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Abstract 

The ability to selectively attend to stimuli increases the 
efficiency of learning. However, learning traps can develop 
when attention prematurely narrows to a subset of the features 
that predict outcomes, resulting in suboptimal decisions. The 
current work investigated the potential for learning traps to be 
particularly damaging in dynamic environments, where the 
features that predict rewards and losses change during learning. 
Two experiments (N=316) found that when learners received 
choice-contingent feedback, they frequently fell into a learning 
trap, using a suboptimal categorisation rule. Critically, these 
learners were unlikely to detect a subsequent rule change nor 
learn the new optimal rule. This change blindness was not 
attenuated by priming participants to expect change. These 
results show that the pernicious effects of learning traps are 
amplified in dynamic environments.  

Keywords: exploration; decision-making; category learning; 
selective attention 

Introduction 

Learning from experience is critical for us to make informed 

decisions that shape our everyday lives. However, in certain 

situations, the mechanisms that facilitate experiential 

learning can lead to suboptimal decision-making. For 

example, imagine that you have moved into a new 

neighborhood and are exploring local cafés to discover who 

serves the best coffee. Early in your search, you visit a café 

where the coffee is not to your liking. Based on that 

experience you may form the belief that the café generally 

serves poor coffee, and avoid it in the future. This behavior 

would be adaptive if your belief was true. However, if the 

belief was false (e.g., you were served by a trainee so your 

coffee was below the café’s usual standard), then avoidance 

means you will miss out on potentially rewarding 

experiences. Moreover, because we typically only receive 

feedback about choice options that we approach, the negative 

first impression about the café will not be corrected through 

further learning. 

This example illustrates a learning trap (Erev, 2014; Rich 

& Gureckis, 2018) – a pattern of under-exploration of choice 

options based on false beliefs formed early in learning, which 

can lead one to miss available rewards. Learning traps can 

have far more serious consequences than missing out on good 

coffee. They can lead to persistent false impressions about 

others in social encounters and the formation of group 

stereotypes (Denrell, 2005; Le Mens & Denrell, 2011). They 

can also lead to under-exploration of alternatives, which may 

result in poor management and financial decisions (Denrell 

& March, 2001; Teodorescu & Erev, 2014a). Learning traps 

may also contribute to the under-exploration of rewarding 

prospects in clinical depression (Teodorescu & Erev, 2014b). 

Learning traps may take a number of forms. One type of 

trap may arise when payoffs from choice prospects vary over 

time (sometimes negative, sometimes positive). Experience 

of a negative outcome following choice of a given prospect 

can lead to a “hot stove” effect such that the prospect is 

subsequently avoided, with a loss of potential rewards 

(Denrell, 2007; Denrell & March, 2001).  

In the hot-stove case, previously experienced outcomes are 

the only guide for future choices. In many environments, 

however, learners interact with stimuli made up of multiple 

feature dimensions (Murphy, 2005) and use these features to 

predict choice outcomes (Schulz, Konstantinidis & 

Speekenbrink, 2018; Sher et al., 2022). In such situations, 

early experience of a negative outcome can lead people to 

form overly simplistic beliefs about the predictive 

relationship between stimulus features and choice outcomes. 

This means that people may fail to approach future choice 

options that actually yield a reward. Returning to the café 

example, you may note the name of the café company where 

you received the bad cup of coffee. Generalizing from your 

initial negative experience, you may subsequently avoid 

other café franchises that share that company logo, even 

though some actually serve good coffee. 

Rich and Gureckis (2018) developed an experimental 

model of such traps in tasks where different categories (e.g., 

types of cartoon bees; job applicants with different profiles) 

were associated with either rewards or losses. A conjunctive 

rule involving two feature dimensions was a perfect predictor 

of the category bound and associated outcomes (e.g., 

approaching bees with two legs and single wings led to a loss 

of points; approaching bees with other feature combinations 

led to gains). On each learning trial, participants could choose 

to approach an exemplar and receive the consequent gain or 

loss, or avoid the exemplar (with no gain/loss). When 

outcome feedback was contingent on a decision to approach, 

a large proportion of participants fell into a learning trap, 

relying on a simple “one-dimensional” categorization rule 

(e.g., “avoid bees with two legs”). As a result, these 

participants missed out on additional rewards. In contrast, 

most in a baseline “full feedback” condition, who were 

provided with outcome feedback for both approached and 

forgone instances, learned the correct two-dimensional 

category rule. 

This type of trap has been robustly replicated in a variety 

of paradigms where learners are required to make decisions 

about stimuli based on multiple feature dimensions (Blanco, 
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Turner & Sloutsky, 2023; Lee, Li & Hayes, 2022; Li, 

Gureckis & Hayes, 2021; Liquin & Gopnik, 2022). These 

studies have shown that such traps emerge relatively early in 

the learning process and persist over extended periods of 

subsequent category learning. 

The Current Studies: Learning Traps in Dynamic 

Environments 

An important limitation of most previous studies of learning 

traps is that they involved the learning of static categorization 

rules: the feature configurations that allowed one to predict 

which instances were associated with positive or negative 

outcomes remained unchanged throughout learning (but see 

Blanco et al., 2023 for an exception). However, many if not 

most learning environments outside the laboratory are 

dynamic, where relationships between stimulus features and 

outcomes can change (e.g., Brown & Steyvers, 2009; 

Navarro, Newell & Schulze, 2016; Schulz, et al., 2018). In 

our café example, staff and coffee-making practices are likely 

to change over time leading to changes in the quality of their 

product. Likewise, the features that predict which companies 

listed on the stock market are likely to yield the best returns 

are likely to change in response to fluctuations in the broader 

economic environment. 

However, no studies to date have examined how learning 

traps function in dynamic learning environments. This is 

surprising because, if anything, learning traps have the 

potential to be even more pernicious in dynamic than in static 

learning environments. If you are avoiding all outlets of a 

particular coffee company, then you will never discover that 

they have improved their barista training and consequently, 

the quality of their coffee. The learning trap means that not 

only are you missing out on currently available rewards, but 

you will be blind to changes in the features that predict 

rewards and losses.  

The aim of the current studies, therefore, was to investigate 

the consequences of learning trap formation in a dynamic 

environment. The first stage of each study was similar to Rich 

and Gureckis (2018), where participants were tasked with 

learning which categories of cartoon bees were friendly (i.e., 

with a gain in points if approached) and which bees were 

dangerous (i.e., with a loss in points if approached). A 

conjunctive category rule involving two feature dimensions 

was a perfect predictor of category membership (e.g., 

instances with feature values “0” on both dimensions A and 

B, were dangerous; those with other feature combinations 

were friendly – see Figure 1 for an example).  

Participants in a contingent feedback condition only 

received outcome feedback about exemplars they approached 

but not those they avoided. Based on previous results (e.g., 

Lee, et al., 2022; Li et al., 2021; Rich & Gureckis, 2018), we 

expected that a large proportion of learners in this condition 

would fall into a one-dimensional learning trap (e.g., 

approach bees with six legs, avoid bees with two legs) in the 

first few learning blocks. 

Crucially, as illustrated in Figure 1, later in learning there 

was a change in the conjunctive category rule (e.g., the 

feature combination predicting dangerous bees was changed 

from “A0B0” to “A0B1”). In Experiment 1, this change was 

not signaled. In Experiment 2, participants were primed to 

expect change. 

 

Figure 1: Illustration of an initial and changed two-

dimensional category rule. 

Our key prediction was that how people respond to this 

dynamic change in the environment depends on whether they 

are already in a one-dimensional learning trap before the 

change. If they are, and if the rule change involves a feature 

that they are currently avoiding, then they should be blind to 

the change. For example, if they had learned a one-

dimensional rule based on Dimension A (legs), such that they 

were approaching stimuli with six legs but avoiding stimuli 

with two legs, then they would be unlikely to notice a rule 

change like that shown in Figure 1. Consequently, their 

decisions about which instances to approach or avoid should 

remain the same; they will continue to earn suboptimal levels 

of reward and will not learn the new categorization rule. Note 

that this prediction does not apply to people who initially 

learned a one-dimensional rule involving the alternate feature 

dimension (e.g., approach items with double wings, avoid 

items with single wings).  

In contrast, if people initially learned the correct two-

dimensional category rule, then they should notice the rule 

change (regardless of which features are involved). After the 

change occurs, these participants should approach stimuli 

that were previously deemed safe but which now result in a 

loss. This should lead to some confusion and a reduction in 

rewards earnings, but this is likely to be temporary as people 

gradually learn the new two-dimensional rule. 

Experiment 1 

This study tested our predictions about the consequences of 

learning trap formation for learners’ sensitivity to dynamic 

change in the learning environment, when this change was 

not signaled. Our key predictions apply to the contingent 

feedback condition, where outcome feedback was contingent 

on a decision to approach a stimulus. In Experiment 1, we 

also examined how people responded to a dynamic change in 

the relevant categorization rule when they received full 

feedback about outcomes regardless of whether an instance 

was approached. Previous work suggests that people 

receiving such feedback are unlikely to fall into an early 

learning trap; most should learn the correct two-dimensional 

rule prior to the rule change. Hence, they should also notice 
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the later rule change and are likely to eventually learn the new 

rule. This condition served as a baseline, such that we could 

observe how people responded to dynamic change under 

optimal feedback conditions. 

Method 

Participants 

We recruited 214 adults (Mage = 37.25 years, 108 males, 103 

females, 3 other) through the Prolific online platform. Equal 

numbers were randomly assigned to contingent or full 

feedback conditions. Participants were paid a base reward of 

£2.00 for task completion, and could earn a bonus of up to 

£1.70 based on points accrued during the task. Each point 

earned corresponded to a bonus of £0.01.  

Materials and Procedure 

We adapted the paradigm used by Rich and Gureckis (2018) 

for the present study. Training stimuli were images of cartoon 

bees constructed from a combination of three binary-valued 

visual feature dimensions. Feature dimensions were legs (two 

or six), body (spotted or striped) and wings (single or double), 

generating 8 unique stimuli (see Figure 2 for an example). 

Two dimensions were relevant to categorization. A 

conjunctive rule involving values on these two dimensions 

predicted which bees were friendly or dangerous (see Figure 

1). One feature dimension was irrelevant; values on this 

dimension were equally likely to be associated with friendly 

or dangerous bees. Assignment of specific dimensions as 

relevant/irrelevant and the feature combination that predicted 

dangerous bees at the start of learning, were randomly 

determined by the experimental program for each participant. 

 

Figure 2: Examples of bee exemplars with differing values 

on the three feature dimensions legs (two vs. six), body 

(striped vs. spotted), and wings (single vs. double). 

Participants were told that they were beekeepers tasked 

with collecting as much honey as possible (and associated 

reward points) from different beehives. Some bees could be 

friendly and give honey (+1 point when approached); other 

bees would be dangerous and sting (-3 points). 

Learning Phase 1 (Pre-Change). On successful 

completion of a short test of comprehension of the 

experimental instructions, participants progressed to learning 

phase 1. This consisted of 4 blocks each consisting of 16 

trials. In each block, the 8 unique bee stimuli were presented 

twice in random order. Hence, within each block there were 

4 dangerous and 12 friendly stimuli. Block transitions were 

not indicated to participants.  

On each trial, participants were presented with an image of 

a bee stimulus and made an approach or avoid decision by 

clicking the appropriate on-screen button. Approaching a bee 

led to points gain or loss depending on whether the item was 

friendly or dangerous. If the bee was avoided, no points were 

gained or lost. Those in the contingent feedback group 

received outcome feedback only when they decided to 

approach. Those in the full feedback group were given 

outcome feedback on every trial, including those where the 

bee was avoided. Feedback about the outcome (“harvested 

honey” or “stung”) and points gain/loss was presented on a 

separate screen that appeared after a response was made. A 

cumulative point tracker was visible on screen throughout 

learning. 

Learning Phase 2 (Post-change). After block 4, the 

categorization rule changed. From this point, a new 

combination of relevant dimension features predicted 

dangerous bee stimuli. The rule change involved switching 

the binary feature value on one of the relevant dimensions (as 

illustrated in Figure 1). As such, some bees that were friendly 

in learning phase 1 now led to a points loss upon approach, 

and vice versa. Which of the relevant dimensions was subject 

to this change was determined randomly for each participant. 

Participants completed a further 6 learning blocks in this 

phase. The rule change was not signalled to participants. At 

the end of the learning, participants were asked if they were 

aware of the rule change (yes vs. no/unsure). 

Dimensional Rule Scoring. Participants’ approach/avoid 

decisions in each block of 16 trials were used to identify the 

type of categorization rule that they were using. Perfect 

conformity to the optimal two-dimensional (2D) rule would 

result in approaching all 12 friendly bees and avoiding all 4 

dangerous bees (a net gain of 12 points for that block). Perfect 

conformity to a one-dimensional (1D) rule would result in 

approaching 8 friendly bees but avoiding 4 dangerous and 4 

friendly bees (i.e., a net gain of 8 points). In a given block, 

participants were classified as “2D rule users” or “1D rule 

users” if their approach choices were consistent with the 

relevant rule on at least 15 out of 16 trials. If the choice 

pattern did not meet either criterion, the participant was said 

to be using an “unclassified rule”.  

The same general process was used to identify participants’ 

rule use in learning phases 1 and 2. However, approach/avoid 

patterns in each phase were compared against different 

categorization rules (i.e., relevant pre-change and post-

change rules as illustrated in Figure 1). 

Results and Discussion 

Figure 3 (upper panels) shows the proportion of participants 

using 1D, 2D, or unclassified rules in each learning block. In 

both feedback conditions, 2D rule use increased as 

participants advanced through learning phase 1, with 

unclassified rule use becoming less prevalent.  

Prior to the rule change (block 4), the relative proportions 

of participants using the optimal 2D rule or a 1D rule 

depended on the type of feedback provided. In the full 

feedback group, a substantial proportion of participants 

learned the 2D rule, while use of the 1D rule was rare. In the 

contingent feedback condition, however, use of a 1D rule 
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(signifying the formation of a learning trap) was common. 

Learning of the post-change rule was also affected by 

feedback type. When full feedback was provided, over 60% 

of participants eventually learned the new 2D categorization 

rule. In the contingent feedback condition, learning of the 

new rule was less common, and persistent use of a 1D rule 

was more common. 

 
Figure 3: Proportion of participants using categorization 

rules over learning blocks. 

 

These results were confirmed in multinomial logistic 

regression analyses which compared the ability of models 

that included feedback and block number to predict rule use 

to a null model without these predictors. Likelihood ratio 

tests showed that adding each predictor significantly 

improved model predictions of rule use in both learning phase 

1 (feedback: χ2(4) = 81.52, p<.001; block: χ2(6) = 200.43, 

p<.001) and learning phase 2 (feedback: χ2(4) = 390.51, 

p<.001; block: χ2(6) = 194.54, p<.001). 

Pre-change rule use and post-change rule use 

Our key prediction was that the categorization rule that an 

individual used prior to the rule change would influence rule 

learning after change. To examine this, we defined four sub-

groups within the contingent feedback condition1, according 

to participants’ rule use in the last block of learning phase 1: 

2D, 1D attended, 1D unattended and unclassified. Those in 

the 1D attended and 1D unattended groups both showed a 

pattern of early approach/avoidance that was consistent with 

a suboptimal one-dimensional category rule. Those in the 1D 

unattended group learned a one-dimensional rule that led to 

avoidance of instances whose feature status changed after 

block 4 (e.g., in reference to Figure 1, “approach instances 

with six legs, avoid instances with two legs”). This group was 

predicted to be the least likely to detect the rule change and 

learn the new rule. In contrast, those in the 1D attended group 

learned a one-dimensional rule involving the alternate 

dimension (e.g., approach instances with double wings, avoid 

 
1 The pattern of results did not change substantially if those in the 

full-feedback condition were included, except that the proportion 

learning the post-change 2D rule increased. 

instances with single wings), and so were more likely to 

notice the rule change. Figure 4 shows the proportion of 

participants in these sub-groups using various rules at the end 

of learning.  

It is evident that pre-change rule use had a profound effect 

on subsequent learning. A multinomial logistic regression 

that included pre-change rule use as a predictor of final rule 

use provided a better fit to the data than a null model, (χ2(10) 

= 68.649, p<.001). To better understand the magnitude and 

direction of the effect of pre-change rule use, we examined 

the relevant Wald statistics and Odds Ratios (OR). 

Participants who were using a 2D rule before the change were 

8 times more likely to learn the new optimal categorization 

rule by the end of learning, compared to participants who 

were using a 1D rule before the change that involved the 

unattended dimension (OR = 8.00, 95% CI for OR [1.61, 

39.69], Wald’s χ2 = 6.48, p=.01). Most participants using a 

1D unattended rule in learning phase 1 (19 out of 21) failed 

to learn the new rule and continued to use the same 1D rule 

through subsequent blocks. By comparison, most of those in 

the 1D-attended subgroup did not continue to use that rule 

after the change. However, most in this sub-group also failed 

to learn the new 2D rule (i.e., at the end of learning most were 

using an unclassified rule). 

 

 
Figure 4: Proportion of participants using categorization 

rules at the end of learning (block 10) as a function of pre-

change rule use. 

 

Responses to the post-test question about noticing a rule 

change were in line with the rule-use results. A majority in 

the contingent feedback condition using a 2D rule (69%) or a 

1D attended rule (67%) before the rule change, noticed the 

change (the corresponding proportions for the full feedback 
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condition were 88% and 100%). In contrast, no one in the 1D 

unattended sub-group noticed the rule change. 

When feedback was contingent on approaching an 

exemplar, a considerable proportion of participants fell into a 

one-dimensional learning trap within the first few learning 

blocks. This replicates a key finding of previous studies (e.g., 

Li et al., 2021; Rich & Gureckis, 2018).  

Those who acquired an optimal 2D categorization rule 

early in learning generally adapted to an unsignaled change 

in the rule. Most eventually learned the new 2D rule. In 

contrast, those who had already fallen into a learning trap 

such that they were not attending to the dimension where the 

change occurred (1D unattended group), were blind to this 

change. They did not report noticing a rule change and most 

never learned the new 2D rule. 

We did not have strong predictions about the final rule 

learning in the 1D-attended sub-group. Most of these 

participants noticed the rule change and abandoned their 1D 

rule by end of learning. However most never learned the new 

2D rule. At a minimum, this suggests that awareness of rule 

change is necessary but not sufficient for learning the new 

rule. We return to this issue in the General Discussion.  

Experiment 2 

The previous study found that falling into a learning trap that 

involves use of an overly simplistic category rule means that 

people will often be blind to unsignaled changes to the rule. 

This was despite learners having several additional blocks of 

training after the rule change. Experiment 2 examined 

whether this change blindness is reduced by signaling the 

possibility of a rule change. 

Previous work (e.g., Navarro et al., 2016) has shown that 

instructions which lead people to expect a change in their 

learning environment can increase exploration of different 

choice options. In our paradigm, having an expectation that 

the categorization rule may change, could lead to greater 

exploration of exemplars. In particular, after forming an 

initial belief about which exemplar features predict gains or 

losses, people may occasionally approach bees that they 

believed were dangerous to discover whether the 

categorization rule had changed. This could lead to higher 

levels of change detection and learning of the new 2D rule. 

However, it remains to be seen whether the signaling of 

possible change is sufficient to reduce change blindness in 

those who have fallen into an early 1D learning trap. 

Method 

Participants 

102 participants (Mage = 37.15 years, 69 males, 30 females, 3 

other) were recruited through the Prolific platform, with the 

same payment arrangements as Experiment 1. 

Procedure 

All participants were allocated to a contingent feedback 

group where the possibility of change in the learning rule was 

signaled before learning commenced. The data from this 

“change signaled” condition was compared to the contingent 

feedback condition in Experiment 1, where rule change was 

not signaled. There was no full feedback condition. 

The procedure for the new change-signaled condition was 

identical to the contingent feedback group in the previous 

experiment except that the initial instructions contained the 

following: “Bees can sometimes experience a seasonal 

change in behavior. As such, the features that predict which 

bees are friendly and which bees are dangerous can change. 

This seasonal change happens at most ONCE during the 

experiment.” The instructions did not indicate when this rule 

change would occur. For all participants, this change took 

place after learning block 4, as in the previous study. Before 

proceeding to the training phase, participants had to pass a 

brief comprehension test that demonstrated they understood 

the instructions, including the expectation of rule change. 

Results and Discussion 

Rule use across learning blocks is shown in Figure 3. 

Multinomial logistic regressions compared rule use in the 

change-signaled condition with the contingent feedback 

condition of Experiment 1. Separate analyses were carried 

out for pre-change and post-change learning phases. In the 

pre-change phase, signaling the possibility of change reduced 

the likelihood that participants would use a 2D rule over an 

unclassified rule (OR = 0.61, 95% CI [0.42, 0.88], Wald’s χ2 

= 6.98, p=.008). In the post-change phase, however, receiving 

signaling instructions more than doubled the likelihood of 

participants using a 2D rule over a 1D rule (OR = 2.15, 95% 

CI [1.55, 2.98], Wald’s χ2 = 20.88, p<.001). That is, signaling 

participants to expect change reduced learning of defined 

categorisation rules during early learning, but increased 

eventual learning of the new 2D rule. 

Pre-change rule use and post-change rule use 

Participants were again divided into sub-groups based on 

the categorization rule they used in the last block of the pre-

change stage. These subgroups and their respective rule use 

in the final learning block is shown in the lower panel of 

Figure 4.  

To examine how change signaling affected final rule 

learning in the various sub-groups, we ran multinomial 

regressions on data from the new change-signaled group and 

the unsignaled contingent feedback group from Experiment 

1. As shown in Figure 4, for the subgroup who learned a 2D 

rule in the pre-change phase, participants were much more 

likely to learn the new 2D rule when change was signaled 

than when it was unsignaled, (OR = 14.25, 95% CI for OR 

[2.91, 69.77], Wald’s χ2 = 10.75, p=.001). However, 

signaling change had little effect on learning of the new rule 

in any of the other pre-change sub-groups (lowest p =.38). In 

particular, there was little effect of change signaling on 

learning of the new rule for those in the 1D unattended sub-

group, (OR = 0.73, 95% CI for OR [0.06, 8.92], p=.81). In 

the signaled condition, nearly all participants in this sub-

group (93%) remained insensitive to the rule change, 

continuing to use a 1D rule at the end of learning. This was 

similar to the proportion in the corresponding sub-group in 

the contingent feedback condition in Experiment 1 (90%).  
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In sum, for those who avoided the one-dimensional trap 

early in learning, signaling the possibility of rule change 

enhanced learning of the new 2D rule. However, change-

signaling provided no benefit for those who had fallen into a 

1D trap early in learning – they continued to remain blind to 

the change in the categorization rule when the change 

involved features on an unattended dimension. 

The results for the post-test probe of awareness of rule 

change followed a similar pattern. In the signaled condition, 

most of those in the 2D (94%) and 1D-attended subgroups 

(77%) noticed the change. These proportions were higher 

than for the corresponding subgroups in Experiment 1. 

Change signaling, however, had little impact on awareness of 

rule change in the 1D-unattended subgroup (only one 

participant noticed the change). 

General Discussion 

Previous work has shown that learning with choice-

contingent feedback can lead people to fall into a learning 

trap – an overly simplistic representation of the environment 

that reduces exploration of potentially rewarding options (Li 

et al., 2021; Rich & Gureckis, 2018). The current work 

extended the investigation of learning traps by examining the 

consequences of trap formation in a dynamic environment 

where learners had to detect and adapt to change. 

In two studies, choice-contingent feedback led many 

people to fall into a learning trap within the first few learning 

blocks. This trap involved use of a one-dimensional rule, 

whereby participants made approach/avoid decisions based 

on the features of a single stimulus dimension. 

The important novel finding was that this early trap 

formation had significant consequences for subsequent 

learning in the dynamic environment. Those in the one-

dimensional learning trap were oblivious to a change in the 

categorization rule, when this change involved features in the 

unattended dimension. This sub-group continued to use the 

same one-dimensional rule throughout the course of learning. 

Signaling the possibility of change in Experiment 2 did little 

to alleviate this change blindness. 

In contrast, a majority of those who avoided the trap and 

learned the correct two-dimensional rule early in learning, 

noticed the subsequent rule change and successfully learned 

the new 2D rule. For this group, signalling change enhanced 

learning of the new rule. 

How might learning traps blind learners to changes in the 

stimuli? When learning to categorize multidimensional 

stimuli, the formation of attentional learning traps is 

hypothesized to be driven by selective attention to one 

stimulus dimension based on an incorrect understanding of 

which dimensions are relevant to categorisation (Rich & 

Gureckis, 2018). Once a learner falls into a learning trap, the 

blindness effect may be driven by learned inattention; over 

the course of learning people reduce attention to features that 

are seen to be irrelevant for accurate categorization (Hoffman 

& Rehder, 2010). Hence, those in a learning trap become less 

likely to attend to dimensions other than the one they are 

currently using to guide categorization decisions. Such overly 

selective attentional has been shown in other learning 

contexts to cause people to miss changes in the reward 

structure of the environment (e.g., Blanco, et al., 2023).  

Consistent with this explanation is our finding that not all 

learning traps led to change blindness. This effect was limited 

to traps where change occurred in the unattended feature 

dimension (e.g., when the trap was based on exclusive 

attention to features of Dimension A but the rule change 

involved features from Dimension B). When the initial 

learning trap involved attention to the dimension that was 

subsequently involved in the rule change (i.e., the 1D-

attended sub-group), participants often noticed the change. 

Somewhat surprisingly, however, unlike those who initially 

used a 2D rule, most participants in the 1D-attended subgroup 

failed to learn the new rule. The reason for this remains 

unclear. It could reflect individual differences in 

susceptibility to learning traps, arising from differences in 

learning efficiency (i.e., ability to learn the associations 

between features and outcomes) and/or the propensity to 

explore novel stimuli rather than exploit known options (e.g., 

Chang, Jara-Ettinger & Baskin-Sommers, 2022; Sang, Todd 

& Goldstone, 2011). 

Our results show that the pernicious effects of learning 

traps extend beyond what has been recognised in previous 

research. In the sorts of dynamic environments that are 

common outside the laboratory, those who have fallen into an 

early learning trap are likely to be insensitive to 

environmental change. In economic contexts, this could lead 

to further shortfalls in the earning of potential rewards. In 

social contexts, it could cause one to miss important changes 

in relationships between individuals or social groups. 

Given the potentially serious negative effects of learning 

traps in both static and dynamic environments, it is important 

to examine ways of reducing trap prevalence. To date, 

success in achieving this goal has been modest. Rich and 

Gureckis (2018) attempted to reduce trap formation by 

implementing changes designed to promote attention to 

multiple feature dimensions (e.g., individuating exemplars, 

adding stochasticity to outcomes, occluding some features). 

Unfortunately, none of these interventions led to trap 

reduction or increased learning of the optimal rule.  

Lee et al. (2022) had more success by providing learners 

with “summative feedback”, which allowed them to compare 

current rewards earnings with optimal earnings. When such 

feedback was provided frequently during learning, fewer 

people fell into a learning trap and more learned the correct 

categorization rule. However, this result was obtained using 

a static version of the learning traps task, and whether 

summative feedback can reduce change-blindness in 

dynamic environments remains an open question. More 

generally, the future development of successful methods for 

ameliorating the negative effects of learning traps will require 

a better understanding of the fundamental learning and 

attentional mechanisms that give rise to traps. 
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