.3)

The corresponding ADMM primal updates are
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{xm}(j+1) = arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2

2
+

ρ
∑
m

∥∥∥xm − 1

2

(
u(j)
m + y(j)

m + v(j)
m + z(j)

m

)∥∥∥2

2
, (3.4)

{ym}(j+1) = arg min
{ym}

λ
∑
m

‖ym‖1 +

ρ

2

∑
m

∥∥x(j+1)
m − (ym + u(j)

m )
∥∥2

2
, (3.5)

{zm}(j+1) = arg min
{zm}

µ

2

∑
m

〈zm, Lzm〉+

ρ

2

∑
m

∥∥zm − (x(j+1)
m + v(j)

m )
∥∥2

2
. (3.6)

The xm and ym updates are the same as in the standard convolutional learning case,

and can be efficiently solved in the Fourier domain and by soft thresholding respectively, as

in [Woh14]. The zm update involves solving a linear system.

It is worth emphasizing that, despite the double splitting, this algorithm can be expressed

in the standard ADMM form if the two split variables are appropriately combined in block

form by defining the matrix A mapping x 7→ (x,x)T and u = (y, z)T , and imposing the

constraint um = Axm.

3.2.2 ADMM Single-Split

Instead of performing an additional splitting, we can also group the Laplacian term together

with the `1 term and solve an `2 +`1 minimization as a sub-problem. The resulting iterations

are

{xm}(j+1) = arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2

2
+,

ρ

2

∑
m

∥∥xm − y(j)
m − u(j)

m

∥∥2

2
, (3.7)

{ym}(j+1) = arg min
{ym}

λ
∑
m

‖ym‖1 +
µ

2

∑
m

〈ym, Lym〉

ρ

2

∑
m

∥∥x(j+1)
m − ym − u(j)

m

∥∥2

2
. (3.8)

An efficient implementation of the algorithm is obtained by initializing the ym sub-
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problem from the solution of the previous iterate. Moreover, each sub-problem can be solved

inexactly with an adaptive tolerance εn compatible with the primal and dual residuals of the

main ADMM iteration (we choose εk = max{rk, sk}/10). Finally, the ym problem itself can

be solved via a standard algorithms such as ADMM or FISTA [BT09].

3.2.3 Eigenspace Decomposition

A common trick when dealing with the graph Laplacian is to decompose L in the spectral

domain, diagonalizing L using its eigenbasis {ek}k∈{1,...,n}. Using this formulation, iterates

involving L can be computed explicitly by computing inner products with eigenvectors. For

example, the z update of Eq. (3.6) becomes

zm =
∑
k

ρ

ρ+ µλk
〈xm + vm, ek〉ek , (3.9)

where λk is the k-th eigenvalue of L corresponding to ek. This approach would still be

infeasible if we were to compute all the eigenvectors of L, but for many non-local graphs

derived from images, most of the larger eigenvalues are indeed close to unity if the graph

Laplacian is normalized. Thus only the smallest few eigenvectors are needed to approximate

the matrix L. This technique, called spectral truncation, has been successfully applied in

graph cut algorithms for clustering [BF12,BF16,MBB15].

3.2.4 Speed of Algorithms

Here we compare the computational performance of various algorithm options. We have a

choice of using eigenvectors or using the full matrix, and also using ADMM double-split or

ADMM single-split for the main algorithm, giving a total of four combinations. We test each

one on a set of problems of varying sizes, and plot the total convergence time relative to that

of standard convolutional sparse coding (e.g. 2.0 means it takes twice as long to converge as

the standard algorithm). The relative residual stopping tolerance [BPC10] is set to 10−3. All

algorithms are tested on the same image with the same parameters λ = 0.1, µ = 0.1 except

for the standard convolutional case, which is tested with λ = 0.1. As Figures 3.1 and 3.2

show, ADMM double-split is faster when using eigenvector truncation, and single-split is
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faster when using the full matrix. This discrepancy is due to different implementations of

the {zm} update in ADMM double-split. In the full matrix case, {zm} is updated by solving

a symmetric linear system which can be costly, while in the eigenvector case the update only

involves inner products with the eigenvectors.

3.2.5 Efficient Graph Computation

In general, it is too computationally expensive to generate the full non-local graph of the im-

age. One way to deal with this is to use eigenvector decomposition as described in Sec. 3.2.3.

Since only the first few eigenvectors are needed, it makes sense to use an algorithm that

computes the eigenvectors without constructing the full graph. We use the Nystrom Exten-

sion [FBC04], a sampling strategy used to compute an approximation to the true eigenvec-

tors. Error bounds for the Nystrom Extension have been studied in [Git11].

There are cases where too many eigenvectors are needed to accurately reflect the full

graph Laplacian. In this case, we have to resort to using the full matrix L. A straightforward

way to reduce cost is to sparsify the graph. Graph sparsification can be done via building

a k-nearest neighbor graph or spatial localization, i.e., to restrict connections of pixels to

only its spatial neighborhood. An interesting observation is that the case where too many

eigenvectors are needed often occurs when the graph construction parameters have made the

graph too disconnected, i.e., sparse. This suggests a guideline for choosing the best algorithm:

if we intend the graph to be well connected, use eigenvector decomposition; otherwise, use a

sparse Laplacian.

3.3 Numerical Results

3.3.1 Image Inpainting

Laplacian convolutional sparse coding can improve the performance of image inpainting

compared to standard convolutional sparse coding. The model for inpainting using the

standard convolutional sparse coding is
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arg min
{xm,z1,z2}

1

2

∥∥∥∑
m

dm ∗ xm + z1 + z2 − s
∥∥∥2

2
+ λ

∑
m

‖xm‖1

+
∑
i

χ(i)z1(i) +
ν

2
‖∇z2‖2

2 , (3.10)

where χ(i) = 0 if i is a missing pixel, and +∞ otherwise. Here s will be the corrupted

image, z1 will absorb the missing pixel values, z2 will be a low frequency component of the

image1, and the reconstruction will be srec =
∑
m

dm ∗ xm + z2. The corresponding model for

the Laplacian case is

arg min
{xm,z1,z2}

1

2

∥∥∥∑
m

dm ∗ xm + z1 + z2 − s
∥∥∥2

2
+ λ

∑
m

‖xm‖1

+
∑
i

χ(i)z1(i) +
µ

2

∑
m

〈xm, Lxm〉+
ν

2
‖∇z2‖2

2 . (3.11)

We use the standard model Eq. (3.10) to inpaint the image first to construct the graph

Laplacian L.
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Figure 3.3: Lena Inpainting Comparison

Inpainting is tested on the 512×512 “Lena” image with missing pixel fraction ranging

from 40% (PSNR 10.67dB) to 75% (PSNR 8.65dB), using a separately trained 12× 12× 36

dictionary. A parameter search on λ and ν is done first to produce the best performance

for the standard model. The same set of parameters is then used for the Laplacian model

1Employed here for similar reasons to the usual subtraction of the patch mean in patch based sparse
coding.
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with µ set to 0.1, which has proved empirically to be a good choice, and with a K-Nearest

neighbor graph with K = 40, constructed using the cosine distance metric. A comparison of

PSNR values for both cases is given in Fig. 3.3. The Laplacian model is consistently better

than the standard convolutional model for all noise levels, with an average PSNR increase

of around 0.85 dB.
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Figure 3.4: Straw Inpainting Comparison

As might be expected, the Laplacian model yields better performance for images with

more structural similarity. If we repeat the same experiment on “Straw”, a texture-rich

image consisted of vertically aligned straws [str], the average PSNR increase is around 1

dB, as shown in Fig. 3.4. More importantly, the performance gap is wider for the “Straw”

image when the corruption level is higher, showing that the model has better performance

on images with more structural similarity.

3.3.2 Dictionary Learning

Dictionary learning with the graph Laplacian regularizer can be achieved by adding a con-

straint ‖dm‖ ≤ 1 to Eq. (3.2) and updating d and x in a interleaved manner, as in [Woh14].

In some applications it is desirable to train dictionaries from images corrupted by Gaussian

white noise. Convolutional dictionary learning has relatively poor resistance to noise in the

training images due to the homogeneous treatment of sparsity in spatial and filter indices

that is inherent in the `1 regularizer. This is substantially improved by incorporating the
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graph Laplacian regularization proposed here. This improvement is due to the nonzero coef-

ficients of the Laplacian model having more spatial structure when given the same amount of

sparsity as a result of the non-local smoothing effect of the graph Laplacian. A comparison

using dictionaries trained on 5 randomly selected images from the MIRFlickr dataset [HL08]

is presented in Fig. 3.5 and 3.6; note that the dictionary filters in Fig. 3.6 have substantially

less noise in smooth regions.

Figure 3.5: Best Standard Dictionary for N = 20

Figure 3.6: Best Laplacian Dictionary for N = 20
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CHAPTER 4

Convergence of Graph Allen-Cahn Scheme

4.1 Background

In this section, we study the convergence of the discrete Allen-Cahn scheme on the graph,

from both a theoretical and empirical point of view. The main results in this chapter are

listed below:

• We prove that there exists a graph-independent upper-bound c such that for all 0 ≤

dt ≤ c, the schemes (4.3), (4.5) are monotone and convergent in the Ginzburg-Landau

energy, and that under an a posterior condition, the sequence {uk} is convergent.

• We generalize the results to incorporate spectral truncation and multiclass classifica-

tion.

• We conduct a variety of numerical experiments to compare practical performance with

theory.

We give a brief introduction of this scheme below. Define the Ginzburg-Landau energy

on graphs by replacing the spatial Laplacian with the graph Laplacian L.

GL(u) =
ε

2
〈u, Lu〉+

1

ε

∑
i

W (u(i)), (4.1)

where W is the double well potential W (x) = 1
4
(x2 − 1)2. Let W (u) =

∑
iW (u(i)). The

Allen-Cahn equation on graphs is defined as the gradient flow of the graph Ginzburg-Landau

functional.

ut = −∇GL(u) = −εLu− 1

ε
∇W (u). (4.2)
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The discrete graph Allen-Cahn scheme in [BF12] is a semi-implicit discretization of equation

(4.2). The reason for being semi-implicit is to counter the ill-conditioning of the graph

Laplacian

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W (uk). (4.3)

To do semi-supervised learning, a quadratic fidelity term 1
2
η‖u− φ0‖2

Λ is added to the graph

Ginzburg-Landau energy

F (u) = GL(u) +
1

2
η‖u− φ0‖2

Λ, (4.4)

where ‖u − φ0‖2
Λ := 〈u − φ0,Λ(u − φ0)〉. Here Λ is a diagonal matrix where Λii = 1 if i is

in the fidelity set and 0 else. φ0(i) ∈ {1,−1} corresponds to the known labels of the nodes

in the fidelity set. In this setup, the value u(i) can be interpreted as a continuous label

assignment, and thresholding u(i) > 0 and u(i) < 0 gives a corresponding partition of the

graph. Solving the gradient flow of F (u) via the semi-implicit discretization, we have:

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W (uk)− dt ∗ ηΛ(uk − φ0). (4.5)

In later sections, we will study the scheme (4.3) first and then incorporate the fidelity term

in the analysis.

Next, we introduce spectral truncation. Note in each iteration of (4.3) and (4.5), we need

to solve a linear system of the form (I+dtL)u = v. In many applications, the number of nodes

N on a graph is huge, and it is too costly to solve this equation directly. In [BF12,MKB13],

a strategy proposed was to project u onto the m eigenvectors with the smallest eigenvalues.

In practice, spectral truncation gives accurate segmentation results but is computationally

much cheaper. The reason spectral truncation works is because the first few eigenvectors

of the graph Laplacian contains most of the information needed to capture the geometry of

the various clusters of the graph. In particular, the second eigenvector, named the Fiedler

vector, approximates the solution to the normalized graph cut problem [Von07]. There are

several methods for precomputing the eigenvectors including the random sampling Nyström

method [FBC04] and the Raleigh-Chebyshev method [And10]. In practice, the selection of

the stepsize dt is very important to the performance of the model, but is largely chosen

empirically by trial and error.
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We present some basic notations and definitions used in the rest of the chapter. First,

we identify a vector u ∈ RN with a function on the graph. We use u(i) to denote the value

of u on node i. We use a superscript uk to denote the k-th iterate of some discrete scheme.

We define the p-norm of a graph function u as the vector p-norm ‖u‖p = (
∑

i |u(i)|p)1/p. We

also sometimes drop the subscript and write ‖u‖ for 2-norms when there is no ambiguity. In

the next few sections, we will frequently encounter functions with vector inputs of the form

F : (u(1), . . . u(N)) 7→ (F0(u(1)), . . . FN(u(N))). We denote such functions as a diagonal

map, since F corresponds to a diagonal matrix when linear. We call the scalar functions Fk

components of the diagonal map F . In general, we use the same letter to denote components

and the diagonal map. If the components are the same across dimensions, we omit the

subscript and simply denote it as F . In general, we will use bold text for functions with

vector input and plain text for scalar functions to disambiguate whenever there is a name

clash. For example, we denote

W (u) =
∑
i

W (u(i)) =
1

4

∑
i

(u(i)2 − 1)2 (4.6)

to be the double-well functional, and

W (x) =
1

4
(x2 − 1)2 (4.7)

to be the double-well function.

4.2 Maximum Principle-L∞ Estimates

The main result for this section is the following:

Proposition 4.2.1 (A Priori Boundeness). Define uk by the semi-implicit graph Allen-Cahn

scheme
uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W (uk), (4.8)

where W is the double-well functional (4.6), and L is the unnormalized graph Laplacian .

Assume ‖u0‖∞ ≤ 1. If 0 ≤ dt ≤ 0.5ε, then ‖uk‖∞ ≤ 1, ∀k ≥ 0.
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What is notable is that the stepsize restriction is independent of the graph. To see this,

we split the discretization (4.3) into two parts.
vk = uk − dt ∗ 1

ε
∇W (uk),

uk+1 = −dt ∗ (εLuuk+1) + vk.

(4.9)

We will prove that ‖uk+1‖∞ ≤ ‖vk‖∞ for all dt > 0 via the maximum principle, and show

that the stepsize restriction essentially comes from the first line of (4.9). For future reference,

we denote the first line of (4.9) as the forward step since it corresponds to a forward stepping

scheme for the gradient flow, and the second line a backward step correspondingly.

4.2.1 Maximum Principle

The classical maximum principle argument relies on the fact that ∆u(x0) ≥ 0 for x0 a local

minimizer. This fact is also true for graphs.

Proposition 4.2.2 (Second Order Condition on Graphs). Let u be a function defined on a

graph, and L be either the unnormalized graph Laplacian or the random walk graph Laplacian

. Suppose u achieves a local minimum at a vertex i, where a local minimum at vertex i is

defined as u(i) ≤ u(j),∀wij > 0. Then we have [Lu](i) ≤ 0.

Proof. For both the random walk and the unnormalized Laplacian, we have the following:
Lii = −

∑
j 6=i

Lij,

Lij ≤ 0.

(4.10)

Let i be a local minimizer. Then

[Lu](i) = Liiu(i) +
∑
j 6=i

Liju(j)

=
∑
j 6=i

Lij(u(j)− u(i)) ≤ 0 �
(4.11)

The difference in sign for [Lu](i) compared with the continuous case is due to the difference

in convention for the graph Laplacian and the continuous Laplacian. Next, we prove a
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discrete analogue of the continuous time maximum principle, which states that the implicitly

discretized scheme for the heat equation on graphs is decreasing in the L∞ norm. This line

of thought is inspired by the maximum principle for finite difference operators [Cia70].

Proposition 4.2.3 (Maximum Principle for Discrete Time). For any dt ≥ 0, let u be a

solution to

u = −dt ∗ (Lu) + v, (4.12)

where L is either the unnormalized or the random walk Laplacian, then maxi u(i) ≤ maxiv(i),

and mini u(i) ≥ miniv(i). Hence ‖u‖∞ ≤ ‖v‖∞.

Proof. Suppose i = arg minj u(j) is the node that attains the minimum for u. Then since

u(i) = dt ∗ (−Lu)(i) + v(i) and (−Lu)(i) ≥ 0 by Proposition 4.2.2, we have minu = u(i) ≥

v(i) ≥ minv. Arguing similarly with the maximum, we have that ‖u‖∞ ≤ ‖v‖∞.

4.2.2 Proof of Boundedness

We can immediately show via the maximum principle that the stepsize restriction for the

sequence uk to be bounded depends only on the forward step. To be more precise, we have

the following proposition.

Proposition 4.2.4. Let uk be defined via the semi-implicit scheme
vk = uk − ds ∗Φ(uk),

uk+1 = −ds
σ
∗ Luk+1 + vk.

(4.13)

where Φ is the diagonal map Φ : (u(1), . . . , u(N)) 7→ (Φ0(u(1)), . . . ,ΦN(u(N))), L is the

unnormalized graph Laplacian, and σ some constant greater than 0. Define the forward map

Fds : u 7→ u− dt ∗Φ(u), and denote its components by F ids.

Suppose ∃M > 0 and some constant c(M,Φ) such that ∀0 ≤ ds ≤ c, and ∀i, F ids maps

the interval [−M,M ] to itself. Then if ‖u0‖∞ ≤M , we have ‖uk‖∞ ≤M, ∀k ≥ 0.

Proof. Suppose ‖uk‖∞ ≤M . By induction and our assumption on F idt, ‖vk‖∞ ≤M . By the

maximum principle, ‖uk+1‖∞ ≤ ‖vk‖∞ ≤M .
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We can now prove Proposition 4.2.1 by setting M and Φ in Proposition 4.2.4 accordingly,

and estimate the bound c(M,Φ).

Proof. We set M = 1 and Φ = (W ′, . . . ,W ′), where W is the double-well function. By a

change of variables dt′ = dt/ε and σ = 1
ε2

, we can WLOG assume ε = 1. Thus the component

forward maps F idt are

F idt(x) = x− dtW ′(x) = x− dtx(x2 − 1) := Fdt(x). (4.14)

The proposition is proved if we show Fdt maps [−1, 1] to itself for dt ≤ 0.5, which is shown

in Lemma (4.2.5).

Lemma 4.2.5. Define Fdt as in (4.14). If 0 ≤ dt ≤ 0.5, Fdt maps [−1, 1] to itself.

Proof. For a general M , we can estimate c by solving dt to satisfy (4.15)
max

x∈[−M,M ]
Fdt(x) ≤M

min
x∈[−M,M ]

Fdt(x) ≥ −M
(4.15)

Since Fdt is cubic in x, (4.15) can be solved analytically via brute force calculation. Setting

M = 1 and solving (4.15) for dt ≥ 0 gives 0 ≤ dt ≤ 0.5.

Remark: The computation of c(M,Φ) by solving (4.15) involves only elementary calcu-

lations and we omit them for brevity.

The choice of the constant M = 1 is natural since the function value u(i) corresponds

to a soft prediction of the binary class label {−1, 1}. However, if we merely want to get

boundedness without enforcing ‖uk‖∞ ≤ 1 we can get a larger stepsize bound by maximizing

c(M,W ′) with respect to M . By computer calculation, we found arg maxM c(M,W ′) ≈ 1.4,

and c(1.4,W ′) ≈ 2.1. Namely,

Lemma 4.2.6. For 0 ≤ dt ≤ 2.1, Fdt maps [−1.4, 1.4] to itself.

The reason we are computing these constants explicitly is that we will compare them in

Section 4.6 against results from real applications in a series of numerical experiments. For

future reference, the dt ≤ 0.5 bound will be called the “tight bound” where the dt ≤ 2.1

bound will be called the “loose bound”.
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4.2.3 Generalizations of the scheme

In this section, we extend the previous result to the case where fidelity is added, and also to

the case for symmetric graph Laplacians Ls.

We restate the the graph Allen-Cahn scheme with fidelity:
vk =uk − dt ∗ (

1

ε
∇W (uk) + ηΛ(uk − φ0)),

uk+1 =− dt ∗ (εLuuk+1) + vk.

(4.16)

Λ is a diagonal matrix where Λii = 1 if i is in the fidelity set and 0 else, and φ0(i) ∈ {1,−1}.

We can use the same technique to estimate a graph-independent stepsize restriction c and

prove boundedness.

Proposition 4.2.7 (Graph Allen-Cahn with fidelity). Define uk by (4.16) and suppose

‖u0‖∞ ≤ 1. If dt satisfies 0 ≤ dt ≤ 1
2+η

ε, we have ‖uk‖∞ ≤ 1 for all k.

Proof. Denote the forward map by Fdt. Since Λ is a diagonal matrix, Fdt is a diagonal map.

Note Fdt has only three different component maps which we denote by F i
dt, i = 1, . . . , 3.

Namely, F 0
dt(u) = u − dt[1

ε
(u2 − 1)u + η(u − 1)], F 1

dt(u) = u − dt[1
ε
(u2 − 1)u + η(u + 1)],

F 2
dt(u) = u − dt[1

ε
(u2 − 1)u]. By solving (4.15) with M = 1 for Fm

dt ,m = 1, . . . , 3 for non-

negative dt, we get 0 ≤ dt ≤ 1
2+η

ε.

The case for the symmetric graph Laplacian is a little different. Since Ls does not

satisfy (4.10), we no longer have the maximum principle. However, we are still able to prove

boundedness under the assumption that the graph satisfies a certain uniformity condition.

Proposition 4.2.8 (Symmetric graph Laplacian). Let di =
∑

j wij be the degree of node i.

Suppose ρ ≤ 4 where ρ is defined below

ρ =
maxi di
mini di

. (4.17)

Define uk by the semi-implicit scheme (4.8) where L is the symmetric Laplacian Ls. Suppose

‖u0‖∞ ≤ 1. If 0 ≤ dt ≤ 0.25ε, we have ‖uk‖∞ ≤ 2, for all k ≥ 1.
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Proof. By definition of Ls and Lrw, we have the relation

Ls = D1/2LrwD−1/2 (4.18)

Substituting (4.18) to the backward step, i.e., line 2 of (4.9), we have

D−1/2uk+1 = −dt ∗ LrwD−1/2uk+1 +D−1/2vk. (4.19)

We will do a change of variables ũk = αD−1/2uk, and ṽk = αD−1/2vk, where α = (mini di)
1/2,

and write the scheme in terms of ũk.
ṽk = ũk − dt ∗ 1

ε
αD−1/2∇W (

1

α
D1/2ũk),

ũk+1 = −εdt ∗ Lrwũk+1 + ṽk.

(4.20)

By the definition of α, we have ‖ũ0‖∞ ≤ 1. We will use the same technique as before to

show ‖ũk‖ ≤ 1, ∀k. By the maximum principle, ‖ũk+1‖∞ ≤ ‖ṽk‖∞. Since D is diagonal, the

forward map Fdt of (4.20) is diagonal. Define Gdt(c, x) = x− dt
c
W ′(cx) = x− dt

c
x(c2x2− 1),

the components of Fdt are:

ṽk(i) = F idt(ũk(i)) = Gdt/ε(ci, ũ
k(i)), (4.21)

where ci = ( di
minj dj

)1/2 ∈ [1, 2]. We can prove the theorem if we show F idt maps [−1, 1] to

itself for all i = 1, . . . , N . This is shown in the next lemma.

Lemma 4.2.9 (Uniform range). For any 0 ≤ dt ≤ 0.25, and some fixed c ∈ [1, 2], Gdt(c, x)

as a function of x maps [−1, 1] to itself.

The lemma is proved by solving maxc∈[1,2],x∈[−1,1] Gdt(c, x) ≤ 1 and minc∈[1,2],x∈[−1,1]Gdt(c, x) ≥

−1 for dt ≥ 0.

Remark: The condition ρ < 4 is arbitrary and just chosen to simplify calculations for

dt. The proposition here is weaker than Proposition 4.2.1 due to the loss of the maximum

principle. We will see this again during the analysis of spectral truncation in Section 4.4.
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4.3 Energy method-L2 estimates

In this section, we derive estimates in terms of the L2 norm. Our goal is to prove that the

graph Allen-Cahn scheme is monotone under the stepsize restrictions in Section 4.2, and

derive convergence results of the sequence {uk}. We will drop the subscript for 2 norms in

this section.

Our proof is loosely motivated by the analysis of convex concave splitting in [Eyr98,

YRY02]. In [Eyr98], Eyre proved the following monotonicity result:

Proposition 4.3.1 (Eyre). Let E1, E2 be C1 functions on Rn, where E1 is convex and E2

concave.Let E = E1 + E2. Then for any dt > 0, the semi-implicit scheme

uk+1 = uk − dt∇E1(uk+1)− dt∇E2(uk), (4.22)

is monotone in E, namely,

E(uk+1) ≤ E(uk), ∀k ≥ 0.

In our proof, we will set E = GL(u), E1 = ε
2
〈u, Lu〉 and E2 = 1

ε
W (u). Since E2

is not concave, we will have to generalize Proposition 4.3.1 for general E2. But first, we

digress a bit and establish the connection between the semi-implicit scheme (4.22) and the

proximal gradient method, which simply assumes E1 to be sub-differentiable. The reason

for this generalization is to have a unified framework for dealing with E1 taking extended

real values, which is the case when we study spectral truncation in Section 4.4.

The proximal gradient iteration [BV09] is defined as

uk+1 = ProxdtE1(u
k − dt∇E2(uk)), (4.23)

where the Prox operator is defined as Proxγf (x) = arg minu{f(u)+ 1
2γ
‖u−x‖2}. This scheme

is in fact equivalent to the semi-implicit scheme (4.22) when E1 is differentiable. This is clear

from the implicit gradient interpretation of the proximal map. Namely, if y = Proxγf (x),

y = x− γ∂f(y). (4.24)

∂f is the subgradient of f , which coincides with the gradient if f is differentiable.
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Even though the subgradient can be multi-valued, the Prox operator is in fact well-

defined if f is a closed proper convex functions taking extended real values. Classical results

for convergence of proximal gradient method can be found in [BV09], but is not applicable

here since it requires both E1, E2 to be convex. Instead, we will prove an energy estimate

for proximal gradient methods when E2 is a general function.

Proposition 4.3.2 (Energy Estimate). Let E = E1 + E2. Suppose E1 is proper closed and

convex, E2 ∈ C2. Define xk+1 by the proximal gradient scheme xk+1 ∈ xk − dt∂E1(xk+1) −

dt∇E2(xk). Suppose M satisfies

M ≥max
ξ∈S
‖∇2E2(ξ)‖, (4.25)

where S = {ξ|ξ = txk + (1 − t)xk+1, t ∈ [0, 1]} is the line segment between xk and xk+1, we

have

E(xk)− E(xk+1) ≥ (
1

dt
− M

2
)‖xk+1 − xk‖2. (4.26)

Proof.

E(xk)− E(xk+1) = E1(xk)− E1(xk+1) + E2(xk)− E2(xk+1)

≥ 〈∂E1(xk+1), xk − xk+1〉+ E2(xk)− E2(xk+1)

= E2(xk)− E2(xk+1)− 〈∇E2(xk), xk − xk+1〉

+
1

dt
‖xk+1 − xk‖2

≥ 1

dt
‖xk+1 − xk‖2 − M

2
‖xk+1 − xk‖2.

The second line is by convexity of E1 and the definition of subgradients, and ∂E1(xk+1)

could be any vector in the subgradient set. The third line is by substituting the particular

subgradient ∂E1(xk+1) in the the definition of xk+1. The fourth line is obtained by one

variable Taylor expansion of the function E2 along the line segment between xk and xk+1.

Next, we apply estimate (4.3.2) and the boundedness results in Section 4.2 to prove

that the graph Allen-Cahn scheme is monotone in the Ginzburg-Landau energy under a

graph-independent stepsize.
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Proposition 4.3.3 (Monotonicity of the Graph Allen-Cahn Scheme). Let uk be the graph

Allen-Cahn scheme with fidelity defined below:

uk+1 = uk − dt ∗ (εLuk+1 +
1

ε
W ′(uk) + ηΛ(uk − φ0)), (4.27)

where L is the unnormalized Laplacian. If ‖u0‖∞ ≤ 1, then ∃c independent of L such

that ∀0 ≤ dt ≤ c, we have the scheme is monotone under the Ginzburg-Landau energy

with fidelity, namely, E(uk) = GL(uk) + η
2
‖uk − φ0‖2

Λ ≥ E(uk+1) = GL(uk+1) + η
2
‖uk+1 −

φ0‖2
Λ. Moreover, the scheme is convergent in function value. The result holds for symmetric

Laplacians if we add the uniformity condition (4.17) on the graph.

Proof. From Proposition 4.2.1, ∃c1 independent of L such that 0 ≤ dt ≤ c1, implies ‖uk‖∞ ≤

1,∀k. We set E2(u) = 1
ε
W (u) + η

2
‖uk − φ0‖2

Λ, and E1(u) = ε
2
〈u, Lu〉. Since (4.27) is

equivalent to the proximal gradient scheme with E1 and E2 defined above, we can apply

Proposition 4.3.2. Since the L∞ unit ball is convex, line segments from uk to uk+1 lie in the

set {‖u‖∞ ≤ 1}, and we can estimate M by the inequality below

max
‖u‖∞≤1

‖∇2E2(u)‖2 ≤ max
|x|≤1
|1
ε
W ′′(x) + η| = 2

ε
+ η.

Thus we can set M = 2
ε

+ η. Choose c2 ≤ 2
M

, and set c = min(c1, c2). We have ∀0 ≤ dt ≤ c,

E(uk)− E(uk+1) ≥ (
1

dt
− M

2
)‖uk+1 − uk‖2 ≥ 0. (4.28)

Hence uk is monotone in E. Since E is bounded from below by 0, the sequence {E(uk)}

is convergent. The case for the symmetric Laplacian is identical by a different estimate of

max|x|∞≤1 ‖∇2E2‖.

Next, we discuss the convergence of the iterates {uk}. First, we prove subsequence

convergence of {uk} to a stationary point of E(u).We first prove a lemma on the sequence

{uk+1 − uk}.

Lemma 4.3.4. Let uk, dt, be as in Proposition 4.3.3, then
∑∞

k=0 ‖uk+1 − uk‖2 <∞. Hence

lim
k→∞
‖uk+1 − uk‖ = 0.
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Proof. Summing Equation (4.28), we have the following

E(u0)− E(un) ≥ (
1

dt
−M)

n−1∑
k=0

‖uk+1 − uk‖2, (4.29)

holds for all n. Since E(u) ≥ 0 and dt ≤ 2
M

, we prove the lemma.

Proposition 4.3.5. (Subsequence convergence to stationary point) Let uk, dt, be as in Propo-

sition 4.3.3. Let S be the set of limit points of the set {uk}. Then ∀u∗ ∈ S, u∗ is a critical

point of E, i.e., ∇E(u∗) = 0. Hence any convergent subsequence of uk converges to a sta-

tionary point of E.

Proof. By definition, uk+1 = uk − dt∇E1(uk+1)− dt∇E2(uk). Hence we have

‖∇E1(uk) +∇E2(uk)‖ ≤ (‖∇E1(uk+1)−∇E1(uk)‖+
1

dt
‖uk+1 − uk‖). (4.30)

Since {uk} is bounded and ∇E1 is continuous, we have

lim
k→∞
‖∇E(uk)‖ = lim

k→∞
‖∇E1(uk) +∇E2(uk)‖ = 0, (4.31)

where we use lim
k→∞
‖uk+1 − uk‖ = 0.

In general, we can not prove that the full sequence {uk} is convergent, since it is possible

for the iterates {uk} to oscillate between several minimum. However we show that when

the set of limit points is finite, we do have convergence. This is stated in the Lemma 4.3.6,

which is proved in the appendix.

Lemma 4.3.6. Let uk be a bounded sequence in RN , and lim
k→∞
‖uk+1−uk‖ = 0. Let S be the

set of limit points of the set {uk|k ≥ 1}. If S has only finitely many points, then S contains

only a single point u∗, and hence lim
k→∞

uk = u∗.

Finally, we provide an easy to check a posterior condition that guarantees convergence

using the lemma above. The condition states that the iterates uk must take values reasonably

close to the double-well minimum −1 and 1. Empirically, we have observed that the values of

uk are usually around −1 and 1 near convergence, hence the condition is not that restrictive

in practice.
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Proposition 4.3.7. (Convergence with A Posterior Condition) Let uk, dt, be as in Propo-

sition 4.3.3. Let δ > 0 be any positive number. If for some K, we have |uk(i)| ≥ 1√
3

+ δ, for

all k ≥ K and i, then we have lim
k→∞

uk = u∗, where u∗ is some stationary point of the energy

E.

Proof. We only need to show that the set of stationary points of E on the domain D =

[ 1√
3

+ δ, 1]N is finite. Computing the Hessian of E, we have ∇2E(u) = εL+ 1
ε
(3u2− I) + ηΛ,

where u2 is the diagonal matrix whose entries are u(i)2. Note that ∇2E(u) is positive

definite on D since ηΛ and L are semi-positive definite, and 3u2 − I is positive definite on

D. Therefore, the stationary points are isolated on D. Since D is bounded, this implies

finiteness.

4.4 Analysis on Spectral Truncation

In this section, we study whether we are able to prove monotonicity and boundedness when

using spectral truncation. First of all, we formally define the spectral truncated graph Allen-

Cahn scheme. In this section, all conclusions hold for both the unnormalized Laplacian and

the symmetric Laplacian. We will use the general notation L for both options.

Let {φ1, φ2, . . . , φm} be eigenvectors of the graph Laplacian L ordered by eigenvalues in as-

cending order, i.e., λ1 ≤ λ2 · · · ≤ λN . Define them-th eigenspace as Vm = span{φ1, φ2, . . . , φm},

and Pm as the orthogonal projection operator onto the space Vm. Then the spectral truncated

scheme is defined as 
vk = uk − dt ∗ 1

ε
∇W (uk),

uk+1 = Pm[−dt ∗ (εLuk+1) + vk].

(4.32)

Note that in practice, we do not directly solve the linear system on the second line of (4.32),

but instead express uk+1 directly in terms of the eigenvectors as in (4.36). However, writing

it in matrix is notationally more convenient in the subsequent analysis. We want to apply the

energy estimates in Section 4.3 for spectral truncation. To do this, we first show that spectral

truncation scheme (4.32) can be expressed as a proximal-gradient scheme for a suitably chose
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energy E1 and E2.

Proposition 4.4.1 (Reformulation of Spectral Truncation). The spectral truncated scheme

(4.32) is equivalent to the proximal gradient scheme (4.23) with E1 = ε
2
〈u, Lu〉+ IVm, E2 =

1
ε
W (u), where IVm is the indicator function of the m-th eigenspace, i.e.

IVm(u) =

 0, u ∈ Vm

+∞, else.
(4.33)

Proof. Define u, u′ as

u = Pm[−dt ∗ (εLu) + v]. (4.34)

u′ = arg min
y

ε

2
〈y, Ly〉+ IVm(y) +

1

2dt
‖y − v‖2. (4.35)

We only have to show u = u′. Decomposing (4.34) in terms of the eigenbasis {φ1, φ2, . . . , φm},

we have

u =
∑
j≤m

〈v, φj〉
1 + dtελj

φj. (4.36)

Since IVm is +∞ outside Vm, we have u′ ∈ Vm. Let u′ =
m∑
i=1

c′iφ
i, and y =

m∑
i=1

ciφ
i then the

function in (4.35) becomes

ε

2
〈y, Ly〉+

1

2dt
‖y − v‖2 =

m∑
i=1

(
ε

2
λic

2
i +

1

2dt
(ci − 〈v, φi〉)2) + C. (4.37)

And therefore

c′i = arg min
c

ε

2
λic

2 +
1

2dt
(c− 〈v, φi〉)2 =

〈v, φi〉
1 + dtελi

. (4.38)

Hence we have u = u′.

Since the orthogonal projection Pm is expansive in the l∞ norm, i.e., ‖Pmu‖∞ ≤ ‖u‖∞

does not always hold, we lose the maximum principle. However, we show that the energy

estimate alone is enough to prove monotonicity and boundedness under a smaller stepsize.

Proposition 4.4.2. Let L be either the symmetric or unnormalized graph Laplacian satis-

fying ρL = maxi |λi| ≤ B for some constant B. Set ε = 1 and define uk by the spectral trun-

cation scheme (4.32). Suppose ‖u0‖∞ ≤ 1, and u0 ∈ Vm. Then there exists δ > 0 dependent
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only on B such that ∀0 ≤ dt ≤ δN−1, The sequence {uk} is bounded and GL(uk+1) ≤ GL(uk),

for all k. Here N is the dimension of u, i.e., number of vertices in the graph.

The choice for ε = 1 is only to avoid complicated dependencies on ε that obscures the

proof. For the next two sections, we will assume ε = 1 throughout. To prove the theorem,

we first establish the following lemmas.

Lemma 4.4.3 (Inverse Bound). Let M be any positive constant. Set ε = 1 in the GL

functional. If GL(u) ≤M , then ‖u‖2
2 ≤ N + 2

√
NM , where N is the dimension of u.

Proof. By definition, GL(u) = 1
4

∑
i(u(i)2 − 1)2 + 1

2
〈u, Lu〉 ≤ M . Since 1

2
〈u, Lu〉 ≥ 0,

1
4

∑
i(u(i)2− 1)2 ≤M . Then from the Cauchy-Schwarz inequality,

∑
i(u(i)2− 1) ≤ 2

√
NM ,

and hence ‖u‖2
2 ≤ N + 2

√
NM .

Lemma 4.4.4. Let uk and uk+1 be successive iterates defined in (4.32). Then the following

inequality holds:

‖uk+1‖2 ≤ (1 + dt)‖uk‖2 + dt‖uk‖3
2. (4.39)

Proof. Since L is symmetric semi-positive definite, and the orthogonal projection Pm is non-

expansive in the l2 norm, we have ‖uk+1‖2 ≤ ‖vk‖2. Since vk(i) = uk(i)−dt∗[uk(i)(uk(i)2−1)],

let g(i) = (u(i))3, then

‖vk‖2 ≤ (1 + dt)‖uk‖2 + dt‖g‖2 = (1 + dt)‖uk‖2 + dt‖uk‖3
6

≤ (1 + dt)‖uk‖2 + dt‖uk‖3
2,

(4.40)

where ‖uk‖6 ≤ ‖uk‖2 is by the norm equivalence equation stated in Lemma 4.7.1 in the

Appendix.

Next, we prove the main proposition. The idea is to choose dt small enough such that

monotonicity in GL is satisfied, and then apply Lemma 4.4.3 to have a bound on uk.

Proposition 4.4.2. Let E1(u) = ε
2
〈u, Lu〉 + IVm , E2(u) = 1

ε
W (u), and E = E1 + E2 =

GL(u) + IVm . By Proposition 4.4.1, (4.32) is equivalent to the proximal gradient scheme

for the splitting E = E1 + E2. We also have ∀k ≥ 0, E(uk) = GL(uk). u0 ∈ Vm is by
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our assumption, and uk ∈ Vm, k ≥ 1 is because uk is the image of the projection map Pm.

Therefore, we will denote E(uk) and GL(uk) interchangeably.

We claim that there exists constants δ > 0, independent of N such that ∀0 ≤ dt ≤ δN−1,

equation (4.41) holds for all k.

GL(uk) ≤GL(u0) ≤ C0N,

‖uk‖2 ≤C1

√
N,

(4.41)

where C0 = (1 +B) , and C1 =
√

(1 + 2
√

1 +B)N .

We argue by induction. For the case k = 0, since ‖u0‖∞ ≤ 1, we have ‖u0‖2 ≤
√
N <

C1

√
N . We also have GL(u0) ≤ ρL‖u0‖2

2 +
∑

i≤N 1 ≤ C0N , since ‖u0‖2 ≤ N , and ρL ≤ B.

For the induction step, suppose (4.41) is satisfied for iteration k. Since ‖uk‖2 ≤ C1

√
N,

we apply Lemma 4.4.4 and get ‖uk+1‖2 ≤ A1

2
(1+dt)N1/2+A1

2
dtN3/2 for some A1 independent

of N . Therefore, we can choose δ1 independent of N such that ∀0 ≤ dt ≤ δ1N
−1, ‖uk+1‖2 ≤

A1N
1/2.

Next, we apply Proposition 4.3.2 and showE(uk) ≥ E(uk+1). Since ‖uk+1‖∞ ≤ ‖uk+1‖2 ≤

A1N
1/2. We can set M in Proposition 4.3.2 by the estimate below:

max
‖ξ‖∞≤A1

√
N
‖∇2(W )(ξ)‖2 ≤ max

|ξ|≤A1

√
N
|W ′′(ξ)| = max

|ξ|≤A1

√
N
|(3ξ2 − 1)| ≤ A2N,

where A2 independent of N, and we can set M = A2N . Let δ2 = 2
A2

, and δ = min(δ1, δ2),

we have GL(uk+1) ≤ GL(uk) ≤ C0N for all 0 ≤ dt ≤ δN . This proves the second line of the

induction in (4.41).

To prove the first line of (4.41), note that since GL(uk+1) ≤ C0N , we can apply the inverse

bound Lemma 4.4.3 and get ‖uk+1‖2 ≤ C1

√
N . This completes the induction step.

In Proposition 4.4.2, we assumed the initial condition u0 to be in the feasible set Vm.

This in general is not done in practice, as u0 is usually chosen to have binary values {−1, 1}.

The corollary below gives a monotonicity result for u0 not in the feasible set.

Corollary 4.4.5. Let uk be as defined in Proposition 4.4.2. Let u0 be any vector satisfying

‖u0‖∞ ≤ 1. Then exists δ independent of N such that ∀dt < δN−3/2, {uk} is bounded and

GL(uk) ≤ GL(uk+1) for k ≥ 1.
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Proof. Since u0 is not in the feasible set Vm, E(u0) = +∞ 6= GL(u0). However, since

u1 ∈ Vm, we can start the induction from k = 1. Since ‖u1‖2 ≤ ‖v0‖2 ≤
√
N , we can

estimate GL(u1) ≤ B‖u1‖2
2 +

∑N
i=1(u2 − 1)2 = O(N2). By Lemma 4.4.3, GL(u) = O(N2)

implies ‖u‖2 = O(N3/4), hence we can set the induction as below.GL(u1) ≤C0N
2,

‖u1‖2 ≤C1N
3
4 .

(4.42)

To prove (4.42), we apply Lemma 4.4.4 and choose 0 ≤ dt ≤ δ1N
−3/2 so that ‖vk‖2 ≤ A1N

3/4.

We then apply Proposition 4.3.2 and estimate

max
|ξ|≤A1≤N3/4

|W ′′(ξ)| ≤ A2N
3/2 := M,

and set δ2 = 2
A2

. By choosing δ = min(δ1, δ2), we prove monotonicity for 0 ≤ dt ≤ δN−3/2.

4.4.1 A Counter Example for Graph-Independent Stepsize Restriction

We proved that the spectral truncated scheme is monotone under stepsize range 0 ≤ dt ≤

δ = O(N−1). One would hope to achieve a graph-free stepsize rule as in the case of the

original scheme without spectral truncation (4.3). However, as we show in our example

below, a constant stepsize to guarantee monotonicity over all graph Laplacian of all sizes is

not possible.

Proposition 4.4.6 (Graph Size Dependent Stepsize Restriction). Define uk as in (4.32),

with ε = 1. For any δ > 0 and dt = δN−α, 0 ≤ α < 1, we can always find an unnormalized

graph Laplacian LN×N and some initial condition ‖u0‖∞ = 1 such that the scheme in (4.32)

with truncation number m = 3 is not monotone in the Ginzburg-Landau energy.

Remark: α = 0 is the case for graph-independent stepsize. However, this result is stronger

and claims that dt has to be at least O(N−1) for monotonicity to hold for all graphs.

To prove Proposition 4.4.6, we explicitly construct a collection of weighted graphs that

require increasingly small stepsizes to guarantee monotonicity as the graph size N increases.

The graph is defined in Definition 4.4.7, and illustrated in Fig 4.1.
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To give the idea behind the construction, we note that the reason why the maximum

principle fails for spectral truncation is because a general orthogonal projection P is ex-

pansive in the l∞ norm. Namely, for some vector ‖v‖∞ ≤ 1, we have in the worst case

‖P (v)‖∞ = O(
√
N). Our strategy is to explicitly construct a graph such that projection

onto one of its eigenspaces Pm attains this worst case l∞ norm expansion. This is made

precise in Proposition 4.4.8.

Figure 4.1: Illustration of Worst Case Graph with N = 7

Definition 4.4.7. (Counter Example Graph)

1. Indexing: Nodes on the left are indexed by odd numbers and nodes on the right even.

The first and the second node(in x) correspond to the left most and right most node

respectively. We assume there are N nodes in circles on each side, and hence the graph

has a total of 2N + 2 nodes.

2. Edge Weights: Connect all nodes to each other within clusters and set edge weights

to 10 (black solid edges). Connect the inter cluster nodes in a pairwise fashion and

set weights to 1 (gray solid edges). Finally, connect the outlier node with the clusters

and set edge weights to γ
N

, where γ =
(1− 1√

N
)(2+ 1

N
− 1√

N
)

1− 3√
N

= 2 + o(1) (gray dashed edges).

41



Namely,

wij =


10, i, j of same parity and 6= 1,2

1, (i, j) = (2k − 1, 2k) or (2k − 1, 2k), k ≥ 2

γ

N
, i = 1, j 6= 2 or j = 1, i 6= 2

(4.43)

Proposition 4.4.8. Under the setup above, the second and third eigenvectors of the graph

Laplacian are

φ2 = (a, a,− a

N
,− a

N
, . . . ,− a

N
,− a

N
),

φ3 =

(
1

2
,−1

2
,

1

2
√
N
,− 1

2
√
N
, . . . ,

1

2
√
N
,− 1

2
√
N

)
,

(4.44)

where a =
√

N
2(N+1)

. Moreover, let u0 = Sign(φ3) = (−1, 1, . . . ,−1, 1). Then the projection of

u0 onto the eigenspace V3 = span{φ1, φ2, φ3} satisfies P3(u0) = C
√
Nφ3. Hence ‖P3(u0)‖∞ =

O(
√
N)‖u0‖∞.

We refer the reader to the appendix for the proof of this proposition. Next, we give a

proof of Proposition 4.4.6. The idea is that after the first two iterations, the values on uk,

with k = 2 on the outlier nodes are arbitrarily higher that that of u1, and thus the scheme

cannot be monotone in the Ginzburg-Landau energy.

Proposition 4.4.6. Define uk by the spectral truncated scheme (4.32) with u0 = Sgn(φ3) and

dt = δN−α for some δ > 0 and 0 < α < 1.

By basic calculations, we have u1 = C0

√
Nφ3, and u2 = C1N

θ/2φ3 + C2N
θ−1
2 , where

θ = 3/2−α > 1/2, hence u2(1) is asymptotically larger than u1(1) with respect to N . Hence

GL(u2) > GL(u1) for N large, and the scheme is not monotone in GL for large N .

4.4.2 Heuristic Explanation for Good Typical Behavior

Despite the pathological behavior of the example given above, the stepsize for spectral trun-

cation does not depend badly on the size N in practice. In this section, we attempt to give

a heuristic explanation of this from two viewpoints.

42



The first view is to analyze the projection operator Pm in the L∞ norm. The reason

why the maximum principle fails is because Pm is expansive in the L∞ norm. Namely, for

some vector ‖v‖∞ ≤ 1, we have ‖Pm(v)‖∞ = O(
√
N) in the worst case. However, an easy

analysis shows the probability of attaining such an O(
√
N) bound decays exponentially as

N grows large, as shown in a simplified analysis in Proposition 4.7.3 of the Appendix. Thus

in practice, it is very rare that adding Pm would violate the maximum principle“too much”.

The second view is to restrict our attention to data that come from a random sample.

Namely, we assume our data points xi are sampled i.i.d. from a probability distribution p, and

that the graph Laplacian is computed from the Euclidean distance ‖xi − xj‖. In [VBB08],

it is proven that under very general assumptions, the discrete eigenfunctions, eigenvalues

converges to continuous limits almost surely. Moreover, the projection operators Pk converges

compactly almost surely to their continuous limits. Moreover, results for continuous limits

of graph-cut problems can be found in [TSB14]. Under this set up, we can define the Allen-

Cahn scheme on the continuous domain and discuss its properties on suitable function spaces.

The spectral truncated scheme still would not satisfy the maximum principle, but at least

it evolves in a sample-size independent fashion. Of course a rigorous proof would require

heavy functional analysis.

4.5 Results for Multiclass Classification

The previous analysis can be carried over in a straight forward fashion to the multiclass case.

Multiclass diffuse interface algorithm on graphs can be found in [GFP15,HSB15,MKB13].

We state some basic notations. Let K be the number of classes, and N the number of nodes

on the graph. We define u to be an N × K matrix, where each entry uij represents the

“confidence” of the ith node belonging to the jth class. We think of u as a vector valued

function on the graph, and denote its rows by u(i).
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The Ginzburg Landau functional for multiclass is defined as

GL(u) =
ε

2
tr(uLu) +

1

ε

N∑
i=1

W (u(i)). (4.45)

where ek = (0, 0, . . . , 1, . . . , 0)t, and W is the l2 “multi-well”.

W (x) = (
K∏
k=1

‖x− ek‖2
2), (4.46)

In [GMB14], a different well function is used using L1 norms instead of L2. However, the

algorithm in [GMB14] uses a subgradient descent followed by a projection onto the Gibbs

simplex. Since the Gibbs simplex itself is already bounded, this renders the boundedness

result trivial, and therefore we will only prove the results for the L2 well. Define W (u) =∑N
i=1W (u(i)). We minimize GL by the semi-implicit scheme below

vk = uk − dt ∗ 1

2ε
∇W (uk),

uk+1 = −dt ∗ (εLuk+1) + vk.

(4.47)

The main proposition we prove is this.

Proposition 4.5.1. Let L be the unnormalized graph Laplacian. Suppose u0 ∈ [0, 1]N×K,

and define uk by the equation (4.47). Then ∃c dependent only on K such that if 0 ≤ dt ≤ c,

we have uk ∈ [0, 1]N×K for all k ≥ 0.

Remark: The choice for uk ∈ [0, 1]N×K instead of an l∞ bound is natural in the multi-

class algorithm since we want the final results to have components close to {0, 1} instead of

{−1, 1}.

Proof. Suppose uk ∈ [0, 1]N×K . Since line 2 of (4.47) is decoupled in columns of uk+1, we can

apply maximum principle to each column and have maxuk+1 ≤ maxvk, and minuk+1 ≥

minvk. Hence we only have to show vk ∈ [0, 1]N×K . Since the rows in line 1 of (4.47) are

decoupled, we only have to show that the forward map maps each row of vk to [0, 1]K with

0 ≤ dt ≤ c. This is proven in the lemma below.
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Lemma 4.5.2. Define Fdt : RK → RK as F (x) = x− dt∇W (x), where W is the multi-well

W (x) = (
∏K

k=1 ‖x− ek‖2
2). Then ∃ c dependent only on K such that ∀0 ≤ dt ≤ c, Fdt maps

[0, 1]K to itself.

Proof. Given x ∈ [0, 1]K , we denote components of x by xi. Let y = Fdt(x). For each

i, yi = (1 − 2dt
∑

j Gj(x))xi + 2dtGi(x), where Gj(x) =
∏

k 6=j ‖x − ek‖2
2. We set 1

2c
=

maxx∈[0,1]K
∑

j Gj(x). Then ∀0 ≤ dt ≤ c, we have 1 ≥ (1 − 2dt
∑

j Gj(x)) ≥ 0. We then

prove yi ∈ [0, 1]. For one direction, since xi ≥ 0, yi ≥ 2dtGj(x) ≥ 0. In the other direction,

yi ≤ 1− 2dt
∑

j Gj(x) + 2dtGi(x) ≤ 1.

Remark: Using the same argument as in previous sections, we can extend the result to

incorporate fidelity and also show monotonicity. We omit these discussions for the sake of

brevity.

4.6 Numerical Results

In this section, we construct various numerical experiments of increasingly larger scales. This

helps demonstrate our theory, and also have some implication on the real world performance

of the schemes.

4.6.1 Two Moons

The two moons data was used by Buhler et al [BH09] in exploring spectral clustering with

p-Laplacians. It is constructed from sampling from two half circles of radius one on R2,

centered at (0,0) and (1,0.5). Gaussian noise of standard deviation 0.02 in R100 is then

added to each of the points. The weight matrix is constructed using Zelnik-Manor and

Perona’s procedure [ZP04]. Namely, set wij = e−d(i,j)/
√
τiτj , where τi is the Mth closest

distance to i. W is further symmetrized by taking the max between two symmetric entries.

Fig. 4.2 is an illustration of the data set of three different sizes being segmented perfectly

under a uniform stepsize with 5% fidelity points. The parameters for the experiment is
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dt = 0.5, ε = 1, which is exactly the tight bound.

Figure 4.2: Segmentation results under the same stepsize for Two Moons with sample sizes

1000, 2000, 3000 respectively.

Figure 4.3: Two Moons Segmentation Problem. Left: Maximum stepsize satisfying

‖uk‖∞ ≤ 1. Right: Left: Maximum stepsize satisfying ‖uk‖∞ ≤ 10. N is the number

of nodes.

To test the theory, we compute several “maximum stepsizes” that ensures some criterion

(e.g. bounded after 500 iterations, etc.), and compare this with the stepsize predicted by

the theory. Bisection with 1e-5 accuracy is used to determine the maximum stepsize that

satisfies the criterion given.

Fig 4.3 plots the maximum stepsize for the scheme (4.3) to be bounded by 1.0005, 10

respectively. Random −1, 1 initial conditions are chosen. No fidelity terms are added and

the diffuse parameter ε = 1. We also compute results for the random walk Laplacian and the

unnormalized Laplacian as comparison. The actual results are independent of graph size,

and also match the tight and loose bound nicely.

46



In the next experiment, we switch our criterion from boundedness to monotonicity in the

function value. Namely, we compute the stepsizes for which the scheme is monotone in 500

iterations.

Fig.4.4 (left) plots the maximum stepsize for the scheme to maintain monotonicity for the

three different types of Laplacians. As we can see, the typical maximum stepsize is between

the tight and loose bound. Fig.4.4 (right) fixes N = 2000 and varies ε to plot the relation

between dt and ε. They are almost linear as predicted by the 0.5ε bound.

Figure 4.4: Left: Maximum stepsize for monotonicity, fixing ε = 1 varying N . Right: Maximum

stepsize for monotonicity, fixing N = 2000 varying ε, ε is the interface scale parameter. N is the

number of nodes on the graph.

Figure 4.5: Left: Maximum stepsize for monotonicity comparing spectral truncation vs full

scheme. Right: Maximum stepsize for monotonicity for scheme with fidelity.N the number

of nodes. c is the fidelity strength.

Fig.4.5 (left) plots maximum stepsize for monotonicity for the scheme with spectral trun-
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cation. The results are compared with the original scheme without spectral truncation, and

we see that the maximum stepsizes are roughly in the same range. Fig.4.5 (right) plots the

effects of adding a quadratic fidelity term with power c while keeping ε = 1 fixed. As we

can see from the result, the fidelity term does constitute an additional restriction when c

is large. However, stepsizes remain roughly the same for small c. It is hard to analyze the

exact effect when c and ε are comparable.

4.6.2 Two Cows

The point of this experiment is to test the effects of Nyström extension on the stepsize and

overall performance of the algorithm. Nyström extension is a sampling technique used to

approximate eigenvectors without explicitly computing the graph Laplacian [BFC02,FBC04,

FBM01].This is very useful because for large dense graphs such as non-local graphs from

images, it is often computationally impractical and inefficient to compute the entire weight

matrix, and Nyström extension gives a solution to this problem. However, Nyström extension

is only approximate, and the following examples show that this imprecision does not impose

a great restriction on the stepsize selection.

The images of the two cows are from the Microsoft Database. From the original 312×280

image, we generate 10 images with successily lower resolution of (312/k) × (280/k), k =

1, . . . 10. A non-local graph constructed from feature windows of size 7 × 7 is used, and

weights are constructed by the standard Gaussian Kernel wij = e−dij/σ
2
. The eigenvectors

are constructed by using Nyström extension, the details of which could be found in [BF12].

Fig.4.6 illustrates three images with 1,1/2,1/5 times original resolution being segmented

under the uniform condition dt = 2, ε = 4. The blue and red box corresponds to fidelity

points of the two classes, the constant in front of the fidelity are c1 = 1 and c2 = 0.4 for the

cows and the background respectively. Fig.4.7 is a plot of N vs dt. To ensure segmentation

quality, smaller epsilon had to be chosen for images of lower resolution, and the final result

is displayed in terms of the dt/ε ratio.
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(a) 256 × 256 (b) 128 × 128 (c) 51× 51

(d) 256 × 256 (e) 128 × 128 (f) 51× 51

Figure 4.6: Images of different resolution segmented under the same stepsize

Figure 4.7: Maximum Stepsize for Monotonicity for the Two Cows Under a Series of Different

Resolution. N is the number of nodes in the graph, which equals A×B with A,B the height

and width of an image.

4.6.3 MNIST

This experiment is used to demonstrate the case of multiclass clustering by the L2 multiclass

Ginzburg-Landau functional.

The MNIST database [LC98], found at http://yann.lecun.com/exdb/mnist/, is a data

set of 70000 28 × 28 images of handwritten digits from 0-9. The graph is constructed by

first doing a PCA dimension reduction and again using the same Zelnik-Manor and Perona’s
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procedure with 50 nearest neighbors. For our purpose, we focus on clusters of size three.

Table 4.1 shows the limit stepsizes of various tuples, and the error rate when segmented

under a uniform stepsize. 5% fidelity points are used, and ε = 1. The scheme is projected

onto the first 100 eigenvectors. It is shown here that they are still segmented around the

same stepsize.

Tuples {4,6,7} {3,5,8} {1,0,9} {0,6,1} {2,7,1}

Max dt 0.5823 0.5914 0.5716 0.5701 0.5755

Correct (dt=0.5) 97.98% 97.58% 96.00% 96.36% 98.22%

Table 4.1: Clustering results of MNIST. For each digit, N ≈ 6000. First Row: triplets of

digits to be classified. Second Row: Maximum stepsize for monotonicity. Third Row: Error

rate with a fixed dt that is close to the maximum stepsize.

4.7 Supplementary Proofs

Lemma 4.7.1 (Norm Conversions). Let 1 ≤ p < q ≤ +∞, and ‖u‖p be the vector p-norm

(
∑

i(u(i)p))1/p. Then we have the following inequality between different norms:

‖u‖q ≤ ‖u‖p ≤ ‖u‖qN1/p−1/q.

Proof. The right hand side is by the generalized Holder’s inequality. The left hand side is

by simple power expansion of multinomials.

Lemma 4.3.6. Let S = {u∗0, . . . , u∗n} be the set of finite limit points for the set {uk}. Since

S is finite, choose ε such that the epsilon balls of the points u∗i do not overlap. Choose N

such that for any k ≥ N , we have‖uk+1 − uk‖ < ε
4
. By the definition of a limit point, there

exists n′ > n > N such that un ∈ B(u∗0, ε/2) and un
′ ∈ B(u∗1, ε/2). Since ‖uk+1 − uk‖ < ε

4
,

∃n < k < n′ such that uk is outside an ε/2 neighborhood of S. Since there should be infinitely

many such pairs n and n′, there are infinitely many points outside the ε/2 neighborhood of

S, contradicting to S being the only limit points of the set {uk}.
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Proposition 4.4.8. Recall that when the graph G is connected, the eigenspace of eigenvalue

0 is spanned by the constant vector e = (1, 1, . . . , 1) [Von07]. To prove Proposition 4.4.8, we

first establish a lemma that characterizes the non-constant eigenvectors using symmetries of

the graph.

Lemma 4.7.2. Let L be the unnormalized graph Laplacian defined in Definition 4.4.7. For

any eigenvalue λ > 0 of L, we can always find an eigenvector φ with λ as its eigenvalue such

that φ is in one of the forms below.

1. (a,−a, b,−b, . . . , b,−b), a 6= 0

2. (a, a,− a
N
,− a

N
, . . . ,− a

N
,− a

N
), a =

√
N

2(N+1)
.

3. (0, 0, a,−a, . . . , a,−a), a = 1√
2N

4. (0, 0, a,−a,− a
N−1

, a
N−1

, . . . ,− a
N−1

, a
N−1

), a =
√

N−1
2N

.

5. (0, 0, a, a,− a
N−1

, · · · − a
N−1

), a =
√

N−1
2N

.

Proof. Suppose φ = (a0, ā0, b1, b̄1, . . . , bN , b̄N) with eigenvalue λ > 0. Since e = (1, 1, . . . , 1)

is an eigenvector of L with eigenvalue 0, we have 〈φ, e〉 = 0, i.e.∑
i

φ(i) = 0.

Define the eigenspace of engenvalue λ as Vλ. Since the graph is invariant under reflection and

permutation of the nodes in the cluster, Vλ is also invariant under these actions. Namely,

define

R(φ) = (ā0, a0, b̄1, b1, . . . , b̄N , bN), (4.48)

σ(φ) = (a0, ā0, bσ(1), b̄σ(1), . . . , bσ(N), b̄σ(N)), (4.49)

where σ is any permutation of 1, . . . , N , then R(φ) and σ(φ) are also eigenvectors of L with

eigenvalue λ.

Let

ξ0 =
1

N

∑
σ∈C(1,N)

σ(φ) = (a0, ā0, b∗, b̄∗, . . . , b∗, b̄∗),
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where C(1, N) is the cyclic permutation group of index 1, . . . N , and b∗ =
∑

(bi)/N . Then

either ξ0 6= 0 ∈ Vλ, or ξ0 = (0, 0, . . . 0). We discuss each case seperately.

Case 1:(ξ0 6= 0) Denote ξ0 = (a, ā, b, b̄, . . . , b, b̄). Define ξ1 = 1
2
(ξ0 + R(ξ0)). By the same

reasoning, either ξ1 = 0 or ξ1 6= 0 ∈ Vλ. ξ1 = 0 implies a = −ā, b = −b̄, and ξ0 is of the

form 1. If ξ1 6= 0 ∈ Vλ, ξ1 is of the form (a, a, b, b, . . . , b, b). Eliminating b the equation∑
i ξ1(i) = 0 and normalizing, ξ1 is of form 2.

Case 2:(ξ0 = 0) Since a0 = 0, ā0 = 0, φ = (0, 0, b1, b̄1, . . . , bN , b̄N). Since φ0 6= 0, we can

WLOG assume b1 or b̄1 6= 0. Let

ξ1 =
1

N − 1

∑
σ∈C(2,N)

σ(φ) := (0, 0, a, ā, b, b̄, . . . , b, b̄),

where C(2, N) is the cyclic permutation group from 2, . . . , N . ξ1 6= 0 since b1, b̄1 are not all

zero. Let ξ2 = 1
2
(ξ1 +R(ξ1)). If ξ2 = 0, a = −ā, b = −b̄. Define

ξ3 =
1

N

∑
σ∈C(1,N)

σ(ξ1) = (0, 0,
a+ (N − 1)b

N
,−a+ (N − 1)b

N
, . . . ) (4.50)

Then ξ3 6= 0 gives form 3 with a = 0, and ξ3 = 0 implies ξ1 is of form 4. Finally, ξ2 6= 0 and

〈e, ξ2〉 = 0 gives ξ2 is of form 5.

To prove Proposition 4.4.8, we will show that for the particular weights we have chosen,

the minimum Dirichelet energy 1
2
〈u, Lu〉 for the vector forms 1-5 are ordered by 2 < 1 <

3 < 4, 5, and justify that the vector in form 2 and some vector in form 1 are the second and

third engenvectors respectively.

Define γ as in Definition 4.4.7. Recall the variational formulation of the second eigenvec-

tor

arg min
u

Dir(u) = 〈u, Lu〉 s.t. 〈u, e〉 = 0, ‖u‖2 = 1. (4.51)

First, we define χ1
∗ to be the minimizer of (4.51) under the additional constraint χ1

∗ =

(a,−a, b,−b, . . . , b,−b). We are not claiming that χ1
∗ is an eigenvector under this definition

now, but will show this afterwards. Writing in terms of a and b, and using the relation

1

2
〈u, Lu〉 = wij(u(i)− u(j))2,
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we have (4.51) is equivalent with

min
a,b

F (a, b) =(b− a)2 + 2Nγb2,

s.t. a2 +Nb2 = 1/2.

(4.52)

Let k be the Lagrange multiplier, the optimality condition is
a = (1 + 2Nγ + kN)b,

b = (1 + k)a,

1/2 = a2 +Nb2

(4.53)

k2 + (
1

N
+ 3γ + 1)k + 2γ = 0. (4.54)

Solving k for γ = (1−1/
√
N)(2+1/N−1/

√
N)

1−3
√
N

, we have k = 1√
N
− 1, and a =

√
Nb. Hence ξ1

∗

is equal to the vector φ3 defined on (4.44). Let the χ1 = χ1
∗, and χi, i ≥ 2 be the vectors

2-5 in Lemma 4.7.2. We will find the second eigenvector φ2 by evaluating the Dirichelet

energy 〈χi, Lχi〉 for χ1 to χ5. Note that since φ2 is an eigenvector, we can WLOG assume

φ2 to be in one of χi. Computing the Dirichelet energy, we have Dir(χ1) = 1.5 + o(1),

Dir(χ2) = 1 + o(1), Dir(χ3) = 5 + o(1), Dir(χ4) = 50 + o(1), Dir(χ5) = 50 + o(1), and that

all the vectors χi are in the feasible set 〈χi, e〉 = 0.

This implies χ2 is the unique second eigenvector of L for N large. Since 〈χ1
∗, χ

2〉 = 0, χ1
∗

is the third eigenvector of L since it has the next smallest Dirichelet energy.

Proposition 4.7.3. Define the set

M = {u ∈ RN | ‖u‖∞ ≤ 1,max
Pm
‖Pmu‖∞ ≥ C

√
N },

where Pm is any projection operator onto a subspace, and 0 < C < 1. Then the volume(with

respect to the standard L2 metric in RN) of the set M decreases exponentially with respect

to the number of dimensions N .

The proposition shows that if u were sampled uniformly from a unit cube, then the prob-

ability of some projection Pm expanding the max norm by a factor of O(
√
N) is exponentially

decreasing.
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Figure 4.8: Illustration of Proposition 4.7.3. S is one of the “caps” that vn resides in. un

and vn have angle less than θ.

Proof. Let u ∈ M . Then by definition of the set M , ∃ some projection Pm such that

‖Pmu‖∞ ≥ C
√
N . Define v := Pmu and vn := v

‖v‖2 . Define un := u
‖u‖2 . Since vn is the

projected direction of u, Pmu = 〈u, vn〉vn. Then we have

C
√
N ≤ ‖Pmu‖∞ = 〈u, vn〉‖vn‖∞ = ‖u‖2‖vn‖∞〈un, vn〉.

Since ‖u‖2 ≤
√
N , we have

‖vn‖∞〈un, vn〉 ≥ C. (4.55)

Since 〈un, vn〉 ≤ 1, the projected direction vn must be in the set S = {v | ‖v‖2 =

1, ‖v‖∞ ≥ C}. However, the set S contains the N “caps” of a unit sphere (see Fig.4.8), and

hence is exponentially decreasing in volume with respect to the sphere. On the other hand,

since ‖vn‖∞ ≤ 1, by (4.55) we have 〈un, vn〉 ≥ C, and thus u lies in a cone K(vn) with angle

cos(θ) ≥ C. Hence u ∈ Kv + N , and since cones Kv have volume exponentially decreasing

with respect to N as well, we have V ol(M) is exponentially decreasing with respect to N .
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CHAPTER 5

Graph-based Uncertainty Quantification

5.1 The Bayesian framework

In this chapter, we introduce a Bayesian framework for quantifying uncertainty on graph-

based learning, and develop efficient algorithms for inference. Note that most graph-based

learning methods could be written as an optimization of the form

min
w

J(w) =
1

2
〈w,Pw〉+ Φ(w),

where P is a power of the graph Laplacian L. There are various choices of the graph Lapla-

cian, as discussed in the introduction. One can refer to [BF12, Von07] for a full discussion.

We will work exclusively with the normalized Laplacian, defined as

L = I −D−1/2AD−1/2, (5.1)

We define {λj} to the the eigenvalues of the Laplacian L in sorted order, and {qj} be the

corresponding eigenvectors, i.e.,

λ0 ≤ λ1 ≤ · · · ≤ λN−1 ≤ λmax <∞, 〈qj, qk〉 = δjk. (5.2)

The eigenvector corresponding to λ0 = 0 is q0 = D
1
2 I and λ1 > 0, assuming a fully

connected graph. Then L = QΛQ∗ where Q has columns {qk}N−1
k=0 and Λ is a diagonal

matrix with entries {λk}N−1
k=0 . Using these eigenpairs the graph Dirichlet energy can be

written as
1

2
〈u, Lu〉 =

1

2

N−1∑
j=1

λj(〈u, qj〉)2; (5.3)

this is analogous to decomposing the classical Dirichlet energy using Fourier analysis. The

classical Dirichlet energy penalizes non-smooth functions over the continuous domain, and
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similar conclusions also hold on the graph domain as well. In the next section, we will

define a Gaussian prior measure based on the graph Dirichlet energy that is biased towards

smoother functions on the graph.

5.1.1 Gaussian Prior Measure

We now show how to build a Gaussian distribution with negative log density proportional

to J0(u). Such a Gaussian prefers functions that have larger components on the first few

eigenvectors of the graph Laplacian, where the eigenvalues of L are smaller. The correspond-

ing eigenvectors carry rich geometric information about the weighted graph. For example,

the second eigenvector of L is the Fiedler vector and solves a relaxed normalized min-cut

problem [Von07, HK04]. The Gaussian distribution thereby connects geometric intuition

embedded within the graph Laplacian to a natural probabilistic picture.

To make this connection concrete we define diagonal matrix Σ with entries defined by

the vector

(0, λ−1
1 , · · · , λ−1

N−1)

and define the positive semi-definite covariance matrix C = cQΣQ∗; choice of the scaling c

will be discussed below. We let µ0 := N (0, C). Note that the covariance matrix is that of

a Gaussian with variance proportional to λ−1
j in direction qj thereby leading to structures

which are more likely to favour the Fiedler vector (j = 1), and lower values of j in general,

than it does for higher values. The fact that the first eigenvalue of C is zero ensures that any

draw from µ0 changes sign, because it will be orthogonal to q0.
1 To make this intuition explicit

we recall the Karhunen-Loeve expansion which constructs a sample u from the Gaussian µ0

according to the random sum

u = c
1
2

N−1∑
j=1

λ
− 1

2
j qjzj, (5.4)

where the {zj} are i.i.d. N (0, 1). Equation (5.2) thus implies that 〈u, q0〉 = 0.

We choose the constant of proportionality c as a rescaling which enforces the property

1Other treatments of the first eigenvalue are possible and may be useful but for simplicity of exposition
we do not consider them in the scope of this chapter.
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E|u|2 = N for u ∼ µ0 := N (0, C); in words the per-node variance is 1. Note that, using the

orthogonality of the {qj},

E|u|2 = c
N−1∑
j=1

λ−1
j Ez2

j = c

N−1∑
j=1

λ−1
j =⇒ c = N

(N−1∑
j=1

λ−1
j

)−1

. (5.5)

We reiterate that the support of the measure µ0 is the space U := q⊥0 = span{q1, · · · , qN−1}

and that, on this space, the probability density function is proportional to

exp
(
−c−1J0(u)

)
= exp

(
− 1

2c
〈u, Lu〉

)
,

so that the precision matrix of the Gaussian is P = c−1L. In what follows the sign of u will

be related to the classification; since all the entries of q0 are positive, working on the space

U ensures a sign change in u, and hence a non-trivial classification.

5.1.2 Extension to the Ginzburg-Landau Prior

The Gaussian measure discussed in the section above can be extended to non-Gaussian

cases as well. We discuss one such possibility by introducing the Ginzburg-Landau prior, a

measure that pushes values close to the binary labels {−1, 1}.

Let µ0 be the prior Gaussian measure defined in the section above. We define a measure

ν0 such that
dν0

dµ0

(v) ∝ e−
∑
j∈ZWε(v(j)). (5.6)

We name ν0 the Ginzburg-Landau measure, since the negative log density function of ν0 is

the graph Ginzburg-Landau functional

GL(v) :=
1

2c
〈v, Lv〉+

∑
j∈Z

Wε(v(j)). (5.7)

The motivation for considering such a measure is the following: For the models considered

in this chapter, the label space of the problem is discrete while the latent variable u through

which we will capture the correlations amongst nodes of the graph, encoded in the feature

vectors, is real-valued. Ginzburg-Landau allows for a smooth relaxation of thresholding

that is tighter than relaxing the domain of u to the entire real line. We make precise this

connection in the paragraphs below.
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Define the (signum) function S : R 7→ {−1, 1} by

S(u) = 1, u ≥ 0 and S(u) = −1, u < 0.

The function S may be relaxed by defining Sε(u) = v|t=1 where v solves the gradient flow

v̇ = −∇Wε(v), v|t=0 = u for potential Wε(v) =
1

4ε
(v2 − 1)2.

Note that Sε(·)→ S(·), pointwise, as ε→ 0, on R\{0}. This reflects the fact that the gradient

flow minimizes Wε, asymptotically as t→∞, whenever started on R\{0}.

We have introduced a Gaussian measure µ0 on the latent variable u which lies in U ⊂ RN ;

we now want to introduce two ways of constructing non-Gaussian measures on the label space

{−1, 1}N , or on real-valued relaxations of label space, building on the measure µ0. The first

is to consider the push-forward of measure µ0 under the map S: S]µ0. When applied to a

sequence l : Z 7→ {−1, 1}N this gives(
S]µ0

)
(l) = µ0

(
{u|S(u(j)) = l(j),∀1 ≤ j ≤ N}

)
,

recalling that N is the cardinality of Z. The definition is readily extended to components

of l defined only on subsets of Z. Thus S]µ0 is a measure on the label space {−1, 1}N . The

second approach is to work with a change of measure from the Gaussian µ0 in such a way

that the probability mass on U ⊂ RN concentrates close to the label space {−1, 1}N . We

may achieve this by defining the measure ν0 via its Radon-Nykodim derivative

dν0

dµ0

(v) ∝ e−
∑
j∈ZWε(v(j)), (5.8)

which is exactly the Ginzburg-Landau measure. The Ginzburg-Landau distribution defined

by ν0 can be interpreted as a non-convex ground relaxation of the discrete MRF model [Zhu],

in contrast to the convex relaxation which is the Gaussian Field [ZGL03]. Since the double

well has minima at the label values {−1, 1}, the probability mass of ν0 is concentrated near

the modes ±1, and ε controls this concentration effect.

5.1.3 Likelihood Function and Model

In any Bayesian framework, a likelihood function must be chosen to link the data y to the

prior. The choice of which Bayesian likelihood to use is related to the data itself, and making

58



this choice is beyond the scope of our discussion. Currently the choice must be addressed

on a case by case basis, as is done when choosing an optimization method for classification.

Nonetheless we will demonstrate that the shared structure of many of these likelihood means

that a common algorithmic framework can be adopted and we will make some conclusions

about the relative costs of applying this framework to the models.

In Figure 5.1 we plot the component of the negative log likelihood at a labelled node j,

as a function of the latent variable u = u(j) with data y = y(j) fixed, for the probit and

Bayesian level-set models. The log likelihood for the Ginzburg-Landau formulation is not

directly comparable as it is a function of the relaxed label variable v(j), with respect to

which it is quadratic with minimum at the data point y(j).

Figure 5.1: Plot of a component of the negative log likelihood for a fixed node j. We set

γ = 1/
√

2 for probit and Bayesian level-set. Since Φ(u(j); 1) = Φ(−u(j);−1) for probit and

Bayesian level-set, we omit the plot for y(j) = −1.

We denote the latent variable by u(j), j ∈ Z, the thresholded value of u(j) by l(j) =

S(u(j)) which is interpreted as the label assignment at each node j, and noisy observations

of the binary labels by y(j), j ∈ Z ′. The variable v(j) will be used to denote the real-

valued relaxation of l(j) used for the Ginzburg-Landau model. Recall Bayes formula which

transforms a prior density P(u) on a random variable u into a posterior density P(u|y) on

the conditional random variable u|y:

P(u|y) =
1

P(y)
P(y|u)P(u).

We will now apply this formula to condition our graph latent variable u, whose thresholded

values correspond to labels, on the noisy label data y given at Z ′. As prior on u we will
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always use P(u)du = µ0(du); we will describe two different likelihoods. We will also apply

the formula to condition relaxed label variable v, on the same label data y, via the formula

P(v|y) =
1

P(y)
P(y|v)P(v).

We will use as prior the non-Gaussian P(v)dv = ν0(dv). The probit and Bayesian level-set

models lead to posterior distributions µ (with different subscripts) in latent variable space,

and pushforwards under S, denoted ν (also with different subscripts), in label space. The

Ginzburg-Landau formulation leads to a measure ν in (relaxed) label space.

In the sections below, we will state the prior, likelihood, and MAP estimator for three

Bayesian models considered in this chapter.

5.1.3.1 Probit

The probit method is designed for classification and is described in [WR96]. In that context

Gaussian process priors are used and, unlike the graph Laplacian construction used here, do

not depend on the unlabel data. Combining Gaussian process priors and graph Laplacian

priors was suggested and studied in [BNS06,SBN06,LP11]. A recent fully Bayesian treatment

of the methodology using unweighted graph Laplacians may be found in the paper [HZ16].

In detail our model is as follows.

Prior We take as prior on u the Gaussian µ0. Thus

P(u) ∝ exp
(
−1

2
〈u, Pu〉

)
.

Likelihood For any j ∈ Z ′

y(j) = S
(
u(j) + η(j)

)
with the η(j) drawn i.i.d from N (0, γ2). We let

Ψ(v; γ) =
1√

2πγ2

∫ v

−∞
exp

(
− t2/2γ2

)
dt,

the cumulative distribution function (cdf) of N (0, γ2), and note that then

P
(
y(j) = 1|u(j)

)
= P

(
N (0, γ2) > −u(j)

)
= Ψ(u(j); γ) = Ψ(y(j)u(j); γ);
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similarly

P
(
y(j) = −1|u(j)

)
= P

(
N (0, γ2) < −u(j)

)
= Ψ(−u(j); γ) = Ψ(y(j)u(j); γ).

Posterior Bayes’ Theorem gives posterior µp with probability density function (pdf)

Pp(u|y) ∝ exp
(
−1

2
〈u, Pu〉 − Φp(u; y)

)
where

Φp(u; y) := −
∑
j∈Z′

log
(
Ψ(y(j)u(j); γ)

)
.

We let νp denote the push-forward under S of µp : νp = S]µp.

MAP Estimator This is the minimizer of the negative of the log posterior. Thus we

minimize the following objective function over U :

Jp(u) =
1

2
〈u, Pu〉 −

∑
j∈Z′

log
(

Ψ(y(j)u(j); γ)
)
.

This is a convex function, a fact which is well-known in related contexts, but which we

state and prove in Proposition 1 Section 2 of the supplementary materials for the sake

of completeness. In view of the close relationship between this problem and the level-set

formulation described next, for which there are no minimizers, we expect that minimization

may not be entirely straightforward in the γ � 1 limit. This is manifested in the presence

of near-flat regions in the probit log likelihood function when γ � 1.

Our variant on the probit methodology differs from that in [HZ16] in several ways: (i)

our prior Gaussian is scaled to have per-node variance one, whilst in [HZ16] the per node

variance is a hyper-parameter to be determined; (ii) our prior is supported on U = q⊥0 whilst

in [HZ16] the prior precision is found by shifting L and taking a possibly fractional power

of the resulting matrix, resulting in support on the whole of RN ; (iii) we allow for a scale

parameter γ in the observational noise, whilst in [HZ16] the parameter γ = 1.

5.1.3.2 Level-Set

This method is designed for problems considerably more general than classification on a

graph [ILS15]. For the current application, this model is exactly the same as probit except
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for the order in which the noise η(j) and the thresholding function S(u) is applied in the

definition of the data. Thus we again take as Prior for u, the Gaussian µ0. Then we have:

Likelihood For any j ∈ Z ′

y(j) = S
(
u(j)

)
+ η(j)

with the η(j) drawn i.i.d from N (0, γ2). Then

P
(
y(j)|u(j)

)
∝ exp

(
− 1

2γ2
|y(j)− S

(
(u(j)

)
|2
)
.

Posterior Bayes’ Theorem gives posterior µls with pdf

Pls(u|y) ∝ exp
(
−1

2
〈u, Pu〉 − Φls(u; y)

)
where

Φls(u; y) =
∑
j∈Z′

( 1

2γ2
|y(j)− S

(
u(j)

)
|2
)
.

We let νls denote the pushforward under S of µls : νls = S]µls.

MAP Estimator Functional The negative of the log posterior is, in this case, given by

Jls(u) =
1

2
〈u, Pu〉+ Φls(u; y).

However, unlike the probit model, the Bayesian level-set method has no MAP estimator

– the infimum of Jls is not attained and this may be seen by noting that, if the infumum

was attained at any non-zero point u? then εu? would reduce the objective function for any

ε ∈ (0, 1); however the point u? = 0 does not attain the infimum. This proof is detailed

in [ILS15] for a closely related PDE based model, and the proof is easily adapted.

5.1.3.3 Ginzburg-Landau

For this model, we take as prior the Ginzburg-Landau measure ν0 defined by (5.6), and

employ a Gaussian likelihood for the observed labels. This construction gives the Bayesian

posterior whose MAP estimator is the objective function introduced and studied in [BF12].

Prior We define prior on v to be the Ginzburg-Landau measure ν0 given by (5.6) with

density

P(v) ∝ e−GL(v).
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Likelihood For any j ∈ Z ′

y(j) = v(j) + η(j)

with the η(j) drawn i.i.d from N (0, γ2). Then

P
(
y(j)|v(j)

)
∝ exp

(
− 1

2γ2
|y(j)− v(j)|2

)
.

Posterior Recalling that P = c−1L we see that Bayes’ Theorem gives posterior νgl with pdf

Pgl(v|y) ∝ exp
(
−1

2
〈v, Pv〉 − Φgl(v; y)

)
,

Φgl(v; y) :=
∑
j∈Z

Wε

(
v(j)

)
+
∑
j∈Z′

( 1

2γ2
|y(j)− v(j)|2

))
.

MAP Estimator This is the minimizer of the negative of the log posterior. Thus we

minimize the following objective function over U :

Jgl(v) =
1

2
〈v, Pv〉+ Φgl(v; y).

This objective function was introduced in [BF12] as a relaxation of the min-cut problem, pe-

nalized by data; the relationship to min-cut was studied rigorously in [VB12]. The minimiza-

tion problem for Jgl is non-convex and has multiple minimizers, reflecting the combinatorial

character of the min-cut problem of which it is a relaxation.

5.1.4 Uncertainty Quantification for Graph Based Learning

Uncertainty quantification for semi-supervised learning is concerned with completely char-

acterizing these posterior distributions. In practice this may be achieved by sampling using

MCMC methods. In this section we will numerically study four measures of uncertainty:

• The empirical pdfs of the latent and label variables at certain nodes;

• The posterior mean of the label variables at certain nodes;

• The posterior variance of the label variables averaged over all nodes;

• The posterior mean or variance to order nodes into those whose classifications are most

uncertain and those which are most certain.
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For the probit and Bayesian level-set models we interpret the thresholded variable l =

S(u) as the binary label assignments corresponding to a real-valued configuration u; for

Ginzburg-Landau we may simply take l = v as the model is posed on (relaxed) label space.

The node-wise posterior mean of l can be used as a useful confidence score of the class

assignment of each node. The node-wise posterior mean slj is defined as

slj := Eν(l(j)), (5.9)

with respect to any of the posterior measures ν in label space. Note that for probit and

Bayesian level set l(j) is a binary random variable taking values in {±1} and we have

slj ∈ [−1, 1]. In this case if q = ν(l(j) = 1) then q = 1
2
(1 + slj). Furthermore

Varν(l(j)) = 4q(1− q) = 1− (slj)
2.

Later we will find it useful to consider the variance averaged over all nodes and hence define2

Var(l) =
1

N

N∑
j=1

Varν(l(j)). (5.10)

Note that the maximum value obtained by Var(l) is 1. This maximum value is attained under

the Gaussian prior µ0 that we use in this chapter. The deviation from this maximum under

the posterior is a measure of the information content of the labelled data. Note, however,

that the prior does contain information about classifications, in the form of correlations

between vertices; this is not captured in (5.10).

5.2 MCMC Algorithms

From Section 5.1.3, we see that for all of the models considered, the posterior P(w|y) has

the form

P(w|y) ∝ exp
(
−J(w)

)
, J(w) =

1

2
〈w,Pw〉+ Φ(w))

for some function Φ, different for each of the three models (acknowledging that in the

Ginzburg-Landau case the independent variable is w = v, real-valued relaxation of label

2Strictly speaking Var(l) = N−1Tr
(
Cov(l)

)
.
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space, whereas for the other models w = u an underlying latent variable which may be

thresholded by S(·) into label space.) The sampler we employ does not use information

about the gradient of Φ; the MAP estimation algorithm does, but is only employed on

the Ginzburg-Landau and probit models. Both sampling and optimization algorithms use

spectral properties of the precision matrix P , which is proportional to the graph Laplacian

L.

Broadly speaking there are two strong competitors as samplers for this problem: Metropolis-

Hastings based methods, and Gibbs based samplers. In this chapter we focus entirely on

Metropolis-Hastings methods as they may be used on all three models considered here. In

order to induce scalability with respect to size of Z we use the preconditioned Crank-Nicolson

(pCN) method described in [CRS13] and introduced in the context of diffusions by Beskos

et. al. in [BRS08] and by Neal in the context of machine learning [Nea]. The method is also

robust with respect to the small noise limit γ → 0 in which the label data is perfect. The

pCN based approach is compared with Gibbs like methods for probit, to which they both

apply, in [A 18]; both large data sets N →∞ and small noise γ → 0 limits are considered.

5.2.1 pCN

The standard random walk Metropolis (RWM) algorithm suffers from the fact that the opti-

mal proposal variance or stepsize scales inverse proportionally to the dimension of the state

space [RGG97], which is the graph size N in this case. The pCN method is designed so that

the proposal variance required to obtain a given acceptance probability scales independently

of the dimension of the state space (here the number of graph nodes N), hence in practice

giving faster convergence of the MCMC when compared with RWM [BRS09]. We restate

the pCN method as Algorithm 2, and then follow with various variants on it in Algorithms 3

and 4. In all three algorithms β ∈ [0, 1] is the key parameter which determines the efficiency

of the MCMC method: small β leads to high acceptance probability but small moves; large

β leads to low acceptance probability and large moves. Somewhere between these extremes

is an optimal choice of β which minimizes the asymptotic variance of the algorithm when
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applied to compute a given expectation.

Algorithm 2 pCN Algorithm

1: Input: L. Φ(u). u(0) ∈ U .

2: Output: M Approximate samples from the posterior distribution

3: Define: α(u,w) = min{1, exp(Φ(u)− Φ(w)}.

4: while k < M do

5: w(k) =
√

1− β2u(k) + βξ(k), where ξ(k) ∼ N (0, C) via equation (5.11).

6: Calculate acceptance probability α(u(k), w(k)).

7: Accept w(k) as u(k+1) with probability α(u(k), w(k)), otherwise u(k+1) = u(k).

8: end while

The value ξ(k) is a sample from the prior µ0. If the eigenvalues and eigenvectors of L are

all known then the Karhunen-Loeve expansion (5.11) gives

ξ(k) = c
1
2

N−1∑
j=1

λ
− 1

2
j qjzj, (5.11)

where c is given by (5.5), the zj, j = 1 . . . N − 1 are i.i.d centred unit Gaussians and the

equality is in law.

5.2.2 Low Rank Approximations of the Graph Laplacian

For graphs with a large number of nodes N , it is prohibitively costly to directly sample from

the distribution µ0, since doing so involves knowledge of a complete eigen-decomposition of

L, in order to employ (5.11). We discuss two strategies below to lower the computational

overhead of computing the entire spectral decomposition of the graph Laplacian L.

5.2.2.1 Spectral Truncation

A method that is frequently used in classification tasks is to restrict the support of u to the

eigenspace spanned by the first ` eigenvectors with the smallest non-zero eigenvalues of L

(hence largest precision) and this idea may be used to approximate the pCN method; this
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leads to a low rank approximation. In particular we approximate samples from µ0 by

ξ
(k)
` = c

1
2
`

`−1∑
j=1

λ
− 1

2
j qjzj, (5.12)

where c` is given by (5.5) truncated after j = ` − 1, the zj are i.i.d centred unit Gaussians

and the equality is in law. This is a sample from N (0, C`) where C` = c`QΣ`Q
∗ and the

diagonal entries of Σ` are set to zero for the entries after `. In practice, to implement this

algorithm, it is only necessary to compute the first ` eigenvectors of the graph Laplacian L.

This gives Algorithm 3.

Algorithm 3 pCN Algorithm With Spectral Projection

1: Input: L. Φ(u). u(0) ∈ U .

2: Output: M Approximate samples from the posterior distribution

3: Define: α(u,w) = min{1, exp(Φ(u)− Φ(w)}.

4: while k < M do

5: w(k) =
√

1− β2u(k) + βξ
(k)
` , where ξ

(k)
` ∼ N (0, C`) via equation (5.12).

6: Calculate acceptance probability α(u(k), w(k)).

7: Accept w(k) as u(k+1) with probability α(u(k), w(k)), otherwise u(k+1) = u(k).

8: end while

5.2.2.2 Spectral Approximation

Spectral projection often leads to good classification results, but may lead to reduced pos-

terior variance and a posterior distribution that is overly smooth on the graph domain. We

propose an improvement on the method that preserves the variability of the posterior dis-

tribution but still only involves calculating the first ` eigenvectors of L. This is based on the

empirical observation that in many applications the spectrum of L saturates and satisfies,

for j ≥ `, λj ≈ λ̄ for some λ̄. Such behaviour may be observed in b), c) and d) of Figure

5.2; in particular note that in the hyperspectal case ` � N . We assume such behaviour in

deriving the low rank approximation used in this subsection. (See supplementary materials

for a detailed discussion of the graph Laplacian spectrum.) We define Σ`,o by overwriting
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the diagonal entries of Σ from ` to N − 1 with λ̄−1. We then set C`,o = c`,oQΣ`,oQ
∗, and

generate samples from N (0, C`,o) (which are approximate samples from µ0) by setting

ξ
(k)
`,o = c

1
2
`,o

`−1∑
j=1

λ
− 1

2
j qjzj + c

1
2
`,oλ̄

− 1
2

N−1∑
j=`

qjzj, (5.13)

where c`,o is given by (5.5) with λj replaced by λ̄ for j ≥ `, the {zj} are centred unit

Gaussians, and the equality is in law. Importantly samples according to (5.13) can be

computed very efficiently. In particular there is no need to compute qj for j ≥ `, and

the quantity
∑N−1

j=` qjzj can be computed by first taking a sample z̄ ∼ N (0, IN), and then

projecting z̄ onto U` := span(q`, . . . , qN−1). Moreover, projection onto U` can be computed

only using {q1, . . . , q`−1}, since the vectors span the orthogonal complement of U`. Concretely,

we have
N−1∑
j=`

qjzj = z̄ −
`−1∑
j=1

qj〈qj, z̄〉,

where z̄ ∼ N (0, IN) and equality is in law. Hence the samples ξ
(k)
`,o can be computed by

ξ
(k)
`,o = c

1
2
`,o

`−1∑
j=1

λ
− 1

2
j qjzj + c

1
2
`,oλ̄

− 1
2

(
z̄ −

`−1∑
j=1

qj〈qj, z̄〉
)
. (5.14)

The vector ξ
(k)
`,o is a sample from N (0, C`,o) and results in Algorithm 4. Under the stated

empirical properties of the graph Laplacian, we expect this to be a better approximation of

the prior covariance structure than the approximation of the previous subsection.

(a) MNIST49 (b) Two Moons (c) Hyperspectral (d) Voting Records

Figure 5.2: Spectra of graph Laplacian of various datasets. See Sec.5.3 for the description

of the datsets and graph construction parameters. The y−axis are the eigenvalues and the

x−axis the index of ordering
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Algorithm 4 pCN Algorithm With Spectral Approximation

1: Input: L. Φ(u). u(0) ∈ U .

2: Output: M Approximate samples from the posterior distribution

3: Define: α(u,w) = min{1, exp(Φ(u)− Φ(w)}.

4: while k < M do

5: w(k) =
√

1− β2u(k) + βξ
(k)
`,o , where ξ

(k)
`,o ∼ N (0, C`,o) via equation (5.14).

6: Calculate acceptance probability α(u(k), w(k)).

7: Accept w(k) as u(k+1) with probability α(u(k), w(k)), otherwise u(k+1) = u(k).

8: end while

5.3 Numerical Experiments

In this section we conduct a series of numerical experiments on four different data sets

that are representative of the field of graph semi-supervised learning. There are three main

purposes for the experiments. First we perform uncertainty quantification, as explained in

subsection 5.1.4. Secondly, we study the spectral approximation and projection variants

on pCN sampling as these scale well to massive graphs. Finally we make some observa-

tions about the cost and practical implementation details of these methods, for the different

Bayesian models we adopt; these will help guide the reader in making choices about which al-

gorithm to use. We present the results for MAP estimation in Section 2 of the supplementary

materials, alongside the proof of convexity of the probit MAP estimator.

The quality of the graph constructed from the feature vectors is central to the performance

of any graph learning algorithms. In the experiments below, we follow the graph construction

procedures used in the previous works. [BF12, HSB15, MKB13] which applied graph semi-

supervised learning to all of the datasets that we consider in this chapter. Moreover, we have

verified that for all the reported experiments below, the graph parameters are in a range

such that spectral clustering [Von07] (an unsupervised learning method) gives a reasonable

performance. The methods we employ lead to refinements over spectral clustering (improved

classification) and, of course, to uncertainty quantification (which spectral clustering does

not address).
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5.3.1 Data Sets

We introduce the data sets and describe the graph construction for each data set. In all

cases we numerically construct the weight matrix A, and then the graph Laplacian L.3

5.3.1.1 Two Moons

The two moons artificial data set is constructed to give noisy data which lies near a nonlinear

low dimensional manifold embedded in a high dimensional space [BH09]. The data set is

constructed by sampling N data points uniformly from two semi-circles centered at (0, 0) and

(1, 0.5) with radius 1, embedding the data in Rd, and adding Gaussian noise with standard

deviation σ. We set N = 2, 000 and d = 100 in this chapter; recall that the graph size is N

and each feature vector has length d. We will conduct a variety of experiments with different

labelled data size J , and in particular study variation with J . The default value, when not

varied, is J at 3% of N , with the labelled points chosen at random.

We take each data point as a node on the graph, and construct a fully connected graph

using the self-tuning weights of Zelnik-Manor and Perona [ZP04], with K = 10. Specifically

we let xi, xj be the coordinates of the data points i and j. Then weight aij between nodes i

and j is defined by

aij = exp
(
−‖xi − xj‖

2

2τiτj

)
, (5.15)

where τj is the distance of the K-th closest point to the node j.

5.3.1.2 House Voting Records from 1984

This dataset contains the voting records of 435 U.S. House of Representatives; for details

see [BF12] and the references therein. The votes were recorded in 1984 from the 98th United

States Congress, 2nd session. The votes for each individual is vectorized by mapping a yes

vote to 1, a no vote to −1, and an abstention/no-show to 0. The data set contains 16 votes

3The weight matrix A is symmetric in theory; in practice we find that symmetrizing via the map A 7→
1
2A+ 1

2A
∗ is helpful.
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that are believed to be well-correlated with partisanship, and we use only these votes as

feature vectors for constructing the graph. Thus the graph size is N = 435, and feature

vectors have length d = 16. The goal is to predict the party affiliation of each individual,

given a small number of known affiliations (labels). We pick 3 Democrats and 2 Republicans

at random to use as the observed class labels; thus J = 5 corresponding to less than 1.2%

of fidelity (i.e. labelled) points. We construct a fully connected graph with weights given by

(5.15) with τj = τ = 1.25 for all nodes j.

5.3.1.3 MNIST

The MNIST database consists of 70, 000 images of size 28× 28 pixels containing the hand-

written digits 0 through 9; see [LC98] for details. Since in this chapter we focus on binary

classification, we only consider pairs of digits. To speed up calculations, we subsample ran-

domly 2, 000 images from each digit to form a graph with N = 4, 000 nodes; we use this for all

our experiments except in subsection 5.3.4 where we use the full data set of size N = O(104)

for digit pair (4, 9) to benchmark computational cost. The nodes of the graph are the images

and as feature vectors we project the images onto the leading 50 principal components given

by PCA; thus the feature vectors at each node have length d = 50. We construct a K-nearest

neighbor graph with K = 20 for each pair of digits considered. Namely, the weights aij are

non-zero if and only if one of i or j is in the K nearest neighbors of the other. The non-zero

weights are set using (5.15) with K = 20.

We choose the four pairs (5, 7), (0, 6), (3, 8) and (4, 9). These four pairs exhibit increasing

levels of difficulty for classification. This fact is demonstrated in Figures 5.3a - 5.3d, where

we visualize the datasets by projecting the dataset onto the second and third eigenvector

of the graph Laplacian. Namely, each node i is mapped to the point (Q(2, i), Q(3, i)) ∈ R2,

where L = QΛQ∗.
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(a) (4, 9) (b) (3, 8) (c) (0, 6) (d) (5, 7)

Figure 5.3: Visualization of data by projection onto 2nd and 3rd eigenfuctions of the graph

Laplacian for the MNIST data set, where the vertical dimension is the 3rd eigenvector and

the horizontal dimension the 2nd. Each subfigure represents a different pair of digits. We

construct a 20 nearest neighbour graph under the Zelnik-Manor and Perona scaling [ZP04]

as in (5.15) with K = 20.

5.3.1.4 HyperSpectral Image

The hyperspectral data set analysed for this project was provided by the Applied Physics

Laboratory at Johns Hopkins University; see [BLC11] for details. It consists of a series

of video sequences recording the release of chemical plumes taken at the Dugway Proving

Ground. Each layer in the spectral dimension depicts a particular frequency starting at

7, 830 nm and ending with 11, 700 nm, with a channel spacing of 30 nm, giving 129 channels;

thus the feature vector has length d = 129. The spatial dimension of each frame is 128× 320

pixels. We select 7 frames from the video sequence as the input data, and consider each

spatial pixel as a node on the graph. Thus the graph size is N = 128× 320× 7 = 286, 720.

Note that time-ordering of the data is ignored. The classification problem is to classify pixels

that represent the chemical plumes against pixels that are the background.

We construct a fully connected graph with weights given by the cosine distance:

wij =
〈xi, xj〉
‖xi‖‖xj‖

.

This distance is small for vectors that point in the same direction, and is insensitive to

their magnitude. We consider the normalized Laplacian defined in (5.1). Because it is

computationally prohibitive to compute eigenvectors of a Laplacian of this size, we apply

the Nyström extension [WS00,FBC04] to obtain an approximation to the true eigenvectors
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and eigenvalues; see [BF12] for details pertinent to the set-up here. We emphasize that each

pixel in the 7 frames is a node on the graph and that, in particular, pixels across the 7

time-frames are also connected. Since we have no ground truth labels for this dataset, we

generate known labels by setting the segmentation results from spectral clustering as ground

truth. The default value of J is 8, 000, and labels are chosen at random. This corresponds

to labelling around 2.8% of the points. We only plot results for the last 3 frames of the video

sequence in order to ensure that the information in the figures it not overwhelmingly large.

5.3.2 Uncertainty Quantification

In this subsection we demonstrate both the feasibility, and value, of uncertainty quantifica-

tion in graph classification methods. We employ the probit and the Bayesian level-set model

for most of the experiments in this subsection; we also employ the Ginzburg-Landau model

but since this can be slow to converge, due to the presence of local minima, it is only demon-

strated on the voting records dataset. The pCN method is used for sampling on various

datasets to demonstrate properties and interpretations of the posterior. In all experiments,

all statistics on the label l are computed under the push-forward posterior measure onto

label space, ν.

5.3.2.1 Posterior Mean as Confidence Scores

We construct the graph from the MNIST (4, 9) dataset following subsection 5.3.1. The

noise variance γ is set to 0.1, and 4% of fidelity points are chosen randomly from each

class. The probit posterior is used to compute (5.9). In Figure 5.4 we demonstrate that

nodes with scores slj closer to the binary ground truth labels ±1 look visually more uniform

than nodes with slj far from those labels. This shows that the posterior mean contains

useful information which differentiates between outliers and inliers that align with human

perception. The scores slj are computed as follows: we let {u(k)}Mk=1 be a set of samples of

the posterior measure obtained from the pCN algorithm. The probability P(S(u(j) = l(j))
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is approximated by

P
(
S(u(j) = l(j)

)
≈ 1

M

M∑
k=1

1u(k)(j)>0

for each j. Finally the score

slj = 2P
(
S(u(j) = l(j)

)
− 1.

(a) Fours in MNIST (b) Nines in MNIST

Figure 5.4: “Hard to classify” vs “easy to classify” nodes in the MNIST (4, 9) dataset under

the probit model. Here the digit “4” is labeled +1 and “9” is labeled -1. The top (bottom)

row of the left column corresponds to images that have the lowest (highest) values of slj

defined in (5.9) among images that have ground truth labels “4”. The right column is

organized in the same way for images with ground truth labels 9 except the top row now

corresponds to the highest values of slj. Higher slj indicates higher confidence that image j

is a 4 and not a “9”, hence the top row could be interpreted as images that are “hard to

classify” by the current model, and vice versa for the bottom row. The graph is constructed

as in Section 5.3, and γ = 0.1, β = 0.3.

5.3.2.2 Posterior Variance as Uncertainty Measure

In this set of experiments, we show that the posterior distribution of the label variable l =

S(u) captures the uncertainty of the classification problem. We use the posterior variance of

l, averaged over all nodes, as a measure of the model variance; specifically formula (5.10). We

study the behaviour of this quantity as we vary the level of uncertainty within certain inputs

to the problem. We demonstrate empirically that the posterior variance is approximately
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monotonic with respect to variations in the levels of uncertainty in the input data, as it should

be; and thus that the posterior variance contains useful information about the classification.

We select quantities that reflect the separability of the classes in the feature space.

Figure 5.5 plots the posterior variance Var(l) against the standard deviation σ of the noise

appearing in the feature vectors for the two moons dataset; thus points generated on the two

semi-circles overlap more as σ increases. We employ a sequence of posterior computations,

using probit and Bayesian level-set, for σ = 0.02 : 0.01 : 0.12. Recall that N = 2, 000 and

we choose 3% of the nodes to have the ground truth labels as observed data. Within both

models, γ is fixed at 0.1. A total of 1 × 104 samples are taken, and the proposal variance

β is set to 0.3. We see that the mean posterior variance increases with σ, as is intuitively

reasonable. Furthermore, because γ is small, probit and Bayesian level-set are very similar

models and this is reflected in the similar quantitative values for uncertainty.

Figure 5.5: Mean Posterior Variance defined in (5.10) versus feature noise σ for the probit

model and the BLS model applied to the Two Moons Dataset with N = 2, 000. For each

trial, a realization of the two moons dataset under the given parameter σ is generated,

where σ is the Gaussian noise on the features defined in Section 5.3.1.1 , and 3% of nodes

are randomly chosen as fidelity. We run 20 trials for each value of σ, and average the mean

posterior variance across the 20 trials in the figure. We set γ = 0.1 and β = 0.3 for both

models.

A similar experiment studies the posterior label variance Var(l) as a function of the pair
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of digits classified within the MNIST data set. We choose 4% of the nodes as labelled data,

and set γ = 0.1. The number of samples employed is 1 × 104 and the proposal variance β

is set to be 0.3. Table 5.3.2.2 shows the posterior label variance. Recall that Figures 5.3a

- 5.3d suggest that the pairs (4, 9), (3, 8), (0, 6), (5, 7) are increasingly easy to separate, and

this is reflected in the decrease of the posterior label variance shown in Table 5.3.2.2.

Digits (4, 9) (3, 8) (0, 6) (5, 7)

probit 0.1485 0.1005 0.0429 0.0084

BLS 0.1280 0.1018 0.0489 0.0121

Table 5.1: Mean Posterior Variance of different digit pairs for the probit model and the BLS

model applied to the MNIST Dataset. The pairs are organized from left to right according

to the separability of the two classes as shown in Fig.5.3a - 5.3d. For each trial, we randomly

select 4% of nodes as fidelity. We run 10 trials for each pairs of digits and average the mean

posterior variance across trials. We set γ = 0.1 and β = 0.3 for both models.

The previous two experiments in this subsection have studied posterior label variance

Var(l) as a function of variation in the prior data. We now turn and study how posterior

variance changes as a function of varying the likelihood information, again for both two

moons and MNIST data sets. In Figures 5.6a and 5.6b, we plot the posterior label vari-

ance against the percentage of nodes observed. We observe that the observational variance

decreases as the amount of labelled data increases. Figures 5.6c and 5.6d show that the

posterior label variance increases almost monotonically as observational noise γ increases.

Furthermore the level set and probit formulations produce similar answers for γ small, re-

flecting the close similarity between those methods when γ is small – when γ = 0 their

likelihoods coincide.

In summary of this subsection, the label posterior variance Var(l) behaves intuitively

as expected as a function of varying the prior and likelihood information that specify the

statistical probit model and the Bayesian level-set model. The uncertainty quantification

thus provides useful, and consistent, information that can be used to inform decisions made

on the basis of classifications.
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(a) Two Moons (b) MNIST49

(c) Two Moons (d) MNIST

Figure 5.6: Mean Posterior Variance as in (5.10) versus percentage of labelled points and

noise level γ for the probit model and the BLS model applied to the Two Moons dataset

and the 4-9 MNIST dataset. For two moons, we fix N = 2, 000 and σ = 0.06. For each trial,

we generate a realization of the two moons dataset while the MNIST dataset is fixed. For

a), b) γ is fixed at 0.1, and a certain percentage of nodes are selected at random as labelled.

For c), d), the proportion of labelled points is fixed at 4%, and γ is varied across a range.

Results are averaged over 20 trials.

5.3.2.3 Visualization of Marginal Posterior Density

In this subsection, we contrast the posterior distribution P(v|y) of the Ginzburg-Landau

model with that of the probit and Bayesian level-set (BLS) models. The graph is constructed

from the voting records data with the fidelity points chosen as described in subsection 5.3.1.

In Figure 5.7 we plot the histograms of the empirical marginal posterior distribution on
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P(v(i)|y) and P(u(i)|y) for a selection of nodes on the graph. For the top row of Figure

5.7, we select 6 nodes with “low confidence” predictions, and plot the empirical marginal

distribution of u for probit and BLS, and that of v for the Ginzburg-Landau model. Note that

the same set of nodes is chosen for different models. The plots in this row demonstrate the

multi-modal nature of the Ginzburg-Landau distribution in contrast to the uni-modal nature

of the probit posterior; this uni-modality is a consequence of the log-concavity of the probit

likelihood. For the bottom row, we plot the same empirical distributions for 6 nodes with

“high confidence” predictions. In contrast with the top row, the Ginzburg-Landau marginal

for high confidence nodes is essentially uni-modal since most samples of v evaluated on these

nodes have a fixed sign.

5.3.3 Spectral Approximation and Projection Methods

Here we discuss Algorithms 3 and 4, designed to approximate the full (but expensive on

large graphs) Algorithm 2.

First, we examine the quality of the approximation by applying the algorithms to the

voting records dataset, a small enough problem where sampling using the full graph Laplacian

is feasible. To quantify the quality of approximation, we compute the posterior mean of

the thresholded variable slj for both Algorithm 3 and Algorithm 4, and compare the mean

absolute difference 1
N
|slj − sl∗j | where sl∗j is the “ground truth” value computed using the

full Laplacian. Using γ = 0.1, β = 0.3, and a truncation level of ` = 150, we observe

that the mean absolute difference for spectral projection is 0.1577, and 0.0261 for spectral

approximation. In general, we set λ̄ to be maxj≤` λj where ` is the truncation level.

Next we apply the spectral projection/approximation algorithms with the Bayesian level-

set likelihood to the hyperspectral image dataset; the results for probit are similar (when we

use small γ) but have greater cost per step, because of the cdf evaluations required for probit.

The first two rows in Fig.5.8 show that the posterior mean slj is able to differentiate between

different concentrations of the plume gas. We have also coloured pixels with |slj| < 0.4 in red

to highlight the regions with greater levels of uncertainty. We observe that the red pixels
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(a) Ginzburg-Landau (Low) (b) probit (Low) (c) BLS (Low)

(d) Ginzburg-Landau (High) (e) probit (High) (f) BLS (High)

Figure 5.7: Visualization of marginal posterior density for low and high confidence predic-

tions across different models. Each image plots the empirical marginal posterior density of

a certain node i, obtained from the histogram of 1 × 105 approximate samples using pCN.

Columns in the figure (e.g. a) and d)) are grouped by model. From left to right, the models

are Ginzburg-Landau, probit, and Bayesian level-set respectively. From the top down, the

rows in the figure (e.g. a)-c)) denote the low confidence and high confidence predictions re-

spectively. For the top row, we select 6 nodes with the lowest absolute value of the posterior

mean slj, defined in equation (5.9), averaged across three models. For the bottom row, we

select nodes with the highest average posterior mean slj. We show the posterior mean slj

on top of the histograms for reference. The experiment parameters are: ε = 10.0, γ = 0.6,

β = 0.1 for the Ginburg-Landau model, and γ = 0.5, β = 0.2 for the probit and BLS model.

mainly lie in the edges of the gas plume, which conforms with human intuition. As in the

voting records example in the previous subsection, the spectral approximation method has

greater posterior uncertainty, demonstrated by the greater number of red pixels in the second

row of Fig.5.8 compared to the first row. We conjecture that the spectral approximation is

closer to what would be obtained by sampling the full distribution, but we have not verified

this as the full problem is too large to readily sample. The bottom row of Fig.5.8 shows the
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result of using optimization based classification, using the Gibzburg-Landau method. This

is shown simply to demonstrate consistency with the full UQ approach shown in the other

two rows, in terms of hard classification.

Figure 5.8: Inference results on hyperspectral image dataset using spectral projection (top

row), spectral approximation (middle row), and Ginzburg-Landau classification (bottom

row). For the top two rows, the values of slj are plotted on a [−1, 1] color scale on each

pixel location. In addition, we highlight the regions of uncertain classification by coloring

the pixels with |slj| < 0.4 in red. The bottom row is the classification result from the

Ginzburg-Landau model, shown here as a comparison. The truncation level ` = 40, and for

the spectral approximation algorithm, λ̄ = 1. We set γ = 0.1, β = 0.08 and use M = 2×104

MCMC samples. We create the label data by subsampling 8, 000 pixels (≈ 2.8% of the total)

from the labellings obtained by spectral clustering.

5.3.4 Comparitive Remarks About The Different Models

At a high level we have shown the following concerning the three models based on probit,

level-set and Ginzburg-Landau:

• Bayesian level set is considerably cheaper to implement than probit in Matlab because

the norm cdf evaluations required for probit are expensive.

• Probit and Bayesian level-set behave similarly, for posterior sampling, especially for
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small γ, since they formally coincide when γ = 0.

• Probit and Bayesian level-set are superior to Ginzburg-Landau for posterior sampling;

this is because probit has log-concave posterior, whilst Ginzburg-Landau is multi-

modal.

• Ginzburg-Landau provides the best hard classifiers, when used as an optimizer (MAP

estimator), and provided it is initialized well. However it behaves poorly when not

initialized carefully because of multi-modal behaviour. In constrast probit provides al-

most indistinguihsable classifiers, comparable or marginally worse in terms of accuracy,

and has a convex objective function and hence a unique minimizer. (See supplementary

materials for details of the relevant experiments.)

We expand on the details of these conclusions by studying run times of the algorithms.

All experiments are done on a 1.5GHz machine with Intel Core i7. In Table 5.2, we compare

the running time of the MCMC for different models on various datasets. We use an a

posteriori condition on the samples u(k) to empirically determine the sample size M needed

for the MCMC to converge. Note that this condition is by no means a replacement for a

rigorous analysis of convergence using auto-correlation, but is designed to provide a ballpark

estimate of the speed of these algorithms on real applications. We now define the a posteriori

condition used. Let the approximate samples be {u(k)}. We define the cumulative average

as ũ(k) = 1
k

∑k
j=1 u

(j), and find the first k such that

‖ũ(kT ) − ũ((k−1)T )‖ ≤ tol, (5.16)

where tol is the tolerance and T is the number of iterations skipped. We set T = 5000,

and also tune the stepsize parameter β such that the average acceptance probability of the

MCMC is over 50%. We choose the model parameters according to the experiments in the

sections above so that the posterior mean gives a reasonable classification result.

We note that the number of iterations needed for the Ginzburg-Landau model is much

higher compared to probit and the Bayesian level-set (BLS) method; this is caused by the

4According to the reporting in [MSB14].

81



Data Voting Records MNIST49 Hyperspectral

(Tol) tol = 1× 10−3 tol = 1.5× 10−3 tol = 2× 10−2

(N) N = 435 N ≈ 1.1× 104 N ≈ 2.9× 105

(Neig) Neig = 435 Neig = 300 Neig = 50

(J) J = 5 J = 440 J = 8000

Preprocessing t = 0.7s t = 50.8s t < 60s4

probit t = 8.9s, t = 176.4s, t = 5410.3s,

M = 104 M = 1.5× 104 M = 1.5× 104

BLS t = 2.7s, t = 149.1s, t = 970.8s,

M = 104 M = 1.5× 104 M = 1.5× 104

GL t = 161.4s - -

M = 1.8× 105 - -

Table 5.2: Timing for MCMC methods. We report both the number of samples M and the

running time of the algorithm t. The time for GL on MNIST and Hyperspectral is omitted

due to running time being too slow. J denotes the number of fidelity points used. For

the voting records, we set γ = 0.2, β = 0.4 for probit and BLS, and γ = 1, β = 0.1 for

Ginzburg-Landau. For MNIST, we set γ = 0.1, β = 0.4. For Hyperspctral, we set γ = 1.0,

and β = 0.1.
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presence of multiple local minima in Ginzburg-Landau, in contrast to the log concavity of

probit. probit is slower than BLS due to the fact that evaluations of the cdf function for

Gaussians is slow.

5.4 Further Directions

Some future directions for UQ on graphs include improvement of the current inference

method, connections between the different models presented in this chapter, and generaliza-

tion to multiclass classification, for example by vectorizing the latent variable (as in existing

non-Bayesian multiclass methods [GMB14, MKB13]), and applying multi-dimensional ana-

logues of the likelihood functions used in this chapter. Hierarchical methods could also be

applied to account for the uncertainty in the various hyperparameters such as the label noise

γ, or the length scale ε in the Ginzburg-Landau model. Finally, we could study in more detail

the effects of either the spectral projection or the approximation method, either analytically

on some tractable toy examples, or empirically on a suite of representative problems.

Studying the modeling assumptions themselves, guided by data, provides a research

direction of long term value. Such questions have not been much studied. For example

the choice of the signum function to relate the latent variable to the categorial data could

be questioned, and other models employed; or the level value of 0 chosen in the level set

approach could be chosen differently, or as a hyper-parameter. Furthermore the form of the

prior on the latent variable u could be questioned. We use a Gaussian prior which encodes

first and second order statistical information about the unlabelled data. This Gaussian could

contain hyper-parameters, of Whittle-Matern type, which could be learnt from the data; and

more generally other non-Gaussian priors could and should be considered. For instance, in

image data, it is often useful to model feature vectors as lying on submanifolds embedded in a

higher dimensional space; such structure could be exploited. More generally, addressing the

question of which generative models are appropriate for which types of data is an interesting

and potentially fruitful research direction.
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