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ABSTRACT OF THE DISSERTATION

Online Learning for Orchestrating Deep Learning Inference at Edge

By

Sina Shahhosseini

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2023

Professor Nikil Dutt, Chair

Deep-learning-based intelligent services have become prevalent in cyber-physical applications

including smart cities and health-care. Resource-constrained end-devices must be carefully

managed in order to meet the latency and energy requirements of computationally-intensive

deep learning services. Collaborative end-edge-cloud computing for deep learning provides a

range of performance and efficiency that can address application requirements through com-

putation offloading. The decision to offload computation is a communication-computation

co-optimization problem that varies with both system parameters (e.g., network condition)

and workload characteristics. On the other hand, deep learning model optimization provides

another source of tradeoff between latency and model accuracy. An end-to-end decision-

making solution that considers such computation-communication problem is required to

synergistically find the optimal offloading policy and model for deep learning services. To

this end, we propose a reinforcement-learning-based computation offloading solution that

learns optimal offloading policy considering deep learning model selection techniques to min-

imize response time while providing sufficient accuracy. We demonstrate the efficacy of our

strategies through experimental comparison with state-of-the-art RL-based inference orches-

tration. In addition, we investigate applying intelligent orchestration strategy in eHealth

monitoring systems as a case study.

xv



Chapter 1

Introduction

1.1 Overview

The Internet of Things (IoT) has become a promising solution to improve efficiency or

provide novel solution in many industrial areas, such as automotive, health-care, and home

automation. Demand for comprehensive solutions, however, requires more complex IoT

systems [7]. For this reason, IoT devices need to interact with cloud servers and other smart

IoT devices via the Internet and local networks to offer smart and connected solutions [28].

According to Cisco, 500 billion connected devices are expected by 2030, which represents a

substantial increase in the scale and the complexity of existing computing and communication

systems [25].

Machine learning (ML) is advancing real-time and interactive user services in IoT systems.

ML applications are primarily deployed on cloud infrastructure to meet the compute intensity

and storage requirements of ML algorithms, and address the resource constraints of user-end

wearable sensory devices [11]. However, unpredictable network constraints including variable

signal strength and availability of the network affect real-time delivery of cloud services [51].

1



The edge computing paradigm allows deployment of ML applications closer to the user-end

devices, minimizing the latency of service delivery, reducing the total network load, and

alleviating privacy concerns. This thesis addresses challenges of edge computing from three

perspectives: systems, applications, and edge orchestration.

Systems Perspective Collaborative sensor-edge-cloud architecture presents multiple ex-

ecution choices for workload partitioning and compute placement including execution on a

single sensor, edge, cloud nodes, and any possible combinations of these devices. Considering

the variable accuracy nature of ML algorithms, these execution choices expose a wide range

of energy-performance-accuracy trade-off space. Choosing an optimal execution option un-

der varying system dynamics, available energy budget of devices, network constraints, and

error resilience of ML workloads is a complex run-time challenge.

Application Perspective Depending on the ML model employed, different applications

feature varying compute, data, and communication intensities. At an application level,

there is diversity in terms of sensitivities to latency, throughput, infrastructure availability,

and accuracy. Further, different application execution choices result in different energy

consumption patterns. Considering these application level variations, the choice of execution

of an application is a subject of multiple factors varying at run-time.

Edge Orchestration Edge orchestration techniques handle workload partitioning, dis-

tribution, and scheduling of ML workloads, considering both applications’ and systems’

perspectives. Understanding the varying compute intensities of applications, latency and

throughput requirements, user-interaction and responsiveness expectations, quality of in-

terconnection network including signal strength, availability, load balancing, compute and

storage capacities of underlying hardware elements put together makes application orchestra-

tion a stochastic process [107]. To maximize the efficiency of edge-enabled services, run-time

solutions that holistically consider both requirements and opportunities vertically across the

user, device, application, network, edge node, and platform layers are necessary [106].

2



1.2 Thesis Contributions

Determining the optimal orchestration policy for an unknown and dynamic system is of

utmost importance, given that the environment’s dynamicity, including changes in network

conditions, workload arrivals at computing nodes, user traffic, and application character-

istics, is subject to continual variation. Most current solutions are based on design time

optimization, without considerations on varying system dynamics at runtime [139, 15, 73,

87, 17, 18, 10, 47, 133, 112, 63]. A complex system that runs a variety of applications in

uncertain environmental conditions requires dynamic control to offer high-performance or

low-power guarantees [111, 110, 109]. Considering the run-time variation of system dynam-

ics, and making an optimal orchestration choice requires intelligent monitoring, analysis,

and decision making. Existing heuristic and rule-based orchestration methods require an

extensive design space exploration to make optimal compute placement decisions. Further,

such a solution based on exhaustive search at run-time becomes practically infeasible for

latency critical services. In this context, different offline and online machine learning models

have been adopted for run-time resource management of distributed systems, to handle the

complexity of orchestration choices. Among these models, reinforcement learning approach

(RL) is effective in developing an understanding and interpreting varying system dynam-

ics [78, 92]. By utilizing reinforcement learning, it becomes possible to identify intricate

relationships between critical system parameters and make online decisions that optimize

various objectives such as response time, energy usage, and quality of service [116].

The main contributions of this dissertation are outlined below:

• Investigation on impact of various system parameters: The majority of existing

literature presents efficient solutions considering a limited number of parameters (e.g.,

computation capacity and network bandwidth) neglecting the effect of the application

characteristics and dataflow configuration. In this work, we explore the impact of the
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computation offloading on total application response time in end-edge-cloud networks

considering more realistic parameters, e.g., application characteristics, system com-

plexity, communication cost, and dataflow configuration. This work also highlights the

impact of a new application characteristic parameter defined as Output-Input Data

Generation (OIDG) ratio and dataflow configuration on the system behavior.

• Runtime DL inference orchestration framework: This work implements a run-

time orchestration framework for DL inference services on multi-user end-edge-cloud

networks. The majority of orchestration solutions that have been studied are evalu-

ated through numerical methods, while some have been suggested and assessed using

simulators. Moreover, there is a dearth of literature on actual hardware implemen-

tations for online learning frameworks. The proposed solution takes into account the

entire service process, from when a request is initiated by the end-node device until

the results are delivered back to the device on real test-bed.

• Online learning for cross-layer optimization: This work proposes a reinforcement-

learning-based computation offloading solution that learns optimal offloading policy

considering deep learning model selection techniques. The orchestrator uses reinforce-

ment learning to optimize response time provided accuracy requirements. Online so-

lutions have not previously coordinated offloading and model optimizations together.

The related works rely on only computation offloading strategy. This work consid-

ers both computation offloading and application-level adjustment together in order to

achieve required QoS.

• Hybrid learning for orchestration: Identifying optimal orchestration considering

the cross-layer opportunities and requirements in the face of varying system dynamics

is a challenging multi-dimensional problem. While Reinforcement Learning (RL) ap-

proaches have been proposed earlier, they suffer from a large number of trial-and-errors

during the learning process resulting in excessive time and resource consumption. This
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work proposes a Hybrid Learning orchestration framework that reduces the number of

interactions with the system environment by combining model-based and model-free

reinforcement learning.

• Hyperdimensional computing for reinforcement learning: Training deep neural

networks, which is necessary for Deep Q-Learning algorithms, including the state-of-

the-art DQL, is computationally expensive; Hyperdimensional Computing (HDC) is a

computationally efficient learning paradigm that produces higher quality learning than

its neural network counterparts. This work presents a new method, hyperdimensional

Q-Learning and Hybrid Learning to efficiently learn the policy.

• Intelligent sense-compute co-optimization: ML-driven smart healthcare applica-

tions have different input data characteristics, computational requirements, and quality

metrics. Continuous stream of input data, varying network conditions, and computa-

tional requirements of different ML models create dynamic workload scenarios. At

an application-level, requirements include higher prediction accuracy of ML models,

latency of inferencing results from ML models, resilience, and an overall higher qual-

ity of service. At a system-level, requirements include availability of compute nodes

in edge and cloud layers, compute capabilities of edge nodes to meet performance

requirements of ML models, network utilization, and overall energy efficiency. This

work presents a joint sensing and sense-making co-optimization using an RL-agent as

a general solution for eHealth services considering energy consumption while meeting

accuracy requirements.

The rest of the thesis is organized as follows:

• Chapter 2: Provides an introduction to Computation Offloading problem in end-

edge-cloud systems. It explores the impact of the computation offloading on total

application response time in end-edge-cloud network considering variety of parameters,
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e.g., application characteristic, system complexity, communication cost, and dataflow

configuration.

• Chapter 3: Implements a runtime orchestration scheme for DL inference services on

multi-user end-edge-cloud networks. It employes reinforcement learning to perform

orchestration of DL inference in end-edge-cloud networks.

• Chapter 4: Proposes a hybrid learning approach to accelerate the RL learning process

and reduce direct sampling during learning.

• Chapter 5: Proposes hyperdimensional reinforcement learning technique to efficiently

orchestrate an end-edge-cloud network.

• Chapter 6: Proposes a reinforcement learning scheme for qualitative feature selec-

tion, weighted prioritization of input modalities, input-driven MMML model selection,

and sensor configuration setting, based on run-time monitoring, and analysis of input

modalities.

• Chapter 7: Concludes the work, and provides future research directions.
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Chapter 2

Introduction to Computation

Offloading

Modern IoT systems comprise three main layers including sensor layer, fog layer, and cloud

layer. These layers may include different sensing devices, computational and energy re-

sources, storage capacity, and connectivity infrastructure [7]. The sensor layer is often in

charge of data collection, leveraging a local sensor network. The sensor layer is resource-

constrained in terms of processing power and energy budget. Some works have addressed

such limitations by offloading computations to the upper layers (i.e., fog and cloud) [99].

Offloading computation is based on the assumption that i) the response time is mostly de-

termined by computation time and ii) shifting the computation toward upper layers can

reduce the total response time. However, this assumption may not always hold, as the

migration is often a communication-computation co-optimization problem [109]. More pre-

cisely, the response time of an application, in addition to being the function of execution

time, is a function of communication cost as well. In other words, any significant increase

in the transmission time leads to an increase in the response time [86]. In this chapter we

only focus on exploring the impact of computation offloading on response time. However,
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power consumption is another important co-design aspects of computation offloading for IoT

systems which needs to be investigated in the future works.

The response time is defined as the time difference between the moment when data is col-

lected for decision making and the moment when the result is delivered to the consumer.

Thus, different data flows from sensors to consumers may cause changes in the response time.

Therefore, an end-to-end analysis of IoT systems that considers a service from data collec-

tion to actuation/ notification is essential. Furthermore, previous studies have neglected the

impact of running applications with different characteristics in IoT systems. In other words,

each application may need different input data size and generate different output data size

after the execution leading to different communication cost in IoT systems. We define this ap-

plication characteristic as OIDG ratio (γ) referring to the ratio of output data volume to input

data volume generated in an application. Even though there have been recently some efforts

to co-optimize communication and computation in a coupled manner, the literature lacks

a comprehensive solution that considers system parameters (e.g., application characteristic

(OIDG) and dataflow configuration) in a holistic manner. The majority of existing literature

only focuses on communication-computation optimization with limited system parameters

such as processing capacity and network bandwidth [113, 102, 58, 50, 19, 65, 64, 141].

In addition, finding optimal computation offloading policy for an unknown and dynamic

system is critical since dynamicity of environment e.g., network condition, workload arrival

at computing nodes, user traffic, and application characteristics changes over time. Most

current solutions are based on design-time optimization suffering from the condition variation

during the runtime [139, 15, 73, 87, 17, 18, 10, 47, 133, 112, 63]. A complex system that runs

a variety of applications in uncertain environmental conditions requires dynamic control to

offer high-performance or low-power guarantees [109, 106, 85].

In this chapter, we explore computation offloading through a computation- communication

co-optimization lens and in an end-to-end fashion. We highlight the impact of aforementioned
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system parameters (often neglected) on the response time. In addition, we examine a proof-

of-concept dynamic computation offloading strategy in a case study to show IoT systems

are required to be dynamically controlled at run-time. In short, we make the following key

contributions:

• Explore the impact of the computation offloading on total application response time

in three-layer IoT systems considering variety of parameters, e.g., application charac-

teristic, system complexity, communication cost, and dataflow configuration.

• Investigate the impact of the new application characteristic parameter (i.e., OIDG)

and the dataflow configuration on system behavior.

• Examine a proof-of-concept end-to-end dynamic computation offloading solution con-

sidering the aforementioned influential parameters. We compare the dynamic strategy

with three static computing schemes to show the design time models are insufficient

for IoT systems with dynamic behavior.

The rest of this chapter is organized as follows: Section 2.1, briefly introduces modern IoT

architecture and highlights the advantage of the three-layer IoT architecture and computa-

tion offloading technique. In Section 2.2, we formulate the system behavior in two common

Dataflow configurations. In Section 2.3, we explore an impact of computation offloading

on different parameters. In Section 2.4, we examine the dynamic computation offloading

system. Finally, we conclude the chapter in Section 2.5.

2.1 Background

In this section, we first briefly describe the three-layer IoT architecture. Then, we outline

the background of computation offloading in IoT systems.
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Figure 2.1: IoT System Architecture

2.1.1 Three-layer IoT Architecture

An IoT-based system conventionally includes a three-layer architecture. The devices and

processing units are located in the three layers, requiring communication methods according

to their functions and physical or virtual locations [7]. In general and from the functionality

perspective, the lower layer –including sensing, actuating, and informing devices– is entitled

as the sensor layer. The upper layer that contains computing and storage devices is the

cloud layer, and the intermediate devices is the fog layer (see Figure 2.1).

The sensor layer consists of sensor nodes that collect data from the physical world. The de-

vices may also provide actuation control or notification as a result of processing the collected

data. The sensing devices are expected to be relatively small, connected to the rest of the

system wirelessly. To communicate with the other layers, a sensor node requires a trans-

mission module as well as a small and power-efficient processing unit. Due to the limited

battery, the sensing devices are constrained by their energy sources, processing powers, and

data transmission capacities.
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The fog layer is defined as an intermediate layer to regulate the data transmission and

processing loads, since constant direct communication with the server may not be feasible

or reasonable for resource-constrained sensing devices. The fog layer consists of one or more

gateway devices that are physically close to the sensing devices [99]. This short distance

to the data sources significantly reduces the data transmission power consumption of the

sensing devices and enables fast responses. The processing power of the gateway devices in

the fog layer is higher than the sensing devices, enabling local data analysis before sending

the data to the cloud server. This pre/local processing method, which is known as “fog

computing,” reduces data traffic, the load on the cloud server, and the response time. The

gateway and sensing devices are connected to a local network. Therefore, the system is still

able to provide the service in case of loss of Internet connection (i.e., connection to the cloud

servers) [103, 120, 9].

At the cloud layer, the main processing unit of an IoT-based system is the cloud server.

The cloud servers are considered as devices with more powerful processing capability [121].

Thanks to a centralized database of the incoming data, heavy data analytic approaches can

be performed on a specific source of data, allowing a comparison with other data sources.

In this chapter, we focus on the computation offloading in the IoT-based systems, referring

to how data is processed and transmitted over the IoT network: the sensor, fog, and cloud

layers.

2.1.2 Computation Offloading

Resource allocation is classified into three main categories as resource placement, resource

scheduling, and computation offloading. Resource placement is about where and how re-

sources are placed in IoT systems. It aims to find optimal set resources in IoT systems

to execute tasks or applications while satisfying QoS (Quality of Service) requirements by
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optimizing specific objective function (minimizing latency, minimizing energy consumption,

etc). Resource scheduling or scheduling in resource allocation is to determine when and

how many resources to allocate in IoT systems. The resource scheduling determines optimal

scheduling of tasks, services, or applications to be executed on resources in order to meet

QoS requirements [61].

Computation offloading is to determine where and how many resources can be moved to exe-

cute tasks or applications. The technique in IoT context is the transfer of resource-intensive

computational tasks to a separate external device in the network. The technique of offloading

computation over a network can provide computing power and overcome the limitation of an

IoT-based device such as computational power, storage, and energy. Optimizing the com-

putation offloading problem can be addressed by finding the best solution for the following

questions:

(i) where to offload: the scheduler should determine where the computation is offloaded,

depending on the variety of parameters such as objectives, availability of resources, and

required computation capacity for performing computations. Some studies have addressed

this problem with optimally offloading workloads to more capable computing resources [133,

15].

(ii) when to offload: the scheduler should determine when the computation is offloaded

to upper layers to achieve the required QoS due to many uncertainties in the system and

environment such as network congestion, overloaded workload, and device battery. Some

studies have addressed this problem with optimal time scheduling of offloading computations

[129, 64].

(iii) what to offload: the computation scheduler should determine what portion of work-

loads is offloaded to upper layers. According to this fact, offloading solutions can be classified

into two classes: (i) full offloading where the whole workloads are offloaded to external re-
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Notation Description

Ai Application i to be executed on Si which is defined as a tuple {Din, Dout}
α Decision offloading tuple
β Packet loss ratio in connectivity between the sensor layer and fog layer
γ OIDG ratio in application A

T sg
t Transmission time between the sensor layer to gateway layer

T gs
t Transmission time between the gateway layer to sensor layer

T cg
t Transmission time between the cloud layer to gateway layer

T gc
t Transmission time between the gateway layer to cloud layer

T ca
t Transmission time between the cloud layer to application layer

TS
e Execution time at the sensor node

TG
e Execution time for arrival workloads at the gateway device

TC
e Execution time for arrival workloads at the cloud device
N Number of connected sensors
Din Input data size in A

Dout Output data size in A
T s
r Total response time in the sensor computing scheme A

T g
r Total response time in the gateway computing scheme A

T c
r Total response time in the cloud computing scheme A

Table 2.1: Notations Descriptions

sources such as fog or cloud layers and (ii) partial offloading where workloads are partitioned

into parts to be executed locally or externally. Many works have been addressed this opti-

mization problem by the partial offloading method such as [125, 102, 63, 141]. Besides, some

studies that have applied the full offloading method in their problems [113, 139].

2.2 System Model

In this section, we investigate response time behavior in an three-layer IoT system which uses

the computation offloading technique. First, we briefly explain the system components and

then we describe the computation offloading model which is applied to our system. Finally,

the response time is modeled in two common dataflow configurations. The computing devices

in three-layer IoT system are represented by (S,G,C) where S is the sensor layer with n sensor

devices; G is a gateway device at the fog layer; C indicates a cloud device. Each sensor run
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an application in a certain period of time. These applications are represented by a tuple

Ai = {Din, Dout}, where Din is the amount of input data required for each application and

Dout is the output data of each application. All the notations are described in Table 2.1.

2.2.1 Computation Offloading Model

As previously mentioned, sensor devices are supposed to execute application Ai in a certain

period of time. Computation offloading model define whether the application should be

uploaded to the upper computing resources or be performed at the local resource. The

offload decision for the system is represented by a tuple α = {αS, αG, αC} where αj represents

offloading decision at layer j. For example, if the sensor layer executes the applications at

layer j ∈ {S,G,C} then, αj = 1, otherwise it equals to zero.

2.2.2 Response Time Model

In general, response time is the total time it takes to respond to a request for a service [86].

In IoT systems, the response time is defined as the time difference between the moment when

enough data is collected for decision-making and the moment when the result is delivered to

the consumer [86]. In general, the actuators can be located at different layers in IoT systems

which leads to different dataflows from sensors to actuators. In this section, response time

model is investigated for two common dataflows as follows:

Dataflow 1: The actuators (i.e., consumers) are located at the sensor layer, so the action

response is issued at the processing unit and is performed at the sensor layer. Based on this

scenario, the data analysis can be performed at the three layers: the sensor node processing

unit, the gateway device processing unit, and the cloud processing unit. Assuming the

sensor node is capable of performing local processing, the response time is obtained from the
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following equation:

T S
r = T S

e (2.1)

where T S
e is the execution time of analyzing raw data at the sensor layer. In contrast, if

the sensors offload the analyzing computation to the gateway layer, the total response time

will include the data transmission time from the sensor layer to the gateway layer and the

notification transmission time from the gateway to the actuators. Therefore, in the case of

a two-layer sensor gateway, the total response time is as follows:

TG
r = T sg

tran + TG
e + T gs

tran (2.2)

where T sg
tran and T gs

tran are the sensor-to-gateway and gateway-to-sensor transmission time,

respectively. TG
e is the execution time needed to analyze transmitted data on the gateway.

If the computation needs to be performed with a more powerful processing unit, sensors

will offload the computation to the cloud layer, making the total response time equal to the

round trip transmission time from the sensor layer to the cloud layer. This time can be

obtained as:

TC
r = T sg

tran + T gc
tran + TC

e + T cg
tran + T gs

tran (2.3)

where T sc
tran and T cs

tran are the sensor-to-cloud and cloud-to-sensor transmission time, respec-

tively, and TC
e is the execution time at the cloud layer.

Dataflow 2: the actuators can be physically distant from the sensor nodes. A network

of sensors can collect data to be analyzed through the layers and notify the end-user on

the application layer. Tele-monitoring IoT systems usually follow this type of dataflow. In

this regard, the result (e.g., notification) is transmitted from the cloud layer to an end user,

assuming the end user is connected to the cloud layer. According to where the processing of
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collected data is performed, the total response time can be obtained from one of the following

equations. Assuming the sensor node performs the processing at its local processing unit,

the total response time is the following:

T S
r = T S

e + T sg
tran + T gc

tran + T ca
tran (2.4)

where T ca
tran is the cloud-to-end user transmission time. In contrast, if either the gateway or

cloud performs the computations, the total response times can be obtained from the following

equations, respectively:

TG
r = T sg

tran + TG
e + T gc

tran + T ca
tran (2.5)

and,

TC
r = T sg

tran + T gc
tran + TC

e + T ca
tran (2.6)

Therefore, the response time in both dataflows for request from the sensor layer with α =

{αS, αG, αC} as offload decision tuple can be summarized into the following equation:

Tr = αS.T S
r + αG.TG

r + αC .TC
r (2.7)

where only one αj equals to one while the others are zero. The lowest response time can

be obtained by choosing the optimal computing scheme for IoT systems in different system

conditions. The offload decision tuple determines the computing scheme for the system to

obtain the lowest response time in the design time or dynamic solution.
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2.3 Exploring Computation Offloading Space

A complex Internet of Things system needs to be systematically designed in the initial

stages of the design to operate optimally between available design alternatives. This requires

an exploration of all influential parameters on system behavior. System behavior depends

on several factors that many studies have tended to neglect. In the previous section, we

investigated the response time in three-layer IoT systems, and modeled the response time

in different dataflow configurations. This section presents a design space exploration for

computation offloading in IoT systems, showing impact the following parameters on the

response time:

• Communication: offloading computations to upper layers in IoT systems requires

transmitting data through the layers. Therefore, communication has a significant im-

pact on the total response time. We consider the packet loss ratio (β) as a parameter

which impacts communication cost between the devices [16].

• System Complexity: execution time might vary depending on what amount of work-

loads arrives at the computing resource or the number of requested services. Therefore,

investigating the response time must include the effect of system complexity at design

time or run-time.

• Dataflow: the locations of end-users can change the communication cost. Therefore,

any change in dataflow from where the data is collected, processed, and delivered can

directly impact system behavior. In this chapter, we investigate two common dataflows

where in Dataflow 1, the actuators (i.e., consumers) are located at the sensor layer,

and in Dataflow 2, actuators are physically distant from sensor nodes and located at

the application layer.

• Application Characteristic: previous studies have neglected the impact of appli-
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Network
Download

Speed(Mbps)
Upload
Speed(Mbps)

3G 2.0275 1.1

4G 13.76 5.85

Wi-Fi 54.97 18.88

Table 2.2: Average bandwidth for download and upload in different networks

cation characteristics in design space explorations when a proper computation layer

needs to be determined. Response time not only depends on system characteristics

(e.g., data flow) but also on application characteristics. The ratio of generated output

data to input data can vary, which can affect the response time. One application char-

acteristic is the OIDG ratio (γ). To show the impact of this application characteristic

on system behavior, this study examines the following four manifestations of various

OIDG regions: (i) an application from the region of extremely low OIDG ratios, such

as machine-learning classifiers. A large volume of input data can be classified into a

few classes (γ << 1). (ii) an application from the region of low OIDG ratios, such as

compression or down-sampling (γ < 1). (iii) an application from the region of OIDG

ratios almost equal to 1, such as noise filtering where the sample per second is un-

changed (γ ≃ 1). (iv) an application from the region of extremely high OIDG ratios,

such as encryption or video decoding (γ > 1).

In the following subsections, we conduct an experiment to investigate the dependency of IoT

systems on the mentioned parameters.

2.3.1 Experimental Setup

We exploit Raspberry Pi Zero as the sensor device and NVIDIA Jetson TX2 as a gate-

way device. In addition, AWS c5.4xlarge node is used as a cloud layer. The gateway is

equipped with integrated 256-core NVIDIA Pascal GPU and hex-core ARMv8 CPU, which
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Application #
Application
Name

OIDG
Ratio

Input
Size(Byte)

Output
Size(Byte)

Description

1 YOLO 0.001 164000 161 Image object detector

2 Canny Edge Detector 0.043 14000000 615000 Video edge detector

3 Video-denoising 1 8200000 8200000 Non-local denoising application

4 Video-decoder 95.141 145536 13846510 Image object detector

Table 2.3: Applications’ Specifications

Raspberry Pi
Zero

NVIDIA
Jetson
TX2

AWS
c5.4xLarge

Processor Single Core
Quad-core
Cortex-A57

16 Core Intel
Xeon 8000

Architecture ARM ARM X86

Speed 1 GHz 2.0 GHz 3.2 GHz

GPU — 256-core Pascal —

RAM 512 MB 8GB 32GB

External
Storage

16GB eMMC 32GB eMMC 512GB SSD

Table 2.4: Platforms specifications

is substantially more powerful than the sensor node. However, the cloud layer has more

powerful computing units, such as a 16-Core Intel Xeon Platinum 8000 processor. Table 2.4

contains the specifications of all devices. The sensor and gateway use MQTT protocol to

communicate with each other [49]. The cloud node, in contrast, runs Gunicorn with Flask,

which is a micro web framework written in Python. The gateway is also connected to the

AWS instance via cellular network or Wi-Fi. Table 2.2 lists the average bandwidth for each

connectivity protocol [1].

2.3.2 Evaluation

We conduct experiments to indicate the system with applications selected in different OIDG

regions. The described system is investigated through a variety of environmental conditions,

application characteristics, dataflow configurations, and system complexity as follows. Four

applications with different characteristics are chosen as explained in Table 2.3. The appli-
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Figure 2.2: The Computation Offloading Exploration for different environmental parameters
and system complexity for chosen applications in two different dataflows.

cation’s executable file is located at all the computing computing nodes. Therefore, once

the offloading decision determines the computing scheme, the corresponding node executes

the application from its local memory. System complexity varies from a single node to ten

nodes in the same network. Dataflows are selected from the configurations, as explained in

the System Model section. Communication over a Wi-Fi network is affected by packet loss
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ratio, which varies within a certain range of 0% to 14% in our investigation. The packet loss

ratio is targeted within the range as any ratio more 14% would dramatically increase the

communication delay and response time consequently. In addition, communication between

the fog layer and the cloud layer is based on 3G, 4G, or Wi-Fi connectivity.

Figure 2.2 shows the result of design space exploration considering the mentioned parameters.

In the figure, each plot shows an exploration for a specific application type and dataflow

configuration. Besides, each plane represents a specific computation offloading policy. For

example, the green planes represent the response time (Z-axis) when all sensors offload

workloads to the fog node while the yellow planes represent the cloud computing with 4G

connectivity to the fog layer. In each plot, X-axis and Y-axis represents the packet loss ratio

and number of connected sensors respectively.

The total response time is significantly affected by transmission time across the layers. The

system running Application 2 on Dataflow 2 (see Figure 2.f) is remarkably affected by vari-

ation in packet loss ratio. In the low packet loss ratio, fog computing is the optimal solution

among other schemes as the green plane is below the others. However, in high packet loss

ratio sensor layer computing is the optimal solution. In this case, an increase in packet loss

ratio leads to a significant increase in response time showing the advantage of sensor layer

computing in some conditions. On the other hand, the packet loss ratio does not affect the

optimal solution in the system running Application 1 with both dataflow configurations (see

Figure 2.a and 2.e).

Furthermore, simultaneous requests to a computation unit can severely interrupt request

processing, which affects response time. Therefore, in complex systems, as the number of

connected sensors increases, there is a possibility of significant change in system behavior.

As our experiments show in Figure 2.2, the system running Application 3 on Dataflow 1

(see Figure 2.c) is remarkably affected by increasing the number of connected sensors. The

fog computing scheme is the optimal solution when number of connected sensor equals to
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1. However, it becomes the cloud computing scheme for the system with more connected

sensors. In the case of simultaneous requests, the fog layer is more sensitive than the cloud

layer, which leads to changing the system behavior in a more complex system.

In addition, the consumer’s location affects the response time in our experiment. The sys-

tem running Application 4 has different behavior in both dataflows. In this case, cloud-3G

computing is the worst solution for Dataflow 1 (see Figure 2.d), while it can be the optimal

solution with Dataflow 2 (see Figure 2.h), implying that, for the same environmental param-

eters and system complexity, a different flow of data can change the optimal solution. In

another case, the system running Application 2 with Dataflow 1 (see Figure 2.e) performs

computation optimally in the sensor layer. However, that might not be always true for

Dataflow 2.

The OIDG ratio (γ) as the application characteristic remarkably affects system behavior.

In other words, a system with a higher ratio has more communication costs delivering the

outputs to the consumer. For example, running Application 2 with Dataflow 1 (see Figure

2.b) over the sensor layer is more suitable while running Application 4 with Dataflow 1 (see

Figure 2.d) on the upper layers is faster. In addition, the system behavior is more sensitive

to packet loss when OIDG is high. Consequently, various parameters affect IoT systems,

and they need to be considered to design the model.

2.4 A Proof-of-Concept Dynamic Computation Offload-

ing Technique

In the previous section, we examined the response times of IoT systems, showing how com-

munication and computational limitations could influence different applications. Our experi-

ment demonstrated the behavior of IoT systems leveraging different computational resources
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Algorithm 1 The dynamic computation offloading decision-making in the Decide compo-
nent
1: Initialization in design time:

α⃗← {1, 0, 0}
▷ α⃗ represents the decision offloading tuple for all sensors:
{1,0,0} (in sensor), {0,1,0} (in gateway) and {0,0,1} (in cloud)

2: while system is on do
3: Mode← Dataflow mode ▷ i.e., 1 or 2 selected by the user
4: if Mode = 1 then
5: From the Observe:

Collect TS
e , T

G
e , TC

e , T sg
tran, T

gc
tran, T

cg
tran, and T gs

tran

6: else if Mode = 2 then
7: From the Observe:

Collect TS
e , T

G
e , TC

e , T sg
tran, T

gc
tran, T

ca
tran

8: end if
9: Calculate TS

r , T
G
r , and TC

r

10: Update α⃗ based on {min(TS
r , T

G
r , TC

r ) - ∆}
11: To the Act :

Send α⃗ for the actuation
12: end while

in three-layer architecture. Such an investigation is necessary for system evaluation in design

time and the provision of optimal computation schemes for stationary conditions; however,

it is insufficient in the dynamic runtime environment.

The behavior of IoT-based systems dramatically changes during runtime due to several

variations in status and context. For example, degraded Internet connection and uncertainty

in network latency have an impact on transmission latency. Moreover, the computation time

of an application varies considerably due to varying computation loads on different system

nodes (e.g., gateway devices).

2.4.1 System Design

In this sub-section, we present and examine a simple proof-of-concept end-to-end dynamic

computation offloading technique tailored for IoT-based systems. The proposed approach

selects the near-minimum computation offloading scheme according to the system’s condi-
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Figure 2.3: The ODA control loop in the three-layer IoT system [8].

tion. As mentioned earlier, there are two dataflow modes in these systems, since the end-user

can be considered in the vicinity of the sensor layer or in the cloud layer (see Figure 2.1).

Therefore, in each iteration, the proposed method is performed to minimize the latency

of mode 1 or mode 2. The proposed dynamic computation migration approach employs a

closed-loop control strategy to minimize response latency. We exploit the Observe, Decide,

and Act (ODA) control loop in this regard to leverage the system’s conditions into the com-

putation migration decision-making [8]. A conventional ODA paradigm includes three major

components. The Observe component captures the system status, enabling self- and context-

awareness in the system. The Decide component performs the decision-making according to

the measurements obtained in the Observe component. Finally, the Act component fulfills

the decision, making the (required) changes in the system accordingly [35].

The ODA paradigm, as the backbone of the proposed computation migration approach,

is positioned in the three-layer IoT systems, as shown in Figure 2.3. The Observe com-

ponent is distributed into the fog and cloud layers, as the transmission and computation

loads are dynamic and should be collected continuously. Note that computation time at

all nodes is measured in the design time to be used for the run-time decision making. The

Decide component is fully positioned at the fog layer, enabling local computation migration

decision-making. The actuation of this approach is carried out in all three layers, since

the computation can be performed in the sensor network, gateway devices, or cloud server.
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Therefore, the Act component is partitioned into the three layers.

The computation offloading decision-making, performed in the Decide component, is indi-

cated in Algorithm 1, which indicates how the computation is dynamically switched between

a sensor node, a gateway device, and a cloud server in our system. In design time, α⃗ is ini-

tialized as {1, 0, 0} for all sensors, and the computation time of the sensor, T S
e , is measured.

When the system is on (i.e., runtime), the algorithm first checks the dataflow mode selected

by the user. As mentioned earlier, the response time of the system is different in the two

modes. According to the selected mode, the required values are collected from the Observe

component. Then, the response time of the three layers, T S
r , T

G
r , and TC

r , are calculated

via Equations (1)/(4), (2)/(5), and (3)/(6). By obtaining the minimum response time, α⃗ is

updated and sent to the Act component for actuation in the next iteration. The possible

permutations for α⃗ are limited to {1, 0, 0}, {0, 1, 0}, {0, 0, 1}. Therefore, the computational

complexity for the decision making is O(1). It is worth mentioning that the system might

oscillate between two layers if the response time values are proximal. To avoid such unnec-

essary oscillations, we consider a simple threshold strategy by adding a soft margin (i.e.,

∆) in the computation of the minimum layer’s response time. The soft margin is defined

based on the application sensitivity and the quality of the communication. In this work, we

selected 10% of the current response time as the soft margin. Therefore, α is changed if the

response time in the layer with computation subtracted by ∆ is greater than the other layers’

response times (line 15 in Algorithm 1). The runtime dynamic computation offloading sys-

tem leverages the ODA loop to minimize the response time during the runtime. The system

dynamically assigns the computation to the layers by observing environmental parameters,

system complexity, etc.
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Figure 2.4: Dynamic system behavior over a scenario

2.4.2 Evaluation

This subsection evaluates the dynamic system under various uncertain complexity and en-

vironmental conditions. In the envisaged scenario that executes over 24 hours, packet loss

varies between 0% and 14% and the number of sensors connected to our network changes

between 1 and 10. According to the Exploring Computation Offloading Space section, the

system which executes Application 3 in Dataflow 2 behaves more sensitive to the mentioned

influential parameters (see Figure 2.g). Therefore, in our evaluation, the system is supposed

to execute Application 3 during the experiment within Dataflow 2. The dynamic system
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assigns the computation to one of the layers using Algorithm 1, as shown in Figure 2.4. On

the other hand, other computing schemes are static over the run-time where variations in the

system parameters such as packet-loss or systems complexity do not change the computing

scheme. The response time is evaluated with both the static and dynamic approaches. In

the scenario, the dynamic solution begins with performing computation at the cloud layer.

However, once the packet loss and the number of connected sensors changes, the dynamic

system assigns the computation to the fog layer. On the other hand, the static approaches

do not consider the condition variations where it leads to run the IoT system inefficient.

As a result, the system executes the application at the sensor, fog, and cloud layers with

289s, 321s, and 512s average response time respectively and through dynamic solution with

268s average response time, which demonstrates that better performance can be achieved

through the dynamic solution. Figure 4 shows that the sensor layer computing is sometimes

better than the others, due to the packet loss and system complexity. On the other hand,

cloud layer computing is the optimal computing scheme where communication cost is low.

These findings verify that static computing scheme would perform inefficient in compare with

dynamic solution. Therefore, many parameters affect the IoT system, and they need to be

considered. The proof-of-concept 24 hours test highlights the importance of considering the

mentioned parameters for dynamic systems. It shows the design time models are insufficient

for IoT based systems with dynamic behavior as the context and condition change. Self-aware

optimization methods are required at run time, considering such dynamic and unpredictable

conditions of IoT systems.

2.5 Related Work

This section illustrates related works in the computation offloading technique in IoT systems.

Computation offloading is a technique to transfer compute-intensive tasks or applications
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from the resource constrained IoT devices to more computing capable nodes to enhance QoS

specially for IoT latency-sensitive applications. In this section we explain efforts to address

the problem. Even though there have been recently some efforts to co-optimize communica-

tion and computation in a coupled manner, the literature lacks a comprehensive solution that

highlight the impact of various system parameters (e.g., application characteristic [OIDG]

and dataflow configuration).

Zhang et al. [139] design an energy-efficient computation offloading algorithm. The work

formulates an optimization problem to minimize energy consumption of the offloading sys-

tem by considering computation task offloading and its data transmission in the offloading

decision. The optimization problem is reduced with a simplification method to polynomial

complexity and solved in numerical method. Cao et al. [15] investigate a joint computation

and communication user cooperation for Mobile Edge Computing (MEC) where a nearby

helper node is enabled to share its resource to improve QoS. The work proposes a energy-

efficient framework to minimize the total energy consumption at both the user and the helper

using convex optimization. You et al. [133] propose a design for mobile cooperative com-

puting that enables a user to exploit non-causal CPU-state information shared by offloading

computation to a nearby helper. It helps to fully utilize random computation resources at

the helper with minimum energy consumption.

Sheng et al. [112] present a joint optimization problem of computation and communication

in the MEC system to optimally partition, offload and execute tasks between sensor nodes

and edge nodes to minimize energy consumption. Kao et al. [46] formulate a task assignment

in multiple resource constrained mobile devices and provide a fully polynomial time approx-

imation algorithm to find the optimal offloading scheme that balances latency and energy

consumption of mobile devices. An efficient one-dimensional search algorithm is proposed

[63] to find optimal task scheduling policy for MEC by formulating a power-constrained delay

minimization problem.
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Skarlat et al. [113] model the service placement problem for IoT applications over fog

resources as an optimization problem and propose a genetic algorithm to solve the problem.

Latency-minimization problem in a multi-user time-division multiple access for mobile-edge

computation offloading is investigated by [102]. The work formulates a convex optimization

problem for partial compression problem and develops an optimal joint communication and

computation resource allocation algorithm to solve it. Kouloumpris et al. [57, 56] uses a

mathematical programming based framework to optimally allocate tasks while satisfying

operational constraints.

Kwak et al. [58] jointly optimize dynamic cloud offloading policy and CPU scaling in dy-

namic mobile network environment. The work uses the Lyapunov optimization technique

to minimize energy consumption for given delay constraints. Partial computation offload-

ing modeling in MEC is presented to minimize energy consumption and latency by jointly

optimizing the computational speed (DVFS) of mobile devices and communication power

consumption and offloading ratio [125]. The work formulates the problem and offers the

globally optimal solutions in closed-form which shows that total offloading could not be op-

timal when the smart mobile device has the capability of computation scaling. A message-

passing framework is proposed to reduce complexity of partial computation offloading by

formulating the problem as a mixed integer program [50]. An online algorithm for partial

computation offloading is proposed based on Lyapunov optimization to minimize energy and

latency. The agent decides the CPU-cycle frequencies for local execution and the bandwidth

allocation and transmit power for computation offloading [73].

Chen et al. [19] aim to find the overall optimal decision on partial computation offloading

in a general mobile cloud computing system to minimize a weighted total cost of energy,

computation, and delay of all users. The work formulates the problem as a non-convex

quadratically constrained quadratic program and proposes an efficient algorithm to solve the

problem. Nan et al. [87] present an adaptive online decision-making algorithm which uses
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the Lyapunov optimization technique to distribute the incoming data to the corresponding

tiers to minimize response time and application loss number. Liu et al. [65] formulate a multi

objective optimization problem to minimize the energy consumption and delay performance

in mobile devices. The work optimizes the offloading probability and transmission power by

using an Interior Point Method based algorithm.

Zhao et al. [141] provide an offloading algorithm to minimize energy consumption with

consideration of latency tolerance and the transmission power of mobile devices. The work

solves the optimization problem using Non-linear fractional programming dynamically and

makes a decision to offload computing by adjusting transmission power. Chamola et al.

[17] propose an optimal task assignment in a network of connected cloudlets which provide

services to mobile devices to minimize the latency. Chang et al. [18] investigate the problem

of energy optimization for a fog computing system. The work proposes a scheme that opti-

mizes both offloading probability and transmit power to minimize the energy consumption

by using nonlinear optimization and ADMM-based method.

The majority of existing solutions only focus on communication-computation optimization

considering limited system parameters such as processing capacity and network bandwidth.

In contrast, we highlight the impact of variety of parameters (e.g., application characteristics,

system complexity, communication cost, and dataflow configuration) on IoT-based systems

(see Figure 2). Furthermore, finding optimal computation offloading policy for dynamic

systems is critical since dynamicity of environment changes over time. In this chapter, we

presented a proof-of-concept dynamic computation offloading strategy to show IoT-based

systems are required to be dynamically controlled at run-time.
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2.6 Summary

This chapter investigated various co-design aspects of computation offloading for IoT systems

with typical three-layer architecture. We explored the impact of dataflows, communication,

system complexity, and application characteristics on the response time in IoT systems.

Then, we examined an IoT-based system enabled by an end-to-end dynamic computation

offloading. The system minimized the response time of the application by 1) observing the

system condition, 2) performing computation migration decision-making, and 3) carrying out

the computation in the sensor, fog, or cloud layer. Experiments showed the optimal solution

varies based on the network latency, dataflow configuration, application characteristic, and

the number of connected sensors to the fog layer. We showed it in a scenario with run-time

variations in system complexity and packet loss ratio. The dynamic computation offloading

system reduced the average response time with 8%, 17%, 48% in comparison with only the

cloud or fog or sensor computing scheme respectively.
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Chapter 3

Online Learning for Deep Learning

Orchestration

3.1 Introduction

Deep-learning (DL) is advancing real-time and interactive user services in domains such as

autonomous vehicles, natural language processing, healthcare, and smart cities [104]. Due

to user device resource constraints, deep learning kernels are often deployed on cloud infras-

tructure to meet computational demands [11]. However, unpredictable network constraints

including signal strength and delays affect real-time cloud services [51]. Edge computing

has emerged to complement cloud services, bringing compute capacity closer to the user-

end devices [134]. A collaborative end-edge-cloud architecture is essential to provide deep-

learning-based services with acceptable latency to user-end devices [79]. The edge paradigm

increases offloading opportunities for resource-constrained user-end devices. Offloading DL

services in a 3-tier end-edge-cloud architecture is a complex optimization problem consider-

ing: (i) diversity in system parameters including heterogeneous computing resources, network
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constraints, and application characteristics, and (ii) dynamicity of DL service environment

including workload arrival rate, user traffic, and multi-dimensional performance requirements

(e.g., application accuracy, response time) [27, 109, 107].

Existing offloading strategies for DL tasks are based on the assumptions that (i) all DL

tasks have similar compute intensity and require similar communication bandwidth, (ii)

offloading improves performance, and (iii) latency is guaranteed with offloaded tasks. How-

ever, these assumptions do not hold in practice due to dynamically varying application and

network characteristics, where the computation-communication and accuracy-performance

tradeoffs are inconsistent and nontrivial [27, 109, 119]. Under varying system dynamics,

such offloading strategies limit the gains from using the edge and cloud resources. Further,

model optimization techniques such as quantization and pruning can reduce the computa-

tion complexity of DL tasks by sacrificing the model accuracy [24, 117]. Considering model

optimization techniques in conjunction with offloading provides opportunities to influence

the computation-communication trade-off [118]. This exposes an alternative to offloading in

resource constrained devices executing DL inference. Finding the optimal choice between

offloading the DL tasks to edge and cloud layers and using optimized models for inference

at local devices results in a high-dimensional optimization problem.

Understanding the underlying system dynamics and intricacies among computation, com-

munication, accuracy, and latency is necessary to orchestrate the DL services on multi-level

edge architectures. Reinforcement learning is an effective approach to develop such an un-

derstanding and interpret the varying dynamics of such systems [78, 92]. Reinforcement

learning allows a system to identify complex dynamics between influential system param-

eters and make a decision online to optimize objectives such as response time [116]. We

propose to employ online reinforcement learning to orchestrate DL services for multi-users

over the end-edge-cloud system. Our contributions are:
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• Runtime orchestration scheme for DL inference services on multi-user end-edge-cloud

networks. The orchestrator uses reinforcement learning to perform platform offload-

ing and DL model selection at runtime to optimize response time provided accuracy

requirements.

• Implementation of our online learning solution on a real end-edge-cloud test-bed and

demonstration of its effectiveness in comparison with state-of-the-art [105] edge orches-

tration strategies.

3.2 Background

In this section, we present the relevant background and significance of orchestrating DL

workloads on end-edge-cloud architecture.

3.2.1 Offloading DL Workloads in End-Edge-Cloud Architecture

Computation offloading techniques offload an application (or a task within an application)

to an external device such as cloud servers [72]. Offloading is typically done in order to

improve performance or efficiency of devices [11]. DL workloads on end-devices are con-

ventionally offloaded to cloud servers, but delay-sensitive services for distributed systems

rely on performing inference at the edge as an alternative [134]. Inference at the edge can

provide cloud-like compute capability closer to the user devices, reducing data transmission

and network traffic load. Edge offloading can provide relatively predictable and reliable

performance compared to cloud offloading, as there is less workload and network variance

[51] [45]. In the context of the end-edge-cloud paradigm, computation offloading techniques

partition workloads and distribute tasks among multiple layers (local device, edge device,

cloud servers) such that the performance and efficiency objectives are met.
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The collaborative end-edge-cloud architecture provides execution choices such that each

workload can be executed on the device, on the edge, on the cloud, or a combination of

these layers. Each execution choice effects the performance and energy consumption of the

user end device, based on the system parameters such as hardware capabilities, network

conditions, and workload characteristics. A distributed end-edge-cloud system consists of

the following layers:

• application layer: provides user level access to a set of services to be delivered by

computing nodes

• platform layer: provides a set of capabilities to connect, monitor and control end/edge/cloud

nodes in a network

• network layer: provides connectivity for data and control transfer between different

physical devices across multiple

• hardware layer: provides hardware capabilities for computing nodes in the system

Each layer presents a diverse set of requirements, constraints, and opportunities to tradeoff

performance and efficiency that vary over time. For example, the application layer focuses

on the user’s perception of algorithmic correctness of services, while the platform layer fo-

cuses on improving system parameters such as energy drain and data volume migrated across

nodes. Both application and platform layers have different measurable metrics and control-

lable parameters to expose different opportunities that can be exploited for meeting overall

objectives. In the case of DL inference, different DL model structures present opportunities

in the application layer, and different computation offloading decisions in a collaborative

end-edge-cloud system present opportunities in the platform layer, both for optimizing the

execution while meeting required model accuracy.
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3.2.2 Intelligence for Orchestration

Runtime system dynamics affect orchestration strategies significantly in addition to require-

ments and opportunities. Sources of runtime variation across the system stack include work-

load of a specific computing node, connectivity and signal strength of the network, mobility

and interaction of a given user, etc. Considering cross-layer requirements, opportunities, and

runtime variations provide necessary feedback to make appropriate choices on system con-

figurations such offloading policies. Identifying optimal orchestration considering the cross-

layer opportunities and requirements in the face of varying system dynamics is a challenging

problem. Making the optimal orchestration choice considering these varying dynamics is an

NP-hard problem, while brute force search of a large configuration space is impractical for

real-time applications. Understanding the requirements at each level of the system stack and

translating them into measurable metrics enables appropriate orchestration decision mak-

ing. Heuristic, rule-based, and closed-loop feedback control solutions are not efficient until

reaching convergence, which requires long periods of time [116]. To address these limita-

tions, reinforcement learning approaches have been adapted for the computation offloading

problem [105]. Reinforcement learning builds specific models based on data collected over

initial epochs, and dramatically improves the prediction accuracy [116].

3.3 Motivation

This section presents a comprehensive investigation of DL inference for multi-users in end-

edge-cloud systems. We examine the scenario using a real setup including five AWS a1.medium

instances with single ARM-core as end-node devices connected to an AWS a1.large instance

as edge device and an AWS a1.xlarge instance as cloud node. We conduct experiments for

DL inferences with the MobileNetV1 model while varying (i) network connection, (ii) num-

ber of active users, and (iii) accuracy requirement. We consider three possible execution
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Figure 3.1: Impact of varying system and application dynamics on performance for Mo-
bileNet application. (a) Response time on user-end device, edge and cloud layers with
regular and weak network conditions. (b) Average response time with varying number of ac-
tive users for different computing schemes. (c) Average response time achieved with varying
levels of average accuracy.

choices: (i) on device, (ii) on edge, and (iii) on cloud. The device, edge, and cloud execution

choices represent executing the inference completely on the local device, on the edge, and

on the cloud respectively. The detailed specifications for the end-edge-cloud setup appear in

Section 3.5.

3.3.1 Impact of System Dynamics on Inference Performance

Network We consider two possible levels of network connections: (i) a low-latency (reg-

ular) network that has the signal strength for better connectivity, and (ii) a high-latency

(weak) network that has a weaker signal with poor connectivity. Figure 3.1 (a) shows the

response time of MobileNet application on user device, edge, and cloud layers with regular

and weak networks. With a regular network, the response time is highest for executing

the application on the user end device. The response time decreases as the computation is

offloaded to edge and cloud layers, with the higher computational resources. With a weak

network, the response time of the edge and cloud layers is higher, as the poor signal strength

37



adds delay. The response time of the edge node in this case is higher than the cloud layer,

given the lower compute capacity of the edge node. Performance of the user end device is in-

dependent of the network connection, resulting in lowest response time. This demonstrates

the spectrum of response times achievable with compute nodes at different layers, under

varying network constraints. For example, the best execution choice with a regular network

is the cloud layer, whereas it is the local execution with a weak network.

Users We examine user variability by considering multiple simultaneously active users

ranging from 1 to 5. Figure 3.1 (b) shows the average response time with varying number of

users. The average response time remains constant when running the application on a user

end device, i.e., each user executes the application on their local device. When offloaded

to the edge layer, the average response time increases significantly as the number of users

increase. This is attributed to the increased network load with multiple simultaneously

active users as well as limited resources at the edge layer to handle several user requests

concurrently. The average response time also increases when offloaded to the cloud layer

as the number of simultaneous users increases. However, the response time is lower when

compared to the edge layer, since the cloud layer has a larger volume of resources to handle

multiple simultaneous user requests.

Accuracy We demonstrate the impact of varying DL models on performance under differ-

ent system dynamics. We select between eight models with Top-5 accuracy between 72.8%

and 89.9%, while also considering all three layers for execution, and between 1 and 5 simul-

taneously active users. Figure 3.1 (c) shows the average response time achieved with varying

levels of average accuracy over a multi-dimensional space of different execution choice and

different number of users. Each point in Figure 3.1 (c) represents a unique case of an ex-

ecution choice (among device, edge, and cloud), number of active users (among 1 to 5),

and accuracy level. We present the average response time achieved with different levels of

38



Table 3.1: Reinforcement Learning Based Works. CO represents the computation offloading
technique. HW and APP represents knobs belong to the hardware and application layer,
respectively.

Related Works

Real
System
Evalua-
tion

Multi-User End-to-End Actions

[97, 23, 21, 76,
129]

✗ ✗ ✗ CO

[53] ✓ ✗ ✗ CO,HW
[48, 59, 70, 126,

2, 22, 105]
✗ ✓ ✗ CO

Ours ✓ ✓ ✓ CO,APP

accuracy. As expected, the response time increases with increase in model accuracy. How-

ever, we observe tradeoffs among different response times between accuracy and number of

active users. For instance, it is possible to support multiple users within the response time

of servicing a single user, by lowering the model accuracy.

Considering the three major sources of variations in number of users, network conditions,

and model accuracy, finding an optimal choice of execution for end-edge-cloud architectures

at runtime is challenging. As such architectures scale in the number of users and edge

nodes, the accuracy-performance Pareto-space becomes increasingly cumbersome for finding

an optimal configuration among the fine-grained choices. Brute force and smart search

algorithms do not offer practically feasible solutions to orchestrate applications in real-time.

While machine learning algorithms can identify near-optimal configuration choices, they

require exhaustive training, considering continuously varying system dynamics. We propose

to employ online reinforcement learning to understand the volatility of system dynamics and

make near-optimal orchestration decisions in real-time to improve the response time of DL

inferencing on end-edge-cloud architectures.
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3.3.2 Related Work

We categorize research related to optimally deploying DL services at the edge in two ways:

(i) work related to deploying DL inference tasks over the end-edge-cloud collaborative ar-

chitecture, and (ii) work related to adopting reinforcement learning methods to optimally

offload tasks.

DL Inference in End-edge-cloud Networks Prior works propose frameworks to de-

compose DL inference into tasks and perform distributed computations. In these works, a

DL model can be partitioned vertically or horizontally along the end-edge-cloud architecture.

Generally, DL models are partitioned according to the compute cost of model layers and re-

quired bandwidth for each layer to be distributed among the end-edge-cloud [100, 130, 41, 45].

These works find the optimal partition points based on traditional optimization techniques

and offer design-time optimal solutions. Some efforts try to reduce the computation over-

head of DL tasks through various model optimization methods such as quantization. These

methods transform or re-design models to fit them into resource-constrained edge devices

with little loss in accuracy [32, 26, 75]. AdaDeep [66] proposes a Deep Reinforcement Learn-

ing method to optimally select from a pool of compressed models according to available

resources. However, AdaDeep relies only on the model selection technique while our work

combines computation offloading and model selection techniques to achieve the optimal re-

sponse time.

Learning-based Offloading Prior works address the offloading problem to optimize dif-

ferent objectives including latency and energy consumption. Most of the works formulate the

offloading problem with limited number of influential parameters and adopt online learning

techniques with numerical evaluation [2, 129, 22, 97, 126, 48, 23, 21, 76, 59]. Lu et. al.

[70] propose a Deep Recurrent Q-Learning algorithm based on Long Short Term Memory
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network to minimize the latency for multi-service nodes in large-scale heterogeneous MEC

and multi-dependence in mobile tasks. The algorithm is evaluated in iFogSim simulator with

Google Cluster Trace. [105] proposes a Q-Learning based algorithm to minimize energy by

considering various parameters in task characteristics and resource availability. Young Geun

et al. [53] propose a reinforcement learning based offloading technique for energy efficient

deep learning inference in the edge-cloud architecture. The work focuses on the learning for

heterogeneous systems and lacks a comprehensive solution for multi-users end-edge-cloud

systems. Haung et al. [37] uses a supervised learning algorithm for complicated radio situ-

ations and communication analysis and prediction to make an optimal actions to obtain a

high quality of service (QoS). However, our proposed work employs model-free reinforcement

learning algorithm to find the optimal orchestration scheme. There have been other efforts

which apply game theory algorithms to address the orchestration problem in the network.

Apostolopoulos et al. [4] propose a decentralized risk-aware data offloading framework using

non-cooperative game formulation. The work uses a model-based game theory algorithm

to find the optimal offloading decision which makes difference with our proposed model-free

reinforcement learning approach. Model-based algorithm use a predictive internal model of

the system to seek outcomes while avoiding the consequence of trial-and-error in real-time.

The approach is sensitive to model bias and suffers from model errors between the predicted

and actual behavior leading to sub-optimal orchestration decisions. Our Model-free RL tech-

nique operates with no assumptions about the system’s dynamic or consequences of actions

required to learn a policy.

Some works have been applied traditional optimization techniques to optimize the compu-

tation offloading problem [20]. Yuan et al. [136] model a profit-maximized collaborative

computation offloading and resource allocation algorithm to maximize the profit of systems

and meet the required response time. In another work, Bi et al. [14] propose a partial com-

putation offloading method to minimize the total energy consumed by mobile devices. The

work formulates the problem and optimizes using a novel hybrid meta-heuristic algorithm.
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Figure 3.2: Intelligent orchestration of DL inference in end-edge-cloud architectures.

Considering systems are unknown with dynamic behavior, the traditional optimization tech-

niques are not applicable for runtime decision-making. Table 3.1 positions our work with

respect to state-of-the-art solutions. Our solution uses RL to optimally orchestrate DL

inference in multi-user networks considering offloading and DL model selection techniques

combined together.

3.3.3 Contributions

The ideal DL inference deployment provides maximum inference accuracy and minimum re-

sponse time. Figure 3.2 shows an abstract overview of our target multi-layered architecture

for online computation offloading of DL services. We consider three layers viz., user-end

device, edge and cloud. Further, we classify this architecture into virtual system layers

that include application, platform, network and hardware layers. Each of the virtual sys-

tem layers provide sensory inputs for monitoring system and application dynamics such as

DL model parameters, accuracy requirements, availability of devices for execution, network

characteristics, and hardware capabilities. The Decision Intelligence component in Figure
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3.2 periodically monitors resource availability from all virtual system layers to determine

appropriate execution choice and DL models to achieve the required QoS (e.g, accuracy,

response time). Decision Intelligence analyzes the system parameters to make orchestra-

tion decisions in terms of model selection, accuracy configuration, and offloading choices.

The orchestrator is a software component that is hosted at the cloud layer and enforces the

orchestration decisions upon receiving a service request from the user-end devices.

Finding an optimal computation policy including offloading and model selection to optimize

objectives (e.g., accuracy, response time) is considered an NP-hard problem. The problem

generally can be solved using traditional optimization techniques such as heuristic-based

methods, meta-heuristic methods, or exact solutions. Considering systems are unknown with

dynamic behavior, the traditional optimization techniques are not applicable for runtime

decision-making to optimize objectives. Modeling an unexplored high-dimensional system

is feasible using model-free reinforcement learning techniques [116]. Model-free RL operates

with no assumptions about the system’s dynamic or consequences of actions required to

learn a policy. Model-free RL builds the policy model based on data collected through

trial-and-error learning over epochs [116]. In this work, we use model-free reinforcement

learning to deploy DL inference at the edge by considering offloading and model selection.

Some works have been proposed to address the computation offloading problem using online

techniques [2, 129, 22, 97, 126, 48, 23, 21, 76, 53]. However, there is no relevant work to

investigate the integration of online learning with DL inference deployment. Therefore, the

literature suffers from some shortcomings that are summarized as follows:

• Cross-layer Optimization : online solutions have not previously coordinated of-

floading and model optimizations together. As Table 3.1 shows, all related work re-

lies on only computation offloading (CO). To the best of our knowledge, for the first

time, this work considers both computation offloading and application-level adjustment

(APP) together in order to achieve required QoS.
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Table 3.2: Notation descriptions

Notation Description

S end-node device
E edge device
C cloud device
P processor utilization
M memory utilization
B network condition
o offloading decision

oji
offloading decision for end-node i to re-
source j

N number of end-node devices
dk DL model k
l number of available DL models

T j
res

response time for offloading DL task to re-
source j

α learning rate
γ discount factor

• Real System Evaluation: most RL-based solutions in the literature are numeri-

cally evaluated. Some works have been proposed and evaluated with simulators. As

Table 3.1 shows, the literature lacks a real hardware implementation for online learning

framework. This work implements the online system on real hardware devices which

leads to realistic evaluation of online agent’s overhead.

• End-to-End Solution : end-to-end solution considers a service from the moment a

request is issued from the end-node device to delivering results to itself. Table 3.1

illustrates that the literature lacks an end-to-end solution.

3.4 Online Learning Framework

Our goal is to make offloading decisions and inference model selections in order to minimize

inference latency while achieving acceptable accuracy. To do so, we first define the optimiza-

tion problem, then we propose a reinforcement learning agent to solve the problem. Table

3.2 defines the notation used for the problem definition.
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3.4.1 System Model and Problem Formulation

All computing devices in the end-edge-cloud system are represented by (S,E,C) where S =

{S1, S2, .., Sn} represents a set of end-node devices whose number is N ; E represents the

edge layer (in our case, a single device); C represents the cloud layer. Each end-node device

requires a DL inference periodically. The inference model is selected from a pool of optimized

models where each model has different characteristics including computational complexity

and model accuracy. All device resources are represented in a tuple {Pi,Mi, Bi} where Pi

represents processor utilization of device i; Mi represents available memory for device i; Bi

represents network’s connection condition between the device i and upper layer’s node.

The computation offloading decision determines whether each end-node device should of-

fload an inference to higher-layer computing resources, or perform computation locally. The

offload decision for each end-node device is represented by a tuple oi = {oSi , oEi , oCi } where oji
represents offloading decision to layer j. If end-node device i executes at layer j ∈ {S,E,C},

then oji = 1; otherwise it must be zero. For a given end-node device i, the sum of all offload-

ing decisions
∑{S,E,C}

j oji must equal 1. o = {o1, o2, ..., on} represents the offloading decision

vector for all end-node devices. The inference model selection determines the implementa-

tion of the model deployed for each inference on each end-node device. Each end-node device

Si can perform inference with one of l DL models {d1, d2, d3, ..., dl}.

In general, response time is the total time between making a request to a service and receiving

the result [86]. In our case, response time is the sum of the round trip transmission time

from an end-node device to the node that performs the computation, plus the computation

time. Response time Tres for a request from end-node device i with offload decision tuple

oi = {oSi , oEi , oCi } can be summarized as follows:

Tresi = oSi .T
S
res + oEi .T

E
res + oCi .T

C
res (3.1)
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Figure 3.3: Proposed reinforcement learning agent with Q-Learning and Deep Q-Learning
algorithms. Q-Learning uses a Q-Table to store Q(S,A) values, Deep Q-Learning estimates
Q-Values with a neural network architecture.

Our objective is to minimize the average response time while satisfying the average accuracy

constraint. The problem is formulated in the following formula:

P1:min
1

N

N∑
i=1

Tresi(oi, dk)

s.t. accuracy > threshold

(3.2)

where accuracy is the spatial average accuracy for simultaneous DL inferences.

3.4.2 Reinforcement Learning Agent

Reinforcement learning (RL) is widely used to automate intelligent decision making based on

experience. Information collected over time is processed to formulate a policy which is based

on a set of rules. Each rule consists three major components viz., (a) state, (b) action, and

(c) reward. Among the various RL algorithms [116], Q-learning has low execution overhead,

which makes it a good candidate for runtime invocation. However, it is ineffective for large
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space problems. There are two main problems with Q-learning for large space problems [77]:

(a) required memory to save and update the Q-Values increases as the number of actions and

state increases. (b) required time to populate the table with accurate estimates is impractical

for the large Q-table. In our case, increasing number of users will increase the problem’s

space dimension. The reason is more number of users leads to more number of rows and

columns in the Q-table. Therefore, it takes more time to explore every state and update

the Q-values. Due to the curse of dimensionality, function approximation is more appealing

[77]. The Deep Q-Learning (DQL) algorithm combines the Q-Learning algorithm with deep

neural networks. DQL uses Neural Network architecture to estimate the Q-function by

replacing the need for a table to store the Q-values. In this work, we build an RL agent

using two reinforcement learning algorithms: (a) an epsilon-greedy Q-Learning and (b) a

Deep Q-Learning algorithms. We evaluate the RL agent with the mentioned algorithms

considering different problem complexities. Figure 3.3 depicts high-level black diagram for

our agent. The RL agent is invoked at runtime for intelligent orchestration decisions. In

general, the agent is composed as follows:

State Space: Our state vector is composed of CPU utilization, available memory, and band-

width per each computing resource. Table 3.3 shows the discrete values for each component

of the state. The state vector at time step τ is defined as follows:

Sτ = {PE,ME, BE, PC ,MC , BC , P S1 ,MS1 , BS1 , ..., P Sn ,MSn , BSn} (3.3)

Action Space: The action vector consists of which inference model to deploy, and which

layer to assign the inference. We limit the edge and cloud devices to always use the high accu-

racy inference model, and the end-node devices have a choice of l different models. Therefore,

the action space is defined as aτ = {oi, dj} where i ∈ {S,E,C} and dj ∈ {d1, d2, ..., dl}.

Reward Function: The reward function is defined as the negative average response time
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Table 3.3: State Discrete Values

State Discrete Values Description

PSi Available, Busy End-node CPU Utilization

MSi Available, Busy End-node Memory Utilization

BSi Regular, Weak End-node Available Bandwidth

PE Nine discrete levels Edge CPU Utilization

ME Available, Busy Edge Memory Utilization

BE Regular, Weak Edge Available Bandwidth

PC Nine discrete levels Cloud CPU Utilization

MC Available, Busy Cloud Memory Utilization

BC Regular, Weak Cloud Available Bandwidth

of DL inference requests. In our case, the agent seeks to minimize the average response

time. To ensure the agent minimizes the average response time while satisfying the accuracy

constraint, the reward R is calculated as follows:

if accuracy > threshold:

Rτ ← −Average Response T ime

else:

Rτ ← −Maximum Response T ime

(3.4)

To apply the accuracy constraint, the minimum possible reward is assigned when the accu-

racy threshold is violated. On the other hand, when the selected action satisfies the average

accuracy constraint, the reward is negative average response time.

Q-Learning Algorithm

Q-Learning algorithm is a model-free reinforcement learning algorithm to learn the value of

an action in a particular state. The algorithm does not require a model of the environment

where it can handle problems with stochastic transitions and rewards without requiring

adaptations. The Q-Learning algorithm stores data in a Q-table. The structure of a Q-
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Learning agent is a table with the states as rows and the actions as the columns. Each cell

of the Q-table stores a Q-value, which estimates the cumulative immediate and future reward

of the associated state-action pair. Epsilon-greedy is a common enhancement to Q-Learning

that helps avoid getting stuck at local optima [116]. Algorithm 5 defines our agent’s logic

with the epsilon-greedy Q-Learning:

Line Description

3: First the agent determines the current system state from the resource monitors.

4-8: Next, either the state-action pair (Sτ , Aτ ) with the highest Q-value is identified to

choose the next action to take, or a random action is selected with probability ϵ.

9-10: The selected action is applied and normal execution resumes. After all inferences are

completed, the reward Rτ for the execution period is calculated based on measured

response time.

11-12: Based on the resource monitors, the new state Aτ+1 is identified, along with the

state-action pair with highest Q-value.

13: The Q-value of the previous state-action pair is updated.

14: The current state is updated, and the loop continues.

Deep Q-Learning Algorithm

Q-Learning has been applied to solve many real-world problems. However, it is unable to

solve high-dimensional problems with many inputs and outputs [77] as it is impractical to

represent the Q-function as a Q-table for large pair of S and A. In addition, it is unable to

transverse Q(S,A) pairs. Therefore, a neural network is used to estimate the Q-values. The
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Algorithm 2 Q-Learning Algorithm

1: Initialization in design time:
τ represents time step
Sτ represents state at τ
Aτ represents action at τ

2: while system is on do
3: From Resource Monitoring :

Sτ ← State at step τ
4: if RAND < ϵ then
5: Choose random action Aτ

6: else
7: Choose action Aτ with largest Q(Sτ , Aτ )
8: end if
9: Monitor the response time for each devices
10: Calculate reward Rτ

11: From Resource Monitoring :
Sτ+1 ← State at step τ + 1

12: Choose action Aτ+1 with the largest Q(Sτ+1, Aτ+1)
13: To Updating Qtable:

Q(Sτ , Aτ ) ← Q(Sτ , Aτ ) + α[Rτ + γ.Q(Sτ+1, Aτ+1)−Q(Sτ , Aτ )]
14: Sτ← Sτ+1

15: end while

Deep Q-learning Network (DQN) inputs include current state and possible action, and out-

puts the corresponding Q-value of the given action input. The neural network approximation

is capable of handling high dimensional space problems [128]. One of the main problems

with Deep Q-Learning is stability [77]. In order to reduce the instability caused by training

on correlated sequential data, we improve the DQL algorithm with replay buffer technique

[62]. During the training, we calculate the loss and its gradient using a mini-batch from the

buffer. Every time the agent takes a step (moves to the next state after choosing an action),

we push a record into the buffer. Algorithm 2 defines Deep Q-Learning algorithm which is

described below:

Line Description

4: First the agent determines the current system state from the resource monitors.

4:9 Next, either the state-action pair Sτ , Aτ with the highest Q-value estimated by neural
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network (θ) is identified to choose the next action to take, or a random action is

selected with probability ϵ.

10:11 The selected action is applied and normal execution resumes. After all inferences are

completed, the reward Rτ for the execution period is calculated based on measured

response time.

12: At each time step, each record (Sτ ,Aτ ,Rτ ,Sτ+1) is added to a circular buffer D called

the replay buffer.

13: We randomly sample Batch Size records from the buffer and then feed it to the

network as mini-batch.

14: We calculate the temporal difference loss on the mini-batch and perform a gradient

descent calculation to update the network. The temporal difference loss function

calculates the mean-square error of the predicted and target Q-values as the loss of

the mini-batch.

15: The current state is updated, and the loop continues.

There is few study about the theoretical analysis of the computational complexity of rein-

forcement learning because of the problem itself that reinforcement learning solves is hard

to be explicitly modeled. Reinforcement learning is in the nature of trail-and-error and

exploration-and-exploitation, which involves randomness and makes it difficult to be theo-

retically analyzed.

The complexity of problem for Bruteforce strategy is discussed in the following: Brute-force

strategy searches the entire State×Action space of the problem and sort corresponding Q-

values in order to find out the optimal action. Therefore, we can define the state space
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complexity as follows:

(LCPU × LNetwork × LMemory)
N(L′

CPU × L′
Network × L′

Memory)
2 (3.5)

where, N stands for the number of end-devices. LCPU , LMemory, and LNetwork represent the

number of CPU, Memory, and Network condition levels for end devices, respectively. In

addition, L′
CPU , L

′
Memory, and L′

Network represent the number of CPU, Memory, and Network

condition levels for edge and cloud devices, respectively. Besides, the action space is defined

as (Number of Actions)N . Therefore, the complexity is defined as follows:

(LCPU × LNetwork × LMemory)
N × (L′

CPU × L′
Network × L′

Memory)
2 × (Number of Actions)N

(3.6)

Algorithm 3 Deep Q-Learning Algorithm with Experience Replay

1: Initialization in design time:
τ represents time step
Sτ represents state at τ
Aτ represents action at τ
Initialize replay buffer D to capacity N
Initialize action-value function Q with random weight θ

2: for epoch = 1, Epochs do
3: for episode = 1, Episodes do
4: From Resource Monitoring :

Sτ ← State at step τ
5: if RAND < ϵ then
6: Choose random action Aτ

7: else
8: Choose action Aτ with largest Qθ(Sτ , Aτ )
9: end if
10: Monitor the response time for each devices
11: Calculate reward Rτ

12: Store the record (Sτ ,Aτ ,Rτ ,Sτ+1) into buffer D
13: Sample random mini-batch of records from buffer D
14: To Updating Q-Network :

Compute temporal difference loss with respect to the network parameter θ
15: Sτ← Sτ+1

16: end for
17: end for
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Figure 3.4: Orchestration framework with online learning for orchestrating DL inference.

The reinforcement learning agent requires distinct state-action pairs for training the Deep

Q-network. To generate distinct state-action pair vectors, our proposed framework sup-

ports execution requests that are submitted by all the end-devices synchronously. With

synchronous requests, we eliminate the discrepancy of different optimal actions for the same

state vector.

3.5 Framework Setup

In this section we describe our proposed framework for dynamic computation offloading

based on online learning, targeted at multi-layered end-edge-cloud architecture.

3.5.1 Framework Architecture

Figure 3.4 shows our proposed framework for end-edge-cloud architecture, integrating service

requests, resource monitoring, and intelligent orchestration. The Intelligent Orchestrator

(IO) acts as an RL-agent for making computation offloading and model selection decisions.

The end-device layer consists of multiple user-end devices. Each end-device has two software

components: (i) Intelligent Service - an image classification kernel with DL models of varying

compute intensity and prediction accuracy; (ii) Resource Monitoring - a periodic service that
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collects devices’ system parameters including CPU and memory utilization, and network

condition, and broadcasts the information to the edge and cloud layers. Both the edge and

cloud layers also have the Intelligent Service and Resource Monitoring components. The

Intelligent Orchestrator acts a centralized RL-agent that is hosted at the cloud layer for

inference orchestration. The agent collects resource information (e.g., processor utilization,

available memory, available bandwidth) from Resource Monitoring components throughout

the network. The agent also gathers the reward information (i.e., response time) from the

environment in order to learn an optimal policy. The agent builds the Q-function based

on the RL algorithm. It builds a Q-Table for Q-Learning algorithm and a Q-Network for

Deep Q-Learning algorithm based on cumulative reward obtained from the environment over

time. Quality of Service Goal provides the required QoS for the system (i.e., the accuracy

constraint).

Figure 3.4 illustrates the procedure step-wise of the inference service in our framework. The

end-device layer consists of resource-constrained devices that periodically make requests to

a DL inference service (step 1). The requests are passed through the edge layer (step 2) to

the cloud device to be processed by Intelligent Orchestrator (step 3). The agent determines

where the computation should be executed, and delivers the Decision to the network (step

4). Each device updates the agent after it performs an inference with the response time

information of the requested service (step 5). In addition, all devices in the framework send

the available resource information including the processor utilization, available memory, and

network condition to the cloud device (step 5).

3.5.2 Benchmarks and Scenarios

MobileNets are small, low-latency deep learning models trained for efficient execution of

image classification on resource-constrained devices [36]. For DL workloads, we consider
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MobileNetV1 image classification application as the benchmark [36]. We deploy the Mo-

bileNetV1 service for end-node classification. We consider eight different MobileNet models

(d0 through d7) with varying levels of accuracy and performance. Each model among d0

through d7 has varying number of Multiply-Accumulate units (MACs), MAC width and

data format (e.g., FP32 and Int8), exposing models with different accuracy-performance

trade-offs. Table 3.4 summarizes the MobileNet models we consider, detailing the number

of Multiply-Accumulates (MACs), MAC width and data formats (e.g., FP32 and Int8). The

multiplier width is used to reduce a network’s size uniformly at each layer. For a given layer

and multiplier width, the number of input channels and the number of output channels is

decreased and increased, respectively, by a factor of the width multiplier. During the or-

chestration phase, we select an appropriate model from d0-d7 to achieve the target level of

classification accuracy while maximizing the performance.

Our framework supports multiple end-devices, networked with edge and cloud layers. For

evaluation purposes, we set the maximum number of simultaneously active user devices

to five. Each user-end device is connected to a single edge device, and can request a DL

inference service to the cloud layer. The cloud layer hosts the IO that contains the RL

agent, which handles the inference service requests. Upon on each service request, the RL

agent is invoked to determine: (i) where the request should be processed and (ii) what DL

Table 3.4: MobileNet Models [36]

# Model
Million
MACs

Type

Top-1
Accuracy

(%)

Top-5
Accuracy

(%)

d0 1.0 MobileNetV1-224 569 FP32 70.9 89.9
d1 0.75 MobileNetV1-224 317 FP32 68.4 88.2
d2 0.5 MobileNetV1-224 150 FP32 63.3 84.9
d3 0.25 MobileNetV1-224 41 FP32 49.8 74.2
d4 1.0 MobileNetV1-224 569 Int8 70.1 88.9
d5 0.75 MobileNetV1-224 317 Int8 66.8 87.0
d6 0.5 MobileNetV1-224 150 Int8 60.7 83.2
d7 0.25 MobileNetV1-224 41 Int8 48.0 72.8
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Table 3.5: Experiment Environment Setup. R and W represent Regular and Weak network
condition, respectively.

Experiment S1 S2 S3 S4 S5 E

EXP-A R R R R R R

EXP-B R W R W R W

EXP-C W W W R R R

EXP-D W W W W W W

model should be executed for the corresponding request. The RL agent’s goal is to minimize

average response time for all end-node devices while satisfying the accuracy constraint. This

enforces quality control by imposing a strict threshold on the average DL model accuracy.

In this work, we conduct experiments under four unique scenarios with varying network

conditions. Each scenario represents a combination of regular (R) and weak (W) network

signal strength over five user-end devices (S1-S5) and 1 edge device (E). The experimental

scenarios are summarized in Table 3.5. The regular network has no transmission delay, while

we add 20ms delay to all outgoing packets to emulate the weak connection behavior. Each

experimental scenario in Table 3.5 shows the network condition of the specific device. Putting

together the five different user devices and one edge device forms a unique combination of

varying network conditions per each experimental scenario.

3.5.3 Experimental Setup

The platform consists of five AWS a1.medium instances with single ARM-core as end-devices

connected to an AWS a1.large instance as edge device and an AWS a1.xlarge instance as

cloud node. Table 3.6 summarizes device specifications in details. DL model inferences are

executed on processor cores on all nodes using ARM-NN SDK [69]. The inference engine

is a set of open-source Linux software tools that enables machine learning workloads on

ARM-core-based devices. The framework’s message passing protocol is implemented using

web services deployed at each node. Section 3.6.2 provides our analysis on framework’s setup
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overhead.

3.5.4 Hyper-parameters and RL Training

An RL agent has a number of hyper-parameters that impact its effectiveness (e.g., learning

rate, epsilon, discount factor, and decay rate). The ideal values of parameters depend on

the problem complexity, which in our case scales with the number of users (i.e., active end-

node devices). In order to determine the learning rate and discount factor, we evaluated

values between 0 and 1 for each hyper-parameters. We observed that a higher learning rate

converges faster to the optimal, meaning the more the reward is reflected to the Q-values,

better the agent works. We also observed that a lower discount factor is better. This means

that the consecutive actions have a weak relationship, so that giving less weight to the

rewards in the near future improves the convergence time. Table 3.7 shows the different

problem configurations we used to determine the hyper-parameters. We train the agent

with two different learning algorithms (See Section 3.4.2). Our Q-Learning agent initializes

a Q-table with Q-values of zero, and chooses actions using an ϵ − greedy policy where ϵ

is the exploration rate. We initially set ϵ = 1, meaning the agent selects a random action

with probability 1, otherwise it selects an action that gives the maximum future reward (i.e.,

Q-value) in the given state. Although we perform probabilistic exploration continuously,

we decay the exploration by epsilon decay parameter (See Table 3.7) per agent invocation.

The Deep Q-Learning agent uses different neural network structure for different number of

users as the problem complexity changes. We train DNN models with two fully connected

Table 3.6: Device Specification

Node
Type

vCPUs
Memory
(GiB)

Frequency
(GHz) Architecture

End 1 2 2.3 aarch64
Edge 2 4 2.3 aarch64
Cloud 4 8 2.3 aarch64
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Table 3.7: Hyper-parameter values

Q-Learning Deep Q-Learning

Number
of

Users

Learning
Rate
(α)

Epsilon
Decay

Learning
Rate
(α)

Epsilon
Decay

1 0.9 1e-1 − −
2 0.9 1e-2 − −
3 0.9 1e-2 1e-3 0.4
4 0.9 1e-3 1e-3 0.7
5 0.9 1e-4 1e-3 0.9

layers where the hidden layers have 48, 64, 128 neurons for three, four, and five devices,

respectively. We implement the experience replay as a FIFO buffer with size equal to 1000.

In order to update the network, at each step, we randomly sample 64 records from the buffer

and then use them as a mini-batch. We use ϵ− greedy policy to train the Deep Q-network,

where we initially set the ϵ equal to 1.

3.6 Evaluation Results and Analysis

In this section, we demonstrate the effectiveness of our online learning based inference or-

chestration. We evaluate our approach on the multi-layered end-edge-cloud framework, de-

scribed in Section 3.3.4. Our approach features online reinforcement learning for intelligent

orchestration, DL inference services and end-edge-cloud architectures, targeting DL inference

performance. [105] presents state-of-the-art machine learning based orchestration for end-

edge-cloud architecture baseline. For a fair comparison, we evaluate our approach against the

strategy proposed in [105], which integrates the aforementioned features of our approach.

3.6.1 Performance Analysis

We evaluate our agent’s ability to identify the optimal orchestration decision at each invo-

cation. Through reinforcement learning, the agent predicts orchestration decisions including
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offloading policy and DL model configuration to maximize performance and meet the accu-

racy threshold. At design time, we determine the true optimal configuration in any given

conditions of workloads, network, and number of active users using a brute force search.

First, we compare our reinforcement learning based Intelligent Orchestrator’s (IO) predic-

tion accuracy against this true optimal configuration. Our proposed approach with both

Q-Learning and Deep Q-Learning algorithm has yielded a 100% prediction accuracy

in comparison with the true optimal configuration. Thus, our reinforcement learning based

orchestration decisions always converge with the optimal solution. Next, we evaluate our

agent’s efficacy by comparing it with a representative state-of-the-art [105] baseline in terms

of performance and accuracy. To implement the baseline policy into our framework, we limit

the agent to actions that specify offloading decisions aτ = {oi}, using the most accurate DL

model. We additionally compare fixed orchestrations for points of reference. The fixed solu-

tion is limited to configurations where all end-devices either (a) perform the most accurate

DL inference execution locally, (b) offload to the edge, or (c) offload to the cloud. In the

following subsections, we demonstrate the efficacy of our proposed agent to find the optimal

configuration in presence of different number of users (up to five). Then, we investigate its

ability to adapt to network variations and evaluate its overhead. We explain the impact of

varying DL models on the performance under different system dynamics and elaborate how

the proposed agent follows the defined constraints.

User Variability

To evaluate the user variability, we consider up to five simultaneously active user-end de-

vices, keeping the network constraints constant. We consider five different levels of accuracy

thresholds viz., Min, 80%, 85%, 89%, and Max. Min refers to the accuracy threshold for

computing where no constraint is applied to the learning algorithms (See Equation 4) and

Max represents the accuracy threshold for computing where the average accuracy constraint
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Figure 3.5: Results of the framework within Exp-A for different number of active users.

is set to 89.9%. We present the average response time and average accuracy for each of these

thresholds using our proposed approach. For evaluation, we also present the average response

time and accuracy metrics achieved with the state-of-the-art baseline approach [105], and

three fixed orchestration decisions viz., device only, edge only and cloud only.

Fixed Strategies Figure 3.5 shows the average response time and accuracy for different

numbers of active users for regular network conditions (represented by scenario Exp-A in

Table 3.5), using different orchestration strategies. The x-axis represents the number of

active users. Each bar represents a different orchestration decision made by using the corre-

sponding orchestration strategy. With the device only strategy, each user-end device executes

the inference service on the local device. Thus, varying number of users has no effect on the

average response time in this case. With the edge and cloud only strategies, simultaneous
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requests contend for edge and cloud resources. This increases the average response time

significantly, as the number of users increase. For instance, the fixed edge only strategy with

five active users leads to an average response time of 1140ms, while it is 665ms with cloud

only strategy. Higher volume of available resources at the cloud layer results in relatively

better average response time in comparison with the edge only strategy. On the other hand,

the average response time with the device only strategy is 459ms, representing the optimal

case.

Baseline With the SOTA [105] approach, the average response time remains constant until

the number of users is two. This is due to the orchestration decision of distributing the

services across edge and cloud layers. As the number of users increase to three, the service

requests contend for resources, leading to an increase in the average response time. With the

number of users increasing from three through five, the average response time increases, but

at a relatively lower rate, exhibiting efficient utilization of the edge and cloud resources. As

the number of users increase, the efficiency of the baseline approach over the fixed strategies

is more prominent. Both the baseline and fixed strategies are agnostic to model selection and

configuration, retaining the maximum prediction accuracy of the inference service. Thus the

average accuracy remains constant with the aforementioned strategies, as shown in Figure

3.5.

Our proposed solution Our proposed solution achieves the same average response time in

comparison with the baseline for the Max accuracy scenario. When the accuracy threshold is

relaxed, our reinforcement learning based intelligent orchestrator selects appropriate models

(among d0-d7) to improve the average response time. As the number of users increase, our

solution leverages the model selection combined with offloading technique to address the

potential increase in response time. With appropriate model selection, our approach reduces

the compute intensity, and consequently maintains a lower average response time even with

the increasing number of users. Trivially, the average response time with our approach is

lower as the accuracy threshold is reduced. However, it should be noted that we enforce the
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Table 3.8: Detailed offloading decisions of our agent for different number of active users in all
four experiments (Maximum Accuracy Threshold). For example, in Exp-A, the orchestrator
offloads the most accurate DL inference execution (d0) to the cloud device (d0, C for end-
node S1). In the presence of five active users, the decisions are {d0, E}, {d0, L}, {d0, L},
{d0, C}, and {d0, L} for end-nodes S1 to S5, respectively. In this case, S1, S2, and S4
perform DL inference execution of the d0 model locally (L). S0 and S3 offload inference
execution of the d0 model to the edge (E) and cloud (C), respectively.

End-node Devices

Experiments Number of Users S1 S2 S3 S4 S5 Avg Res (ms)

D
e
ci
si
o
n

Exp-A

1 d0, C − − − − 363.47
2 d0, C d0, E − − − 363.17
3 d0, C d0, L d0, E − − 397.53
4 d0, L d0, L d0, E d0, C − 410.35
5 d0, E d0, L d0, L d0, C d0, L 418.91

Exp-B

1 d0, E − − − − 403.30
2 d0, E d0, C − − − 416.78
3 d0, E d0, C d0, L − − 431.90
4 d0, L d0, C d0, E d0, L − 457.96
5 d0, C d0, E d0, L d0, L d0, L 472.88

Exp-C

1 d0, C − − − − 471.65
2 d0, C d0, E − − − 467.80
3 d0, C d0, E d0, L − − 488.21
4 d0, C d0, E d0, L d0, L − 480.70
5 d0, L d0, L d0, L d0, C d0, E 464.59

Exp-D

1 d0, L − − − − 585.68
2 d0, E d0, C − − − 527.39
3 d0, L d0, C d0, E − − 491.77
4 d0, L d0, C d0, E d0, L − 501.07
5 d0, L d0, C d0, E d0, L d0, L 506.62

boundaries on tolerable loss of accuracy with our model selection decisions. Figure 3.5 shows

the average response time and average accuracy with our solution over different scenarios

of accuracy thresholds and varying number of users. Our solution provides up to 35% im-

provement in the average response time in comparison with the baseline, within a tolerable

loss of 0.9% accuracy. Table 3.8 shows the orchestration decisions of our agent for different

numbers of active users, and also over four different experimental scenarios (Table 3.5). We

present the orchestration decision and the average response time achieved with each decision,

for the maximum accuracy threshold scenario.
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Table 3.9: Results of the proposed framework for different accuracy constraints for different
experiments (five users). For example, in Exp-D with 89% average accuracy constraint, our
framework orchestrates S1, S2, S3, and S4 to execute DL inference using model d4 locally
and offload inference execution using model d0 at the cloud. However, the baseline obtains
the maximum accuracy by executing the most accurate DL inference locally for S1, S4, and
S5 while offloading d0 to the edge and cloud for S3 and S2, respectively.

End-node Devices

Experiments Constraint S1 S2 S3 S4 S5 Avg Res (ms) Avg Acc (%)

D
e
ci
si
o
n

Exp-A

Min d7, L d7, L d7, L d7, L d7, L 72.08 72.80
80% d7, L d6, L d6, L d6, L d6, L 103.88 81.11
85% d2, L d6, L d5, L d6, L d5, L 143.81 85.06
89% d4, L d4, L d4, L d0, E d4, L 269.80 89.10
Max d0, E d0, L d0, L d0, C d0, L 418.91 89.90

Exp-B

Min d7, L d7, L d7, L d7, L d7, L 106.76 72.80
80% d6, L d3, L d6, L d6, L d6, L 139.92 83.23
85% d5, L d5, L d6, L d6, L d2, L 176.21 85.05
89% d4, L d4, L d0, E d4, L d4, L 303.50 89.10
Max d0, C d0, E d0, L d0, L d0, L 472.88 89.90

Exp-C

Min d7, L d7, L d7, L d7, L d7, L 119.28 72.80
80% d6, L d6, L d7, L d6, L d6, L 149.52 81.11
85% d5, L d6, L d5, L d6, L d5, L 190.76 85.47
89% d4, L d4, L d4, L d4, L d0, C 318.45 89.10
Max d0, L d0, L d0, L d0, C d0, E 464.59 89.90

Exp-D

Min d7, L d6, L d7, L d7, L d7, L 158.53 72.80
80% d6, L d6, L d6, L d7, L d6, L 182.53 81.12
85% d2, L d6, L d6, L d5, L d5, L 225.32 85.06
89% d4, L d4, L d4, L d4, L d0, C 356.75 89.10
Max d0, L d0, C d0, E d0, L d0, L 506.62 89.90

Table 3.10: Results of the state-of-the-art [105] in all four experiments.

End-node Devices

Experiments S1 S2 S3 S4 S5 Avg Res (ms) Avg Acc (%)

D
e
ci
si
o
n Exp-A d0, E d0, L d0, L d0, C d0, L 418.91 89.9

Exp-B d0, C d0, E d0, L d0, L d0, L 472.88 89.9
Exp-C d0, L d0, L d0, L d0, C d0, E 464.59 89.9
Exp-D d0, L d0, C d0, E d0, L d0, L 506.62 89.9
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Network variation

We consider two possible levels of network connection: (i) a regular network that has low

latency, and (ii) a weak network that has high latency. We add 20ms delay to all outgoing

packets to emulate the weak connection behavior. With varying network conditions, there

is an increased delay with offloading decisions across the network. Both the baseline and

fixed approaches are affected by the weak network conditions, resulting in a higher average

response time. The fixed strategies employ the trivial device, edge and cloud only offloading

decisions, suffering higher latency. The baseline approach is confined to only an intelligent

offloading strategy, which also results in higher average response time inevitably. On the

other hand, our proposed solution adapts to varying network conditions by opportunistically

exploiting the accuracy trade-offs through model selection. This way, we address for the

latency penalty levied by weak network conditions by reducing the compute intensity of the

workloads, within the tolerable accuracy bounds.

Table 3.9 shows the orchestration decisions made by our intelligent orchestrator, average

response time, and average accuracy achieved over varying networking conditions. Each

experiment scenario (Exp-A through Exp-D) combines different network conditions for each

node in the network (See Table 3.5). For example, in Exp-A, all the nodes are connected

with regular network, whereas in Exp-B, nodes S1, S3, and S5 have regular connections and

the rest have weak connections. We set the number of active users to five.

Model Selection Within each experiment scenario, the average response is lower as the

accuracy threshold is relaxed. d0 through d7 represent models with different response time

and accuracy levels. For instance, models d0, d4, d2, d7 and d7 are selected respectively for

accuracy thresholds ranging from Max through Min in Exp-A. Our proposed orchestrator

explores the Pareto-optimal space of model selection and offloading choice, combining the

opportunities at application and platform layers simultaneously. For instance in Exp-A,

maintaining an accuracy level of 89% results in an average response time of 269.8ms, by i)
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setting the models to d4, d4, d4, d0, and d4 on devices S1-S5, and ii) device configurations to

L (local device), L, L, E (edge) and L for S1-S5. However, the average response time can be

improved by sacrificing the accuracy within a pre-determined tolerable level. For instance,

by lowering the accuracy threshold by 4% (from 89% to 85%), the average response time can

be reduced by 88% (from 269ms to 143ms) by i) setting the models to d2, d6, d5, d6, and d5

on devices S1-S5, and ii) device configurations to L (local device), L, L, L and L for S1-S5.

With varying network conditions, our solution explores the offloading and model selection

Pareto-optimal space at run-time to predict the optimal orchestration decisions.

For example, in Exp-D, our framework obtains 356.75ms on average response time with

significantly weak network connectivity, while it can adapt to regular connectivity in Exp-A

to obtain 269.80ms on average response time. In this case, the average accuracy is 89.1%

which shows 0.8% error with the maximum average accuracy. The baseline [105] orchestrates

the most accurate DL inference execution to obtain 506.62ms and 418.9ms average response

time in Exp-D and Exp-A, respectively. Orchestration decisions of the baseline approach

over different experimental scenarios is summarized in Table 3.10. Although our proposed

framework and the baseline can adapt to network variability, our agent provides additional

trade-off opportunities to deploy different models combined with offloading technique. This

leads to up to 35% speedup while sacrificing less than 1% average accuracy.

3.6.2 Overhead Analysis

Developing a global RL agent for optimal runtime orchestration decisions in an end-edge-

cloud system incurs overhead to multiple sources. We evaluate the sources of overhead

in both exploration and exploitation phases to demonstrate the feasibility of our proposed

solution.
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Figure 3.6: Training overhead for multi-user networks with Q-Learning and Deep Q-
Learning algorithms under different accuracy constraints (See Algorithm 1 and 2, respec-
tively).

Exploration Overhead

We evaluate the time required by the proposed agent for the training phase to identify an

optimal policy. Figure 3.6 shows the training phase for different numbers of end-devices

under different accuracy constraints. We train the agent with Q-Learning and Deep Q-

Learning algorithms under different accuracy constraints (See Figure 3.6.(a) and 3.6.(b),

respectively). The convergence time for five devices with different policies are summarized in

Table 3.11. Q-Learning agent converges faster than Deep Q-Learning agent for the three End-

devices scenario. However, increasing the number of End-devices leads to the more complex

problem. Deep Q-Learning agent converges up to 17.5× faster than Q-Learning agent for

66



0.0 0.5 1.0 1.5 2.0

Step ×106

200

400

600

800

‖R
ew
a
rd
‖

(a) Q-Learning Algorithm

0.0 0.5 1.0 1.5

Step ×105

200

400

600

800

1000

‖R
ew
a
rd
‖

(b) Deep Q-Learning Algorithm

TransferLearning-80% TransferLearning-85% Scratch-80% Scratch-85%

Figure 3.7: Transfer learning strategy can be used to alleviate the convergence time. In
our experiments, the strategy improves the convergence time up to 12.5× and 3.3× for Q-
Learning and Deep Q-Learning for five End-devices, respectively. For example, the training
phase for Q-Learning algorithm under 80% accuracy constraint converges at 10.5×105 steps.
While, using the transfer learning it converges at 8.2× 104 steps.

the five End-devices scenario. In other words, Deep Q-Learning algorithm converges faster

for high-dimensional space problems. Furthermore, SOTA converges faster since the agent

only uses limited actions (3 actions for computation offloading) making a low-dimensional

space problem.

In addition, we observe that the training phase can be accelerated by exploiting previous

experiences in similar scenarios known as transfer learning strategy. Figure 3.7 shows that

the strategy can alleviate the convergence up to 12.5× and 3.3× for Q-Learning and Deep

Q-Learning algorithms, respectively. In the transfer learning strategy, we train a model

with minimum accuracy threshold from scratch. Then, we initialize model with the trained

model to reduce the convergence time. In conclusion, the Deep Q-Learning algorithm with

the transfer learning strategy can speedup the convergence time up to 57.7× in comparison

with Q-Learning algorithm for the five End-devices scenario.
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Table 3.11: Training convergence time for three, four , and five End-devices with Q-Learning
and Deep Q-Learning algorithms compared with SOTA [105] and Bruteforce strategy (See
Section 3.4)

.

Number of Users Constraint Q-Learning (step #) Deep Q-Learning (step #) SOTA [105] Bruteforce (step #)

3

Min 6.6× 103 1.0× 104 - 6.6× 108

80% 1.8× 103 1.0× 104 - 6.6× 108

85% 0.8× 103 1.0× 104 - 6.6× 108

Max 6.7× 103 1.0× 104 2.0× 103 6.6× 108

4

Min 9.0× 104 3.0× 104 - 5.3× 1010

80% 8.0× 104 4.0× 104 - 5.3× 1010

85% 4.0× 104 4.0× 104 - 5.3× 1010

Max 9.0× 104 4.0× 104 5.0× 103 5.3× 1010

5

Min 10.5× 105 6.0× 104 - 4.2× 1012

80% 10.5× 105 6.0× 104 - 4.2× 1012

85% 5.6× 105 7.0× 104 - 4.2× 1012

Max 10.5× 105 7.0× 104 2.5× 104 4.2× 1012

Run-time Overhead

The agent is invoked periodically at runtime, imposing overhead on DL inference execution.

We evaluate the following components individually:

(a) Resource Monitoring: A continuous resource monitoring service imposes runtime over-

head in terms of DL inference response time. Figure 3.8 shows that the latency overhead for

all layers is negligible (less than 0.8% of minimum response time overall).

Device Edge Cloud
0
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600

L
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cy
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s)

Figure 3.8: Resource Monitoring Overhead

(b) Message Broadcasting: Sharing resource usage and orchestration decision information

over the network potentially increases DL inference response time. Table 3.12 shows the ad-

ditional network latency for different network conditions. The request is the latency required

to send an input image to a higher layer, and dominates the sources of network overhead. We

observe that the broadcasting, in total, does not impose more than 2% of overall response
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time.

(c) Intelligent Orchestrator: The Q-Learning agent’s logic itself takes on average 0.6ms to

execute in the cloud. While, the Deep Q-Learning agent’s step takes 11ms on average to

execute using NVIDIA RTX 5000 in cloud. During exploitation, our trained agent identifies

the optimal orchestration decision within five invocations. We conclude that after an agent

is trained, the improvements of 35% in average response time compared to prior art justifies

the total overhead of our agent.

Table 3.12: Message Broadcasting Overhead

Regular Weak

Request 20 ms 137 ms
Update 0.4 ms 2 ms

Decision 1 ms 2 ms

Total 21.4 ms 141 ms

3.7 Summary

Cross-layer optimization that considers both model optimization and computation offloading

together provides an opportunity to enhance performance while satisfying accuracy require-

ments. In this chapter, for the first time, we proposed an online learning framework for

DL inference in end-edge-cloud systems by coordinating tradeoffs synergistically at both the

application and system layers. The proposed reinforcement learning-based online learning

framework adopts model optimization techniques with computation offloading to find the

minimum average response time for DL inference services while meeting an accuracy con-

straint. Using this method, we observed up to 35% speedup for average response time while

sacrificing less than 0.9% accuracy on a real end-edge-cloud system when compared to prior

art. Our approach shows that online learning can be deployed effectively for orchestrating

DL inference in end-edge-cloud systems, and opens the door for further research in online

learning for this important and growing area.

69



Chapter 4

Hybrid Learning for Orchestration

Deep Learning Inference at Edge

4.1 Introduction

Deep-learning (DL) kernels provide intelligent end-user services in application domains such

as computer vision, natural language processing, autonomous vehicles, and healthcare [104].

End-user mobile devices are resource-constrained and rely on cloud infrastructure to handle

the compute intensity of DL kernels [123]. Unreliable network conditions and communica-

tion overhead in transmitting data from end-user devices affect real-time delivery of cloud

services [51]. Edge computing brings compute capacity closer to end-user devices, and com-

plement the cloud infrastructure in providing low latency services [134]. Collaborative end-

edge-cloud (EEC) architecture enables on-demand computational offloading of DL kernels

from resource-constrained end-user devices to resourceful edge and cloud nodes [107, 109].

Orchestrating DL services in multi-layered EEC architecture primarily focus on i) selecting

an edge node onto which a task can be offloaded, and ii) selecting an appropriate learning
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model to accomplish the DL task. Selection of the edge node for offloading a DL task is based

on a combination of factors including i) the edge node’s compute capacity and core-level het-

erogeneity, ii) communication penalty incurred in offloading, iii) workload intensity of the

task and accuracy constraints, and iv) run-time variations in connectivity, signal strength,

user mobility, and interaction. Selecting an appropriate model for a DL task depends on

design time accuracy constraints and run-time latency constraints simultaneously. Different

learning models for DL tasks expose a Pareto-space of accuracy-compute intensity, such that

higher accuracy models consume longer execution time [123].

Orchestrating DL tasks by finding the appropriate edge node for offloading, and configuring

the learning model for DL task, while minimizing the latency under unpredictable network

conditions makes orchestration a multi-dimensional optimization problem [53]. Therefore,

the orchestration problem requires an intelligent run-time management to search through a

wide configuration Pareto-space. Brute force search, heuristic, rule-based, and closed-loop

feedback control solutions for orchestration require longer periods of time before converging

to optimal decisions, making them inefficient for real-time orchestration [116]. Reinforcement

Learning (RL) approaches have been adopted for orchestrating DL tasks in multi-layered

end-edge-cloud systems [53] to address these limitations. Orchestration strategies using RL

can be classified into model-free and model-based approaches.

Model-free RL techniques operate with no assumptions about the system’s dynamic or

consequences of actions required to learn a policy. Model-free RL builds the policy model

based on data collected through trial-and-error learning over epochs [116]. Existing Model-

free RL strategies have used Deep Reinforcement Learning (DRL) algorithms for minimizing

the latency for multi-service nodes in end-edge-cloud architectures [70]. AdaDeep [66] pro-

poses a resource-aware DL model selection using optimal learning. AutoScale [53] proposes

an energy-efficient computational offloading framework for DL inference. Originated from

trial-and-error learning, model-free RL requires significant exploratory interactions with the

environment [116]. Many of these interactions are impractical in distributed computer sys-
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Table 4.1: State-of-the-art reinforcement learning-based orchestration frameworks for deep
learning inference in end-edge-cloud networks. Approach- Model-free (MF) and Hybrid
Learning (HL). Algorithm- Q-learning (QL), DeepQ (DQL), DeepDynaQ (DDQ). Actuation
knobs- CO : computation offloading, HW : hardware knobs, APP : application layer knobs.

Technique Approach Algorithm Workload Knobs

AutoScale [53] MF QL Inference CO,HW
AutoFL [55] MF QL Training CO,HW
AdaDeep [66] MF DQL Inference APP

Ours HL DDQ Inference CO,APP

tems, since execution for each configuration is expensive and leads to higher latency and

resource consumption during the learning process [116].

Model-based RL uses a predictive internal model of the system to seek outcomes while

avoiding the consequence of trial-and-error in real-time. Existing approaches have modeled

the computation offloading problem and then use deep reinforcement learning to find an

optimal orchestration solution [138, 60] [122]. Model-based RL approach is computationally

efficient and provides better generalization and significantly less number of real full system

execution runs before converging to the optimal solution [116]. However, Model-based RL

is sensitive to model bias and suffers from model errors between the predicted and actual

behavior leading to sub-optimal orchestration decisions.

A hybrid learning approach integrating the advantages of both model-free and model-based

RL is efficient for orchestrating DL tasks on end-edge-cloud architectures [93, 114]. In this

work, we adapt such hybrid learning strategy for orchestrating deep learning tasks on dis-

tributed end-edge-cloud architectures. We model the end-edge-cloud system dynamics on-

line, and design an RL agent that learns orchestration decisions. We incorporate the system

model into the RL agent, which simulates the system and predicts the system behaviors.

We exploit the hybrid Deep Dyna-Q [93, 114] model to design our RL agent, which requires

fewer number of interactions with the end-to-end computer system, making the learning

process efficient. Existing efforts to orchestrate DL inference/training over the network are

summarized in Table 4.1. We compare our framework with AutoScale [53] and AdaDeep [66]
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Figure 4.1: Hybrid Learning Architecture.

to demonstrate our agent’s performance since they employ RL to optimally orchestrate DL

inference at Edge. Our main contributions are:

• A run-time reinforcement learning based orchestration framework for DL inference

services, to minimize inference latency within accuracy constraints.

• A hybrid learning approach to accelerate the RL learning process and reduce direct

sampling during learning.

• Experimental results demonstrating acceleration of the learning process on an end-

edge-cloud platform by up to 166.6× over state-of-the-art model-free RL-based orches-

tration.

4.2 Hybrid Learning Strategy

Hybrid Learning is a combination of model-free and model-based RL. As illustrated in Figure

4.1, the architecture consists of System Environment, System Model, and Deep Q-Network

Model. The training process begins with an initial system model and an initial policy. The

agent is trained in three phases viz., Direct RL, System Model Learning , Planning .

Algorithm 4 defines the training process, which is composed of three major phases:

(1) Direct RL: In the Direct-RL phase, the agent interacts with the System Environment

to collect Real Experience for training the Deep Q-Network (DQN) model. Every time the
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agent takes a step, the real experience is pushed into a prioritized replay buffer Ddirect, and

a random replay buffer Dworld. We sample mini-batches from the buffer Ddirect and update

the DQN by Adam optimizer [140]. Then, we assign new priorities to the prioritized replay

buffer Ddirect.

(2) System Model Learning: We model our system to Predict the system’s behavior for

given pairs of (sτ ,aτ ). System Model Learning starts with no assumption about the System

Environment, and is learned and updated through real experiences. As the agent takes more

steps with real experiences, the model (System(θs)) learns the system from state-action pairs

that have previously been experienced (in Direct RL). System(sτ , aτ ; θs) predicts average

response time rτ and the next state sτ+1. In this phase, we train the model with mini-batches

sampled randomly from the buffer Dworld update the θs accordingly.

(3) Planning: During this phase, the agent uses the System Model to predict the system’s

behavior to improve the policy model Q(s, a; θQ). We train Q(s, a; θQ) with the predicted tu-

ples (sτ , aτ , rτ , sτ+1) in a replay buffer Dplan. Given a current state s, we use System(s, a; θs)

to generate a set A of K actions (ai, i = 0, · · · , K − 1) that might yield promising rewards r.

For each action ai in the set A, if ai does not exist in the buffer Dplan, agent will take a step ai

at state s to get a reward r and the next state s′. Then we push the tuple (s, ai, r, s
′) into the

buffer Dplan. If the action ai already exists in buffer Dplan, we only update its corresponding

current state in the buffer with the new state. Then, we train the policy model Q(s, a; θQ)

in the same way as the Direct RL process but with the generated data sampled from the

buffer Dplan.

We define α as a parameter to control the portion of Direct RL and Planning during the

training policy. Increasing α over time results in decreasing the number of Direct RL during

the training. In this strategy, after sufficient real experience, the System Model can predict

the system behavior. Therefore, the agent relies more on System Model prediction rather

than real experiences which emphasizes model-based RL.
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Algorithm 4 Hybrid Learning Algorithm.

Data: ϵ, C, T,N

Result: Q(s, a; θQ), System(s, a; θs))

1 initialize Q(s, a; θQ) and Q′(s, a; θQ′) with θQ′ ← θQ;

2 initialize System(s, a; θs);
3 initialize replay buffer Ddirect,Dworld,Dplan;
4 for ( epoch← 1 : N ) {
5 α← epoch

N ;
6 # Direct Reinforcement Learning ———————;
7 for ( session← 1 : (1− α

2 )Ndirect ) {
8 for ( step← 1 : Tdirect ) {
9 with probability ϵ, choose random a, otherwise

a← argmina′ Q(s, a′; θQ);
10 r, s′ ← take step(s, a);
11 store (s, a, r, s′)→ Ddirect, Dworld;
12 s← s′;
13 sample prioritized minibatch (S,A,R, S′)⊂Ddirect;
14 update θQ via Adam on the minibatch;

15 update target model Q′(s, a; θQ′) by θQ′ ← θQ;
16 # System Model —————————————-;
17 for ( session← 1 : (1− α

2 )Nworld ) {
18 sample random minibatch (S,A,R, S′) ⊂ Dworld;
19 update θS ;

20 # Planning ————————————————-;

21 for ( session← 1 : (α+1
2 )Nsuggest ) {

22 for ( step← 1 : Tsuggest ) {
23 a←argmina′ System(s, a′; θs);
24 s′←System(s, a; θS);
25 # Choose best K actions for current state s;
26 A←{a|a∈argsorta′(System(s, a′; θs))[0 :K]};
27 for ( a′ in A ) {
28 if a′ ̸∈ Dplan then
29 r, s′ ← take step(s, a′);
30 store (s, a′, r, s′)→ Dplan;

31 else
32 update (s′′, a′, r, s′)∈Dplan by s′′ ← s;

33 s← s′;

34 for ( session← 1 : (α+1
2 )Nplan ) {

35 sample prioritized minibatch from Dplan;
36 update θQ via Adam on the minibatch;

37 update target model Q′(s, a; θQ′) by θQ′ ← θQ;75



4.3 Evaluation

We demonstrate the efficacy of our hybrid learning strategy for RL-based inference orchestra-

tion compared to two state-of-the-art RL-based inference orchestration [66, 53]: AdaDeep [66]

employs the DQL algorithm to optimally orchestrate DL model selection based on available

resources; AutoScale [53] applies QL algorithm to optimally orchestrate DL inference in

end-edge architecture (See Table 4.1). We evaluate the performance of the agent on a multi-

user end-edge-cloud framework (see Chapter 3). We also report the overhead incurred by

the agent in our learning process, compared with AdaDeep [66] and AutoScale [53]. We

described the experimental setup for our proposed framework in Chapter 2.

4.3.1 Agent Performance

We demonstrate our proposed hybrid learning agent’s performance in finding optimal orches-

tration decisions. At design time, we determine the true optimal configuration for orches-

trating a DL task under any given condition of workloads, network, and number of active

users using a brute force search. This is used for comparing the orchestration decisions made

by our proposed approach and DQL against the true optimal configuration. Both Deep-Q

Learning (DQL) and Hybrid Learning (HL) algorithms have yielded a 100% prediction ac-

curacy in comparison with the true optimal configuration (See Chapter 2). Thus, RL-based

orchestration decisions always converge with the optimal solution.

4.3.2 Training Overhead

We evaluate the agent overhead during the training phase to demonstrate the efficiency of

the hybrid learning algorithm in comparison with the state-of-the-art AutoScale [53] and

AdaDeep [66]. To identify an optimal policy, we assess the number of steps required to
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Figure 4.2: Convergence time for up to five users within different constraints. Cnst repre-
sents constraint for each experiment. Deep Q-Learning referes to AdaDeep [66] work. The
comparison with AutoScale [53] is mentioned in Table 4.2.

interact with the system environment under each approach. Figure 4.2 shows the training

phases for different number of users under different accuracy constraints. Each subplot

shows the training phase for the system with a different number of users using the DQL

and HL algorithms. The agent is trained under different accuracy constraints, which results

in converging to different optimal policies for the corresponding constraint (i.e., different

converged reward values). Our evaluation shows that the HL algorithm accelerates the

training steps up to 11.6× and 166.6× in comparison with AdaDeep [66] and AutoScale [53]

respectively. The convergence steps for different number of users are summarized in Table

4.2.
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Table 4.2: Training overhead for Hybrid Learning algorithm compared with AdaDeep [66]
and AutoScale [53]. Training overhead is presented as number of steps to achieve the optimal
policy.

# of Users Constraint AutoScale AdaDeep Our

3

Min 0.7× 104 0.1× 105 0.2× 104

80% 0.5× 104 0.1× 105 0.2× 104

85% 0.3× 104 0.1× 105 0.2× 104

Max 0.7× 104 0.1× 105 0.2× 104

4

Min 0.9× 105 0.3× 105 0.3× 104

80% 0.8× 105 0.4× 105 0.4× 104

85% 0.4× 105 0.4× 105 0.3× 104

Max 0.9× 105 0.3× 105 0.3× 104

5

Min 0.1× 107 0.6× 105 0.6× 104

80% 0.1× 107 0.6× 105 0.6× 104

85% 0.6× 106 0.7× 105 0.6× 104

Max 0.1× 107 0.7× 105 0.6× 104

Our result shows that the number of agent’s interactions with the system environment in-

creases as we increase the dimension of the problem space (increasing number of users).

However, our agent with the HL algorithm outperforms the state-of-the-art [53, 66] in the

number of interactions with the system environment for the different number of users and

under different accuracy constraints. The training time consists of experience time (i.e.,

time spent in interacting with the system environment to collect data) and computation

time for learning the system and policy models. Table 4.3 shows the overall training time

for different number of users. Our evaluation shows that the HL algorithm converges up to

7.5× faster in comparison with AdaDeep, and 109.4× faster in comparison with A.. Fur-

ther, we also present the overhead of the training agent in finding optimal orchestration

decisions, with experience time and computation time metrics. Experience time is the total

time to execute all taken steps (cost of interaction with the system environment) to identify

an optimal policy, while computation time is the time to train the agent. The HL algorithm
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Table 4.3: Training time (presented in minutes) for different number of users compared
with AutoScale [53] and AdaDeep [66]. Comp and Exp represent Computational Time and
Experience Time. *AutoScale employs the QL algorithm which has a low computational
overhead.

# of Users Time (min) AutoScale* AdaDeep Ours

3
Comp - 1 1
Exp 1.5× 102 6.8× 101 2.6× 101

Total 1.5× 102 6.9× 101 2.7× 101

4
Comp 0.3 1.0× 101 3.6
Exp 3.7× 102 1.1× 102 1.3× 101

Total 3.7× 102 1.2× 102 1.6× 101

5
Comp 1.0× 101 1.5× 102 3.4× 101

Exp 5.8× 103 1.8× 102 1.9× 101

Total 5.8× 103 3.3× 102 5.3× 101

results in 4.4× and 9.4× speedup in comparison with AdaDeep for Computation Time and

Experience Time, respectively. The computation time per step to train System Model and

Policy Model with the HL algorithm is higher than the DQL and QL algorithms. However,

our HL algorithm converges significantly faster than the algorithms (See Table 4.2 and Table

4.3). Therefore, any additional computation cost per step is more than compensated by a

significant reduction in the number of interactions to identify an optimal policy.

4.4 Summary

We presented a hybrid learning based framework for orchestrating deep learning tasks in end-

edge-cloud architectures. Our proposed hybrid learning strategy requires fewer interactions

with the real-time execution runs, converging to an optimal solution significantly faster

than state-of-the-art model-free RL approaches. We deployed our proposed framework on

enterprise AWS end-edge-cloud system for evaluating MobileNet kernels. Our hybrid learning

approach accelerates the training process by up to 166× in comparison with the state-of-

the-art RL-based DL inference orchestration, while making optimal orchestration decisions

after significantly early convergence. Our future work will explore cross-layer opportunities

and more hardware-friendly RL algorithms.
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Chapter 5

Hyperdimensional Hybrid Learning

on End-Edge-Cloud Networks

5.1 Introduction

With the rise of distributed systems and smart devices, Resource Management is an in-

creasingly prevalent orchestration problem to optimize. When these systems involve com-

putationally expensive services, such as Deep Learning (DL) kernels, resource-constrained

end-user devices heavily rely on cloud infrastructures to execute these tasks [124]. How-

ever, this is not a robust solution since network conditions are prone to inconsistencies and

affect the real-time of providing these services [52]. To enable a low-latency infrastruc-

ture, the introduction of edge computing has brought compute capacity closer to end-user

devices [135]. Furthermore, the collaborative end-edge-cloud architecture has allowed in-

stantaneous computational offloading to higher equipped cloud and edge nodes instead of

the resource-constrained end-user device [80].

Resource management is a multi-dimensional optimization problem since it requires finding
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the appropriate device to offload the computation while minimizing the latency in aber-

rant network conditions [80]. Configuring this system is extremely complex and requires

machine learning algorithms run-time decision-making capabilities. Reinforcement learning

(RL) algorithms have shown great potential in solving dynamic resource management and

scheduling problems [137, 131]. RL methods are developed to interact with the environment

by trying different actions and reinforcing those that provide higher rewards [29]. In the

case of optimizing the network resources for an End-Edge-Cloud system containing numer-

ous low-powered devices, the use of lightweight and robust artificially intelligent models is

critical for performance. The two classes of RL algorithms are model-free and model-based

learning. The former includes popular algorithms, such as Q-Learning, and involves an agent

directly interacting with its environment to accumulate experience, which is data that is then

used to train the model. A notable trade-off in using these algorithms include the costly

exploratory interactions with the network environment [54], which is intensified if the state

and action spaces are expansive. In the application of distributed computer systems, this is

extremely impractical since these executions are expensive and result in higher latency and

resource consumption [54]. The second class of RL algorithms, model-based learning, avoids

this costly training time since it trains an agent by simulating the agent’s environment in or-

der to predict the system behavior and enable real-time learning. The advantage of doing so

includes improved generalization and a significant reduction in the number of system execu-

tion runs to realize the optimal solution. However, these algorithms are prone to model-bias,

which consequently leads to trained models often reaching sub-optimal results.

Hybrid Learning is an approach that utilizes both of these RL algorithms to exploit their

strengths and lessen their respective disadvantages, e.g., costly real-time exploration and

model-bias. To mitigate the trial-and-error phase of model-free learning, a model-based RL

system model is incorporated to aid the model-free agent by producing data samples from

the simulated environment, which consequently reduces the number of direct interactions

with the system to enable faster real-time learning. Despite the success, the existing RL
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algorithms face several difficulties in dealing with large state spaces, which are common in

resource management problems. In addition, the state-of-the-art RL algorithms are based on

deep neural network models. Therefore, they have the following computational challenges:

(1) demand unreasonable resources to train as neural network models rely on costly back-

propagation and gradient-based methods [44], (3) are extremely sensitive to noise in data,

network, or underlying hardware, and (4) lack human-like cognitive support for long-term

memorization and transparency.

To address the above listed challenges, recent learning algorithms aim to model the human

brain more closely. Brain-inspired Hyperdimensional Computing (HDC) is gaining traction

for its impressive learning ability, lightweight hardware implementation, and computational

efficiency [30, 98]. The origin of this field stems from neuroscience research on how the

human brain, specifically the cerebellum cortex, processes information in high dimensions

due to the brain’s extensive brain circuitry [44]. HDC abstractly extends this concept as a

learning paradigm by modeling and operating on high-dimensional data representations [44].

HDC achieves this by encoding input data into high-dimensional space, outputting what

is called hypervectors and using well-defined HDC operands to train and execute inference

tasks [30]. Each dimension of this hyperspace abstractly models a neuron’s functionality in

processing external stimuli [44]. The HDC operands are simple arithmetic operations over

these dimensions that can be supported on devices with limited resources and computational

power [39]. In addition, this class of algorithms is able to accomplish both classification and

regression machine learning tasks [31, 89] and have been shown to achieve comparable results

to neural networks offering higher learning quality, e.g, faster convergence, learning speed,

and computational efficiency [30].

We utilize this hybrid learning approach for orchestrating an end-edge-cloud architecture

for DL inference tasks and utilize an HDC version of the Deep Dyna-Q for the RL agent

[115, 94]. As a result, our algorithm significantly speeds up training by reducing the number
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of real-time interactions with the system and enables computationally efficient learning.

In this work, we propose HDHL, a novel hyperdimensional hybrid learning model to optimize

resource management applications. Our contributions in this work are listed below:

• To the best of our knowledge, HDHL is the first hyperdimensional hybrid learning algo-

rithm to successfully and efficiently orchestrate an edge-edge-cloud system. Compared

to Deep Q-Learning, HDHL is magnitudes more computationally efficient in training

the reinforcement learning agent compared to the state-of-the-art DQL algorithm.

• We also demonstrate HDHL’s ability to produce higher quality learning with a faster

convergence to the optimal result compared to the DQL algorithm.

• We also present the notable application of Hyperdimensional Q-Learning (QHD) to

demonstrate its computationally efficient advantage over its Neural Network counter-

part.

In this work, we tackle the communication-computation co-optimization offloading orches-

tration problem to an Edge-End-Cloud network. We show that the novel HDHL algorithm

is computationally more efficient than DQL by 21.0× for three devices and by 9.5× for four

devices. In addition, we show HDHL’s improved learning quality by the faster convergence

to the near optimal result and the significant reduction to the number of direct interactions

with the system environment by 4.8× for three devices and by 5.7× for four devices.

5.2 Hyperdimensional Computing

The concept that motivates Hyperdimensional Computing (HDC) is the theoretical neu-

roscience observation that the human brain processes information by operating on high-

dimensional data representations. This formulates the core idea behind HDC, which is to
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map objects into hyperdimensional space by encoding the original data into what is called

hypervectors, vectors which store thousands of elements. Each dimension of these hypervec-

tors abstractly formulates a neuron’s functionality in processing external stimuli [44]. Once

an HDC model is trained, the encoded hypervector will have successfully captured the im-

portant patterns of its respective class of data across these dimensions. The advantage of

working in high-dimensional space is the multitude of nearly orthogonal hypervectors.

HDC utilizes this property to combine hypervectors using well-defined operations, including

bundling and association while maintaining their respective information with high probabil-

ity. The training process involves encoding the original input data and superimposing them

to produce a model hypervector, which is the object representation in high-dimensional space.

The HDC operation association performs the cognitive computation and learning over the

encoded data during the training phase to procure highly accurate high-dimensional repre-

sentations. Given a new data point to classify, the inference algorithm is a similarity search

conducted between the model hypervectors and the encoded new data point (e.g., query) to

inform the model in its decision-making process. Let us assume H⃗1 and H⃗2 are two hyper-

vectors, H⃗ ∈ {0, 1}d and d is dimensionality (e.g., d = 10, 000). Due to random generation

and high-dimensionality, these two vectors are nearly orthogonal: δ(H⃗1, H⃗2) ≈ 0, where δ is

a cosine similarity. The other HDC operands are described in greater detail below:

Bundling: The component-wise addition operation of hypervectors, where the information

from multiple hypervectors are saved into a single hypervector. This formulates the memo-

rization capability of HDC since the bundled hypervector is similar to each of the component

hypervectors that comprise it i.e., δ(H⃗1 + H⃗2, H⃗1) ≈ 0.

Binding: The Binding operation associates items in hyperspace. Given two hypervectors,

H1 and H2, component-wise multiplication (XOR in binary) denoted as (∗) is conducted to

produce a new hypervector that is dissimilar to its constituent vectors, i.e., δ(H⃗1 ∗H⃗2, H⃗1) ≈

0. This is ideal for associating two hypervectors for mapping and variable-value association.
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Figure 5.1: Overview of HDHL reinforcement learning.

5.3 Hyperdimensional Q-Learning

In this section, we detail the Hyperdimensional Reinforcement Learning algorithm employed

to learn the network’s optimal orchestration. The agent uses Q-Learning, a value-based

Reinforcement Learning (RL) algorithm, which learns to approximate the expectation of

future rewards, referred to as the Q-Function.

As is known with RL algorithms, when learning new environments, the agent needs to learn

undiscovered areas of the state space while also utilizing past experience to learn the best

action to take at any given state. Exclusively using one of these initiatives results in one of

the two extremes: by only taking random actions, the model never learns the Q-Function,

and on the other, the model may converge to a local maxima, resulting in a sub-optimal

configuration. To balance this, we employ the Epsilon-Greedy strategy, which initializes

the RL agent to prioritize exploration exclusively. However, throughout training, the agent

relies more heavily on the learned Q-function until epsilon completely decays, enabling pure
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exploitation of the Q-Function. This is done by initializing ϵ = 1 but applying a decay

rate for epsilon to converge to zero. At each time step in training, if a randomly generated

number is less than ϵ, then a random action is selected. If not, the model selects the action

with the best Q-value, as shown below:

At =


random action A ∈ A, with probability ϵ

argmaxA∈AQ(St, A), with probability 1− ϵ

assuming an action space A and time step t.

As alluded to, the agent orchestrating the optimal network offloading decisions is imple-

mented using HDC-based regression. Similar to Deep Q-Learning, this algorithm is powered

by a machine learning model, rather than relying on a Q-table (i.e., tabular Q-Learning), to

predict Q-values; however, instead of using a neural network to predict these values, the agent

utilizes an HDC regression model. This is achieved by mapping the state of the network into

high-dimensional space using a Radial Basis Function (RBF) encoder, as is used in other

HDC algorithms [34]. The HDC model contains n class hypervectors {M⃗0,M⃗1, ...M⃗n},

where n is the size of the action space. In other words, each of these hypervectors corre-

sponds to an action encoded in the hyperspace. Following the Q-Learning algorithm, in state

St, we choose an action by selecting the one that outputs the highest Q-value. In the HDC

version, we do this by binding the encoded state hypervector S⃗t with each class hypervector

M⃗i to output the corresponding Q-value for each state-action pair. The agent selects the

action with the highest Q-Value, At, and interacts with the environment, collecting feedback,

Rt, and observing the next state in this transition, St+1. This algorithm advances to the next

time step t+1, and continues to iterate through this algorithm until the episode terminates.

The class hypervectors of the HDC model are initialized to zero, but are updated over

episodes as more experience is accumulated. After each time step t, the state, the selected

action, the reward, and the next state are stored in a replay buffer as a tuple {St, At, Rt, St+1}.
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This experience replay strategy is used to collect additional data for training the agent in

an online approach. After sufficient data samples are collected, a batch of these tuples are

sampled from the experience buffer to update the HDC regression model. Unlike classical

supervised machine learning, reinforcement learning algorithms do not have data labeled

with the ”ground truth” readily available. Instead, the Bellman Equation or Dynamic Pro-

gramming Equation [13], which is a recursive expression for the Q-value at step t, is used to

label the data. We use this to define the optimal Q-function

qt true = Rt + γmaxAQ′(St+1, A) (5.1)

and to maximize the accumulated rewards in an episode. In order to do so, the Bellman

Equation states that each sub-task must be optimized to achieve the optimal results for

the entire task, which means qtrue is the sum of Rt and the maximum Q-value for the next

time step. As noted in the equation above, we use Q′, the target model, since our approach

uses the Double Q-Learning method in updating the model [33]. Compared to Q, which is

updated at every time step, Q′ is updated periodically and stabilizes the learning process

to avoid overestimating the Q-Value, a common consequence of maximizing the Bellman

equation. Additionally the reward decay γ is included to adjust the weight on future or

near-sighted rewards: a value of 1 puts a higher weight for the long-term rewards and a

value close to 0 prioritizes the more immediate rewards.

Returning to the update step: for a given tuple {St, At, Rt, St+1}, we encode the state St

into hyperdimensional space to give its corresponding hypervector S⃗t and bind it with action

At’s corresponding class hypervector, MAt , from the HDC model

qt pred = Q(St, At) = S⃗T
t · M⃗At (5.2)
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We take the difference between qpred and qtrue and use it to update the HDC model where α

is the learning rate.

M⃗At = M⃗At + α(qt true − qt pred)× S⃗t (5.3)

Over the duration of learning, the Q-Function gradually becomes more accurate in estimating

the best actions across the state space.

5.4 Hyperdimensional Computing Hybrid Learning

To further improve the HDC Q-Learning algorithm, we incorporate model-based reinforce-

ment learning to learn a system model and include a planning phase to leverage faster

training. This approach is sectioned into three phases (1) the exploratory phase used for

data collection, (2) the system model training phase, and (3) the planning phase which

involves training the Q-Learning agent.
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5.4.1 Hybrid Learning Algorithm

An issue that arises in applying the Q-Learning algorithm to this problem is working with

an action space that is extremely large. This is a challenge since a large state space requires

extensive exploration to learn the best configuration of actions. As described in the previous

section, each end-device has l + 2 choices at any time point t: it either selects one of the l

locally stored models or it offloads the task to either the edge or cloud device. Given the

number of end devices, the action space quickly grows e.g. for a network configuration of n

end-devices and l local models, the number of actions is (l+ 2)n. For instance, in a network

with three devices, each storing eight models, the action space is 1000, but for a network with

five devices, this number quickly swells to 100, 000. This is difficult for any RL algorithm

to efficiently tackle since the length of exploration consumes much of the time and cost to

train the agent.

A hybrid approach to this problem is to re-introduce the problem to the agent with the

inclusion of a planning phase that utilizes a system model. To mitigate the expensive explo-

ration phase, we use a system model to simulate the environment by training it to learn the

next state and response times given a state-action pair. This is a computationally efficient

alternative to leverage since relying solely on direct interactions with the environment for

training is expensive. However, this approach still includes the Q-Learning exploration phase

since it collects the initial data samples necessary for training the system model. The system

model includes two models: the first is the Time Model, an HDC regression model used to

predict the response time of taking an action at a given state, and the second is the State

Model, which is implemented using a collection of HDC classification models to predict the

next observation space.

In the first phase of this hybrid learning approach, the QHD model is deployed to the

environment to collect data to populate the replay buffer, bufferdirect, for the subsequent
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phase. The algorithm detailed in the previous section is used for action selection during this

phase, which includes the Epsilon-Greedy Algorithm and the calculation of Q-Values using

HDC. This first phase is used solely for data collection; thus, no updates are made to either

of the target or policy models. The second phase utilizes this populated replay buffer to train

the system model in predicting the network behaviors, which is then used in the planning

phase. This third phase uses the system model’s simulated data to further train the QHD

agent.

5.4.2 System Model Design

As mentioned, we train a system model in order to learn the network behavior and simulate

the environment in order to accumulate more data samples. The first component of the

system model, the Time Model, predicts the reward e.g., response time, of selecting action

At at state St. Since this is a regression model, it is quite similar to the QHD model in terms

of its implementation; however, instead of using the regression model to output the Q-value

of a state-action pair, the Time Model outputs the predicted response time of taking action

At at a given state St. This is achieved by encoding the state St into hyperdimensional

space and associating it to each of the model’s class hypervectors {M⃗0,M⃗1, ...M⃗Nactions
},

which outputs the predicted reward for selecting each action respectively. We sample tu-

ples, {St, At, Rt, St+1}, from the bufferdirect to enable a supervised training of the model by

updating the model by the error in predicted response time, R′
t, as shown below

MAt = MAt + α× (Rt −R′
t)× S⃗t (5.4)

where α is the learning rate, MAt is the action’s corresponding class hypervector, and S⃗t is

the state’s encoded hypervector. We train this model to be leveraged in the planning phase

of this approach.
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The system model’s second component is the State Model, which is trained to predict the

next state St+1 of the environment given action At at state St. This involves predicting

each of the elements in the observation space, which includes each device’s CPU utilization,

the available memory, and available bandwidth, as elaborated in Table 3.3. An issue that

arises in implementing this classification task is due to the large number of possible network

configurations. To calculate the number of classes for classification involves exhaustively

enumerating all combinations of each resource metric. Accounting for all these possible

network states and translating this into a classification task would require an HDC model

that contains 22n · 102 · 22 class hypervectors for n end-devices. This implementation would

be infeasible since each class hypervector contains thousands of elements; hence, it can be

assumed that training such a model would perform far worse than the QHD model, making

this hybrid learning approach entirely futile.

Instead, we break the classification into sub-tasks by training multiple HDC models, where

each model is trained to only predict one of the observations in the state space. Although

there is a trade-off in having to train 4 + 2 · ndevices HDC models, this is a far better al-

ternative since all, except the cloud and edge devices’ CPU utilization levels, would require

binary classification tasks. The input for each of these models are the concatenated state

and action pairs, which are encoded using the RBF. This hypervector is then used to predict

its observation feature using the cosine similarly between the encoded vector and each of

the model’s class hypervectors. Once each of these models output their respective predicted

observation, the predictions are then concatenated to reconstruct the predicted state at the

next time step, St+1. To update the model, we implement an adaptive iterative training

approach, which updates the correct class hypervectors based on the cosine similarity of

the encoded state vector of the correct class in order to increase their similarity in hyper-

space. Conversely, if the class is predicted incorrectly, we update the incorrectly predicted

class hypervector in the negative direction to decrease this similarity measure of these two
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hypervectors. The equations for updating this model are shown below:

Mcorrect = Mcorrect + α× δ(H⃗<St,At>,Mcorrect)× H⃗<St,At>

Mwrong = Mwrong − α× δ(H⃗<St,At>,Mwrong)× H⃗<St,At>

where α is the learning rate, δ is the cosine similarity, H⃗<St,At> is the encoded state-action

pair hypervector, and Mcorrect and Mwrong are the correct and incorrectly predicted class

hypervectors respectively. By training each of these HDC classification models separately,

we are able to predict with high accuracy the overall next state of the network.

5.4.3 Planning Phase

The third phase is broken down into two parts: the first involves populating a replay buffer,

bufferrecom, with the best recommended state-action pairs, which is then used for its subse-

quent counterpart of training and updating the QHD agent. To populate the bufferrecom, the

trained system model from the previous phase is used to predict the next state and reward

given any state-action pair. Specifically, for a given state, we utilize the Time Model to pre-

dict the action that yields the highest reward and use this selected action to predict the next

state of the environment via the State Model. We use this collected data of the paired state

and action with the predicted reward and next state values to populate a prioritized replay

buffer, bufferplan, which will be used later in this phase. To tackle the challenge of exploring

a large space, we also select a random neighboring action for each of the top action’s adjacent

action configurations to populate the bufferplan with. This enables a strategic exploration of

the large state-action space. Furthermore, the buffer stores exactly one state-action pair for

each respective state. In the scenario where a state exists in the bufferplan and the same state

is populated with a new action, the buffer will replace the previously matched action with

the new one, along with its corresponding predicted reward and next state. By employing
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these two models together, we collect additional data samples without needing to directly

interact with the environment, saving time and computational overhead.

The next step in planning involves training the QHD agent further, but by instead sampling

from the bufferplan. By doing so, only the states that are most likely to yield the highest

rewards are strategically used to train the agent. It uses the QHD model to select the best

action for each state in the sampled buffer and updates the QHD model with the correct and

incorrect action values. After iterating through this step a number of times, the target model

is updated at the end of the epoch. Additionally, this step includes updating the policy QHD

model with the Q-value errors. This final phase of the hybrid learning concludes and returns

to the exploratory first phase to continue iterating through this algorithm.

5.5 Evaluation

We demonstrate the efficacy of HDHL for RL-based orchestration compared with the state-

of-the-art Deep Reinforcement Learning algorithm. We evaluate the performance of the

agent on a multi-user end-edge-cloud framework. We also report the overhead incurred by

the agent learning process compared with state-of-the-art.

5.5.1 Agent Performance

We demonstrate the proposed agent’s performance in finding optimal orchestration decision.

At design time, we determine the true optimal configuration for orchestrating a DL task

under any given condition of workload, and number of active users using a brute-force search.

This is used for comparing the orchestration decision made by our agent to the true optimal

decisions. Our proposed algorithm yields a 100% prediction accuracy in comparison with

the true optimal decision.
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5.5.2 Training Overhead

In this next section, we present the computational efficiency of the hyperdimensional hybrid

learning approach for RL-based inference orchestration and compare it to the state-of-the-

art DQL algorithm as the comparative baseline [68]. Both Figure 5.3 and Table 5.1 shows

the computational efficiency between the baseline DQL and the two HDC-based RL models.

Compared to DQL, the Hyperdimensional Q-Learning (QHD) algorithm realizes an over-

all 1.3× speed up to the total time, which includes the computational time to train the

model and the environment interaction time, with the computational time accounting for

the greatest reduction by 3.1×. This result is enhanced when deployed to a system with

four end-devices with the total time seeing a speed up of 1.5×. Again, the greatest efficiency

is due to the computation time being reduced by 4.9×. Meanwhile, the Hyperdimensional

Hybrid Learning approach realizes an acceleration to the total time by 21.0× for 3 devices

and by 9.5× for four devices. In addition, we compare the learning quality between the DQL

and the HDHL models and demonstrate the latter’s surpassing performance. These results

are presented in Figure 5.4 where the reward i.e., the latency, is plotted against the number

of direct interactions with the environment. It can be observed that HDHL converges at a

significantly faster rate than the baseline DQL algorithm in 4.8× fewer interactions with the

environment, attaining a near optimal reward, which is 4.6 × 103 milliseconds slower than

the optimal configuration.

Table 5.1: Training overhead (presented in number of steps) for different number of users
compared with the state-of-the-art [68].

# of Users DQL QHD HDHL

Three 1.2× 104 5× 104 0.2× 104

Four 4.0× 104 4.5× 104 0.8× 104
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Figure 5.4: Learning Overhead for DQL and HDHL

5.6 Summary

In this chapter, we presented Hyperdimensional Hybrid Learning, the first HDC based hybrid

learning algorithm, for orchestrating deep learning tasks in an End-Edge-Cloud architecture.

We demonstrated its improved computational efficiency and learning quality compared to

the neural network based Q-Learning algorithm. We showed that HDHL can achieve as

much as a 21.0× speedup in the total training time, as well as requiring 4.8× fewer direct

interactions with the system environment to learn a near optimal configuration.
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Chapter 6

IMSER: Intelligent Multimodal

Sensing for Energy Efficient and

Resilient eHealth Systems

6.1 Introduction

This chapter presents a case study of applying our work in an eHealth system context.

eHealth applications provide critical digital healthcare services through continuous monitor-

ing and analysis of multi-modal input data from physiological, and contextual sensors [90].

Smart eHealth applications widely use multi-modal machine learning (MMML) algorithms

to analyze input data from different sensor modalities, and generate accurate predictive re-

sults [88]. Design of end-to-end smart eHealth applications can be split into two phases viz.,

sensing - acquiring input data from multi-modal sensors, and sense-making - analyzing in-

put data through MMML algorithms for predictive results [84]. Efficiency of smart eHealth

applications is affected by – i) higher volumes of multi-modal input data from heterogeneous
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sensory devices, ii) compute intensity of MMML algorithms for data analysis, and iii) lim-

ited energy, and compute resources of wearable sensory devices and mobile computing nodes,

particularly at the sensing layer [85].

Further, real-world eHealth applications are designed to monitor patients’ symptoms in ev-

eryday settings through wearable sensors. Typically, continuous longitudinal data acquired

in everyday settings is prone to higher input data perturbations such as noisy components,

unreliable signals, and motion artifacts, in comparison with the data acquired in clinical

settings using reliable medical-grade sensors [132]. Processing input data with different per-

turbations affects the prediction accuracy, and model confidence of MMML algorithms used

in eHealth applications [83]. Also, processing non-qualitative data incurs significant perfor-

mance penalty, and energy drain, with resources spent on un-insightful computations [71].

Input data perturbations originating from the sensing phase influences the computational

workload, prediction accuracy, model confidence, and energy consumption in the sense-

making phase. Existing pre-processing, and data filtering techniques monitor the signal

quality to selectively sense qualitative input data, and minimize noisy components [101].

Selective sensing aims at reducing the computational effort spent on noisy input data, and

consequently reducing the energy consumption of both sensors, and processing elements

[95]. State-of-the-art selective sensing techniques use data filtering and compression [101],

context-aware sensing [95], and heterogeneity-aware sensing [91] to reduce the total input

data volume. Despite the large body of recent work, existing optimizations for end-to-

end smart eHealth applications address multi-modal sensing, and sense-making dis-jointly

[74, 12, 67].

Improving the system metrics of performance, energy consumption, and prediction accu-

racy necessitates joint optimization of multi-modal sensing, and sense-making phases. The

joint optimization approach allows adaptive sensing – to selectively extract reliable, and

insightful input data, and features, and intelligent sense-making – to choose MMML models
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suitable for given input data, and feature set. Together, the adaptive sensing, and intel-

ligent sense-making reduce computational workload, communication penalties, and energy

consumption incurred in processing unreliable and/or low-quality data, and improve predic-

tion accuracy, and resilience of eHealth services towards input data perturbations. However,

co-optimization of multi-modal sensing, and sense-making phases requires continuous mon-

itoring of sensor modalities to detect input data perturbations, selective feature aggregation

to isolate reliable inputs, and choice of suitable learning algorithms for the given input

modalities, and feature vectors.

In addition to input data perturbations, varying system environment dynamics such as net-

work connectivity, and signal strength, user mobility, and available energy budget of sensory

devices etc., further affect the selection of optimal choices on sensing, and sense-making con-

figuration. Selecting the optimal sensing, and sense-making configuration settings, consider-

ing multi-modal input data perturbations, MMML algorithms, and varying system dynamics

is an NP-hard problem [111].

Understanding the underlying system dynamics (e.g. network condition), sensing variation

(e.g. noisy sensing condition) and intricacies among computation, communication, accuracy,

and latency is necessary to find optimal sense-making configuration in eHealth services. Re-

inforcement learning (RL) is an effective approach to develop such an understanding and

interpret the varying dynamics of such systems [92]. RL allows a system to identify com-

plex dynamics between influential system parameters, and make online decisions to optimize

objectives such as response time [116]. At the system level, RL has been applied in orchestra-

tion of single node IoT devices for eHealth [38], and distributed multi-node edge computing

systems [111, 110]. In this work, we propose applying RL for improving the efficiency, and

resilience of end-to-end MMML-based smart eHealth services. We present an intelligent

multi-modal sensing, and sense-making co-optimization approach, IMSER, to orchestrate

eHealth services for improving performance, energy consumption, and prediction accuracy,
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and resilience to input data perturbations.

Our novel contributions are as follows:

• A scalable sensor-edge framework for MMML-based smart eHealth applications, capable of

monitoring input signal quality, network connectivity, and energy budgets, and detecting

input data discrepancies

• Implementation of a reinforcement learning scheme for qualitative feature selection, weighted

prioritization of input modalities, input-driven MMML model selection, and sensor con-

figuration setting, based on run-time monitoring, and analysis of input modalities

• Design of an adaptive rule-based controller to enforce the RL agent’s intelligent decisions

on feature, modality, and model selection, and sensing configuration – for improving per-

formance, energy, and prediction accuracy

• Evaluation of the proposed IMSER framework’s efficiency on an exemplar pain assessment

eHealth case study.

6.2 Motivation and Significance

In this Section, we present the background on MMML-based eHealth services, challenges in

orchestrating smart eHealth services, existing strategies for addressing these challenges, and

their limitations, and motivation for our proposed approach.

6.2.1 Motivational Example

MMML-based eHealth services require to meet the following criteria: (a) Resiliency to re-

cover from any perturbation and provide high quality of experience, (b) Energy-efficiency
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Table 6.1: Summary of MMML-based solutions for eHealth services.

Related Works
Selective
Sensing

Noise-
Awareness

Network
Awareness

App
Flexibility

Platform
Agnostic

[43] ✗ ✗ ✗ ✗ ✗

[101, 96, 95, 91] ✓ ✗ ✗ ✗ ✗

[3] ✗ ✓ ✗ ✗ ✗

AMSER [84] ✓ ✓ ✗ ✓ ✗

Ours ✓ ✓✓ ✓ ✓ ✓

Figure 6.1: Processing with modality selection (selective feature aggregation and model
selection) and additional intelligence for adaptive sense-compute

to enable long-term continuous monitoring on battery-powered wearable devices, and (c)

Performance to deliver real-time and accurate services for rapid response to emergency.

To emphasize the importance of resilience challenges in MMML-based eHealth services and

the significance of sense-compute adaptivity in addressing those challenges, and for clarifi-

cation, let us show a motivational exemplar of eHealth monitoring application, pain [127].

Pain monitoring application acquires heterogeneous data from multiple sensory inputs viz.,

Electromyography (EMG), Electrocardiography (ECG), and Electrodermal Activity (EDA)

sensors to capture the autonomic nervous system activity against pain.

The pain monitoring application acquires physiological data from different modalities viz.,

Electromyography (EMG), Electrocardiography (ECG), and Electrodermal Activity (EDA)
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sensors to capture the autonomic nervous system activity against pain. Figure 6.1 shows a

complete pipeline of a multi-modal processing, data acquisition from multiple sensors, fea-

ture extraction, selective feature aggregation, ML model selection. In this example, EMG,

ECG, and EDA sensors are sampled at 500 (6 channels), 500 (2 channels), and 4 Hz (1 chan-

nel), respectively. Relevant features from each raw input modality is extracted and using

an early fusion technique a single vector of features from all modalities is created. We then

predict pain levels using a suitable machine learning models. In practical scenarios, one or

more modalities can be distorted due to noises caused by motion artifacts, physical damages,

battery shutdown [85]. In this specific example, EDA modality data contains motion artifact

type of noise. This figure illustrates the implications of such perturbations on prediction ac-

curacy and energy consumption of sensing and sense-making. The sensing and sense-making

agnostic models yield baseline metrics of sensor energy, edge energy, and accuracy of 12.58

J, 6.28 J, and 70.13%, respectively. However, the addition of an intelligent sense-compute

adaptivity to the system will result decent improvements on all the performance metrics.

In general, run-time dynamics of the system include connectivity, sensory input data qual-

ity, strength of the network, mobility and interaction of a given user to name a few. Such

exploration is essential at design-time to achieve optimal configuration for stationary condi-

tions. In reality, an IoT system’s behavior dramatically changes over time due to variations

in environment and system parameters.

Accuracy We demonstrate the impact of varying MMML inference on performance under

different noise levels (NLs). We select between six configuration points with an accuracy

between 48.2% and 81.7%. Figure 6.2b shows the accuracy achieved with varying portion of

noise. With a single modality, the behavior of the system is different as the noise increases.

The accuracy of the inference model when 35% of only one modality is available shows a

positive correlation with the noise level, whereas the accuracy when full set of features for

only one modality is available is not correlated with the noise level. Moreover, the accuracy
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Figure 6.2: Example experimental scenario design points demonstrating effect of (b) noise
level on accuracy, (c) network on Total Energy
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of the MMML inference is in positive correlation with number of modalities and feature

volume when noise is not available. However, as the noise level gets increased the MMML

inference accuracy will most likely decrease once the amount of informative features gets

corrupted with the noise.

Network. We consider three possible levels of network connections: (i) WiFi connectivity

as a low-latency (regular) network that has the signal strength for better connectivity, (ii)

4G as a mid-latency (decent) network, and (iii) 3G as a high-latency (weak) network that

has a weaker signal with poor connectivity. Figure 6.2c shows the total energy consumed

for the pain monitoring application in different multi-modal volume configurations with all

three networks. With a regular network, the energy consumed is lower when 35% of a

single modality is available. The energy consumption increases as the reliable modalities are

increasing. With a weak network, the energy consumption of the pain monitoring application

is higher, as the poor signal strength adds more communication energy. Performance of the

MMML inference is independent of the network connection, resulting in lowest response

time. This demonstrates the spectrum of energy consumption with different set of reliable

modalities, under varying network constraints.
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Figure 6.3: Design Space Configuration of accuracy and total energy for various modality
combinations
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6.2.2 Related Work

State-of-the-art multi-modal applications use selective sensing techniques such as data fil-

tering and compression [101], context-aware sensing [95], and heterogeneity-aware sensing

[91] to reduce the total input data volume. Other techniques target model optimization

to reduce the compute intensity of sense-making algorithms [3]. This shows these applica-

tions address multi-modal sensing and sense-making independently [74, 12, 67]. In addition,

existing MMML-based eHealth solutions lacks supporting selective sensing together with

noise-awareness, to inspect a modality and decide whether it provides insightful information

for the prediction tasks. On the other hand, system environment dynamic significantly affect

the sensing and sense-making configuration. For example, the network condition sensors are

connected to the edge, needs to be considered to be able to evaluate the influence of data

transfer speed and energy consumption on optimal sensing and sense-making configurations.

In the following, we illustrate the resilience challenges in MMML-based eHealth services,

effect of some environment dynamics on performance and the significance of intelligent and

adaptive sensing and control in addressing those challenges through a motivational example

of a pain monitoring application [127].

6.2.3 Intelligent Orchestration

Runtime dynamics of the system in addition to requirements and opportunities affect or-

chestration strategies significantly. Sources of runtime variation across the system stack

include connectivity, sensory input data quality, and strength of the network to name a few.

Identifying optimal orchestration considering the sensing and sense-making opportunities

and requirements in the face of varying system dynamics is a challenging problem. Making

the optimal orchestration choice considering these varying dynamics is an NP-hard problem,

while brute force search of a large configuration space is impractical for real-time applica-
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tions. Understanding the requirements at each level of the system stack and translating

them into measurable metrics enables appropriate orchestration decision making. Heuristic,

rule-based, and closed-loop feedback control solutions are not efficient until reaching conver-

gence, which requires long periods of time [116]. To address these limitations, RL approaches

have been adapted for the joint-optimization decision making [105]. The model-free RL tech-

niques operate with no assumptions about the system’s dynamic or consequences of actions

required to learn a policy. In other words, Model-free RL builds the policy model based

on data collected through trial-and-error learning over epochs [116]. It enables Platform

agnostic and Application flexible feature for RL-based sensing and sense-making frameworks

where the agent finds optimal configuration through trial-and-errors during training phase

with no assumption on Platform and Application.

6.2.4 Contributions

The ideal sensing and sense-making configuration provides maximum inference accuracy and

minimum energy consumption. The literature lacks a comprehensive solution which is noise-

aware, network-aware, application flexible and platform agnostic to run a variety of eHealth

applications, in particular on multipurpose wearables. The motivational example scenar-

ios presented in Figure 6.1, 6.2, and 6.3 demonstrates the advantages of monitoring input

modalities for selective feature aggregation, modality selection, and model selection in pres-

ence of dynamics of the environment the importance of an intelligent orchestration. However,

this requires intelligent sense-compute adaptivity by continuous monitoring of input modal-

ities, and intelligent control for selective aggregation, modality, and model selection. To this

end, we propose an automated framework for intelligent multi-modal sensing to improve

resilience and energy efficiency of MMML-based eHealth applications. Our solution presents

a joint sensing and sense-making co-optimization using an RL-agent as a general solution

for eHealth services considering energy consumption while meeting accuracy requirements.
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Figure 6.4: System Architecture Overview.

Table 6.1 summarizes and positions our contributions with respect to state-of-the-art.

6.3 Intelligent Multimodal Sensing and Sense-making

Framework

We implement our IMSER approach by adopting a widely used generic eHealth system archi-

tecture that consists of multiple sensor devices at the sensor layer, and computing resources

at the edge layer. Figure 6.4 shows an overview of our proposed framework as a pipeline

of sensor, and edge layers for sensing, and sense-making. The sensor layer includes the

multi-modal sensing capability required for eHealth applications. The edge layer comprises

of computing devices, which provide data gateway, data processing, quality monitoring, in-

telligent orchestration, and adaptive control over feature, and model selection, and inference

at the edge. We detail each level of the framework below:

Data Gateway receives multi-modal raw input data from multiple sensors. The physiolog-

ical signals can potentially contain noise in different levels, and portions of the data window

segment from zero (noise-free) to 100% (highly noisy).

Data Processing performs pre-processing and feature extraction, using the data collected

from multi-modal sensors. Pre-processing sub-module consists of synchronization of multi-
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modal signals and labels, filtering sensor modality inputs to produce clean signals, and

additional components for affective signal processing (ASP) pipeline (e.g., peak detection,

normalization). The ASP pipeline includes input modalities such as EMG, ECG, and EDA,

which are required for feature extraction in typical eHealth applications (eg., pain moni-

toring and stress monitoring). Feature Extraction sub-module extracts insightful and in-

formative values from the pre-processed signals. We extract handcrafted features in time

domain (mean, standard deviation, RMS), and frequency domain (e.g. power spectral den-

sity, median frequency, central frequency) among the automatic features using a variational

autoencoder for all modalities [6]. This process facilitates subsequent learning, leading to

better interpretation for quality assessment module.

Quality Assessment handles quality assurance of the data, and features to be used in

the inference engine. This module observes the system parameters, disruptive events, data

quality, and control flow to analyze the situation and context. Quality Assessment module

assesses signal and its extracted features quality by monitoring key parameters from the

sensing phase to identify events and triggers for joint optimization of sensing and sense-

making. For example, a trigger at the sensing phase could be any disruptive event in input

data of a specific modality (e.g., motion artifacts or sensor detachment).

Intelligent Sense-Compute Adaptivity analyzes inputs from the quality assessment

module to intelligently communicate with the adaptive controller to select features and

modalities, and configure sensing and computation models. We store pre-trained models

for different combinations of signal modalities and aggregated feature vectors in a pool of

models. The Intelligent Sense-Compute Adaptivity acts as an Reinforcement Learning (RL)

agent to holistically and dynamically control the quality of sensing and sense-making as

described in the following.
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6.3.1 Reinforcement Learning Agent

Reinforcement learning (RL) is widely used to automate intelligent decision making based

on experience. Information collected over time is processed to formulate a policy which

is based on a set of rules. Each rule consists of three major components viz., (a) state,

(b) action, and (c) reward. Among the various RL algorithms [116], Q-learning has low

execution overhead, which makes it a perfect candidate for runtime invocation. Figure 6.4

depicts high-level block diagram for our agent. The RL agent is invoked at runtime for

intelligent orchestration decisions. Our agent is composed as follows:

State Space: Our state vector is composed of Modality availability, Feature volume per

each modality, Network condition, and noise level. Table 6.2 shows the discrete values for

each component of the state. Modality availability (represented as MA) is a binary value

that states our framework either collects sensory data for that modality or is idle. Feature

volume (FM) states what percentage of the feature volume for each modality is incorporated

for the further analysis after data processing. FM is considered as discrete value between 0

to 100%. Network condition (represented as NC) shows how the sensors are connected to the

edge device. We consider three different network connections which demonstrates different

data transfer speed and power consumption. Noise level (represented as NL) states what

percentage of each modality is noisy. The state vector at time step τ is defined as follows:

Sτ = {FM1, FM2, FM3,MA1,MA2,MA3, NL,NC} (6.1)

Action Space: The action vector consists of increase/decrease feature volume for each

modality. In other words, the agent takes an action to change feature volume of only one of

modalities at each time step. The action vector at time step τ is defined as follows:

Aτ = {A1, A2, A3} (6.2)
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Table 6.2: State Discrete Values

State
Discrete
Values

Description

FMi 0,35%,70%,100% Modality Feature Volume

MAi 0,1 Modality Availability

NL 0, 20%, 50% Modality Noise Percentage

NC Regular, Moderate, Weak Network Condition

Reward Function: The reward function is defined as the negative total energy consump-

tion including edge and sensor devices. In our case, the agent seeks to minimize the energy

consumption. To ensure the agent minimizes the energy consumption while satisfying the

accuracy constraint, the reward R is calculated as follows:

if Accuracy > constraint:

Rτ ← −Energy

else:

Rτ ← −Max Energy

(6.3)

To apply the accuracy constraint, the minimum possible reward is assigned when the accu-

racy threshold is violated. On the other hand, when the selected action satisfies the accuracy

constraint, the reward is negative energy consumption in that time step. Algorithm 5 defines

our agent’s logic with the epsilon-greedy Q-Learning:

Line Description

3: First the agent determines the current system state from the resource monitors.

4-8: Either the state-action pair with the highest Q-value is identified to choose the next

action to take, or a random action is selected with probability ϵ.

9-10: The selected action is applied and normal execution resumes. The reward Rτ for the

execution period is calculated based on measured consumed energy.
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Algorithm 5 Q-Learning Algorithm

1: while system is on do
2: From Resource Monitoring :

Sτ ← State at step τ
3: if RAND < ϵ then
4: Choose random action Aτ

5: else
6: Choose action Aτ with largest Q(Sτ , Aτ )
7: end if
8: Monitor total energy consumption
9: Calculate reward Rτ

10: From Resource Monitoring :
Sτ+1 ← State at step τ + 1

11: Choose action Aτ+1 with the largest Q(Sτ+1, Aτ+1)
12: To Updating Qtable:

Q(Sτ , Aτ ) ← Q(Sτ , Aτ ) + α[Rτ + γQ(Sτ+1, Aτ+1)−Q(Sτ , Aτ )]
13: Sτ ← Sτ+1

14: end while

11-12: Based on the resource monitors, the new state Aτ+1 is identified, along with the state-

action pair with highest Q-value.

13: The Q-value of the previous state-action pair is updated.

14: The current state is updated, and the loop continues.

6.4 Evaluation

We evaluate the proposed intelligent sense-computing framework through a case study of

pain assessment [82, 5]. Continuous monitoring of multiple sensor modalities including

ECG, EMG, PPG, and EDA signals is required for this case study application to detect

pain levels. Our platform for evaluation comprises a sensory node - to collect physiologi-

cal input modalities of ECG, EMG, PPG, and EDA from the subject, and an edge node -

to control sensing and computation and execute the inference. The RL agent’s goal is to

minimize average response time while satisfying the accuracy and energy constraint. This
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enforces quality control by imposing a strict threshold on the average DL model accuracy.

The proposed method is implemented on an ODROID-XU3 with an octa-core Exynos pro-

cessor as the edge device. In the following, we detail the case study and evaluate the case

study applications’ accuracy, energy efficiency, and performance using our IMSER proposed

framework through different scenarios with different levels of noisy input window segments

and network strength for all modality. Further, we compare our IMSER approach against

AMSER and state-of-the-art multi-modal pain monitoring application that use classification

of physiological signals [42] as the baseline ideal scenario.

6.4.1 Hyper-parameter Tuning

An RL agent has a number of hyper-parameters that impact its effectiveness (e.g., learning

rate, epsilon, discount factor, and decay rate). The ideal values of parameters depend on the

problem complexity, which in our case scales with the number of modalities, noise level, and

network condition. In order to determine the learning rate and discount factor, we evaluated

values between 0 and 1 for each hyper-parameters. We observed that a higher learning rate

converges faster to the optimal, meaning the more the reward is reflected to the Q-values,

better the agent works. We also observed that a higher discount factor is better. This means

that the consecutive actions have a strong relationship, so that giving more weight to the

rewards in the near future improves the convergence time. The selected configuration for

hyper-parameters is as follows: α = 0.99, γ = 0.7, decay rate = 0.1, ϵinitial = 0.1

6.4.2 Case Study and Scenarios

We validate and demonstrate the efficacy of our IMSER approach through an exemplar case

study from the affective computing domain, pain assessment, under seven unique scenarios
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with varying environment conditions.

Case Study

State-of-the-art pain assessment tools analyze changes in physiological signals indicating dif-

ferent pain levels. In this work, we evaluate IMSER via various unimodal and multimodal

pain assessment pre-trained models. These models are trained using iHurt Pain DB, a multi-

modal dataset from postoperative patients in hospital from 20 patients [81]. Data is collected

from face-, chest-, and wrist-worn devices via an eight-channel biopotential acquisition sys-

tem for EMG and ECG recordings and Empatica E4 for PPG and EDA recordings. We used

500 Hz ECG and EMG, 64 Hz PPG, and 4 Hz EDA sensor modalities during our experi-

ments. We pre-processed each modality and segmented them into 60 second windows. We

augmented the raw input training data with real-life noises such as BW and MA at various

portions like 20% and 50% of data, to handle potential noisy components in physiological

signals for the prediction model.

Then, we extract a combination of time domain, frequency domain and automatic features

from this window segment and trained using unimodal and multimodal ML algorithms.

Table 6.3: Experimental Scenarios. Each scenario represent the noise level out of 100 for
each modality and the network condition.

Scenarios Noise Level Network
S1 Scenario 1 0 Regular
S2 Scenario 2 20 Regular
S3 Scenario 3 20 Moderate
S4 Scenario 4 20 Weak
S5 Scenario 5 50 Regular
S6 Scenario 6 50 Moderate
S7 Scenario 7 50 Weak
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Scenarios

In this work, we conduct experiments under seven unique scenarios with varying noise levels

and network conditions for our case study. The experimental scenarios are summarized in

Table 6.3, representing a combination of noise level among with a regular, moderate and

weak network signal strength. The regular network has no transmission delay, while we add

10ms and 20ms delay to all outgoing packets to emulate the moderate and weak connection

behavior, respectively. Putting together the noise level and the network condition creates

unique experimental scenarios. Scenario 1 is the ideal baseline case with no noise and a

regular network, Scenario 2 has signal components with 20% noise level among with a regular

network condition. Scenario 3 and 4 are similar to scenario 2 in terms of noise level percentage

but with moderate and weak network condition, respectively. Scenario 5 has modalities with

50% noise level with a regular network condition. Scenario 6 and 7 are similar to scenario 5 in

terms of noise level percentage but with moderate and weak network condition, respectively.

The proposed IMSER framework has the capability to choose the right configuration with a

constraint on accuracy. We define Min and Max accuracy constraints empirically. We set Min

to be the median of the accuracy of all the potential decisions. Within the presence of such

constraint, IMSER will choose the configuration that provides an accuracy with the smallest

number greater than Min. On the other hand, Max refers to the situation when there is no

constraint on accuracy and IMSER will try to maximize the accuracy value. In Scenario 1,

there is no noise component and network condition is regular, and thus no modality selection

or feature selection is applied. Scenario 2 comprises of 20% level of noise in addition to the

original data for all modalities within a regular network. In this scenario when there is a Min

accuracy constraint, our proposed IMSER approach drops ECG modality and selects 66%

of the features from EMG modality, reducing the total number of features from the original

feature vector, while it will not drop any modality and select the most significant features

from ECG modality when there is no constraint on accuracy. Scenario 3 and 4 demonstrates
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Table 6.4: Decision made by AMSER and IMSER during each scenario.

Method Modality
Scenarios

S1 S2 S3 S4 S5 S6 S7
Min Max Min Max Min Max Min Max Min Max Min Max Min Max

A
M

S
E
R ECG ✓ ✓ ✓ ✓ N/A N/A N/A N/A ✓ ✓ N/A N/A N/A N/A

EMG ✓ ✓ ✓ ✓ N/A N/A N/A N/A ✗ ✗ N/A N/A N/A N/A
EDA ✓ ✓ ✓ ✓ N/A N/A N/A N/A ✓ ✓ N/A N/A N/A N/A

Feat Vol 100% 100% 63.8% 63.8% N/A N/A N/A N/A 31.3% 31.3% N/A N/A N/A N/A

IM
S
E
R

ECG ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EMG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Feat Vol 100% 100% 55.6% 77.7% 55.6% 77.7% 55.6% 77.7% 33.3% 55.6% 33.3% 55.6% 33.3% 55.6%

that network condition does not have any effect on prediction model accuracy. Scenario 5,

comprises of 50% noise level added to the original data for all modalities within a regular

network. In this scenario, when there is a Min accuracy constraint, the EDA modality

is completely unreliable. Thus, IMSER will drop the EDA modality and select 33.3% of

the features from other two modalities, reducing the total number of features from original

feature vector, while it will not drop any feature or modality when there is no constraint

on accuracy. Scenario 6 and 7 replicate the same scenario in a moderate and weak network

condition, respectively.

We evaluate the accuracy and energy efficiency of the pain monitoring application (which

estimates the pain intensity using 3 physiological signals ECG, EMG, and EDA) using the

iHurt Pain DB [81]. We trained different models for each levels of pain intensities, varying

in the level of noise, network condition and types of modalities combined for the decision-

making system. After pre-processing, we extract a set of unique features from each modality

viz., 52 features of ECG, 152 features of EMG, and 42 features of EDA [82, 5].

6.4.3 Accuracy Evaluation

We compare the accuracy achieved by the model in each scenario with noisy components

(S2-S7) against the baseline ideal scenario S1 with no intelligent and adaptive modality and

feature selection. Figure 6.5 shows the accuracy (in %) for pain assessment case study under
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Figure 6.5: Accuracy analysis for IMSER vs. AMSER vs. Baseline [42] for Pain application.

different scenarios. Our proposed intelligent multimodal sense-compute technique provides

an improved accuracy in each of the scenarios with a maximum gain of 23% and 32% in

S2 with Min and Max accuracy constraint for pain assessment. In the presence of a lower

level of noise i.e., 20%, our proposed IMSER approach drops ECG and utilizes the EMG

with selected features and drops features from only ECG modality to meet the Min and Max

accuracy constraints, instead of holding the entire feature sets of the noisy modalities. This

approach leads to a 23% and 32% accuracy improvement in scenario S2 with Min and Max

accuracy constraint for pain assessment application in comparison with the baseline model

which uses all the features from the noisy modalities. With a higher level of noise i.e., 50%,

in scenario S5, our proposed IMSER approach leads to 15% and 28% accuracy improvement

for Min and Max accuracy constrains, respectively, compared to the baseline which uses all

the modalities.

6.4.4 Efficiency and Performance Evaluation

We evaluate the efficiency and performance of IMSER in comparison with the baseline.

Figure 6.6 shows the energy efficiency improvement during seven scenarios for edge and sensor

devices. We report the results for Pain application with Min and Max accuracy constraint.

In Scenario S4, the energy gain to meet Min accuracy constraint is 1.36× and 1.33× higher
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Figure 6.6: Energy efficiency analysis of the edge and sensor device for IMSER and AMSER
vs. Baseline [42] for Pain application.

than the baseline for the edge and sensors, respectively. In this case, IMSER provides

22.82% better accuracy by dropping the noisy modality (ECG) and selecting informative

feature from EMG modality (See Figure 6.5 and Table 6.4).

Figure 6.7 (a) shows the performance gains at the edge device for the pain assessment ap-

plication using our proposed IMSER approach, as compared to the baseline Scenario S1.

In Scenarios S2-S7, our proposed IMSER approach reduces the number of features and/or

drops input data from noisy modalities. This lowers the total computational effort, leading

to an increase in performance, as compared to the baseline. Figure 6.7 (b) shows the data

volume transferred between the sensory devices and edge node using our proposed IMSER

approach, in comparison with the baseline. Our IMSER approach intelligently selects fea-

tures and/or drops noisy modalities, which reduces the total input data volume significantly.

For instance, in Scenario S4, one noisy modality is entirely dropped and another modality

contribute with two third of its most informative features, leading to more than 6× reduction

in transmitted data volume. Such reduction in data volume to be transmitted further reduces

the communication latency and energy expense incurred in transmitting noisy data.
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Figure 6.7: (a) Performance analysis of the edge device for IMSER vs. Baseline [42] for
Pain application. (b) Data volume transferred between the sensors and edge for IMSER vs.
Baseline.

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

−100

−50

0

Step

R
ew

ar
d

50% 55% 60% 65% 70%

Figure 6.8: Training overhead for Q-Learning algorithm under different accuracy constraints

6.4.5 Overhead Analysis

Exploration Overhead: We evaluate the time required by the proposed agent for the

training phase to identify an optimal policy. Figure 6.8 shows the training phase under

different accuracy constraints using Q-Learning algorithm. This shows that when training a

model from scratch, the reward converges after about about 170 inference runs on average.

However, increasing the accuracy constraint leads to a more complex problem and therefore

increase in convergence time.

Runtime Overhead: To demonstrate the viability of mobile inference deployment, we eval-
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uate the IMSER runtime overhead. The performance overhead of RL algorithm in IMSER

is, on average, 20 µs for training, excluding the time for inference execution. It corresponds

to 1.2% of the lowest inference latency. In addition, when using the trained Q-table, the

overhead can be reduced to 7.3 µs with only 0.3% overhead. This result means it takes

18.1 µs to measure the inference results, calculate the reward, and update the Q-table. The

energy overhead is only 1% and 0.2% of the total system energy consumption, when training

the Q-table and exploiting the trained Q-table, respectively.

6.5 Summary

This chapter proposed IMSER, a novel RL-based intelligent and adaptive, multi-modal sens-

ing framework for energy efficient and resilient eHealth applications. IMSER guides sensing

and sense-making by monitoring input signal and feature quality via an intelligent sense-

compute adaptive framework that reduces non-informative data to improve energy efficiency

while meeting an accuracy constraint. We demonstrated effectiveness of the IMSER frame-

work with an exemplar eHealth application of pain assessment, achieving up to 1.8× and 1.4×

performance and energy gains respectively, compared to the baseline with no optimization,

while achieving up to 32% better accuracy. Our approach shows that RL-based frameworks

can be deployed effectively for joint sense-compute adaptivity, and opens the door for further

research devising more intelligent resource management and computation-offloading policies

for adaptive control and co-optimization of both sensing and sense-making.
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Chapter 7

Conclusion and Future Works

This work showed Deep Learning inference orchestration considering cross-layer optimiza-

tion presents an opportunity to improve performance while maintaining accuracy. This thesis

proposed an online learning framework that coordinates tradeoffs between application and

system layers to enhance performance of Deep Learning inference in end-edge-cloud systems.

The reinforcement learning-based framework integrated model optimization techniques and

computation offloading to achieve the minimum average response time for DL inference ser-

vices while meeting accuracy constraints. The approach achieved up to a 35% improvement

in average response time with less than a 0.9% decrease in accuracy when compared to

state-of-the-arts. Additionally, we proposed a hybrid learning-based framework that opti-

mized Deep Learning inference in end-edge-cloud architectures. The approach converged to

an optimal solution faster than state-of-the-art model-free RL approaches and accelerated

the training process by up to 166x. This thesis presented Hyperdimensional Hybrid Learn-

ing, the first HDC-based hybrid learning algorithm for orchestrating Deep Learning inference

in an end-edge-cloud architecture. The HDC approach achieved a 21.0× speedup in total

training time and required 4.8× fewer direct interactions with the system environment than

the neural network-based Q-Learning algorithm.
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Furthermore, this thesis applied the proposed approaches in the healthcare domain and

introduced IMSER, an RL-based intelligent and adaptive, multi-modal sensing framework for

energy-efficient and resilient eHealth applications. IMSER monitors input signal and feature

quality through an intelligent sense-compute adaptive framework to reduce non-informative

data and improve energy efficiency while maintaining accuracy. This work demonstrated

the effectiveness of IMSER using a pain assessment eHealth application and achieved up to

1.8× and 1.4× performance and energy gains, respectively, compared to the baseline with no

optimization while achieving up to 32% better accuracy. The case study proved that online

learning techniques can be deployed effectively for joint sense-compute adaptivity, and open

the door for further research devising more intelligent resource management for adaptive

control and co-optimization of both sensing and sense-making.

Open research directions are suggested as follows:

Holistic Cross-layer Optimization Collaborative sensor-edge-cloud architectures can

benefit from orchestration techniques that improve several key metrics, including perfor-

mance, turnaround time, energy efficiency, accuracy, and network utilization. This work

presented orchestration techniques that utilize an RL-based agent to make intelligent com-

pute placement, offloading, and model selection decisions. However, to further enhance

efficiency and performance, more investigation is needed into cross-layer system parameters.

Holistic orchestration that considers opportunities and constraints across all layers, includ-

ing the user, device, application, network, edge node, and platform layers, can maximize

efficiency. Thus, investigating holistic cross-layer optimization is a promising future research

direction.

Advanced RL strategies In our investigation, this work found that dealing with high-

dimensional problems involves significant interactions with the environment. However, these

interactions are not feasible in distributed computer systems because executing each con-

figuration is costly, leading to higher latency and resource consumption during the learning
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process. To provide sample and computational efficiency, this work utilized Q-Learning,

Deep Q-learning, Hybrid Learning, and Hyperdimensional RL. Despite the efforts, the prob-

lem space becomes even more complex with holistic cross-layer orchestration, requiring more

sophisticated RL algorithms for efficient learning processes. Therefore, it is worth exploring

state-of-the-art RL algorithms for orchestration problems as a future research direction.

Online Learning for DL Distributed Training To conduct data-parallel distributed

training, it is essential for each worker to possess comparable computational capabilities.

Otherwise, the straggler problem may arise, wherein machines with higher performance

complete the local update faster than other machines in each iteration. Consequently, the

aggregation process must wait for all workers to finish before aggregating and updating the

weights, which exacerbates the straggler problem. The straggler problem is not limited to

normal distributed GPU training but is also applicable to data-parallel distributed training.

As a result of the straggler problem, companies or research groups with a small-scale cluster of

different GPU types may be unable to fully utilize their machines. This issue is not unique to

these scenarios and is also prevalent in other heterogeneous environments and homogeneous

systems that have unstable communication. To address the straggler issue, online learning

can be used to dynamically adjust the workload of each worker by monitoring the dynamic

environment and resource availability. This indicates that investigating online learning for

distributed training would be a worthwhile research direction for the future.

Sense-Compute Co-optimization Cross-layered sense-compute co-optimization is the

most effective strategy for improving sensor dependant, edge-based ML applications. In this

chapter, we presented adaptive sensing and sensing-aware computing techniques that uses

system-wide monitoring and intelligence for sense-compute co-optimization. This approach

focuses on selecting appropriate ML models based on quality of input modalities, exploiting

the inherent resilience of multi-modal ML applications. Adaptive feature selection, and ML

model selection enforce the idea of sense-compute co-optimization at a coarse-grained level,
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and require multiple pre-trained models. Incorporating fine-grained edge-layer ML model

configurations such as early exit, greedy feature selection, neural network model attention,

and saliency maps etc., can complement the model selection strategy. The feasibility of such

edge-layer based ML model tuning in collaboration with cloud-layer based model selection

is another open research direction.
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