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Spontaneous alpha-band amplitude predicts subjective visibility 
but not discrimination accuracy during high-level perception
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2Department of Neurology, New York University School of Medicine, USA

3Department of Psychiatry, University of Wisconsin-Madison, USA

4Department of Psychology, University of Wisconsin-Madison, USA

Abstract

Near-threshold perception is a paradigm case of awareness diverging from reality – the perception 

of an unchanging stimulus can vacillate from undetected to clearly perceived. The amplitude of 

low-frequency brain oscillations - particularly in the alpha-band (8-13 Hz) - has emerged as a 

reliable predictor of trial-to-trial variability in perceptual decisions based on simple, low-level 

stimuli. Here, we addressed the question of how spontaneous oscillatory amplitude impacts 

subjective and objective aspects of perception using high-level visual stimuli. Human observers 

completed a near-threshold face/house discrimination task with subjective visibility ratings while 

electroencephalograms (EEG) were recorded. Using single-trial multiple regression analysis, we 

found that spontaneous fluctuations in prestimulus alpha-band amplitude were negatively related 

to visibility judgments but did not predict trial-by-trial accuracy. These results extend previous 

findings that indicate that strong prestimulus alpha diminishes subjective perception without 

affecting the accuracy or sensitivity (d’) of perceptual decisions into the domain of high-level 

perception.

Keywords

Neural oscillation; Alpha rhythm; Signal Detection Theory; Subjective report; High-level 
perception

1. Introduction

Conscious perception is determined not only by physical stimulus properties, but also by 

the state the brain is in when a stimulus is delivered, leading to dissociations between 

perception and reality. Prior research has found that the amplitude of prestimulus neural 
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oscillations in and around the alpha frequency band (8-13 Hz) is predictive of whether 

a near-threshold visual stimulus or magnetic stimulation-induced phosphene is detected 

(Babiloni et al., 2006; Busch et al., 2009; Chaumon & Busch, 2014; Ergenoglu et al., 

2004; Mathewson et al., 2009; Romei et al., 2008; Samaha, Gosseries, et al., 2017; van 

Dijk et al., 2008). However, changes in detection probability can come about either because 

an observer’s sensory system is better able to distinguish stimulus presence from stimulus 

absence (sensitivity change), or because an observer is more or less biased to report stimulus 

presence (criterion change). Recent experiments based in signal detection theory (SDT) have 

shown that the effect of prestimulus alpha amplitude on detection probability is explainable 

by a criterion change, such that observers are more likely to report a stimulus when alpha 

amplitude is low, even when a stimulus is absent (Iemi et al., 2017; Limbach & Corballis, 

2016).

However, SDT is ambiguous with respect to how a criterion change might be related to 

perceptual experience. A criterion shift could come about through a change in conscious 

perception if, for example, during states of low alpha amplitude, the observer has a 

weak hallucination of a stimulus when there wasn’t one (possibly driven by expectations). 

Alternatively, a criterion change may come about for post-perceptual reasons if, for instance, 

an observer deliberately chooses to require less evidence before deciding a stimulus was 

present when alpha is weak. In support of the former explanation, two recent experiments 

using two-choice discrimination tasks found that subjective reports of confidence (Samaha, 

Iemi, et al., 2017) and visibility (Benwell et al., 2017) were higher when prestimulus alpha 

power was low. In both studies, effects on subjective perceptual reports were accompanied 

by null effects on discrimination sensitivity, consistent with prior SDT analyses showing no 

effect of alpha power on detection d’. Moreover, prestimulus alpha power was found not 

to predict a deliberate decision bias in a two-interval forced choice task, but was consistent 

with a bias in observer’s perceptual experience (Iemi & Busch, 2018).

Moreover, SDT is also ambiguous with respect to how a criterion change relates to 

underlying neural mechanisms. The same criterion effects could emerge through a change in 

sensory response distributions while keeping constant the absolute level of evidence needed 

to commit to a decision, or through a change in the absolute level of evidence, holding 

constant the sensory response distributions (Denison et al., 2018; Ko & Lau, 2012; Samaha 

et al., 2020). Growing evidence suggests that alpha amplitude biases subjective perception 

by acting on sensory responses, rather than on the absolute placement of criterion. For 

instance, high prestimulus alpha power leads to reduced early (~70ms) visuocortical event-

related potentials in humans (Iemi et al., 2019), fMRI BOLD responses in primary (Mayhew 

et al., 2013) and secondary (Becker et al., 2011) visual cortex, and multiunit and/or gamma-

band activity in the monkey primary visual cortex (Spaak et al., 2012; van Kerkoerle et 

al., 2014). Thus, because alpha amplitude in primary sensory cortex is inversely related to 

cortical excitability, stimuli arriving during a state of low power will elicit larger sensory 

responses, resulting in changes to perceptual experience. However, because such fluctuations 

in power are spontaneous (as opposed to, for instance, attention-related), the amplification 

of sensory responses applies to neurons involved in representing both possible stimuli (in 

a 2-choice task). This account can explain changes in detection rates, confidence, and 
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visibility, without accompanying changes in discrimination or detection sensitivity (Samaha 

et al., 2020)

However, prior work showing a relationship between ongoing power and subjective reports 

have used stimuli that preferentially engage low-level visual areas, such as luminance 

gratings (Samaha, Iemi, et al., 2017), or Gaussian light patches (Benwell et al., 2017). 

This approach is sensible given that alpha correlates negatively with low-level visual 

cortex excitability, but leaves open the possibility that different effects are observed when 

making judgments about high-level visual properties. Indeed, it has been found that alpha 

oscillations in macaque inferior temporal (IT) cortex (an area presumably involved in high-

level perceptual representations), have a laminar profile that is distinct from V1, V2, and 

V4 (Bollimunta et al., 2008, 2011). Moreover, in direct opposition to early visual areas, IT 

alpha power shows a positive relationship with stimulus evoked multi-unit and gamma-band 

activity (Mo et al., 2011). Thus, perceptual decisions that rely on IT cortex representations 

may bear an opposite relationship with alpha power as compared to tasks that engage 

low-level visual areas.

The main goal of the present experiment was to see whether the relationship between 

spontaneous alpha power and visibility judgments (and the lack of an effect on 

accuracy) extend to a perceptual task with higher-level stimuli. To this end, we recorded 

electroencephalography (EEG) while observers performed a near-threshold face/house 

discrimination task while providing visibility judgments. Single-trial analyses of time-

frequency power revealed a negative relationship between ongoing alpha-band amplitude 

and visibility judgments, but prestimulus activity was not predictive of decision accuracy. 

These results replicate and extend prior work showing that spontaneous alpha selectively 

impacts subjective, but not objective perceptual processing during high-level perceptual 

decisions. Moreover, it seems the effects of alpha on high-level perception resemble those 

associated with low-level perception, despite differences in the physiology of alpha in high- 

and low-level visual areas.

2. Materials and methods

2.1. Participants.

8 observers (4 female; age range 19-27) were recruited from the University of Wisconsin-

Madison community and participated for monetary compensation. Based on the effect size 

from our prior work (Samaha, Iemi, et al., 2017; section 3.2), this sample size achieves 

80% power to detect the relationship between prestimulus alpha power and visibility. The 

University of Wisconsin-Madison Health Sciences Institutional Review Board approved 

the study protocol. All subjects provided informed consent and self-reported normal or 

corrected-to-normal vision and no history of neurological disorders. The EEG data reported 

here were collected inside an MRI scanner in the context of a simultaneous EEG/fMRI 

experiment.
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2.2. Stimuli

Target stimuli were briefly presented (17 ms) grayscale images of faces and houses (Sterzer 

et al., 2008), which were matched with one another and with the gray background for mean 

luminance, and which were presented at fixation within a 2D Gaussian aperture extending 

13 degrees of visual angle (DVA). We chose four unique face images and four unique 

house images (this small selection was necessary to estimate contrast thresholds separately 

for each stimulus in a timely manner; see Procedure). To reduce stimulus awareness, 

targets were backward-masked using a rapid sequence of eight full-contrast phase-scrambled 

versions of the face and house stimuli, lasting 200 ms (see Fig. 1A). Masking images were 

randomly sampled from the set of 8 textures, with the constraint that the first four and 

second four both contain two house textures and two face textures. We refer to this as a 

“dynamic mask”, which has been previously shown to be effective at masking scene gist 

(Loschky et al., 2010). The inter-stimulus interval (ISI) between target and mask was 33 

ms. A central fixation cross was displayed throughout each trial (0.44 DVA). Stimuli were 

back-projected onto a screen visible from within the MRI scanner via mirrors situated above 

the observer’s head. The projector had a refresh rate of 60 Hz and a middle gray background 

(RGB vales each set to 128).

2.3. Procedure

Prior to the application of EEG, observers completed a thresholding procedure, aimed 

at finding target contrasts that produced approximately 50% subjectively detected targets 

(see Fig. 1A). Masked targets (80% of trials) were presented at varying contrast levels as 

determined by a one-up, one-down staircase according to observer’s detection responses 

(i.e., observers were asked if they perceived any image at all and did not provide 

discrimination judgments at this step). 20% of trials contained no stimulus. Because high-

level stimuli vary along many dimensions, a 50% detection contrast-threshold was estimated 

for each unique face and house stimulus. The timing of experimental events is shown in 

Fig. 1A. Observers competed between 100 and 200 trials of this initial threshold outside 

of the scanner. Following the application of the EEG net, observers were situated in the 

MRI scanner and underwent a second round of 100 trials of the thresholding procedure, 

seeded with the results of the out-of-scanner threshold, to further adapt contrast levels for the 

display parameters within the scanner. Threshold contrasts were taken from the last reversal 

for each image from the in-scanner thresholding and were fixed throughout the main task.

The main task was a face/house discrimination with visibility judgments. On each trial a 

face (40% of trials), house (40% of trials), or no target (mask only; 20% of trials) was briefly 

(17ms) presented followed by an ISI (33 ms) and a dynamic mask (200 ms). After a variable 

delay between 1.25 and 2.5 seconds, the objective judgment was solicited when the word 

“face” and “house” appeared on the screen above and below fixation. Key responses were 

mapped to the location of each word, such that observers pressed the “up” key to select 

whichever choice was printed above fixation and the “down” key to indicate whichever 

choice was printed below fixation. The appearance of each choice option either above or 

below fixation was randomized on each trial to avoid a choice-selective motor preparation 

signal from emerging. After a 500 ms delay, subjective visibility was reported by sliding 

a cursor (via mouse wheel) along a visual analog scale (13 DVA) with 100 discrete points 
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ranging from “not visible” to “maximum visibility”. The starting point of the cursor was 

reset to the middle of the scale on each trial. Observers were instructed to think of maximum 

visibility as the most visible the stimulus could be in the context of this near-threshold 

experiment (as opposed to the most visible any stimulus could ever be). After the visibility 

response, a fixation-only inter-trial interval (ITI) was displayed for between 3 and 9 seconds. 

Observers completed 280 trials of the main task, split across 7 blocks, while EEG and fMRI 

signals were acquired. Total experiment time was approximately 3.5 hours.

2.4. EEG acquisition and preprocessing

EEGs were collected at 5000 Hz from an MRI-compatible system (BrainAmp MR EEG 

amplifier). We used an MR-compatible electrode cap, also from Brain Vision, with 31 

scalp channels plus an EKG electrode positioned on the middle of the back. Signals 

were referenced online to electrode AFZ. Pre-processing was done using a combination 

of EEGLAB13 (Delorme & Makeig, 2004) and custom MATLAB code. Several steps were 

then taken to clean the EEG data of MR artifacts. First, the FMRIB plug-in for EEGLAB, 

provided by the University of Oxford Centre for Functional MRI of the Brain (FMRIB) 

(Niazy et al., 2005), was used to remove artifacts caused by the MRI scanner. The gradient 

artifact was removed using the FASTR tool, which calculates a moving average template 

gradient artifact, subtracts this template from the data, then uses principal components 

analysis to remove up to 90% of the residual artifact left after subtraction of the template. 

We next downsampled the EEG data to 500 Hz in order to minimize computational demands 

of the next steps. The ballistocardiogram artifact was cleaned by a similar method, after 

a preliminary step to detect the timing of QRS complexes in the electrocardiogram. Then 

an initial estimation and subtraction of a template artifact was followed by reduction of 

residual artifact by calculation and subtraction of an optimal basis set of PCA components. 

A high-pass Hamming windowed-sinc FIR filter (pop_eegfiltnew.m) was applied at 0.1 Hz 

to remove slow drifts in the data and a notch-filter between 55-65 Hz removed line noise. 

Independent components analysis was used to remove residual MRI artifact, artifacts due 

to eye movements and blinks, and muscular artifact – an average of 14 components were 

removed from each subject’s data. After cleaning, signals were downsampled to 250 Hz, 

epoched from −1.2 to 1.2 seconds surrounding stimulus onset, re-referenced to the average 

of all channels, and baseline-corrected using the mean voltage from 200 ms prior to stimulus 

onset.

2.4. Analysis of prestimulus EEG power

Our analysis followed closely that of a prior experiment where we analyzed prestimulus 

power in relation to the accuracy and confidence of orientation discriminations (Samaha, 

Iemi, et al., 2017). We first undertook a non-parametric single-trial multiple regression 

analysis of time-frequency power that used single-trial accuracy and visibility judgments 

(normalized to each observer’s max visibility rating) to predict single-trial power across a 

range of prestimulus times (−500 to 0 ms) and frequencies (3 to 40 Hz). To estimate power 

across time and frequencies, data from each channel and trial were convolved with a family 

of complex Morlet wavelets spanning 3–40 Hz in 1 Hz steps with wavelet cycles increasing 

linearly between 3 and 8 cycles as a function of frequency. Power was obtained by squaring 
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the absolute value of the resulting complex time series, and an analysis epoch between −500 

and 0 ms relative to stimulus onset was extracted.

For each time-point, frequency, channel, and subject, beta coefficients describing the 

monotonic relationship between prestimulus power and accuracy (controlling for visibility) 

and between prestimulus power and visibility (controlling for accuracy) were estimated 

according the linear model:

β = (XTX)−1XTD

where X is the design matrix containing one column for the intercept (all 1s), one column 

of accuracy scores (dummy coded as 1 or 0), and one column of max-normalized visibility 

ratings across all trials. Superscripts T and −1 indicate the matrix transpose and inverse, and 

D is the vector of power data from all trials at a given time-frequency point and channel. 

Power values were first rank scored to mitigate the influence of outlying trials (this is 

equivalent to a Spearman correlation), and β was estimated using a least-squares solution. 

The resulting beta coefficients describe the independent contributions of accuracy and 

visibility to explaining prestimulus power (although note that these variables are expected to 

be colinear and so the variance of the estimates will likely be inflated – we deal with this 

issue in a subsequent analysis described below). Beta coefficients were then converted into a 

z-statistic (βz) relative to a subject-specific null hypothesis distribution obtained by shuffling 

the mapping between the data and the design matrix 2000 times and computing permuted 

betas (βperm) according to the formula described in (Cohen, 2014):

βZ = β − mean βperm ∕ stde v βperm

where stdev is the standard deviation function. βz values were then averaged over a cluster 

of posterior electrodes shown in Fig. 2A, which showed the highest signal amplitude in the 

8-12 Hz range from between −500 and 0 ms relative to stimulus onset. These electrodes 

were chosen for analysis on the basis of visual inspection of group-average topography of 

alpha power across all trial types.

Group-level significance testing was conducted using non-parametric statistics with cluster 

correction to control for multiple comparisons across times and frequencies. To estimate 

group-level null hypothesis distributions, on each of 20,000 permutations,βz values from a 

random subset of subjects for both the visibility and accuracy effect were multiplied by −1 

and a two-tailed t-test against zero was computed (this is equivalent to randomly swapping 

the order of the condition subtraction, e.g., A-B vs. B-A; (Maris & Oostenveld, 2007)). 

On each permutation, the size of the largest contiguous cluster of significant (α = 0.05) 

time-frequency points was saved, forming a distribution of cluster sizes expected under the 

null hypothesis. The t-statistics associated with the true group-level tests were converted 

to z-statistics relative to the mean and standard deviation of the empirical null hypothesis 

distributions and only clusters of significant z values (zcrit = ±1.96, α = 0.05) larger than 

the 95% percentile of the distribution of cluster sizes expected under the null hypothesis 

were considered significant (Cohen, 2014). Note that cluster correction using the sum of 
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t-statistics in each cluster (rather than the size of the cluster) yielded the same selection of 

significant clusters.

To complement our single-trial regression approach, we also binned visibility and accuracy 

into quartiles according to prestimulus alpha power levels obtained from a fast Fourier 

transform (FFT) of prestimulus data. This analysis was motivated by three considerations. 

(1) Time-frequency analysis necessarily results is some temporal smoothing making it is 

possible for poststimulus effects to smear in time and appear in the prestimulus window 

(Zoefel & Heil, 2013). We therefore extracted epochs between 500 and 0 ms from each trial 

and estimated power with a zero-padded (resolution: 0.66 Hz), Hamming window-tapered, 

FFT, which ensured that only prestimulus data was included in the analysis. (2) Substantial 

variability in peak alpha frequency exists across individuals (Haegens et al., 2014; Samaha 

& Postle, 2015) that is not taken into account in the time- frequency analysis. For this 

reason, we binned visibility and accuracy according to alpha power defined as the average 

over a ±2 Hz window centered on each individual’s alpha peak (identified from the power 

spectrum averaged across channels in our posterior region of interest). (3) Lastly, this 

binning analysis served as a more traditional approach by which to verify the single-trial 

regression results.

To statistically assess the relationship between FFT-based alpha power and visibility and 

accuracy, we fit linear regression slopes to each subject’s rank-scored visibility and accuracy 

by alpha quartiles and compared these slopes against zero at the group level with a two-

tailed t-test.

Because visibility and accuracy are themselves correlated (i.e., they are colinear predictors) 

the unique contribution of the two predictors is potentially misestimated in the models 

described above. To get a better sense of the independent effects of accuracy and visibility in 

predicting power, we ran a series of linear and logistic regression models using single-trial 

data and used residuals from those models to predict the remaining variables. Specifically, 

we used logistic regression to predict single-trial accuracy from pre-stimulus alpha power 

(defined from the FFT, as described above). This allowed us to see if alpha and accuracy 

were related without any other predictors in the model (in Fig. 4, this model is abbreviated 

“M1”). Next, we tested whether accuracy on its own could predict power in a linear 

regression model, which also allowed us to save the residual variance in alpha power 

not explained by accuracy (“M2”). Then, we predicted power from visibility in a linear 

model (“M3”) and saved those residuals. We then used single-trial visibility to predict 

the alpha power residuals from M2 to see if visibility predicted fluctuations in alpha not 

explained by accuracy (“M4”). Lastly, we used the residual alpha power from M3 to predict 

accuracy using logisitc regression (“M5”) to estimate whether alpha variability not explained 

by visibility predicted accuracy. All of these models were fit to single-trial data (after 

rank-scoring power values) separately for each subject (using the matlab routine fitglm.m) 
and then t-statistics from each model were tested against zero at the group level with a 

two-tailed, dependent-samples t-test. All analyses above excluded the subset of trials where 

no target stimulus was presented.

Samaha et al. Page 7

Conscious Cogn. Author manuscript; available in PMC 2022 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To more formally quantify evidence in favor and against the null hypothesis of no alpha-

behavior relationship, t-values form each of the FFT-based analyses described above were 

submitted to the online Bayes factor (BF) calculator (http://pcl.missouri.edu/bf-one-sample) 

which returned a BF in favor of the the null hypothesis (BFnull) or the alternative (BFalt) 

depending on which was most likely. BF were computed using a Jeffrey-Zellner-Siow Prior 

(JZS), meaning a Cauchy distribution on the effect size with a scaling factor r = 0.707.

3. Results

3.1. Behavioral performance

We first checked whether discrimination performance and visibility judgments were 

sensible. As shown in Fig. 1B, face/house discrimination accuracy (proportion correct) 

increased monotonically with subjective visibility judgments (binned into deciles) with 

accuracy near chance levels (50% correct) at the lowest visibility, and up to ~80% correct 

at the highest visibility. Slopes fit to individual observer’s accuracy by visibility bin data 

were significantly different from zero (mean slope ±SEM = 0.026±0.008; t(1,7) = 3.012, p 

= 0.019), indicating that accuracy increased by 2.6%, on average, for each decile increment 

in (max-normalized) subjective visibility. We also compared mean visibility judgments for 

the 20% of trials without a target stimulus to that of the remaining 80% of target trials. 

Visibility judgments were significantly higher for stimulus present trials (mean visibility 

±SEM = 0.489±0.037), as compared to stimulus absent trials (0.383±0.051; t(1,7) = 2.689, p 

= 0.031), indicating that observer’s used the visibility scale appropriately.

3.2. Prestimulus power significantly predicts visibility, but not accuracy

Inspection of the prestimulus power spectrum (Fig. 2B) confirmed the presence of alpha 

activity (peak in the power spectrum at 9.3 Hz) with a clear distribution over posterior 

electrodes (Fig. 2A), which we aggregated over for further analyses. Fig. 2C shows the 

contributions of visibility and accuracy in predicting time-frequency power on a single-

trial basis. The pseudocolor plots show βz values averaged over observers with warm 

(cool) colors indicating a positive (negative) monotonic relationship between the behavioral 

variable and power at each time-frequency point. Contours outlined in black denote time-

frequency points with significant (cluster-corrected) relationships between EEG power 

and behavior. As can be seen in Fig. 2C (left panel), a significant negative relationship 

emerged between visibility judgments and prestimulus power between 8-14 Hz and −450 

and −220ms, indicating that lower prestimulus power in this time-frequency window was 

related to higher subsequent visibility ratings. No significant (cluster-corrected) relationships 

were found between accuracy and prestimulus power in any time-frequency window (Fig 

2C, right panel). Inspecting the time-frequency maps without cluster correction (not shown) 

did reveal a transient prestimulus relationship that was positive around 20-25 Hz and −100 

ms prestimulus and then negative from 25-30 Hz around −30ms prestimulus. However, the 

proximity to stimulus onset and the rapid sign change of the effect make it physiologically 

difficult to interpret and likely reflecting noise. Even without cluster-correction, though, 

no accuracy effects were found in the alpha band. Lastly, we re-ran the analysis on a 

larger range of frequencies up to 100 Hz (not shown) and did not find any significant 

(cluster-corrected) effects in that range either.
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Peak alpha frequencies ranged from 7.9 to 10.6 Hz, motivating an individually-tailored 

analysis of prestimulus power centered on each observer’s alpha peak. Sorting accuracy 

and visibility according to quartiles of FFT-based prestimulus peak alpha power (Fig. 3A) 

revealed a negative monotonic relation between spontaneous alpha power and visibility 

ratings (mean slope ±SEM = −0.425±0.138; t-test against zero; t(1,7) = −3.067, p = 0.018, 

BFalt = 4.12), replicating the negative relationship found in the single-trial regression 

analysis. This replication suggests that the effect in the time-frequency analysis was not 

due to temporal smearing of post-stimulus responses because the FFT analysis considered 

only prestimulus data (although the high-pass filter of 0.1 Hz used in pre-processing may 

have introduced some spread). In contrast, the monotonic relationship between prestimulus 

peak alpha power and accuracy was not significant (mean slope ±SEM = −1.3x10−17±0.192; 

t-test against zero; t(1,7) = −7.2x10−17, p = 0.999, BFnull = 2.97), although the BF for 

this null effect represents anecdotal to moderate evidence for the null. Accuracy-power and 

visibility-power slopes were also significantly different from each other (t(1, 7) = 3.709, 

p = 0.007, BFalt = 8.13), indicating that prestimulus alpha power predicts visibility to 

a significantly greater extent than it predicts accuracy. Notably, the negative relationship 

between prestimulus alpha power and visibility was apparent across a wide swath of 

electrodes with 12/31 showing a significant negative relationship and all 31/31 electrodes 

having a negative sign (Fig. 3B).

To better understand the independent contributions of accuracy and visibility in predicting 

prestimulus alpha power, we conducted a series of regression models on single-trial (FFT-

based) alpha estimates and behavior (see Fig. 4). First, we tried to predict single-trial 

(binary) accuracy using prestimulus alpha in a logistic regression model (M1), which did not 

result in a significant effect (t(1,7) = −0.62, p = 0.55, BFnull = 2.54), indicating that even 

though accuracy was correlated with visibility, it did not relate to alpha when it was the sole 

variable in the model. Next, we predicted prestimulus alpha power from accuracy in a linear 

model (as opposed to logistic) so that we could obtain alpha power estimates residualized for 

the effect of accuracy. This model (M2), also yielded no effect of accuracy on alpha, with a 

t-statistic and BF nearly identical to the logistic model M1(t(1,7) = −0.616, p = 0.55, BFnull 

= 2.54). Next we predicted alpha power from single-trial visibility judgments (M3) and 

found a significant negative effect, replicating the binning and time-frequency results (t(1,7) 

= −3.08, p=0.017, BFalt = 4.20). Together, these results indicate that even when accuracy and 

visibility are sole predictors, only visibility showed a significant effect.

We next used the alpha residuals from M2 to test whether visibility predicted pre-stimulus 

alpha fluctuations that were independent of accuracy (M4). This yielded a significant effect, 

showing an independent contribution of visibility to predicting accuracy (t(1,7) = −2.94, 

p = 0.021, BFalt = 3.56). On the other hand, when power residualized for the effect of 

visibility from M3 was used to predict accuracy in a logistic another model (M5), we found 

no effect (t(1,7) = 0.122, p=0.91, BFnull = 2.95), suggesting that alpha fluctuations that are 

independent of visibility still do not predict accuracy. Taken together, these results provide 

stronger evidence that alpha and visibility are related, independently of accuracy.
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4. Discussion

Visual perception often deviates from reality, with visual illusions and hallucinations being 

prime examples. Here, we show that subjective perceptual reports of complete objects 

are also modulated independently of stimulus factors by the amplitude of ongoing neural 

oscillations in the alpha range. Not only does ongoing alpha produce a dissociation between 

subjective perception and the stimulus, it also selectively impacts subjective visibility reports 

but seemingly not the veridicality of observer’s decisions. Although we cannot conclude 

with high confidence that there is no relationship between accuracy and alpha (our BF 

analyses indicate that the null is somewhere between 2.5 and 3 times more likely than the 

alternative), our data do indicate that alpha predicts visibility significantly more so than 

alpha predicts accuracy (Fig. 3). These results buttress a growing body of literature using 

low-level stimuli which suggests that spontaneous fluctuations in alpha-band amplitude bias 

the criterion for stimulus detection (Craddock et al., 2017; Iemi et al., 2017; Iemi & Busch, 

2018; Limbach & Corballis, 2016) and subjective confidence/visibility (Benwell et al., 2017; 

Samaha, Iemi, et al., 2017; Wöstmann et al., 2019), without changing detection sensitivity 

(d’) or discrimination accuracy. We show that this effect extends into a high-level perceptual 

discrimination task as well.

The recent “baseline sensory excitability model” (BSEM; Samaha et al., 2020) proposes 

that ongoing alpha power is inversely related to the excitability of early sensory brain 

areas and that, as a consequence, stimuli occurring during a period of weak alpha (high 

excitability) produce larger sensory responses. Mechanisms responsible for setting detection 

and visibility criteria, however, do not adapt to the increase in sensory responses and 

are surpassed more readily when alpha power is low. Additionally, because spontaneous 

fluctuations in sensory excitability as measured through EEG will, on average, equally 

impact populations of neurons representing both stimulus alternatives (e.g., face/house, 

or stimulus present/absent), the boost in sensory responses is non-specific and does not 

improve one’s ability to discriminate between alternative stimuli (Samaha et al., 2020). 

This model is premised on the observation that increased alpha power has an inhibitory 

influence in primary sensory cortex (Haegens et al., 2011; Iemi et al., 2019; Spaak et al., 

2012; van Kerkoerle et al., 2014). In contrast, spiking activity of neurons in the high-order 

visual area IT in macaques have been shown to be positively related to alpha-band amplitude 

(Mo et al., 2011). Our results suggest that the inhibitory influence of alpha band activity in 

early sensory areas, rather than any excitatory IT influence, biases perceptual reports during 

a face/house discrimination task. This finding expands support for BSEM to higher-level 

visual perception. An important caveat, however, is that we could not isolate alpha in 

temporal cortex directly, so it remains possible that there are specific effects of alpha in 

temporal areas on behavior that we are missing and which could go in the opposite direction 

to the effects found here. However, the topography of our effects (Figure 3B) indicates that 

there were no electrodes that showed any positive association between alpha power and 

visibility. Thus, our results do suggest that alpha measured across most of the scalp impacts 

high-level perceptual judgments in a similar way as low-level judgments.

Our findings provide further evidence that subjective and objective measures of visual 

perception are readily dissociable. The phenomenon of blindsight is a prime example of a 
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much more profound dissociation brought about through lesions of visual cortex (Cowey & 

Stoerig, 1991), however our results suggest that even in neurologically intact individuals, an 

observer’s subjective visibility of a stimulus can be modulated independently of their ability 

to accurately discriminate its identity. Indeed, there is a growing body of psychophysical 

work pointing to the separability of subjective and objective visual reports (Koizumi et al., 

2015; Lau & Passingham, 2006; Maniscalco et al., 2016; Odegaard et al., 2018; Rahnev et 

al., 2011; Samaha et al., 2016, 2019; Samaha & Denison, 2020; Zylberberg et al., 2012, 

2014). In all of these cases (though perhaps less so in neurological blindsight), there is a 

question as to which metric, the objective or subjective, better tracks observers’ conscious 

experience. At least in the case of prestimulus alpha oscillations, the sensory origins of the 

bias (reviewed in Samaha et al., 2020) combined with the results of clever experimental 

designs aimed at ruling out decision biases (Iemi & Busch, 2018) suggest an effect of alpha 

on conscious perception, per se. That is, stimuli subjectively appear more visible when alpha 

power is low, despite that fact this appearance does not come with more accurate decisions. 

If correct, dissociations such as this - between conscious perception and performance - may 

serve as a useful tool for further examining the neural correlates and behavioral functions 

of conscious perception while controlling for performance confounds (Lau & Passingham, 

2006; Morales et al., 2019; Samaha, 2015)
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Highlights

• Weak prestimulus alpha amplitude increases subjective visibility ratings 

during high-level perceptual decisions

• Weak prestimulus alpha does not alter the accuracy of high-level perceptual 

decisions

• Subjective and objective measures of high-level perception are dissociated by 

the amplitude of ongoing oscillations

• The effects of ongoing alpha on high-level perceptual decisions is similar to 

those found for low-level stimuli.
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Fig. 1. 
Task schematics and behavior. A. The pre-task thresholding procedure (top) estimated the 

luminance contrasts for each target stimulus that produced ~50% subjective detections. 

These contrast values were then fixed throughout the main task (bottom), which consisted 

of a face/house discrimination with continuous visibility judgments and EEG recording. B. 
The left panel depicts mean discrimination accuracy at each of 10 visibility deciles. A clear 

positive monotonic relationship suggests that subjectively seen stimuli were associated with 

higher discrimination accuracy. The right panel shows that subjective visibility ratings were 

higher when an actual target stimulus was shown (80% of trials), as compared to the 20% of 

trials on which a target was absent. All error bars represent ±1 within-subjects SEM (Morey, 

2008). ISI = inter-stimulus interval; ITI = inter-trial interval.
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Fig. 2. 
Group-averaged, single-trial multiple regression of time-frequency power. A. The 

topography of group-averaged prestimulus 8-13 Hz power revealed a posterior scalp 

topography. Electrodes used in subsequent analyses are shown in white. B. The prestimulus 

power spectrum of the electrode cluster shown in A confirms the presence of oscillatory 

activity with a peak at 9.3 Hz. C. Pseudocolor plots depicting normalized beta coefficients 

(βz) for the effect of visibility (left) and accuracy (right) on prestimulus power across times 

and frequencies. Black contour lines enclose time-frequency points where βz is statistically 

different from zero (cluster-corrected, α = 0.05). A negative relationship was apparent 

between prestimulus alpha power and visibility, but not accuracy.
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Fig. 3. 
Visibility and accuracy as a function of prestimulus alpha power. A. FFT analysis of the 

prestimulus window (−500 to 0 ms) using individual peak alpha frequencies and averaged 

over the data-driven electrodes of interest (see Figure 2A revealed the same pattern of 

effects: prestimulus alpha power was negatively correlated with visibility (left) but not 

accuracy (right). B. The binning analysis was repeated for each electrode separately to 

visualize the topography of each effect. White dots signify electrodes with a significant 

effect (cluster-corrected across space). An effect of prestimulus alpha power on visibility 

emerged over a broad swath of central and posterior electrodes (left), but no cluster-

corrected effects were found regarding accuracy (right). Error bars indicate ±1 within-

subject SEM (Morey, 2008)
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Fig. 4. 
Boxplots showing the distribution of t-statistics across subjects from different single-trial 

regression models (M1-M5) relating pre-stimulus (FFT) alpha-band power and behavior. 

Green lines denote the median t-stat across subjects for each model. The box boundaries 

denote the 25th and 75th percentiles of the sample and the whiskers denote the min and 

max value of the sample not considered an outlier (1.5 times the interquartile range; outliers 

marked with a “+”). Arrows point from the model from which the residuals were derived 

to the model in which the residualized power scores were used. Power residualized for 

visibility effects did not predict accuracy (M5), but power residualized for accuracy effects 

still predicted visibility (M4). As a sole predictor, accuracy did not predict power in a linear 

model (M2), nor did power predict accuracy in a logistic model (M1). Visibility, as a sole 

predictor, did predict power (M3).
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