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Frequent somatic transfer of mitochondrial DNA
into the nuclear genome of human cancer cells

Young Seok Ju,1 Jose M.C. Tubio,1,43 WilliamMifsud,1,43 Beiyuan Fu,2 Helen R. Davies,1

Manasa Ramakrishna,1 Yilong Li,1 Lucy Yates,1 Gunes Gundem,1 Patrick S. Tarpey,1

Sam Behjati,1 Elli Papaemmanuil,1 Sancha Martin,1 Anthony Fullam,1

Moritz Gerstung,1 ICGC Prostate Cancer Working Group,44 ICGC Bone Cancer
Working Group,44 ICGC Breast Cancer Working Group,44 Jyoti Nangalia,1,3,4

Anthony R. Green,3,4 Carlos Caldas,3,5 Åke Borg,6,7,8 Andrew Tutt,9 Ming Ta
Michael Lee,10,11 Laura J. van’t Veer,12,13 Benita K.T. Tan,14 Samuel Aparicio,15

Paul N. Span,16 JohnW.M.Martens,17 Stian Knappskog,18,19 Anne Vincent-Salomon,20

Anne-Lise Børresen-Dale,21,22 Jórunn Erla Eyfjörd,23 Adrienne M. Flanagan,24,25

Christopher Foster,26 David E. Neal,27,28 Colin Cooper,29,30 Rosalind Eeles,31,32

Sunil R. Lakhani,33,34,35 Christine Desmedt,36 Gilles Thomas,37,42

Andrea L. Richardson,38,39 Colin A. Purdie,40 Alastair M. Thompson,41

Ultan McDermott,1 Fengtang Yang,2 Serena Nik-Zainal,1 Peter J. Campbell,1

and Michael R. Stratton1
1–41[Author affiliations appear at end of paper.]

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane,

intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically

acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intra-

nuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or

replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondri-

al-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, in-

dicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells.

Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not ex-

clude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal

somatic cells.

[Supplemental material is available for this article.]

Somatically acquired structural rearrangements are common fea-
tures of the nuclear genomes of cancer cells. These may range
from simple chromosomal rearrangements (Campbell et al.
2008) to more complex, compound patterns, such as chromo-
thripsis (Stephens et al. 2011) and chromoplexy (Baca et al.
2013), or mobilization of transposable elements (Lee et al. 2012;
Tubio et al. 2014). Intrachromosomal rearrangements are general-
ly more common than interchromosomal rearrangements, indi-
cating a higher likelihood of joining a double-strand break in a
chromosome to another break in the same chromosome despite

the availability of amuch larger quantity of nuclearDNA fromoth-
er chromosomes (Stephens et al. 2009).

In addition to the nuclear genome, human cells have a few
hundred to a few thousand mitochondria, each carrying one or a
few copies of the 16,569-bp-long circular mtDNA (Smeitink et al.
2001; Friedman and Nunnari 2014; Ju et al. 2014). During endo-
symbiotic co-evolution, most of the genetic information present
in the ancestral mitochondrion has transferred to the nuclear ge-
nome (Gray et al. 1999; Adams and Palmer 2003; Timmis et al.
2004). An apparent burst of mtDNA transfer occurred during pri-
mate evolution ∼54 million years ago (Gherman et al. 2007) and
occasional, probably more recent, transfer in humans has been
observed in the germline (Turner et al. 2003; Goldin et al. 2004;
Chen et al. 2005; Millar et al. 2010; Dayama et al. 2014).
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Although mtDNA nuclear transfer in a HeLa cell line derivative,
and thus occurring in vitro, has been reported (Shay et al. 1991),
de novo nuclear transfer of mtDNA in animal somatic tissues has
not previously been comprehensively studied to our knowledge.
To investigate the possibility of somatic mitochondrial-nuclear
DNA fusion, we analyzed next-generation paired-end DNA
whole-genome sequencing data from559 primary cancers, 28 can-
cer cell lines (referred as 587 cancer whole genome below) andnor-
mal DNAs from the same individuals (Supplemental Table 1).

Results

Discovery of somatic mtDNA transfers to cancer nuclear genomes

From the 587 pairs of cancer and normal whole-genome se-
quencing data, we searched for cancer-specific clusters of dis-
cordant paired-end sequence reads in which one member of
the read-pair mapped to the nuclear genome and the other to
the mitochondrial genome, and then characterized the nuclear-
mitochondrial genome junctions to nucleotide resolution using
individual sequence reads that bridged the junction (Fig. 1A). In
12 samples (overall positive rate 2.0%, 12 out of 587 samples), we
observed 25 cancer-specific mitochondrial-nuclear DNA junctions
(Table 1; Supplemental Figs. 1–6). Given that there are two junc-
tions for a single integration event, we conclude that there are
most likely 16 independent mtDNA insertions (Table 1). In addi-
tion to somatic transfers, we observed several novel rare germline
(inherited) events that were shared between cancer and paired nor-
mal samples (Supplemental Table 2; Supplemental Material).

Breast cancer PD11372a showed a somatically acquired in-
tegration of almost the entire human mtDNA sequence
(16,556 bp) into a highly amplified 2.75-Mb-long region of
Chromosome 10q22.3. The integration event was strongly sup-
ported by both discordant and split read clusters (Fig. 1B–D)
and was confirmed by short- and long-range PCR across the nu-
clear-mitochondrial genome junctions (Supplemental Figs. 7, 8;
Supplemental Table 3). It was not found in normal tissue (blood)
from the same individual or from all the other cases and did not
match any known inherited nuclear mtDNA-like sequences
(known as numts) (Gherman et al. 2007; Hazkani-Covo et al.
2010). Consistent with its somatic origin, the mtDNA fused to
the nuclear genome harbored sequence polymorphisms identical
to those present in the mitochondria of this individual (14,905
G >A; 15,028 C > A; 15,043 G >A; 15,326 A >G; 15,452 C > A,
and 15,607 A >G). Fluorescence in situ hybridization (FISH) exper-
iments performedon formalin-fixedparaffin embedded tissue con-
firmed that the fused DNA segment exists in the nuclei of cancer
cells (Fig. 1E).

In total, we found 10 primary cancers (1.8%, 10/559) and two
cancer cell lines (7.1%, 2/28) with somatic mtDNA integrations
into their nuclear genomes (Table 1; Supplemental Figs. 1–6). Of
the 12 cancers, two (primary cancer PD13296a and cancer cell
line NCI-H2087) had more than one mitochondrial-nuclear DNA
translocation event. All integrations were supported by both dis-
cordant and split reads and further confirmedbyPCRacross thenu-
clear-mitochondrial genome junctions (Supplemental Fig. 7;
Supplemental Table3). All inheritedmtDNAsubstitutionpolymor-
phisms near these breakpoints were detected (Table 1). To further
visualize the transfer events, we performed high-resolution FISH
on stretched DNA fibers (fiber FISH) from the melanoma cell line,
CP66-MEL (Fig. 2A).

Somatic nuclear integration of mtDNA is frequently combined

with other rearrangements of the nuclear genome

The rate of somatic nuclear transfer of mtDNAmay vary according
to tumor type. Triple-negative breast cancer showed a fivefold
higher frequency compared to estrogen-receptor (ER) positive
breast cancers (6.2% and 1.2%, respectively; Fisher’s exact test P
= 0.002). Triple-negative breast cancer genomes carry a higher
number of chromosomal rearrangements than ER-positive breast
(average 254 and 94, respectively, in our data set). As a result, there
was a suggestive positive correlation between the number of chro-
mosomal rearrangements and mtDNA transfers (Mann-Whitney
U test, one-sided P = 0.05) (Fig. 2B).

The length of mtDNA fragments transferred ranged from 148
bp to entire mitochondrial genomes (16.5 kb) (Table 1). Interest-
ingly, breakpoints inmtDNAwere enriched near themitochondri-
al genome heavy strand origin of replication (χ2 test, P = 0.0005)
(Fig. 2C). This suggests that the generation of mtDNA segments
to be integrated into the nuclear genome is not random and may
occur in a mtDNA replication-dependent manner (Lenglez et al.
2010).

Of the 25 mitochondrial-nuclear DNA junctions, at least 17
(68.0%) were clearly associated with other nuclear chromosomal
rearrangements (e.g., inversions, translocations, and large dele-
tions) in the vicinity (Table 1; Supplemental Figs. 1–6). For
example, with respect to PD11372a described earlier, genomic
fragments fromChromosomes 10, 11, andmtDNAgenerated com-
plex derivative chromosomes (Fig. 3A). In PD6047a, an mtDNA
fragment was involved in chains of complex genomic transloca-
tions involving Chromosomes 6, 7, 11, 22, and X (Fig. 3B). In
PD10014a, a local inversion was combined with the mtDNA inte-
gration event (Fig. 3C), and in PD4252a, a 16.5-kbmtDNA integra-
tion was found in a position on the X Chromosome from which
∼20 kb of nuclear DNA had been somatically deleted (Fig. 3D).
Thus, mtDNA is often integrated into nuclear genomes in the
vicinity of, or as part of, complex rearrangements. Although germ-
line numts tend to occur near transposable elements such as
LINEs and SINEs (Mishmar et al. 2004), we do not observe
this association for somatic events (χ2 test, two-sided P = 0.33)
(Supplemental Table 4).

The mechanism and timing of somatic nuclear transfer of mtDNA

There was overlapping sequence microhomology (from 1 to 4 bp)
in 20/25 breakpoints (80%) (Fig. 4A,B; Table 1; Supplemental Figs.
1–6), substantially more than expected by chance (χ2 test, P = 5 ×
10−26). Thus, DNA sequence microhomology plays an important
role in mitochondrial-nuclear DNA integration events, although
blunt-end DNA repair was also observed. In two breakpoints, we
also found nontemplated short-nucleotide insertions (1 and 4 bp
long) (Fig. 4A; Table 1). Overall, these features are characteristic
of DNA double-strand break repair by nonhomologous end join-
ing (NHEJ) (Hastings et al. 2009). However, they do not rule out
replication-basedmechanisms switching template between nucle-
ar and mtDNA, such as microhomology-mediated break-induced
replication (MMBIR) (Liu et al. 2011).

We investigated the timing of somatic mtDNA integration
into the nuclear genome by assessing cases in which a metastatic
sample had been sequenced in addition to the primary tumor.
One such case (PD4252a) showed the mitochondrial-nuclear inte-
gration event in the primary but not in themetastasis (Fig. 4C), in-
dicating that mtDNA transfer to the nucleus can occur after

Nuclear integration of mitochondrial DNA in cancer
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neoplastic transformation and during the course of subclonal evo-
lution of the cancer. The other (PD6728b) showed it in both the
primary and metastasis (Fig. 4C), suggesting that this event oc-
curred in the common ancestral cancer clone or in normal somatic
cells prior to neoplastic change.

Nuclear transfer of mtDNA is unexpectedly frequent in human

somatic cells

To obtain a perspective on the frequency ofmitochondrial-nuclear
DNA translocation, we compared its rate to that of intranuclear
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Figure 1. Discovery of somatic nuclear mtDNA transfer from PD11372a. (A) The strategy for detection of nuclear mtDNA transfer events. See Methods
for a detailed description. (SRs) Split-reads, (DRs) discordant reads, (Nu) nucleus, (MT) mitochondria. (B) Graphical representation of discordant read clus-
ters in PD11372a and its paired-normal tissue (PD11372b). The red arrow indicates tumor-specific discordant-read clusters in Chr 10. Chromosome ideo-
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Breakpoint sequences are shown. Red rectangle highlightsmicrohomology. Numbers of discordant split reads are presented. InheritedmtDNA substitution
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Table 1. Summary of somatic mitochondrial-nuclear DNA fusions identified from 12 cancer samples

Tissue Sample
Left junction Right junction Frag. size

(bp)

Micro-
homology
(bp,bp)

Variants
(#D/#P)a Context of rearrangement

Nuclear MT MT Nuclear

Primary PD11372a 10+:81,670,932] [M−:15,157 M−:15,171] [10+:78,920,385 16,556 (0,1) 6/6 mtDNA insertion with complex
rearrangements

PD4252a X+:45,631,665] [M+:14,450 M+:14,496] [X+:45,652,120 16,616 (2,1) 2/2 mtDNA insertion with large chr. deletion
PD6047a X+:14,944,764] [M−:12,735 M−:16,128] [7+:96,923,229 13,177 (1,1) 6/6 Multiple interchromosomal translocations
PD10014a 17−:75,618,348] [M−:13,365 M−:9055] [17+:75,688,733 4311 (2,3) 0/0 mtDNA insertion with Chr 17 inversion
PD13296a 4+:102,463,870] [M−:14,705 M−:13,235] [4+:102,464,084 1471 (4,0) 0/0 mtDNA insertion with large chr. deletion

6+:103,639,248] [M+:14,692 M+:14,972]TA AT [6+:103,690,941 281 (2,0) 2/2 mtDNA insertion with large chr. deletion
PD6728b 2+:138,664,890] [M−:13,199 M−:13,052] [2−:139,012,040 148 (4,2) 1/1 mtDNA insertion with complex

rearrangements
PD11397a 19−:12,650,382] [M+:16,233 M+:96] [17+:40,005,738 433 (0,2) 1/1 Multiple interchromosomal translocations
PD7404a 1+:44,914,376] [M+:3732 – – >200 (1,–) 0/0 –

PD6733b 6−:45,823,498] [M+:16,107 – – >200 (0,–) 1/1 –
PD11768a 1−:144,944,326] [M+:16,104 – – >200 (4,–) 1/1 –

Cell line CP66-MEL 3+:47,419,506] [M−:7048 M−:16,193] [3+:47,419,447 7425 (1,1) 1/1 mtDNA insertion
NCI-H2087 10+:26,775,605] [M+:1690 – – >200 (1,–) 1/1 –

20−:33,836,717] [M−:5666 – – >200 (1,–) 1/1 –

17−:7,481,787] T [M−:3452 – – >200 (1,–) 1/1b Multiple interchromosomal translocations
17−:31,744,235] [M+:4346 – – >200 (3,–) 1/1 –

aInherited mtDNA polymorphisms in the vicinity of breakpoints. (#D) Number of detected, (#P) number of present.
bA somatically acquired heteroplasmic mutation in mitochondria.
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interchromosomal translocation, taking into account the sizes
and copy numbers of the mitochondrial and nuclear genomes.
Our sequencing data suggest that each cancer cell carries ∼500
copies of circular mtDNA (median value 495) (Fig. 5A), amount-
ing in aggregate to ∼8 million base pairs (bp) of mtDNA (500 cop-
ies × 16.5 kb) enclosed by the mitochondrial double membrane
in the cytoplasm of each cancer cell. The average frequency in
the cancers analyzed of mitochondrial-nuclear DNA fusion was
5.1 × 10−3 junctions per million bp of mtDNA, only half the av-
erage rate of intranuclear interchromosomal translocation
(1.2 × 10−2 junctions per million bp) and similar to that of
Chromosomes 2, 4, and 13 (Fig. 5B). Given the multiple physical
barriers to contact between the two genomes, the results indicate
remarkably high rates of mtDNA escape, contact, and/or integra-
tion with nuclear DNA in human cancer cells. These appear to be
considerably higher than in the germline across human evolu-
tion but comparable to those observed in Saccharomyces cerevisiae
(Thorsness and Fox 1990) and for chloroplast DNA migration
into the nucleus in tobacco plants (Methods; Supplemental
Material; Huang et al. 2003).

Discussion

Despite multiple physical barriers, there
are plausible mechanisms by which
mtDNA and nuclear DNA could come
into contact (Fig. 5C). Free mtDNA can
be released into the cytoplasm from de-
gradingmitochondria or aftermitophagy
(Zhang et al. 2008; Eiyama et al. 2013;
Higgins and Coughlan 2014). Degrada-
tion of mitochondria may be accelerated
in cancer cells due to hypoxia and in-
creased energy demands (Zhang et al.
2008; Eiyama et al. 2013; Higgins and
Coughlan 2014). Evenwithout a bespoke
molecular process for transportation,
mtDNA could then, in principle, migrate
to the nucleus during mitotic metaphase
or anaphasewhen thenuclearmembrane
has broken down.When these events are
coupled with concurrent double-strand
breaks (DSBs) and/or replication fork
stalling of nuclear chromosomal DNA,
mtDNA could be picked up and integrat-
ed into the nuclear genome as part of
the process of rejoining DSBs (NHEJ)
(Hastings et al. 2009) or used as an al-
ternative DNA template in replication
(MMBIR) (Liu et al. 2011). Micronuclei
in cancer cells, which can be generated
byerrors in segregationofmitotic nuclear
chromosomes, may contribute to the
events.Chromosomes inmicronuclei fre-
quently undergo defective and delayed
DNA replication, resulting in extensive
fragmentation with subsequent jumbled
rejoiningcomparedto theiroriginalorder
and orientation (Crasta et al. 2012; For-
ment et al. 2012). Thus, mtDNA frag-
ments incorporated into micronuclei
could end up fused to shattered nuclear
chromosomes. It is worthy of note that

mtDNAescaping to thenucleus canbe activelyused forDNA repair
in Saccharomyces cerevisiae (Ricchetti et al. 1999; Yu and Gabriel
1999), particularly when error-free DSB DNA repair is not possible.
Whether this applies in mammalian cells is unknown.

Some of the somatic nuclear mtDNA integrations we identi-
fied are directly adjacent to nuclear genes. For example, nuclear-
mtDNA fusion in PD11372a occurred in the fifth intron of the
KCNMA1 gene, a potassium channel frequently amplified in pros-
tate and breast cancers (Oeggerli et al. 2012). However, we do not
find obvious enrichment of the nuclear-mtDNA fusion break-
points near human nuclear genes. RNA-seq from the NCI-H2087
cell-line indicates that mtDNA fragments in the nucleus of the
cell line are not expressed as parts of mitochondrial-nuclear fusion
transcripts. Thus, themajority of the nuclearmtDNA translocation
events are likely to be passenger events, similar to mutations of all
other types in most cancer genomes. However, we do not ex-
clude the possibility that someof these eventsmayhave functional
consequences in human cancer by generating fusion mRNA tran-
scripts (Shay et al. 1991) and/or truncating cancer genes by
mtDNA insertion within exons.
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This study has shown that fusion of mtDNA to nuclear DNA
occurs in human somatic cells at a rate similar to that of transloca-
tion between nuclear chromosomes. Physicalmigration ofmtDNA
into the nucleus may be much more frequent in stem cells than
ones in a terminally differentiated stage (Schneider et al. 2014).
Further studies will need to address the mechanisms by which
the apparent physical barriers to contact between mitochondrial
and nuclear DNA are so effectively overcome.

Methods

Samples and sequencing data

We analyzed 559 primary tumors and 28 cancer cell-lines in this
study. Paired-normal samples for all the cancers were also included

in this study in parallel. Whole-genome
sequencesused inthis studyweregenerat-
ed by Illumina platforms (either Genome
Analyzer or HiSeq 2000). Cancer ge-
nomeswere sequencedtoat least 25×cov-
erage. With respect to TCGA data, we
downloaded aligned BAM files through
UCSC CGHub (http://cghub.ucsc.edu).
Sequencing reads were aligned on the
human reference genome build 37
(GRCh37) and human reference mtDNA
sequence (revised Cambridge reference
sequence, rCRS) (Andrews et al. 1999),
mainly by the BWA alignment tool (Li
and Durbin 2009). SAMtools (Li et al.
2009) was used for manipulating se-
quence reads.

Calling mitochondrial-nuclear DNA

fusion events

We employed a pipeline for identifica-
tion of putative mtDNA translocation
to chromosomal DNA (Fig. 1A). From
paired-end whole-genome sequencing
data of tumors, we extracted discordant
reads (DRs), where one end aligned
uniquely to mtDNA and the other end
to nuclear DNA. In all cases, both ends
must have a mapping quality greater
than zero. Those discordant reads are
clustered together using the following
criteria: reads sharing (1) close alignment
positions (<500 nucleotides) for both
ends on nuclear and mtDNA, and (2)
the sameorientations. In order to remove
false positives, we removed clusters sup-
ported by less than five discordant reads.

In order to remove potential germ-
line calls, several filters are applied to
the tumor candidate cluster. The clusters
from tumor cells were removed if they
overlap with clusters identified from
matched and/or unmatched normal tis-
sues bymore tolerable criteria (supported
by more than one discordant read)
from (1) its paired-normal tissue, and (2)
from the other 586 unmatched normals.

Filtered clusters were further refined with known germline human
numts, a combined set from the human reference genome (hg19)
detected by BLAT (Kent 2002) (n = 123) and from Simone et al.
(2011) (n = 766). Finally, 25 clusters were selected as somatic
candidates.

Nucleotide-resolution breakpoints for the translocation junctions

To obtain nucleotide-resolution breakpoints, we searched for split-
reads (SRs)with one of the ends spanning the junctionof the trans-
location. We extracted “orphan” or “mate-unmapped” reads (one
end of a read is unmapped by the BWA aligner) in the vicinity
(<1000bp)ofdiscordant-read clusters onnuclearandmitochondri-
al genome sequences. Sequences from the unmapped end are then
re-aligned byBLAT (Kent 2002),which enables split-readmapping.
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Validation by PCR

A PCR validation assay of the somatic mtDNA transfer was per-
formed using genomic DNA from both cancer and paired-normal
tissues. Primers were designed to amplify all the breakpoints
(Supplemental Table 3). The short-fragment PCR reactions were
performed as previously described (Tubio et al. 2014).With respect
to long-range PCR, elongation time was increased 1 min per 1 kb.

Generation of FISH probes

Human bacterial artificial chromosomes (BAC) and fosmid clones
used in this studywere obtained from the clone archive teamof the

Wellcome Trust Sanger Institute. Plasmid
DNA was prepared using the PhasePrep
BAC DNA kit (Sigma-Aldrich). Human
mtDNA was isolated from lymphoblas-
toid cells using a Mitochondrial DNA
Isolation kit (Abcam).

Probes for use in FISH were made as
described before (Gribble et al. 2013).
Purified mtDNA and plasmid DNA were
first amplified using a GenomePlex
Whole Genome Amplification (WGA)
kit (Sigma-Aldrich) following the manu-
facturer’s protocols, then labeled using
a WGA reamplification kit (Sigma-
Aldrich) with a custom-made dNTP mix.
Probes for interphase FISH were labeled
directly with Aminoallyl-dUTPs - ATTO-
488, -Cy3, -Texas Red, and -Cy5 (Jena
Bioscience); probes for fiber-FISHwere la-
beledwith Biotin-16-dUTP,Digoxigenin-
11-dUTP (Roche), and DNP-11-dUTP
(PerkinElmer).

Validation by fiber-FISH with single-

molecule DNA fibers generated by

molecular combing

Single-molecule DNA fibers from the
cancer cell line, CP66-MEL, were pre-
pared by molecular combing (Michalet
et al. 1997) following the manufacturer’s
instructions (Genomic Vision). Briefly,
the cells were embedded in a low-melt-
point agarose plug (1 million cells per
plug), followed by proteinase K diges-
tion, washing in 1 × TE (10 mM Tris, 1
mM EDTA, pH 8.0) and beta-agarose di-
gestion steps. The DNA fibers were me-
chanically stretched onto saline-coated
coverslips using a Molecular Combing
System (Genomic Vision).

For fiber-FISH, ∼500 ng of labeled
DNA from each probe and 4 μg of human
Cot-1 DNA (Invitrogen) were precipi-
tated using ethanol, then resuspended
in a mix (1:1) of hybridization buffer
(containing 2 × SSC, 10% sarkosyl, 2 M
NaCl, 10% SDS, and blocking aid [Invi-
trogen]) and deionized formamide (final
concentration 50%). Coverslips coated

with combed DNA fibers were dehydrated through a 70%, 90%,
and 100% ethanol series and aged at 65°C for 30 sec, followed by
denaturation in an alkaline denature solution (0.5 M NaOH, 1.5
M NaCl) for 1–3 min, three washes with 1×PBS (Invitrogen), and
dehydration through a 70%, 90%, and 100% ethanol series. The
probe mix was denatured at 65°C for 10 min before being applied
onto the coverslips, and the hybridization was carried out in a 37°
C incubator overnight. The post-hybridizationwashes consisted of
two rounds of washes in 50% formamide/2 × SSC (v/v), followed
by two additional washes in 2 × SSC. All post-hybridizationwashes
were done at 25°C, 5min each time.Digoxigenin-11-dUTP (Roche)
labeled probes were detected using a 1:100 dilution ofmonoclonal
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mouse anti-dig antibody (Sigma-Aldrich) and a 1:100 of Texas Red-
X-conjugated goat anti-mouse IgG (Molecular Probes/Invitrogen);
DNP-11-dUTP (PerkinElmer) labeled probes were detected using a
1:100 dilution of Alexa 488-conjugated rabbit anti-DNP IgG and
1:100 Alexa 488-conjugated donkey anti-rabbit IgG (Molecular
Probes/Invitrogen); biotin-16-dUTP (Roche) labeled probes were
detected with one layer 1:100 of Cy3-avidin (Sigma-Aldrich). After
detection, slides weremountedwith SlowFade Goldmounting sol-
ution containing 4′,6-diamidino-2-phenylindole (Molecular
Probes/Invitrogen). Images were visualized on a Zeiss AxioImager
D1 microscope. Digital image capture and processing were carried
out using the SmartCapture software (Digital Scientific UK).

Nuclear interphase FISH

Nuclei extraction from paraffin-embed-
ded tissue of patient PD11372a and inter-
phase-FISH followed Paternoster et al.
(2002), with the exception that 60-μm-
thick sections were used in our study.
The post-hybridization washes consisted
of two rounds of washes in 50% formam-
ide/2 × SSC (v/v), followed by two ad-
ditional washes in 2 × SSC. Slides were
mounted with SlowFade Gold mount-
ing solution containing 4′,6-diamid-
ino-2-phenylindole (Molecular Probes/
Invitrogen). Images were captured and
processed as described above.

Correlation between somatic mtDNA

integration site and transposable

elements

We performed a study similar to the pre-
vious report (Mishmar et al. 2004). We
calculated the distance between each
mtDNA-insertion site (breakpoint) and
its nearest transposable elements (ei-
ther of SINE, LINE, LTR, simple repeat,
or DNA transposon by RepeatMasker,
downloaded from the UCSC Genome
Browser, June 6, 2013). Then, each
mtDNA-insertion site was categorized
into one of four groups: (A) breakpoint
within a transposable element; (B) break-
point within 15 bp from a transposable
element; (C) within 15–150 bp; and (D),
>150 bp. In order to understand the posi-
tional enrichment of breakpoints from
transposable elements, we randomly
generated in silico breakpoint positions
40 times as many (total n = 1000) as we
observed from each chromosome in the
real data set. In silico breakpoints located
within gaps of the human reference ge-
nome were removed and replaced by
newly generated insertions. For these in
silico-generated breakpoints, the dis-
tances from the nearest transposable
elements were calculated and then cate-
gorized into one of the four groups (A,
B,C, and D). Finally, the difference in
the frequency of breakpoints in each

group between the observed and in silico-generated data set was
compared using a χ2 test.

Assessment of mtDNA copy numbers

To understand mtDNA copy numbers in a cancer cell, we com-
pared average read depth of coverage between 22 autosomes and
mtDNA. With respect to the tumor sequences by whole-genome
sequencing, average haploid autosomal coverage (RDautosome)
was obtained from the read depth of 2.685-Gb-long autosomal re-
gions (excluding chromosomal gaps). Likewise, average mtDNA
coverage (RDmtDNA) was obtained from the read depth of the
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16.5-kbmitochondrial genome. Finally, mtDNA copy number in a
diploid cell (Cmt) is calculated as shown below:

Cmt = 2× RDmtDNA

RDautosome
.

Assessment of translocation rate for autosomes

and mitochondria

We identified structural variations among nuclear chromosomes
(large deletions, tandem duplications, inversions, and interchro-
mosomal translocations) using the BRASS II algorithm (Nik-
Zainal et al. 2012), which identifies rearrangements by clustering
discordant read pairs that point to the same junction and confirms
breakpoints by local assembly of unmapped reads. The sensitivity
and specificity of the BRASS II algorithm is equivalent to those val-
ues of the algorithm used for mitochondrial-nuclear DNA fusions
(data not shown). We extracted interchromosomal translocations
to calculate the rate of such events. The rate of each haploid auto-
some (Rtr,ch) is calculated as shown below:

Rtr, ch(events per megabase) = Ntr,ch/(2× Lch)/Nsam,

whereNtr,ch is the total number of somatic interchromosom-
al translocation junctions involving a specific chromosome, Lch is
the lengthof thenonredundant regionof the chromosome inmeg-
abases, and Nsam is the total number of samples analyzed. To ob-
tain the unique region length (Lch), we excluded redundant (or
highly repetitive) sequence lengths from the ungapped length of
each chromosome. Genomic regions classified in one or more of
the three criteria shown below were defined as redundant, where
translocation events couldnot be easily detected due to ambiguous
read alignment: (1) simple repeats, located by Tandem Repeats
Finder (Benson 1999); (2) segmental duplications with moderate
to high sequence similarity (≥95%) (Bailey et al. 2002), or (3) repet-
itive sequences including up to 10 different classes of repeats (such
as SINE, LINE, LTR, DNA transposons, andmicrosatellites), located
by the RepeatMasker program (http://www.repeatmasker.org),
with a low divergence level (divergence < 5%). These nonredun-
dant sequence regions were downloaded from the UCSC Genome
Browser (http://genome.ucsc.edu).

Similarly, the rate of mitochondrial-nuclear DNA transloca-
tions (Rtr,mt) was calculated as below:

Rtr,mt(events per megabase) = Ntr,mt/(Cmt × LmtDNA)/Nsam,

where Ntr,mt is the total number of junctions of somatic mito-
chondrial-nuclear DNA fusions identified, Cmt is themedian value
of mitochondrial genome copy numbers in a diploid cancer cell
calculated above (495 copies), and LmtDNA is the length of the mi-
tochondrial genome in megabases (0.016569 Mb).

Assessment of the rates of nuclear mtDNA fusion

and mtDNA escape to the nucleus

Fusion of mtDNA to the nuclear genome requires at least two
events, each of which could influence the rate of mitochondrial-
nuclearDNAfusion. These include escapeofmtDNAto thenucleus
and integration to nuclearDNA. According to thismodel, the over-
all number of such fusion events can be calculated using the rates
for these processes (ρescape and ρintegration, respectively):

Ntr = Nsam×Ngen× rescape × rintegration,

where Ntr is the number of total somatic mitochondrial-nu-
clear DNA fusion events (n = 12), Nsam is the total number of can-

cer tissues (n = 587), and Ngen is the number of average cell
generation from the fertilized egg. Using a reasonable assumption
that Ngen = 1000, we obtain the rate of somatic mtDNA fusion to
the nuclear genome (ρescape × ρintegration) to be 2 × 10−5 per cell per
cell generation (pcpg). With one more very conservative assump-
tion that ρintegration is 0.1, we obtain ρescape to be 2 × 10−4 pcpg,
or at least one escape event per 5000 cell generations. We hypoth-
esize that the real ρintegration value is thought to be much lower
than 0.1, which results in a higher ρescape. For example, during
the generation of knockout mice, homologous recombination al-
lows one fixation event per 1000–10,000 microinjected DNA cop-
ies (Brinster et al. 1985). The integration rate may, however, be
higher than the rate in cancer cells with defective homologous re-
combination-based repair and increased availability of nuclear
double-strand breaks, which can be joined to by NHEJ or MMBIR.

The mtDNA fusion to the nuclear genome in the germline
(the rate of numts insertion) is around 5 × 10−6 per germ cell per
individual generation in previous phylogenetic studies (Hazkani-
Covo et al. 2010). The rate is equivalent to ∼5 × 10−8 pcpg, given
that the number of germ cell divisions per human generation is
∼100 (401 in males and 31 in females [Drost and Lee 1995]).

Data access

Sequence data for sample pairs with positivemtDNAnuclear trans-
fer have been submitted to the European Genome-phenome
Archive (EGA; https://www.ebi.ac.uk/ega/home). The study acces-
sion number is EGAS00001001234. Sample accession numbers are
available in Supplemental Table 1.
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