
UC Davis
UC Davis Electronic Theses and Dissertations

Title
GPU Load Balancing

Permalink
https://escholarship.org/uc/item/0t681813

Author
Osama, Muhammad

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0t681813
https://escholarship.org
http://www.cdlib.org/

GPU Load Balancing

By

MUHAMMAD OSAMA

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

John D. Owens, Chair

Venkatesh Akella

Jason Lowe-Power

Committee in Charge

2022

i

Copyright © 2022 by

Muhammad Osama

All rights reserved.

To my parents, Shahid and Fozia, my siblings, Umair and Sahar,

and my fiancée Melissa.

iii

CONTENTS

Title Page i

Contents iv

List of Figures viii

List of Tables ix

List of Algorithms x

List of Listings xi

Abstract xii

Acknowledgments xiv

1 Introduction 1

1.1 Contributions . 3

2 Background 5

2.1 Graphics Processing Unit (GPU) Architecture 5

2.1.1 CUDA’s Compute Hierarchy . 5

2.1.2 CUDA’s Memory Hierarchy . 6

2.1.3 Impact on Load-Balancing . 7

3 A Survey of GPU Load-Balancing Techniques for Irregular Applications 9

3.1 Related Works . 10

3.1.1 Compressed Sparse Data Structures 11

3.2 Taxonomy of GPU Load Balancing . 12

3.2.1 Configuration: Static vs. Dynamic . 13

3.2.2 Accuracy: Exact vs. Approximate . 14

iv

3.2.3 Granularity: Hierarchical vs. Flat . 14

3.2.4 Topology: Centralized vs. Distributed 15

3.2.5 Communication: Cooperative vs. Non-Cooperative 16

3.3 Implementations of Load Balancing on GPUs 16

3.3.1 Thread-Mapped . 17

3.3.2 Group-Mapped . 18

3.3.3 Work-Oriented . 20

3.3.4 Binning and Reordering . 22

3.3.5 Task-Oriented Scheduling . 27

3.4 Common Low-Level Algorithmic Primitives 33

3.4.1 Challenge: Counting Non-zeros or Work Items 33

3.4.2 Challenge: Searching for Work Tiles and Items 35

3.4.3 Challenge: Efficient Binning of Work Items 36

3.4.4 Challenge: Assigning Compute Resources 37

3.5 Summary of Load-Balancing Techniques . 37

3.6 Optimizations Orthogonal to Load Balancing 40

3.6.1 Kernel Strategy for Load-Balancing Operations 40

3.6.2 Synchronization Avoidance . 42

3.6.3 Shared Memory . 43

3.7 Conclusion: A Look Ahead . 45

4 A Programming Model for GPU Load Balancing 47

4.1 Design Goals . 48

4.2 Load Balancing Abstraction . 50

4.2.1 Input from Sparse Data Structures . 51

4.2.2 Defining Load Balancing . 52

4.2.3 Defining Work Execution . 53

4.3 High-Level Framework Implementation . 54

4.3.1 Implementing Sparse Data Structures 54

4.3.2 Implementing Load-Balancing Schedules 54

v

4.3.3 Implementing Work Execution . 55

4.4 Implementation Details . 57

4.4.1 Flexible, Composable CUDA-enabled Ranges 57

4.4.2 Implementing Non-Trivial Load-Balancing 59

4.4.3 Application Space . 62

4.5 Evaluation . 63

4.5.1 Performance Overhead . 64

4.5.2 Improved Performance Response . 65

4.5.3 Lines of Code (LOC) . 67

4.6 Related Work . 68

4.7 Conclusion . 70

5 Work-centric Parallel Decomposition for GEMM on the GPU 71

5.1 Background . 74

5.2 Work Decomposition Strategies . 76

5.2.1 Sequential Cache-Blocked . 76

5.2.2 Data-parallel . 76

5.2.3 Fixed-split . 78

5.2.4 Stream-K . 78

5.3 Implementation Details . 82

5.3.1 Kernel Configuration . 83

5.3.2 Data-parallel Hybridization . 87

5.4 Performance Evaluation . 88

5.5 Conclusion . 93

6 Conclusion 95

6.1 Future Research Directions . 95

6.1.1 Multi-GPU Load Balancing . 95

6.1.2 Heuristics using Roofline Model . 96

6.1.3 Standardization of Sparse-Matrix Formats 97

vi

6.1.4 Programming Model for Locality . 98

6.1.5 Stream-K Abstraction . 98

6.1.6 Beyond Today’s CUDA . 99

7 References 100

vii

LIST OF FIGURES

1.1 Visualization of regular and irregular matrices 3

2.1 Graphics Processing Unit (GPU) Architecture 6

3.1 Lower-bound search used for searching load balanced work 35

4.1 Load balancing abstraction as a simple pipeline 50

4.2 Load balancing abstraction performance overhead analysis vs. CUB 64

4.3 Complete SpMV performance landscape with improvements 66

4.4 Speedup of our framework’s SpMV vs. cuSparse’s SpMV 67

5.1 Data-parallel execution schedules . 72

5.2 Tile-splitting execution schedules . 73

5.3 Basic Stream-K vs. hybrid execution schedules 82

5.4 Modeled Stream-K performance on NVIDIA A100. 85

5.5 Strong-scaling comparison of data-parallel and Stream-K 86

5.6 The test domain of 32,824 GEMM problem shapes 89

5.7 FP16→FP32 GEMM performance landscape 90

5.8 FP64 GEMM performance landscape . 91

5.9 Stream-K speedup vs. cuBLAS . 93

6.1 Oracle SpMV vs. cuSparse’s SpMV . 97

viii

LIST OF TABLES

3.1 Taxonomy of Load-Balancing techniques for GPUs. 13

3.2 Annotated bibliography of load-balancing techniques 38

3.3 Annotated bibliography of load-balancing techniques 39

4.1 Lines of code (LoC) comparison versus CUB 68

5.1 Stream-K FP64 Relative Performance . 92

5.2 Stream-K FP16→32 Relative Performance . 92

ix

LIST OF ALGORITHMS

1 SpMV using thread-mapped scheduling . 18

2 SpMV using group-mapped scheduling . 20

3 SpMV using work-oriented scheduling . 23

4 SpMV using binning-based scheduling . 26

5 BFS using queue-based scheduling . 29

6 Sequential cache-blocked GEMM . 77

7 Data-parallel GPU GEMM . 78

8 CTA-wide MacLoop() subroutine . 79

9 Fixed-split GPU GEMM with splitting factor s 80

10 Basic Stream-K GPU GEMM with grid size g 81

x

LIST OF LISTINGS

4.1 CSR format expressed within our framework 55

4.2 Thread-mapped load-balancing algorithm . 56

4.3 SpMV implemented within our load-balancing abstraction 58

4.4 Load-balanced SpMM computation . 62

4.5 SSSP graph primitive implementation . 63

6.1 An example of generic SpMV. 98

xi

ABSTRACT

GPU Load Balancing

Fine-grained workload and resource balancing is the key to high performance for regular and ir-

regular computations on the GPUs. In this dissertation, we conduct an extensive survey of exist-

ing load-balancing techniques to build an abstraction that addresses the difficulty of scheduling

computations on the GPU.

We propose a GPU fine-grained load-balancing abstraction that decouples load balancing

from work processing and aims to support both static and dynamic schedules with a program-

mable interface to implement new load-balancing schedules. Prior to our work, the only way

to unleash the GPU’s potential on irregular problems has been to workload-balance through

application-specific, tightly coupled load-balancing techniques. With our open-source frame-

work for load-balancing, we hope to improve programmers’ productivity when developing

irregular-parallel algorithms on the GPU, and also improve the overall performance charac-

teristics for such applications by allowing a quick path to experimentation with a variety of

existing load-balancing techniques. Consequently, we also hope that by separating the con-

cerns of load-balancing from work processing within our abstraction, managing and extending

existing code to future architectures becomes easier.

Using our insights from load-balancing irregular workloads, we build Stream-K, a work-

centric parallelization of matrix multiplication (GEMM) and related computations in dense

linear algebra. Whereas contemporary decompositions are primarily tile-based, our method

operates by partitioning an even share of the aggregate inner loop iterations among physical

processing elements. This provides a near-perfect utilization of computing resources, regardless

of how efficiently the output tiling for any given problem quantizes across the underlying pro-

cessing elements. On GPU processors, our Stream-K parallelization of GEMM produces a peak

speedup of up to 14× and 6.7×, and an average performance response that is both higher and

more consistent across 32,824 GEMM problem geometries than state-of-the-art math libraries

such as CUTLASS and cuBLAS. Furthermore, we achieve this performance from a single tile

xii

size configuration per floating-point precision, whereas today’s math libraries employ complex

kernel-selection heuristics to select from a large ensemble of kernel variants.

xiii

ACKNOWLEDGMENTS

I owe my deepest gratitude to my advisor John D. Owens. He gave me the opportunity and the

freedom to seek exciting research and become who I am today. His enthusiasm for research and

admiration of his students made the last seven years of my life truly exciting and endearing. He

has helped me find my own style of research, writing and mentoring, and these are the best gifts

anyone can ever hope to receive. Thank you John, you taught me how to look for and attempt to

solve challenging problems, and I am honored to have been a part of your exceptional research

family.

Over the years, I also had the pleasure of learning and discussing research with remarkable

individuals. Through early part of my Ph.D., Yuechao Pan and Yangzihao Wang mentored me

and taught me much of what I know about parallel programming, graphical processing units

(GPUs) and graph analytics. During the later half I had the pleasure of learning from Serban

D. Porumbescu, a terrific post graduate of our research group. Since joining our group, Serban

has been a key resource and has helped me not just with the academic but also personal and

professional matters. He is also responsible for helping me edit many of my research works, and

I will forever be grateful for the time that he has spent making my graduate school experience

truly extraordinary.

Among the folks in the industry, I was lucky enough to learn CUDA from the CUDA archi-

tect himself, Stephen Jones! Stephen has always been a great friend to the group, but has been

especially kind to me and taught me the value of good software design and engineering. From

Duane Merrill and Cris Cecka I learned everything about low-level optimizations and writing

high-performance GEMM kernels. I also had the chance to work with Michael Garland, with

whom I enjoyed fruitful discussions that led to many significant design decisions within my

research.

I truly enjoyed working with my co-authors and collaborators: Jonathan Wapman, Carl

Yang, Minh Truong, Chenshan Yuan, Leyuan Wang, Weitang Liu, Andrew Davidson, Yuduo

Wu, Andy T. Riffel, Aydin Buluç, Toluwanimi Odemuyiwa, Cameron Shinn, Collin Michael

McCarthy, and Saurav Muralidharan. I also would like to thank my students Minh Truong,

Jonathan Wapman, Daniel Loran, Cameron Shinn and Annie Robison, who I had the pleasure

xiv

of mentoring as they found their own place within the research group. It was a privilege.

Among the terrific people already mentioned, I would like to add the rest of my outstanding

colleagues, with whom I have spent large parts of the last seven years: Muhammad Awad,

Kerry Seitz, Afton Geil, Agnieszka Łupińska, Saman Ashkiani, Vehbi Eşref Bayrktar, Ahmed

H. Mahmoud, Yuxin Chen, Zhongyi Lin, Radoyeh Shojaei, Chuck Rozhon, Matthew Drescher,

Shalini Venkataraman, Nima Johari and Teja Aluru. I am fortunate to have experienced the

influence of so many talented and hardworking people in my life.

I would also like to extend my gratitude to Prof. Venkatesh Akella, Prof. Soheil Ghiasi,

Jason Lowe-Power and Sean Treichler for dedicating their time and attention to be a part of my

qualification exam committee, and also Prof. Akella and Jason for further providing me with

feedback and guidance on my dissertation. Additionally, I would like to thank Sean and Aamer

Jaleel for dedicating an hour out of their busy schedule every week for months to give feedback

on mine and my colleagues’ research works. I also wish to thank the past and current UC Davis

ECE staff, who always work hard to remove frictions from the path of students and professors,

and enable us to focus on our research. Among the staff, I especially thank Sacksith Ekkaphanh,

Phil Young, Fredrick P. Singh, Jennifer Y. Torres, Carole Bustamante, and Michelle T. Walker.

Graduate school would be way too stressful without friends, and I have been lucky enough

to have a lot of wonderful friends that helped me get through some of the most stressful times

with lots (and lots) of distractions. The RPG, anime and manga theory crafting with Aaron

Feaster and Thea Tesoro, the Dungeon & Dragons sessions and the countless hours1 spent play-

ing Destiny and Overwatch with Nate Bryant, Jesse Navarro, Christian Perry, William “Billy”

Lucas, Krestine Whaley, Jace Locario and Tiffany Simonet, and the League of Legends games

with Megan Vieira. My late friend Pierre “Link” Schreurs, dearly missed, who’s absurdity and

jokes always made us laugh till we had tears in our eyes. Thank you all for being the best of

friends.

I extend my love and gratitude to my fiancée, Melissa Vieira. Despite the distance that

separated us during these years, you have supported me with your love and joy. I am lucky to

have you and truly excited to spend the rest of my life with you.

1Please don’t tell John.

xv

My research would not have been possible without the financial support from the National

Science Foundation (SI2-SSE), the Defense Advanced Research Projects Agency (XDATA,

HIVE and Symphony), the United States Geological Survey Agency (USG23), equipment do-

nations from NVIDIA and their funding of an NVIDIA AI Lab at UC Davis, and a 2022 UC

Davis ECE Dissertation Fellowship.

And finally, to my family—I am what I am today because of you. I thank my parents,

Shahid and Fozia, who have worked tirelessly throughout their lives, foregoing personal plea-

sure to raise me and my sibilings with all the love, care and support in the world, and who

always taught us to learn and unravel the secrets of this world. I thank my sister, Sahar, who

continues to be the symbol of patience and courage, which I needed to chase after my dreams. I

thank my brother, Umair, who ever since I was a kid, has been my role model—your hardwork,

passion and persevarence has led me down a path of excellence. I thank my sister-in-law and

brother-in-law, Maria and Rameez, for their support and love. I thank my niece and nephews,

Hadiya, Hashir, Musab, and Mahad, who are my sweet little bundles of joy and my source of

happiness. Whatever I did to deserve you, it could not have been enough.

Thank you.

xvi

Chapter 1

Introduction

Graphics Processing Units (GPUs), born out of the needs of graphics for games, dealing with

vertices that make up triangles and subsequent fragments generated by the rasterizer, have

evolved to be more general-purpose and programmable. GPUs now excel in many other do-

mains beyond graphics, such as machine learning applications, graph analytics, sparse linear

algebra, real-time interactive media, physical simulations, and bioinformatics. GPUs are used

as a staple for accelerating data-parallel workloads within these domains, where parallelism is

exploited by operating on multiple elements of data simultaneously.

Data parallelism within these application domains can be classified based on the granularity

of work, where granularity (or grain size) is a measure of the amount of work performed by

each task [44]. Fine-grained data parallelism is present when the granularity of work is much

smaller than the entire problem. The problem is broken down into smaller components with

small amounts of computations that map well to less sophisticated processing elements. Com-

putations between fine-grained components have high communication overhead, and the impact

of workload imbalance among processing elements is fairly large. Coarse-grained data paral-

lelism is present when a program is broken down into a small number of large, computationally

intensive tasks, and between the tasks, there is low communication overhead [44]. Due to their

large number of cores and their throughput-oriented design, modern GPUs excel at processing

fine-grained data-parallel tasks. NVIDIA’s GA100 GPU, for example, boasts 128 Streaming

Multiprocessors (SMs) with 8192 total cores and High Bandwidth Memory (HBM) to keep the

cores fed with data, both promoting fine-grained parallelism [71].

1

In this dissertation we take a closer look at two categories of fine-grained parallel work, reg-

ular and irregular computations, and explore the fundamental underlying software technology

that allows these computations to run efficiently on the GPU architecture: load balancing. In

this context, a computation is defined to be regular when the neighboring processing elements

have similar or identical workloads. In contrast, a computation is irregular when neighboring

processing elements have varying amounts of work to process. Figure 1.1a shows an exam-

ple of a dense matrix used in a General-Matrix Multiplication (GEMM) computation, a regular

workload where the partition of the work can be statically and trivially determined, such that

each processing element performs identical amounts of reads, writes, and multiply-accumulate

instructions. In contrast, Figure 1.1b visualizes a graph represented as a sparse matrix used

in sparse-linear algebra operations such as Sparse-Matrix Matrix Multiplication (SpMM), an

irregular workload where each processing element has varying amounts of reads, writes, and

nonzero values to process, and thus an inherent load imbalance within the dataset.

To leverage fine-grained parallelism within regular and irregular computations on a GPU, we

attempt to maximize the available memory bandwidth and compute throughput. For compute-

bound, regular problems such as GEMM, the predominant approach is to find the optimal size

of chunks of the complete workload, which efficiently utilizes the GPU memory hierarchy, and

map that onto the GPU cores in oversubscribed “waves” of work. These waves get scheduled

onto the GPUs as resources become available until all waves/work is completed. In practice,

the last wave of scheduled work often underutilizes the GPU, causing millions of instructions to

parallelize over only a small subset of the total available cores. In contrast to prior approaches,

which built complicated heuristics selecting different chunk sizes for the waves of work to

better utilize the device, this dissertation addresses the resource imbalance problem for GEMM

by instead balancing the total available work to a fixed, device-filling number of processing

elements. Our approach is a generalization of previous parallel decompositions and removes

the need for complicated heuristics for kernel selection for GEMM (and other regular problems

alike).

For irregular computations, however, the irregularity within the program loop-structure or

the data itself varies tremendously, making it difficult to find one parallel decomposition that

2

(a) An example dense matrix of size 2048×2048
used as an input to linear layer of a ConvNeXt

architecture [59]. In a dense matrix-matrix
multiply (GEMM), all values of this matrix will be

consumed, with neighboring threads each
processing an identical number of elements.

(b) Xyce circuit simulation matrix (graph) of size
321,671×321,671 with 1,316,085 nonzero values
irregularly distributed [29]. If this data is stored in

a typical sparse-matrix format (e.g., CSR), only
nonzero values will be consumed, and the varying

amount of work per matrix row means that a
straightforward mapping to a GPU results in

neighboring threads consuming different amounts
of work.

Figure 1.1: Visualization of regular and irregular matrices.

balances all problems onto available GPU resources. Instead, there is an inherent tradeoff be-

tween the quality of the balance and the amount of extra work needed to compute the workload

balance. This dissertation addresses the workload balancing problem for irregular workloads

with a load-balancing abstraction, which separates workload mapping from work execution.

We argue and demonstrate that this is the superior approach to building high-performance ker-

nels for irregular applications as it promotes reuse of existing load-balancing techniques and

facilitates improved portability and programmability.

1.1 Contributions
This dissertation makes several contributions to the areas of load balancing regular and irregular

computations on the GPU.

3

• We conduct a survey of current load-balancing techniques used for sparse-irregular appli-

cations (Chapter 3).

• We present our GPU load-balancing abstraction that promotes the separation of concerns

between workload mapping and work execution. Our GPU load-balancing framework re-

constructs existing application-dependent techniques that address irregularity to be more

general, portable, and programmable (Chapter 4).

• We provide a solution to the resource balancing problem for dense-regular computations

such as GEMM. Our approach provides improved performance compared to highly-

optimized vendor library, cuBLAS, generalizes existing solutions and removes the need

for complicated heuristics to select the right set of tile sizes and shapes when scheduling

(Chapter 5).

4

Chapter 2

Background

2.1 Graphics Processing Unit (GPU) Architecture
Modern GPU architectures feature two separate hierarchies, one targeted at the individual pro-

cessing cores organized into a parallel compute hierarchy (Figure 2.1b) and the second targeted

at the memory scopes such as L1 and L2 cache, programmable shared memory, and global mem-

ory, all organized into a memory hierarchy (Figure 2.1a). Using NVIDIA’s popular Compute

Unified Device Architecture (CUDA) programming model for parallel computing, the compute

and memory hierarchies are exposed for programmers to build general-purpose computing ap-

plications for GPUs. In this chapter, we provide a brief overview of CUDA’s compute and

memory hierarchies and highlight their significance for load balancing.

2.1.1 CUDA’s Compute Hierarchy

The compute hierarchy within the CUDA programming model leverages multiple compute

“perspectives” that get mapped onto physical streaming multiprocessor cores (SMs) on the

GPU. The SMs feature a Single Instruction Multiple Thread (SIMT) programming model to

achieve multithreaded data-parallel execution [24]. CUDA further expands the compute hierar-

chy within the SMs using a software abstraction of threads, the smallest unit, grouped to create

larger compute perspectives like a warp, a block, and more. Figure 2.1b illustrates how a CUDA

grid, mapped onto the physical SM, is broken down into a number of compute perspectives. The

finer-grained perspectives within the hierarchy allow us to do more flexible, higher-performance

communication when compared to coarser-grained perspectives. The following list summarizes

5

Global Memory (80GB)

L2 Cache (40MB)

SM 0

Regs

(256k)

SM 1

Regs

(256k)

...
SM N

Regs

(256k)

L1

(192k)

L1

(192k)

... L1

(192k)

(a) CUDA’s Memory System NVIDIA A100
sizes for global memory, L1- and L2-caches,

registers used as an example.

int i = threadIdx.x + (blockIdx.x * blockDim.x);
y[i] = a * x[i] + y[i];

threads 0-31 threads 32-63 threads 64-96 ...

WarpWarp 0 WarpWarp 1 WarpWarp 2 ...

Thread Block

Block 0

...

Block 1

Block N

Grid

threads 224-255

WarpWarp M

(b) CUDA’s Compute Hierarchy Shows how a kernel
is mapped onto the individual threads of a CUDA grid.

Figure 2.1: GPU architecture illustrated as CUDA’s memory system and compute hierarchy.

each of these perspectives and their purpose:

• Thread The smallest processing unit. Each thread runs an instance of a GPU program

called a kernel.

• Warp 32 CUDA threads that run in lockstep. Threads in a warp are divergent-free, and

run in a Single Instruction Multiple Data (SIMD) fashion.

• Block A block or Cooperative Thread Array (CTA) in a GPU is a group of threads that

cooperate together to process a slice of data in an algorithm and map onto the same

Streaming Multiprocessor (SM). Multiple blocks may run on the same SM concurrently.

• Clusters A thread block cluster is a collective of blocks, co-scheduled on adjacent SMs.

• Grid The collection of all blocks that run on all the SMs in a single device.

2.1.2 CUDA’s Memory Hierarchy

The CUDA memory model is similar to modern CPU architectures. It features L1- and L2-

cache, with varying caching policies and traits depending on the GPU architecture. It also

features the following list of programmable memory scopes:

6

• Global Memory An off-chip memory shared by all SMs.

• Shared Memory Fast on-chip memory shared among different threads in a single block,

but not between blocks. Shared memory is limited per SM and is often used to store data

that is accessed across an entire block. On some architectures, shared memory shares the

same pool of memory as the GPU’s L1 cache and the programmer may specify how much

of this pool to assign to cached vs. explicit data storage.

• Registers Any scalar variables declared within the scope of a kernel are by default stored

within registers. Register data is only visible locally at the thread-level scope. It is the

fastest memory in a GPU.

2.1.3 Impact on Load-Balancing

High-performance implementations of fine-grained parallel workloads require programmers to

design their kernels with the previously described compute and memory hierarchies in mind.

Warps’ SIMD execution model is hardware-efficient and is a great match for many workloads.

However, it forces programmers to avoid any discrepancies in instructions between the neigh-

boring threads within the same warp. Load-balancing techniques must ensure that threads

within the same warp have approximately the same amounts of work to process as well as

the same set of instructions. At a block level, NVIDIA’s hardware scheduler also plays an im-

portant role in scheduling blocks to the underlying SM as resources become available. Work

scheduled to the GPU is often oversubscribed to its resources, therefore, the blocks get sched-

uled out as they finish their set of work with new blocks assigned to keep the GPU fully utilized.

Programmers often spend time balancing the workload for a given block (or various compute

hierarchies) and then rely on the hardware scheduler or the data workload distribution itself to

balance the resources of an SM to a given problem. We discuss this and other load-balancing

techniques in detail in Chapter 3.3.

Memory hierarchy also plays a significant role in optimizing kernels, where the most impor-

tant consideration is minimizing the memory accesses required to access data at a thread-level

granularity. This includes coalesced memory accesses, where multiple memory accesses are

grouped into a single transaction. However, many irregular problems inherently result in un-

7

coalesced loads and stores where the accesses become serialized; this is due to the sparse or

random access nature of these workloads. For both regular and irregular workloads, memory

hierarchy is utilized to reduce the number of off-chip (global memory) accesses needed by

caching the accesses to L2/L1, registers, and the shared memory.

8

Chapter 3

A Survey of GPU Load-Balancing
Techniques for Irregular Applications

Graphical Processing Units (GPUs) excel at and are generally designed for regular fine-grained

parallel problems, such as General Matrix Multiplication (GEMM). In regular problems like

GEMM, neighboring threads have similar or identical workloads and often achieve nearly 100%

of peak GPU theoretical performance. What is much more challenging is an application with

ample fine-grained parallelism but irregular parallelism. In such applications, neighboring

threads running in a lockstep fashion will have different workloads—perhaps different amounts

of work—making an efficient implementation on a highly parallel machine like a GPU a signif-

icant challenge.

Consider Sparse-Matrix Vector Multiplication (SpMV), a critical kernel within scientific

computing for sparse linear algebra and sparse eigenvalue solvers [31]. A sparse matrix A

and a dense vector x defined as inputs, SpMV computes the output vector y = Ax and is an

example of irregular fine-grained parallelism. Unlike in GEMM, the sparse matrix in SpMV

can contain irregularity within the rows of the matrix: the rows of the matrix can have different

numbers of non-zero entries. A simple mapping of one row to each GPU thread can expose this

irregularity, where the neighboring threads may get different amounts of non-zeros to process,

causing threads within the same warp1 to wait on threads with large amounts of non-zeros. The

1Reminder: A CUDA warp is a collection of 32 threads that execute instructions in lockstep. Threads in a warp
are divergent-free, and run in a Single Instruction Multiple Data (SIMD) fashion.

9

imbalance created due to this irregularity—specifically, when the work is not equally distributed

among the parallel actors, and consequently, some actors are idle while others do more work—

is defined as the load imbalance problem. Current approaches to addressing the load-imbalance

problem is by distributing the work evenly among threads using sophisticated load-balancing

techniques.

In this survey, we look at these fine-grained GPU load-balancing techniques that are used to

date to implement high-performance kernels for irregular applications such as graph algorithms

(Breadth-First Search), sparse-linear algebra (Sparse-Matrix Multiplication), and many others.

But this problem is not specific to GPUs alone. In the past several decades, researchers have

proposed many solutions to load imbalance for SIMD and SIMT programming models alike [10,

12, 58]. However, given the prevalence of GPUs, their unique compute and memory model (see

Chapter 2), this work addresses the need for a broad understanding of the literature space. Our

contributions are the following:

1. A taxonomy of GPU load-balancing techniques to categorize the load-balancing algo-

rithms (Section 3.2).

2. A deeper dive on key techniques that appear in the literature (Section 3.3).

3. An understanding of implementation details and building-block algorithms required to

implement these techniques (Section 3.4).

The irregularly-parallel workloads we encountered in our survey predominantly focus on

sparse linear algebra (with problems such as sparse-matrix dense-vector multiplication, sparse-

matrix sparse-matrix multiplication), graph analytics (with algorithms such as breadth-first

search, single-source shortest path, triangle counting, and general graph analytics programming

abstractions), and computer graphics (ray traversal).

3.1 Related Works
To the best of our knowledge, only one other paper from 2017 conducts a survey of GPU load-

balancing techniques [16]. Busato and Bombeiri explain some of the key techniques used at that

time to implement load balancing on older GPU architectures, and provide and performance,

10

power and energy analysis on a small subset of sparse datasets. Contemporary to Busato and

Bobeiri’s approach, our survey not only updates the load-balancing survey literature with new

and old techniques, but also provides a deeper dive into their implementations and the un-

derlying low-level primitives. We also build a fine-grained GPU load balancing taxonomy to

characterize any current or future load-balancing algorithms.

3.1.1 Compressed Sparse Data Structures

Irregularly-parallel applications often operate on sparse datasets, or datasets in which a signif-

icant portion of the data consists of “zero” values that make up the bulk of the data in the data

structure, but that would be wasteful to store. Sparse data formats allow the programmer to both

store the data more efficiently in memory by omitting explicit “zero” values as well as access the

data more efficiently once it is in a sparse format without performing useless work. Since many

sparse workloads are bandwidth-bound rather than compute-bound, the cost of moving data into

the GPU’s memory hierarchy is a key factor in determining the performance of a sparse work-

load. In fact, load balancing is often a function of making sure that all processors are reading

or writing equal amounts of data rather than performing arithmetic on equal amounts of data.

Performant sparse data formats commonly group logically-adjacent work items in memory so

that they can be read or written in a single memory transaction, so that elements within a group

share data (such as row or column metadata), or so that the size of all groups in the data struc-

ture are equal. In this section we describe a few common compressed data structures that are

used to represent these datasets.

First, consider a matrix where only a handful of the elements are non-zero. We can represent

this matrix as a COO (coordinate) format, which is a simple list of nonzero elements. Each

element is stored as a tuple of row, column, and value. These tuples are often sorted first by

row and then by column within each row, but this step is optional. The COO format works well

when the programmer simply wants to split nonzeros into multiple groups.

The primary downsides of the COO format are that it uses more space than necessary due to

explicitly-stored row and column indices for each nonzero, and it is computationally expensive

to perform queries on the matrix, especially if it is unsorted by row and column. For example,

determining the number of nonzeros in a row requires an iteration over the list, as do random

11

accesses into the matrix. To solve this problem, we can use the Compressed Sparse Row (CSR)

format, which is a more space-efficient format that stores nonzero elements in a compressed

format. CSR uses a simple row-major list of nonzero column indices and values, as well as a

prefix-sum that stores a running total of the sum of the nonzeros in all previous rows. Compared

to COO, this eliminates the need for row index storage, allows kernels to quickly determine the

number of nonzeros in each row with a single subtraction operation, and enables faster random

or iterative accesses into a given row.

There are many other alternative data structures that typically require more preprocessing,

as described in Table II by Fillipone et al. [31]. In general, preprocessed formats are a form of

static load balancing, where the programmer analyzes how the data will be accessed and uses

this information to optimize the data structure, with an assumption that the cost of preprocessing

the data format will pay off on net, either by amortizing the preprocessing cost over many

computations or by significantly speeding up the computation. In this work we primarily focus

on CSR and COO formats in part because they are the most common formats used in sparse

linear algebra on GPUs, and in part because they represent two different ways of organizing

data with opposing trade-offs. COO is a list of coordinate/value tuples, where the programmer

can easily subdivide the data structure based on an equal split of nonzeros, but where the cost to

access information about the row the nonzero is a part of is more expensive. In contrast, CSR is

a compressed format allows the programmer to easily subdivide the data structure into an equal

number of rows, but requires the programmer to pay an additional cost to load balance across

rows or access a random nonzero element.

3.2 Taxonomy of GPU Load Balancing
This section focuses on building a taxonomy of GPU load balancing. Our goal with this tax-

onomy is to (1) characterize existing load-balancing techniques found in GPU literature (see

Section 3.3 for a deeper-dive on implementations, Section 3.4 for a study on common low-

level algorithmic primitives used for load-balancing, and 3.5 for a complete summary), and (2)

provide an abstraction to classify future works searchability.

12

Configuration Accuracy Granularity Communication Topology

Static Exact Hierarchical Cooperative Centralized
Dynamic Approximate Flat Non-Cooperative Distributed

Table 3.1: Taxonomy of Load-Balancing techniques for GPUs, a layout elaborating how
load-balancing algorithms can be characterized.

3.2.1 Configuration: Static vs. Dynamic

Load-balancing algorithms fall into two distinct approaches; static and dynamic. Static algo-

rithms use only the information known before the algorithm launches. This may include the

number of work items or tiles in the dataset, the number of threads or SMs in a given GPU,

or any other characteristics of a given dataset, algorithm, or GPU architecture that can be de-

termined without actually running the algorithm. The work distribution does not change as the

algorithm proceeds, and static load-balancing strategies do not account for any runtime changes

in the state of the processors or the problem. Therefore, static load-balancing algorithms have

no notion of the load on each processor during the execution period. Conversely, dynamic load-

balancing algorithms account for the changing incoming or outgoing load on each execution

unit by measuring and (re-)distributing that load at runtime. For example, some kernels may

dynamically create new work during runtime, and a dynamic load-balancing strategy allows

the kernel to immediately process this new work with idle processors rather than waiting for a

later kernel launch to do so. Other load balancing strategies may rely on processors greedily re-

questing or donating work during runtime. Because dynamic approaches can redistribute work

at runtime, they can potentially have better overall performance than static approaches, which

do not. But this performance comes at the cost of additional runtime work. Thus dynamic

approaches win only if the performance gains from better load balance exceed the additional

cost of the runtime work to compute it. This is not always a win; Yang et al.’s sparse-matrix

multiplication analysis [88] and concludes that static approaches for this problem deliver better

overall performance.

For load-balancing techniques that use both static and dynamic approaches, we use the

classification of Hybrid [22]. Hybrid algorithms may use a static technique for one segment of

13

the problem (or one part of the compute hierarchy) and a dynamic technique for another.

3.2.2 Accuracy: Exact vs. Approximate

The ideal load-balancing strategy aims to minimize runtime. In practice, such a strategy aims to

balance work evenly across all compute elements (threads, warps, or blocks) so that each com-

pute element completes its work at the same time and no units are ever idle waiting for others to

finish. Optimal algorithms use the properties of the problem and the number of available execu-

tion units to determine the exact amount of work to assign to each unit to ensure all execution

units are fully utilized at all times. These algorithms may achieve optimal load balancing for a

given cost function. In GPUs, the cost function often results in modeling the variance of work

between neighbouring threads, and the goal of the load-balancing is to attempt to assign equal

amount of work items per thread (an “even-share” schedule [8, 26, 35, 63, 64, 78], another cost

function may model execution time, and a load-balancing schedule optimizes this cost function

to ensure that each thread runs for approximately the same time). However there is often an

overhead associated with load balancing techniques that attempt to achieve exact workload bal-

ance across all processing units. Approximate load-balancing algorithms, on the other hand,

focus on metrics within the problem or the dataset, or the attributes of the system (such as the

number of threads) to attempt to distribute the work equally across processors. Approximate

algorithms may achieve inconsistent load balancing depending on the metrics used, but can be

tuned to reduce the overhead required to achieve a balanced workload. The resulting trade-off

between the cost of load balancing and the quality of the workload balanced achieved is an

important consideration when opting for an exact or approximate load-balancing algorithm.

3.2.3 Granularity: Hierarchical vs. Flat

Hierarchical schedules leverage the compute hierarchy available within NVIDIA GPUs by

breaking the workload into coarse-grained chunks that map to the highest level of the com-

pute hierarchy (for example the blocks) and then further break down the work into smaller

granularities that proportionally map to smaller computation constructs such as warps and/or

threads [64]. Section 2.1 explores this concept in more detail. Flat scheduling algorithms

are designed to target the smallest computational unit in the hierarchy (threads) and are not

14

mapped to the compute hierarchy available within GPU architectures [28, 65, 84]. Hierarchical

schedules often improve load balance by ensuring that a given work chunk maps to a group of

computational units instead of a single (smallest) unit with proportional computation capabil-

ities, and process the mapped work in parallel using the compute hierarchy within the group

(CUDA’s compute hierarchy explained in Chapter 2). For example, a row in a CSR matrix

with few nonzeros may be most efficiently processed with a single thread, since processing this

row with an entire block would leave many threads sitting idle when they could otherwise be

processing other rows. As another example, to avoid significant amounts of atomic contention,

a queue-based algorithm may assign a single thread to fetch a large chunk work on behalf of

all threads in a block, but then further subdivide this work amongst the threads in the block.

Beyond their increased complexity, the primary downside of hierarchical schedules is that the

performance gains from leveraging coarser-granularity workers may not be enough to outweigh

imperfect load balance within the coarser-granularity work chunks.

3.2.4 Topology: Centralized vs. Distributed

Centralized schedules focus on a distribution unit responsible for assigning work items to mul-

tiple processors. As an example, the GPU’s (hardware) block scheduler distributes work to

all SMs, assigning a new block to an SM when the SM is ready for new work. In contrast,

distributed schedules rely on individual processors making independent, local decisions about

when they need more work.

Consider a shared queue of work, accessible by all blocks. A centralized strategy for manag-

ing this queue has a single entity (either hardware or software) that is responsible for distributing

work to processors. A distributed strategy instead delegates the responsibility for fetching new

work to each processor: processors must actively fetch new work for themselves as needed,

while competing with other processors to claim work from the queue. Centralized and Dis-

tributed schedules only apply to dynamic schedules. In static schedules, each processor already

knows exactly which work items it must process, so there is no concept of “shared” work that

could go to one of many processors depending on runtime decisions.

15

3.2.5 Communication: Cooperative vs. Non-Cooperative

Cooperative schedules allow processing entities to communicate with each other, for example

in work-stealing load-balancing algorithms where threads are able to steal work from other

threads within a warp or another block [11]. Non-cooperative algorithms require processors

to operate autonomously within their own pool of work and with no ability to access pools

of work that may be simultaneously accessed by other processors. In a throughput-oriented

architecture, such as a GPU, cooperation often requires expensive synchronization, such as

locks or atomics on queues. However, cooperation may result in a better workload balance [22].

Similar to Centralized and Distributed schedules, the concept of “cooperation” only applies to

dynamic schedules. Cooperation requires that processors are able to make decisions at runtime

about whether they need more work, or whether they have additional work to give to another

processor.

3.3 Implementations of Load Balancing on GPUs
In this section we conduct a study of how load-balancing techniques (summarized in Table 3.2)

actually get implemented. We characterize these implementations using the taxonomy built

in the previous section, and group each implementation under common patterns of scheduling

work.

Terminology For consistency, we will use the following terms to describe the partitions of

work within the different load-balancing techniques.

• Work Item: A single unit of work that is to be scheduled onto the GPU; for example, a

non-zero element of a sparse matrix.

• Work Tile: A collection of work items, for example, a single row of a sparse matrix.

• Tile Set: A collection of work tiles that together comprise the entire problem, for exam-

ple, an entire sparse matrix.

The terminologies summarized above are later built into a complete abstraction for load-

balancing on the GPU, and are explained in detail in Section 4. As an example to illustrate the

16

terminology, consider Sparse-Matrix Dense-Vector Multiplication (SpMV). The irregular work

in SpMV is within the sparse matrix, where the work items (the smallest units of work) are the

non-zero elements, a work tile is a row of the sparse matrix, and a tile set is the entire sparse

matrix. The work items are scheduled onto the GPU using a load-balancing technique.

The rest of this section describes different strategies for load-balancing work. We can choose

to assign an equal number of work tiles to each thread (Section 3.3.1) or to a group of threads

(Section 3.3.2), or instead assign an equal number of work items to each thread (Section 3.3.3).

We use several low-level algorithmic building blocks to construct these load-balancing tech-

niques, such as parallel prefix-sum (scan), binary search, sorting, and more. We defer a detailed

explanation of these building blocks to Section 3.4.

3.3.1 Thread-Mapped
Definition

Assign a fixed, constant number of work tiles to each thread. Resultant work items from each

work tile are processed sequentially within the thread.

Characterization

Static, Approximate, Flat.

Evaluation

Works well for small, balanced work tiles; not recommended for tile sets where the variance

between work tile size is large (e.g., scale-free graphs).

Perhaps the most natural way to parallelize across work tiles is to assign each work tile to a

GPU thread, and sequentially process the work items within the work tile. For problems where

the workload is inherently balanced, the additional overhead of a sophisticated load-balancing

scheduling of work can often be detrimental to performance. In such cases, this simple thread-

mapped assignment can prove to be a viable substitute. However, the resultant workload bal-

ance with this method is often at a coarser granularity. As discussed in detail in Merrill et

al.’s “Merge-Based Parallel Sparse Matrix-Vector Multiplication” [64], the performance for a

thread-mapped assignment is typically not as good as other schedules if the problem is highly

irregular or if there are large amounts of fine-grained parallelism left to explore. Because each

17

thread contains a fixed-size set of tiles and in a highly irregular dataset, each tile may contain

a different amount of work, such datasets cause threads within the same warp to be waiting on

threads with significantly more work, causing very low warp or block utilization and poor per-

formance. Furthermore, since a thread is assigned an entire work tile, the work items within a

tile—for example, the nonzeros within a sparse-matrix’s row—are sequentially processed, and

the fine-grained parallelism within the work tile is effectively serialized, leaving the device un-

derutilized. Algorithm 1 shows a simple example of thread-mapped assignment as a scheduling

strategy where each thread is assigned a fixed, statically determined input and output elements

to process [14, 65, 84].

Algorithm 1 Simple pseudocode to illustrate thread-mapped scheduling where each thread is
assigned to work on N input and output elements of the saxpy operation.

N← 4 B Four items per thread.
procedure THREAD-MAPPED(α, x, y)

tid ← N× ThreadIndex()
B Loop can be perfectly unrolled.
for k← 0, k++, while k < N do

y[tid + k]← α · x[tid + k] + y[tid + k]
end for

end procedure

3.3.2 Group-Mapped
Definition

Assign an equal amount of work tiles to a group of threads (warp or block). Threads within

each group process individual work items in parallel.

Characterization

Static, Approximate, Hierarchical.

Evaluation

Exposes fine-grained parallelism within a work tile, and is highly tunable to different prob-

lems (allowing the group size to be configured to fit a problem). Works well for fairly regular

workloads where no one group takes too much GPU resources.

18

In contrast to the coarse-grained thread-mapped approach, for irregular problems with ample

amounts of fine-grained work items, consider assigning groups of threads to process a single

work tile in parallel. For this approach, we can leverage the existing compute hierarchy available

within CUDA’s programming model: threads, warps, and blocks. A larger compute unit such

as a block or a warp could potentially prove to be a better mapping for a work tile that has a

large number of work items to process. This is because instead of serializing the work within

a work tile, we can assign all threads within a block or a warp to process that work in parallel,

promoting better utilization and load balancing within the thread group.

This strategy of assigning an entire tile of work to a group of threads (either a warp, a

block, or a “Cooperative Group” [69]) of a GPU is called group-mapped load balancing. Group-

mapped is typically implemented by first assigning an equal number of work tiles to each group,
Total Work Tiles

Total Groups . Then to effectively map the assigned tiles onto the threads within a group, each

thread individually needs two sets of information: (1) The total number of work items it is

processing (a range from work item i to work item j) and (2) what work tile each work item

belongs to. A parallel prefix sum gives us both pieces of information. Discussed in detail in

Section 3.4, a prefix sum is a sequence of numbers that is the running total of an input sequence.

In group-mapped’s case, a prefix sum of work items per assigned work tiles is constructed,

where the last element of the prefix sum sequence is the total number of work items the group

needs to process. To solve (1), we simply divide the total number of work items assigned to the

group by the number of threads within the group to get the “range” of work items any given

thread is going to process. And for (2), when processing the work items within a loop, each

thread performs a binary search within the prefix sum sequence to determine the work tile index

the current work item corresponds to (see Algorithm 2, lines 8–10).

Using the running SpMV example, if a row of a sparse matrix is assigned to an entire warp,

all 32 threads within a warp will collectively process each nonzero element within the row.

Similarly, if a row is assigned to an entire block, all threads within the block will process the

individual nonzero elements of the row [28].

Group-mapped load balancing exposes the fine-grained parallelism available in each work

tile to a group, allowing the work items to be processed in parallel, with the cost being the over-

19

head of a parallel prefix sum per group (warp or block) and the binary search to find the work

tile within the parallel prefix sum array. A group-mapped assignment also heavily relies on the

underlying hardware scheduler’s ability to schedule new thread groups as a group finishes pro-

cessing a work tile. This method is also commonly known as warp-mapped or block-mapped

scheduling, and is often used in conjunction with dynamic scheduling techniques such as a

dynamic task queue [22] to create a hybrid load-balancing strategy discussed later (see Sec-

tion 3.3.5). Generally, irregular problems with structured regular blocks within them map well

to this load-balancing schedule.

Algorithm 2 An example group-mapped scheduled kernel for sparse-matrix dense-vector mul-
tiplication (spmv), where each group is assigned an entire row and threads within the group
process individual nonzero elements.

1: input: A, CSR Matrix. x, Dense Vector.
2: output: y, Dense Vector.
3: procedure GROUP-MAPPED(A, x, y)
4: items per tile← Zeros(GROUP SIZE)
5: tid ← ThreadIndex()
6: gtid ← ThreadIndexInGroup()
7: B Each group populates an array with the number
8: B of work items per tile.
9: items per tile[gtid]← A.offsets[tid + 1] – A.offsets[tid]

10: prefix sum array← ParallelPrefixSum(items per tile, tid)
11: B Last element of prefix-sum array corresponds
12: B to total work items per group.
13: total items← prefix sum array[GROUP SIZE – 1]
14: B Loop over total work, each thread processing individual work items.
15: for k← tid, k + GROUP SIZE, while k < total items do
16: B Perform a binary-search to find the tile index.
17: row← BinarySearch(prefix sum array, k)
18: y[row]← A.values[k]× x[A.indices[k]]
19: end for
20: end procedure

3.3.3 Work-Oriented
Definition

All threads are assigned Total Work
Number of Processors work items. Each thread then sequentially processes

assigned work items in a loop.

20

Characterization

Static, Exact, Flat (+ GPU hierarchy).

Evaluation

Works well when the upfront cost of performing a prefix sum or binary search is minor com-

pared to the cost of processing the work items; very effective at balancing highly irregular work

(such as in scale-free graphs).

So far we have considered two load-balancing techniques that map work tiles, the input, onto

compute entities (thread- or group-mapped), however, neither are guaranteed to achieve perfect

workload balancing at the device level. Instead, we consider the work items as the granularity

targetted for load-balancing, where additional computation is done to assign equal amounts of

work items to each thread in a GPU, achieving exact workload balancing. This approach is

known as work-oriented scheduling and can be implemented via two predominant methods,

which largely differ in the definition of a “work unit”.

Since the goal is to assign a constant number of work items per thread, the definition of a

work item is an important design decision. The first method, known as non-zero splitting (used

for sparse-linear algebra kernels such as SpMV), considers the total number of nonzero elements

within a sparse-matrix or total multiply-accumulate instructions (yi += Aij × xj) as the total

work [8, 26, 88]. The second method, merge-path, considers a work item as either a nonzero

element or an output, effectively associating an equal cost to a nonzero and to outputting a

value to the GPU’s global memory [35, 64]. Fundamentally, the work-oriented assignment is

a mapping of the Total Work
Number of Threads

to each thread, where each thread is assigned a contiguous

range of work items to process in a sequential loop. A binary search per thread (a key low-

level algorithm discussed in Section 3.4.2) then finds the work tile for each range of work items

thread must process (see Algorithm 3).

Merge-path was originally proposed for SpMV kernels. In a merge-path SpMV, the sparse-

matrix is stored in a compressed sparse row format (CSR), where the row offsets of the CSR

matrix are already known (the row offset array is effectively a prefix-sum array). The schedule

aims to perform a 2-D split of the grid created using the row-offsets and the nonzero indices, and

21

the search along the diagonal of the grid allows each thread to find its starting and ending rows

and nonzeros. The merge-path schedule ensures that there is constant number of fix-up steps

(i.e., the number of threads) required to accumulate the partial rows that were split between two

threads. The result of a merge-path schedule is that work is mapped to the smallest possible

compute unit in the hierarchy, but merge-path takes advantage of the compute hierarchy by first

splitting the work across blocks, and then to threads within a block to reduce the search space

each thread has to search through (each thread now only searches through its block’s share of

the work). If the data is already stored in a CSR representation (as proposed by the original

paper by Merrill and Garland [64]), the cost of this method is the 2-dimensional binary search

along the row offsets and the nonzero indices of the CSR matrix, and the required fix-up step

for the partial tiles of work. Beyond load-balancing a CSR sparse matrix, this method can also

be generalized to other sparse representations and domains such as graph analytics, with an

added cost of a parallel prefix sum to create the required offsets array [14, 84]. Since there

is an additional overhead attached to computing this prefix-sum, this method tends to be less

performant than other low-overhead methods on an well-structured sparse data [88].

3.3.4 Binning and Reordering
Definition

Separate work tiles into a fixed number of bins based on heuristics, such that each bin holds

work tiles with approximately the same amount of work items.

Characterization

Dynamic, Approximate, Hierarchical, Non-Cooperative, Centralized or Distributed.

Evaluation

Effective at balancing workloads with contiguous work tiles with approximately the same num-

ber of work items, and with imbalance among these contiguous ranges of work tiles. This

method maps well to CUDA’s compute hierarchy, where bins can be assigned to a level in the

hierarchy depending on the granularity of work within them.

The static load-balancing techniques discussed above aim for an even work distribution for

a given problem; these techniques are inefficient when either the overhead to load-balance is

22

Algorithm 3 An example work-oriented scheduled kernel for sparse-matrix dense-vector mul-
tiplication (spmv), where each thread is assigned an even share of work [64].

1: input: A, CSR Matrix. x, Dense Vector.
2: output: y, Dense Vector.
3: procedure WORK-ORIENTED(A, x, y)
4: B Calculate work division and bounds.
5: tid ← ThreadIndex()
6: total work← A.rows + A.nonzeros
7: items per thread← total work

num threads
8: diag← min(items per thread× tid, total work)
9: diag end← min(diag + items per thread, total work)

10: (rowstart, nzstart)← 2DSearch(diag, A)
11: (rowend, nzend)← 2DSearch(diag end, A)
12: B Perform work on full tiles.
13: running total← 0
14: for m← rowstart, m++, while m < rowend do
15: for k← nzstart, k++, while k < A.offsets[m] do
16: running total += x[A.indices[k]]× A.values[k]
17: end for
18: y[row]← running total
19: running total← 0
20: end for
21: B Perform work on partial tiles.
22: for k← k, k++, while k < nzend do
23: running total += x[A.indices[k]]× A.values[k]
24: end for
25: row carry out[tid]← rowend

26: value carry out[tid]← running total
27: end procedure
28: B Fix-up step to accumulate partial tiles.
29: procedure FIX-UP(A, y, row carry out, value carry out)
30: for tid ← 0, tid++, while tid < num threads do
31: y[row carry out[tid]] += value carry out[tid]
32: end for
33: end procedure

23

greater than processing the entire computation, or when there is a huge mismatch between the

worker size and the work unit. Instead, when a given problem has a known bound on the amount

of work, we can implement a load-balancing schedule that is reasonably efficient for a given

bounded range, and particularly so if we choose the correct amounts of compute resources that

match the given input range (e.g., assign a work tile with exactly 32 work items to be processed

by a warp composed of 32 threads.) This is where binning-based load-balancing algorithms,

which attempt to dynamically balance a given workload by categorizing each work tile into a

fixed number of bins with the goal that each bin will hold work tiles that have approximately the

same amount of work items, perform reasonably well. Binning-based techniques can largely be

subdivided into three different phases: (1) choosing bin sizes (compile time); (2) dynamically

distributing work tiles into bins based on a programmer-specified criteria (runtime); then (3)

computing the contents of each bin (runtime).

One approach to binning that specifically targets the GPU compute hierarchy chooses three

bins to partition the work tiles: (1) a bin with work tiles that have a number of work items equal

to or greater than the size of the GPU block (number of threads per block); (2) a bin with work

tiles that have a number of work items less than the size of the GPU block but larger than a

warp (32 threads); and (3) a bin with work tiles that have a number of work items less than the

size of the warp. For brevity, we will use the terms block-sized, warp-sized, and thread-sized

bins. After the initial assignment of work tiles to their respective bins, the processing stage

that perform the desired computation on the contents of each bins can be implemented in three

different ways:

1. Launch three kernels, where each kernel is specialized to process one of the three cate-

gories of bins. For the block-sized bin, one kernel uses all threads with the block to co-

operatively process the tiles. Similarly, in the warp-sized bin, the kernel uses all threads

within a warp to cooperatively process the bin, And finally, the last kernel processes the

thread-sized bin, where each work tile has only a few work items, my assigning one thread

to each work tile [65, 84].

2. Launch one kernel, where each thread is initially assigned a work tile, determines the

amount of work, and assumes control of the block or the warp if the size of work is enough

24

to saturate the compute unit. All threads within the compute unit then cooperatively

work together to process each work item within the “winning” thread’s tile. This process

continues until the work tiles are small enough for each thread to individually process

them (Algorithm 4) [28, 84].

3. Brahmakshatriya et al. proposed a variation of the one-kernel approach, where instead of

threads competing to assume control of a block, each block first processes a multiple of

its size worth of work items of a tile (if any), and then a warp processes multiple of its

size worth of work items, and finally the threads complete the work tile by processing the

remaining work items [14].

The benefit of the three-kernel specialization is that each kernel is designed to process one

bin-type with no added communication or synchronization for threads within the kernel to as-

sume control of a given compute unit or hierarchy. However, the total work now is now split

among three kernel launches, making it challenging to fully utilize the device per kernel for a

given work distribution. Furthermore, for problems that require a large number of iterations to

successfully converge, the kernel launch overhead, which is commonly an insignificant cost and

largely ignored, is now 3× larger.

Another proposed approach, Logarithmic Radix Binning (LRB), first introduced by Green

et al. within a triangle counting implementation [36], allows the load balancer to schedule work

items with similar amounts of work within the same spatial and temporal region [32]. LRB

assigns tasks to bins based on the logarithm of the amount of work required for a given task.

Thus, the range of possible amounts of work across all items in a bin varies by no more than a

factor of two. When a work tile is encountered with work items greater than equal to 2b and less

than 2b+1, a counter at location b is incremented in an array of size B ∈ {32, 64}. Using these

bins instead of the ones associated with CUDA’s compute hierarchy (threads, warps, blocks) in

the previous approach, the total workload is binned at a finer granularity such that work tiles

containing a similar number of work items are grouped together for processing. To assign work

tiles to threads, a modulo operation is performed on the reordered task index and a constant

number of work items, P . Each thread then processes (i,P+i, 2∗P+i, . . .) work items [32, 36].

Another widely used technique for reordering or grouping like-sized work together is a

25

Algorithm 4 An example binning scheduled kernel for sparse-matrix dense-vector multiplica-
tion (spmv), where work tiles are placed into bins based on the number of work items within
them, and processed with the required compute resource [28, 65].

1: input: A, CSR Matrix.
2: procedure BINNING(A)
3: row← ThreadIndex()
4: num nonzeros← A.offsets[row + 1] – A.offsets[row]
5: if num nonzeros ≥ block size then
6: cta bin ids[cta bin size]← row
7: cta bin size++
8: else if num nonzeros ≥ warp size then
9: warp bin ids[warp bin size]← row

10: warp bin size++
11: else
12: thread bin ids[thread bin size]← row
13: thread bin size++
14: end if
15: end procedure
16: input: A, CSR Matrix. x, Dense Vector.
17: output: y, Dense Vector.
18: procedure CTA BIN(A, x, y)
19: row← cta bin ids[idx]
20: B Use an entire CTA to process the row.
21: end procedure
22: procedure WARP BIN(A, x, y)
23: row← warp bin ids[idx]
24: B Use an entire warp to process the row.
25: end procedure
26: procedure THREAD BIN(A, x, y)
27: row← thread bin ids[idx]
28: B Sequentially process a row in the thread.
29: for k← A.offsets[row], k++, while k < A.offsets[row + 1] do
30: y[A.indices[k]] += x[A.indices[k]]× A.values[k]
31: end for
32: end procedure

26

simple (but often costly) sort to arrange tiles from most to fewest work items [13]. The sort

operation reduces the work variance between adjacent tiles and therefore improves load bal-

ance. In iterative problems such as sparse-matrix dense-matrix multiplication in a deep learning

workload, the overhead of the sort is amortized over the number of runs of an algorithm [33].

3.3.5 Task-Oriented Scheduling
Definition

Independent workers fetch work from a work queue or queues, process the work, and optionally

add new work to a queue.

Characterization

Dynamic Approximate, Flat, Cooperative, Centralized or Distributed.

Evaluation

Works well when it is too expensive to compute a static assignment of work items to processors

at the start of the kernel, if the kernel dynamically generates new work items, or if the cost to

process each work item is unknown.

Performs best if one thread can fetch chunks of work on behalf of an entire block, to reduce

synchronization contention. Powerful when paired with hierarchical load balancing within a

block, where a block fetches a chunk of work on behalf of all threads, and then further subdi-

vides this work among its threads.

The previously-described load balancing methods divide up work at compile time or run-

time and associate each chunk of work with a virtual processor, which the hardware scheduler

then dynamically maps to a physical processor based on resource utilization. In contrast, task

parallelism shifts the job of assigning work to processors to the programmer. Task parallelism

methods are more flexible at runtime, and benefit workloads where it would be expensive to

compute the optimal work distribution and assign it to individual processors in advance, or

where the total amount of work to be generated in a kernel is unknown. Programmers can cus-

tomize the task generation and consumption behavior to their specific use case, at the cost of

some software overhead compared with the GPU’s hardware block scheduler. A primary benefit

of a task-parallel schedule is that it allows processors that finish their currently assigned task

27

to immediately start work on another task without waiting for synchronization at the end of a

kernel, or to generate new irregular tasks that other processors may consume without waiting

for a new kernel iteration.

A classic example of task parallelism is a queue-based implementation of Breadth-First

Search. After a block removes a vertex from the FIFO queue, it sets the vertex’s depth then

adds neighbors of that vertex to the back of the queue. In a parallel GPU system, these new

work items may be popped and processed by other processors in the system. This process

continues until the queue is empty and the processors no longer have new work to add to the

queue.

The primary downsides of queue-based schedules are that they suffer from overheads nec-

essary to ensure that each processing element adds or retrieves work at the correct location, and

that the queue must be large enough to accomodate the worst-case number of work items in the

queue. This is because memory allocations are expensive and happen outside the kernel bound-

ary. Additionally, there is a chance that some processors may have long-running work that

leaves other processors sitting idle when the queue is empty. Finally, queue-based schedules

replace the hardware work distribution done by the GPU’s block scheduler with user-controlled

software work distribution, which adds additional overheads.

3.3.5.1 Centralized Queue

Evaluation

Useful when the algorithm dynamically creates work at runtime, or when it’s undesirable to

precompute an assignment of work items to processors.

The static task list approach presented by Cederman et al. is the most basic task-oriented

schedule: the kernel consists of two arrays: an “in-array” and an “out-array” [18]. The in-

array contains tasks to be executed by the processors in the current iteration. As the kernel

proceeds, processors iterate over their statically assigned tasks (where a block with index i

handles all tasks at integer multiples of i), perform the task, and potentially add additional

tasks to the “out array”. This process continues until the in-array is empty, at which point

the out-array becomes the new in-array. The kernel iterates between the two arrays until there

are no remaining tasks in either array. Like all queue methods, this approach requires that

28

Algorithm 5 An example queue-based kernel for breadth-first search, where each worker is
assigned an entire vertex.

1: input: G, CSR Graph. Q, Work Queue. s, Source Vertex.
2: output: D, Depth Array. P, Predecessor Array.
3: procedure TASK-ORIENTED(G, Q, s)
4: tid ← ThreadIndex()
5: B Initialization phase.
6: D[tid]←∞
7: P[tid]← None
8: if tid = 0 then
9: Q[0]← s

10: Q.push idx← 1
11: Q.pop idx← 0
12: end if
13: B Loop until the queue is empty.
14: while not Q.empty() do
15: my pop idx← atomicAdd(Q.pop idx, 1)
16: my pop idx←mod(my pop idx, Q.size())
17: v← Q[my pop idx]
18: for i← 0, i++, while i < G.offsets[v + 1] – G.offsets[v] do
19: n← G.indices[G.offsets[v] + i]
20: B BFS condition: update the neighbor’s depth.
21: if D[v] + 1 < D[n] then
22: D[n]← D[v] + 1
23: P[n]← v
24: my push idx← atomicAdd(Q.push idx, 1)
25: my push idx←mod(my push idx, Q.size())
26: Q[my push idx]← n
27: end if
28: end for
29: end while
30: end procedure

29

the arrays be sized to hold the worst-case number of concurrently-queued tasks, and that the

processors use some form of synchronization when adding tasks to the out-array. Note that

Cederman et al. do not enforce synchronization on reads since blocks execute tasks at predefined

positions. This removes the overheads inherent to synchronization, but also loses the greedy

consumption property described in the Task-Oriented Scheduling introduction. However, more

complex versions of this load-balancing schedule could add synchronization to the in-array to

enable greedy task pops from the head of the in-array. Aila et al. present a similar method

that performs only reads from a single task list with atomic synchronization, and generates no

additional work [4].

At the next level of complexity, centralized queues allow any processors on the GPU to

dynamically consume tasks from the head of the queue when they need more work, or add

tasks to the tail of the same queue when they generate new work, which will eventually be

consumed by processors without an intermediate synchronization step, such as the one needed

for the static task list schedule to swap the in- and out-arrays. Many queue-based load-balancing

variants exist, such as variants that use mutual exclusion to control access to the queue, variants

that use cheaper atomic increments for synchronization, variants that get an entire block’s worth

of work with a single thread or warp, variants that issue new work to the GPU’s kernel queue

as additional kernel launches, variants that use multiple queues to store tasks from different

stages of a rendering pipeline, and variants that add tasks from the CPU and consume from the

GPU [4, 18, 20, 22, 77, 91].

The distributed queue schedule presented by Zhang et al. assigns per-processor queues with

task indices stored in shared memory [92]. This allows each processor’s threads to add and

consume tasks from the block’s private queue, and avoids the atomic contention overheads seen

in the monolithic queue schedules if the thousands of threads on a GPU were to compete for a

single globally-shared atomic. However, as GPU atomics have improved in performance over

time, atomic contention in modern centralized queues is no longer a significant bottleneck [22].

The schedule also receives latency benefits from storing task indices in shared memory. The

primary downsides of this method is that the GPU cannot load-balance between blocks, and

each block’s individual queue must be sized for the worst-case queue size. This may cause the

30

aggregate amount of memory used to be larger than the centralized task queue variant. As part

of this work, Zhang et al. present the CUIRREE library, which provides general-purpose APIs

and implementations for queue-based load balancing.

3.3.5.2 Task Stealing

Evaluation

Reduces contention compared to the global queue method since processors usually utilize their

own private queue. Solves load imbalance between block queues with stealing, and improves

locality.

Task stealing queue variants provide per-processor task queues [19, 82, 92]. Processors

typically both consume work from and add work to the tail of their own queue. If a processor

has no tasks available to process in its queue, it may “steal” a task from the head of another

processor’s queue. Since stealing is the less common case, such schedules minimize the effect

of atomic contention that occurs in the monolithic queue case. Setting the queue so that task

pops come from the head, while task additions and steals come from the tail, also ensures that

the owning processor almost never needs to synchronize when acquiring a new task. They also

improve in data locality, since neighboring tasks in time likely access nearby data.

However, task stealing schedules still have the problem that each individual queue must be

sized so that it could hold the worst-case of work that could be simultaneously in the processor’s

queue, which is not ideal on GPUs with limited memory (both on-chip and off-chip). If the

queues are too small, the processor must stall until another processor steals work from a full

queue.

3.3.5.3 Task Donation
Evaluation

When considering Task Stealing, Task Donation is even better. It allows processors to offload

overflow work and shrinks queue sizes.

Task Donation extends the work stealing schedule to also allow processors to add overflow

work to another processor’s queue that still has space available [82]. This improves memory

utilization on the system since now only the aggregate capacity of all queues needs to be large

31

enough to hold the maximum amount of work. This also improves latency if queues are small

enough to reside in on-chip cache.

In many ways, task donation is the “ideal” version of a queue-based load-balancing sched-

ule. It preserves locality between work items, reduces synchronization contention since proces-

sors likely work out of their own queues most of the time, uses the same amount of memory

as a global queue, and preserves the ability to load balance between blocks using stealing and

donation.

3.3.5.4 Hierarchical Task Scheduling

Evaluation

Reduces contention at the global queue since a single thread can fetch a chunk of work for the

block, and can load balance within the block. Potentially suffers from some load imbalance

between blocks.

The centralized queue, task stealing, and task donation variants previously described use

only a single level of load balancing, where threads or blocks retrieve work from the queue, but

do not do anything within the block to balance the work. Consider, as an example, a breadth-

first-search kernel where the first thread in each block acquires a chunk of work (multiple ver-

tices) on behalf of all threads in the block, perhaps in an attempt to reduce the overheads of

atomic contention that were to occur if each thread in the GPU retrieved its work directly from

the queue. This type of kernel would benefit from an addional level of load balancing within

the block, such as work-oriented scheduling or binning. Chen et al. use a hybrid task/work

scheduling approach in Atos [22].

Another method presented by Steinberger et al. uses task lists in both global memory and

shared memory hierarchies [77]. The shared-memory queues are faster, but have limited mem-

ory and cause load imbalance between blocks. The global queues have significantly more space

and can load balance between blocks, but suffer from high-latency accesses and require more

expensive contention. Using two levels of queue hierarchy, where newly-generated work items

can go in either level of the hierarchy based on some heuristic or the available storage space,

finds a useful balance point. Additionally, Steinberger et al. use a binning strategy, with sepa-

rate queues for block-sized, warp-sized, or thread-sized items to reduce load imbalance within

32

a processor.

3.4 Common Low-Level Algorithmic Primitives
In this section we identify the key building blocks that are used to construct the load-balancing

implementations discussed in Section 3.3. These building blocks are used to address the irreg-

ularity/sparsity of their inputs and would likely not be necessary if the inputs were dense or

regular. For instance, consider load-balancing an operation on every element of a matrix across

two workers. If that matrix is dense, it is likely simple to split it in half knowing only the matrix

dimensions such that each worker is assigned half of the matrix elements. With a sparse ma-

trix, determining the split point is more complex; a robust solution must first count all non-zero

elements in the matrix, then identify the middle element to be the split point, and finally assign

half of the elements to each worker.

We first identify the challenges faced by the load-balancing implementations, then the build-

ing blocks needed to address that challenge. Most load-balancing strategies face challenges in

two general areas: (1) Discovering work items and work tiles and (2) scheduling/assigning work

onto worker units.

3.4.1 Challenge: Counting Non-zeros or Work Items

Goal: Several load balancers must first scan a sparse matrix or graph to determine the number

of non-zeros or work-items within each work tile of the input data. For example, SpGEMM

implementations using Gustavson’s row-wise implementation [38] first count the number of

non-zeros within each row of the left-hand matrix to provide an estimate on the amount of work

needed [37]. Similarly, kernels such as SpMV, SpMM and higher-order tensors using work-

oriented, thread-mapped, or group-mapped approaches first divide the sparse matrix/tensor into

regions of equal-sized non-zero blocks [87]. Target kernels include nearly all sparse kernels—

SpMV, SpGEMM, SpMM, and graph algorithms.

3.4.1.1 Implementation Primitives

When counting regions of work items within a workload, the following algorithms are com-

monly used:

• Parallel prefix sum, i.e., parallel scan, is a widely used algorithm popularized by Guy

33

Blelloch in the parallel setting [9]. Later, Harris et al. proposed a parallel GPU imple-

mentation [41]. The algorithm takes as input (1) a binary associative operator—which

is + for prefix sum—and (2) an array. It then produces a new array where the element

at any position is a sum of all previous elements. Prefix-sum when applied to the work

items per work tile for all tiles produces an array that not only has the total number of

work to be processed, but also the indices of this array (i.e. the location of each element)

represents the work tile which any given work item belongs to. Parallel scan is especially

useful when creating a balanced workload within the GPU’s hierarchy [41]. The load bal-

ancer performs a parallel prefix sum at a device-, block- or warp-wide level on an input

array of expected work items per task. Using the resulting array, the work is effectively

partitioned onto GPU threads. This implementation is particularly common in non-zero

splitting load balancers [8, 26, 78, 88]. It is also common in matrix algorithms splitting

work by row length [37]. Moreover, schedulers needing the total amount of work, such

as work-oriented approaches (Section 3.3.3), simply access the last element of the prefix

sum array.

A search on the prefix sum array can be used to determine which task is being processed

for any given work item. Examples of this process include a Single-Source Shortest Path

algorithms [28], Breadth-First Search algorithms [65], various merging algorithms [36],

and SpMV [26, 35, 63, 64]. Likewise, the IrGL [74] compiler and the CUDA-quicksort

algorithm [60] explicitly use prefix sums to allocate space for work items.

• Segmented scan and segmented reduce, closely related to prefix sum, reduces data in

a work tile or segments. Given an array of arrays, the segmented scan performs a prefix

sum on each array within the larger array. Instead of storing the entire scan array, a

segmented reduce stores the final, single sum per input sub-array. Binning approaches

requiring row-length or vertex output degree information typically employ segmented

reduce [6, 33, 42, 67]. Both Yan et al. and Liu et al. use segmented scan when partitioning

sparse 2D, 3D and 4D tensors across threads [56, 87].

34

2 4 5 5 8

Idx of Prefix-Sum
 (Work Tiles) 0 1 2 3 4

Prefix-Sum
of Work Items

0,1 2,3 4,5 6,7

0 1 2,4 4

Thread 0 Thread 1 Thread 2 Thread 3

Work Items

Work Tiles

idx = lower_bound();

return idx;

Figure 3.1: Shows a simple problem where 8 work items are perfectly balanced across
4 threads, and a running sum of work items per work tile (prefix-sum array) is provided as an
input. Each thread processes work items range of [thread idx× 8

4] . . . [(thread idx + 1)× 8
4]

and uses a lower bound search into the prefix-sum array to determine the index of the work tile
for each work item.

3.4.2 Challenge: Searching for Work Tiles and Items

Goal: For several load-balancing schedules, each thread has a pre-assigned number of work

items to process, however, the individual threads may not know exactly where in the total work

pool they should begin processing their assigned work, such that each thread has unique work

items to process. Furthermore, threads may not know which work tile an assigned work item

belongs to. For example, for kernels such as SpMV, if threads are assigned to process non-zero

values, they need to determine (1) a range of unique non-zeros to multiply and accumulate, and

(2) the row and column for the corresponding non-zero. The primitives below help each thread

search, in parallel, a sorted list of number of work items to determine their starting position and

the corresponding work tiles for a given work item.

3.4.2.1 Implementation Primitives

The following algorithms are commonly used (searches are called with bulk inputs in parallel):

• Binary Search, operating on a sorted input, repeatedly divides the input in half until the

desired item is found. In approaches using parallel prefix sums to divide work items,

each thread performs a lower bound search (using binary search) on the prefix sum array

with the work item index as the input. The lower bound search specifically returns the

index of the first position where the work item can be inserted. This index corresponds

35

to the work tile the input work item belongs to. Figure 3.1 shows an illustration of this

process with an example. In graph algorithms, threads may use this method to search on

the edge offset array (created using a prefix sum), to determine the source vertex ID of an

edge [15, 28, 50, 84].

• Vectorized Sorted Search or Load-balanced Search, proposed by Sean Baxter in Mod-

ernGPU [8], first sorts the queries to avoid the thread divergence caused by the tradi-

tional binary search algorithm. Given a sorted list of queries, A, and the sorted database

B, it recasts the search problem into a merge problem, where the program now linearly

searches for A in B. This improves work-efficiency over binary search, with complexity

O(A + B) versus O(A logB). Overall, each thread now has more locality in the search

since the keys will be sorted. Within a load balancing context, vectorized sorted search

is applied to a prefix sum array of work items offsets to determine the index of the work

tile that generated the work item. Within graph algorithms, and similar to strategies using

a binary search, threads cooperatively apply vectorized sorted search to determine source

vertex IDs for a given edge [28, 84, 86].

3.4.3 Challenge: Efficient Binning of Work Items

Goal: As mentioned in Section 3.3.4, several load balancers use various heuristics to place

work items into bins, such that each bin has a similar amount of work. Finding a heuristic with

low overhead and near-perfect distribution of work is a critical step in developing an efficient

implementation.

3.4.3.1 Implementation Primitives

Some strategies used in the implementation of binning strategies include:

• Sorting Based on Work Variance: Parallel sorting algorithms are often used as a means

to balance the workload in a given irregular application. To minimize the preprocessing

overhead of sorting, load balancers often employ this strategy when the cost can be amor-

tized over multiple runs of the same application for a given input [33]. For example, in

Sparse-Matrix Dense-Matrix Multiplication (SpMM) for sparse deep learning workloads,

Gale et al. first reorder the sparse matrix by sorting its rows by length before assigning

36

row bundles to each warp [33]. Several other implementations for SpGEMM, SpMM,

triangle counting, and graph pattern mining likewise rely on an initial sorting or reorder-

ing by the amount of work, number of non-zeros, or vertex degree before assigning to

threads/warps/blocks [5, 13, 26, 28, 30, 43, 45, 62].

3.4.4 Challenge: Assigning Compute Resources

Goal: In dynamic approaches to load balancing, workers compete for compute resources

and/or work items. Such implementations need a way to determine the outcome of the compe-

tition.

3.4.4.1 Implementation Primitives

Common primitives in determining resource assignment include:

• Voting: This strategy is often used in conjuction with binning approaches, where work is

assigned to be processed by individual threads, warps, or CTAs, depending on the work

tile size [28, 65]. Since there are limited resources, each worker unit competes for the

resources of the entire group (warps or CTAs), by writing, atomically, to a shared memory

location. The winner of the atomic write takes over the resources and proceeds with

compute. Originally designed by Merrill et al. [65], several works employ this strategy

within their own load balancing implementations [27, 46, 47, 84].

• Dynamic Parallelism: Starting with architectures of CUDA capability 3.5 and higher,

kernels can be launched using dynamic parallelism, which allows CUDA kernels to re-

cursively launch child kernels. Each child kernel then has complete access over the com-

pute resources. This strategy can be used when processing work tiles containing a large

amount of work items. The load balancer dynamically launches one or more kernels sized

according to the amount of work within the work tile [6, 15, 17, 91].

3.5 Summary of Load-Balancing Techniques
To the best of our knowledge, Table 3.2 and 3.3 characterizes all of the predominant approaches

practiced for load balancing irregular-parallel problems on the GPU to the load-balancing tax-

onomy described in the previous section.

37

Work(s) Application Space Method(s) Implementation Detail Characterization

Green et al. [35]
Dalton et al. [26]
Merrill and Gar-
land [64] Merrill
[63]

Merging Algorithm, Sparse-Matrix
Dense-Vector Multiplication

Merge-Path Based decomposition Work (number of outputs and nonzeros) divided
equally to number of threads. 2-D binary-search on
row-offsets and nonzeros to figure out the active rows
and nonzero indices.

Static, Exact, Flat
or Hierarchical (to
reduce the search
space per thread)

Baxter [8] Dalton
et al. [26] Yang
et al. [88] Stein-
berger et al. [78]

SpMV, General Graph Traversal Nonzero Splitting Work (number of nonzeros) split equally to number
of threads. 1-D binary search on row-offsets to find
the active row for any given nonzero/thread.

Static, Exact, Flat

Merrill et al. [65]
Davidson et al.
[28]

Breadth-First Search, Single-Source
Shortest Path

Sequential Gather Vertices asigned to threads, neighbor-list processed
sequentially

Static, Approxi-
mate, Flat

Merrill et al. [65]
Davidson et al.
[28]

Breadth-First Search, Single-Source
Shortest Path

Warp Gather Vertices assigned to warps, paralle prefix sum and
binary-search used to asign a neighbor to each thread
within the warp

Static, Approxi-
mate, Hierarchical

Merrill et al. [65]
Davidson et al.
[28]

Breadth-First Search, Single-Source
Shortest Path

Binning (Scan+Warp+CTA Gather) Place vertices with similar amount of work in the
same bin, process large bins using a block, smaller
bins using a warp and smallest using a thread.

Dynamic, Ap-
proximate,
Hierarchical,
Non-Cooperative,
Centralized
(warp- and block-
level)

Davidson et al.
[28]

Single-Source Shortest Path Edge partitioning Using parallel sorted search on the scanned edge off-
set queue find an intersection of block’s edge-list
within the work list.

Static, Exact, Hi-
erarchical

Brahmakshatriya
et al. [14]

General Graph Traversal Binning Work items multiple of block-size processed using a
block, trickle the remaining work to be (multiple of
warp-size) processed by a warp, and finally, if more
work is remaining, trickle to a thread.

Dynamic, Exact,
Hierarchical,
Cooperative,
Centralized

Green et al. [36]
Fox et al. [32]

Triangle Counting, Load-Balancing
Algorithm

Logrithmic Radix Binning Assign work to bins based on the logarithmic work
estimate. Approximate method of reordering without
sort.

Dynamic, Ap-
proximate,
Hierarchical,
Non-Cooperative,
Distributed

Baxter [8] GPU Parallel Primitives Vectorized Sorted Search (Load-
Balanced Search)

Upper-bound search of work-item indices with ex-
clusive scan of the counts (subtract one).

Static, Exact, Flat

Gale et al. [33] Sparse-Matrix Dense-Matrix Mul-
tiplication, Sampled Dense-Dense
Matrix Product

Row Binning and Bundling Sort row-indices based on a heuristics over row-
length, grouping like-sized rows and tiles together

Static, Approxi-
mate, Hierarchical
(Block and Warp-
wide)

Lee et al. [54] Sparse-Matrix Dense-Matrix Multi-
plication

Block Reorganizer Group blocks into overloaded, normal, underloaded
blocks based on the size of their work. Split large
blocks, merge underloaded blocks.

Static, Approxi-
mate, Hierarchical
(Block-wide)

Zhang et al.
[91] Busato
and Bombieri
[15] Busato and
Bombieri [17]

Graph Algorithms Dynamic Kernels Launch a dynamic parallel kernel configured to a
given workload.

Dynamic, Ap-
proximate,
Hierarchical,
Non-Cooperative,
Centralized

Cederman and
Tsigas [18] Aila
and Laine [4]

Ray Traversal Task List Work items popped from a read-only queue. If the
blocks generate new work, this gets added to a write-
only queue. Queues swap when the read-only queue
is empty.

Dynamic, Ap-
proximate, Flat,
Cooperative,
Centralized

Cederman and
Tsigas [18] Chen
et al. [20] Zhang
et al. [92] Chen
et al. [22]

Dynamic Load-Balancing (Octree
Partitioning), Molecular Dynamics
(Atoms-Decomposition), Ray-
Tracing, N-queens solver, Potential
distribution, Asynchronous Graph
Algorithms.

Task Queue [18] Blocking and lock-free (atomic) queue variants.
[20] CPU pushes, GPU blocks pop. [92] Device-
wide and per-block queue variants (no stealing or do-
nation.) [22] A single thread acquires tasks on behalf
of an entire block to reduce synchronization over-
heads.

Dynamic, Ap-
proximate, Flat,
Cooperative,
Centralized

Tzeng et al. [82]
Cederman and
Tsigas [19] Zhang
et al. [92]

General Load-Balancing (Rendering
Primitives and Synthetic Workloads)

Task Stealing Threads consume from per-block queues, can steal
from other blocks’ queues

Dynamic, Ap-
proximate,
Hierarchical,
Cooperative,
Distributed

Tzeng et al. [82] General Load-Balancing (Rendering
Primitives and Synthetic Workloads)

Task Donation Per-block queues, can steal from or donate to other
queues.

Dynamic, Ap-
proximate,
Hierarchical,
Cooperative,
Distributed

Table 3.2: Annotated bibliography of load-balancing techniques. Continued in Table 3.3.

38

Work(s) Application Space Method(s) Implementation Detail Characterization

Chen et al. [22] Asynchronous Graph Algorithms
(BFS and PageRank)

Hybrid task and work, load-
balancing schedule

Task queue shared by all blocks, parallel scan within
blocks.

Hybrid, Approxi-
mate (device), Ex-
act (block), Hier-
archical

Steinberger et al.
[77]

General Load-Balancing Hierarchical task queues, task bin-
ning

Uses queues at both the device and block level.
Queue items are binned into separate block-sized,
warp-sized, or thread-sized queues.

Dynamic, Ap-
proximate,
Hierarchical,
Cooperative, Cen-
tralized (device-
level), Distributed
(block-, warp- and
thread-level)

Nisa et al. [67] Sparse Matricized Tensor Times
Khatri-Rao Product

Binning (inter-block load imbal-
ance), Pre-partitioning CSF tensor
(inter-warp load imbalance)

Two strategies: 1. Preprocessing step where each
fiber (equivalent to row/column), is split such that
each sub-fiber now contains a predefined maxi-
mum number of nonzeros (occupancy-based parti-
tioning). Thread-warps are assigned to each sub-
fiber. 2. Configuration step where slices are binned
(see Ashari et al. [6]). Thread-blocks are as-
signed a certain number of nnzs within a slice.
(nnz

threads per block) = thread blocks per slice.

Static, Exact, Hi-
erarchical

Ashari et al. [6] Sparse-Matrix Dense-Vector Multi-
plication

Row binning and dynamic paral-
lelism

Target: CSR format, Row binning: place rows into
bins with roughly the same number of nonzeros. For
rows smaller than a threshold, bin-specific SpMV
kernels are launched, where constant number of
threads are assigned to each row. For bins with rows
larger than a threshold, a separate grid is launched
(through CDP) per row. Grid size is based on a pa-
rameter that determines compute per thread. Multiple
thread-warps are assigned per row, based on nnzs in
that row.

Dynamic, Ap-
proximate,
Hierarchical,
Cooperative,
Centralized

Liu et al. [56] SpMTTKRP, Sparse-Tensor Tensor
Multiplication

Group-Mapped (nonzero splitting) Introduces new F-COO format (variant of COO) to
more easily access nnzs. Launches 2-D grids with
1-D thread blocks. On the sparse tensor, each block
(x-axis) is assigned a set of nnzs, where each thread
has the same number of nnzs. For the dense matrices
each block (y-axis) is assigned a partition of the col-
umn. Partition size (nnzs and columns) is found by
tuning.

Static, Exact, Hi-
erarchical

Yan et al. [87] Sparse-Matrix Dense-Vector Multi-
plication

Pre-partitioning COO matrix and a
segmented scan

Introduces new blocked COO format for better
reuse, where sparse matrix partitioned into vertically-
aligned tiles. Thread blocks assigned equal number
of nonzero tiles. Each thread within a thread-block
is assigned equal number of consecutive nonzero
tiles. Threads perform sequential segmented scan/-
sum. Blocks perform parallel scan.

Static, Exact, Hi-
erarchical

Winter et al. [85] Sparse General Matrix Multiplica-
tion

(Thread-block) nonzero splitting of
A matrix, (Thread-level) dynami-
cally assign work items to each
thread

Partition the A matrix such that each thread block
gest the same number of nonzeros. Within a thread
block: Every thread is assigned the same number
of work items. ESC algorithm is run within each
thread block, where each thread works on computing
a certain number of multiplies. Threads communi-
cate through scratchpad memory. Device-wide prefix
scan is run to merge all output chunks.

Dynamic, Exact,
Hierarchical,
Cooperative,
Distributed

Gremse et al. [37]
Liu et al. [57]

Sparse General Matrix Multiplica-
tion

Nonzero splitting within a row (RMerge) A sub-warp with N threads is assigned
N×2 rows of the left-hand operand, where each row
has N nonzeros. If the operand has more than A
nonzeros in a row, the matrix is iteratively split into
multiple matrices where each sub-matrix has up to N
nnzs per row.

Dynamic, Ap-
proximate, Flat

Parger et al. [75] Sparse General Matrix Multiplica-
tion

(Thread-block) binning based on
lightweight row-analysis of A and
B, (Thread-level) hybrid load balanc-
ing, work-oriented

Thread-block (global load balancing) analyzes row
patterns of inputs to select one of 5 kernels. Assigns
blocks based on binning of rows. Thread-level (local
load balancing) Threads are split into groups where
each group works on a nonzero of A (several rows of
B). Group sizes chosen heuristically based on poten-
tial length of B row.

Hybrid, Approxi-
mate, Hierarchical

Niu et al. [68] Sparse General Matrix Multiplica-
tion

Group-Mapped Divide the matrices into evenly-shaped tiles, and as-
signs a warp to each sparse output tile.

Static, Approxi-
mate, Flat

Table 3.3: (Continued) Annotated Bibliography—Summary and characterization of research
work on load balancing parallel-irregular problems on the GPU.

39

3.6 Optimizations Orthogonal to Load Balancing
High-performance load-balancing algorithms often need to take the GPU’s unique architectural

features into account. Critical characteristics include choice of kernel configuration, the use of

synchronization between parallel workers, and management of on-chip memory. In this section,

we discuss GPU optimizations that are orthogonal to load balancing, and are often needed to

achieve high performance.

3.6.1 Kernel Strategy for Load-Balancing Operations

Although selecting an optimal kernel configuration strategy is independent from a high-level

load-balancing algorithm, it nevertheless can have a large impact on its resulting performance.

One significant configuration parameter that influences kernel performance is Occupancy, de-

fined as the number of blocks concurrently active on each Streaming Multiprocessor (SM) Oc-

cupancy depends on several factors including the amount of shared memory used by each thread

block, the number of threads per block, the number of registers used per thread, and the hard-

ware capabilities of the targeted GPU. In general, the more of a SM’s resources an individual

block uses, the fewer blocks may run concurrently on a given SM due to resource constraints.

If a programmer does not tune the kernel parameters such as block size, shared memory usage,

or register consumption correctly, they may find that they are underutilizing their hardware. Ul-

timately, even with the kernel tuned to provide maximum occupancy, an optimal grid and block

size may be difficult to determine without experimentation. Several works perform a simple

sweep over block and thread sizes, without any explanation of why one configuration is better

than another [4, 35], while other works account for nonobvious architectural factors such as

the warp scheduler overheads, register constraints, and synchronization overheads [18, 19], or

algorithmic benefits from oversubscribing the number of blocks [33, 65].

After the programmer tunes their kernel’s resource usage to achieve maximum occupancy

and performance, there are two primary ways to configure the kernel. The first, most common

approach is to launch a large number of blocks, often on the order of tens of thousands. The

GPU’s block scheduler assigns a block to an available SM, where it executes its assigned portion

of the parallel work and then terminates, allowing the block scheduler to assign a new block to

the SM. Programmers often pick the Many-Blocks kernel configuration because it is both easy

40

to use and scalable. With hundreds, thousands, or even tens of thousands of blocks available to

the SM scheduler, a given kernel is agnostic to the number of SMs present on a GPU as long

as the number of blocks reaches the minimum threshold to fully occupy the GPU. The same

kernel can scale down to mobile GPUs with only a handful of SMs, up to server GPUs with

over a hundred SMs (such as the NVIDIA A100), and can continue to scale as future GPU

releases include ever more SMs. In this kernel configuration, the programmer is responsible for

creating an appropriate division of work among the blocks so that all blocks have approximately

equal amounts of work. Additionally, the programmer should pick a number of blocks equal

to a multiple of the number of SMs on the GPU if the architecture is known in advance. This

ensures that all SMs are fully utilized throughout the lifetime of the kernel, and avoids problems

of Wave Quantization, where the last wave of blocks scheduled onto the GPU occupies only a

fraction of the GPU [70, 73]. By extension, the programmer should also ensure that the size

of a tile of work mapped to a block is is a multiple of the number of threads, to avoid Tile

Quantization.

The other common approach is to use a Persistent Kernel, in which the programmer launches

just enough blocks to fully occupy all SMs of the GPU and which stay resident on the SMs

throughout the lifetime of the kernel, iterating over work items in a loop as needed [4, 20,

77, 82]. Using a persistent kernel grants programmers significant benefits such as reduced

kernel launch overheads, improved data reuse, and better load balancing. However, this method

requires careful management of GPU resources such as shared memory, register usage, and

thread count to ensure that the kernel runs at maximum occupancy. To reduce kernel launch

overheads and device-wide synchronization overheads at kernel termination, a programmer may

use an uberkernel, where within the kernel, blocks run in a continuous loop and can select one of

multiple paths within the kernel depending on the desired computation. For example, in a multi-

stage processing pipeline such as the Reyes renderer proposed by Tzeng et al. [82], processors

may alternate between different section of the processing pipeline without device-wide barriers

between stages. A persistent kernel also improves data reuse in two primary ways. First, by

never exiting the kernel, a program set up as a pipelined uberkernel may keep processed work

in shared memory between stages of the pipeline, rather than performing expensive reads and

41

writes between the GPU and off-chip memory between kernel launches. Secondly, initialization

or clean-up tasks required when a block first launches or exits only need to run once, rather than

each time a short-lived block acquires residence on a SM. The persistent kernel method also

gives load-balancing benefits in some situations. If a single warp within a block has significantly

more work than the other warps, it will prevent new blocks from being scheduled to that SM. If

instead the programmer uses a persistent kernel approach, the other warps within the block can

move on to consume other work items as long as the algorithm does not require a block-wide

synchronization [4].

3.6.2 Synchronization Avoidance

Many load-balancing kernels use synchronization to ensure that parallel workers create, con-

sume, and process work correctly. For instance, consider a queue used to sequence work, with

many workers that want to push to or pop from the queue [4, 18–20, 82, 92]. This algorithm

requires each worker to perform an exclusive modification to a shared queue so that all workers

on the device know where to add or remove work. Some queue implementations use mutex

locks on the queue, which are expensive to acquire and release. Other implementations use

atomic operations to ensure that only one worker can access the queue at a time. Such synchro-

nization approaches become increasingly costly as the number of workers accessing the queue

increases. Modern GPUs support hundreds of concurrent blocks, equivalent to tens of thou-

sands of concurrent threads. One practical method of minimizing the impact of synchronization

is to interact with global memory queues at warp or block granularity, rather than at thread

granularity. This reduces the number of atomics necessary for work creation and consumption,

since a single thread in a block can fetch a chunk of work for the entire block [20, 77]. The

primary downside of this method is that there may be some load imbalance within a block if the

work obtained by the block-wide chunk is not sufficient to supply all threads with even amounts

of work. Aila and Laine solve this problem by periodically replacing finished work items with

new work items on some threads while long-running work continues on the busy threads [4]. In

other cases, it is possible to perform a second round of load balancing within the block [22]. Al-

ternatively, Cederman and Tsigas reduce the synchronization overhead of their queue by using

lazy updates [18]. This queue implementation only updates the queue’s head and tail pointers

42

using expensive CAS operations every n accesses, and instead has each requesting block check

several consecutive positions in the queue offset from the head or tail to find the true location

between CAS updates. One important point to note is that as the performance of atomic op-

erations on modern GPUs continues to improve, globally-synchronized, queue-based methods

may be promising areas for continued research.

In some algorithms atomic operations are not needed, and the kernel authors tune their

kernel implementations accordingly. For example, rather than using a work queue, Merge

Path [35, 64] precomputes the maximum amount of output work items each block may pro-

duce and partitions the output storage accordingly. This often requires a larger necessary output

size (such as for the output frontier in BFS) and additional computation at the beginning of the

load-balancing algorithm to determine such split points, but this method eliminates the synchro-

nization required to add work items to the output work queue. Additionally, Merrill et al.’s BFS

implementation [65] uses unsynchronized bitmask reads and writes when updating a vertex’s

“visited flag”. This causes the kernel to add redundant work to the output frontier if the result of

one thread’s write is not visible to another thread’s read, but the authors claim that the speedup

from eliminating atomics is greater than the additional work their kernel must do to remove

duplicates. Although this example is algorithm-specific, a programmer can often take one of

multiple approaches to implementing a kernel, and it is worth considering whether an atomic-

free implementation may show overall performance improvements despite creating redundant

work. Even kernel tuning has overlaps with synchronization avoidance. For example, many

kernels rely on block-wide thread synchronization methods to ensure that all threads in a block

are working on the same work items. However, if a small number of threads within the block

are not finished with their assigned work, all other threads must sit idle. Tzeng et al. [82] solve

this problem by using blocks sized to be exactly 1 warp (32 threads), which eliminates the need

for explicit synchronizations since warps automatically advance in lockstep.

3.6.3 Shared Memory

GPU kernels need to maximize memory bandwidth to achieve best performance. As a result,

the kernel programmer must take advantage of spatial and temporal data locality, and must

be aware of the characteristics of each level of the memory hierarchy. Off-chip DRAM has

43

the slowest bandwidth of any GPU memory pool and experiences significant slowdowns from

random accesses. To achieve maximum DRAM bandwidth, a programmer must read or write

a large sequential chunk of data. On-chip shared memory, however, does not suffer from these

issues to the same degree On modern NVIDIA GPUs, a programmer may configure a per-block

pool of shared memory as either an explicitly-managed scratchpad accessible by all threads,

or as a cache where the GPU manages the contents of the storage. For example, consider the

merge path load-balancing methods, which require binary searches along the diagonals of the

input arrays to determine work decomposition [26, 28, 35, 64]. These would be prohibitively

slow in global memory, but by using each block to read sequential chunks of the array into

explicitly-managed shared memory, the threads can then perform the random memory accesses

required by the binary searches in shared memory with significantly reduced overhead and

latency. Meanwhile, the accesses to global memory use a smaller number of more efficient

coalesced reads.

Ideally, the programmer should use vectorized reads to achieve maximum throughput. How-

ever, sparse data formats make vectorized reads difficult, since a data structure such as a sparse

CSR matrix will likely not align with the vector width of the memory system due to irregular

row lengths. To solve this challenge, Gale et al. introduce Reverse-Offset Memory Alignment,

which allows the kernel to use vector loads without padding the rows of the sparse matrix with

zeros [33]. Each block decrements its row offset to align it with with the vector width, in-

creases the number of nonzeros it needs to process by the amount it decremented previously,

and maintains a bitmask to avoid duplicate work processing for the first values in the row.

Although the queue-based load-balancing methods achieve high-performance load balanc-

ing through the use of both work queues and synchronization variables stored in DRAM, blocks

must suffer long-latency memory accesses when attempting to synchronize, add work, or con-

sume work. An alternative to a single DRAM queue is to use distributed per-block queues as

presented in CUIREE [92]. These queues could be stored in either global memory or shared

memory (depending on their size), which presents an interesting trade-off where some kernels

may benefit from device-wide load balancing, and others may benefit from faster access to

the queue in the block’s shared memory at the expense of using load balancing only within a

44

block. If the queue is too large to fit in shared memory, distributed queue systems can still take

advantage of shared memory by keeping per-block synchronization and indexing variables in

the faster shared memory. Whippletree [77] extends this concept to use small, fast, per-block

queues stored in each block’s shared memory. Under normal runtime conditions, blocks con-

sume work from and add new work to their private queues. If the block runs out of space

in the shared memory queue, or if there is no remaining work in the shared memory queue,

Whippletree provides a global memory queue used for overflow data.

Explicitly managing shared memory to store frequently-used data is critical for many ker-

nels, but others can instead benefit from configuring on-chip storage as a GPU-managed cache.

For example, Gale et al. [33] evaluate a trade-off between using on-chip memory as explicitly-

managed shared memory to store a transpose of the input matrix, versus leaving the memory

as a cache while re-computing the matrix transpose in registers as needed. The authors deter-

mine that increased L1 cache capacity is more important for their Sampled Dense-Dense Matrix

Multiplication (SDDMM) kernel than reducing compute complexity. We hypothesize that this

is because other parts of the kernel, separate from the matrix transpose, benefit from the cache’s

ability to expose spatial and temporal reuse more than the kernel benefits from an explicitly

managed transpose scratchpad. When developing GPU kernels, the programmer should con-

sider whether explicitly managing a portion of the data is beneficial, or if it hurts performance

by eliminating caching opportunities in other areas of the program’s data accesses.

3.7 Conclusion: A Look Ahead
The focus of this work is to design a method for characterization of fine-grained GPU load-

balancing techniques that are key to high-performance for irregular sparse kernels. Our survey

uniquely builds the taxonomy of fine-grained load-balancing, a deeper dive on key techniques

practiced in literature today, and an understanding of implementation details and building-block

algorithms required to implement these load-balancing algorithms. Our goal is to fasicilitate de-

velopment of future work in this space that further accelerates irregular problems on the GPUs,

and encourages support for load-balancing primitives as a first-class software and hardware

citizen.

45

The aforementioned survey gives us not only a broad, but also a very deep understanding

of the load-balancing landscape. In the chaper that follows we bring the knowledge of com-

mon load-balancing patterns to bear and build a powerful load-balancing abstraction for GPUs.

We strongly believe that this is an important first step towards a future that facilitates ease of

programming and portability of code for sparse-irregular problems.

46

Chapter 4

A Programming Model for GPU Load
Balancing

The survey in Chapter 3 shows that the predominant approach to solving the load imbalance

problem is through application-specific load-balancing techniques that aim to evenly distribute

the work such that each thread gets the same number of work items to achieve maximum

performance (for instance, Merrill and Garland’s load-balanced SpMV implementation [64]).

These load-balancing techniques are often tightly coupled with the application itself. The load-

balancing components within these implementations are both complex and are often collectively

the most significant contributor to the performance of an application. The work presented in this

chapter generalizes today’s application-specific load-balancing algorithms into a clean, modu-

lar, powerful abstraction that can be applied to many complex irregular workloads.

In the process of building our abstraction, we identified common load-balancing approaches

deployed within sparse, irregular applications on GPUs: application-specific frameworks such

as GraphIt [14], Gunrock [84], and GraphBLAST [89]; techniques from low-level CUDA li-

braries such as ModernGPU [8] and CUB [63]; and other hand-coded implementations of load-

balancing algorithms within applications such as SpMV/SpMM [28, 33, 64], triangle count-

ing [32, 36] and breadth-first search [15, 65]. We show that with a simple, intuitive, powerful

abstraction, these load-balancing schedules can be extended to support irregular workloads that

are more general than the specific problem for which they were designed. We demonstrate this

by using sparse-linear-algebra-based load balancing for data-centric graph traversal kernels.

47

Writing high-performance load-balancing code is complex, in large part because this code

must perform many roles. Among other tasks, it must ingest data from a specific data struc-

ture, perform user-defined computation on that data, and schedule that computation in a load-

balanced way. The key insight in our abstraction is to separate the concerns between workload

mapping (the load-balance task) and work execution (the user-defined computation), where we

map sparse formats (such as Compressed Sparse Row (CSR)) to simple abstraction components

called work atoms, tiles, and sets. These fundamental components are expressed as compos-

able C++ ranges and range-based for loops, and are used to build load-balancing schedules.

Programmers can then use these APIs to build load-balanced, high-performance applications

and primitives. Expressed in this way, we can reconstruct existing application-dependent load-

balancing techniques that address irregularity to be more general, portable, and programmable.

The contributions of our work are as follows:

1. We present a novel abstraction for irregular-parallel workloads on GPUs. Our abstraction

at a high level allows programmers to develop sparse, irregular-parallel algorithms with

minimal code while delivering high performance.

2. We design and implement a set of intuitive APIs, available in our open-source GPU load-

balancing framework, built on the proposed abstraction using CUDA-C++ ranges and

range-based for loops.

3. We show the ease of implementing new load-balancing schedules by implementing a

novel cooperative groups-based load-balancing schedule (Section 4.4.2), which is a gen-

eralization of previous thread-, warp-, and block-level load-balancing schedules [88].

4. We provide best-in-class SpMV performance as a benchmark with a geomean of speedup

of 2.7× for the SuiteSparse Matrix Collection [29] over cuSparse’s state-of-the-art im-

plementation using simple heuristics and 3 GPU load-balancing schedules.

4.1 Design Goals
The design goals of our load balancing abstraction are as follows:

48

Achieve high performance. First and foremost, the goal of our work is to achieve the high

performance of existing load balancing algorithms for irregular applications. Our abstraction

cannot come at the cost of significant overhead or performance degradation. We measure our

success in achieving high performance by comparing the performance of our abstraction against

the performance of existing hardwired implementations.

A composable and programmable interface. Importantly, we do not want to restrict the

user to a library interface that takes control of the larger system. Programmers strongly prefer

to adopt new software components that fit into their control structures rather than require them

to adopt a new control structure. We want to allow the users to (1) maintain control of GPU

kernel boundaries (kernel launches), (2) be able to add new load-balancing algorithms, and (3)

compose new load-balanced primitives from existing load-balancing APIs. We measure the

programmability of our work by comparing the Lines of Code (LOC) of our abstraction against

existing implementations and show composability by implementing a new load-balancing algo-

rithm in terms of our existing APIs.

Extensible to new applications. We aim to decouple and extend application-specific load-

balancing techniques to new irregular-parallel domains. Our abstraction seeks to promote the

reuse of existing load-balancing techniques for new applications. We use SpMV as a benchmark

application implemented using three different load-balancing techniques, some of which were

previously used to implement parallel graph analytics kernels [14, 15, 28, 84].

Facilitate the exploration of optimizations. A key goal of our abstraction is to facilitate the

exploration of optimizations for a given application by switching the underlying load-balancing

algorithms used to balance the work. We want to encourage our users to experiment with

heuristics and new load-balancing techniques to discover what works best for their application

needs. We measure the success of this goal by optimizing SpMV’s performance response for a

large corpus of sparse matrices across several different load-balancing techniques.

Non-Goals

In addition to the above design goals, we also define our non-goals:

49

Load balance scheduler2

1

3 6

Sparse Data Structure Iterator Representation Load Balancing

User-defined
Computation

(kernel)

User-defined
Computation

(kernel)

Work Execution

Thread0

Work Atoms and Tiles

Thread1

atoms iter = 0,1,2,3
tile iter = 0,1,2,3

atoms/tile = 0,1,3,0
values = 1,3,6,2

Thread0 Thread1

Figure 4.1: Load balancing as a simple pipeline of the three key concepts of our abstraction:
(1) sparse data structures represented as iterators, (2) load-balancing algorithm that partitions
the work onto threads, and (3) user-defined computation consuming the balanced work and

executing on each thread.

Targeting other parallel architectures. Although we believe the lessons learned should ap-

ply to other parallel architectures, we explicitly target NVIDIA’s CUDA architecture and pro-

gramming model [69]. Many components of our abstraction leverage CUDA’s compute hier-

archy of threads, warps and blocks mapped onto the physical streaming multiprocessors, the

oversubscription model of assigning more work than the number of processors to fully saturate

the underlying hardware, and CUDA’s Cooperative Groups programming model [40], described

in Section 4.4.2, to achieve high performance.

Multi-GPU support. This work focuses on load-imbalance issues for a single GPU and does

not consider multi-GPU single-node or multi-node systems, although these are interesting di-

rections for future work.

4.2 Load Balancing Abstraction
The key insight behind our GPU load balancing abstraction is the separation of concerns be-

tween the mapping of the work items to processing units and work execution. We divide our

abstraction into three key concepts (illustrated in Figure 4.1), each of which describes a dif-

ferent aspect of an implementation: (1) defining the work; (2) defining the workload balance

across GPU threads, warps or blocks; and (3) defining the work execution and computation per

thread on the balanced work. This separation allows us to distinctly divide the work between

an application developer and a load-balanced-library developer and facilitates the exploration

of optimizations by mixing different load-balancing techniques and sparse-irregular algorithms.

Sidebar 4.1 presents a practical example of the motivation for our load balancing abstraction.

50

4.2.1 Input from Sparse Data Structures

We begin with our input data expressed in some form of sparse data structure. Examples of such

data structures include, but are not limited to, Compressed Sparse Row (CSR) and Coordinate

(COO) formats. The goal of the first stage of our abstraction is to map the input data format to

a common data framework and vocabulary that is the input to the next stage. This vocabulary

has three simple components that together express the input data:

1. A work atom, a single unit of work that is to be scheduled onto the processors (for

example, a non-zero element of a sparse matrix). We assume that all work atoms have an

equal cost during execution.

2. A work tile, a logical entity represented as a set of work atoms (for example, a row of a

sparse matrix). Work tiles may have different costs during execution. As we highlighted

in the introduction, work is most logically parallelized over work tiles but is often most

efficiently parallelized over work atoms, and mapping between work tiles and work atoms

may be expensive and complex.

3. A tile set, a set of work tiles that together comprise the entire working problem (for ex-

ample, a sparse matrix). In our abstraction, the tiles within a tile set must be independent

(and thus can run in parallel across multiple processors).

This mapping between sparse formats and atoms/tiles/tile sets is defined by the user. Though

we have not implemented all of them, we believe our mapping abstraction here is flexible

enough to express a wide variety of existing sparse data formats in the literature [31] in such a

way that they are suitable for load balancing in our abstraction’s next stage. As well, we have al-

ready included several common sparse formats (CSR, CSC, COO) in our load-balancing library

implementation so that users can simply select and use them without having to implement them.

Given a mapping to atoms/tiles/tile sets, we can next implement a load-balancing algorithm that

can parallelize over work atoms or tiles transparently from the computation’s perspective.

51

Sidebar 4.1 A practical example of existing, predominant approach to load balancing sparse-

irregular workloads.

Consider an SpMV implementation on the GPU provided in the open-source CUDA CUB li-

brary [63]. CUB implements and maintains the SpMV algorithm presented in the paper by

Merrill and Garland [64]. Merge-based SpMV, explained in detail in Section 4.4.2.1, is a CSR-

based, perfectly load-balanced SpMV, where each thread gets an even share of work, and the

amount of work is defined by the total number of matrix rows and the total number of non-zeros,

summed. In the reference, this highly efficient, state-of-the-art implementation took 1,100 lines

of code (LoC) (or 503 LoC of kernel code) across 3 files (not including a 4th file required for a

segmented fixup step of an additional 234 LoC). In contrast, the actual computation of SpMV

within this reference implementation is expressed within a single for-loop and 4–5 LoC! This

disparity between the LoC required to map the work items to processing units in a load-balanced

way and the LoC required to express the desired computation is the key motivation behind our

work. Additionally, the CUB implementation is specifically dedicated to the SpMV algorithm

and would require a significant rewrite to apply it to other algorithms, even within the same

computing domain. One such example of this exact rewrite is by Yang et al., where the authors

extend merge-path load balancing from SpMV to Sparse-Matrix Dense-Matrix Multiplication

(SpMM) algorithm [88]. The load balancing algorithm in both works is the same but applied to

different computations, which motivates the need for reuse.

4.2.2 Defining Load Balancing

By expressing workloads through an abstraction that captures work at differing levels of gran-

ularity (i.e., tile set, atoms, and tiles), we can more easily distribute computation evenly across

the GPU’s available resources. Given a user-defined input tile set and associated sequences of

atoms and tiles, along with a user-selected partitioning algorithm, our load balancing stage out-

puts subsequences of atoms and tiles assigned to processor ids (i.e., where atoms or tiles will be

processed).

The resulting assignment of subsequences to processor ids is critical to effectively balancing

workloads across processing elements and is generally problem- and dataset-specific. The user

52

must specify the necessary sequences. Ideally, an oracle would take these sequences and select

the most optimal subsequences for every processing element. Finding such an oracle is an open

problem and as such, we provide the next best thing: the ability for a user to choose and ex-

periment from set of predefined schedules and the ability to implement their own schedules. In

general, load-balancing algorithm designers must balance between the cost of scheduling and

the benefits from better scheduling. A schedule could be as straightforward as assigning pro-

cessing elements to tiles with arbitrary numbers of atoms (e.g., rows with an arbitrary number

of non-zeros in a sparse matrix) to something more complicated/expensive that takes on a more

holistic approach to work (e.g., considering work across multiple rows with a varying number

of non-zeros in a sparse matrix).

4.2.3 Defining Work Execution

The final component of our load-balancing abstraction expresses the irregular-parallel compu-

tation itself. The previous stage inputs load-imbalanced work and load-balances it; this stage

then consumes that load-balanced work by performing computation on it. The scope of what

computation can be expressed is extensive, and is only limited by how the load-balanced work,

represented as sequences, can be consumed within a CUDA kernel. Since the framework does

not assume control of the kernel, anything you can write in a CUDA kernel will also work in

our framework. For instance, programmers can express a mathematical operation performed

on each atom or each tile of the work, or build cooperative algorithms that not only consume

the work assigned to each thread but also combine the results with neighboring threads to im-

plement more complex algorithms such as parallel reduce or scan. Practical examples that we

have implemented in our framework (see Section 4.3.3 and 4.4.3) using this abstraction include,

but are not limited to, sparse-linear algebra kernels, such as Sparse-Matrix and Sparse-Tensor

contractions, and data-centric parallel graph algorithms, such as Single-Source Shortest Path

(SSSP) and Breadth-First Search (BFS) built on a neighborhood traversal kernel.

We expect typical users of our library will only write their own code for this stage of the

abstraction and use standard data structures and load-balancing schedules that are already part

of our library. However, those users can also implement custom data formats and load-balancing

schedules.

53

4.3 High-Level Framework Implementation
Our GPU load-balancing framework implements the abstraction described in Section 4.2 using

C++17 and CUDA. In our system, programmers use CUDA/C++ to develop irregular-parallel

algorithms and implement new load-balancing schedules. Per our design goals of compos-

able APIs, extensibility and reuse, this and the following section introduce the implementation

details of our API, and how it is used to develop new applications that promote the reuse of

high-performance load-balancing techniques available within the framework. We also explore

a new load-balancing method (Section 4.4.2) built on CUDA’s Cooperative Groups model. Fur-

thermore, we identify how our work can be used to facilitate the exploration of optimizations

for a given application such as SpMV.

4.3.1 Implementing Sparse Data Structures

Our framework translates sparse data structures (e.g., COO, CSR, CSC) into work atoms, work

tiles, and tile sets (Section 4.2.1) using simple C++ iterators. C++ iterators are objects that

point to some element in a range of elements and enable iteration through the elements of

that range using a set of operators. For example, a counting_iterator is an iterator that

represents a pointer into a range of sequential values [1]. Our framework requires the user to

define three important iterators using C++: (1) an iterator over all work atoms; (2) an iterator

over the work tiles; and (3) an iterator over the number of atoms in each work tile. (Our

library already supports several common sparse data structures.) Using these iterators, the load-

balancing schedule can then determine and distribute load-balanced work across the underlying

hardware. Listing 4.1 shows how our abstraction expresses the commonly used CSR format as

a tile set within our framework.

4.3.2 Implementing Load-Balancing Schedules

Perhaps the most straightforward schedule is scheduling each work tile onto one GPU thread.

This approach is common in the literature and practice [8, 28, 65, 78, 88]; although this strategy

is ineffective in the presence of significant load imbalance across tiles, we use it here as an

example to illustrate how load balancing is defined within our framework.

54

Listing 4.1 Compressed-Sparse Row (CSR) format expressed within our framework using
C++17. The CSR format describes a matrix using three arrays: (1) column indices of nonzero
values; (2) the extent of rows (row offsets); and (3) the nonzero values. Since the CSR data
structure does not contain arrays that point to indices of atoms and tiles (nonzeros and rows),
in the listing above we define atom and tile iterators as simple counting iterators from 0 to the
total number of nonzeros (nnz) and from 0 to the total rows in the matrix (rows), respectively
(Lines 2 and 3). The iterator over the atoms-per-work-tile is expressed using a transform itera-
tor, which computes the expression within a provided function for each tile id. For CSR, this is
simply the row offset of the current tile subtracted from the offset of the next tile (Lines 5–11).

1 // Simple iterators for atoms and tiles.
2 counting_iterator<int> atoms_iter(0, nnz);
3 counting_iterator<int> tile_iter(0, rows);
4 // Iterator over the atoms within tile i.
5 auto atoms_per_tile = make_transform_iterator(
6 tile_iter,
7 [tile_iter, row_offsets]
8 __host__ __device__(const int& i) {
9 return (row_offsets[tile_iter[i + 1]] -

10 row_offsets[tile_iter[i]]);
11 });

The inputs are the three iterators from the last stage plus an atom and tile count. The load-

balance algorithm developer, then, implements tiles() and atoms() procedure calls, which

return the C++ range of tiles and atoms to be processed by the current thread, effectively cre-

ating a map between assigned processor ids and segments of the workload. Listing 4.2 shows

a complete example of the thread-mapped schedule. Although a simple algorithm, it can de-

liver high performance for well-balanced workloads with coarse-grained parallelism (a small

number of atoms per tile), such as multiplying a sparse vector by a dense vector. Furthermore,

our abstraction is not limited to only simple scheduling algorithms, as Section 4.4.2 provides

examples of more complex load balancing algorithms.

4.3.3 Implementing Work Execution

Our framework is designed to explicitly let the user own the kernel launch boundary. Owning

a CUDA kernel boundary means that the user is responsible for maintaining and configuring

launch parameters and implementing the CUDA kernel used to define the application. Although

55

Listing 4.2 A thread-mapped load-balancing algorithm expressed as C++ ranges, incorporating
the atoms and tiles defined as iterators from Listing 4.1. Each tile is mapped to a thread, where
the thread id corresponds to the index of the tile in the tile set. All atoms within a tile are
sequentially processed by the thread. After a tile is processed, a thread is mapped to the next
tile, obtained by striding the index by the grid size of the kernel.

1 class schedule_t {
2 // Construct a thread-mapped schedule.
3 __host__ __device__ schedule_t(atoms_it_t atoms_it,
4 tiles_it_t tiles_it,
5 atoms_it_t atoms_per_tile_it,
6 size_t num_atoms, size_t num_tiles) :
7 m_atoms_it(atoms_it), m_tiles_it(tiles_it),
8 m_atoms_per_tile_it(atoms_per_tile_it),
9 m_num_atoms(num_atoms),

10 m_num_tiles(num_tiles) {}
11 // Returns a range of tiles to process in "this" thread.
12 // Stride by grid dimension.
13 __host__ __device__ auto tiles() {
14 auto begin = m_tiles_it(blockDim.x * blockIdx.x + threadIdx.x);
15 auto end = m_tiles_it(m_num_tiles);
16 return range(begin, end).step(gridDim.x * blockDim.x);
17 }
18 // Returns a range of atoms to process in "this" thread.
19 __host__ __device__ auto atoms(
20 const std::size_t& tile) {
21 auto begin = m_atoms_per_tile_it[tile];
22 auto end = m_atoms_per_tile_it[tile + 1];
23 return range(begin, end).step(1);
24 }
25 };
26 using schedule_t = thread_mapped_schedule_t;

56

this design decision comes at a cost of convenience and simplicity, it offers significant flexibility

in what users can express through our abstraction. This design decision is motivated by the

following reasons. (1) Users are not required to add a complex dependency to their existing

workflow/libraries, therefore making code maintenance simpler and more scalable as they do

not have to rely on our framework to incorporate new CUDA constructs and features. (2) Users

are free to express anything and everything CUDA allows within their kernels while consuming

our load-balanced C++ ranges. This allows for versatility in what can be expressed, as the

users can now specify multiple load-balanced work domains, range-based for loops, and even

fusing multiple computations to build more complex algorithms within a single kernel. (3)

Higher-level APIs can be used to build simpler higher-level abstractions that do own the kernel

boundary and provide simpler APIs at the cost of flexibility.

As an input to this stage, users consume the load-balanced C++ ranges to implement their

computation. This can be done in multiple ways, but one of the most common patterns is a

nested range-based for loop that loops over all the assigned tiles and atoms ranges. Listing 4.3

shows a simple example of a CUDA kernel that implements the SpMV algorithm using CSR

format and thread-mapped load-balancing algorithm constructed in Listings 4.1 and 4.2. In this

example, the outer for loop within each thread iterates over the assigned rows of the sparse

matrix (tiles), and the inner loop sequentially processes the assigned nonzeros (atoms) within

each row. In Section 4.4.3 we implement and discuss more complex kernels and computations.

4.4 Implementation Details
4.4.1 Flexible, Composable CUDA-enabled Ranges

Composability of load-balanced primitives and applications using our API is a conscious de-

sign choice within our framework supported through the use of CUDA-enabled C++ ranges.

Our framework does not own the kernel boundary (kernel launch), which forces our APIs to

be focused and contained within the kernels. This allows programmers to build and main-

tain their own kernels while still benefiting from our framework’s load-balancing capabilities.

This is largely implemented using device-wide C++ functions and classes tagged with CUDA’s

57

Listing 4.3 Sparse-Vector Matrix Multiplication (SpMV) implemented within our load-
balancing abstraction using range-based nested for loops. The sparse matrix is represented
using a CSR-based format, where x is the dense input vector and y is the dense output vector
(y = Ax). Lines 11–14 use the load-balancing schedule implemented in Listing 4.2 and the
iterators defined in Listing 4.1 to construct the load-balanced work to be processed. Lines 16
and 19 show the for loops within each thread, which iterate over the assigned rows of the sparse
matrix and sequentially process the assigned atoms within each row. Line 20 shows the actual
computation performed on each work atom (nonzero), and Line 21 writes the result to the dense
output vector y.

1 // Implements load-balanced SpMV kernel.
2 __global__ void spmv(const size_t rows,
3 const size_t cols,
4 const size_t nnz,
5 const int* offsets,
6 const int* indices,
7 const float* values,
8 const float* x, float* y) {
9 // Configure load-balancing.

10 // Input: iterators defined for CSR format.
11 schedule_t config(
12 atoms_iter, tile_iter,
13 atoms_per_tile_it,
14 nnz, rows);
15 // Consume rows using a range-based for loop.
16 for (auto row : config.tiles()) {
17 type_t sum = 0;
18 // Consume atoms using a range-based for loop.
19 for (auto nz : config.atoms(row))
20 sum += values[nz] * x[indices[nz]];
21 y[row] = sum;
22 }
23 }
24 // Launches SpMV kernel.
25 constexpr size_t blocks = 256;
26 size_t grid = (rows + blocks - 1) / blocks;
27 spmv<<<grid, blocks>>>(rows, cols, nnz, offsets, indices, values, x, y);

58

__device__ keyword.1 We implemented and expose several different types of specialized

ranges that were particularly useful in implementing load-balanced schedules:

• step_range: A range that iterates from begin to end in steps of step. Useful for defin-

ing load balancing schedules that require a custom stepping range or process a constant

number of work items per thread (which can be defined using step).

• infinite_range: A range that iterates from begin to infinity. Useful for defining load

balancing schedules in persistent kernel mode [90], where the kernel persistently runs

until all work is consumed or an algorithm has converged.

• grid_stride_range: A specialized case of step_range that iterates from begin to end

in steps of step using the CUDA kernel’s grid size. Also supports block_stride and

warp_stride variants that iterate in steps of the block or warp size, respectively.

4.4.2 Implementing Non-Trivial Load-Balancing

As we describe in Section 4.4.1, we can decouple and express existing load-balancing tech-

niques as a set of C++ ranges. To illustrate the potential of this abstraction, we begin by de-

coupling and expressing a state-of-the-art load-balancing algorithm known as merge-path [35]

previously used for balancing CSR-based SpMV and SpMM [64, 88], and implement three ad-

ditional load balancing algorithms (warp-, block- and group-mapped), all of which are available

in our library for programmers to use. Our new group-mapped algorithm is a tile-per-group-

based schedule, where a group is defined as a collection of threads of any arbitrary size (not

limited to a warp or block size). Our group-mapped schedule is a generalization of the tile-per-

thread, -warp or -block schedules [14, 65] using CUDA’s Cooperative Groups programming

model [40].

4.4.2.1 Merge-path load balancing

In the language of a sparse matrix, merge-path assumes that each non-zero in the matrix and

each new row in the matrix are an equivalent amount of work, then evenly divides nnzs + rows

work across the set of worker threads. Each thread then performs a 2-D binary search within
1A method decorated with the __device__ keyword allows the CUDA compiler to generate a device-callable

entry point. This allows the code to be called from within kernels [69].

59

the nonzero indices and row offsets of a CSR matrix to find the starting position of the row and

nonzero it needs to process. Threads then sequentially process the rows and nonzeros from the

starting position until they reach the end of their assigned work [64].

We implement this algorithm as a load-balancing schedule in our abstraction by expressing

it in two steps: (1) Setup: The initialization step of the C++ schedule class computes the

number of work units per thread, conducts a binary search as described above, and stores the

starting position of each tile and atom in a thread-local variable. (2) Ranges: The second step

of the algorithm builds the ranges for each thread to process as “complete” tiles and “partial”

tiles [64]. If a thread’s atom range lies entirely within one tile, it is “complete”, and is processed

in a simple nested loop. If a thread’s range crosses a tile boundary, the thread processes its work

in a separate nested loop.

Because we decouple the load-balancing method (Section 4.3.2, and above) from the work

execution (Section 4.3.3), we can use this merge-path implementation to implement not only

SpMV but also any other algorithm whose work can be divided into tiles and atoms, e.g., a

graph neighborhood-traversal algorithm used to implement breadth-first search [84]. Just as

importantly, the merge-path schedule is now no longer limited to a CSR-based sparse format.

Supporting other formats only requires building the necessary slightly more complex iterators

that are able to count atoms per tile (the computation that the CSR implementation achieves

with the row offsets array in Listing 4.1).

4.4.2.2 Warp- and block-level load balancing

The goal of a warp- or block-level load-balancing schedule is to assign an equal share of tiles

to each warp or block, which are then sequentially processed. The work atoms within each tile

will be processed in parallel by the available threads within a warp or a block. Each thread

strides by the size of the warp or block to process a new work atom until the end of work is

reached.

The imbalance across different processing units is left for the hardware scheduler to handle.

This scheduler depends on the oversubscription model of CUDA, where the programmer can

launch a larger number of warps or blocks than the GPU can physically schedule at any given

time. As the processing units finish processing their work, new ones are scheduled from the

60

oversubscribed pool [14, 65].

4.4.2.3 Group-level load balancing

Group-level load balancing generalizes warp- and block-level schedules. Instead of requiring

that group sizes are the size of a warp or block, as above, this method leverages CUDA’s Co-

operative Groups (CG) programming model [40] to allow programmer-specified dynamically

sized groups of arbitrary size. Within these groups, the CG model permits detailed control of

the group’s synchronization behaviors as well as simple parallel group-level collectives such

as reduce or scan. We leverage this powerful tool to implement a generalized group-level load

balancing schedule, effectively giving us the warp- and block-level schedules above for free

when the group size equals that of a warp or a block.

Our schedule assigns work tiles to a group, and each group looks at its equal share of tiles

and computes the number of atoms for each tile and stores it in a scratchpad memory (CUDA’s

shared memory). The group then performs a parallel prefix-sum, a widely used parallel algo-

rithm that inputs an array and produces a new array where the element at any position is a sum of

all previous elements [9]. We use this prefix-sum array for two purposes: (1) the last element of

a prefix-sum array indicates the aggregated number of work atoms that a group has to process,

and (2) the position of each sum in the prefix-sum array corresponds to the work tile to which

those atoms belong. The setup phase of the schedule builds the prefix-sum arrays per group in

the scratchpad memory, and the ranged-loop of the schedule returns the atom to process in each

thread. The corresponding tile, if needed, is obtained by a simple get_tile(atom_id) opera-

tion, which executes a binary search within the prefix-sum array to find the tile corresponding

to the atom being processed.

Relying on the CG model for this load-balancing schedule has a unique advantage of con-

figuring the group size (effectively software constructs that directly map onto the hardware)

per the shape of the problem and the underlying hardware architecture. For example, targeting

GPUs where the warp size is not 32 threads (AMD’s GPU architecture supports a warp size of

64 [3]) is now possible with a simple compile-time constant, or configuring the group size to

perfectly align with the structure of the problem.

61

Listing 4.4 A simple loop wrapped around SpMV introduced in Listing 4.3 allows us to repre-
sent the slightly more complex SpMM load-balanced computation.

1 // ... Inside the CUDA kernel.
2 // Loop over all the assigned rows.
3 for (auto row : config.tiles()) {
4 // Loop over all the columns of Matrix B.
5 for (auto col : range(size_t(0), B.cols)
6 .stride(size_t(1))) { /// < New Loop
7 float sum = 0;
8 // Loop over all the assigned nonzeros.
9 for (auto nz : config.atoms(row))

10 sum += values[nz] * B(nz, col);
11 // Output the sum to Matrix-C.
12 C(row, col) = sum;
13 }
14 }

4.4.3 Application Space

Our work definition (Section 4.2.1), composable APIs (Section 4.4.1), and multiple sophisti-

cated, high-performance load-balancing schedules (Section 4.4.2) together provide for a ver-

satile and extensible framework with plenty of room for application-specific optimizations. In

Listing 4.3 we already demonstrated how to implement the SpMV algorithm using our frame-

work. A simple and natural extension is to implement Sparse-Matrix Matrix Multiplication

(SpMM). Listing 4.4 shows the minor change necessary, which adds another loop over the

columns of the B matrix around the existing code from Listing 4.3 to implement SpMM. This

implementation could also be extended to support Gustavson’s General Sparse Matrix-Matrix

Multiplication (SpGEMM), using two kernels and an allocation stage; the first kernel would

compute the size of the output rows used to allocate the memory for the output sparse matrix

and the second kernel would perform the multiply-accumulation.

Beyond sparse linear algebra, we can use our framework to address applications in other

domains. Listing 4.5 implements the graph primitive Single-Source Shortest Path (SSSP) using

our group-level load-balancing schedule. SSSP’s performance on GPUs is largely gated by

good load balancing [14, 84], but if the programmer chooses a load-balancing schedule from

62

Listing 4.5 The parallel single-source shortest path (SSSP) graph primitive expressed using our
load-balanced schedule.

1 // ... Inside the CUDA kernel.
2 // Loop over all the assigned edges to process.
3 for (auto edge : config.atoms()) {
4 auto source = config.get_tile(edge);
5 // G is the graph data structure
6 auto neighbor = G.get_neighbor(source, edge);
7 auto weight = G.get_edge_weight(edge);
8 float source_dist = dist[source];
9 float neighbor_dist = source_dist + weight;

10 // Check if the destination node has been
11 // claimed as someone's child.
12 float recover_distance =
13 atomicMin(&(dist[neighbor]), neighbor_dist);
14 // Add the neighbor to the frontier.
15 if (neighbor_dist < recover_distance)
16 out_frontier[neighbor] = true;
17 }
18

19 // ... Outside the CUDA kernel.
20 // Loop until the frontier is empty.

our library, the details of load balancing are completely hidden. Moreover, the same schedules

that were used in one application domain (e.g., sparse linear algebra) are easily reusable in this

different application domain.

4.5 Evaluation
We aim to show that our framework, built on our load balancing abstraction, enables both high

performance and better programmability for sparse-irregular problems. Our evaluation below

uses our SpMV implementation as a benchmark against state-of-the-art implementations pro-

vided within NVIDIA’s (open-source) CUB library and production (closed-source) cuSparse

library. We considered (and implemented) several additional applications for evaluation, in-

cluding SSSP, BFS, and SpMM. We found they led to similar high-level conclusions. Thus

our evaluation here focuses on SpMV. Our test corpus consists of approximately the entire

63

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Nonzeros

0.001

0.002

0.01

0.02

0.1

0.2

1

2

10

20

100
R

u
n

ti
m

e
 (

m
s
)

cub

merge-path

Kernel

Figure 4.2: Load balancing abstraction performance overhead analysis using our Merge-path
SpMV vs. CUB across all SuiteSparse datasets. Our runtimes almost perfectly match CUB’s
for all datasets. The small number of datasets where CUB is faster is due to a simple heuristic

that CUB uses for sparse matrices with the number of columns equal to 1 (i.e., a vector).

SuiteSparse Matrix Collection [29] with a broad scope of sparse matrices from many different

high-performance computing domains. We ran all experiments on a Ubuntu 20.04 LTS-based

workstation with an NVIDIA Tesla V100 GPU and CUDA 11.7.

4.5.1 Performance Overhead

Our first and foremost goal is to ensure that the elements within our abstraction do not add

any additional performance overhead to the existing load balancing techniques and algorithms

developed using them. To verify this, we compare the runtime performance of our SpMV

implementation using the merge-path schedule to the implementation provided by NVIDIA’s

CUB library [63] (also used for Merrill and Garland’s merge-path SpMV paper [64]) on the

SuiteSparse collection. As previously mentioned, and in contrast to our design, CUB contains

64

a hardwired implementation of the merge-path scheduling algorithms and does not decouple

workload balancing from the actual SpMV computation. CUB’s approach is not reusable for

any other irregular parallel problem without significant changes to the implementation.

Figure 4.2 plots the number of nonzeros (i.e., the total work) vs. runtime for our work vs.

CUB’s implementation. Our implementation has minimal performance overhead when using

our abstraction: a geomean slowdown of 2.5% vs. CUB, with 92% of datasets achieving at least

90% of CUB’s performance. Figure 4.2 shows our implementation almost perfectly matches

CUB for all datasets, except for some datasets with fewer than 100,000 nonzeros. Upon further

investigation, we identify that CUB uses a simple heuristic to launch a thread-mapped SpMV

kernel where the number of columns of a given input matrix equals 1 (i.e., a sparse vector). Un-

like our more general implementation, CUB’s simple (but specialized) thread-mapped SpMV

kernel has no load-balancing overhead for a perfectly balanced workload such as SpVV com-

putation.

4.5.2 Improved Performance Response

We also compare our work to NVIDIA’s vendor library for sparse computations, cuSparse.

Figure 4.3 shows the performance response of our SpMV implementation using each of our

scheduling algorithms individually vs. cuSparse’s state-of-the-art implementation. Switching

between any of our implementations requires very little code change; in the case of merge-path

and thread-mapped, we need only update a single C++ enum (identifier) to select the desired

load balancing schedule.

We then combine our scheduling algorithms into one implementation for SpMV, demon-

strating noticeable performance improvements over cuSparse (Figure 4.4). This is primarily

possible due to our ability to quickly experiment with different heuristic schemes with a vari-

ety of available load-balancing schedules. Here, we use merge-path unless either the number

of rows or columns are less than the threshold α and the nonzeros of a given matrix are less

than threshold β (we choose α = 500 and β = 10000 for SuiteSparse). In this case, we use

thread-mapped or group-mapped load balancing instead of merge-path. Our system shows a

peak performance speedup of 39× and a geomean performance speedup of 2.7× vs. cuSparse.

Our framework not only allows programmers to express computations efficiently and simply

65

0.001

0.002

0.01

0.02

0.1

0.2

1

2

10

20

100

R
u

n
ti

m
e
 (

m
s
)

0.001

0.002

0.01

0.02

0.1

0.2

1

2

10

20

100

R
u

n
ti

m
e
 (

m
s
)

1 10 100 1,000 10,000 100,0001,000,000 100,000,000

Number of Nonzeros
1 10 100 1,000 10,000 100,0001,000,000 100,000,000

Number of Nonzeros

cusparse

group-mapped

merge-path

thread-mapped

Kernel

Figure 4.3: Complete performance landscape of SpMV across all SuiteSparse datasets using
3 load balancing schedules vs. NVIDIA’s cuSparse library. Our 3 different SpMV

implementations are made possible with very little code change.

66

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Nonzeros

0.1

0.2

0.3

1

2

3

10

20

30

100
S

p
e
e
d

u
p

 w
.r

.t
 c

u
S

p
a
rs

e

group-mapped

merge-path
thread-mapped

Kernel

Figure 4.4: Speedup of our framework’s SpMV vs. cuSparse’s SpMV across SuiteSparse using
a heuristic (Section 4.5.2) to choose the appropriate load-balancing schedule.

(i.e. without worrying about the load-balancing algorithms), but also quickly optimize a given

application using a range of scheduling algorithms, both with minor code changes.

4.5.3 Lines of Code (LOC)

We are able to achieve these performance gains with minimal code complexity. Table 4.1 shows

lines of code (LOC) for our framework when compared to the state-of-the-art open-source im-

plementation of merge-path and thread-mapped within NVIDIA’s CUB library. We deliver the

same performance results as highlighted in the previous section with 14× and 1× fewer lines of

code for merge-path and thread-mapped scheduling algorithms, respectively. Using our merge-

path implementation only requires ∼15 additional LoC to the trivial thread-mapped schedule.

Furthermore, we extend the same SpMV computation to our novel group-mapped load bal-

ancing schedule (that can also be specialized to perform block- and warp-mapped load balanc-

ing) within the same 30 LoC.

67

Load Balancing Algorithm NVIDIA/CUB Our Work

Merge-Path 503 36
Thread-Mapped 22 21
Group-Mapped N/A 30
Warp-Mapped N/A 30 (free)
Block-Mapped N/A 30 (free)

Table 4.1: Lines of code (LoC) comparison for NVIDIA’s CUB library versus our work for
SpMV application implemented using merge-path, thread-mapped and group-mapped (warp-
and block-mapped use the exact same code for group-mapped) load balancing algorithms. We

report only non-commented lines of code, formatted using clang-format tool with the
Chromium style guide that contributes to the kernel implementation [34].

4.6 Related Work
Load balancing is the key to achieving high performance on GPUs for sparse, irregular par-

allel problems. Several high-performance computing applications deploy sophisticated load

balancing algorithms on the GPUs. For instance, high-performance sparse-matrix vector mul-

tiplication (SpMV) leverages merge-path [64] (discussed in detail in this paper) and nonzero

splitting algorithm, which partitions the number of non-zeros in a sparse-matrix evenly across

the number of threads [8, 26, 78]. Sparse-matrix matrix multiplication (SpMM) and sparse

matricized tensor times Khatri-Rao product (SpMTTKRP) use binning and bundling algo-

rithms [33, 67, 88], which attempt to bin like-length work together such that they are processed

together.

While some applications actively perform work to load balance a given input, others store

the input in more efficient, already-load-balanced/partitioned formats. These include the F-

COO format (a variant of coordinate format) used for SpMTTKRP and Sparse-Tensor Tensor

Multiplication (SpTTM), where each thread gets the same number of nonzeros to process [56].

Many of the above GPU load-balancing algorithms, along with other novel techniques, were

first described in the graph analytics domain. Davidson et al. and Merrill and Garland were the

first to present Warp, Block-level and Thread-Warp-CTA dynamic load balancing techniques for

Single-Source Shortest Path (SSSP) and Breadth-First Search (BFS) respectively [28, 65]. Log-

arithmic Radix Binning (LRB) is a particularly effective technique for binning work based on a

68

logarithmic work estimate, used for the Triangle Counting graph algorithm and more [32, 36].

Gunrock, GraphIT, and GraphBLAST are graph analytics libraries that implement several dif-

ferent graph algorithms such as BFS, SSSP, PageRank, Graph Coloring, and more, built on

these previously mentioned load-balancing techniques [14, 84, 89]. Although many of these

are effective load balancing techniques with high-performance implementations, they all tightly

couple workload scheduling with the application itself. Our framework is designed to separate

these two concerns, allowing the application to be independent of the load-balancing algorithm,

and therefore be expressed simply. Our approach also allows these previously proposed tech-

niques to be implemented within our framework, and be used for applications beyond those

originally targeted.

Relatively few GPU works target generalized load balancing for irregular workloads. Most

of these are focused on providing a singular, dynamic load-balancing solution centered on task

parallelism, often using a GPU queue-based data structure. Cederman and Tsigas proposed a

task-based approach to load balancing an octree partitioning workload using lock-free and lock-

based methods [18]. Two Tzeng works provide task-management frameworks that implement

load balancing of tasks using a single monolithic task queue and distributed queues with task

stealing and donation [82, 83]. CUIRRE, a framework for load balancing and characterizing

irregular applications on GPUs, also uses a task-pool approach [92], and more recently, Atos, a

task-parallel GPU dynamic scheduling framework, targets asynchronous algorithms [22]. All of

these works deploy either a centralized or a distributed queue-like data structure on the GPUs,

each making design decisions on how the queue is to be partitioned and updated. Except for

the most recent Atos work, most earlier works focus on a coarse-grained parallelism approach

of effectively distributing tasks to the GPU. Our work takes advantage of more modern GPU

architectures, which are more effectively utilized by a fine-grained parallelism approach (par-

allelizing over work atoms instead of work tiles). Unlike our abstraction, these aforementioned

works also rely on a singular load balancing solution, whereas our abstraction flexibly adapts to

many different load balancing techniques, static and dynamic, and allows for new schedules to

be implemented within our framework.

69

4.7 Conclusion
In this paper, we present a programming model for GPU load balancing for sparse irregular

parallel problems. Our model is built on the idea of separation of concerns between workload

mapping and work execution. In the future, we are interested in expanding our model to a

multi-GPU environment, and implementing load balancing schedules that span across the GPU

boundary covering multiple devices and nodes for massive parallel problems. Our current work

focuses solely on load balancing, but we also identify locality to be another key factor for high

performance. We are interested in identifying an orthogonal model that builds an abstraction

for caching and locality into our existing load balancing framework.

In part, this chapter has shown the importance of load-balancing to the performance of irreg-

ular problems. While regular problems typically map in a more straightforward way to GPUs,

and thus suffer from fewer load-balancing issues, the next chapter shows that even dense, arith-

metically intense, operations such as matrix-matrix product (GEMM) can suffer from poor re-

source utilization due to load imbalance. However, whereas load imbalance for sparse problems

typically arises from variable-length data and unpredictable access patterns, load imbalance in

GEMM arises from work decompositions that are a poor fit to the physical resources of the

architecture. In the following chapter we introduce Stream-K, a work-centric parallel decompo-

sition for dense operations that addresses the resource imbalance issues.

70

Chapter 5

Work-centric Parallel Decomposition for
Dense Matrix-Matrix Multiplication on
the GPU

General matrix-matrix product (GEMM), convolution, and other similar computations con-

stitute the dominant workloads in many deep learning and scientific computing applications.

High-performance processors such as GPUs, for example, are designed to achieve nearly 100%

of their theoretical peak math throughput when computing GEMM. Doing so, however, requires

a work decomposition that perfectly occupies the underlying physical cores. As we show, at-

taining such high levels of processor utilization across a broad landscape of problems shapes

and sizes can be challenging.

Classically, GEMM implementations block their computation using a data-parallel tiling

of the output matrix, assigning the independent production of output tiles among concurrent

threads (or thread groups) [2, 49, 66]. The work per output tile is regular, and tile production

tends to dispatch across idle physical cores in “waves”. The overall workload is well-balanced

and processor utilization is highest when there are many waves, i.e., the number of output tiles

greatly oversubscribes the number of cores.

However, such oversubscription has shrunk considerably as processors have grown in size.

An increased core count will require fewer waves to produce a given tile count. Bigger cores

will compel larger matrix blocking factors, leading to fewer waves of larger tiles. In general,

71

(a) Data parallel decomposition with grid size
g=9 CTAs,

large 128× 128× 128 CTA work volumes,
and 75% processor utilization ceiling

(b) Data parallel decomposition with grid size
g=18 CTAs,

smaller 128× 64× 128 CTA work volumes,
and 90% processor utilization ceiling

Figure 5.1: Data-parallel execution schedules for 384× 384× 128 GEMM across a
hypothetical four-SM GPU.

execution schedules with fewer waves are much more likely to suffer from quantization in-

efficiency, i.e., the processor underutilization that occurs when the number of output tiles is

not an even multiple of the number of processor cores. When the last wave is partially full,

the unused cores must wait for the remaining threads to execute millions (if not billions) of

multiply-accumulate (MAC) instructions before they are able to execute any dependent work.

Figure 5.1a illustrates such a scenario on a hypothetical GPU with four streaming multipro-

cessor cores (SMs). If we block a 384 × 384 × 128 GEMM computation into nine 128 × 128

output tiles, a data-parallel decomposition cannot achieve more than 75% of the processor’s

rated throughput. This theoretical utilization ceiling can be improved to 90% by halving the tile

size as shown in Figure 5.1b. However, the finer-grained blocking factor will be less cache and

scratchpad efficient, and may preclude any practical performance improvement.

Quantization inefficiency is a concern for increasingly wide processors such as GPUs, where

ALUs-per-core and cores-per-processor both currently number in the hundreds. Consequently,

many common GEMM-like workloads now exhibit a final, partially full wave that comprises a

significant fraction of the total computation time.

The current remedy employed by GPU-based math and deep learning libraries is to deploy

an ensemble of tiling configurations. When the ideal blocking factor does not quantize well, the

72

(a) Fixed-split decomposition with splitting factor
s=2,

grid size g=18 CTAs, smaller 128× 128× 64 CTA
work volumes,

and 90% quantization efficiency

(b) Basic Stream-K decomposition with grid size
g=4 CTAs,

larger 128× 128× 288 CTA work volumes,
and nearly 100% quantization efficiency

Figure 5.2: Tile-splitting execution schedules for 384× 384× 128 GEMM across a
hypothetical four-SM GPU.

library chooses among tiling alternatives with smaller concurrent work volumes, such as those

illustrated in Figure 5.1b and Figure 5.2a.

Tile-based ensembles, however, present performance and logistical challenges for math li-

braries seeking to deliver the best-achievable performance across diverse problem sizes and

shapes. Distributable code size can be problematic for large ensembles. For example, NVIDIA’s

cuBLAS library [72] is hundreds of megabytes, often providing more than twenty pre-compiled

kernel specializations per architecture for a given API entry point. Large ensembles also require

sophisticated selection heuristics. In our evaluation, we show these heuristics can struggle to

consistently identify the optimal configuration for arbitrary problems.

Unlike these tile-based methods, our Stream-K decomposition always distributes an even

share (within one) of the aggregate multiply-accumulate loop iterations required by the GEMM

computation across SMs. Because the instruction workload of a single MAC-loop iteration is

far smaller than that of an entire output tile, any variance in core workload is practically negli-

gible. Stream-K uses the ideal blocking factor regardless of problem shape, has communication

overheads that scale with processor width (rather than output tiles), and compiles to a single

kernel.

73

We use an enormous corpus of 32,824 GEMM shapes and sizes to evaluate Stream-K, which

we implemented within NVIDIA’s CUTLASS library [49]. In comparison with CUTLASS’s

data-parallel implementation of the same blocking factor, Stream-K provides a substantially

higher performance response across our landscape of GEMM problems, demonstrating up to

14× speedup on NVIDIA A100 GPUs.

To highlight the practical challenges of ensemble-based solutions, we also evaluate NVIDIA’s

cuBLAS library as well as an oracle-driven ensemble of data-parallel CUTLASS tilings. Rela-

tive to both ensembles, we show that our single-kernel Stream-K achieves both (1) higher aver-

age performance, and (2) higher performance consistency. Versus cuBLAS, Stream-K demon-

strates up to 6.7× speedup and virtually no instances of slowdown for compute-bound problems.

5.1 Background
General Matrix Multiplication (GEMM) is defined as the product C = αAB + βC where α and

β are scalar values and A, B, and C are matrices. (For simplicity, we assume α = 1, β = 0

throughout this paper.) We refer to the shape of a given GEMM problem by the volumetric

extents of its computation. For example, a m × n × k GEMM consumes m × k and k × n

input matrices A and B, respectively, performs m× n× k multiply-accumulate operations, and

produces an m× n output matrix C.

GEMM is a performance-critical subroutine in many large-scale engineering and scientific

applications. It plays an important role in matrix factorization methods such as LU, QR, and

Cholesky decomposition. High-performance modeling and simulation applications in engineer-

ing, climate simulation, cosmology, quantum chemistry, and other scientific domains rely on

these factorization methods.

Matrix multiplication is also the fundamental building block of modern deep learning (DL)

methods. The training of deep neural networks (DNNs) is often performed on massive datasets

across large distributed systems [61]. Many DL training and inference operations are cast as

matrix multiplications. For example, image recognition and computer vision models rely on

convolution, which can be implemented directly as the product of filter and image datasets [23].

Transformer architectures, which have come to dominate natural language processing and other

74

applications, are almost entirely limited by the performance of large matrix products.

Early work on GPU matrix-matrix multiplication from Larsen and McAllister framed the

computation as a multi-texture multiplication and blending operation [53]. The user program-

mable shared memory provided by subsequent GPU architectures enabled higher-performing

data parallel schemes with two levels of blocking (shared memory and registers) with tile sizes

informed via extensive microbenchmarking analysis [7, 66, 79, 81] and auto-tuning [25, 48, 55].

The MAGMA GPU math library was perhaps the first to optimize for diverse GEMM prob-

lem shapes [51]. Their solution applied a constrained set of tiling parameters to a templated

CUDA C++ code stencil, generating several hundred data-parallel variants per API primitive

(e.g., hgemm_tt() for half-precision transpose-transpose GEMM). They evaluated these vari-

ants to distill a small ensemble of typically three to five kernels that collectively perform well

across a diversity of problem shapes. Kernel selection and dispatch for a given problem was

governed by size thresholds expressed via simple handwritten rules.

Subsequent GPU math libraries have employed more sophisticated code-generation and

kernel-selection components. For example, the ISAAC project uses machine learning tech-

niques to predict an optimal tiling and/or splitting parameterization for a given GEMM shape,

which can then be instantiated either online or offline via a PTX-level code generator [80].

NVIDIA’s cuBLAS [72] library has provided an extended cublasGemmEx interface that al-

lows the caller to select from among 24 different GEMM “algorithms”. Carefully trained heuris-

tics choose between this large space of alternatives when using the default interface. These algo-

rithms implement a variety of different data-parallel and fixed-split variants, and it is common

for cuBLAS to have assembled each variant into its own architecture-specific kernel program for

code optimization purposes. The cross product of GEMM API functionality, strategic variants,

and microarchitecture has resulted in distributions that are increasingly enormous, exceeding

hundreds of megabytes of executable code.

Given the fast-paced and rapidly changing nature of contemporary deep learning, recent

work has focused on programming models for simplifying the expression and construction

high performance kernels that alter or supplement the GEMM computation. The CUTLASS

C++ library provides data-movement and multiply-accumulation classes for composing cus-

75

tom GEMM-like computations at all levels of the GPU thread hierarchy [49]. Triton [81] is a

domain-specific language for tensor programming centered on the expression, transformation,

and optimization of block/tile concepts. Other domain-specific programming languages such

as Halide [76] and TVM [21] separate the expression of pointwise operators from that of loop

scheduling. Fireiron [39] further adds data movement constructs into the scheduling grammar.

5.2 Work Decomposition Strategies
Modern processors typically store A, B, and C in a large, slow, distant memory and have access

to a small, fast, scratchpad or cache memory. A primary goal for any GEMM implementation

is to leverage these local storage resources so that the resulting implementation is computation-

bound.

5.2.1 Sequential Cache-Blocked

The classic cache-blocked formulation of GEMM divides its computational volume into blocks

and chooses a traversal order that exposes memory locality. Algorithm 6 presents a simplified

implementation comprising six loops. The innermost three loops iterate within the blocking

factors BLK M, BLK N, and BLK K, while the outermost three iterate across them. If the

cache can capture one block from each of the three matrices, the resulting data reuse among

those elements will significantly reduce the number of last-level memory accesses [52].

5.2.2 Data-parallel

As shown in Algorithm 7, the data-parallel GPU formulation of GEMM is decomposed across

a grid of parallel thread blocks, or cooperative thread arrays (CTAs)1. The grid is sized such

that each CTA produces its own (BLK M × BLK N) output tile.

For exposition, the MacLoop() subroutine of Algorithm 8 encapsulates the multiply-accumulate

(MAC) workloads that compute the values of the CTA’s output tile. It performs a sequence of

MAC-loop iterations in the accumulation domain, e.g., the k-axis for GEMM. Each MAC-loop

iteration comprises a per-thread volume of (BLK M × BLK N × BLK K) / CTA THREADS

1Blocks of GPU threads are coscheduled in CTAs, which virtualize the hardware’s streaming multiprocessor
cores (SMs).

76

Algorithm 6 Sequential cache-blocked GEMM.

1: B tile-processing outer loops
2: for mm← 0 to m step BLK M do
3: for nn← 0 to n step BLK N do
4: B zero-initialize output tile
5: for mmm← mm to (mm + BLK M) do
6: for nnn← nn to (nn + BLK N) do
7: C[mmm,nnn]← 0
8: end for
9: end for

10: B perform the MAC iterations for this tile
11: for kk← 0 to k step BLK K do
12: B MAC iteration (fully unrolled)
13: for mmm← mm to (mm + BLK M) do
14: for nnn← nn to (nn + BLK N) do
15: for kkk← kk to (kk + BLK K) do
16: C[mmm,nnn]← C[mmm, nnn] +
17: (A[mmm,kkk] × B[kkk,nnn])
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for

MAC operations. As the computation proceeds, fragments of the input matrices are staged

through the SM’s shared memory for local reuse among individual threads.

Although this particular presentation of MacLoop() deploys one thread per output tile el-

ement, the sophisticated implementations in CUTLASS [49] and cuBLAS [49] will: (1) fully

unroll the per-thread MAC-loop iteration; (2) implement additional blocking at the warp and/or

thread levels; and (3) orchestrate a software pipeline of shared memory data movement across

MAC-loop iterations.

Unfortunately, this classic data-parallel decomposition is liable to suffer from quantization

inefficiency on modern GPUs, as illustrated in Figure 5.1. Although an ensemble of diverse

blocking factors may uncover opportunities for greater processor utilization, it is unlikely to fa-

cilitate perfect quantizations for arbitrary problem sizes. Furthermore, smaller blocking factors

have two drawbacks: (1) fewer instructions per MAC-loop iteration for covering the latencies

77

of global and shared memory transfers in pipelined implementations; and (2) a higher propor-

tion of memory operations relative to MAC instructions, which may prevent them from being

computation-bound.

Algorithm 7 Data-parallel GPU GEMM.

1: shared accum[BLK M,BLK N]
2: iters per tile← dk/BLK Ke
3: B instantiate one CTA per output tile
4: fork CTA[x] in [dm/BLK Me × dn/BLK Ne] do
5: B perform the MAC iterations for this tile
6: accum←MacLoop(x, 0, iters per tile)
7: B store accumulators to output tile
8: StoreTile(C, x, accum)
9: join

5.2.3 Fixed-split

Alternatively, the granularity of work assigned to each CTA can be reduced via parallelization

across the accumulation dimension. For a given output tile, the associativity of addition allows

the iteration domain to be split among multiple concurrent CTAs, followed by a dependent

“fixup” step to reduce the partial sums computed by each CTA. We highlight this fixed-split

approach in Algorithm 9, where each output tile is cooperatively produced by s CTAs. Notably,

it functions identically to the data-parallel decomposition when the splitting factor s = 1.

The fixed-split decomposition is also featured in CUTLASS and cuBLAS. The splitting fac-

tor is implemented as a runtime parameter, allowing a single kernel executable to support multi-

ple work volumes while retaining the ideal blocking factors for optimal data sharing and latency

hiding. However, as illustrated in Figure 5.2a, the prospect of achieving a perfect quantization

from a uniform tile-splitting is unlikely. Furthermore, the extra overheads of communication

and synchronization scale with both the overall problem size as well as the splitting factor.

5.2.4 Stream-K

Our Stream-K decomposition is a tile-splitting parallelization in which the splitting seams are

completely dissociated from the tiling structure itself. Although we employ familiar blocking

and tiling strategies for data reuse, we instead quantize the GEMM computation into MAC-loop

78

Algorithm 8 CTA-wide MacLoop() subroutine for performing a sequence of MAC-loop itera-
tions.

1: procedure MACLOOP(tile idx, iter begin, iter end)
2: shared accum[BLK M,BLK N]
3: shared frag a[BLK M,BLK K]
4: shared frag b[BLK K,BLK N]
5: B determine output tile coordinates
6: mm← BLK M × (tile idx / dm/BLK Me)
7: nn← BLK N × (tile idx % dm/BLK Me)
8: B zero-initialize local accumulator storage
9: accum← 0

10: B perform the specified range of MAC iters for this tile
11: for iter← iter begin to iter end do
12: kk← iter × BLK K
13: B copy global matrix fragments to local storage
14: frag a← LoadFragment(A, mm, kk)
15: frag b← LoadFragment(B, kk, nn)
16: fork THREAD[mmm,nnn] in [BLK M, BLK N] do
17: B MAC iteration per thread (fully unrolled)
18: for kkk← 0 to BLK K do
19: accum[mmm, nnn]← accum[mmm,nnn] +
20: (frag a[mmm,kkk] × frag b[kkk,nnn])
21: end for
22: join
23: end for
24: return accum
25: end procedure

iterations, i.e., small volumes of CTA-wide BLK M × BLK N × BLK K work. As presented

in Algorithm 10, Stream-K evenly partitions the GEMM’s aggregate workload of MAC-loop

iterations across a constant-sized grid of g CTAs. Each CTA’s range of MAC-loop iterations

is mapped contiguously into the m → n → k linearization of the GEMM shape, crossing

output-tile boundaries as it may.

Should a given CTA’s starting and/or ending iterations not coincide with tile boundaries

(as is expected to be the common case), it must consolidate its partial results with those of

the other CTA(s) also covering that tile. In this basic implementation, each output tile in C

is written by the CTA that performed that tile’s k = 0 MAC-loop iteration. Before it can do

so, however, it must accumulate any partial sums shared from other CTAs in temporary global

79

Algorithm 9 Fixed-split GPU GEMM with splitting factor s.

1: shared accum[BLK M,BLK N]
2: iters per tile← dk/BLK Ke
3: iters per split← diters per tile/se
4: B instantiate s CTAs per output tile
5: fork CTA[x,y] in [dm/BLK Me × dn/BLK Ne, s] do
6: B perform the range of MAC iterations for this split
7: iter← y × iters per split
8: iter end← min(iters per tile, iter + iters per split)
9: accum←MacLoop(x, iter, iter end)

10: B consolidate partial-sums across CTAs
11: if y 6= 0 then
12: B store accumulators to temporary global storage
13: StorePartials(partials[x,y], accum)
14: Signal(flags[x,y])
15: else
16: B accumulate partial sums from other CTAs contributing to this tile
17: for cta← 1 to s do
18: Wait(flags[x,cta])
19: accum← accum + LoadPartials(partials[x,cta])
20: end for
21: B store accumulators to output tile
22: StoreTile(C, tile id, accum)
23: end if
24: join

storage. Notably, Stream-K’s communication, synchronization, and global storage overheads

are independent of problem size, scaling instead with the number of CTAs.

A secondary benefit of Stream-K is that synchronization-waiting is likely negligible when

the number of output tiles is greater than the number of CTAs. In this regime, each output tile is

covered by at most two CTAs, and the tile-processing skew ensures that the accumulating CTA

will not need its peer contributions until well after those collaborators have finished producing

them.

Continuing our earlier example, Figure 5.2b illustrates the basic Stream-K execution sched-

ule of the 384× 384× 128 GEMM problem on a hypothetical four-SM GPU. To fully occupy

the GPU, we launch g = 4 CTAs. Assuming BLK M = 128, BLK N = 128, and BLK K = 4,

each CTA is tasked with a 128× 128× 288 work volume comprising 72 MAC-loop iterations.

80

Algorithm 10 Basic Stream-K GPU GEMM with grid size g.

1: shared accum[BLK M,BLK N]
2: iters per tile← dk/BLK Ke
3: total iters← dm/BLK Me × dn/ BLK Ne × iters per tile
4: iters per cta← dtotal iters / ge
5: B instantiate g CTAs
6: fork CTA[x] in [g] do
7: iter← x × iters per cta
8: iter end← iter + iters per cta
9: B iteration-processing outer loop

10: while iter < iter end do
11: tile idx← iter / iters per tile
12: tile iter← tile idx × iters per tile
13: tile iter end← tile iter + iters per tile
14: B perform the range of MAC iterations for this tile
15: local iter← iter - tile iter
16: local iter end← min(iter end, tile iter end) - tile iter
17: accum←MacLoop(tile id, local iter, local iter end)
18: B consolidate partial-sums across CTAs
19: tile started← iter = tile iter
20: tile ended← (iter end ≥ tile iter end)
21: if ¬tile started then
22: B store accum to temporary global storage
23: StorePartials(partials[x], accum)
24: Signal(flags[x])
25: else
26: B store accumulators to output tile
27: if ¬tile ended then
28: B accumulate partial sums from other CTA
29: B contributing to this tile
30: cta end← tile iter end / iters per tile
31: for cta← (x+1) in cta end do
32: Wait(flags[cta])
33: accum← accum + LoadPartials(partials[cta])
34: end for
35: end if
36: StoreTile(C, tile id, accum)
37: end if
38: iter← tile iter end
39: end while
40: join

81

(a) Basic Stream-K (b) DP + one-tile SK (c) Two-tile SK + DP

Figure 5.3: Basic Stream-K vs. hybrid execution schedules for 896× 384× 128 GEMM across
a hypothetical four-SM GPU.

This results in a 100% quantization efficiency, as all four SMs will execute the same number of

MAC instructions.

Additionally, the work volume of a single MAC-loop iteration is 32× smaller than that of

an entire output tile. Consequently, a 32-way fixed-split decomposition would also provide a

100% quantization efficiency, but at the expense of an 8× larger “fixup” overhead. Furthermore,

Stream-K is better able to hide the latency of inter-CTA synchronization due to the temporal

skew between writers and readers when sharing partial sums.

Stream-K also generalizes to both fixed-split and data-parallel decompositions. When the

grid size g is an even multiple of the number of output tiles, Stream-K functions exactly as

the fixed-split decomposition. Similarly, when g equals the number of output tiles, Stream-K

behaves identically to the data-parallel decomposition. We take advantage of this generaliza-

tion to create an optimized hybridization of the Stream-K decomposition in following section

(5.3.2).

5.3 Implementation Details
The work decomposition we introduced in the last section can be instantiated in a number of

different ways to suit the needs of different hardware architectures and software library de-

signs. Our implementation targets NVIDIA GPUs and is designed to be integrated into existing

libraries like cuBLAS and CUTLASS. In this section, we describe how we configure the ker-

nels we launch and introduce a hybridization scheme that helps ensure users achieve maximum

GEMM performance across the widest possible range of problem shapes.

82

We also emphasize that these are truly internal implementation details. They are completely

transparent to the user of a BLAS-like library and do not alter the library’s interface. The only

observable impact is the improved performance characteristics that we analyze in Section 5.4.

5.3.1 Kernel Configuration

The tile size chosen for blocking the GEMM computation is, of course, a critical parameter

controlling the performance of the GEMM kernel. For modern NVIDIA GPUs, appropriate tile

sizes are determined by the shape of matrices supported by the GPU’s Tensor Cores. Based on

extensive empirical experience, we selected the smallest CTA-wide tile size capable of achiev-

ing 99% of the GPU’s peak TFLOP/s for very large GEMM volumes for each supported preci-

sion. For the NVIDIA A100 GPU used in our experiments, these sizes are 64×64×16 for FP64

problems and 128×128×32 for FP16→32 problems.

Achieving maximal GEMM performance from Stream-K parallelization also requires some

degree of dynamic problem-specific configuration. Before launching a kernel we choose a grid

size likely to yield the best performance on the specific problem shape at hand. This is in

contrast to ensemble-based approaches which accommodate diverse problem shapes through

the static generation of many kernel variants based on workload decomposition and blocking

factor.

Our grid size selection heuristic is based on a simple analytical model that minimizes the

cost of reading, writing, and accumulating partial sums while equally distributing the MAC-

loop iterations per CTA. Details of this analytical model are provided in the section below.

Parameters to the model are trivially chosen with empirical measurements and need only be

done once per target architecture. The resulting parameters can then be compiled statically into

the library. Again, this is in contrast to ensemble-based approaches that rely on potentially

complex heuristics and machine learning models for kernel selection at run time.

5.3.1.1 Analytical Modeling for Stream-K Configuration

In practice, it is not always advantageous to invoke the Stream-K decomposition with as many

CTAs as can be actively resident on the GPU. Because it is a tile-splitting approach, it incurs

fixup costs above and beyond the simple data-parallel decomposition. Consequently, the funda-

mental proposition is one of strong scaling: how much additional parallelism can be expressed

83

before the extra overhead causes a negative return on investment. Depending on the problem

shape, the optimal splitting could be enough to fill the entire processor (i.e., g ← p), no splitting

at all (i.e., g ← t), or somewhere in between.

To predict this inflection point, we present a simple approach to model the runtime of

Stream-K as a function of grid size g. In the absence of other work on the GPU, the run-

time of the entire Stream-K schedule will be the same as that of one of its tile-outputting CTAs,

which we formulate as follows:

timeCTA(g)←a + b(FixupPeers(g) > 1)

+ c(ItersPerCta(g)) + d (FixupPeers(g) { 1)

where:

ItersPerCta(g)←

⌈
d m

BLK Me × d
n

BLK Ne × d
k

BLK Ke
g

⌉

FixupPeers(g)←

⌈ ⌈
k

BLK K

⌉
IterationsPerCta(g)

⌉
This CTA runtime model comprises four components. The a workload encompasses the

one-time, fixed-size costs incurred by each CTA, e.g., the grid launch latency, the initial com-

pulsory cache misses, the cost of writing the final output tile to C, etc. The second component

b incorporates the conditional costs of outputting temporary partial sums for scenarios where

the number of output tiles does not quantize perfectly across the processor. The third—the per-

iteration workload c—represents the instruction and stall workload of each MAC-iteration. The

final, per-collaborator workload d is the cost of reading and accumulating the partial sums from

another CTA covering the same tile. The set of workload constants {a, b , c, d } will be unique

to each combination of blocking factors, matrix data type, and GPU microarchitecture, and can

be determined empirically via microbenchmarks.

Figure 5.4 illustrates the behavior of our grid size selection model as parameterized for fp16-

precision GEMM on NVIDIA’s A100 GPU using blocking factors BLK M = 128, BLK N =

128, and BLK K = 32. Specifically, we highlight three strong-scaling GEMM scenarios where

84

(a) GEMM 256× 3584× 8192
56 output tiles, 256 iterations per tile

gbest ← 108 CTAs, 132/133 iterations per CTA

(b) GEMM 128× 128× 16384
1 output tile, 512 iterations per tile

gbest ← 8 CTAs, 64 iterations per CTA

(c) GEMM 1024× 1024× 1024
64 output tiles, 32 iterations per tile

gbest ← 64 CTAs, 32 iterations per CTA

Figure 5.4: Modeled Stream-K performance on NVIDIA A100 (108 SMs) for BLK M=128,
BLK N=128, BLK K=32

85

Figure 5.5: Strong-scaling comparison of data-parallel and Stream-K execution schedules for
128× 128× 384 GEMM across a hypothetical four-SM GPU. Data-parallel causes the

enormous k-dimension to be sequentially processed within single CTA, whereas Stream-K is
able to take advantage of the parallelism available across the k-dimension.

the number of output tiles is insufficient to produce a single full wave across the processor’s

108 SM cores.

The first GEMM shape accumulates through a large-sized k-dimension to produce a short,

wide output matrix. In this scenario, the reduction in MAC-loop time relative to the increasing

costs of seam fixup is monotonically improving. Consequently, the optimal grid size coincides

with maximal parallelism at g = 108 CTAs.

The second shape accumulates through a medium-sized k-dimension to produce a square

matrix with 64 output tiles. In this case, the fixup costs of b and d outweigh any reduction in

MAC-loop iteration count, as seen by the global minima “dip” at g = 64 CTAs.

The third shape produces a single output tile after accumulating through an enormous k-

dimension, analogous to the execution schedule in Figure 5.5. Although the opportunity for

strong scaling is quite large, the per-peer cost of serial reduction is entirely incurred by a single

CTA. These accumulation costs begin to outweigh any further reductions in iteration count for

grid sizes g > 8.

86

5.3.2 Data-parallel Hybridization

The basic Stream-K decomposition can, in certain cases, exhibit tile-processing skew that leads

to potentially adverse effects on cache performance. When the number of output tiles t is not

an even multiple of the grid size g, the starting k-offset for the first MAC-loop iteration in each

CTA will be different. Depending on the sizes and shapes of the input matrices and blocking

factors, this skew may preclude these fragments from seeing reuse across CTAs in the GPU’s

cache structure. In Figure 5.3a, for example, the initial k-axis fragment offsets for each of

the four CTAs will be k = 0, k = 32, k = 64, and k = 96, respectively. Furthermore, this

32-element skew between CTAs will persist for the duration of the GEMM computation.

Tile-processing skew is a direct consequence of Stream-K’s workload balancing strategy.

However, we can take measures to limit its duration by applying Stream-K’s iteration balancing

to a smaller, tile-aligned region of the total iteration domain such that the remaining tiles can be

produced in full, temporally aligned waves.

The simplest hybrid scheme is the “data-parallel + one-tile Stream-K” schedule illustrated

in Figure 5.3b. It applies iteration balancing only among the tiles otherwise remaining for a

final, partially full data-parallel wave. The total number of full waves is w = bt/pc, where t

is the number of output tiles and p is the number of SM cores in the GPU. Consequently, each

Stream-K CTA receives an even share of iterations that is less than one tile’s worth. Unfor-

tunately, this strategy has little ability to hide the synchronization latency for the exchange of

partial sums when three or more CTAs cover the same tile. In these scenarios, the accumulating

CTA may be forced to wait for the contributions of other CTAs to become visible, as all but the

last will be completing their final iterations at roughly the same time. Furthermore, the basic

version of our scheme for aggregating partials is serialized within a single CTA, and thus will

likely cause SM workload imbalance when the number of contributing CTAs per tile is large.

We address these problems with our “two-tile Stream-K + data-parallel” hybrid schedule,

illustrated in Figure 5.3c. It performs one fewer full data-parallel wave in exchange for each

Stream-K CTA receiving more than one tile’s worth of iterations (but fewer than two). This

provides much better latency hiding when w ≥ 2, and each accumulating CTA will only need

to receive partials from one other contributing CTA. Otherwise, it behaves identically to the “DP

87

+ one tile SK” schedule. This hybrid approach results in both improved memory access patterns

and latency hiding. It also shows the versatility of the generic Stream-K looping structure to

implement different scheduling policies within the same kernel instance.

5.4 Performance Evaluation
We have implemented our Stream-K decomposition using NVIDIA’s CUTLASS library of

CUDA C++ template abstractions for authoring GEMM-like computations. CUTLASS pro-

vides the optimized equivalent of the CTA-wide MacLoop() subroutine in Algorithm 8, which

performs blocking, tiling, and software-pipelined data movement that is analogous to the closed-

source cuBLAS and cuDNN implementations. Our evaluation encompasses both (1) double-

precision FP64 GEMM, and (2) mixed-precision FP16→32 GEMM. For the latter, the input

matrices A and B comprise half-precision FP16 values, yet the internal accumulation and out-

put matrix C values are single-precision FP32.

Hardware environment. Our test GPU is the NVIDIA A100, which contains 108 SM cores

and can issue 13,824 data-parallel instructions per cycle. It provides 40 MB of L2 cache and

1,555 GB/s of global memory bandwidth. For measurement stability, we lock the power enve-

lope at 400 W and SM clocks at 1005 MHz (∼71% of their dynamic peak). This establishes

FP64 tensor-core peak throughput of 13.9 TFLOP/s, and mixed FP16→32 tensor-core peak

throughput of 222.3 TFLOP/s.

Dataset. Our test corpus intends to approximate the enormous breadth and scope of device-

wide GEMM problems that GPU math kernel libraries are designed to accommodate. As shown

in Figure 5.6, we evaluate 32,768 different problem sizes and shapes, log-sampled at random

within a domain ofm, n, and k matrix dimensions whose volume spans six orders of magnitude.

Methodology. For both GEMM precisions, we build a single Stream-K kernel that has been

specialized per the guidelines in the Section 5.3. Furthermore, these kernels implement our

“two-tile Stream-K + data-parallel” hybrid decomposition. Our evaluation compares each

Stream-K kernel with:

1. the default data-parallel CUTLASS kernel of the same blocking factor;

88

Figure 5.6: The test domain of 32,824 GEMM problem shapes and sizes used for performance
evaluation. {m} = {128 . . . 8192}, {n} = {128 . . . 8192}, {k} = {128 . . . 8192}

89

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(a) CUTLASS FP16→32 data-parallel “roofline”
performance (blocking factors = 128×128×32).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(b) cuBLAS (ensemble)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(c) Idealized CUTLASS oracle (ensemble)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(d) Stream-K (blocking factors = 128×128×32)

Figure 5.7: FP16→FP32 GEMM “roofline” performance utilization landscapes on NVIDIA
A100 across 32K GEMM problem shapes and sizes.

2. the cuBLAS ensemble for that precision (CUDA 11.6); and

3. an idealized oracle that will always select the highest performing data-parallel CUT-

LASS blocking factor to execute for a given GEMM instance.

For FP64 problems, this oracle selects among the ensemble of (32×32×16), (32×64×16),

(64×64×16), (64×128×16), and (128×128×16) blocking factor specializations. For FP16

→ 32, it selects among the ensemble of (64×64×64), (64×128×32), (128×128×32), and

(128×256×32) blocking factor specializations. These specific specializations are an open-

sourced strict subsets alternative of the corresponding cuBLAS GEMM kernel ensembles.

The “roofline” plots of Figure 5.8a and Figure 5.7a highlight the spread of performance

90

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(a) CUTLASS data-parallel
(blocking factors = 64×64×16)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(b) cuBLAS (ensemble)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(c) Idealized CUTLASS oracle (ensemble)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800

Te
ns

or
 c

or
e

ut
ili

za
tio

n
%

Arithmetic intensity (operations / byte)

(d) Stream-K (blocking factors = 64×64×16)

Figure 5.8: FP64 GEMM “roofline” performance utilization landscapes on NVIDIA A100
across 32K problem shapes and sizes.

produced by the singleton data-parallel CUTLASS kernels. They plot the percentage of FP64

and FP16→32 processor utilization as a function of computational intensity. Ideally, a GEMM

implementation’s performance response would manifest as a narrow band that adheres tightly

to the machine’s bandwidth- and compute-bound performance ceilings. Here, the data-parallel

kernels exhibit a fairly large dynamic range for any given regime of arithmetic intensity. In

contrast, the performance responses from the equivalent Stream-K kernels in Figure 5.8d and

Figure 5.7d are much tighter. These observations are corroborated by Table 5.1 and Table 5.2,

which show the Stream-K kernels outperforming their data-parallel FP64 and FP16→32 equiv-

alents by an average of 1.23× and 1.63×, respectively. For extreme strong-scaling scenarios

91

vs.
CUTLASS

64× 64× 16

vs.
cuBLAS

vs.
cuBLAS

> 150 ops/B

vs.
CUTLASS

oracle

Average 1.23× 1.06× 1.03× 1.05×
StdDev 0.45 0.10 0.03 0.09

Min 0.77× 0.68× 0.99× 0.70×
Max 5.63× 2.55× 1.24× 1.64×

Table 5.1: Stream-K FP64 Relative Performance

vs.
CUTLASS

128× 128× 32

vs.
cuBLAS

vs.
cuBLAS

> 150 ops/B

vs.
CUTLASS

oracle

Average 1.63× 1.13× 1.15× 1.12×
StdDev 1.46 0.45 0.12 0.37

Min 0.80× 0.64× 0.98× 0.61×
Max 14.7× 6.74× 1.85× 4.63×

Table 5.2: Stream-K FP16→32 Relative Performance

where m× n is small and k is large, our Stream-K kernels demonstrate up to 5.63× and 14.7×

speedup, respectively.

The second columns of Table 5.1 and Table 5.2 compare our Stream-K performance with

that of cuBLAS. On average, our FP64 and FP16→32 Stream-K GEMM kernels respectively

deliver 6% and 13% greater throughput than their corresponding cuBLAS ensembles, with peak

improvement of 2.55× and 6.74×. This is a significant improvement over the breadth of 32K

GEMM problem shapes and sizes with 20× less executable code (a single kernel for each

precision) than NVIDIA’s vendor GEMM library, cuBLAS.

Furthermore, the contrast between the FP64 and FP16→32 cuBLAS performance responses

(Figure 5.8b and Figure 5.7b) versus those of our hypothetical CUTLASS oracle ensembles

(Figure 5.8c and Figure 5.7c) reveal the difficulties of designing kernel selection heuristics

that deliver consistently good performance. Despite having access to the same blocking factor

specializations, cuBLAS exhibits substantially wider dynamic ranges than the idealized data-

parallel CUTLASS oracle. The performance spreads of our Stream-K kernels are narrower still,

achieving up to 4.6× the idealized oracle performance and underscoring their ability to achieve

92

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

0 100 200 300 400 500 600 700 800

Sp
ee

d
u

p

Arithmetic intensity (operations / byte)

(a) FP64 Stream-K speedup vs. cuBLAS.

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

7.0x

8.0x

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sp
e

e
d

u
p

Arithmetic intensity (operations / byte)

(b) FP16→32 Stream-K speedup vs. cuBLAS.

Figure 5.9: Stream-K speedup vs. cuBLAS.

utilization levels that are simply not possible from tile-centric work decompositions.

Finally, we observe regimes of small, bandwidth-bound problem shapes where our largish

blocking factors do not compete well against cuBLAS. However, if we restrict our scope to the

domain of compute-bound problems (i.e., FP64 problems having compute intensity > 150 op-

s/byte and FP16→32 problems > 400 ops/byte), Figure 5.9a and Figure 5.9b demonstrate that

our singleton Stream-K kernels achieve unilaterally higher performance than the cuBLAS en-

sembles. The “noisy” relative performance in the regimes below these thresholds is not surpris-

ing, as Stream-K is attempting to make memory-bound computations run faster by adding more

memory workload. This suggests a few avenues for future work, namely separate cost-modeling

for the memory-bound regime and/or the bundling of a second Stream-K kernel having smaller

tile size into a two-kernel ensemble.

5.5 Conclusion
We presented Stream-K, a novel parallel workload decomposition technique for scheduling gen-

eral matrix multiplication (GEMM) and similar computations on wide architectures such as

GPUs. Unlike other tile-splitting techniques, the MAC-loop iteration is our unit of workload

quantization across processor cores. This affords excellent strong scaling and workload balanc-

ing because its cost is (1) a constant with respect to the problem shape, and (2) substantially

93

smaller than that of an entire output tile.

Furthermore, Stream-K produces an O(p) number of splitting seams that are bound by the

number of processor cores. Consequently, the overheads of strong scaling and workload bal-

ancing scale with processor width rather than problem size. This is a welcome feature for many

applications that cannot afford to allocate large amounts of temporary storage equivalent to the

problem output.

Finally, we evaluated our Stream-K approach across a broad spectrum of GEMM shapes

and sizes. We showed that a single blocking configuration of Stream-K can (1) achieve levels

of absolute performance that match and/or exceed that of NVIDIA’s cuBLAS library, even

when the latter is operating at near-peak processor utilization, and (2) do so with much higher

levels of performance consistency. Additionally, Stream-K is an attractive option for library

construction and maintenance, as it presents an opportunity to reduce distribution sizes by an

order of magnitude and removes the need for complex handcoded heuristics or machine learning

models for kernel selection without compromising performance.

For future works, we identify cache-aware, tile-access patterns such as Morton Order, an

avenue for optimization. We also believe that Stream-K decomposition could provide a similar

improved performance response for other GEMM-like workloads that struggle with the same

quantization inefficiencies.

94

Chapter 6

Conclusion

This dissertation identifies load balancing as the key component to achieve high-performance

for both regular and irregular computations on the GPU. In efforts to address challenges as-

sociated with load balancing, we propose an abstraction that provides a new way to program

irregular applications. Expressed using our simple, yet powerful abstraction, we are able to ex-

tend previously application-specific load-balancing techniques to other workloads and parallel

domains. We also highlight the need to consider resource imbalance for regular fine-grained

problems, and show that our general Stream-K schedule rids of any complicated heuristics

and provides state-of-the art performance on an already well-optimized problem like General

Matrix-Multiplication. Built on the insights from this work, we propose the following future

research directions.

6.1 Future Research Directions
6.1.1 Multi-GPU Load Balancing

In Chapter 4 we built an abstraction for load-balancing centered around atoms, tiles and sets as

fundamental building blocks targetted for single GPU implementations. Some of the underlying

load-balancing algorithms can easily extend to support multi-GPU problems. This is going to

be the key advancement going forward, as sparse-irregular problems in the real world can be

extremely large (for example, graphs with billions of vertices and edges). These large problems

do not fit in a single GPU’s memory, and to accelerate computation on these problems, the

abstraction must be extended to support multi-GPU and multi-node systems.

95

Our insights in this dissertation inspire a new research direction, where specific modular

algorithms (such as merge-path 3 SpMV) are well suited for a multi GPU enviroment and can

be easily exposed with the existing building blocks with an additional levels of hierarchy for

sets of sets, where each set is large enough to fit in a single GPU’s memory. We call workloads

such as merge-path SpMV, isomorphic problems. Isomorphism here implies that regardless of

where the computation occurs, a thread, block, or a separate GPU, the structure of the algorithm

stays the same.

A much more challenging research direction is further extending the multi GPU program-

ming model to then support amorphous workloads, where different levels of compute hierarchy

will require different kinds of algorithms to complete a workload. For example, the Radix

Sorting algorithm scales nicely for a single GPU compute hierarchy as implemented in the

CUB library [63], but it may not be the best choice at a multi-GPU boundary as communicat-

ing bit-level information among different GPUs may not be enough to fully utilize the memory

bandwidth. Therefore, we may require different sorting algorithms at different parts of the com-

pute hierarchy—and similarly, may require different load-balancing schedules at the compute

boundaries. This will make for an interesting challenge to explore abstractions and APIs for

hybrid load-balancing schemes with heuristics to context switch depending on the amount of

work and the compute boundary one is working at.

6.1.2 Heuristics using Roofline Model

One optimization we highlighted in our results was the use of simple heuristics to determine

which load-balancing algorithm to use. However, our results show that our simple heuristics are

far from an oracle schedule (see Figure 6.1) that will pick the right load-balancing algorithm

for all sparse datasets and workloads. One direction for research is to look at the traditional

roofline analytical model and expand it to capture the irregularity within sparse-linear algebra

operations like SpMV or SpMM. Using this model, we can then build more robust heuristics to

select the among the different supported load-balancing schedules.

96

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Nonzeros

0.1

0.2

0.3

1

2

3

10

20

30

100
O

ra
c
le

 S
p

e
e
d

u
p

 w
.r

.t
 c

u
S

p
a
rs

e

group-mapped

merge-path
thread-mapped

Kernel

Figure 6.1: Speedup of an oracle heuristics SpMV vs. cuSparse’s SpMV across SuiteSparse.
Selects the best load-balancing schedule from the available ones for a given problem using

exhaustive search.

6.1.3 Standardization of Sparse-Matrix Formats

In Chapter 4 we highlight the diversity and importance of sparse-matrix formats for sparse-

linear algebra and graph analytics. Our APIs for the load-balancing abstraction were designed

to accomodate multiple formats for different workloads at both high- and low-level of the ab-

straction. Based on these insights, we propose the standardization of sparse-matrix formats as

new C++ containers for both sequential and parallel programming use cases. The research chal-

lenge here is to find a general and high-performant way to build and use these containers for

various different domains (graphs, sparse-linear algebra, machine learning, etc.) One potential

way to build a general, high-performant sparse-matrix container will be to use specialized C++

iterators to define the “sparse-view” of the container. For example, instead of a sparse-matrix

accessed using the three arrays of a CSR (offsets, indices and values), a sparse-matrix will

be accessed using an iterator over the matrix that provides the tuple: row, column, value (see

97

Listing 6.1 Standardized sparse matrix accessed within a generic SpMV. The underlying sparse
format can be changed to a CSC, COO, DIA, but the high-level loop remains the same.

1 // Implements a "format" unaware SpMV.
2 template<typename type_t>
3 void spmv(
4 matrix_t<type_t, std::size_t, csr_view_t>& A,
5 std::vector<type_t>& x,
6 std::vector<type_t>& y) {
7 // Internally a csr type,
8 // a sparse matrix simply accessed by
9 // specialized iterator that return row,

10 // column, value.
11 for (auto& [i, j, v] : A) {
12 y[i] += v * x[j];
13 }
14 }

Listing 6.1).

6.1.4 Programming Model for Locality

We believe that along with efficient load-balancing algorithms for irregular problems, there is

also a need for further research in an orthogonal model for better leveraging locality within

these problems. A dynamic tiling approach for grouping similar data for better caching and

a light-weight reordering approach for reordering sparse-matrices are two possible directions

that can be exploited within this programming model. The challenge is the tradeoffs that arises

when discussing between the impact load-balancing might have on locality and vice-versa, and

this needs to be better quantified/researched.

6.1.5 Stream-K Abstraction

In our work in Chapter 5, we presented a work-centric approach for parallel decomposition tar-

geted at GEMM. Impactful future-work will be using a further generalized version of Stream-K

that can distill any regular computation (such as tensor algebra, convolutions and other ma-

chine learning workloads) to “amount of work” each thread group needs to perform, and a loop

that consumes the assigned work within the thread group until all work is completed (using a

98

persistent-CTA). The goal of this future work will be to make the performance benefits attained

from using Stream-K more accessible to a wide breadth of regular problems that suffer from

wave quantization and require a sophisticated heuristics driven approach (e.g. kernels within

cuDNN).

6.1.6 Beyond Today’s CUDA

One thrust we see going forward is looking at new CUDA programming model additions and

support that will better allow for addressing scheduling fine-grained parallel computations on

the GPUs.

CUDA and C++ Our load-balancing abstraction and APIs are fully realized with the help of

tools available within modern C++. However, current CUDA (major version 11) has limited

support for the latest C++ standard. We look forward to future CUDA/C++ with native support

for the C++20 Ranges library that extends and generalizes the standard algorithms and iterator

libraries making composable APIs even more powerful and efficient.

Reconfigurable CUDA Grids A natural way to think about the load-balancing or scheduling

problem within CUDA is through CUDA’s dynamic parallelism, where one can launch CUDA

kernels from within a kernel. Irregular problems can then be load-balanced by first a kernel

looking at the amount of work available for a given problem and then launching a CUDA kernel

with the exact amount of resources required to process that part of the problem. However,

dynamic parallelism within CUDA is not performant due to the work required by the driver and

the APIs to configure a fresh kernel launch per CUDA thread. One approach to addressing poor

dynamic parallelism performance is by utilizing CUDA’s compute hierarchy. A single grid can

be oversubscribed with the number of threads and/or resources, and then reconfigured to fit the

problem size; effectively “freeing” up resources for other threads to consume. Since no new

work is being spawned, a reconfiguration on-the-fly can be achieved at a much cheaper cost

than launching new kernels from within a kernel. We propose this as an interesting direction to

improve CUDA for irregular parallel problems.

99

Chapter 7

References

[1] ISO international standard ISO/IEC 14882:2017(E) - programming language C++. Tech-
nical report, International Organization for Standardization (ISO), 2017. https://
isocpp.org/std/the-standard.

[2] Ahmad Abdelfattah, David Keyes, and Hatem Ltaief. KBLAS: An optimized library for
dense matrix-vector multiplication on GPU accelerators. ACM Transactions on Mathe-
matical Software, 42(3):1–31, June 2016. ISSN 1557-7295. doi: 10.1145/2818311.

[3] Advanced Micro Devices, Inc. HIP programming guide v5.2. June 2022. URL https://
docs.amd.com/bundle/HIP-Programming-Guide-v5.2/page/Introduction.html.

[4] Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on GPUs. In
Proceedings of High Performance Graphics, HPG ’09, pages 145–149, August 2009. doi:
10.1145/1572769.1572792.

[5] Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. PATRIC: a parallel algorithm
for counting triangles in massive networks. In Qi He, Arun Iyengar, Wolfgang Nejdl, Jian
Pei, and Rajeev Rastogi, editors, 22nd ACM International Conference on Information and
Knowledge Management, CIKM ’13, pages 529–538. ACM, 2013. doi: 10.1145/2505515.
2505545.

[6] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P. Sadayap-
pan. Fast sparse matrix-vector multiplication on GPUs for graph applications. In Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, pages 781–792, November 2014. doi: 10.1109/SC.2014.69.

[7] Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, and Enrique S.
Quintana-Orti. Evaluation and tuning of the level 3 CUBLAS for graphics processors. In
2008 IEEE International Symposium on Parallel and Distributed Processing. IEEE, April
2008. doi: 10.1109/ipdps.2008.4536485.

100

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.2/page/Introduction.html
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.2/page/Introduction.html

[8] Sean Baxter. Moderngpu: Patterns and behaviors for GPU computing. http://
moderngpu.github.io/moderngpu, 2013–2016.

[9] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, November 1990.

[10] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein, and Marco
Zagha. Implementation of a portable nested data-parallel language. In Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’93, pages 102–111, May 1993. ISBN 0-89791-589-5. doi: 10.1145/155332.
155343.

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM, 46(5):720–748, September 1999. doi: 10.1145/
324133.324234.

[12] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’95, pages 207–216, July 1995. doi: 10.1145/209936.209958.

[13] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid. ACM Transactions on Graphics, 22(3):917–924,
July 2003.

[14] Ajay Brahmakshatriya, Yunming Zhang, Changwan Hong, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. Compiling graph applications for GPUs with GraphIt. In
IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2021,
pages 248–261, 2021. doi: 10.1109/CGO51591.2021.9370321.

[15] F. Busato and N. Bombieri. BFS-4K: An efficient implementation of BFS for kepler GPU
architectures. IEEE Transactions on Parallel and Distributed Systems, 26(7):1826–1838,
July 2015. ISSN 1045-9219. doi: 10.1109/TPDS.2014.2330597.

[16] Federico Busato and Nicola Bombieri. A performance, power, and energy efficiency anal-
ysis of load balancing techniques for GPUs. In 12th IEEE International Symposium on
Industrial Embedded Systems, SIES 2017, pages 1–8, 2017. doi: 10.1109/SIES.2017.
7993387.

[17] Federico Busato and Nicola Bombieri. Configuring graph traversal applications for GPUs:
Analysis of implementation strategies and their correlation with graph characteristics. In
International Conference on High Performance Computing Simulation, HPCS 2019, pages
145–151, 2019. doi: 10.1109/HPCS48598.2019.9188204.

[18] Daniel Cederman and Philippas Tsigas. On dynamic load-balancing on graphics proces-
sors. In Graphics Hardware, GH ’08, pages 57–64, June 2008. doi: 10.2312/EGGH/
EGGH08/057-064.

101

http://moderngpu.github.io/moderngpu
http://moderngpu.github.io/moderngpu

[19] Daniel Cederman and Philippas Tsigas. Dynamic load balancing using work-stealing. In
Wen-mei W. Hwu, editor, GPU Computing Gems, volume 2, chapter 35, pages 485–499.
Morgan Kaufmann, October 2011. doi: 10.1016/B978-0-12-385963-1.00035-6.

[20] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. Dynamic load bal-
ancing on single- and multi-GPU systems. In 2010 IEEE International Symposium on
Parallel & Distributed Processing, IPDPS 2010. IEEE, April 2010. doi: 10.1109/IPDPS.
2010.5470413.

[21] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: End-to-end
optimization stack for deep learning. CoRR, (1802.04799), February 2018.

[22] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydın Buluç, Katherine Yelick, and
John D. Owens. Atos: A task-parallel GPU scheduler for graph analytics. In Proceedings
of the International Conference on Parallel Processing, ICPP 2022, August/September
2022. doi: 10.1145/3545008.3545056.

[23] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep learning. CoRR,
(1410.0759), October 2014.

[24] Jack Choquette, Oliver Giroux, and Denis Foley. Volta: Performance and programmabil-
ity. IEEE Micro, 38(2):42–52, April 2018. doi: 10.1109/MM.2018.022071134.

[25] Xiang Cui, Yifeng Chen, Changyou Zhang, and Hong Mei. Auto-tuning dense matrix mul-
tiplication for GPGPU with cache. In Proceedings of the 16th International Conference
on Parallel and Distributed Systems, ICPADS 2010, pages 237–242, December 2010. doi:
10.1109/icpads.2010.64.

[26] Steven Dalton, Sean Baxter, Duane Merrill, Luke Olson, and Michael Garland. Optimizing
sparse matrix operations on GPUs using merge path. In IEEE International Parallel and
Distributed Processing Symposium, pages 407–416, 2015. doi: 10.1109/IPDPS.2015.98.

[27] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli
Dryden, Marc Snir, and Keshav Pingali. Gluon: a communication-optimizing sub-
strate for distributed heterogeneous graph analytics. In Jeffrey S. Foster and Dan Gross-
man, editors, Proceedings of the 39th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2018, pages 752–768. ACM, June 2018. doi:
10.1145/3192366.3192404.

[28] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-efficient
parallel GPU methods for single-source shortest paths. In Proceedings of the 28th IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2014, pages 349–
359, May 2014. doi: 10.1109/IPDPS.2014.45. URL http://escholarship.org/uc/
item/8qr166v2.

102

http://escholarship.org/uc/item/8qr166v2
http://escholarship.org/uc/item/8qr166v2

[29] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1), December 2011. ISSN 0098-3500. doi: 10.1145/2049662.
2049663. URL https://doi.org/10.1145/2049662.2049663.

[30] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. LOTUS: locality
optimizing triangle counting. In Jaejin Lee, Kunal Agrawal, and Michael F. Spear, editors,
27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’22, pages 219–233. ACM, April 2022. doi: 10.1145/3503221.3508402.

[31] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo.
Sparse matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw., 43(4), Jan-
uary 2017. ISSN 0098-3500. doi: 10.1145/3017994. URL https://doi.org/10.1145/
3017994.

[32] James Fox, Alok Tripathy, and Oded Green. Improving scheduling for irregular applica-
tions with logarithmic radix binning. 2019 IEEE High Performance Extreme Computing
Conference, pages 1–7, 2019. doi: 10.1109/HPEC.2019.8916333.

[33] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse GPU kernels for deep
learning. In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’20, November 2020. ISBN 9781728199986.
doi: 10.1109/SC41405.2020.00021.

[34] Google. Chromium C++ style guide. URL https://chromium.googlesource.com/
chromium/src/+/HEAD/styleguide/c++/c++.md.

[35] Oded Green, Robert McColl, and David A. Bader. GPU merge path: A GPU merging
algorithm. In Proceedings of the 26th ACM International Conference on Supercomputing,
ICS ’12, pages 331–340, June 2012. ISBN 978-1-4503-1316-2. doi: 10.1145/2304576.
2304621.

[36] Oded Green, James Fox, Alex Watkins, Alok Tripathy, Kasimir Gabert, Euna Kim, Xiao-
jing An, Kumar Aatish, and David A. Bader. Logarithmic radix binning and vectorized
triangle counting. In IEEE High Performance Extreme Computing Conference, HPEC
2018, pages 1–7, 2018. doi: 10.1109/HPEC.2018.8547581.

[37] Felix Gremse, Andreas Höfter, Lars Ole Schwen, Fabian Kiessling, and Uwe Naumann.
GPU-accelerated sparse matrix-matrix multiplication by iterative row merging. SIAM
Journal on Scientific Computing, 37(1):C54–C71, 2015. doi: 10.1137/130948811.

[38] Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Transactions on Mathematical Software, 4(3):250–269, September
1978. doi: 10.1145/355791.355796.

[39] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav Bodik, and Vinod
Grover. Fireiron: A data-movement-aware scheduling language for GPUs. In Proceedings
of the ACM International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’20, September 2020. doi: 10.1145/3410463.3414632.

103

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3017994
https://doi.org/10.1145/3017994
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++.md
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/c++.md

[40] Mark Harris and Kyrylo Perelygin. Cooperative Groups: Flexible CUDA thread program-
ming, 2017. URL https://developer.nvidia.com/blog/cooperative-groups/.

[41] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan)
with CUDA. In Hubert Nguyen, editor, GPU Gems 3, chapter 39, pages 851–876.
Addison Wesley, August 2007. URL http://www.idav.ucdavis.edu/publications/
print pub?pub id=916.

[42] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P. Sadayappan. Multi-
graph: Efficient graph processing on gpus. In 26th International Conference on Parallel
Architectures and Compilation Techniques, PACT 2017, pages 27–40. IEEE Computer
Society, September 2017. doi: 10.1109/PACT.2017.48.

[43] Lin Hu, Lei Zou, and Yu Liu. Accelerating triangle counting on GPU. In Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, International Conference on
Management of Data, SIGMOD ’21, pages 736–748. ACM, June 2021. doi: 10.1145/
3448016.3452815.

[44] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programmability.
McGraw-Hill Higher Education, 1st edition, 1992. ISBN 0070316228.

[45] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: a pattern-aware graph
mining system. In Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic,
and Margo I. Seltzer, editors, Fifteenth EuroSys Conference 2020, EuroSys ’20, pages
13:1–13:16. ACM, April 2020. doi: 10.1145/3342195.3387548.

[46] Vishwesh Jatala, Roshan Dathathri, Gurbinder Gill, Loc Hoang, V. Krishna Nandivada,
and Keshav Pingali. A study of graph analytics for massive datasets on distributed multi-
GPUs. In IEEE International Parallel and Distributed Processing Symposium, IPDPS
2020, pages 84–94. IEEE, May 2020. doi: 10.1109/IPDPS47924.2020.00019.

[47] Vishwesh Jatala, Loc Hoang, Roshan Dathathri, Gurbinder Gill, V. Krishna Nandivada,
and Keshav Pingali. An adaptive load balancer for graph analytics on GPUs. CoRR,
abs/1911.09135., 2020. URL https://arxiv.org/pdf/1911.09135.

[48] Changhao Jiang and Marc Snir. Automatic tuning matrix multiplication performance
on graphics hardware. In Proceedings of the 14th International Conference on Paral-
lel Architectures and Compilation Techniques, PACT ’05, pages 185–194, 2005. doi:
10.1109/pact.2005.10.

[49] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. CUTLASS:
Fast linear algebra in CUDA C++, 2017. URL https://devblogs.nvidia.com/
cutlass-linear-algebra-cuda/.

[50] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Scalable SIMD-efficient graph
processing on GPUs. In 2015 International Conference on Parallel Architectures and
Compilation, PACT 2015, pages 39–50. IEEE Computer Society, 2015. doi: 10.1109/
PACT.2015.15.

104

https://developer.nvidia.com/blog/cooperative-groups/
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=916
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=916
https://arxiv.org/pdf/1911.09135
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/

[51] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning GEMM kernels for the
fermi GPU. IEEE Transactions on Parallel and Distributed Systems, 23(11):2045–2057,
November 2012. doi: 10.1109/tpds.2011.311.

[52] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of the Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS IV, pages 63–74, 1991. doi: 10.1145/106972.106981.

[53] E. Scott Larsen and David McAllister. Fast matrix multiplies using graphics hardware.
In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC ’01, pages
55:1–55:6, 2001. ISBN 158113293X. doi: 10.1145/582034.582089.

[54] Jeongmyung Lee, Seokwon Kang, Yongseung Yu, Yong-Yeon Jo, Sang-Wook Kim, and
Yongjun Park. Optimization of GPU-based sparse matrix multiplication for large sparse
networks. In IEEE 36th International Conference on Data Engineering, ICDE 2020, pages
925–936, 2020. doi: 10.1109/ICDE48307.2020.00085.

[55] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning GEMM for GPUs.
In International Conference on Computational Science, ICCS 2009, pages 884–892, 2009.
ISBN 978-3-642-01970-8. doi: 10.1007/978-3-642-01970-8 89.

[56] Bangtian Liu, Chengyao Wen, Anand D. Sarwate, and Maryam Mehri Dehnavi. A unified
optimization approach for sparse tensor operations on GPUs. IEEE International Con-
ference on Cluster Computing, pages 47–57, September 2017. doi: 10.1109/CLUSTER.
2017.75.

[57] Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. Register-based implementa-
tion of the sparse general matrix-matrix multiplication on GPUs. In Andreas Krall and
Thomas R. Gross, editors, Proceedings of the 23rd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’18, pages 407–408. ACM, 2018. doi:
10.1145/3178487.3178529.

[58] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient sparse
matrix-vector multiplication on x86-based many-core processors. In Proceedings of the
27th International ACM Conference on International Conference on Supercomputing, ICS
’13, pages 273–282, New York, NY, USA, 2013. Association for Computing Machinery.
ISBN 9781450321303. doi: 10.1145/2464996.2465013. URL https://doi.org/10.
1145/2464996.2465013.

[59] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A ConvNet for the 2020s. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[60] Emanuele Manca, Andrea Manconi, Alessandro Orro, Giuliano Armano, and Luciano
Milanesi. CUDA-quicksort: an improved GPU-based implementation of quicksort. Con-
currency and Computation Practice and Experience, 28(1):21–43, January 2016. doi:
10.1002/cpe.3611.

105

https://doi.org/10.1145/2464996.2465013
https://doi.org/10.1145/2464996.2465013

[61] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevicius,
David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks,
Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy Hock, Xinyuan Huang,
Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan, Tayo Ogun-
tebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom
St John, Carole-Jean Wu, Lingjie Xu, Cliff Young, and Matei Zaharia. MLPerf training
benchmark. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 336–349, 2020.

[62] Atefeh Mehrabi, Donghyuk Lee, Niladrish Chatterjee, Daniel J. Sorin, Benjamin C. Lee,
and Mike O’Connor. Learning sparse matrix row permutations for efficient spmm on
GPU architectures. In International Symposium on Performance Analysis of Systems and
Software, ISPASS 2021, pages 48–58. IEEE, March 2021. doi: 10.1109/ISPASS51385.
2021.00016.

[63] Duane Merrill. Cub: Flexible library of cooperative threadblock primitives and other util-
ities for CUDA kernel programming. https://nvlabs.github.io/cub/, 2013–2016.

[64] Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-vector multi-
plication. In International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’16, pages 678–689, November 2016. ISBN 9781467388153.
doi: 10.1109/SC.2016.57.

[65] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph traversal.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’12, pages 117–128, February 2012. doi: 10.1145/2145816.
2145832.

[66] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved Magma Gemm for Fermi
graphics processing units. The International Journal of High Performance Computing
Applications, 24(4):511–515, November 2010. doi: 10.1177/1094342010385729.

[67] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P. Sadayappan.
Load-balanced sparse MTTKRP on GPUs. In IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2019, pages 123–133, May 2019. doi: 10.1109/IPDPS.
2019.00023.

[68] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu. Tile-
SpGEMM: a tiled algorithm for parallel sparse general matrix-matrix multiplication on
GPUs. In Jaejin Lee, Kunal Agrawal, and Michael F. Spear, editors, 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 90–106. ACM,
2022. doi: 10.1145/3503221.3508431.

[69] NVIDIA Corporation. NVIDIA CUDA C programming guide. PG-02829-001 v8.0,
September 2016.

106

https://nvlabs.github.io/cub/

[70] NVIDIA Corporation. Tips for optimizing GPU performance us-
ing tensor cores, 2019. https://developer.nvidia.com/blog/
optimizing-gpu-performance-tensor-cores/.

[71] NVIDIA Corporation. NVIDIA A100 tensor core GPU architecture, 2020.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

[72] NVIDIA Corporation. CUDA cuBLAS library (v9.2), 2020. http://developer.
nvidia.com/cublas.

[73] NVIDIA Corporation. Deep learning perfomance documentation,
2021. https://docs.nvidia.com/deeplearning/performance/
dl-performance-matrix-multiplication/index.html.

[74] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization of graph algo-
rithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,
pages 1–19, November 2016. ISBN 978-1-4503-4444-9. doi: 10.1145/2983990.2984015.

[75] Mathias Parger, Martin Winter, Daniel Mlakar, and Markus Steinberger. spECK: accel-
erating GPU sparse matrix-matrix multiplication through lightweight analysis. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 362–
375, February 2020. doi: 10.1145/3332466.3374521.

[76] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,
pages 519–530, 2013. ISBN 9781450320146. doi: 10.1145/2491956.2462176.

[77] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter, and
Dieter Schmalstieg. Whippletree: Task-based scheduling of dynamic workloads on the
GPU. ACM Transactions on Graphics, 33(6):228:1–228:11, November 2014. ISSN 0730-
0301. doi: 10.1145/2661229.2661250.

[78] Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. Globally homogeneous, locally
adaptive sparse matrix-vector multiplication on the GPU. In Proceedings of the Interna-
tional Conference on Supercomputing, ICS 2017, pages 13:1–13:11. ACM, 2017. doi:
10.1145/3079079.3079086.

[79] Guangming Tan, Linchuan Li, Sean Treichle, Everett Phillips, Yungang Bao, and Ninghui
Sun. Fast implementation of DGEMM on fermi GPU. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC11,
pages 35:1–35:11, Seattle, Washington, 2011. doi: 10.1145/2063384.2063431.

107

https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

[80] Philippe Tillet and David Cox. Input-aware auto-tuning of compute-bound HPC ker-
nels. In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC17, pages 43:1–43:12, November 2017. ISBN
9781450351140. doi: 10.1145/3126908.3126939.

[81] Philippe Tillet, H. T. Kung, and David Cox. Triton: An intermediate language and com-
piler for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN In-
ternational Workshop on Machine Learning and Programming Languages, MAPL 2019,
pages 10–19, 2019. ISBN 9781450367196. doi: 10.1145/3315508.3329973.

[82] Stanley Tzeng, Anjul Patney, and John D. Owens. Task management for irregular-parallel
workloads on the GPU. In Proceedings of High Performance Graphics, HPG ’10, pages
29–37, June 2010. doi: 10.2312/EGGH/HPG10/029-037. URL https://escholarship.
org/uc/item/9r15d4zk.

[83] Stanley Tzeng, Brandon Lloyd, and John D. Owens. A GPU task-parallel model with
dependency resolution. IEEE Computer, 45(8):34–41, August 2012. doi: 10.1109/MC.
2012.255. URL https://escholarship.org/uc/item/4956q122.

[84] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan Wang,
Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and John D. Owens.
Gunrock: GPU graph analytics. ACM Transactions on Parallel Computing, 4(1):3:1–
3:49, August 2017. doi: 10.1145/3108140. URL http://escholarship.org/uc/item/
9gj6r1dj.

[85] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger.
Adaptive sparse matrix-matrix multiplication on the GPU. In Jeffrey K. Hollingsworth and
Idit Keidar, editors, Proceedings of the 24th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’19, pages 68–81. ACM, February 2019. doi:
10.1145/3293883.3295701.

[86] Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, and John D. Owens. Performance
characterization of high-level programming models for GPU graph analytics. In IEEE
International Symposium on Workload Characterization, IISWC-2015, pages 66–75, Oc-
tober 2015. doi: 10.1109/IISWC.2015.13. URL http://escholarship.org/uc/item/
2t69m5ht.

[87] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. yaSpMV: yet another SpMV
framework on GPUs. In José E. Moreira and James R. Larus, editors, ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, pages 107–
118. ACM, 2014. doi: 10.1145/2555243.2555255.

[88] Carl Yang, Aydın Buluç, and John D. Owens. Design principles for sparse matrix mul-
tiplication on the GPU. In Marco Aldinucci, Luca Padovani, and Massimo Torquati,
editors, Euro-Par 2018: Proceedings of the 24th International European Conference
on Parallel and Distributed Computing, pages 672–687, August 2018. doi: 10.1007/
978-3-319-96983-1 48. URL https://escholarship.org/uc/item/5h35w3b7.

108

https://escholarship.org/uc/item/9r15d4zk
https://escholarship.org/uc/item/9r15d4zk
https://escholarship.org/uc/item/4956q122
http://escholarship.org/uc/item/9gj6r1dj
http://escholarship.org/uc/item/9gj6r1dj
http://escholarship.org/uc/item/2t69m5ht
http://escholarship.org/uc/item/2t69m5ht
https://escholarship.org/uc/item/5h35w3b7

[89] Carl Yang, Aydın Buluç, and John D. Owens. GraphBLAST: A high-performance lin-
ear algebra-based graph framework on the GPU. ACM Transactions on Mathemati-
cal Software, 48(1):1:1–1:51, February 2022. doi: 10.1145/3466795. URL https:
//escholarship.org/uc/item/292901ks.

[90] Lingqi Zhang, Mohamed Wahib, Peng Chen, Jintao Meng, Xiao Wang, and Satoshi Mat-
suoka. Persistent kernels for iterative memory-bound gpu applications. CoRR, April 2022.

[91] Peter Zhang, Eric Holk, John Matty, Samantha Misurda, Marcin Zalewski, Jonathan Chu,
Scott McMillan, and Andrew Lumsdaine. Dynamic parallelism for simple and efficient
GPU graph algorithms. In Antonino Tumeo, John Feo, and Oreste Villa, editors, Proceed-
ings of the 5th Workshop on Irregular Applications - Architectures and Algorithms, IA3
2015, pages 11:1–11:4. ACM, 9 2015. doi: 10.1145/2833179.2833189.

[92] Tao Zhang, Wei Shu, and Min-You Wu. CUIRRE: An open-source library for load balanc-
ing and characterizing irregular applications on GPUs. Journal of Parallel and Distributed
Computing, 74(10):2951–2966, October 2014. doi: 10.1016/j.jpdc.2014.07.004.

109

https://escholarship.org/uc/item/292901ks
https://escholarship.org/uc/item/292901ks

	Title Page
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Abstract
	Acknowledgments
	Introduction
	Contributions

	Background
	Graphics Processing Unit (GPU) Architecture
	CUDA's Compute Hierarchy
	CUDA's Memory Hierarchy
	Impact on Load-Balancing

	A Survey of GPU Load-Balancing Techniques for Irregular Applications
	Related Works
	Compressed Sparse Data Structures

	Taxonomy of GPU Load Balancing
	Configuration: Static vs. Dynamic
	Accuracy: Exact vs. Approximate
	Granularity: Hierarchical vs. Flat
	Topology: Centralized vs. Distributed
	Communication: Cooperative vs. Non-Cooperative

	Implementations of Load Balancing on GPUs
	Thread-Mapped
	Group-Mapped
	Work-Oriented
	Binning and Reordering
	Task-Oriented Scheduling

	Common Low-Level Algorithmic Primitives
	Challenge: Counting Non-zeros or Work Items
	Challenge: Searching for Work Tiles and Items
	Challenge: Efficient Binning of Work Items
	Challenge: Assigning Compute Resources

	Summary of Load-Balancing Techniques
	Optimizations Orthogonal to Load Balancing
	Kernel Strategy for Load-Balancing Operations
	Synchronization Avoidance
	Shared Memory

	Conclusion: A Look Ahead

	A Programming Model for GPU Load Balancing
	Design Goals
	Load Balancing Abstraction
	Input from Sparse Data Structures
	Defining Load Balancing
	Defining Work Execution

	High-Level Framework Implementation
	Implementing Sparse Data Structures
	Implementing Load-Balancing Schedules
	Implementing Work Execution

	Implementation Details
	Flexible, Composable CUDA-enabled Ranges
	Implementing Non-Trivial Load-Balancing
	Application Space

	Evaluation
	Performance Overhead
	Improved Performance Response
	Lines of Code (LOC)

	Related Work
	Conclusion

	Work-centric Parallel Decomposition for GEMM on the GPU
	Background
	Work Decomposition Strategies
	Sequential Cache-Blocked
	Data-parallel
	Fixed-split
	Stream-K

	Implementation Details
	Kernel Configuration
	Data-parallel Hybridization

	Performance Evaluation
	Conclusion

	Conclusion
	Future Research Directions
	Multi-GPU Load Balancing
	Heuristics using Roofline Model
	Standardization of Sparse-Matrix Formats
	Programming Model for Locality
	Stream-K Abstraction
	Beyond Today's CUDA

	References

