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Research Article

The stress polarity signaling (SPS) pathway serves as a
marker and a target in the leaky gut barrier: implications
in aging and cancer
Pradipta Ghosh1,2,3,4 , Lee Swanson1,2, Ibrahim M Sayed5,11 , Yash Mittal1, Blaze B Lim1,2, Stella-Rita Ibeawuchi5,
Marc Foretz6,7,8 , Benoit Viollet6,7,8 , Debashis Sahoo9,10 , Soumita Das5

The gut barrier separates trillions of microbes from the largest
immune system in the body; when compromised, a “leaky” gut
barrier fuels systemic inflammation, which hastens the pro-
gression of chronic diseases. Strategies to detect and repair the
leaky gut barrier remain urgent and unmet needs. Recently, a
stress-polarity signaling (SPS) pathway has been described in
which the metabolic sensor, AMP-kinase acts via its effector, GIV
(also known as Girdin) to augment epithelial polarity exclusively
under energetic stress and suppresses tumor formation. Using
murine and human colon-derived organoids, and enteroid-derived
monolayers (EDMs) that are exposed to stressors, we reveal that the
SPS-pathway is active in the intestinal epithelium and requires a
catalytically active AMP-kinase. Its pharmacologic augmentation
resists stress-induced collapse of the epithelium when challenged
withmicrobes ormicrobial products. In addition, the SPS-pathway is
suppressed in the aging gut, and its reactivation in enteroid-derived
monolayers reverses aging-associated inflammation and loss of
barrier function. It is also silenced during progression of colorectal
cancers. These findings reveal the importance of the SPS-pathway in
the gut and highlights its therapeutic potential for treating gut
barrier dysfunction in aging, cancer, and dysbiosis.

DOI 10.26508/lsa.201900481 | Received 10 July 2019 | Revised 21 January
2020 | Accepted 22 January 2020 | Published online 10 February 2020

Introduction

The gut is a complex environment; the gut mucosa maintains immune
homeostasis in physiology by serving as a barrier that restricts access of
trillions of microbes, diverse microbial products, food antigens, and
toxins to the largest immunesystem in thebody. The intestinal barrier is
the largestmucosal surface that separates diverse stressors (trillions of

microbes, toxins, and food antigens) on one side from the largest
immune system on the other. A compromised gut barrier allows mi-
crobes and unwanted antigens to cross the epithelium and generate
inflammation (systemic endotoxemia), which may contribute to a va-
riety of diseases, ranging from metabolic syndrome and chronic organ
dysfunctions to neurodegenerative diseases and cancers (Yacyshyn
et al, 1996; Barbara, 2006; Camilleri & Gorman, 2007; Sandek et al, 2007,
2008, 2012; Alamet al, 2014; Bischoff et al, 2014; Nouri et al, 2014; Samsam
et al, 2014; van De Sande et al, 2014; Clairembault et al, 2015; Lee et al,
2015; Buscarinu et al, 2016; Xue et al, 2016; Ghosh, 2017). Evidence also
shows that aging-related genes, that is, the sirtuins (SIRTs1, 3, 6), are
critical for the integrity of the gut barrier and for controlling inflam-
mation in the gut (Akimova et al, 2014; Akbulut et al, 2015; Liu et al, 2017b;
Zhang et al, 2018). Despite the traction and the discovery of plausible
targets to strengthen the barrier, for example,myosin light-chain kinase
(Cunningham & Turner, 2012), our knowledge of the underlying
mechanism(s) that reinforce the barrier when faced with stressors is
incomplete, and practical strategies for pharmacologic modulation of
the gut barrier remains unrealized.

The primary factor preventing the free access of stressors to our
immune cells is a single layer of polarized intestinal epithelial cells
strung together in solidarity by cell–cell junctions. Loss of cell polarity
and junctions not only impairs organdevelopment and function but can
also serve as one of the first triggers for oncogenesis (Martin-Belmonte
& Perez-Moreno, 2012). Establishment, maintenance (at baseline), and
augmentation (upon stress) of epithelial barriers are achieved by sig-
naling pathways that regulate polarization of epithelial cells. Epithelial
polarity is established and maintained by a set of evolutionarily con-
served signaling pathways whose integration in space and time dictates
overall epithelial morphogenesis (St Johnston & Sanson, 2011), for ex-
ample, CDC42 and PAR proteins, such as the PAR3-PAR6-aPKC polarity
complex (Wodarz & Nathke, 2007) and pathways that regulate mem-
brane exocytosis and lipid modifications (Wodarz & Nathke, 2007;
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Diego, La Jolla, CA, USA 6Institut National de la Santé et de la Recherche Médicale (French Institute of Health and Medical Research) (INSERM) U1016, Institut Cochin, Paris,
France 7Centre National de la Recherche Scientifique (National Center for Scientific Research) (CNRS) United for Medical Research (UMR) 8104, Paris, France 8Université Paris
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St Johnston & Ahringer, 2010). Augmentation of epithelial polarity re-
quires an additional signaling component which is triggered exclusively
in response to stress. Three studies (Zhang et al, 2006; Lee et al, 2007;
Zheng & Cantley, 2007) reported a role of AMP-activated protein kinase
(AMPK) in the maintenance of epithelial cell polarity and barrier
functions in the context of stress; who or what was its effector at the
cell–cell junctions remained unknown. A decade later, Aznar et al (2016)
demonstrated that GIV (G-α interacting vesicle–associated protein, also
known as Girdin), amultimodular polarity scaffold protein is a substrate
of AMPK and defined the molecular mechanisms by which the AMPK-
GIV signaling axis protects the epithelium by stabilizing tight junctions
(TJs) and preserving cell polarity when challenged with energetic stress.
Using MDCK cells as a model of polarized mammalian cells, Aznar et al
(2016) showed that energetic stress triggers localized activation of AMPK
at the tricellular TJs which mark the most vulnerable cell–cell contacts
in sheets of polarized cells. A significant part of the junction-stabilizing
effects of AMPK agonists such as 5-Aminoimidazole-4-carboxamide
ribonucleotide (AICAR) and metformin during energetic stress (Zhang
et al, 2006; Zheng& Cantley, 2007) appeared to bemediated by AMPK via
its downstream effector, pS245-GIV (Aznar et al, 2016). Based on these
findings, the AMPK → pS245 GIV signaling axis was named the “Stress
Polarity Signaling (SPS)-Pathway.” It was shown that the SPS-pathway
inhibits oncogenic transformation and anchorage-independent growth
of cancer cells; disruption of this pathway via mutations that make GIV
non-phosphorylatable helps tumor cells escape such inhibition and
gain proliferative advantage. These findings led to the conclusion that
the SPS-pathway integrates stress-sensing and augmention of cell
polarity pathways to serve as a deterrent to oncogenesis.

Despite these insights, the pathophysiologic relevance of such
integration illustrated exclusively in cell lines, remained unclear. Here,
we used a near-physiologic model system (co-cultures of microbes
with mouse and human organoids) to assess the importance of this
pathway in the gut lining. Our studies reveal the physiologic impor-
tance of the SPS-pathway in the maintenance of the gut barrier
function and consequences when it is dysregulated. Findings also
reveal the therapeutic potential of AMPK agonists such asmetformin in
strengthening the gut barrier. Over the years, the beneficial (protective)
effect of multiple nutritional components, dietary supplements, and
pharmacologic agents, including thewidely prescribed AMPK-activator,
metformin, on intestinal permeability in health and disease has been
investigated; all studies converge on AMPK activation as a common
pre-requisite for rendering such protection (reviewed in (Ghosh (2017)).
Taken together with these prior works, our findings provide an impetus
for harnessing the diagnostic and therapeutic potential of the SPS-
pathway in the setting of a variety of diseases that are associated with
increased intestinal permeability such as inflammaging and cancer.

Results and Discussion

The SPS-pathway is active in the colon epithelium and requires
the catalytic activity of AMPK

First, we asked if the SPS-pathway is active in the epithelial lining of
the human colon. To this end, we performed immunohistochemistry
(IHC) using the previously validated (Aznar et al, 2016) anti-pS245-GIV
antibody on formalin-fixed paraffin-embedded (FFPE) colon tissues

obtained during routine colonoscopy for colon cancer screening (Fig
1A). Although all tissues were histologically confirmed as “normal,”
some of them were from patients with type II diabetes on chronic
therapy with metformin at doses ranging from 500 to 1,500 mg/d. We
preferred the use of pS245-GIV as a “surrogate marker” of the SPS-
pathway (as opposed to other global anti-phospho-AMPK anti-
bodies) because pS245-GIV was previously determined (Aznar et al,
2016) to be the TJ-localized substrate of AMPK activity which is both
necessary and sufficient for protecting TJs from stress-induced
collapse. It offers a way to specifically monitor AMPK’s TJ-stabilizing
effect as opposed to its general effect on cellular bioenergetics. In fact,
a side-by-side comparison of the two targets showed that although
pS245GIV remained associated with TJs in a sustainedmanner, pAMPK
is activated only transiently at tricellular contact site and then shows a
cytosolic staining pattern around disrupted TJs (Aznar et al, 2016). We
found that although the intensity of staining varies among patients, a
larger proportion of patients onmetformin displayed positive staining
and at a stronger intensity compared with the cohort of patients, not
on metformin (Figs 1A and S1). These findings indicate that the SPS-
pathway, as determined by pS245-GIV as a surrogate marker, is active
in the human colon epithelium and that although its degree of ac-
tivation varies considerably in the normal colon, it appears to be
consistently enhanced in patients exposed to the widely prescribed
AMPK-agonist metformin.

To translate the physiological implications of the observations
made using polarized MDCK monolayers (Aznar et al, 2016), we used
an ex vivo near-physiologic model system called the “gut-in-a-
dish” (see the legend and Fig 1B). In this model, crypt-derived
stem cells isolated from human or mouse colon (see the Ma-
terials and Methods section) were used to generate organoids
and later differentiated into polarized enteriod-derived mono-
layers (EDMs). These EDMs have been validated as model systems
that closely resemble the physiologic gut lining in which all cell
types (enterocytes, goblet, Paneth enteroendocrine, and tuft cells)
are proportionately represented (Sato et al, 2009; Miyoshi &
Stappenbeck, 2013; Foulke-Abel et al, 2014; Noel et al, 2017; Yu
et al, 2017). We used this “gut-in-a-dish” model to rigorously
interrogate the impact of various stressors on the integrity of
the gut barrier and cellular processes, using readouts illustrated
in Fig 1B. Using pS245-GIV as a marker, we confirmed that the SPS-
pathway is active in the EDMs, colocalized with the TJ protein,
occludin, as previously shown in MDCK cells; (Aznar et al, 2016).
When we treated the EDMs with metformin, the pathway was sig-
nificantly enhanced—whereas immunofluorescence studies (Figs
1C-Left and S2) showed a approximately fivefold to sixfold increase
in the intensity of occludin staining, immunoblots (Fig 1C-Right)
showed a peak increase in pS245 GIV and pAMPK up to approximately
twofold to threefold at 4 h.

Next, we asked if activation of the SPS-pathway in the gut epi-
thelium requires the catalytic activity of AMPK. We assessed the
levels of pS245-GIV in enteroids using two parallel approaches: 1)
We generated enteroids from AMPKα1/2-Villin-Cre mice (generated by
Benoit Viollet, Institut National de la Santé et de la Recherche
Médicale (French Institute of Health and Medical Research) [INSERM];
manuscript in preparation) which lack both the α-isoforms that en-
code the catalytic subunits of the heterotrimeric kinase. 2) We used a
well-validated direct agonist of AMPK, A-769662 (Cool et al, 2006), for
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which the structural basis for activation of the heterotrimer is
known (Xiao et al, 2013). We found that neither metformin nor A7
could induce pS245-GIV in enteroids devoid of AMPKα1/2 (Fig 1D).
Compared with EDMs fromWTmice, EDMs derived from AMPKα1/2-
Villin-Cre mice showed impaired barrier integrity and higher
paracellular permeability, as reflected by low trans-epithelial
electrical resistance (TEER; Fig 1E), absence of pS245-GIV stain-
ing at the TJs, and aberrant TJ morphology detected using occludin
a bona fide TJ protein (“burst” appearance of tricellular TJs; see
arrowheads, Fig 1F). Although pS245GIV was virtually absent at TJs,

some nuclear speckles were observed in AMPKα1/2-Villin-Cre EDMs,
the significance of which remains unknown. Furthermore, when we
treated the WT or AMPKα1/2-Villin-Cre EDMs with A-769662, the SPS-
pathway was enhanced in the WT EDMs, as determined by increased
intensities of both occludin and pS245GIV, but the pathway could not
be rescued in the AMPKα1/2-Villin-Cre EDMs (Fig S3). The AMPK ag-
onists also activated the SPS-pathway in human EDMs (Fig 1G). To-
gether, these results using a combination of AMPK-depleted EDMs and
highly specific AMPK agonist demonstrate that the SPS-pathway, as
determined by the abundance of pS245-GIV in the gut epithelium,

Figure 1. The stress polarity signaling (SPS) pathway is active in the gut lining, and its pharmacologic augmentation requires the catalytic activity of AMP-kinase.
(A) Left: The SPS-pathway was evaluated in normal adult colon by immunohistochemistry on FFPE colonic biopsies using anti-pS245-GIV, and the staining intensity in the
epithelium was scored (see Fig S1). Bar graph displays the proportion of patients in each group with varying intensities of staining. Two-sided Fisher’s exact test was used to
calculate significance. Right: Representative images are presented from healthy adult without metformin (lowest “0” staining) and with metformin (highest “>3+” staining)
within the cohort. (B) Schematic showing the key steps involved during the development of the stem cell-based organoid model, “gut-in-a-dish.” Fresh biopsies obtained
from the colons of mice and humans (STEP 1) are used as source of stem cells to grow organoids (STEP 2). Organoids are differentiated into polarized enteroid-derived
monolayers (EDMs; STEP 3) for co-culture studies with microbes and microbial products (exposed apical surface) to mimic the gut lumen in physiology and enable the
assessment of barrier integrity (STEP 4). (C) Left: Murine EDMs treated withmetformin for 0, 1, 4, and 16 h were fixed; stainedwith anti-pS245-GIV (red; a surrogate measure of
the SPS-pathway), occludin (green; a bonafide tight junction [TJ] marker), and nucleus (DAPI); and analyzed by confocal microscopy. Images (left) display the findings at 0 and
16 h; see Fig S2 for all intermediate time points and for quantification of pixel intensity of occludin staining at TJs. Boxed areas were analyzed by 3D surface plot (Image J). Scale
bars = 10 μm. Right: Immunoblots (right) on whole cell lysates of murine enteroids treated for 0, 1, 4, and 16 h incubated with anti-phospho(p) and anti-total(t) GIV and anti-
AMPK proteins, and α-tubulin (as loading control) confirm activation of the SPS pathway in murine enteroids. Images and immunoblots presented are representative of ~3–5
independent experiments. (D) Enteroids isolated from WT or AMPKα1/2−/−mice were treated or not (“Un”) with the indicated pharmacologic agonists of AMPK (1 mM Met,
metformin; 100 μMA7, A769662) for 4 h before lysis. Equal aliquots of whole cell lysates were analyzed for activation of AMPK and the SPS-pathway by immunoblotting. (E)Bar
graphs display the change in trans-epithelial electrical resistance (TEER) across EDMs prepared from WT and AMPKα1/2−/−mice. Findings were analyzed by one-way ANOVA
followed by multiple comparison test. Error bars represent mean ± SEM, n = 3; **P < 0.01. (B, F)Murine EDMs derived from WT or AMPKα 1/2−/− mouse colons were prepared as
described in (B),fixed, and analyzed for the integrity of theepithelial tight junctions and theSPS-pathwayusing anti-occludin andanti-pS245GIV, respectively, and imaged by
confocal microscopy. Left: Images displayed are representative of three independent experiments. Arrowheads point to “burst” pattern of occludin staining at the disrupted
tricellular TJs. Scale bars = 10 μm. Right: RGB profile plot (right) indicate the co-localization of pS245-GIV and occludin as assessed using an ImageJ plug-ins. See also Fig S3 for
the effect of AMPK agonist on EDM. (G) Human EDMs were either untreated or treated with A-769662 (100 μM) for 16 h; fixed; stained with anti-pS245-GIV (red; a surrogate
measure of the SPS-pathway), occludin (green; a bonafide TJ marker), and nucleus (DAPI); and analyzed by confocal microscopy. Left: Images displayed are representative of
three independent experiments. Scale bars = 10 μm. Right: RGB profile plot (right) indicated the co-localization of pS245-GIV and occludin as assessed using an ImageJ plug-ins.
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requires the metabolic kinase AMPK, and its absence compromises the
integrity of the epithelial barrier.

The SPS-pathway protects the gut barrier against diverse
stressors such as microbes and microbial products

Next, we used the “gut-in-a-dish” model to study the role of the
SPS-pathway in EDMs under stress. Our choice of stressors included

those that are physiologically encountered within the gut lumen,
for example, a) live commensal microbes (Escherichia coli; Fig
2A–C), b) microbial outer membrane components (LPS; Fig 2D
and E) and H2O2 (Fig 2D and F); the latter induces reactive oxy-
gen species in ways that mimic the host response to dysbiosis or in
response to injury or inflammation. EDMs were either treated or not
with metformin followed by exposure to each stressor. EDMs were
assessed for barrier integrity by analyzing the same sample by two

Figure 2. Pharmacologic augmentation of the stress polarity signaling (SPS) pathway protects the gut barrier against diverse stressors such as microbes and
microbial products.
(A) Mouse enteroid-derived monolayers (EDMs) were infected with E. coli K12 with or without prior exposure to metformin (1 mM for 16 h); fixed; stained with anti-pS245-
GIV (red; a surrogate measure of the SPS-pathway), occludin (green; a bona fide tight junction [TJ] marker), and nucleus (DAPI); and analyzed by confocal microscopy. Left:
Images displayed are representative of three independent experiments. (A) Co-localization of pS245-GIV and occludin was assessed using ImageJ plug-ins: RGB profile
plot (A-middle) and 3D surface plots (A-right). Scale bars = 10 μm. (A, B) Bar graphs display the % of TJs that appeared broken and/or splitting (“burst”-appearing) on the
y-axis encountered in 8–10 randomly chosen fields from three independent experiments in (A). Findings were analyzed by one-way ANOVA followed by multiple
comparisons test. Error bars represent mean ± SEM, n = 3; **P < 0.01. (A, C) Bar graphs display the change in TEER across the EDMs in (A). Findings were analyzed by one-
way ANOVA followed by multiple comparison test. Error bars represent mean ± SEM; n = 3; **P < 0.01. (D) Mouse EDMs pretreated (or not) with metformin (1 mM for 16 h)
were exposed to LPS or H2O2, as indicated; fixed; stained with anti-pS245-GIV (red; a surrogate measure of the SPS-pathway), occludin (green; a bonafide TJ marker), and
nucleus (DAPI); and analyzed by confocal microscopy. Left: Images displayed are representative of three independent experiments. Scale bars = 10 μm. Right: Co-
localization of pS245-GIV and occludin was assessed using ImageJ plug-ins, RGB profile plot. (D, E, F) Bar graphs display the change in TEER of the EDMs after LPS (E) or
H2O2 (F) treatment shown in (D). Findings were analyzed by one-way ANOVA followed by multiple comparisons test. Error bars represent mean ± SEM; n = 3; **P < 0.01.
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assays: a) periodic measurements of TEER and b) immunofluo-
rescence with pS245-GIV and occludin to assess the SPS-pathway
and TJ morphology, respectively. We continued to monitor occludin
as a readout of TJ morphology because this integral membrane
protein allows us to not just visualize but also quantify the degree
of TJ disruption (“burst” tricellular TJs where three or more cells
come in contact [Furuse et al, 2014]); the tricellular TJs appear to be
the regions where earliest evidence of disruption can be visualized/
assessed first. Also, prior work (Aznar et al, 2016) showed that under
stress, active AMPK was detected transiently at the TJs of tricellular
contact, as determined by colocalization of phospho-AMPK with
occludin. We found that all stressors induced barrier disruption in
untreated EDMs, as determined by occludin staining (Fig 2A, B, and
D) and by the observed drops in TEER (Fig 2B, C, E, and F). Pre-
treatment of EDMs with metformin showed SPS-pathway activation
(pS245), maintenance of TJ architecture (occludin), and preserva-
tion of barrier integrity (TEER). We conclude that treatment with
metformin resists barrier collapse in all stress-inducing conditions
tested, implicating the barrier-protective role of the SPS-pathway
in the gut epithelium.

The SPS-pathway is suppressed in the aged gut; its loss triggers
inflammation

Among the various organ systems that decline during aging, dys-
function of the intestinal barrier has been correlated with increasing
age in a variety of species. For example, dysfunction of the intestinal
barrier predicts impending death in individual flies regardless of
their chronological age (Rera et al, 2012). Much like humans, dys-
regulation of barrier in these flies shows an age-related increase in
immunity-related gene expression (e.g., IL-6) (Rera et al, 2012). Evi-
dence also shows that intestinal barrier dysfunction during aging is
conserved in worms (Caenorhabditis elegans), fish (Danio rerio)
(Tricoire &Rera, 2015; Dambroise et al, 2016), andmammals (rats [Katz
et al, 1987] and baboons [Tran and Greenwood-Van Meerveld, 2013]),
thus raising the possibility that it may also be the case in humans. To
investigate this, we first characterized human enteroids derived from
term male fetuses and “normal” colon biopsies from elderly male
subjects (Fig 3A) for transcript expression levels of SIRTs 1 and 6, two
key aging/longevity related families of proteins with either mono-
ADP-ribosyltransferase or deacylase activity, that is, sirtuins because
previous lifespan studies carried out using yeast, worms, and flies as
model organisms have demonstrated that sirtuins are evolutionarily
conservedmediators of longevity (Kaeberlein et al, 1999; Tissenbaum
& Guarente, 2001; Rogina & Helfand, 2004). Both SIRTs have been
shown to regulate inflammation in the gut (Akimova et al, 2014; Lo
Sasso et al, 2014; Wellman et al, 2017; Zhang et al, 2018). We found that
compared with fetal EDMs, aged EDMs expressed less SIRT1 and 6 (Fig
3B-Left, Middle), consistent with the previous observations of their
decline in the aged gut (Liu et al, 2017a; Igarashi et al, 2019). Because
age-associated changes in gutmicrobiome composition is correlated
with increases in the pro-inflammatory marker serum monocyte
chemoattractant protein (MCP-1) (Conley et al, 2016), which in turn
has been implicated in aging-related macrophage dysfunction
(Thevaranjan et al, 2017), we analyzed this cytokine in the aged EDMs.
We found that MCP-1 transcript levels were increased in aged EDMs
relative to fetal EMDs (Fig 3B-Right).

Increased intestinal leakiness in the aged gut has been docu-
mented (Valentini et al, 2014). Therefore, next, we analyzed the
barrier integrity of and the status of the SPS-pathway in the aged
EDM. We found by confocal microscopy that TJs were more fre-
quently disrupted in the aged compared with fetal EDMs (Fig 3C;
occludin signal) and that the SPS-pathway is suppressed (Fig 3C;
pS245-GIV signal was virtually undetectable). Treatment of the aged
EDMs with metformin restored the SPS-pathway, repaired the
“burst” TJs (visualized by occludin staining) (Fig 3C), and increased
TEER (Fig 3D). Pharmacologic activation of the SPS-pathway either
with metformin or the AMPK-specific activator, A-769662 (Fig 3C–H),
reduced the leaky TJ-protein, claudin-2 (CLDN2) (Fig 3E), and sup-
pressed proinflammatory cytokines (IL8, IL6, and MCP1) (Fig 3F–H).
These findings indicate that pharmacologic activation of AMPK and
restoration of the SPS-pathway is sufficient to reduce pro-
inflammatory cytokines that are seen in the aged EDMs. Finally,
we confirmed that the SPS-pathway is indeed suppressed in the
aged gut lining, as determined by IHC on FFPE colon tissues ob-
tained during routine colonoscopy from patients representative of
various age groups (Fig 3I). Taken together, we conclude that the
SPS-pathway is suppressed in the aged gut epithelium, and such
suppression is permissive to a pro-inflammatory program.

The SPS-pathway is suppressed during colorectal cancer (CRC)
initiation and progression

Previously, Aznar et al (2016) indicated the tumor-suppressive
property of the SPS-pathway. Here, we investigated the activa-
tion status of the tumor-suppressive SPS-pathway during CRC
initiation and progression. Because TJ-localized pS245-GIV serves
as a functional molecular marker that reflects the activation state of
the SPS-pathway, we carried out IHC with anti-pS245-GIV on FFPE
colon tissues from various stages of normal-to-cancer progression
in the colon (Fig 3J). Phospho-S245-GIV was undetectable in almost
all advanced adenomas and all CRCs analyzed (Fig 3K and L), in-
dicating that the SPS-pathway is lost or silenced during CRC pro-
gression. This finding is consistent with our previous findings (Aznar
et al, 2016) demonstrating the tumor-suppressive property of the
SPS-pathway in 3D-cultured DLD1 CRC cell lines. It is important to
note that the pattern of pS245GIV staining is strikingly different
from the levels of total GIV during CRC initiation and progression;
we have previously shown that GIV mRNA and protein generally
decreases first during polyp formation and progression and sub-
sequently increases during CRC progression to metastasis (Ghosh
et al, 2010). We and others have shown that increased levels of GIV
in established CRCs correlate with aggressive features (Garcia-
Marcos et al, 2011b; Jun et al, 2013; Aznar et al, 2016; Barbazan
et al, 2016; Ghosh et al, 2016; Lu et al, 2018), for example, shorter
metastasis-free survival, chemoresistance, and stemness, largely
attributed to its ability to scaffold multi-receptor signaling cascades
and enhance them via G protein intermediates to trigger epithelial
mesenchymal transition (reviewed in Ghosh (2015)). Taken together,
the loss of pS245 GIV early during polyp to CRC progression un-
derscores how GIV may serve as a tumor suppressor when localized
to TJs in the polarized normal epitheliumbefore it assumes its role as
an enhancer of epithelial–mesenchymal transition and stemness in
established CRCs.
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Figure 3. Stress polarity signaling pathway is impaired in the aging gut and during the initiation and progression of colorectal cancers.
(A, B, C, D, E, F, G, H) Schematic showing the profile of human enteroid-derived monolayers (EDMs) used in panels (B, C, D, E, F, G, H). Term fetus is indicated as age 0 yr.
(B) Fetal (0 yr; n = 3 subjects) and aged (~50–70-yr old; n = 3 subjects) human EDMs were analyzed for aging molecules, Sirtuins (SIRT)1 and 6, and MCP-1 by qRT-PCR. Data
displayed as mean ± SEM from three independent experiments. Findings were analyzed by one-way ANOVA followed by multiple comparisons test. * = P < 0.05. (B, C) EDMs
in (B) were pretreated or not with metformin (1 mM for 16 h); fixed; stained with anti-pS245-GIV (red; a surrogate measure of the stress polarity signaling-pathway),
occludin (green; a bonafide tight junction marker), and nucleus (DAPI); and analyzed by confocal microscopy. Above: Images displayed are representative of three
independent experiments. Scale bars = 10 μm. Co-localization of pS245-GIV and occludin was assessed using ImageJ plug-ins and below, 3D surface plots. (C, D) Bar graphs
display the change in TEER of the EDMs in (C). Findings were analyzed by two-way ANOVA followed by multiple comparisons test. Error bars represent mean ± SEM; n = 3;
**P < 0.01. (E, F, G, H) The aged (69-yr-old) human EDMs were treated or not (“Untr”) with metformin (1 mM) or A7 (A769662; 100 μM) for 16 h before analyzing them for the
levels of expression of CLDN2 (claudin-2), IL-8, IL-6, and MCP-1 by qRT-PCR. Data displayed as mean ± SEM from three independent experiments normalized to untreated
control. Findings were analyzed by two-way ANOVA followed bymultiple comparisons test. * = P < 0.05; ** = P < 0.01. (I) FFPE human colon tissues representing young (<50
yr; n = 14) or aged (>50 yr; n = 18) were analyzed for pS245-GIV by immunohistochemistry, and the staining intensity in the epithelium was scored (see Fig 1 Supplement 2).
Bar graph displays the proportion of patients in each group with varying intensities of staining. Two-sided Fisher’s exact test was used to calculate significance. (J, K, L) FFPE
human colon tissues representing normal, adenomas, and carcinomas (schematic, J) were analyzed for pS245-GIV by immunohistochemistry. Bar graph (K) displays the
proportion of samples in each category that stained positive. Two-sided Fisher’s exact test was used to calculate significance. (L) Images representative of each category
are displayed (L). Panels on the right are magnified boxed areas of the images on the left. Scale bar = 100 μm.
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Conclusion

The importance of the gut barrier has gained so much traction in
the past decade that it has ushered in the dawn of “barriology”
(Tsukita et al, 2008). The current thinking in the field of “barriology”
is that chronic systemic endotoxemia, due to a compromised gut
barrier in the setting of stress, impacts multiple diseases. Microbial
dysbiosis is known to trigger major cellular programs, for example,
loosening of cell–cell junctions, loss of cell polarity, and chronic
inflammation, all of which coordinately fuel the progression of
these chronic diseases. This work reveals the physiologic impor-
tance and therapeutic potential of the SPS-pathway to resist and
reset gutmicrobe triggered programs by fortifying epithelial TJs (see
Summary and working model; Fig 4). Using the combined synergy of
patient-derived tissues and mouse and human organoid-based
models, we showed that the SPS-pathway serves as a protective
host response that is compromised in the aged gut and early during
the initiation of colon cancers.

This work highlights the SPS-pathway as an “actionable pathway”
in the gut barrier. The abundance of TJ-localized pS245-GIV serves
as a reliablemarker of the SPS-pathway and a surrogatemeasure of
the integrity of the gut barrier. These are important findings be-
cause despite decades of research showing the importance of the
gut barrier in health and disease and discovery of plausible targets
(Cunningham& Turner, 2012), our ability to detect and fix a leaky gut
barrier is not currently a practical option in clinical practice. By
demonstrating direct and specific AMPK-agonists as effective
augmentors of gut barrier integrity and by validating pS245-GIV as a
reliable molecular marker to track such pharmacologic augmen-
tation, this work translates the therapeutic and diagnostic potential
of the fundamental discoveries made by Aznar et al (2016).

With regard to the impact of our findings in human diseases,
because chronic low-grade inflammatory status in the aging gut has
led to coining of the term “inflammaging” (Giunta, 2006; Franceschi,
2007; Franceschi et al, 2007; Goto, 2008; Minciullo et al, 2016; Manabe,
2017), our findings suggest that activation of the SPS-pathway may
serve as a strategy to combat this entity. Because the SPS-pathway
was initially characterized as a tumor-suppressive pathway, and we
have now shown that this pathway is silenced early during CRC

initiation, these findings suggest that activation of the SPS-pathway
may serve as a strategy to prevent polyp-to-cancer progression in
the colon. Our findings also raise the possibility that the SPS-
pathway may affect a variety of non-oncologic diseases that are
associated with increased intestinal permeability (reviewed in
Bischoff et al (2014)) such as chronic gastrointestinal inflammation,
Alzheimer’s, Parkinson’s, multiple sclerosis, autism, chronic heart
failure, and obesity and metabolic diseases. All these diseases are
characterized by systemic inflammation due to chronic endotox-
emia that might be triggered by the translocation of endotoxins
from the gut lumen into the host circulation.

By demonstrating the therapeutic potential of metformin as an
activator of the SPS-pathway, our findings revisit the mechanism of
action of this first-line treatment for type II diabetes. Although
metformin (Glucophage) is now the most widely prescribed type II
diabetes drug in the world for its ability to reduce blood glucose
by activating the LKB1-AMPK pathway (Shaw et al, 2005) and
inhibiting hepatic gluconeogenesis (reviewed in Shackelford and
Shaw (2009)), it is also known to exert other effects in an AMPK-
dependent manner: (i) it stabilizes cell–cell junctions and protects
barrier functions of both epithelial and endothelial monolayers in
the setting of a variety of pathologic stressors and (ii) it suppresses
the growth of a variety of tumor cells and embryonic stem cells in
culture and tumor xenografts in mice (reviewed in Shackelford and
Shaw (2009)). Numerous studies using the AMPK-activator, metfor-
min, squarely implicate the AMPK-dependent stress polarity pathway
as amajor therapeutic target in thesemetabolic disorders (Everard et
al, 2013; Buse et al, 2016; Zhou et al, 2016). metformin administration
enhances gut barrier integrity, attenuates endotoxemia, and en-
hances insulin signaling in high-fat fed mice, which accounts for the
beneficial effects of metformin on glucose metabolism, enhanced
metabolic insulin response, and reduced oxidative stress in liver and
muscle of the mice (Zhou et al, 2016). It is possible that the observed
anti-ageing properties of metformin (via multiple widely pleiotropic
effects reviewed in Barzilai et al (2016)), as in the case of obesity and
diabetes, may begin by preserving the gut barrier function, thereby
reducing age-related inflammation and metabolic derangements. If
so, metformin is expected to act via the AMPK-GIV SPS-pathway to
resist aging-related increase in gut permeability. Ongoing clinical

Figure 4. Summary of findings and working model.
Summary and proposed working model for the role
of the stress polarity signaling (SPS) pathway in the gut
barrier. Genetic, epigenetic, or dysbiosis-induced
inhibition of the SPS-pathway leading to stress-
induced tight junction-collapse and loss of cell
polarity. Loss of the SPS-pathway (in aging and during
cancer initiation) is accompanied by collapse of
epithelial tight junctions and loss of cell polarity, which
is permissive to a gene expression signature that
promotes leakiness of the gut barrier (high claudin-
2) and inflammation (MCP1, IL8). Pharmacologic
augmentation of the SPS-pathway with AMPK agonists
may resist and reverse the above.
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trials approved by the Food and Drug Administration (such as Tar-
geting Ageing with Metformin; TAME) are likely to provide the best
opportunity to investigate these possibilities. In fact, one clinical trial
already hints at that. Using a delayed release formulation of met-
formin (metformin DR, which is designed to target the lower bowel
and limit absorption into the blood), it has been shown that met-
formin works largely in the colon; despite the reduced levels of ab-
sorption of metformin DR, this formulation was effective in lowering
blood glucose (Buse et al, 2016). Our findings in human organoid
models not only bridge the gap between murine studies and the
clinical trials on diabetics but also pinpoint a mechanism via which
metformin’s ability to activate AMPK may serve as a therapeutic
strategy to reinforce the gut barrier.

In closing, our findings underscore the importance of the SPS-
pathway in the gut epithelium for the maintenance of cell polarity
and the epithelial barrier. By showing previously how the
SPS-pathway serves as a tumor suppressive pathway (Aznar et al,
2016) and showing here how the SPS-pathway suppresses proin-
flammatory cytokines in the aging gut (“inflammaging”), we have linked
this specialized polarity pathway polarity to epithelium-driven path-
ophysiologic processes. By demonstrating here that the SPS-pathway
is suppressed during aging and during CRC initiation, we implicate a
loss of this pathway as a bona fide pathophysiologic component of
aging and an early event during oncogenesis. Insights gained also
reveal the diagnostic and therapeutic potential of the SPS-path-
way—its pharmacologic augmentation could be exploited as a strategy
for resisting aging, CRC chemoprevention, and presumably for com-
bating a myriad of other diseases that are characterized by chronic
inflammation and endotoxemia arising from a leaky gut barrier.

Materials and Methods

Reagents and antibodies

Unless otherwise indicated, all reagents were of analytical grade and
obtained from Sigma-Aldrich. Custom-designed oligos were obtained
from Valuegene. Antibodies against GIV that were used in this work
include rabbit serum anti-GIV coiled-coil immunoglobulin G (GIV-ccAb
for immunoblotting only) (Le-Niculescu et al, 2005) and affinity-
purified GIV ccAb (Cat. no. ABT80; from EMD Millipore for immuno-
blotting). Mouse mAbs against anti-phospho-(p; Cell Signaling
Technology) and total (t; Abcam) AMPK, and tubulin (Sigma-Aldrich)
were purchased from commercial sources. Rabbit polyclonal an-
tibodies against phospho-S245 GIV were generated commercially
by 21st Century Biochemicals and extensively validated previously
(Aznar et al, 2016). DAPI and antimouse Alexa Fluor 594–coupled
goat secondary antibody for immunofluorescence were purchased
from Invitrogen. Goat antirabbit and goat antimouse Alexa Fluor
680 or IRDye 800 F(ab9)2 for immunoblotting were from LI-COR
Biosciences.

Animal studies

C57BL/6 mice of 6–8 wk age from both genders were used to isolate
intestinal crypts. Animalswerebred, housed, used for all theexperiments,

and euthanized according to the University of California San Diego In-
stitutional Animal Care and Use Committee policies under the animal
protocol number S18086. All methods were carried out in accordance
with relevant guidelines and regulations and the experimental protocols
were approved by institutional policies and reviewed by the licensing
committee.

Human subjects

For immunohistochemical analysis of human tissue specimens,
archived FFPE human colonic biopsies from healthy controls or
patients with adenomas and/or carcinomas were obtained from
the Gastroenterology Division, VA San Diego Healthcare System,
following the protocol approved by the Human Research Protection
Program Institutional Review Board (Project ID# 1132632).

For the purpose of generating adult healthy enteroids, a fresh
biopsy was prospectively collected using small forceps from
healthy subjects undergoing routine colonoscopy for colon cancer
screening. For all the deidentified human subjects, information
including age, ethnicity, gender, previous history of disease, and
medication was collected from the chart following the rules of
HIPAA. Each human participant was recruited to the study following
an approved human research protocol and signed a consent form
approved by the Human Research Protection Program at the
University of California, San Diego, to agree that the colonic
specimens from their colonoscopy will be used to generate an
enteroid line for functional studies.

Isolation, expansion, and culture of organoids from mouse and
human colons

Intestinal crypts were isolated from the colonic tissue specimen
by digesting with collagenase type I (2 mg/ml; Life Technologies
Corporation) and cultured in stem cell–enriched conditionedmedia
(CM) with WNT 3a, R-spondin, and noggin (Sato et al, 2009; Miyoshi &
Stappenbeck, 2013; Mahe et al, 2015). Briefly, the crypts after di-
gestion with collagenase were filtered with a cell strainer and
washed with the medium (DMEM/F12 with Hepes, 10% FBS). After
adding collagenase I solution containing gentamicin (50 μg/ml; Life
Technologies Corporation) and mixing thoroughly, the plate was
incubated at 37°C inside a CO2 incubator for 10 min, with vigorous
pipetting between incubations and monitoring constantly by light
microscopy to confirm by direct observation the dislodgement of
the intestinal crypts from the tissues. The collagenase was inac-
tivatedwithmedia and filtered using a 70-μmcell strainer over a 50-
ml centrifuge tube. Filtered tissue was spun down at 200g for 5 min,
and the media was aspirated. The epithelial units were suspended
in Matrigel (basement membrane matrix; Cat. no. 356235; Corning
Inc.). Cell-Matrigel suspension (15 μl) was placed at the center of the
24-well plate on ice and placed on the incubator upside-down for
polymerization. After 10 min, 500 μl of 50% CM was added. CM was
prepared from L-WRN cells (CRL-3276; ATCC, from the laboratory of
Thaddeus S. Stappenbeck [Miyoshi & Stappenbeck, 2013]) with
Wnt3a, R-spondin, and noggin. Y27632 (ROCK inhibitor, 10 μM) and
SB431542 (an inhibitor for TGF-β type I receptor, 10 μM) were added
to the medium. For the human enteroids, media and supple-
ments were obtained commercially (Cell Applications Inc.), and a
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proprietary cocktail was added to the above medium. The medium
was changed every 2–3 d and the enteroids were expanded and
frozen in liquid nitrogen.

AMPK KO enteroids were isolated from KO AMPKmice specifically
deleted in the intestinal epithelial cells; these mice were generated
at INSERM by crossing Villin-Cre mice with AMPKα1f1/fl/α2fl/fl mice
(manuscript in preparation). As for human studies, ~4–6 healthy
human individuals were used across the experiments testing their
junctional integrity and response to AMPK agonists.

Preparation of EDMs

EDMs were prepared from colon spheroids as previously described
(den Hartog et al, 2016; Suarez et al, 2018 Preprint). Briefly, the
spheroids were trypsinized and the isolated cells were filtered,
counted, resuspended in 5% CM, and plated with Matrigel (1:40
dilution) in the apical part of 0.4-μm polyester membrane transwell
(Cat. no. 3470; Corning) at the density of 2 × 105 cell/well. In some
cases, the EDMs were also differentiated for 2 d in advanced DMEM/
F12 media without Wnt3a but with R-spondin, noggin, B27 and N2
supplements, and 10 μM ROCK inhibitor (Sato et al, 2009). As ex-
pected, this results in a marked reduction in the expression of the
stemness marker Lgr5 in EDMs (Sato et al, 2009).

Bacterial culture

E. coli K12 strain DH10B, pTransSacB (PTA5105), was obtained from
ATCC; the bacteria was cultured on LB agar and LB broth and used to
infect EDM at moi 100.

Infection of EDMs with live microbes

Mouse and human EDMs were prepared as described in the previous
section. EDMs were differentiated for 2 d before treatment with
various chemical activators of AMPK, that is, metformin (1 mM) and,
A-769662 (100 μM) for 16 h. Cultures were then challenged with either
microbial products, that is, LPS (500 ng/ml) and H2O2 (100 μM) or live
microbes (E. coli K12). On the day of infection, the medium in the
basolateral part was also replaced with fresh 5% medium. Trans-
epithelial electrical resistance (TEER) was measured using an
epithelial voltohmmeter Millicell-ERS resistance meter (Millipore)
before and at specific time points after the treatment (0, 4, 8, and
24 h). The supernatant was collected from the basolateral and
apical part of the transwell for cytokine analysis, and the cells were
collected for RNA extraction followed by expression of target genes
by qRT-PCR.

Immunofluorescence

Mouse and human EDM were fixed with cold methanol at −20°C for
20 min, washed once with phosphate-buffered saline and blocked
with IF buffer (0.1% Triton TX-100 and 2mg/ml BSA, in PBS) for 1 h. The
samples were then incubated with primary and then secondary
antibodies as described previously (Ghosh et al, 2008). Dilutions of
antibodies and reagents were as follows: anti-phospho-Ser245-GIV
(pS245-GIV; 1/250), anti-occludin (1/250), anti-claudin-2-1 (1/250),
DAPI (1:1,000), and goat antimouse Alexa Flour (488 and 594)–

conjugated antibodies (1:500). Images were acquired using a Leica
CTR4000 Confocal Microscope with a 63× objective. Z-stack images
were obtained by imaging ~4-μm-thick sections of cells in all channels.
Cross-section images were obtained by automatic layering of indi-
vidual slices from each Z-stack. Red-green-blue (RGB) graphic profiles
were created by analyzing the distribution and intensity of pixels of
these colors along a chosen line using Image J software. All individual
images were processed using Image J software and assembled for
presentation using Photoshop and Illustrator software (Adobe).
Quantification of burst tight junctions was performed by manually
counting the number of total and burst tri-cellular junctions in 8–10
randomly chosen fields in each of three independent experiments.
Results are expressed as the frequency of burst TJs, and a one-way
ANOVA analysis was used to determine significance.

Immunoblotting

For immunoblotting, protein samples were separated by SDS–PAGE
and transferred to Polyvinylidene fluoride (PVDF) membranes
(Millipore). The membranes were blocked with PBS supplemented
with 5% nonfat milk (or with 5% BSA when probing for phos-
phorylated proteins) before incubation with primary antibodies.
Infrared imaging with two-color detection and band densitometry
quantifications were performed using a Li-Cor Odyssey imaging
system exactly as performed previously (Garcia-Marcos et al, 2010,
2011a, 2011c, 2012; Ghosh et al, 2010). All Odyssey images were
processed using ImageJ software (NIH) and assembled into figure
panels using Photoshop and Illustrator software (Adobe).

Immunohistochemistry (IHC)

FFPE tissue sections of 4 μm thickness were cut and placed on glass
slides coated with poly-L-lysine, followed by deparaffinization and
hydration. Heat-induced epitope retrieval was performed using citrate
buffer (pH 6) in a pressure cooker. Tissue sections were incubated with
0.3% hydrogen peroxidase for 15 min to block endogenous peroxidase
activity, followed by incubation with primary antibodies for 30 min in a
humidified chamber at room temperature. Antibodies used for im-
munostaining were anti-pS245 GIV (1:50, antirabbit antibody) and anti-
AMPKα2 (1:50, antirabbit; Abcam). Immunostaining was visualized with
a labeled streptavidin–biotin using 3,39-diaminobenzidine as a chro-
mogen and counterstained with hematoxylin. The samples were
quantitatively analyzed and scored based on the intensity of staining
using the following scale; 0–3, where 0 = no staining, 1 = light brown, 2 =
brown, and 3 = dark brown. Data are expressed as frequency of staining
score, and a chi-squared test was used to determine significance.

Data reproducibility, rigor

Each finding showcased here represents at least 3–5 independent
repeats of experiments conducted on separate days. For ELISA and
qPCR, results represent 2–3 technical repeats on each experiment,
for a total of n = ~3–5 independent experiments. Where immuno-
fluorescence images are shown, representative images from ran-
domly chosen fields are presented.
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Statistical analyses

Data are expressed as the Mean ± SEM. Statistical significance was
assessed with the t test. Statistical significance between datasets with
three or more experimental groups was determined using one-way
ANOVA including a Tukey’s test for multiple comparisons. For all tests,
a P-value of 0.05 was used as the cutoff to determine significance (*P <
0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). All experiments were
repeated a least three times, and P-values are indicated in each figure.
All statistical analyses were performed using GraphPad prism 6.1.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900481.

Acknowledgements

We thank Gordon N Gill and Marilyn G Farquhar (University of California San
Diego [UCSD]) for their critical input during the preparation of the manu-
script. We are thankful to Ying Dunkel, Linda Petronella Joosen, Katherine
Suarez, and Eileen Lim for technical support. Funding: This work was sup-
ported by National Institutes for Health (NIH) grants DK107585 and Clinical
and Translational Science Award (CTSA) grant UL1TR001442 pilot award
program (to S Das); AI141630, CA238042, and CA100768 (to P Ghosh); and R00-
CA151673 (to D Sahoo). D Sahoo was also supported by 2017 Padres Pedal the
Cause/Rady Children’s Hospital Translational PEDIATRIC Cancer Research
Award. S Das was also supported by a DiaComp Pilot and Feasibility award
(Augusta University) and Padres Pedal the Cause/C3 2019 Moores Cancer
Center Clinical and Translational Cancer Research Awards. P Ghosh and S
Das were supported by NIH/National Center for Advancing Translational
Sciences award UG3TR002968, UCOP-TrDRP grant, and by a Padres Pedal the
Cause/C3 (#PTC 2017) pilot grant award from the Moores Cancer Center. Y
Mittal and L Swanson were supported by the NIH training grant (DK 0070202). Y
Mittal was also supported by an NIH CTSA-funded career-development award
(1TL1TR001443). SR Ibeawuchi was supported by NIH Diversity Supplement
award. L Swanson was also supported by the Chancellor’s Research Excellence
Scholarships for Graduate Students (UCSD) and a graduate research fel-
lowship from the microbial sciences initiative (also at UCSD).

Author Contributions

P Ghosh: conceptualization, resources, data curation, formal
analysis, supervision, funding acquisition, project administration,
and writing—original draft, review, and editing.
L Swanson: data curation, software, formal analysis, investigation,
and methodology.
IM Sayed: data curation, formal analysis, investigation, andmethodology.
YMittal: data curation, formal analysis, investigation, andmethodology.
BB Lim: data curation, formal analysis, and methodology.
S-R Ibeawuchi: data curation, formal analysis, investigation, and
methodology.
M Foretz: resources.
B Viollet: resources.
D Sahoo: conceptualization, resources, and software.
S Das: conceptualization, data curation, software, formal analysis,
supervision, funding acquisition, investigation, methodology, project
administration, and writing—original draft, review, and editing.

Conflict of Interest Statement

S Das and P Ghosh have a patent on the methodology to detect and fix leaky
gut barrier by measuring the activity and augmenting the SPS-pathway.
Other than that, all the authors declare that they have no conflict of interest.

References

Akbulut KG, Aktas SH, Akbulut H (2015) The role of melatonin, sirtuin2 and
FoXO1 transcription factor in the aging process of colon in male rats.
Biogerontology 16: 99–108. doi:10.1007/s10522-014-9540-1

Akimova T, Xiao H, Liu Y, Bhatti TR, Jiao J, Eruslanov E, Singhal S, Wang L, Han R,
Zacharia K, et al (2014) Targeting sirtuin-1 alleviates experimental
autoimmune colitis by induction of Foxp3+ T-regulatory cells.Mucosal
Immunol 7: 1209–1220. doi:10.1038/mi.2014.10

Alam MZ, Alam Q, Kamal MA, Abuzenadah AM, Haque A (2014) A possible link
of gut microbiota alteration in type 2 diabetes and Alzheimer’s
disease pathogenicity: An update. CNS Neurol Disord Drug Targets 13:
383–390. doi:10.2174/18715273113126660151

Aznar N, Patel A, Rohena CC, Dunkel Y, Joosen LP, Taupin V, Kufareva I,
Farquhar MG, Ghosh P (2016) AMP-activated protein kinase fortifies
epithelial tight junctions during energetic stress via its effector GIV/
Girdin. Elife 5: e20795. doi:10.7554/elife.20795

Barbara G (2006) Mucosal barrier defects in irritable bowel syndrome. Who left
the door open? Am J Gastroenterol 101: 1295–1298. doi:10.1038/ajg2006242

Barbazan J, Dunkel Y, Li H, Nitsche U, Janssen KP, Messer K, Ghosh P (2016)
Prognostic impact of modulators of G proteins in circulating tumor
cells from patients with metastatic colorectal cancer. Sci Rep 6: 22112.
doi:10.1038/srep22112

Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (2016) Metformin as a tool
to target aging. Cell Metab 23: 1060–1065. doi:10.1016/j.cmet.2016.05.011

Bischoff SC, Barbara G, BuurmanW, Ockhuizen T, Schulzke JD, Serino M, Tilg H,
Watson A, Wells JM (2014) Intestinal permeability: A new target for
disease prevention and therapy. BMC Gastroenterol 14: 189.
doi:10.1186/s12876-014-0189-7

Buscarinu MC, Cerasoli B, Annibali V, Policano C, Lionetto L, Capi M, Mechelli
R, Romano S, Fornasiero A, Mattei G, et al (2016) Altered intestinal
permeability in patients with relapsing-remitting multiple sclerosis: A
pilot study. Mult Scler 23: 442–446. doi:10.1177/1352458516652498

Buse JB, DeFronzo RA, Rosenstock J, Kim T, Burns C, Skare S, Baron A, Fineman
M (2016) The primary glucose-lowering effect of metformin resides in
the gut, not the circulation: Results from short-term pharmacokinetic
and 12-week dose-ranging studies. Diabetes Care 39: 198–205.
doi:10.2337/dc15-0488

Camilleri M, Gorman H (2007) Intestinal permeability and irritable bowel
syndrome. Neurogastroenterol Motil 19: 545–552. doi:10.1111/j.1365-
2982.2007.00925.x

Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S,
Vavasseur F, Heymann MF, Neunlist M, Derkinderen P (2015) Structural
alterations of the intestinal epithelial barrier in Parkinson’s disease.
Acta Neuropathol Commun 3: 12. doi:10.1186/s40478-015-0196-0

Conley MN, Wong CP, Duyck KM, Hord N, Ho E, Sharpton TJ (2016) Aging and
serum MCP-1 are associated with gut microbiome composition in a
murine model. PeerJ 4: e1854. doi:10.7717/peerj.1854

Cool B, Zinker B, ChiouW, Kifle L, Cao N, PerhamM, Dickinson R, Adler A, Gagne
G, Iyengar R, et al (2006) Identification and characterization of a small
molecule AMPK activator that treats key components of type 2
diabetes and the metabolic syndrome. Cell Metab 3: 403–416.
doi:10.1016/j.cmet.2006.05.005

An epithelial pathway repairs leaky gut Ghosh et al. https://doi.org/10.26508/lsa.201900481 vol 3 | no 3 | e201900481 10 of 12

https://doi.org/10.26508/lsa.201900481
https://doi.org/10.26508/lsa.201900481
https://doi.org/10.1007/s10522-014-9540-1
https://doi.org/10.1038/mi.2014.10
https://doi.org/10.2174/18715273113126660151
https://doi.org/10.7554/elife.20795
https://doi.org/10.1038/ajg2006242
https://doi.org/10.1038/srep22112
https://doi.org/10.1016/j.cmet.2016.05.011
https://doi.org/10.1186/s12876-014-0189-7
https://doi.org/10.1177/1352458516652498
https://doi.org/10.2337/dc15-0488
https://doi.org/10.1111/j.1365-2982.2007.00925.x
https://doi.org/10.1111/j.1365-2982.2007.00925.x
https://doi.org/10.1186/s40478-015-0196-0
https://doi.org/10.7717/peerj.1854
https://doi.org/10.1016/j.cmet.2006.05.005
https://doi.org/10.26508/lsa.201900481


Cunningham KE, Turner JR (2012) Myosin light chain kinase: Pulling the strings
of epithelial tight junction function. Ann N Y Acad Sci 1258: 34–42.
doi:10.1111/j.1749-6632.2012.06526.x

Dambroise E, Monnier L, Ruisheng L, Aguilaniu H, Joly JS, Tricoire H, Rera M
(2016) Two phases of aging separated by the Smurf transition as a
public path to death. Sci Rep 6: 23523. doi:10.1038/srep23523

den Hartog G, Chattopadhyay R, Ablack A, Hall EH, Butcher LD, Bhattacharyya
A, Eckmann L, Harris PR, Das S, Ernst PB, et al (2016) Regulation of Rac1
and reactive oxygen species production in response to infection of
gastrointestinal epithelia. PLoS Pathog 12: e1005382. doi:10.1371/
journal.ppat.1005382

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, DerrienM,
Muccioli GG, Delzenne NM, et al (2013) Cross-talk between Akkermansia
muciniphila and intestinal epithelium controls diet-induced obesity. Proc
Natl Acad Sci U S A 110: 9066–9071. doi:10.1073/pnas.1219451110

Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, Hyser JM,
Zeng XL, Crawford SE, Broughman JR, et al (2014) Human enteroids as
an ex-vivo model of host-pathogen interactions in the
gastrointestinal tract. Exp Biol Med (Maywood) 239: 1124–1134.
doi:10.1177/1535370214529398

Franceschi C (2007) Inflammaging as a major characteristic of old people:
Can it be prevented or cured? Nutr Rev 65: S173–S176. doi:10.1301/
nr.2007.dec.s173-s176

Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP,
Invidia L, Celani L, Scurti M, et al (2007) Inflammaging and anti-
inflammaging: A systemic perspective on aging and longevity
emerged from studies in humans. Mech Ageing Dev 128: 92–105.
doi:10.1016/j.mad.2006.11.016

Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N (2014) Molecular organization
of tricellular tight junctions. Tissue Barriers 2: e28960. doi:10.4161/
tisb.28960

Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P (2011a) A GDI (AGS3) and a GEF
(GIV) regulate autophagy by balancing G protein activity and growth
factor signals. Mol Biol Cell 22: 673–686. doi:10.1091/mbc.e10-08-0738

Garcia-Marcos M, Ghosh P, Ear J, Farquhar MG (2010) A structural determinant
that renders G alpha(i) sensitive to activation by GIV/girdin is
required to promote cell migration. J Biol Chem 285: 12765–12777.
doi:10.1074/jbc.m109.045161

Garcia-Marcos M, Jung BH, Ear J, Cabrera B, Carethers JM, Ghosh P (2011b)
Expression of GIV/Girdin, a metastasis-related protein, predicts patient
survival in colon cancer. FASEB J 25: 590–599. doi:10.1096/fj.10-167304

Garcia-Marcos M, Kietrsunthorn PS, Pavlova Y, Adia MA, Ghosh P, Farquhar
MG (2012) Functional characterization of the guanine nucleotide
exchange factor (GEF) motif of GIV protein reveals a threshold effect
in signaling. Proc Natl Acad Sci U S A 109: 1961–1966. doi:10.1073/
pnas.1120538109

Garcia-Marcos M, Kietrsunthorn PS, Wang H, Ghosh P, Farquhar MG (2011c) G
Protein binding sites on Calnuc (nucleobindin 1) and NUCB2
(nucleobindin 2) define a new class of G(alpha)i-regulatory motifs. J
Biol Chem 286: 28138–28149. doi:10.1074/jbc.m110.204099

Ghosh P (2017) The stress polarity pathway: AMPK “GIV”-es protection against
metabolic insults. Aging (Albany NY) 9: 303–314. doi:10.18632/
aging.101179

Ghosh P (2015) Heterotrimeric G proteins as emerging targets for network
based therapy in cancer: End of a long futile campaign striking heads
of a Hydra. Aging (Albany NY) 7: 469–474. doi:10.18632/aging.100781

Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C,
Ear J, Jung BH, Cabrera B, Carethers JM, et al (2010) A G{alpha}i-GIV
molecular complex binds epidermal growth factor receptor and
determines whether cells migrate or proliferate. Mol Biol Cell 21:
2338–2354. doi:10.1091/mbc.e10-01-0028

Ghosh P, Garcia-Marcos M, Bornheimer SJ, Farquhar MG (2008) Activation of
Galphai3 triggers cell migration via regulation of GIV. J Cell Biol 182:
381–393. doi:10.1083/jcb.200712066

Ghosh P, Tie J, Muranyi A, Singh S, Brunhoeber P, Leith K, Bowermaster R, Liao Z,
Zhu Y, LaFleur B, et al (2016) Girdin (GIV) expression as a prognostic
marker of recurrence inmismatch repair-proficient stage II colon cancer.
Clin Cancer Res 22: 3488–3498. doi:10.1158/1078-0432.ccr-15-2290

Giunta S (2006) Is inflammaging an auto[innate]immunity subclinical
syndrome? Immun Ageing 3: 12. doi:10.1186/1742-4933-3-12

Goto M (2008) Inflammaging (inflammation + aging): A driving force for
human aging based on an evolutionarily antagonistic pleiotropy
theory? Biosci Trends 2: 218–230.

Igarashi M, Miura M, Williams E, Jaksch F, Kadowaki T, Yamauchi T, Guarente L
(2019) NAD(+) supplementation rejuvenates aged gut adult stem cells.
Aging Cell 18: e12935. doi:10.1111/acel.12935

Jun BY, Kim SW, Jung CK, Cho YK, Lee IS, Choi MG, Choi KY, Oh ST (2013)
Expression of girdin in human colorectal cancer and its association
with tumor progression. Dis Colon Rectum 56: 51–57. doi:10.1097/
dcr.0b013e31826b9b7e

Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2
alone promote longevity in Saccharomyces cerevisiae by two
different mechanisms. Genes Dev 13: 2570–2580. doi:10.1101/
gad.13.19.2570

Katz D, Hollander D, Said HM, Dadufalza V (1987) Aging-associated increase in
intestinal permeability to polyethylene glycol 900. Dig Dis Sci 32:
285–288. doi:10.1007/bf01297055

Le-Niculescu H, Niesman I, Fischer T, DeVries L, Farquhar MG (2005)
Identification and characterization of GIV, a novel Galpha i/s-
interacting protein found on COPI, endoplasmic reticulum-Golgi
transport vesicles. J Biol Chem 280: 22012–22020. doi:10.1074/
jbc.m501833200

Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, Lee SH, Shong M, Kim JM, Kim J,
et al (2007) Energy-dependent regulation of cell structure by AMP-
activated protein kinase. Nature 447: 1017–1020. doi:10.1038/
nature05828

Lee SY, Lee SH, Yang EJ, Kim EK, Kim JK, Shin DY, Cho ML (2015) Metformin
ameliorates inflammatory bowel disease by suppression of the STAT3
signaling pathway and regulation of the between Th17/Treg balance.
PLoS One 10: e0135858. doi:10.1371/journal.pone.0135858

Liu F, Bu HF, Geng H, De Plaen IG, Gao C, Wang P, Wang X, Kurowski JA, Yang H,
Qian J, et al (2017a) Sirtuin-6 preserves R-spondin-1 expression and
increases resistance of intestinal epithelium to injury in mice. Mol
Med 23: 272–284. doi:10.2119/molmed.2017.00085

Liu F, Bu HF, Geng H, De Plaen IG, Gao C, Wang P, Wang X, Kurowski JA, Yang H,
Qian J, et al (2017b) Sirtuin-6 preserves R-spondin-1 expression and
increases resistance of intestinal epithelium to injury in mice. Mol
Med 23: 272–284. doi:10.2119/molmed.2017.00085

Lo Sasso G, Menzies KJ, Mottis A, Piersigilli A, Perino A, Yamamoto H,
Schoonjans K, Auwerx J (2014) SIRT2 deficiency modulates
macrophage polarization and susceptibility to experimental colitis.
PLoS One 9: e103573. doi:10.1371/journal.pone.0102495

Lu J, Zhang L, Zhou H, Du Z, Zhang G (2018) Silencing of Girdin suppresses the
malignant behavior of colorectal carcinoma cells. Oncol Rep 40:
887–894. doi:10.3892/or.2018.6511

Mahe MM, Sundaram N, Watson CL, Shroyer NF, Helmrath MA (2015)
Establishment of human epithelial enteroids and colonoids from
whole tissue and biopsy. J Vis Exp 52483. doi:10.3791/52483

Manabe I (2017) Inflammaging and age-associated diseases. Nihon Ronen
Igakkai Zasshi 54: 105–113. doi:10.3143/geriatrics.54.105

Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells
and cancer. Nat Rev Cancer 12: 23–38. doi:10.1038/nrc3169

An epithelial pathway repairs leaky gut Ghosh et al. https://doi.org/10.26508/lsa.201900481 vol 3 | no 3 | e201900481 11 of 12

https://doi.org/10.1111/j.1749-6632.2012.06526.x
https://doi.org/10.1038/srep23523
https://doi.org/10.1371/journal.ppat.1005382
https://doi.org/10.1371/journal.ppat.1005382
https://doi.org/10.1073/pnas.1219451110
https://doi.org/10.1177/1535370214529398
https://doi.org/10.1301/nr.2007.dec.s173-s176
https://doi.org/10.1301/nr.2007.dec.s173-s176
https://doi.org/10.1016/j.mad.2006.11.016
https://doi.org/10.4161/tisb.28960
https://doi.org/10.4161/tisb.28960
https://doi.org/10.1091/mbc.e10-08-0738
https://doi.org/10.1074/jbc.m109.045161
https://doi.org/10.1096/fj.10-167304
https://doi.org/10.1073/pnas.1120538109
https://doi.org/10.1073/pnas.1120538109
https://doi.org/10.1074/jbc.m110.204099
https://doi.org/10.18632/aging.101179
https://doi.org/10.18632/aging.101179
https://doi.org/10.18632/aging.100781
https://doi.org/10.1091/mbc.e10-01-0028
https://doi.org/10.1083/jcb.200712066
https://doi.org/10.1158/1078-0432.ccr-15-2290
https://doi.org/10.1186/1742-4933-3-12
https://doi.org/10.1111/acel.12935
https://doi.org/10.1097/dcr.0b013e31826b9b7e
https://doi.org/10.1097/dcr.0b013e31826b9b7e
https://doi.org/10.1101/gad.13.19.2570
https://doi.org/10.1101/gad.13.19.2570
https://doi.org/10.1007/bf01297055
https://doi.org/10.1074/jbc.m501833200
https://doi.org/10.1074/jbc.m501833200
https://doi.org/10.1038/nature05828
https://doi.org/10.1038/nature05828
https://doi.org/10.1371/journal.pone.0135858
https://doi.org/10.2119/molmed.2017.00085
https://doi.org/10.2119/molmed.2017.00085
https://doi.org/10.1371/journal.pone.0102495
https://doi.org/10.3892/or.2018.6511
https://doi.org/10.3791/52483
https://doi.org/10.3143/geriatrics.54.105
https://doi.org/10.1038/nrc3169
https://doi.org/10.26508/lsa.201900481


Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G,
Morabito N, Lasco A, Gangemi S, Basile G (2016) Inflammaging and
anti-inflammaging: The role of cytokines in extreme longevity. Arch
Immunol Ther Exp (Warsz) 64: 111–126. doi:10.1007/s00005-015-0377-3

Miyoshi H, Stappenbeck TS (2013) In vitro expansion and geneticmodification
of gastrointestinal stem cells in spheroid culture. Nat Protoc 8:
2471–2482. doi:10.1038/nprot.2013.153

Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC
(2017) A primary human macrophage-enteroid co-culture model to
investigate mucosal gut physiology and host-pathogen interactions.
Sci Rep 7: 45270. doi:10.1038/srep46790

Nouri M, Bredberg A, Westrom B, Lavasani S (2014) Intestinal barrier
dysfunction develops at the onset of experimental autoimmune
encephalomyelitis, and can be induced by adoptive transfer of auto-
reactive T cells. PLoS One 9: e106335. doi:10.1371/journal.pone.0106335

Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links
metabolic and inflammatory markers of aging to death in Drosophila.
Proc Natl Acad Sci U S A 109: 21528–21533. doi:10.1073/pnas.1215849110

Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a
pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:
15998–16003. doi:10.1073/pnas.0404184101

Samsam M, Ahangari R, Naser SA (2014) Pathophysiology of autism spectrum
disorders: Revisiting gastrointestinal involvement and immune imbalance.
World J Gastroenterol 20: 9942–9951. doi:10.3748/wjg.v20.i29.9942

Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S,
Schroedl W, Karhausen T, Doehner W, Rauchhaus M, et al (2007)
Altered intestinal function in patients with chronic heart failure. J Am
Coll Cardiol 50: 1561–1569. doi:10.1016/j.jacc.2007.07.016

Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, Niebauer J, Kalra PR,
Buhner S, Herrmann R, Springer J, et al (2012) Studies on bacterial
endotoxin and intestinal absorption function in patients with chronic
heart failure. Int J Cardiol 157: 80–85. doi:10.1016/j.ijcard.2010.12.016

Sandek A, Rauchhaus M, Anker SD, von Haehling S (2008) The emerging role
of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care 11:
632–639. doi:10.1097/mco.0b013e32830a4c6e

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es
JH, Abo A, Kujala P, Peters PJ, et al (2009) Single Lgr5 stem cells build
crypt-villus structures in vitro without a mesenchymal niche. Nature
459: 262–265. doi:10.1038/nature07935

Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: Metabolism and
growth control in tumour suppression. Nat Rev Cancer 9: 563–575.
doi:10.1038/nrc2676

Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M,
Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in
liver and therapeutic effects of metformin. Science 310: 1642–1646.
doi:10.1126/science.1120781

St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: Parallels
and diversity. Cell 141: 757–774. doi:10.1016/j.cell.2010.05.011

St Johnston D, Sanson B (2011) Epithelial polarity and morphogenesis. Curr
Opin Cell Biol 23: 540–546. doi:10.1016/j.ceb.2011.07.005

Suarez K, Lim E, Singh S, Pereira M, Joosen LP, Ibeawuchi S-R, Dunkel Y, Mittal
Y, Ho SB, Chattopadhyay R, et al (2018) Dysregulation of the
engulfment pathway in the gut fuels Inflammatory Bowel Disease.
BioRxiv 280172. doi:10.1101/280172 Preprint posted March 12, 2018.

Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP,
Loukov D, Schenck LP, Jury J, Foley KP, et al (2017) Age-associated
microbial dysbiosis promotes intestinal permeability, systemic
inflammation, and macrophage dysfunction. Cell Host Microbe 21:
455–466.e4. doi:10.1016/j.chom.2017.03.002

Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends
lifespan in Caenorhabditis elegans. Nature 410: 227–230. doi:10.1038/
35065638

Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the
intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68: 1045–1056.
doi:10.1093/gerona/glt106

Tricoire H, Rera M (2015) A new, discontinuous 2 phases of aging model:
Lessons from Drosophila melanogaster. PLoS One 10: e0141920.
doi:10.1371/journal.pone.0141920

Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S (2008) Tight junction-
based epithelial microenvironment and cell proliferation. Oncogene
27: 6930–6938. doi:10.1038/onc.2008.344

Valentini L, Ramminger S, Haas V, Postrach E, Werich M, Fischer A, Koller M,
Swidsinski A, Bereswill S, Lochs H, et al (2014) Small intestinal
permeability in older adults. Physiol Rep 2: e00281. doi:10.1002/
phy2.281

van De SandeMM, van Buul VJ, Brouns FJ (2014) Autism and nutrition: The role
of the gut-brain axis. Nutr Res Rev 27: 199–214. doi:10.1017/
s0954422414000110

Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q, Ren NSX, Czopik A, Shanahan
MT, Kang A, Chen W, et al (2017) Intestinal epithelial sirtuin 1 regulates
intestinal inflammation during aging in mice by altering the intestinal
microbiota. Gastroenterology 153: 772–786. doi:10.1053/
j.gastro.2017.05.022

Wodarz A, Nathke I (2007) Cell polarity in development and cancer. Nat Cell
Biol 9: 1016–1024. doi:10.1038/ncb433

Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR,
Heath RB, Walker PA, Hallen S, et al (2013) Structural basis of AMPK
regulation by small molecule activators. Nat Commun 4: 3017.
doi:10.1038/ncomms4017

Xue Y, Zhang H, Sun X, Zhu MJ (2016) Metformin improves ileal epithelial
barrier function in interleukin-10 deficient mice. PLoS One 11:
e0168670. doi:10.1371/journal.pone.0168670

Yacyshyn B, Meddings J, Sadowski D, Bowen-Yacyshyn MB (1996) Multiple
sclerosis patients have peripheral blood CD45RO+ B cells and
increased intestinal permeability. Dig Dis Sci 41: 2493–2498.
doi:10.1007/bf02100148

Yu H, Hasan NM, In JG, Estes MK, Kovbasnjuk O, Zachos NC, Donowitz M (2017)
The contributions of human mini-intestines to the study of intestinal
physiology and pathophysiology. Annu Rev Physiol 79: 291–312.
doi:10.1146/annurev-physiol-021115-105211

Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase
regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci
U S A 103: 17272–17277. doi:10.1073/pnas.0608531103

Zhang Y, Wang XL, Zhou M, Kang C, Lang HD, Chen MT, Hui SC, Wang B, Mi MT
(2018) Crosstalk between gut microbiota and Sirtuin-3 in colonic
inflammation and tumorigenesis. Exp Mol Med 50: 21. doi:10.1038/
s12276-017-0002-0

Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly
and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci
U S A 104: 819–822. doi:10.1073/pnas.0610157104

Zhou ZY, Ren LW, Zhan P, Yang HY, Chai DD, Yu ZW (2016) Metformin exerts
glucose-lowering action in high-fat fed mice via attenuating
endotoxemia and enhancing insulin signaling. Acta Pharmacol Sin 37:
1063–1075. doi:10.1038/aps.2016.21

License: This article is available under a Creative
Commons License (Attribution 4.0 International, as
described at https://creativecommons.org/
licenses/by/4.0/).

An epithelial pathway repairs leaky gut Ghosh et al. https://doi.org/10.26508/lsa.201900481 vol 3 | no 3 | e201900481 12 of 12

https://doi.org/10.1007/s00005-015-0377-3
https://doi.org/10.1038/nprot.2013.153
https://doi.org/10.1038/srep46790
https://doi.org/10.1371/journal.pone.0106335
https://doi.org/10.1073/pnas.1215849110
https://doi.org/10.1073/pnas.0404184101
https://doi.org/10.3748/wjg.v20.i29.9942
https://doi.org/10.1016/j.jacc.2007.07.016
https://doi.org/10.1016/j.ijcard.2010.12.016
https://doi.org/10.1097/mco.0b013e32830a4c6e
https://doi.org/10.1038/nature07935
https://doi.org/10.1038/nrc2676
https://doi.org/10.1126/science.1120781
https://doi.org/10.1016/j.cell.2010.05.011
https://doi.org/10.1016/j.ceb.2011.07.005
https://doi.org/10.1101/280172
https://doi.org/10.1016/j.chom.2017.03.002
https://doi.org/10.1038/35065638
https://doi.org/10.1038/35065638
https://doi.org/10.1093/gerona/glt106
https://doi.org/10.1371/journal.pone.0141920
https://doi.org/10.1038/onc.2008.344
https://doi.org/10.1002/phy2.281
https://doi.org/10.1002/phy2.281
https://doi.org/10.1017/s0954422414000110
https://doi.org/10.1017/s0954422414000110
https://doi.org/10.1053/j.gastro.2017.05.022
https://doi.org/10.1053/j.gastro.2017.05.022
https://doi.org/10.1038/ncb433
https://doi.org/10.1038/ncomms4017
https://doi.org/10.1371/journal.pone.0168670
https://doi.org/10.1007/bf02100148
https://doi.org/10.1146/annurev-physiol-021115-105211
https://doi.org/10.1073/pnas.0608531103
https://doi.org/10.1038/s12276-017-0002-0
https://doi.org/10.1038/s12276-017-0002-0
https://doi.org/10.1073/pnas.0610157104
https://doi.org/10.1038/aps.2016.21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26508/lsa.201900481

	The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging ...
	Introduction
	Results and Discussion
	The SPS-pathway is active in the colon epithelium and requires the catalytic activity of AMPK
	The SPS-pathway protects the gut barrier against diverse stressors such as microbes and microbial products
	The SPS-pathway is suppressed in the aged gut; its loss triggers inflammation
	The SPS-pathway is suppressed during colorectal cancer (CRC) initiation and progression
	Conclusion

	Materials and Methods
	Reagents and antibodies
	Animal studies
	Human subjects
	Isolation, expansion, and culture of organoids from mouse and human colons
	Preparation of EDMs
	Bacterial culture
	Infection of EDMs with live microbes
	Immunofluorescence
	Immunoblotting
	Immunohistochemistry (IHC)
	Data reproducibility, rigor
	Statistical analyses

	Supplementary Information
	Acknowledgements
	Author Contributions
	Conflict of Interest Statement
	Akbulut KG, Aktas SH, Akbulut H (2015) The role of melatonin, sirtuin2 and FoXO1 transcription factor in the aging process  ...




