
UCLA
UCLA Electronic Theses and Dissertations

Title
Self-Localization of Autonomous Vehicles Using Landmark Object Detection

Permalink
https://escholarship.org/uc/item/0td4h8wk

Author
Rebanal, Juan Carlo

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0td4h8wk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Self-Localization of Autonomous Vehicles

Using Landmark Object Detection

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Juan Carlo Rebanal

2020

c© Copyright by

Juan Carlo Rebanal

2020

ABSTRACT OF THE THESIS

Self-Localization of Autonomous Vehicles

Using Landmark Object Detection

by

Juan Carlo Rebanal

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Christina Fragouli, Chair

Fully autonomous vehicles are rapidly approaching realization and concerns regarding their

safety and robustness are a prominent obstacle to their integration into society. A bottleneck

of an autonomous vehicle’s safety is its ability to self-localize under all types of conditions.

Self-localization is critical for the vehicle to route to a destination, for the vehicle itself to be

tracked in case of theft, and in determining local traffic laws to operate harmoniously with

other traffic and pedestrians. The global positioning system (GPS) is utilized by autonomous

vehicles for self-localization, but the availability and reliability of GPS is not guaranteed in all

situations, such as when GPS reception is weak or when an adversary is spoofing information.

We address this problem by proposing a self-localization method for autonomous vehicles that

does not require GPS at localization time. The framework herein describes the representation

of a road network as a graph using the data made available by OpenStreetMap, and an

encoding of street segments based on detected landmark objects. We derive the current

state observer transition function from the resulting graph, and employ localization methods

based on set distance and minimum cost paths to determine the most probable location of

the vehicle given a sequence of observed landmarks. Through simulating vehicle traveling

paths along a road network generated from real data of a region of Washington D.C., we

evaluate the performance of our method for varying degrees of landmark observation error

and analyze the algorithm’s time and memory complexity, demonstrating that the approach

provides a feasible solution to the problem.

ii

The thesis of Juan Carlo Rebanal is approved.

Ankur Mehta

Paulo Tabuada

Christina Fragouli, Committee Chair

University of California, Los Angeles

2020

iii

To my faithful friends,

whose support and laughter made the day-to-day manageable,

To all my teachers,

both in and out of the classroom,

who taught me the beauty of learning,

and of helping others learn,

To all my favorite creators,

whose work has pushed me to improve,

and to become more mindful, and to hope,

as well as for providing a space for solitude,

To my maternal grandparents Jun and Ofie Hidalgo,

for being exemplars of the fruits of good, honest work,

To my paternal grandparents Jose and Nora Rebanal,

whose prayers and support throughout my life

have been constant and unwavering,

And to my parents Ellen and Joseph Rebanal,

for everything.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Method summary . 2

1.2 Related Work . 3

1.2.1 Extracting street-level landmarks for localization 3

1.2.2 Probabilistic approaches to localization 4

1.3 Contributions . 5

1.4 Organization . 6

2 Road network graph representations . 8

2.1 Constructing the graph of a road network 9

2.1.1 Data in OpenStreetMap . 10

2.1.2 Extracting data from OpenStreetMap 10

2.1.3 Using igraph to construct the graph object 12

2.2 Chapter summary . 14

3 Landmark-based localization and relations to coding theory 17

3.1 Landmark-based localization . 17

3.1.1 Characteristics of desirable landmarks 18

3.1.2 Landmark object classes . 19

3.1.3 DC landmark dataset . 20

3.2 Landmark assignment to street segments . 21

3.2.1 Road network graph to line graph transformation 23

3.2.2 Landmark bounding box assignment 27

3.2.3 Street segment bearings . 29

v

3.3 Landmark code . 31

3.3.1 Augmenting landmark diversity . 33

3.4 Handling observation errors . 33

3.4.1 Hamming distance . 34

3.4.2 Hamming bound . 34

3.5 Chapter summary . 35

4 Current state observer algorithm . 36

4.1 Definitions . 36

4.2 Current state observer algorithm . 38

4.3 Minimum localization path length nt . 41

4.4 Chapter summary . 44

5 Localization algorithm . 45

5.1 Minimum cost path problem . 45

5.2 Set-based code . 46

5.3 Constructing a graph for localization . 47

5.4 Applying minimum cost path algorithm for localization 48

5.5 Applying set-based code in localization algorithm 49

5.6 Complexity analysis . 50

5.6.1 Offline . 51

5.6.2 Online . 51

5.7 Representing observation errors in localization methods 52

5.8 Chapter summary . 53

6 Experiments . 54

vi

6.1 Preliminary experiments . 54

6.1.1 Experiment design and setup . 54

6.1.2 Results and discussion . 57

6.2 Main experiments . 59

6.2.1 Experiment design and setup . 59

6.2.2 Results and discussion . 60

6.3 Chapter summary . 64

7 Conclusion . 65

References . 67

vii

LIST OF FIGURES

2.1 The region of Washington D.C. used in this work; the northern area surrounding

the White House. Depicted here are the nodes extracted from OSM, including

ways meant for vehicle travel, pedestrian/bicycle travel, and various points of

interest. 11

2.2 The same region of Washington D.C., but after filtering out most non-intersection

nodes. 12

2.3 A portion of the Washington D.C. region visualized in Overpass Turbo. The

circular points are intersection nodes. 13

2.4 Graph of the region of Washington D.C. using Kamada Kawai layout [KK89].

Vertices are black and edges/arrows (indicating direction) are red. Representation

mainly serves to depict connectivity; the locations of the vertices in this image are

loosely based on their corresponding true relative locations, but the edge lengths

are not to scale. 15

2.5 Degree distribution of the line graph resulting from the road graph. Combines

in- and out-degree data. See Chapter 3 to read about line graphs. 16

3.1 Plot of the landmark object information in a region of Washington, D.C. Different

colors of plotted waypoints represent different landmark object classes. Image

from [AZT14]. 21

3.2 Example of a graph G and its corresponding line graph L(G). [Wei] 24

3.3 Example of a rectangle generated with the above method given two real data

points from the dataset. Landmarks assigned to the shown street segment are

those that are bounded by the rectangle depicted. Image generated from Google

Maps. 26

3.4 Illustration of Haversine function as applied to a sphere’s surface. [Wik] 28

3.5 Divisions of the unit circle depicting the intervals for bearing assignment. [Shu] 30

viii

4.1 Example diagram showing an automaton M7, from which its CSO can be derived.

[CGW91] . 42

4.2 Example diagram depicting CSO algorithm output when used on automaton M7

in Figure 4.1. [CGW91] . 43

6.1 Toy example of a randomly graph with 10 vertices; assigned codewords are inte-

gers and are displayed atop the vertices. Here, U = 50%. 56

6.2 Probability density functions for varying values of U as a function of the number

of steps required to localize. 1000 randomly generated graphs with 104 vertices

each had their results averaged and plotted here. 58

6.3 Red, blue, and green rectangles showing the regions of the large, medium, and

small-sized maps, respectively. Original image capture from Google Maps. . . . 59

6.4 Minimum path lengths necessary for localization for different values of t (maxi-

mum observation errors to correct and still localize); full-size map. 61

6.5 Minimum path lengths necessary for localization for different values of t (maxi-

mum observation errors to correct and still localize); med-size map. 61

6.6 Minimum path lengths necessary for localization for different values of t (maxi-

mum observation errors to correct and still localize); small-size map. 62

6.7 Average path length required to localize using a length 15-codeword in the full-

size map. For each number of errors, 1,000,000 trials were used to obtain the

average. 62

6.8 Histograms of localization path length required to localize for different numbers

of errors t in the observed 15-length codeword. 63

ix

LIST OF TABLES

6.1 Area of each map region. 60

6.2 Number of nodes in line graph of each map region. 60

x

ACKNOWLEDGMENTS

Firstly, I want to thank Professor Christina Fragouli for introducing this thesis idea to me

last year and for all her guidance and encouragement throughout the thesis. While the pro-

cess was indeed challenging, Professor Fragouli helped make it so much more manageable

and enjoyable thanks to her consistent and insightful feedback. I will always be thankful to

her for her support throughout this thesis.

In addition, I would also like to thank Professor Paulo Tabuada for his support and guidance

throughout this project. Together with Professor Fragouli, he has shared many insightful

conversations which have led to developments and innovations during this project. Also, I

would like to thank Professor Ankur Mehta for being supportive of helping me realize the

UCLA experience I wanted by making himself and his lab members accessible.

I also want to thank Yahya Ezzeldin for being a great mentor figure to me. Yahya has

helped clarify and mediate countless times, and has always been willing to help me out with

technical matters, as well as just having pleasant conversations with.

I need to thank all the open source tools and resources I used throughout this project,

which together expedited the realization of this thesis.

My amazing friends and family have given me constant support in even the toughest of

times and I am forever thankful for them.

Lastly, I would like to thank my parents Ellen and Joseph Rebanal. Thank you for ev-

erything.

xi

CHAPTER 1

Introduction

Autonomous vehicles are becoming closer to consumer realization than ever before, thanks

to great strides being made by researchers and manufacturers alike. While a fully-realized

autonomous vehicle comprises a complex, multi-faceted system, it can still only be as strong

as its weakest link. The global positioning system (GPS) utilized by autonomous vehicles,

among countless other devices, is critical for an autonomous vehicle to be able to localize, i.e.

to find its absolute position on the planet. Localization is important for routing, [FMC13]

asset tracking and for helping the vehicle confirm its position relative to pedestrians and

obstacles to stay clear of. However, the availability of GPS is not guaranteed in all situations,

such as when GPS reception is weak or when an adversary is spoofing information. A method

for localization without requiring GPS information is essential for the overall robustness of

an autonomous vehicle, and would help to expedite their transition into everyday use by

consumers. We address this need with our approach which utilizes object landmark detection

and planar graph representations of road networks to develop a method for self-localization

of an autonomous vehicle without using GPS at localization time.

Self-localization refers to the task of an agent determining its position and orientation

within some coordinate system. Autonomous vehicle self-localization is a well-researched

field, rife with variety in terms of approaches to the problem, including those with roots

in localization in robotics ([YCQ18], [LLZ10], [BG13]), and having different trade-offs. We

focus on improving a particular subset of such approaches, namely localization approaches

that rely on landmark detection, modeling the environment as a probabilistic map, or inte-

gration of multimodal sensors (GPS, inertial measurement unit, odometry, etc.). Landmark

detection-based methods have roots in the simultaneous localization and mapping (SLAM)

1

problem from indoor robot navigation and localization. Adapting such work to a large, ur-

ban area without the freedom to instantiate installations forces approaches to use naturally-

occurring landmarks in urban areas such as trees and fire hydrants. Assigning posterior

probabilities to various discretized regions of space in a (GPS-given) prior known search

area given observations has also been proposed. Perhaps the most prominent method of

localization involves using a collection of sensors equipped by a vehicle, including GPS, to

localize to an root-mean square (RMS) accuracy within 10 cm of ground truth [LT10].

In this work, we propose a self-localization method for autonomous vehicles that does not

require GPS at localization time. The framework herein describes the representation of a road

network as a graph using the data made available by OpenStreetMap (OSM) [OSM], whose

street segments are encoded based on proximal landmark objects [AZT14]. The current state

observer transition function φc is derived for the constructed graph [CGW91] to determine

the minimum path length required to localize assuming 0 observation errors, n0. To be

able to correct up to t errors, nt is found experimentally offline. Then, at localization time,

given a sequence of observed landmarks we return the most likely location of the vehicle

with flexible trade-offs between localization speed and accuracy. Our method demonstrates

a novel, scalable solution to GPS-less localization, enabling localization in up to 2 street

segments traversed, on the average of 1,000,000 trials, even with 5 observation errors in a

10.7 km2 urban area.

1.1 Method summary

The method proposed in this paper aims to provide a means for the self-localization of a

vehicle using landmark detection that results in building a codebook of possible walks on a

graph representation of a region.

Offline, the region to be localized within is exhaustively swept for both landmark objects

and features of the current street segment: for example, trees and the street segment length.

The information about these landmark features is encoded and mapped to each individual

street segment. Each observed combination of landmark features is a symbol in a code

2

alphabet.

The region of interest is represented as a graph, whose vertices are street segments and

edges represent intersections spatially connecting adjacent street segments.

Then, a walk on different vertices of this city graph results in observing some sequence

of landmarks, discretized as symbols, one for each street segment.

Concatenating these symbols together creates a codeword. By taking a sufficiently long

codeword, the sequence of landmarks observed becomes unique, or equivalently the resulting

codeword becomes uniquely decodable. Then, localization can be achieved by looking up

the location of the street segment at the end of the walk.

Using this method, a vehicle can localize in a 10 km2 area in up to 2 street segments

traversed, on average, even with 5 observation errors. However, limitations of this method

surface when faced with larger regions one may wish to localize within: firstly, the method’s

effectiveness is bottlenecked by the availability and cleanliness of OpenStreetMap and land-

mark location data, and secondly the offline and online components of the method will take

more resources in time and memory (significantly more so for the offline component).

1.2 Related Work

Localization of an agent is a well-studied field, with applications from indoor robot navigation

to autonomous vehicles, and many others in between. Here, we look at some key prior work

that helps to contextualize our contributions.

1.2.1 Extracting street-level landmarks for localization

Methods involving landmark-based localization require some form of object detection. Some

methods focused on employing deep learning to detect landmark objects and text ([EHH19],

[KHK19], [JSV16], [WWC12], [GBI13]), whereas others focused on more classical com-

puter vision techniques revolving around landmark extraction such as filtering, pole de-

tection, curve estimation and stereo depth estimation ([FMC13], [LLZ10], [SGR16], [Spa15],

3

[WYG19], [BN18], [MD04], [TB00], [HDV18]).

Some approaches in literature to the localization problem for autonomous vehicles take

more direct inspiration from its roots in robotics by making use of rangefinders, such as

[RSR15], [NVT08], and [VNB09].

The deep learning-based methods can use neural networks to detect landmarks, and

sometimes even to estimate the pose using regression [EHH19]. Using neural networks for

pose estimation has produced some good results but introduces room for regression error and

requires time to train both the detector and the localizer networks. Our method determines

the location of a vehicle deterministically and can be implemented in existing pipelines with

deep-learning powered object detection systems. In addition, results from our method are

more interpretable than those of black box AI systems, i.e. the reasoning behind why a

particular location is estimated can be traced to seeing what landmarks were observed.

On the other hand, the classical computer vision methods lack the flexibility of deep

learning-based methods and are consequently limited in their capacity of object detection.

This is often mitigated by making use of multiple sensors or by using machine learning as

part of the object detection pipeline. These multi-modal approaches inspire and inform the

method proposed in this work through selecting to detect landmark features that possess

desirable characteristics (explained more in Chapter 3) that can be sensed by camera as well

as odometry sensors. Additionally, methods using rangefinders often are unable to detect

classes of landmark objects that can vary in shape and size; object detection neural networks

help with this.

1.2.2 Probabilistic approaches to localization

Prior work has approached the localization problem in a probabilistic way ([BGU16], [BI17],

[LT10], [dBA19]), often employing particle filter localization. In particular, visual odome-

try and distributing probabilities of candidate locations was the main approach investigated

in [BGU16], which found good results and localized in reasonable lengths of time. Visual

odometry (the curvature of roads traversed) was the main mode of discriminating between

4

potential paths. However, a purely probabilistic approach may result in unresolved ambi-

guities. If a region with identical road network lengths and configurations is traversed (e.g.

parts of Manhattan, New York), visual odometry alone may not result in localization as

admitted in the work. Our work employs multiple methods of helping to differentiate path

segments from each other, including using landmark object detection along with odometry,

and using OpenStreetMap data to break down regions into atomic street segments. These

additional measures help to avoid such ambiguous cases and return a location estimate de-

terministically.

1.3 Contributions

Prior landmark-based localization techniques applied to autonomous vehicles rely on some

type of prior GPS information or use GPS directly when observing landmarks to triangulate,

determining the vehicle’s absolute position. Our approach seeks to minimize usage of prior

GPS information to localize, particularly during the actual time of localization. The main

contributions of this work are the following:

• A novel connection between automata theory [CGW91] and coding theory

• Leveraging of this connection to design efficient, polynomial-time algorithms

• An extensive evaluation of such algorithms on real-world data

Furthermore, the proposed method allows for polynomial-time localization on average in

a 10 km2 area. The method is also deterministic in arriving at a position estimate, even in

the presence of observation errors when the observed path length is sufficiently long.

This work uses the openly-available OpenStreetMap dataset and can be applied to any

reasonably accurate landmark object detection pipeline to build (offline) and detect (online)

landmarks when landmark data is not already available for an area.

5

1.4 Organization

Overall, this paper is ordered in the same fashion as the proposed method itself. That is,

the chapters build upon the previous ones to outline the method.

Chapter 2 introduces essential terminology when working with graphs, a ubiquitous math-

ematical construct, which is used to represent the road networks we work with. The chapter

also explains the data used to generate the road networks, and how it was used and cleaned

for the purposes of this work.

Chapter 3 adds another critical layer to the method: the concept of landmarks as they

relate to this method. We discuss our definition of landmark objects and landmark object

classes, and how we arrived at said definitions. We also examine the dataset of geo-tagged

landmark objects used in this work. We explain in detail how landmarks are assigned to

street segments and how the road network graph is transformed to best accommodate the

remainder of the approach. In addition, we look at the method behind determining the

bearing of each street segment so it can be used later in the localization algorithm. We close

the chapter by defining a fundamental distance metric for this paper, the well-established

Hamming distance.

Chapter 4 focuses on introducing the concept of a finite automaton and relating this to

the framework built up over the previous chapters. After establishing the necessary connec-

tions, we walk through the current state observer algorithm, which ultimately allows us to

determine the minimum number of street segments to visit in order to achieve localization if

no observation errors are expected. This chapter introduces notions of minimum localization

path length that are revisited and built upon in coming chapters.

Chapter 5 rounds out everything laid out in the thesis up to this point by introducing the

localization algorithms used. We introduce the classical problem of minimum cost paths and

set distance that our approaches are based on, as well as explain the preparation necessary

to apply them. Then, we present the pseudocode of the algorithms and provide time and

complexity analysis to assess its scalability.

Chapter 6 presents experimental design, results, and discussions. We include preliminary

6

work at the beginning of this chapter since said work was important in establishing lower

performance bounds, expectations and intuitions that were put to use when developing the

method later in the life of this work. Then, we present, compare and discuss results of using

the main localization algorithms proposed in this paper.

We conclude this work in chapter 7 by summarizing the problem and our proposed

solution, along with the key results and suggestions for future work.

7

CHAPTER 2

Road network graph representations

Graphs are structures that serve to abstract relationships between entities. In this work,

graphs are used extensively to model arbitrary road networks. This both discretizes ur-

ban areas and captures relationships between different points in space in such a way that

facilitates working with them. Literature commonly uses graphs to represent road networks.

Definition 2.1. (Graphs) A graph G = (V,E) is represented as a tuple of its vertices V

and its edges E. Each edge e = (vs, vd) ∈ E ⊆ V ×V can be described in terms of its source

vertex vs ∈ V and destination vertex vd ∈ V .

In particular, the graph we use is initially constructed such that vertices represent street

intersections and edges represent streets connecting street intersections. Furthermore, the

direction of traffic along a road can be captured by introducing directed graphs.

Definition 2.2. (Undirected and directed graphs) In an undirected graph, (vs, vd) ∈ E =⇒

(vd, vs) ∈ E. For a directed graph, there is no such implication.

In this work, we use only directed graphs. Now that vertices and intersections can be

understood in isolation and as their entire respective sets, we can now look into defining

relationships between these elements and interpreting them through this work’s lenses.

Definition 2.3. (Incident edges) An edge e is incident to a vertex v if the source vertex of

e is v.

Definition 2.4. (Adjacent vertices in directed graph) A vertex v2 is adjacent to another

vertex v1 if there exists an edge e = (v1, v2) ∈ E.

8

Adjacent intersections indicate that there is a street segment that can be traversed to

reach one from the other. More generally, from any intersection, the list of all adjacent

intersections captures all the intersections one could reach using a single street segment.

Using graphs this way, we can represent intricate road networks of urban areas given that

we know the locations of the intersections and how they are connected to each other.

Definition 2.5. (City graph) A graph representation of a city where the vertices represent

a city’s intersections and the edges represent the street segments of a city that connect

intersections.

In particular, this work assumes that the city graphs being used are planar graphs repre-

senting geographically adjacent locations and paths from a vertex to a non-adjacent vertex

are accessible through intermediate vertices (consisting of simple intersections and no over-

passes).

Definition 2.6. (Planar graph) A graph is planar if it can be drawn such that no edges

intersect with each other.

However, it can be shown that the line graph (See definition 3.10) of such a city graph is

not necessarily planar.

2.1 Constructing the graph of a road network

We make use of the data made available by OpenStreetMap (OSM) [OSM] to construct the

graphs used in our experiments. When implementing this work’s method, any reasonably

reliable database of road network global information system (GIS) data can be used.

OpenStreetMap is a freely editable map of the world that is powered by a worldwide

community of volunteers. The project can be thought of as a combination of Google Maps

and Wikipedia. OSM has recently broken 5.6 million registered users and its data is used

in dozens of projects [OSM] covering applications from routing to retrieval of information

about political boundaries between countries. OSM has also been used in various literature

to create maps of urban areas for localization purposes [BGU16, RSR15, FVL13, PC18].

9

2.1.1 Data in OpenStreetMap

The atomic element in OSM is the node. A node is implemented as an XML tag, which has

its own set of properties such as a latitude, longitude, and unique OSM node identification

number (ID). Nodes can be used in conjunction with (potentially nested) tags to specify

both the location of an item of interest, and what the item is. For example, a node could

represent a coffee shop by capturing its latitude and longitude, as well as the type of amenity

it provides, its opening hours and even if it is wheelchair accessible. However, due to the

crowdsourced nature of OSM, not every node has the same level of detail. For our work, we

only use 2 basic properties of each node: their location (latitude and longitude) and whether

or not they represent a point on a street.

Another fundamental structure used in OSM is the way. A way is an ordered list of at

least 2 nodes that also has its semantic meaning assigned by an OSM user. That is to say, a

way can represent a closed area such as a public park, or it can represent a street if the nodes

comprising it are the intersections at the street’s ends. Curvature can be approximated by

a way made from nodes along a curved road that are close enough together. In this work,

we are only concerned with the ways that represent streets.

2.1.2 Extracting data from OpenStreetMap

There exist various methods for extracting data from OpenStreetMap. One of the more

prominent methods due to its flexibility in specifying queries and accessibility via web inter-

face is Overpass Turbo [Ove]. Here, a user can supply an XML-style query specifying what

type of data they wish to extract and over what region. Overpass Turbo is what we used to

extract node data of our experiment region, an area of Washington, D.C. Other regions such

as Westwood Village in Los Angeles, California had its data extracted for preliminary work.

Initially, every road segment node was captured as part of our process. However, empirical

preliminary results showed that having many street segments with high variance in length

led to relatively high frequency of street segments being assigned little-to-no landmarks.

Additionally, this made each street segment not as informative due to each segment not

10

Figure 2.1: The region of Washington D.C. used in this work; the northern area surrounding

the White House. Depicted here are the nodes extracted from OSM, including ways meant

for vehicle travel, pedestrian/bicycle travel, and various points of interest.

necessarily having multiple turning options. In order to better facilitate a memory-efficient

and faster-to-search map of landmarks, we opted to use only intersection nodes, which were

more likely to have multiple turning options and would have more unique landmark assign-

ments based on the landmarks detected when traversing them; this reduces complexity of

the localization path algorithm detailed later.

In order to capture only the intersection nodes, we formulated a query to find nodes that

are present in at least 2 distinct ways. By returning only these nodes, we arrived at a more

minimal representation of the region that was more conducive to our localization method.

As visible in Figure 2.3, there are still some instances of false positives (intersection nodes

that are not intersections) and false negatives (intersections not marked as nodes). The data

was cleaned manually to try and account for these, but almost surely some will still remain.

Initially, we expected to be able to extract sufficiently dense data about locations of

landmarks from OpenStreetMap. However, landmark node data that this work is concerned

with were found to be sparse in the regions we were examining. Hence, the extent to which

11

Figure 2.2: The same region of Washington D.C., but after filtering out most non-intersection

nodes.

OSM data is used in this work is for intersection locations.

2.1.3 Using igraph to construct the graph object

The Python package python-igraph [pyt] was used extensively to model graphs. This package

boasts plenty of useful methods for creating, modifying and visualizing graphs.

The Graph class features an iterable vertex sequence and edge sequence, which allow one

to access each vertex and edge of a graph, respectively. By default, each vertex and edge

has a unique ID assigned to them when they are added to the graph. Crucially, vertices and

edges can each be assigned user-defined properties. Most commonly, vertices or edges are

assigned appropriate weights for use in shortest-path algorithms, for example. However, in

this work, each edge is assigned a landmark symbol based on the landmarks observed while

traversing that edge. This is expanded upon in Chapter 3.

An existing tool [An] used to extract vertex and edge information from raw OSM data

was modified to further remove false positive intersection nodes. Given the list of intersec-

tion nodes extracted from Overpass Turbo, only ways that included at least 2 intersection

12

Figure 2.3: A portion of the Washington D.C. region visualized in Overpass Turbo. The

circular points are intersection nodes.

13

nodes were left in. The tool outputted a text file containing a list of all the vertices’ IDs,

latitudes and longitudes, followed by a list of edges defined by their source and destination

vertex, as well as whether they were bidirectional given by either 0 (not bidirectional) or 1

(bidirectional).

The python-igraph package allows for the construction of directed graphs by adding 1

edge and up to 2 vertices at a time. By parsing the road graph description produced by the

previous tool, the directed graph object was able to be created where the vertices represented

intersections in a road network, and edges represented the street segments connecting them.

In the next chapter, the process of labeling the edges and deriving the line graph from

this graph will be examined.

2.2 Chapter summary

In this chapter, the necessary fundamentals of graph theory were defined. Following that, the

dataset provided by OpenStreetMap and its selective extraction was explained and relevant

parts were visualized. The construction of the graph from this data was detailed. Next,

the concept of landmark assignment to edges of the graph will be introduced, and the true

power of representing a road network as a graph will start to take form.

14

Figure 2.4: Graph of the region of Washington D.C. using Kamada Kawai layout [KK89].

Vertices are black and edges/arrows (indicating direction) are red. Representation mainly

serves to depict connectivity; the locations of the vertices in this image are loosely based on

their corresponding true relative locations, but the edge lengths are not to scale.

15

Figure 2.5: Degree distribution of the line graph resulting from the road graph. Combines

in- and out-degree data. See Chapter 3 to read about line graphs.

16

CHAPTER 3

Landmark-based localization and relations to coding

theory

3.1 Landmark-based localization

The main characterizing aspect of this work is its use of landmarks to localize, i.e. to

determine where the vehicle is located. This approach is based on intuitive approaches to

determining one’s location from even before technology. ”Meet me by the tree” or some

variant of this phrase has likely been encountered at some point in the reader’s lifetime.

The following are the main principles that underscore our overall method for localization

using landmarks:

1. Localization can be achieved by observing a unique landmark, given that we know the

absolute location of that unique landmark from a given landmark map.

2. If the landmark observed is not unique, observing more landmarks will generate a

sequence of observations that may be unique among all other observation sequences of

the same length. Thus, localization can then be achieved.

As an example, imagine that you wake up in an unfamiliar part of Paris, France. You

intrepidly turn the corner and spot the Eiffel Tower. There’s only one such tower in the

world, and you can immediately tell where you are. However, if you happened to travel

away from the Eiffel Tower, you might run into a coffee shop - hardly uncommon. After

walking some more, you pass by two more coffee shops before reaching leather shoemaker’s

store. Such stores are rather uncommon, but definitely not unique. But having walked past

17

a total of three coffee shops and arriving at a leather shoemaker’s store, there’s only one

street in Paris with these landmarks so close together - so, at last, you determine exactly

where you are.

In an effort to generalize this work as much as possible, i.e. for it to be applicable in as

many locations as possible, we work with landmarks that are common in urban and suburban

areas and we do not use street name signs so that our method can be applied in environments

without such signs or when the signs are obscured by traffic, weather, etc.

Additionally, in the chapters to follow, observation error correction is discussed. This

helps to improve the robustness of the method.

3.1.1 Characteristics of desirable landmarks

In this work, we focus on instances of classes of landmark objects as opposed to unique,

named landmarks, e.g. the Eiffel Tower.

Definition 3.1. (Landmark object) An observable entity belongs to the discrete set of all

observable entities X with a unique position in the region of space bounded by the road

network graph G= (V,E).

Remark 3.1. For this work, we focus on landmark objects that possess certain desirable

characteristics.

Based partially on literature [MD04, KHK19], landmarks used for localization share most

of the following characteristics:

• Naturalness. The landmarks should not have to be installed (e.g. a beacon or

encoded image); they should already be observable in the environment.

• Time-invariant representation. Observable measures of the landmark should not

change significantly over time (save for, incident illumination sources from different

times of day). Examples of landmarks that do not have this property include trees in

regions that experience Summer, Fall, Winter and Spring, or a movie theater marquee

whose contents change with the movies.

18

• Time-invariant location. Landmarks should not change their location over time. A

parked car is a landmark that does not have this property [LLZ10].

• Viewpoint invariant observability. The landmark should be observable regardless

of what orientation it is viewed from. Pole-like structures and other structures with

distinct shapes have this characteristic.

• High frequency of occurrence. The landmarks should be common in space. They

should not be sparsely distributed across the region of localization. This helps to

facilitate more informative observations.

• Belongs to a class distinct from others. Each landmark should not be able to be

confused for a different landmark class. This helps with error handling.

Identifying desirable characteristics of landmarks helps to narrow down the types of

objects we can use to those that we can expect to be most helpful in localization.

3.1.2 Landmark object classes

After considering the aforementioned desirable characteristics of landmarks, we decided on

what landmark object classes to use to define each street segment with.

Definition 3.2. (Landmark object class) A class, or label, yi ∈ the discrete set of all classes

Y . Each landmark object xi is paired with a single corresponding label yi.

Remark 3.2. There also exist problems where an item xi can belong to more than 1 class, i.e.

xi can have labels y1, y2, · · · , yk where 1 ≤ k ≤ |Y |, referred to as multiclass classification,

but that is outside the scope of this work.

• Fire hydrants. These have a stand-out color as well as unique shape and height.

Their main drawback in our application is that they may be obscured by unlawfully

parked cars due to their short height.

• Street lights. Features a distinct pole-like shape that is recognizable and observable

despite weather conditions or most obstructions.

19

• Traffic lights. Present at most intersections, the number of traffic lights visible at an

intersection combined with some combination of other landmarks helps to distinguish

busier intersections from less busy ones. Additionally, they are by design unobstructed

by most traffic.

• Traffic signs. A broad landmark object class composed of several kinds of traffic signs

such as yield signs or stop signs. Future work can discriminate between the inherent

sub-classes in this object class.

• Trash receptacles. These have distinct shapes and appear regularly along sidewalks.

We constrain this work to only use landmark objects that belong to one of the above

classes. The main bottleneck preventing the incorporation of more landmark object classes is

the availability of data; with more classes of landmarks, more landmarks can be observed and

used towards characterizing areas as distinct, helping to expedite the process of localization.

3.1.3 DC landmark dataset

Infrastructural data is often publicized by governmental bodies of different regions. However,

there is no standardized method used to publish or describe such data, so we defer to mainly

using datasets referenced by other literature.

We employ the dataset used in [AZT14] that includes the geographic information system

(GIS) data of the locations of our landmark object classes of interest. The data comes in

the form of keyhole markup language (KML) files that are used for geographic information

visualization and annotation. Included are the coordinates in latitude and longitude for each

landmark object, as well as some additional, annotative information (e.g. unique IDs, and

service status at the time of data collection).

Clearly, some regions contain information for more landmarks than others. This is, again,

bottlenecked by the available data. We constrain the area we try to localize within to the

area that has the most overlap in coverage from all the landmark object classes.

Approaches to geo-tagging objects of interest have been proposed [AZT14] and could be

20

Figure 3.1: Plot of the landmark object information in a region of Washington, D.C. Different

colors of plotted waypoints represent different landmark object classes. Image from [AZT14].

used to diversify both the coverage of such datasets, as well as the varieties of landmark

object classes that comprise the datasets.

3.2 Landmark assignment to street segments

Given the locations of different landmark objects and a graph representation of the road

network that they cover, we can begin to assign landmarks to areas of the region of interest.

At this point, we wish to build a landmark map that indicates what landmarks we expect

to observe at certain locations. This landmark map would serve as the ground truth to be

compared to during localization time when the vehicle would observe whatever landmarks

it can to try and match the observed sequence with some sequence in the landmark map.

In order to measure the effectiveness of using the landmark map to arrive at a uniquely

identifiable sequence, simulations were designed to have a random walk be performed on the

road network graph. This will be the focus of this chapter; the chapter will give definitions

21

and introduce notions that build up to the understanding of localization performance in the

context of this work. To start unpacking the idea of measuring localization effectiveness, we

have to define some concepts.

Definition 3.3. (Probability space) A tuple of outcomes Ω, events of interest F , and a

probability measure P together define a probability space (Ω,F , P) over which observable

outcomes ω ∈ Ω can be mapped to events F ∈ F , and each event has an associated proba-

bility measure.

Definition 3.4. (Random variable) A random variable Z is a function that maps a particular

outcome ω from a sample space Ω to a real value, i.e.

Z : Ω→ R (3.1)

Remark 3.3. A random variable Z can denote the probability of an event z occurring with

the notation P(Z = z). In this work, events z consist of different types of landmark obser-

vations.

Definition 3.5. (Code) A code C is a function that maps an input from an alphabet X to

another alphabet Σ, i.e.

C : X → Σ (3.2)

Remark 3.4. We can think of the input alphabet of a code as a random variable Z. The

random variable here can represent the possible landmark observations we can make. Hence,

a code C maps possible landmark observations to a symbol C(z) ∈ Σ.

Definition 3.6. (Non-singular code) A code CNS is non-singular if every element of an

alphabet x ∈ X maps to a distinct C(x) ∈ Σ, where Σ is a set of sets that each correspond

to mappings C(x) for some x.

CNS : X → Σ, |CNS(xi)| = 1, 1 ≤ i ≤ |X| (3.3)

Definition 3.7. (Extension of a code) The extension of a code C∗ is the mapping from

finite-length strings (where strings are concatenations of individual symbols) from an input

22

alphabet X to finite-length strings of another alphabet Σ. Let x1x2 · · ·xn be the concate-

nation of words from an input alphabet, and C(x1)C(x2) · · ·C(xn) be the concatenation of

the corresponding mappings. Then,

C∗ : C(x1x2 · · ·xn)→ C(x1)C(x2) · · ·C(xn) (3.4)

Definition 3.8. (Unique decodability) A code CUD is uniquely decodable if its extension is

non-singular.

Remark 3.5. In other words, if a code is uniquely decodable, then any concatenation of

a finite number of input alphabet symbols maps to a single, unique corresponding codeword

from the set of all finite-length output alphabet strings made from Σ, defined as Σ∗. This is

the generalization of non-singular codes to work for inputs of any finite length.

This work focuses on creating a uniquely decodable code mapping landmark observations

to their corresponding codewords. The landmark map is populated with the codewords

corresponding to each landmark observation. Then, during localization time (and without

GPS), observations are made and their corresponding codewords are essentially compared

to the landmark map of known codewords to search for a unique, (as close as possible to)

perfect match. Because the code used is uniquely decodable, any finite length sequence of

landmark observations maps to only one unique codeword and the brunt of the work can be

focused on searching for sequences that match the observed codeword sequence.

Each vertex would then be assigned a codeword based on its corresponding landmark

observation.

Definition 3.9. (Landmark code) A landmark code CL is a uniquely decodable code that

maps landmark observations Lobsi ∈ L to an alphabet Σ.

CL : L→ Σ (3.5)

3.2.1 Road network graph to line graph transformation

Our initial approach of assigning landmark observations was to assign landmark observations

to intersections based on the proximity of landmark objects to that intersection. However,

23

Figure 3.2: Example of a graph G and its corresponding line graph L(G). [Wei]

one fundamental problem with the approach is that a significant portion of landmark object

data ends up not being used; only landmark objects close to any given intersection are used

in encoding the corresponding vertex’s landmark observation. Hence, we transformed the

road graph to better facilitate the expected observation of more unique sequences.

Definition 3.10. (Line graph) The line graph L(G) = (VL, EL) of a graph G = (V,E)

has a vertex vL for each edge e ∈ E. Two vertices vLi
, vLj

are adjacent if and only if their

corresponding edges in G are incident to the same vertex in G.

Remark 3.6. The line graph of the original road network graph has new interpretations of

its vertices and edges. The line graph’s vertices are now the street segments connecting the

intersections, and the line graph’s edges now represent the intersections, i.e. adjacency of

one street segment to another.

Definition 3.11. (Convex combinations) A convex combination of points is a linear combi-

nation of points
k∑
i=1

αixi (3.6)

such that αi ≥ 0 for 1 ≤ i ≤ k and
∑k

i=1 αi = 1.

Definition 3.12. (Convex hull) The convex hull Conv(S) of a set of points S is the set of

24

all convex combinations of points in xi ∈ S.

Conv(S) =


|S|∑
i=1

αixi : αi ≥ 0 ∀ i ∧
k∑
i=1

αi = 1

 (3.7)

Definition 3.13. (Landmark observation: road network line graph) For the road network

line graph L(G) = (VL, EL) from the road network graph G = (V,E), a landmark observation

Lobsi made along a street segment vLi
∈ VL corresponds to an edge ek ∈ E. That (directed)

edge ek is incident to a source vertex v1 and a destination vertex v2, both ∈ V , which

correspond to intersections with locations v1lat , v1lon and v2lat , v2lon , respectively.

Next, define the vector

~s = (v2lat − v1lat)x̂+ (v2lon − v1lon)ŷ (3.8)

Correspondingly, let the vector perpendicular to ~s be defined as ~s⊥. Let ||~a|| denote the

L2-norm of ~a, w be the desired width of the bounding box, and c be the scalar constant

scaling factor 2w
|| ~s⊥||

.

Then, define the set of landmark region bounding points

B = {(v1x + c ~s⊥x , v1y + c ~s⊥y),

(v1x − c ~s⊥x , v1y − c ~s⊥y),

(v2x + c ~s⊥x , v2y + c ~s⊥y),

(v2x − c ~s⊥x , v2y − c ~s⊥y)}

where each element bi ∈ B is a point in space ∈ R2 and width of the rectangular landmark

bounding region w ∈ R. Then, the landmark observation Lobsi for a street segment vLi
is

Lobsi = {Lj : Lj ∈ Conv(B)} (3.9)

Remark 3.7. The landmark observation is the set of all landmark objects that fall within

a rectangular region whose corners are defined by points that are a set distance away from

the vertices of an edge in the directions perpendicular to the path from source to destination

vertex.

25

Figure 3.3: Example of a rectangle generated with the above method given two real data

points from the dataset. Landmarks assigned to the shown street segment are those that are

bounded by the rectangle depicted. Image generated from Google Maps.

26

Defining landmark observations based on street segments as vertices allows more land-

marks to be used (more information) in encoding street segments, in turn resulting in more

unique codewords and faster localization.

3.2.2 Landmark bounding box assignment

In assigning landmark observations to street segments, a landmark bounding region needs

to be defined for each street segment. Landmark objects Lj each have their positions rep-

resented as (Ljlon , Ljlat) ∈ R2 as does each intersection vi. However, because longitude and

latitude are angular measurements, these points in space need to first be transformed to rep-

resent the appropriate distance to be used in landmark observation assignment. To do this,

we employ the Haversine formula to obtain a reasonably accurate measure of the shortest

distance between two points on a sphere.

Definition 3.14. (Haversine function) For a central angle θ, the Haversine function hav(θ)

is defined as:

hav(θ) = sin2

(
θ

2

)
=

1− cos(θ)

2
(3.10)

Definition 3.15. (Haversine formula) Let θ = d
R

be the central angle between any two

points p1 and p2 on a sphere, where a central angle is the angle between two points whose

apex is at the center of the sphere and each point is a distance equal to the sphere’s radius

away from the apex. Let the distance along the sphere between p1 and p2 and the radius of

the Earth be d and R, respectively.

Let the longitude and latitude of the points be pilon and pilat , respectively, for i = 1, 2.

Then, the Haversine formula is defined as

hav(θ) = hav(p2lat − p1lat) + cos(p2lat)cos(p1lat)hav(p2lon − p2lon) (3.11)

27

Figure 3.4: Illustration of Haversine function as applied to a sphere’s surface. [Wik]

Expanding, the distance d can be obtained with

d = R archav(hav(θ)) (3.12)

= 2R arcsin

(√
hav(p2lat − p1lat) + cos(p2lat)cos(p1lat)hav(p2lon − p2lon)

)
(3.13)

= 2R arcsin

(√
sin2

(
p2lat − p1lat

2

)
+ cos(p2lat)cos(p1lat)sin

2

(
p2lon − p2lon

2

))
(3.14)

The calculated distance along the Earth’s surface is a reasonably accurate approximation

used in finding locations of the landmark bounding region corners.

It is worth noting there are some cases where two adjacent intersections are not connected

by a straight or almost straight road, but rather by a curved road. This is something that can

be addressed by comparing the intersections-only-vertices map with the all-vertices map and

leaving in vertices from the latter that allow for a series of straight-line segments between all

intersections. The idea is to approximate a curve using several straight line segments. This

improvement will become important when the method is to be used in a live simulation, but

for the purposes of exploring the proposed concept, can be left for future work.

28

3.2.3 Street segment bearings

So far, only the idea of assigning landmark observations to street segments has been dis-

cussed. We now introduce an additional informational feature that can be tied to each street

segment, further helping to make landmark observation sequences more unique as well as

critically provide a means for modeling the road network line graph with varied sets of inputs

depending on the intersection one is currently visiting.

We attempt to realize the idea of discerning possible turn direction from a given inter-

section by assigning each street segment a bearing direction. The procedure is to find the

difference of the vectors given by a destination vertex vd and a source vertex vs, then assign-

ing the resulting bearing to the corresponding edge vLi
based on the angle interval it falls

within.

Definition 3.16. (Street segment bearing) For each street segment vLi
∈ VL, the corre-

sponding directed edge e ∈ E from the original road network graph has an associated source

vertex vs and destination vertex vd. The direction of the path from vs to vd is obtained from

~b = vd − vs = (~bx,~by) ∈ R2. The resulting angle θ can be obtained using θ = tan−1
(
~by
~bx

)
.

Then, the bearing Lbi represented as a string is assigned to street segment vLi
is piecewise

defined as

Lbi =



East θ ∈ [15π
8
, 2π] ∪ [0, π

8
)

Northeast θ ∈ [π
8
, 3π

8
)

North θ ∈ [3π
8
, 5π

8
)

Northwest θ ∈ [5π
8
, 7π

8
)

West θ ∈ [7π
8
, 9π

8
)

Southwest θ ∈ [9π
8
, 11π

8
)

South θ ∈ [11π
8
, 13π

8
)

Southeast θ ∈ [13π
8
, 15π

8
)

29

Figure 3.5: Divisions of the unit circle depicting the intervals for bearing assignment. [Shu]

30

Now, each street segment vLi
∈ VL has assigned to it a landmark observation Lobsi and

bearing Lbi . The bearing of the street segment serves simultaneously as an additional land-

mark object (that is, a feature used to discriminate it from other street segments) as well as

a model for each street segment having its own inputs to determine which street segment to

reach next.

The formulation of the road network line graph as a finite state automaton is explored

in Chapter 4.

The number of intervals available for a difference vector to be binned into is arbitrary

and can be as granular as one’s implementation allows.

Although rare, it is possible for a street segment to be adjacent to multiple street segments

that each have the same bearing. This can be alleviated by making the bearing assignment

intervals more granular, else it can serve to simulate an additional complexity of systems

where the input provided could result in transitioning to more than one possible state.

3.3 Landmark code

The landmark code LC maps landmark observations Lobsi ∈ L to an alphabet Σ. For prelim-

inary work, we employed a simple to implement and understand landmark code.

Definition 3.17. (Näıve landmark code) Each landmark object class yi ∈ Y ,

Y =



y1 = fire hydrant

y2 = street light

y3 = traffic light

y4 = traffic sign

y5 = trash receptacle



31

is mapped to a single corresponding class code ci ∈ L′C ,

L′C =



c1 = A

c2 = B

c3 = C

c4 = D

c5 = E


and each landmark observation Lobsi is the set of all landmark objects Lj that fall within

the corresponding region. Let the sets Lobsiz for 1 ≤ z ≤ |Y | = 5 be the partitions of the

landmark observation set into subsets containing only landmark objects of class yz such that

|Y |⋃
z=1

Lobsiz = U (3.15)

Lobsim

⋂
Lobsin = ∅ ∀m 6= n, 1 ≤ m,n ≤ |Y | (3.16)

where U and ∅ are the universal set and empty set, respectively. Then, let Z be the set

of all z that denote a landmark class set Lobsiz with |Lobsiz | > 0.

The resulting codeword LC(Lobsi) is initialized as a null string. Then, symbols are ap-

pended to it according to

LC(Lobsi) = (cz=1 |Lobsi1 |) (cz=2 |Lobsi2 |) · · · (cz=|Y | |Lobsi|Y |
|) ∀ z ∈ Z (3.17)

where (a)(b) denotes concatenation.

Remark 3.8. For example, a landmark observation of 2 fire hydrants, 2 street lights and 9

traffic signs is encoded as A2B2D9. A landmark observation with no landmarks would have

a null codeword.

This code is easy to interpret and implement, and is clearly not focused on optimizing

for compression or storage of the codewords and the resulting sequences. When scaling up

this approach, it will become increasingly important to encode the observations efficiently.

One simple solution could be to simply enumerate all unique codes and to store a hash

table with keys as landmark configurations and values as an integer indicating the symbol.

32

The focus of the code is to enable fast similarity search so that sequences of codewords

can be matched with a landmark map database quickly.

Methods for making localization faster, involving set distance, are discussed in later

chapters.

3.3.1 Augmenting landmark diversity

An additional component of a landmark symbol can be the absolute bearing of a street

segment. This helps to augment the uniqueness of landmarks, and to compensate for regions

that lack landmark data in the dataset. In this work, the absolute bearing is used as part of

the landmark.

Another landmark is the length of the road segment, quantized to some bin of length

of reasonable robustness to autonomous vehicle odometry measurements. In this work, the

road length rounded to the nearest multiple of 5 meters is used as a landmark.

Lastly, yet another landmark that can be discerned is whether or not the street the vehicle

is on is a residential street. This is detectable through various cues that can be picked up

by an onboard camera.

3.4 Handling observation errors

A practical consideration is to be mindful of observation errors that may occur at localization

time. While the first line of defense of making landmark objects observable was in selecting

the landmark object classes with that in mind, in a real situation there may be any number of

factors that hinder landmarks’ observability. Factors ranging from obstructions, construction

blocking off parts of street segments, adversarial attacks, the object detection agent (such

as a convolutional neural network) making a detection error, or the camera hardware of the

vehicle being damaged can all result in observation errors. Here, we begin to formalize some

ideas of how to combat such difficulties.

33

3.4.1 Hamming distance

When comparing codewords, there is a clear intuition as to determining that 1111 is closer

to 1110 than 0000; the former is more similar to 1111 than the latter. It is useful to have

a defined distance metric for quantifying the similarity of codewords. Hamming distance

formalizes one approach to such quantification.

Definition 3.18. (Hamming distance) The Hamming distance dH between 2 codewords x

and y of equal length is defined as the number of symbols that differ between them.

dH = |{i ∈ {1, . . . , |x| : xi 6= yi}}| (3.18)

This is an important building block for ideas introduced in chapter 5 concerning deter-

mining the localization path.

3.4.2 Hamming bound

In the context of observing landmarks, there exists plenty of inherent sources of error that

could result in errant observations manifested as an invalid codeword.

In visiting a new street segment, the vehicle could observe codeword C /∈ Σ. The absence

of C from Σ is sufficient to detect an errant observation. In this case, the true codeword can

be derived from potentially any of the previous street segment’s neighbors.

The Hamming distance is a useful quantity in determining conditions for codes such that

a given number of errors is guaranteed to be correctable.

Definition 3.19. (Hamming bound) The Hamming bound provides the minimum Hamming

distance needed between all pairs of codewords in a code to guarantee correctability of up

to t errors. Such Hamming distance must be

dH ≥ 2t+ 1 (3.19)

for all pairs of codewords in the code in order to correct up to t errors.

34

3.5 Chapter summary

In this chapter, we introduced concepts of what constitutes a landmark and a landmark

observation in this work. The types of landmarks used were explained and the dataset from

which the relevant information was extracted was discussed. We outlined the benefit of

transforming the original road network graph representation to that of its corresponding line

graph and explained how landmark observations and street segment bearings were assigned

to their street segments. The landmark code used in this work was defined and some thoughts

were shared on other approaches to designing the code. Fundamental notions of distance

of codewords were introduced through the concept of Hamming distance, which will be

built upon in further chapters. This chapter focused on explaining the framework that the

landmarks in this work exist in, and provides an important basis for the following chapters.

35

CHAPTER 4

Current state observer algorithm

Until now, we have laid the foundations for representing an urban area as a road network line

graph, with each of its street segments connecting intersections being assigned a codeword

resulting from a mapping of observed landmarks. In this chapter, we begin to exploit the

framework presented so far to be able to determine the bounds on the number of street

segments one needs to visit in order to achieve localization given a sequence of landmark

observations.

4.1 Definitions

Here, we begin to lay out a representation of a finite automaton as defined in [CGW91] so

that we can relate this concept to the problem.

Definition 4.1. (Finite automaton) Finite automata are quintuples that represent a set

of atomic elements of a finite-state system, complete with transition functions and output

functions.

M(X,U, Y, φ, η) : finite automaton (4.1)

X : finite set of states x (4.2)

U : finite set of inputs u (4.3)

Y : finite set of outputs y (4.4)

φ : transition function X × U → X (4.5)

η : output function X → Y (4.6)

36

The set of states X in the context of this problem are the street segments, or the vertices

of the road network line graph. This is a natural choice since now each street segment can

be tied to its own inputs and outputs.

For any such state xi, some set of inputs ui ⊆ U are possible. In the context of the

problem, inputs are possible turn types. In other words, for a given street segment, there are

turns it can make onto adjacent street segments where each turn is one of the bearings defined

in Definition 3.16, such as North or Northwest. Relating this idea to finite state machines,

it can be imagined as different inputs making for different resulting states depending on the

starting state and input.

The output observed by a state xi can be thought of as the landmark observation of

that state. Each state xi has a singular output yi that is its codeword assignment based

on landmark observations along that street segment. These are similar to outputs that a

system could produce to diagnose [LLH18] its state.

The transition function φ maps a state xi and some action u ∈ U to another state xj.

For this work, the input to such a transition function would be a street segment and a turn

type, producing an output of what street segment one would end up on following that turn

type from that initial street segment.

Lastly, the output function η maps a state xi to its corresponding output yi, or in the

context of this problem, a street segment to its corresponding landmark codeword.

Collecting these re-interpretations together, we can define:

Definition 4.2. (Finite automaton for localization) In the context of this work’s localization

problem, we define a finite automaton for localization to be

37

ρ(S, T,Σ, φ(s, t), η(s)) : finite automaton for localization (4.7)

S : finite set of street segments s (4.8)

T : finite set of turn types t (4.9)

Σ : finite set of landmark codes LC (4.10)

φ(s, t) : transition function S × T → S (4.11)

η(s) : output function S → Σ (4.12)

4.2 Current state observer algorithm

A fundamental difficulty of localizing the vehicle based on a landmark observation is that it

may be that more than one location features that landmark observation. This can remain

true even for sequences of landmark observations. The current state observer algorithm can

provide information that is very useful for being able to localize: lower and upper bounds

on the number of observations needed to localize. As seen in the localization algorithm in

chapter 5, this information is indeed critical to implementing a solution that can even handle

some observation errors.

Essentially, the current state observer algorithm defines a current state observer function

φc which can be implemented as a hash map that maps sets of states and an input/output

tuple to another set of states. This allows for O(1) lookup time after the generation of the

hash map during pre-processing (before localization time).

We will now present the pseudocode of the algorithm.

Definition 4.3. (Stack) A stack is a data structure that supports a number of standard

operations, but for this work only pushing and popping are relevant. Stacks operate under

first-in, last-out order (or equivalently, last-out, first-in), which is to say that the first ele-

ments to enter a stack are the last to leave the stack. The operation of inserting an element

to a stack is a push, and removing an element is called a pop. Popping an element from the

stack returns the most recently pushed element.

38

Remark 4.1. The data structure is analogous to a real-life stack of boxes; the top ones have

to be removed before getting to the bottom ones.

39

Algorithm 1: Current state observer algorithm

Result: Computes the current state observer function φc.

Generate φ(s, t) for all street segments and turn types s and t;

Initialize stack states = [S] ;

while states is non-empty do

s′ = states.pop() ;

for t ∈ T do

for LC ∈ Σ do

Initialize stack tmp = [] ;

for s ∈ φ(s′, t) do

if η(s) = LC then

tmp.push(s);

end

end

φc(s
′, (t, LC)) = tmp;

if |tmp| > 1 then

states.push(tmp);

end

end

end

end

for s ∈ S do

for t ∈ T do

s′ = φ(s, t) ;

LC = η(s′) ;

φc(s, (t, LC)) = s′;

end

end

In summary, this algorithm starts by determining what states can be reached from any

40

other state given any pair of turn type and landmark code. For each pair of turn type and

landmark code, we can deduce our current state to have gone from the set of all states to

a subset of all states. This process is repeated for each new subset of states, each subset of

states of size greater than 1 representing an ambiguity in not knowing the single state one

is in based on some pair of turn type and landmark code while starting from some other

subset of states. Eventually, the first part of the algorithm terminates when the states stack

is empty, or equivalently, when there exists a φc(s, (t, LC)) of size 1 for every subset of states

with a predecessor in φc, i.e. for every subset of states s′ for which φ−1c (s′) is defined.

The second part of the algorithm iterates through all the pairs of singleton states and

turn types, generating φc(s, (t, LC)) for each of them.

The end result is that φc(s, (t, LC)) can now map any street segment s with a feasible turn

type t and landmark code LC pair to a subset of states s′ which can then be iteratively fed

into φc until a singleton state is reached, i.e. one can only reach one state from a given subset

of states with a given turn type and landmark code. By taking the number of iterations

required to arrive at a singleton state output of φc given a starting state s, taken over all

pairs (t, LC), one can determine the minimum (and maximum) number of street segments

required to be visited from any street segment in order to localize (assuming the vehicle

traverses the perfect path by taking the right sequence of turns).

For example, in Figure 4.2 starting from the set of all states, one can determine based on

the first observation ∈ {a, b, c} that they must be in one of the subsets {a1, a2, a3}, {b1, b2, b3},

or {c1}, respectively. Given an initial observation of a or b the minimum remaining steps to

localize is 1, but if a c is observed then the state is immediately known and the minimum

steps required to localize is 0.

4.3 Minimum localization path length nt

A quantity of interest is the minimum path length required to be able to localize, whether or

not in the face of observation errors. This informs several key components of the localization

algorithm discussed in the next chapter. First, we examine n0, the minimum localization

41

Figure 4.1: Example diagram showing an automaton M7, from which its CSO can be derived.

[CGW91]

42

Figure 4.2: Example diagram depicting CSO algorithm output when used on automaton M7

in Figure 4.1. [CGW91]

path length when there are no errors.

Definition 4.4. (Minimum localization path length nt|t=0) Given an observed landmark

code LC and the current state observer φc for a finite automaton for localization ρ (and the

assumption that no observation errors occur), the minimum localization path pmin’s length

n0 = |pmin| is the minimum depth tree that is an induced subgraph of the graph generated

by φc whose root is the node of this generated graph represented by the subset of states

given by the first observed landmark LC .

From the current state observer, n0 can be calculated by running a minimum cost path

algorithm on the current state observer’s graph representation. However, for t > 0 errors,

calculation of nt requires more than just the current state observer.

43

4.4 Chapter summary

In this chapter, we formulated the road network as a finite automaton in order to apply

the current state observer algorithm on the road network line graph representation devel-

oped. We walked through the comparisons of the original, abstract formulation of a finite

automaton to this specific problem. The current state observer algorithm’s pseudocode was

presented along with a summary of the essentials of how it works and what it is used for.

A brief example was shown to illustrate how the minimum localization path length can be

determined given some initial observations. In the next chapter, we will bring together ev-

erything laid out in this work so far to explain our method for landmark-based localization

without using GPS at localization time.

44

CHAPTER 5

Localization algorithm

The previous chapters laid the groundwork for understanding and implementing the local-

ization algorithm proposed here. We begin by providing context to our contribution by

explaining the vanilla minimum cost path problem and notions of set distance. These form

the foundations of the two different approaches we attempt. Then, the encoding and decod-

ing of paths that exploits landmark configuration information will be presented.

To contextualize this chapter, we begin with a theorem.

Theorem 5.1. Given that all codewords of length nt in an alphabet are uniquely decodable,

and that Vcity, Ecity are the sets of vertices (street segments) and edges (intersections) in a

graph representation of a city, respectively, there exists an algorithm with time complexity

O(|Vcity| log |Vcity|+|Ecity| log |Vcity|) that enables the unique decoding of an observed codeword

represented as a path in the city graph.

5.1 Minimum cost path problem

Traditionally, a graph can have costs associated with its edges. Intuitively, for a road network

graph with cities represented as vertices and highways between them represented as edges,

the cost of an edge can be analogous to the distance between the cities it connects. Thus, it

can be desirable to determine the minimum cost path between two given points.

Definition 5.2. (Minimum cost path problem) Given a graph (directed or not) with costs

for each edge, the minimum cost path problem is concerned with finding the path between

a source vertex vs and destination vertex vd such that the cost of edges used in the path

45

between the two vertices is the minimum among all paths between the two vertices.

arg mine′∈E

|e′|∑
i=1

ci , edge with cost ci ∈ e′ (5.1)

Here, e′ ∈ E are all the feasible sequences of edges e′ in the set of all edges E, and ci is

the cost of the edges in e′.

This is a classic problem and has had many approaches proposed for solving it given

different sets of constraints.

In the context of this problem, we attempt to apply the minimum cost path problem

as a decoder to the problem of choosing the encoding with the minimum error among all

encoding, i.e. the most likely encoding given the observed landmark code sequence.

5.2 Set-based code

Before addressing the construction of the graph to be used for localization, we introduce the

definition of modified set distance.

Definition 5.3. (Modified set distance) Building upon Hamming distance dH from equation

(3.18), modified set distance dS1,S2 measures the minimum Hamming distance between any

pair of elements where each element belongs to a different set S1 or S2:

dS1,S2 = min
p1i ,p2j∈S1×S2

dH(p1i , p2j) (5.2)

for all p1i ∈ S1 and all p2j ∈ S2, i = 1, 2, . . . , |S1|, j = 1, 2, . . . , |S2|.

This quantity is not strictly a distance metric because dS1,S2 = 0 does not imply that

S1 = S2; it can only be said that there exists an element that is in both S1 and S2. For

the purposes of this work, we interpret this to mean that the sets are effectively identical

because observing a path that is in both sets results in ambiguity during decoding, preventing

localization.

Using modified set distance (from here on referred to as set distance), we can create a

new set-based code CS with as many codewords as vertices in the line graph L(G).

46

By leveraging the fact that we only care about determining the position of the vehicle,

and not the path it took to get there, we can use set distance and a set-based code to enable

efficient online localization.

Definition 5.4. (Set-based code) The set-based code CS consists of |VL| set codewords ci,

which are each non-empty sets consisting of length n path codewords LC(Lobsj)i. Each path

and its corresponding landmark observation Lj belong to a set codeword ci and ends at

vertex vi.

It follows that each pair of set codewords has their respective set distance. By ensuring

that the length of path codewords in each set codeword is large enough such that the set

distance between all pairs of set codewords is at least 2t+ 1, by the Hamming bound, paths

with up to t errant observations can be corrected and localization can be achieved.

If the minimum set distance among the set-based code is d∗S1,S2
, there does not need to

be any Hamming distance constraints between pairs of path codewords that belong to the

same set codeword. Intuitively, this is because we do not care to distinguish between paths

to the same destination. This helps to lower the minimum path length required to achieve

desirable error-correcting capabilities compared to if every pair of codewords were required

to have some minimum Hamming distance.

Put another way, if we can determine that the path we observed belongs to a particular

set codeword, we can determine the location of the vehicle.

5.3 Constructing a graph for localization

When navigating a path online, the vehicle is faced with the problem of being able to

efficiently compare the path it observes to the offline-prepared alphabet of valid paths so

that the vehicle can localize. However, brute force methods are prohibitively time-intensive

for problems of this scale and a different method needs to be employed for efficient real-time

localization.

To efficiently determine the candidate paths, we employ a dense graph that can be de-

47

scribed in terms of layers akin to common deep neural network architectures used for regres-

sion and high-level feature extraction.

The graph to be constructed can be described by the following:

Definition 5.5. (Path searching graph) The vertices of the path searching graph are or-

ganized in layers of depth. The path searching graph is directed. There is a single source

vertex vsource, nt layers of |VL| vertices each, and finally a single sink vertex vsink. From

vsource there is a single edge to each of the vertices in the first layer. From layer i to layer

i + 1, i = 1, 2, . . . , nt − 1 the vertices are fully connected such that each vertex has a single

edge to each of the next layer’s vertices. From the final layer, there is one edge from each of

the final layer vertices to the sink vertex vsink.

What we have seen so far is a method of encoding paths in a city as codewords made up

of symbols that correspond to landmark configurations. By leaving the paths as is, we are

ready to use the path searching graph to decode the paths and localize. By grouping the

paths into sets based on the destination location, we can be ready to decode the paths and

localize. Next, we will describe both decoding (localization) methods.

5.4 Applying minimum cost path algorithm for localization

By applying the minimum cost path algorithm to a path searching graph, we can receive the

set of paths that have minimum cost, or equivalently, the set of paths that are most similar

to the path that was observed at localization time. In addition, there are two potential early

termination conditions:

• If any unique landmark is observed

• If any unique path is observed (consisting of landmarks that are not necessarily unique)

48

Algorithm 2: Min-cost path localization algorithm

Result: Returns estimate of current position.

Let G be the path search graph;

Let x be the nt-length path codeword observed during localization;

Initialize i = 1;

for symbol xi ∈ x do

for all edges in layer i of G with symbol = xi do

Set edge weight = 0;

end

if all newly-zeroed edges pass through the same vertex then

Return that vertex’s location;

end

Increment i;

end

Let p = MCP (G), where MCP is a minimum cost path-finding algorithm;

Return p;

This algorithm finds the minimum cost paths resulting from zeroing the weights of edges

in the path searching graph layer-by-layer that correspond to a symbol in the observed code-

word. If the algorithm is terminated early, it’s because a unique landmark was encountered

at some point during the observation. Else, the resulting set of minimum cost paths is re-

turned. If the set is a singleton, localization is achieved. This is guaranteed to be the case

if there are a sufficient number of layers (nt) to account for up to t observation errors.

5.5 Applying set-based code in localization algorithm

If the initial encoding of the paths in the localization region is processed with an additional

step of grouping the paths into sets such that each set consists only of paths that end at the

same location, we can try this approach to localization.

49

Algorithm 3: Set-based localization algorithm

Result: Returns estimate of current position.

Let x be the nt-length path codeword observed during localization;

Initialize i = 1;

for symbol xi ∈ x do

if xi is unique then

Return corresponding location;

end

end

Initialize dmin = ∞;

for set in set-based code do

for path in set do

Calculate dH(path, x);

Update dmin if new dH < dmin;

end

end

Return location of set that gave dmin;

This algorithm computes the Hamming distance of the observed path and all paths.

The set that gave the lowest distance is the set that should contain the observed path,

and its corresponding location is returned. Determining dmin can be sped up significantly

by terminating the calculation of dH early if the Hamming distance reaches the previous

minimum Hamming distance, moving onto the next set.

5.6 Complexity analysis

The complexity analysis will be split into two distinct halves: offline (preparations that are

done once before the vehicle is to be deployed), and online (routines run multiple times as

the vehicle tries to localize).

50

5.6.1 Offline

For both localization methods, nt needs to first be determined. Deciding on the value of t is a

design choice that should depend on factors such as the robustness of the landmark detection

components of the vehicle (e.g. object detection system, odometry, etc.) and the expected

amount of landmark obfuscation (a more traffic-dense area is more liable to landmarks being

obfuscated).

If t = 0, n0 can be determined by finding the maximum minimum path length from the

CSO root node to a singleton node. Let |V | be the number of vertices in the CSO graph,

and |Vcity| the number of vertices in the city graph. The time complexity of such a task is

the same as that of, for example, Dijkstra’s shortest path algorithm applied to |Vcity| paths,

O(|Vcity||V | log |V |+ |Vcity||E| log |V |).

For t > 0, nt was found experimentally for a given region by incrementing path length

and including more landmarks to help diversify the symbols collected.

Once nt is determined for your choice of t, all paths of length nt in the city graph of

interest need to be found. This step is O(|Vcity|nt) in time and memory complexity (as the

number of paths of length nt is at most |Vcity|nt), but is only done once and offline. Any

additional paths of length n′t > nt can be found more quickly using previously found paths

and a dynamic programming-based approach.

For the minimum-cost-path-based approach, the path searching graph needs to be stored.

The memory complexity is based on the number of vertices and edges: O(2 + nt|Vcity|) +

O(2|Vcity|+ (nt − 1)|Vcity||Vcity |) = O(|Vcity|) +O(|Vcity||Vcity |) = O(|Vcity||Vcity |).

For the set-based approach, negligible extra memory is needed with an implementation

that assigns a set flag to each existing path based on its ending location.

5.6.2 Online

For the minimum-cost-path-based approach, finding the shortest path in the path searching

graph is just a matter of applying a shortest path algorithm such as Dijkstra’s algorithm,

51

requiring time complexity of O(|Vcity| log |Vcity|+ |Ecity| log |Vcity|).

For the set-based approach, a Hamming distance calculation between the observed path

and all other paths is required. This results in a worst-case time complexity of O(nt|Vcity|nt)

because each Hamming distance calculation takes O(nt) for each path. However, in practice

the average case is significantly faster and approaches O(nt|Vcity|) as the minimum Hamming

distance calculated approaches 0 because Hamming distance calculations can be terminated

early once the Hamming distance being calculated for the current pair of codewords meets

the last minimum Hamming distance calculated.

5.7 Representing observation errors in localization methods

In order to correct an observation error, the error must first be detected. This can be

accomplished by recognizing that the symbol created through a street segment does not

exist in the alphabet of valid symbols, or by recognizing that the newest symbol observed

results in an invalid path (a path that does not exist in the map).

In the event of detecting an error, such an error is handled accordingly by each localization

method.

For the minimum-cost-path method, no edge weights are zeroed for the layer correspond-

ing to the errant symbol observed.

For the set-based method, the errant symbol is replaced by a special symbol that repre-

sents an observation error: this symbol will not have appeared as a landmark configuration

anywhere else in the ground truth landmark map.

These considerations allow the algorithms to continue to function as expected even in

the face of observation errors, given that nt is sufficiently large.

52

5.8 Chapter summary

In this chapter, we presented the localization algorithms used which allows one to self-

localize without GPS given a sequence of landmark observations, a landmark map, and its

corresponding current state observer function or collection of valid, appropriate-length paths.

We applied concepts of minimum cost path algorithms and set distances to demonstrate the

localization algorithms. We performed a complexity analysis to demonstrate their scalability,

to be applied to localizing in larger areas. We also clarified how observation errors are

represented using these localization methods.

53

CHAPTER 6

Experiments

Having presented the method this work proposes, we now turn to explaining the design and

results of experiments used in demonstrating the feasibility of our approach. We begin with

preliminary experiments as they were instrumental in framing expectations and in honing

intuition moving forward, and they may also be worthwhile points to fork at when extending

this work. Then, we explain the experiments of the main work and detail their results.

6.1 Preliminary experiments

In this section we discuss and present some experiments done to test the feasibility of some

ideas that were expanded on.

6.1.1 Experiment design and setup

A simulation was designed to gather empirical data about the effectiveness of localizing with

various degrees of landmark code uniqueness across all street segments. The goal of this

preliminary experiment was to evaluate the feasibility of the work, and to possibly uncover

ideas, patterns or problems not yet considered.

The outline of a trial is as follows:

1. Randomly generate a directed graph. These graphs are meant to simulate different

road networks.

2. Assign landmark codes to the graph edges. Again, to simulate assigning real landmark

codes based on landmark observations to street segments.

54

3. Generate a random walk on the graph. This results in an observed sequence of land-

mark codes.

4. Measure the steps required to localize. Do this for each graph, for a set code uniqueness

percentage.

6.1.1.1 Random directed graph generation

The Erdős–Rényi model [ER59] was used to generate the directed graphs. For a given vertex

set and number of edges, each graph using the given vertices and number of edges are equally

likely. This graph generation method is comparable to a uniform distribution across the set

of possible graphs. In other words, given a vertex set V and fixed number of edges |E|, a

graph G(V,E) was drawn from the discrete uniform distribution U consisting of the set of

all graphs that can be made with the given vertex set and number of edges GV,|E|:

G(V,E) ∼ U{GV,|E|} (6.1)

In an attempt to match realistic degree distributions of road networks, the number of

edges used was 2|V | where |V | is the size of the vertex set (which varied with the experi-

ments).

6.1.1.2 Landmark code assignment for simulation

To simulate varying degrees of landmark code repetition, we defined a metric to measure the

notion.

Definition 6.1. (Unique code percentage) Let the probability measure P(LCi
) be defined

as the probability that LCi
is the landmark code of a visited vertex vi, independent of any

past visited vertices. Then let the unique code percentage U be:

U =
|{i : P(LCi

) = 1
|V |}|

|V |
× 100% (6.2)

55

Figure 6.1: Toy example of a randomly graph with 10 vertices; assigned codewords are

integers and are displayed atop the vertices. Here, U = 50%.

56

6.1.1.3 Generating a random walk

To begin, a start vertex was chosen uniformly at random. Then, the next step in the walk

was decided by choosing again uniformly at random from the vertex’s incident edges. The

edge was followed to the other vertex and the process was repeated until localization.

6.1.1.4 Measuring steps needed to localize

Localization here is intentionally defined in a way that is not dependent on the entire past

sequence of observations, only the immediately previous step (i.e., treated as a Markov

process). The purpose of this was to have this preliminary experiment serve as a lower

bound of performance.

Localization in this preliminary experiment is defined as the event that a step in a walk

reaches a unique code.

6.1.2 Results and discussion

For a set number of 104 vertices, a random walk was generated until localization was achieved

for various values of U , u ∈ {95%, 85%, 75%, 50%, 40%, 30%, 20%, 10%}. For each value of U ,

1000 trials were done and the results were averaged over the trials. The resulting histograms

(with horizontal axis representing number of steps to localization) were normalized so they

function as probability density functions.

From Figure 6.2, it can be seen that with at least U = 20% unique codewords, local-

ization can be achieved within 100 steps, on 95% of the random walks on random graphs.

This optimistic result indicates that once the main version of the algorithm is applied, we

can expect localization performance to improve. While 100 steps is a long distance for an

autonomous vehicle to have to drive, this result functions as a sort of lower bound of perfor-

mance. With realistic (greater) diversity in symbols we can expect to be able to localize in

fewer steps.

57

Figure 6.2: Probability density functions for varying values of U as a function of the number

of steps required to localize. 1000 randomly generated graphs with 104 vertices each had

their results averaged and plotted here.

58

Figure 6.3: Red, blue, and green rectangles showing the regions of the large, medium, and

small-sized maps, respectively. Original image capture from Google Maps.

6.2 Main experiments

The main experiments used in this work to verify the effectiveness of the proposed method

consist of applying the two localization methods outlined in the previous chapter to real-

world data and measuring how distance required to travel for localization is affected by the

number of observation errors we wish to be tolerable.

6.2.1 Experiment design and setup

To create the landmark code, landmark location data is required. To this end, we use the

dataset from [AZT14] which comprises a region of Washington, D.C. The OpenStreetMap

data we use is constrained to the data that falls within the region covered by the aforemen-

tioned dataset. From this coverage, we a large rectangular area that covers the majority to

be the large-size map, and take two smaller subsets to be the medium and small-sized maps.

59

Large Medium Small

10.097 km2 3.257 km2 2.306 km2

Table 6.1: Area of each map region.

Large Medium Small

4102 nodes 1171 nodes 697 nodes

Table 6.2: Number of nodes in line graph of each map region.

Both localization methods were tested on the maps of each size, and various results were

collected.

6.2.2 Results and discussion

First, we examine the results of experimentally finding nt, the minimum path length neces-

sary to guarantee localization even with up to t observation errors. We compare results of

the set-based and minimum-cost path-based methods.

(See Figures 6.4, 6.5, 6.6) For the full- and medium-sized maps, the set-based method

cleanly out-performs the minimum-cost path-based method. This is due to how the set-

based method requires only a minimum set distance constraint to be met, which is not as

harsh as a minimum Hamming distance constraint over all codewords, which is the case for

the minimum-cost path-based method. For the smallest map size, the performance of both

methods was identical.

Next, for a set codeword length of 15, a node in the full-size map was uniformly randomly

selected as the start of a 15-street-segment walk. A set amount (from 0 to 5 inclusive) of

random symbols in the walk were treated as observation errors in the observed codeword

and localization was attempted using the set-based method. This was repeated for 1,000,000

trials for each of the amounts of errors from 0 to 5. The purpose of this experiment was to

demonstrate the method’s effectiveness on average (instead of worst-case, which was high-

lighted in the previous experiment) using available data to construct and observe landmarks.

60

Figure 6.4: Minimum path lengths necessary for localization for different values of t (maxi-

mum observation errors to correct and still localize); full-size map.

Figure 6.5: Minimum path lengths necessary for localization for different values of t (maxi-

mum observation errors to correct and still localize); med-size map.

61

Figure 6.6: Minimum path lengths necessary for localization for different values of t (maxi-

mum observation errors to correct and still localize); small-size map.

Figure 6.7: Average path length required to localize using a length 15-codeword in the

full-size map. For each number of errors, 1,000,000 trials were used to obtain the average.

62

Figure 6.8: Histograms of localization path length required to localize for different numbers

of errors t in the observed 15-length codeword.

(See Figure 6.7) Experimentally, for even 5 errors randomly corrupting the observed

codeword, the set-based method is able to localize in less than 2 street segments traversed

on average.

Lastly, the histograms over these sets of 1,000,000 trials for each number of errors t is

shown to give a more full picture of how the localization lengths were distributed in practice.

This is, again, on the full-sized map.

(See Figure 6.8) Less than 5% of the cases required 5 or more street segments to be

traversed to localize using the set-based method.

Overall, these results using real data prepared using the pipeline outlined in this thesis

proved to be effective in quickly localizing an autonomous vehicle without requiring GPS at

localization time. The set-based method was shown to be able to localize faster than the

minimum-cost path based method. With achievable landmark diversity and observability,

these results show that this method can be used in the event of an autonomous vehicle’s

localization systems being compromised.

63

6.3 Chapter summary

This chapter presented the design and results of experiments used over the course of this

work, from preliminary work to the main work that the former helped to shape. Experimental

results using real data showed that the methods proposed can accurately and efficiently

localize even when multiple observation errors are made.

64

CHAPTER 7

Conclusion

With autonomous vehicles steadily approaching full autonomy, the safety and robustness

of the systems that help it make decisions are paramount. In an effort to improve their

robustness, we proposed an approach to self-localization of an autonomous vehicle using

landmark objection via car-mounted camera, without the need for GPS at localization time.

By representing a road network as a graph, landmark observations could be encoded and

assigned to different street segments. Sequences of landmark codes can become unique when

of sufficient length, as dictated by the current state observer function that can be derived

for any directed graph and/or by experiment when wanting to localize even with errors.

Using both a set-based method and a minimum-cost path-based method allowed the

proposed method to successfully localize using real road network and landmark data with

great online efficiency and accuracy even with multiple observation errors.

Preliminary results have shown that even a lower bound of performance can achieve

reasonable localization results to the tune of being able to localize in a road network with

104 vertices and only 20% of the landmark codes being unique, in 95% of simulated trials.

Our main results employing the localization algorithm detailed herein achieved an average

localization length of 1.94 street segments traversed over 1,000,000 trials when the observed

codeword is corrupted with 5 observation errors. In addition, for a region of Washington

D.C. with area of over 10 km2, our set-based method was able to correct up to 5 errors given

any 11-street-segment-long sequence of observations.

Overall, the method proposed in this work demonstrates a feasible and scalable solution

to localizing an autonomous vehicle without access to GPS at localization time.

65

One question to address in the future is how to fully exploit the fact that the original city

graphs (not necessarily their line graphs) are planar graphs. A potential direction is to assign

information to the facets that are formed by surrounding edges; perhaps by looking at facet-

based sequences and codewords instead of street-segment-based sequences, sizeable factors

of memory could be saved in shrinking the size of the landmark map and corresponding walk

dictionary.

Another open question is in improving the time complexity of the offline one-time setup

processes. To handle larger regions, more vertices, walks and encodings will be necessary

(as will longer minimum localization lengths). Implementing and analyzing a dynamic

programming-based method of increasing path lengths from prior stored paths could be

important in significantly cutting down running time and memory in implementations.

66

REFERENCES

[An] Andreas ”AndGem”. “OsmToRoadGraph.” Website.
https://github.com/AndGem/OsmToRoadGraph.

[AZT14] Shervin Ardeshir, Amir Roshan Zamir, Alejandro Torroella, and Mubarak Shah.
“GIS-assisted object detection and geospatial localization.” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8694 LNCS(PART 6):602–617, 2014.

[BG13] Margrit Betke and Leonid Gurvits. “Mobile Robot Localization using Land-
marks.” (May 1997), 2013.

[BGU16] Marcus A. Brubaker, Andreas Geiger, and Raquel Urtasun. “Map-based prob-
abilistic visual self-localization.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(4):652–665, 2016.

[BI17] I. Bukhori and Z. H. Ismail. “Detection strategy for kidnapped robot problem in
Monte Carlo Localization based on similarity measure of environment.” USYS
2016 - 2016 IEEE 6th International Conference on Underwater System Technol-
ogy: Theory and Applications, pp. 55–60, 2017.

[BN18] Bianca Cerasela Zelia Blaga and Sergiu Nedevschi. “A method for automatic
pole detection from urban video scenes using stereo vision.” Proceedings - 2018
IEEE 14th International Conference on Intelligent Computer Communication and
Processing, ICCP 2018, pp. 293–300, 2018.

[CGW91] Peter E. Caines, Russell Greiner, and Suning Wang. “Classical and logic-based
dynamic observers for finite automata.” IMA Journal of Mathematical Control
and Information, 8(1):45–80, 1991.

[dBA19] Lucas de Paula Veronese, Claudine Badue, Fernando Auat Cheein, Jose Guivant,
and Alberto Ferreira De Souza. “A single sensor system for mapping in GNSS-
denied environments.” Cognitive Systems Research, 56:246–261, 2019.

[EHH19] Nico Engel, Stefan Hoermann, Markus Horn, Vasileios Belagiannis, and Klaus Di-
etmayer. “DeepLocalization: Landmark-based Self-Localization with Deep Neu-
ral Networks.” 2019.

[ER59] Paul Erdős and Alfréd Rényi. “On Random Graphs I.” Publicationes mathemat-
icae, 6(26):290–297, 1959.

[FMC13] Jonathan Fabrizio, Beatriz Marcotegui, Matthieu Cord, Jonathan Fabrizio, Beat-
riz Marcotegui, Matthieu Cord, Jonathan Fabrizio, Beatriz Marcotegui, and
Matthieu Cord. “Text detection in street level images To cite this version : HAL
Id : hal-00906841 Text detection in street level images.” 16(4):519–533, 2013.

67

[FVL13] Georgios Floros, Benito Van Der Zander, and Bastian Leibe. “OpenStreetSLAM:
Global vehicle localization using OpenStreetMaps.” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, pp. 1054–1059, 2013.

[GBI13] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay
Shet. “Multi-digit Number Recognition from Street View Imagery using Deep
Convolutional Neural Networks.” pp. 1–13, 2013.

[HDV18] Simon Hecker, Dengxin Dai, and Luc Van Gool. “End-to-end learning of driv-
ing models with surround-view cameras and route planners.” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11211 LNCS:449–468, 2018.

[JSV16] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
“Reading Text in the Wild with Convolutional Neural Networks.” International
Journal of Computer Vision, 116(1):1–20, 2016.

[KHK19] Achim Kampker, Jonas Hatzenbuehler, Lars Klein, Mohsen Sefati, Kai D.
Kreiskoether, and Denny Gert. “Concept study for vehicle self-localization using
neural networks for detection of pole-like landmarks.” Advances in Intelligent
Systems and Computing, 867:689–705, 2019.

[KK89] Tomihisa Kamada and Satoru Kawai. “An Algorithm for Drawing General Undi-
rected Graphs.” Information Processing Letters, 1(31):7–15, 1989.

[LLH18] Stéphane Lafortune, Feng Lin, and Christoforos N. Hadjicostis. “On the history of
diagnosability and opacity in discrete event systems.” Annual Reviews in Control,
45:257–266, 2018.

[LLZ10] Mingyong Liu, Xiaokang Lei, Siqi Zhang, and Bingxian Mu. “Natural landmark
extraction in 2D laser data based on local curvature scale for mobile robot nav-
igation.” 2010 IEEE International Conference on Robotics and Biomimetics,
ROBIO 2010, pp. 525–530, 2010.

[LT10] Jesse Levinson and Sebastian Thrun. “RobustVehicleLocalizationinUrbanEnvi-
ronmentsUsingProbabilisticMaps.pdf.” pp. 4372–4378, 2010.

[MD04] R. Madhavan and H. F. Durrant-Whyte. “Natural landmark-based autonomous
vehicle navigation.” Robotics and Autonomous Systems, 46(2):79–95, 2004.

[NVT08] P. Núñez, R. Vázquez-Mart́ın, J. C. del Toro, A. Bandera, and F. Sandoval.
“Natural landmark extraction for mobile robot navigation based on an adaptive
curvature estimation.” Robotics and Autonomous Systems, 56(3):247–264, 2008.

[OSM] “Open Street Map.” Website. https://www.openstreetmap.org/.

[Ove] “Overpass Turbo.” Website. https://overpass-turbo.eu/.

68

[PC18] Pilailuck Panphattarasap and Andrew Calway. “Automated Map Reading: Im-
age Based Localisation in 2-D Maps Using Binary Semantic Descriptors.” IEEE
International Conference on Intelligent Robots and Systems, pp. 6341–6348, 2018.

[pyt] “python-igraph.” Website. https://igraph.org/python/.

[RSR15] Philipp Ruchti, Bastian Steder, Michael Ruhnke, and Wolfram Burgard. “Local-
ization on OpenStreetMap data using a 3D laser scanner.” Proceedings - IEEE
International Conference on Robotics and Automation, 2015-June(June):5260–
5265, 2015.

[SGR16] Robert Spangenberg, Daniel Goehring, and Rául Rojas. “Pole-based localization
for autonomous vehicles in urban scenarios.” IEEE International Conference on
Intelligent Robots and Systems, 2016-Novem:2161–2166, 2016.

[Shu] W. Shujen. “Unit Circle.” Website. https://www.wyzant.com/resources/lessons/
math/trigonometry/unit-circle.

[Spa15] Robert Spangenberg. “Landmark-based Localization for Autonomous Vehicles.”
p. 115, 2015.

[TB00] Tieniu N. Tan and Keith D. Baker. “Efficient image gradient based vehicle local-
ization.” IEEE Transactions on Image Processing, 9(8):1343–1356, 2000.

[VNB09] Ricardo Vázquez-Mart́ın, Pedro Núñez, Antonio Bandera, and Francisco San-
doval. “Curvature-based environment description for robot navigation using laser
range sensors.” Sensors, 9(8):5894–5918, 2009.

[Wei] E.W. Weisstein. “Line Graph.” Website.
http://mathworld.wolfram.com/LineGraph.html.

[Wik] “Haversine formula.” Website. https://en.wikipedia.org/wiki/Haversine formula.

[WWC12] Tao Wang, D J Wu, A Coates, and Andrew Y. Ng. “End-to-end text recognition
with convolutional neural networks.” 21st International Conference on Pattern
Recognition,2012 (ICPR2012), (Icpr):3304–3308, 2012.

[WYG19] Lihong Weng, Ming Yang, Lindong Guo, Bing Wang, and Chunxiang Wang.
“Pole-based real-time localization for autonomous driving in congested urban
scenarios.” 2018 IEEE International Conference on Real-Time Computing and
Robotics, RCAR 2018, pp. 96–101, 2019.

[YCQ18] Canbo Ye, Guang Chen, Sanqing Qu, Qianyi Yang, Kai Chen, Jiatong Du, and
Ruien Hu. “Self-Localization of Parking Robots Using Square-Like Landmarks.”
2018.

69

