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Abstract

Objective—To develop a reliable software method using a topographic analysis of time-

frequency plots to distinguish ripple (80–200 Hz) oscillations that are often associated with EEG 

sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond 

with digital filtering of sharp transients contained in the wide bandwidth EEG.

Methods—A custom algorithm distinguished true from false ripples in one second intracranial 

EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and 

categorizing these contours into sets of open or closed loop groups. The spectral and temporal 

features of candidate groups were used to classify the ripple, and determine its duration, 

frequency, and power. Verification of detector accuracy was performed on the basis of simulations, 

and visual inspection of the original and band-pass filtered signals.

Results—The detector could distinguish simulated true from false ripple on spikes (RonS). 

Among 2934 visually verified trials of iEEG recordings and spectrograms exhibiting RonS the 

accuracy of the detector was 88.5% with a sensitivity of 81.8% and a specificity of 95.2%. The 

precision was 94.5% and the negative predictive value was 84.0% (N = 12). Among, 1,370 trials of 

iEEG recording exhibiting RonS that were reviewed blindly without spectrograms the accuracy of 

the detector was 68.0%, with kappa equal to 0.01 ± 0.03. The detector successfully distinguished 
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ripple from high spectral frequency ‘fast ripple’ oscillations (200–600 Hz), and characterize ripple 

duration and spectral frequency and power. The detector was confounded by brief bursts of gamma 

(30–80 Hz) activity in 7.31 ± 6.09% of trials, and in 30.2 ± 14.4% of the true RonS detections 

ripple duration was underestimated.

Conclusions—Characterizing the topographic features of a time-frequency plot generated by 

wavelet convolution is useful for distinguishing true oscillations from false oscillations generated 

by filter ringing.

Significance—Categorizing ripple oscillations and characterizing their properties can improve 

the clinical utility of the biomarker.

Keywords

High-frequency oscillation; Ripple; Filter ringing; Wavelet; Topography

1. Introduction

Up to one third of patients with focal seizures are medically refractory, and resective 

epilepsy surgery or responsive nerve stimulation (RNS) placement is required to reduce 

seizure burden or render the patient seizure free (Wiebe et al., 2001; Engel et al., 2012). 

High Frequency Oscillations (HFOs) consist of brief (<200 μsec) bursts of energy with a 

spectral content ranging between 80–600 Hz and have shown promise as a 

electrophysiological biomarker of epileptogenic brain tissue (Engel et al., 2009; Gotman, 

2010; Jacobs et al., 2012). HFOs with a spectral content in the 80–250 Hz band are 

commonly referred to as ripples, while those in the 250–600 Hz band are termed fast ripples 

(Staba et al., 2002; Bragin et al., 2002). HFOs can be detected visually but this is arduous 

and time consuming (Zelmann et al., 2009), and inter-reader agreement can be poor 

(Gardner et al., 2007). To overcome these difficulties, there has been increasing interest in 

methods to automate the identification of HFOs from iEEG recordings (Jacobs et al., 2008; 

Zelmann et al., 2012; Birot et al., 2013; Burnos et al., 2014). A paradox intrinsic to the 

utilization of high-frequency oscillations for clinical purposes is that because inter-reader 

agreement is poor, it is challenging to validate automated detectors. Nevertheless, the results 

from the automated detectors can provide clinically useful information. One important area 

of investigation is defining classes of HFOs that may help improve inter-reader agreement.

In both manual and automated HFO detection, it is common practice to first apply a high 

pass filter to the continuous intracranial EEG (iEEG) or local field potential (LFP) 

recordings (Weiss et al., 2016a, 2016b). After high-pass filtering, HFOs can be observed 

visually or detected automatically as an increase in the signal amplitude above a threshold of 

3–5 standard deviations of the mean for at least three oscillatory cycles (Csicsvari et al., 

1999; Staba et al., 2002; Weiss et al., 2016b).

However, when sharp transients such as inter-ictal epileptiform spikes (IES) are band-pass 

filtered a sinusoid-like waveform resembling an HFO can result (Bénar et al., 2010). The 

energy spread over a continuous broad frequency range is due to how transients are 
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represented in the frequency space, because the Fourier transform of a Dirac impulse is a 

constant.

One strategy for distinguishing true HFOs from false HFOs is based on time-frequency 

analysis using wavelets (Liu et al., 2016). A wavelet convolution or transform of a sharp 

transient appears as a “candle” with a gradual and continuous taper in power with increasing 

frequency, while a true oscillation appears as a distinct “blob” of power in time-frequency 

coordinates (Benar et al., 2010; Birot et al., 2013).

We utilized the difference in the time-frequency representation of sharp transients and true 

high-frequency oscillations, to develop an automatic software method for classifying and 

quantifying ripples. Time-frequency maps of time series have an inherent topography 

defined by isopower contours. A true ripple is represented by a “blob” of power within the 

ripple band (80–200 Hz) and if contour lines are defined for a time-frequency representation 

of the “blob”, with the maximum and minimum frequencies constrained to the ripple band, 

the contours will have closed loops. In contrast, a false ripple is represented by a “candle” of 

power in the ripple band, but importantly this “candle” extends below the ripple band. 

Therefore, when the contour lines are defined for the “candle” within the ripple band, the 

contours will have open loops. In the current study we tested whether the open-, or closed- 

loop properties of time-frequency plot contour lines could be used to differentiate true- and 

false- ripples on spikes i.e. epileptiform discharges, and whether analysis of the contour lines 

could be used to define ripple spectral content, power, and duration.

2. Methods

2.1. Patients

Recordings were selected from patients who underwent intracranial monitoring with depth 

electrodes between 2014 and 2016 at University of California Los Angeles (UCLA) for the 

purpose of localization of the seizure onset zone. The inclusion criteria were at least one 

night and day of intracranial recording with 2000 Hz sampling rate and at least 4 h of 

interictal EEG uninterrupted by seizures.

All clinical data from the patient’s inpatient and postsurgical follow-up charts were 

provided. Patients underwent pre-surgical magnetic resonance imaging (MRI) and 

stereotactic electrode implantation, as well as a CT scan to localize electrode and a 

postsurgical MRI after the respective surgery. This study was approved by the UCLA 

institutional review board.

2.2. EEG recordings and segment selection

Clinical iEEG (0.1–600 Hz; 2000 samples per second; reference scalp Fz) was recorded 

from 7-contact depth electrodes using a Nihon-Kohden 256-channel JE-120 long-term 

monitoring system (Nihon-Kohden America, Foothill Ranch, CA, U.S.A.). The recordings 

were acquired during a 35–60 min epoch of mixed-stage sleep. Sleep was confirmed by 

video-EEG inspection revealing K-complexes, spindles, slow waves, and a paucity of muscle 

artifact. We did not perform concurrent electrooculography (EOG) and electromyography 

(EMG) recordings.
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One-second trials of ripples occurring on inter-ictal discharges were identified using a 

previously described algorithm (Weiss et al., 2016b; Shimamoto et al., 2018). In brief, (1) 

INFOMAX independent component analysis (Bell and Sejnowski, 1997) was applied to 

referential recordings to reduce muscle contamination, and demarcate artefactual ripple 

events produced by muscle contamination (2) ripples were detected using a Hilbert detector 

applied to the band-pass filtered and ICA processed signal, (3) for each ripple detected a 

one-second trial was generated with a ripple centered at 0.5 s, (4) To distinguish ripples that 

occur during epileptiform spikes from all other ripples, we utilized a validated method 

(Shimamoto et al., 2018). We calculated the derivative of the peri-ripple band-pass filtered 

(4–30 Hz) iEEG and applied a threshold of 4 μV/msec. If the one second iEEG trials 

containing ripple events exceeded this threshold within ±50 ms that ripple was included for 

subsequent analysis. All the analysis in this study was performed using custom software 

written in Matlab 2016b (Natick, MA).

2.3. Wavelet convolution

A time-frequency analysis of the iEEG recording was performed using a wavelet 

convolution in the time domain (Dvorak and Fenton, 2014). Complex Morlet wavelets were 

created with constant frequency domain width 
f o
σ f

= 7, Where fo is the wavelet central 

frequency and σf is the standard deviation of its Gaussian envelope in the frequency domain. 

The central frequency, and the standard deviation of the Gaussian envelope values were 

frequency dependent and varied between the lower and upper limits of the TF analysis. The 

frequency bandwidth at a given frequency fo is equal to 
f o
7 ∗ 2. Prior to performing the 

wavelet convolution, the digital recording of the brain signal was padded with zeros until the 

sample count was equal to the closest power of two greater than the initial number of 

samples. The time frequency plot was not normalized.

Ripple events occur within a range of 80–200 Hz. Due to boundary effects caused by 

continuous wavelet convolution of finite-length signals, a range of 50–240 Hz was selected 

for the time-frequency (TF) plot in order to buffer the frequency range of interest. We also 

discarded the initial and final 45 ms of the time-frequency (TF) plot to further reduce 

boundary effects.

2.4. Topographical analysis of the time-frequency plot

The topographical analysis of the TF plot was performed by calculating a contour map 

consisting of 50 contours of isopower in the region of the TF plot centered on the candidate 

event, determined by the Hilbert detector, and including 100 ms prior to the event, and 100 

ms after the event. Over the total range of power values in the TF plot, 50 contour levels 

were computed and scaled as equal data unit lengths. The method next identified all the 

vertices of each of the isolines of constant power in the TF map. Thus each contour was 

described by its power magnitude level, and the time/frequency coordinates of its vertices.

2.4.1. Defining groups of open- and closed- loop contours—Contours 

corresponding to power values less than a threshold defined by 0.2 * ((maxtf-power − 
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mintf-power) + mintf-power were removed. Each of the remaining contours was subsequently 

classified as a closed loop contour (CLC) if the contour’s first and last vertex coordinate was 

identical, and an open loop contour (OLC) if the first and last vertex were distinct. Groups of 

CLCs, which either surround or are surrounded by other CLCs, were identified. If, in a 

group, the contour with the highest power level surrounded the other members of that group, 

the group was identified as a valley and removed from the time-frequency map. Groups 

containing fewer than 3 closed-loop contours were categorized as a ‘lone contour group’ and 

were removed from consideration. If one or more CLC groups remained, the candidate true 

ripple on spike event is identified as the group associated with the highest local maximum. 

In this study, all 1-s iEEG trials that were analyzed using the topographical approach were 

believed to contain either a ripple oscillation, and/or inter-ictal epileptiform discharge.

2.4.2. Quantifying ripple on spike duration, power, and spectral content—Only 

closed-loop contours that surround event maximum and are greater than the detection 

threshold were considered for property extraction. The contour at the lowest power level was 

selected as the event boundary contour ‘B’. The region of the TF map within this boundary 

was defined as the ripple event, from which the relevant properties were extracted. Four 

properties were extracted from the event region. The first two were the times of event onset 

and offset for determination of the event duration. These onset and offset times were defined 

as the minimum and maximum time coordinates associated with the vertices of the boundary 

contour. The power of the HFO was then determined by calculating the mean power across 

all coordinate points of the TF map within the boundary B. Finally, the amplitude-weighted 

mean frequency of the HFO event was calculated using:

f hfo = ∑
i

B f i ∗ Pi
∑Pi

(1)

where fi and Pi and are the frequency and power amplitude of coordinate of the TF map 

within the boundary contour, B.

2.4.3. Illustrating detector methodology using simulated data—We used Gaussian 

functions of varying duration to simulate inter-ictal epileptiform spikes in computer 

generated 1 s data segments with a 2 kHz sampling rate. The Gaussians were generated 

using the function gausswin.m with σ = 2, 3.3, 6.7. We generated simulated ripples using a 

sine wave function with a frequency of 140 Hz and an amplitude of 350 μV, to correspond 

with the respective amplitude of the Gaussian function. A Blackman window was applied to 

the sine wave for the purpose of amplitude modulation. A simulated ripple on epileptiform 

spike was created by combining the Gaussian function (σ = 6.7) with the simulated ripple.

2.4.4. Quantifying detector performance using simulated data—A 1-s 2 kHz 

sampled iEEG trial was selected from one patient to calculate surrogate trials for the 

simulation study. This trial was selected on the basis of the absence of a ripple or inter-ictal 

epileptiform spike. We computed the fast-fourier transform of this iEEG trial (fft.m) for all 

frequencies less than the Nyquist frequency in 1 Hz bins. The imaginary components of the 
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FFT were permuted using randperm.m. iEEG surrogate trials were derived from the original 

iEEG trial using an inverse fast fourier transform (ifft.m) of the real and permuted imaginary 

components of the original iEEG trial. We then calculated the absolute value of the complex 

simulated signal. A simulated ripple with a frequency of 100 Hz and a duration of 0.0268 s 

was generated using a sine function enveloped by a Gaussian window of the form 

e
− 1

2(
2α(n + N

2 + 1)
N − 1 )

2

 with α = 75. The amplitude of the sine function ranged from from 2–30 

μV in 2 μV steps to simulate varying ripple intensities. The simulated ripple was 

superimposed at 0.5 s on the 1000 permuted iEEG trials.

2.5. Validation of detector accuracy by visual inspection

The classification of ripple on spike events as true or false was validated using visual 

inspection of a custom display of the raw and processed patient data. In a single window 

each trial was displayed as (1) the unfiltered one second iEEG recording trial, (2) the iEEG 

trial following band-pass (80–240 Hz) filtering using a 500th order digital FIR filter, (3) 

vertical guidelines located at the peaks (green), and troughs (maroon) of the band-pass 

filtered signal superimposed on the unfiltered and filtered iEEG trial, (4) the TF plot, (5) the 

isopower contour lines resulting from the topographical analysis, (6) the candidate closed-

loop contour group (green), or open-loop contour group (blue). True positive (TP) trials 

were defined as a true ripple on spike event confirmed by the detector and validated by 

visual inspection. False positive (FP) trials were defined as a true ripple on spike event 

confirmed by the detector, but no ripple on spike was evident on visual inspection. True 

negative (TN) trials were defined as a false ripple on spike event confirmed by the detector 

and validated by visual inspection. False negative (FN) trials were defined as a false ripple 

on spike event but visual inspection revealed a true ripple on spike event. Sensitivity was 

defined as TP/(TP + FN), Specificity as TN/(TN + FP), PPV as TP/(TP + FP), NPV as 

TN/(TN + FN), accuracy as (TP + TN)/(TP + FP+FN + TN). A second blinded visual 

inspection was performed in a similar manner with the exception that the TF plot, the 

isopower contour lines, and candidate groups were not displayed. The trials selected for this 

blinded visual inspection were a randomized group of an equal number of true and false 

ripple on spikes as defined by the un-blinded visual inspection.

The SOZ rate ratio for ripple events was calculated using

rrsoz =
Mean Event RateSOZ − Mean Event RateNSOZ
Mean Event RateSOZ + Mean Event RateNSOZ

(2)

3. Results

3.1. Defining true and false high-frequency oscillations

To test the accuracy of the detector to discriminate true from false ripples on spikes (RonS), 

we used visual validation with the following criteria. A true RonS corresponded with a 

visible ripple superimposed on the spike in the unfiltered iEEG, and when the peaks and 
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troughs of the ripple riding the spike aligned with the peaks and troughs of the ripple evident 

after band-pass (80–240 Hz) filtering. In contrast, a false RonS was defined when a ripple 

was not evident on the spike in the unfiltered signal, or when the ripple that became evident 

after band-pass filtering, did not temporally align with the peaks and troughs in the 

unfiltered signal.

3.2. Illustration of detector principles

On the basis of these operational definitions, and assumptions we applied the detector to 

simulated data to illustrate how a topographical analysis of time frequency spectrograms 

could differentiate true and false ripples on spikes. The time frequency plots of Gaussians 

with durations of σ > 1.0ms were described by a set of OLCs of isopower extending up from 

the lower frequency limit (80 Hz), reaching a peak frequency inversely proportional to the 

duration of the Gaussian signal (Fig. 1A1,2). When the duration of the Gaussian was 

decreased to σ ~ 1.0ms, a group of CLCs of isopower were evident (Fig. 1A3). Since no true 

ripple oscillation was present during the Gaussians, the peaks and troughs of the band-pass 

filtered simulated signals showed incomplete correspondence with the raw simulated signal 

(Fig. 1A1–3).

A simulated ripple event resulted in a CLC group of isopower centered at the simulated 

ripple’s mean frequency (Fig. 1B1, green region). In this case, the peaks and troughs of the 

band-pass filtered signal did coincide with the raw simulated signal (Fig. 1B1, top black and 

red waveform). When the simulated ripple event was combined with a Gaussian the detector 

registered a set of OLCs extending from the lower frequency limit and a CLCs group 

centered at the ripple’s mean frequency (Fig. 1B2, green and maroon), and the peaks and 

troughs of the raw signal corresponded with the peaks and troughs of the band-pass filtered 

signal (Fig. 1B2, top black and red waveform).

3.3. Measuring detector performance using simulated data

Using simulated iEEG data, we sought to determine the stability and variability of ripple 

identification and characterization. Ripples of a predetermined magnitude, identical in 

duration and spectral content, were superimposed on simulated iEEG trials.

Since the topographical algorithm is designed to identify a closed or open loop contour 

group, regardless of the power of the group, we first asked what fraction of the simulated 

iEEG trials, lacking a superimposed simulated ripple, would result in a closed loop contour. 

We found that when no ripple was present in the simulated data, the detector identified 

closed loop groups in 41.5% of the trials (Fig. 2A). The mean average power magnitude 

detected for these false positive events corresponded to ripple amplitudes <5 μV (Fig. 2B).

We next introduced the superimposed ripple to the simulated iEEG background. We found 

that the probability of false negative ripple identification decreased exponentially with 

increased simulated ripple amplitude. As the simulated ripple amplitude was increased, the 

average power weighted mean frequency estimated by the detector approached a frequency 

of 101.6 Hz, slightly above the frequency of the simulated ripple of 100 Hz. The standard 

deviation of the average frequency of the detected ripple decreased exponentially (Fig. 2C).
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Increasing the amplitude of the simulated ripple corresponded with an increase in the power 

of the identified ripple, as well as an increase in the standard deviation of this measurement 

(Fig. 2B). Finally, the increasing amplitude also corresponded with a decrease in the 

variability of the detected ripple duration. The simulated ripple duration was consistently 

underestimated by the topographical method (Fig. 2D).

3.4. iEEG visual verification and detector performance

The detector was applied to 25,011 one-second iEEG trials, recorded from 12 patients 

undergoing intracranial monitoring with depth electrodes (Table 1), that recorded RonS 

events. In all these trials the detector could differentiate the true RonS trials from the false 

RonS trials, and characterize the properties of the former. False RonS have no mean spectral 

content, or centroid of power since they result from filter ringing. We randomly selected 

2934 trials for visual verification. A true positive was defined as a trial in which the detector 

identified a CLC group, a true RonS event was clear in the raw signal, and, as we assumed 

(see 3.1), the peaks and troughs of the raw signal corresponded with those of the band-pass 

filtered signal (Fig. 3A1,2). A false positive was defined as an instance in which the detector 

identified a CLC group, but a true RonS event was not clear in the raw signal. True negative 

cases corresponded to sharply contoured inter-ictal discharges without ripples i.e. false RonS 

(Fig. 3B1,2). A true negative was defined as an instance in which the detector identified only 

sets of OLCs, a ripple was not evident in the raw signal. A false negative was defined as a 

case in which the detector only identified sets of OLCs when a true RonS was evident in the 

raw iEEG signal, or alternatively if the trial failed to exhibit an epileptiform discharge.

Table 2 provides a summary of the detector’s performance for distinguishing true from false 

ripples on spikes across the 12 patients when the time-frequency was provided to the 

reviewer (i.e. un-blinded). Across all patients, the detectors accuracy was 88.5 ± 2.1%, with 

a sensitivity of 81.8 ± 3.4%, a specificity of 95.2 ± 0.81%, a precision of 94.5 ± 1.8%, and a 

negative predictive value of 84.0 ± 3.9% (s.e.m, n = 12). For all the patients, a second 

reviewer visually validated the detector performance with a Cohen’s kappa equal to 0.37, 

kappa values for individual patients ranged between 0.11–0.61.

Table 3 provides a summary of the detector’s performance for distinguishing true from false 

ripples on spikes across the 12 patients when the reviewer was blinded to the time-frequency 

map. Across all patients, and two expert reviewers (ZW, SAW), the detectors accuracy was 

68.0 ± 2.0%, with a sensitivity of 74.46 ± 3.14%, a specificity of 61.30 ± 2.94%, a precision 

of 66.23 ± 1.97%, and a negative predictive value of 72.10 ± 2.56%. The Cohen’s kappa 

across the two reviewers was equal to 0.01, kappa values for individual patients ranged 

between −0.14–0.25.

3.5. Properties of detected ripples

We examined the properties of the true RonS events that were identified by the detector and 

visually verified (Table 4). For each detected RonS event, the mean power, power-weighted 

mean frequency, and event duration were quantified. For the combined verified trials, the 

true RonSs had a mean frequency of 109.4 ± 24.7Hz. The detector had the capability of 

distinguishing fast ripples from ripples, an example of which can be seen in Fig. 4. The true 
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RonS had a mean power magnitude of 47.9 ± 175.6 * 105 arbitrary units, and a mean 

duration of 20.5 ± 12.8ms True RonS power magnitude was inconsistent across individual 

trials, electrodes, and patients (Table 3). Mean event duration was also variable, but the 

mean duration corresponded to only two cycles of the mean RonS oscillation period. We 

also quantified the SOZ rate ratio for all the true and false RonS events identified in the 

study (Table 4).

3.6. Detector confounds

For true RonS detections an underestimation of accurate event duration manifested in two 

distinct contexts; first, in some trials, a large CLC group representing a ripple event was 

separated into smaller component CLC groups (Fig. 5A1). Second, correct ripple events with 

a spectral content near the lower limit (80 Hz) of the time-frequency plot had fewer CLCs, 

and consequently a shorter duration (Fig. 5A2). Overall 30.2 ± 14.4% of true RonS 

detections were erroneously brief.

False RonS detections were sometimes true RonS events with a superimposed burst (30–400 

ms) of gamma (30–80 Hz) oscillations that produced OLCs (Fig. 6A). In these cases, the 

detector could not differentiate between OLCs produced by the gamma oscillations, and the 

OLCs that would result from filter ringing. Consequently, false RonS detections could also 

result from gamma events even in the absence of a superimposed ripple (Fig. 6B). Overall 

7.31 ± 6.09% of the RonS trials were contaminated by gamma event detections.

4. Discussion

This study presents an automated analysis of iEEG recordings based on defining the 

topographic features of time-frequency plots using isopower contours. The topographical 

method requires that HFO events are first detected in continuous iEEG recordings, by a 

separate and distinct process, prior to ripple identification, classification, and 

characterization. Following ripple detection, the topographical method was capable of 

successfully differentiating the true ripple on spike (RonS) events from false RonS, as well 

as quantifying the RonS properties such as spectral content, power, and duration. The 

success of our algorithm helps to validate the central premise that “blobs” of power in time-

frequency spectrograms are representative of distinct ripple oscillations, while “candles” are 

representative of sharply contoured epileptiform discharges.

4.1. Utility of the detector

There is strong evidence that HFOs are a biomarker of epileptogenic brain (Jacobs et al., 

2008), and utilizing HFO rates for clinical applications will require accurate HFO detection 

(Cimbalnik et al., 2016), and an agreed upon ripple classification scheme. Quantifying HFO 

rates using iEEG recordings from the epilepsy monitoring unit or operating room has been 

proposed as a means to identify epileptogenic brain regions (van ’t Klooster et al., 2015a, 

2015b) and studies have suggested that simultaneous HFOs and inter-ictal epileptiform 

spikes (IES) are stronger indicators of epileptogenic tissue than IES events alone (Jacobs et 

al., 2008). A major challenge in the accurate evaluation of these biomarkers is that artifacts 

and sharp IESs can mimic HFOs when filtered. The method presented in this study has the 
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advantage of being able to identify true HFOs while excluding and demarcating false HFOs 

due to sharp transients. In the un-blinded visual verification of the detector performance it is 

likely that the measured accuracy of our detector for distinguishing true and false ripples is 

inflated, since the gold standard (i.e. visual inspection) was not external or independent of 

the experimental procedure being validated. In the blinded visual verification of the detector 

performance in which the time-frequency maps were not displayed to the reviewers, the 

accuracy of the detector was only 68.0%. Another published algorithm to distinguish true 

from false ripples on spikes reported an accuracy of 76.6% on the basis of a similar blinded 

review (Amiri et al., 2016). However, inter-rater agreement was very poor in our blinded 

visual verification, suggesting that it is challenging to differentiate true from false ripples on 

spikes on the basis of visual inspection alone. For example, very small amplitude true ripple 

on spike events can be difficult to distinguish on the basis of visual inspection.

Though it remains uncertain that true HFOs exhibit superior accuracy for delineating 

epileptogenic brain regions, as compared with sharply contoured IES events (Burnos et al., 

2016), the subject merits further investigation. Furthermore, only true ripple on spike events 

can be assigned properties such as mean spectral content, power, and duration.

4.2. Methodological aspects

A contour analysis of the time-frequency plot resulting from a wavelet convolution could be 

successfully used to distinguish true from false RonS because the brain signals do not 

exhibit discontinuities and therefore its discrete time-frequency map represents a continuous 

surface. The approach of using contour analysis to define high-frequency oscillations has the 

distinct advantage of being able to identify multiple events that overlap in time but are 

distinct in spectral content, even when superimposed on a sharp transient.

Although the detector succeeded to distinguish true from false RonS events in the vast 

majority of the trials, several limitations of this method were evident.

First, the illustrative simulation results demonstrated that very brief, and sharply contoured, 

transient events are falsely detected as a true RonS. This pitfall is due to an inverse 

relationship between the frequency of the peak power magnitude and the duration of the 

Gaussian transient. While in inter-ictal iEEG recordings, inter-ictal epileptiform spike (IES) 

events are generally not of sufficient brevity to produce this confound for our detector, ictal 

data may exhibit such events. Potentially, this artifact could be reduced with the selection of 

more appropriate mother wavelets or recording at higher sampling rates.

It is also theoretically plausible that the ‘candle’ produced in the time-frequency plot by a 

sharp transient event may overlap with the blob produced by a simultaneously occurring true 

ripple. This overlap could render the topographical analysis ineffective. Visual validation of 

the methodology indicates that this was a rare occurrence in these iEEG recordings, however 

it could account for a subset of the false negative results.

One serious shortcoming of the detector was the frequent underestimation of the duration of 

true RonS events. This occurred because the CLC groups associated with the detected RonS 

were often surrounded by OLCs due to the simultaneous IES. Also, very low frequency 
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ripples exhibited some OLC because of the minimum frequency of 50 Hz interest chosen for 

the topographical analysis. It is likely that repeating the topographical analysis in a lower 

frequency range for ripples of a relatively lower spectral content can result in an 

improvement in the estimation of event duration. Alternatively, duration was underestimated 

when a single ripple was detected as several distinct CLC groups, rather than a single 

consolidated group. This error could potentially be overcome by increasing the number of 

generated contours, using recordings with higher sampling rates, or introducing alternative 

strategies for identifying or rejecting CLC groups. A further possibility is increasing the 

Gaussian width of the Morlet wavelet within certain frequency ranges.

Lastly, rare bursts of gamma activity, distinct from IES events, could generate OLC groups 

and generate false negative results. This confound could potentially be corrected by 

separately inspecting the topography of the time-frequency plot in the beta and gamma band 

to distinguish between “candles” representing inter-ictal epileptiform spikes and “blobs” of 

power representing gamma activity.

4.3. Conclusion and future directions

This study presents a new method for distinguishing true RonS events from the false RonS 

events that result from filter ringing. This method is based on the analysis of isopower 

contours generated by topographically analyzing the time-frequency plot. Utilization of this 

method will assist in the determination of whether true HFO events are generated by distinct 

mechanisms as compared with false HFO events. Further, it will aid in the investigation of 

true and false RonS with respect to understanding and differentiating their mechanisms of 

generation (Schevon et al., 2009; Keller et al., 2010), utility for identifying epileptogenic 

regions (Burnos et al., 2016), role during seizures (Eissa et al., 2016), and also their ability 

to disrupt normal cognition (Horak et al., 2017). The topographical method we describe is 

one of many “computer vision” based approaches to identifying multiple distinct brief 

oscillatory events that overlap in time, but are unique in spectral content (Burnos et al., 

2014; Kucewicz et al., 2017). One remaining concern is whether time-frequency analysis on 

1-s EEG epochs is reliable. The reliability of the measurements of ripple properties 

including power, spectral content, and duration can likely be improved by pre-whitening or 

normalizing the data (Roehri et al., 2016). This technique should be generalizable to both 

scalp (Andrade-Valenca et al., 2011) and other types of intracranial electrical recordings, and 

could also be extended to identify and characterize fast-ripple oscillations.
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HIGHLIGHTS

• A topographical analysis of time-frequency plots can characterize ripple 

properties.

• This same analysis can classify true ripple on epileptiform spike events from 

filter ringing.

• The rates of true ripple on spike events and very sharply contoured spikes are 

elevated in epileptogenic regions.
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Fig. 1. 
Illustration of detector principles using simulated data. Topographical analysis of the time-

frequency plot of wavelet convolution of Gaussian waveforms results in open loop contours 

(A1, A2), or closed loop contours (A3) depending on the standard deviation of the Gaussian 

waveform. A simulated ripple without a Gaussian (B1) results in closed loop contours and 

no open loop contours. When the simulated ripple is combined with a Gaussian both open- 

and closed loop contours are evident representing both events (B2). Green and blue vertical 

line are positive and negative peaks in the band-pass filtered signal, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 2. 
Measuring detector performance using simulated data. (A) The percentage of false negative 

ripple detections identified in the surrogate iEEG data trials as a function of the amplitude of 

the simulated ripple. (B) Detected simulated ripple power. (C) Detected simulated ripple 

duration. (D) Detected simulated ripple power weighted mean frequency. Error bars show 

standard deviation.
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Fig. 3. 
Detector performance with human intracranial electroencephalogram (iEEG) recordings. (A) 

Two examples of true ripples on spikes, and (B) two examples of false ripples on spikes 

correctly classified by the detector. The 80–240 Hz band-pass filtered iEEG waveforms, 

(Middle, red) unfiltered iEEG waveform, (bottom) time-frequency representation of the 

iEEG waveform following contour processing, and closed loop detection algorithms, with 

the group of closed loop contours representing the ripple shown in green, and the group of 

open loop contours representing the spike shown in magenta. Green and blue vertical line 

are positive and negative peaks in the band-pass filtered signal, respectively. Vertical red 

lines indicate the beginning and end times of the characterized ripple event. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
The detector can correctly differentiate ripple from fast ripple events that occur of 

epileptiform discharges. The 80–240 Hz band-pass filtered iEEG waveforms, (Middle, red) 

unfiltered iEEG waveform, (bottom) time-frequency representation of the iEEG waveform 

following contour processing, and closed loop detection algorithms, with the group of closed 

loop contours representing the ripple shown in green, and the group of closed loop contours 

representing the fast ripple shown in magenta. Green and blue vertical line are positive and 

negative peaks in the band-pass filtered signal, respectively. Vertical red lines indicate the 

beginning and end times of the characterized ripple event. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 5. 
True ripple on spike event characterization was confounded by the identification of brief 

events, that underestimated ripple event duration and power. The 80–240 Hz band-pass 

filtered iEEG waveforms, (Middle, red) unfiltered iEEG waveform, (bottom) time-frequency 

representation of the iEEG waveform following contour processing, and closed loop 

detection algorithms, with the group of closed loop contours representing the ripple shown 

in green, and the group of open loop contours representing the spike shown in magenta, and 

a group of contours in orange as a second ripple event (A1). Green and blue vertical line are 

positive and negative peaks in the band-pass filtered signal, respectively. Vertical red lines 

indicate the beginning and end times of the characterized ripple event. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 6. 
False ripple on spike detection was confounded by gamma oscillation events that produced 

open contours and mimicked sharp transients. The 80–240 Hz band-pass filtered iEEG 

waveforms, (Middle, red) unfiltered iEEG waveform, (bottom) time-frequency 

representation of the iEEG waveform following contour processing, and closed loop 

detection algorithms, the group of open loop contours representing the gamma activity is 

shown in magenta. Green and blue vertical line are positive and negative peaks in the band-

pass filtered signal, respectively. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)

Waldman et al. Page 20

Clin Neurophysiol. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Waldman et al. Page 21

Ta
b

le
 1

Pa
tie

nt
 c

ha
ra

ct
er

is
tic

s.
 iE

E
G

: i
nt

ra
cr

an
ia

l E
E

G
, I

E
D

: i
nt

er
-i

ct
al

 e
pi

le
pt

if
or

m
 d

is
ch

ar
ge

, S
O

Z
: s

ei
zu

re
-o

ns
et

 z
on

e,
 N

/A
: n

ot
 a

pp
lic

ab
le

 i.
e.

 n
o 

re
se

ct
io

n,
 

FC
D

: f
oc

al
 c

or
tic

al
 d

ys
pl

as
ia

.

P
at

ie
nt

A
ge

Se
x

D
ur

at
io

n 
of

 e
pi

le
ps

y
R

is
k 

F
ac

to
rs

Sc
al

p 
E

E
G

M
R

I
P

E
T

 h
yp

om
et

ab
ol

ic
iE

E
G

 I
E

D
iE

E
G

 S
O

Z
P

at
ho

lo
gy

44
8,

 5
2,

 M
16

 y
rs

St
ro

ke
L

ef
t t

em
po

ra
l

L
ef

t P
C

A
 in

fa
rc

t
L

ef
t t

em
po

ra
l h

yp
om

et
ab

ol
is

m
L

ef
t m

es
ia

l a
nd

 
ne

oc
or

tic
al

 te
m

po
ra

l
L

ef
t m

es
ia

l t
em

po
ra

l
gl

io
si

s

44
9.

 3
6,

 M
24

 y
rs

St
ro

ke
N

on
e

N
on

e 
lo

ca
liz

ab
le

L
ef

t p
er

is
yl

vi
an

 e
nc

ep
ha

lo
m

al
ac

ia
L

ef
t p

ar
ie

ta
l-

oc
ci

pi
ta

l
L

ef
t p

ar
ie

ta
l-

oc
ci

pi
ta

l
gl

io
si

s

45
1,

 5
2,

 F
22

 y
rs

N
F1

L
ef

t a
nd

 r
ig

ht
 

te
m

po
ra

l
R

ig
ht

 in
fe

ri
or

 g
yr

us
 T

2 
si

gn
al

L
ef

t t
em

po
ra

l h
yp

om
et

ab
ol

is
m

L
ef

t a
nd

 r
ig

ht
 m

es
ia

l 
te

m
po

ra
l

L
ef

t a
nd

 r
ig

ht
 m

es
ia

l 
te

m
po

ra
l

N
/A

45
3,

 4
1,

 F
14

 y
rs

N
on

e
L

ef
t a

nd
 r

ig
ht

 
te

m
po

ra
l

T
2 

si
gn

al
 in

 le
ft

 a
nd

 r
ig

ht
 

te
m

po
ra

l p
ol

e 
an

d 
m

es
ia

l 
te

m
po

ra
l s

tr
uc

tu
re

s

R
ig

ht
 te

m
po

ra
l h

yp
om

et
ab

ol
is

m
L

ef
t a

nd
 r

ig
ht

 m
es

ia
l 

te
m

po
ra

l
R

ig
ht

 te
m

po
ra

l
FC

D

45
4,

 4
5,

 M
34

 y
rs

M
en

in
gi

tis
L

ef
t t

em
po

ra
l

T
2 

si
gn

al
 in

 le
ft

 la
te

ra
l 

te
m

po
ra

l l
ob

e
L

ef
t f

ro
nt

al
, i

ns
ul

ar
, a

nd
 te

m
po

ra
l 

lo
be

L
ef

t f
ro

nt
al

, i
ns

ul
ar

, 
an

d 
te

m
po

ra
l

L
ef

t f
ro

nt
al

, i
ns

ul
ar

, 
an

d 
te

m
po

ra
l

N
/A

45
6,

 3
5,

 F
12

 y
rs

N
on

e
R

ig
ht

 te
m

po
ra

l
N

or
m

al
 s

/p
 R

N
S 

re
m

ov
al

R
ig

ht
 te

m
po

ra
l

R
ig

ht
 m

es
ia

l t
em

po
ra

l
R

ig
ht

 m
es

ia
l a

nd
 

la
te

ra
l t

em
po

ra
l

gl
io

si
s

46
3,

 2
7,

 M
10

 y
rs

N
on

e
L

ef
t a

nd
 r

ig
ht

 
te

m
po

ra
l

R
ig

ht
 h

ip
po

ca
m

pa
l 

sc
le

ro
si

s,
 p

ri
or

 r
ig

ht
 A

V
M

 
re

se
ct

io
n.

H
yp

om
et

ab
ol

is
m

 a
ro

un
d 

pr
io

r 
A

V
M

 r
es

ec
tio

n.
R

ig
ht

 a
nd

 le
ft

 
te

m
po

ra
l

R
ig

ht
 a

nd
 le

ft
 

te
m

po
ra

l.
no

ne

46
7,

 2
3,

 F
16

 y
rs

N
on

e
L

ef
t c

en
tr

o-
pa

ri
et

al
L

ef
t p

ar
ie

ta
l f

oc
al

 c
or

tic
al

 
dy

sp
la

si
a

L
ef

t p
ar

ie
ta

l a
nd

 o
cc

ip
ita

l
L

ef
t p

ar
ie

ta
l

L
ef

t p
ar

ie
ta

l
FC

D
II

b

47
0,

 4
9,

 F
30

 y
rs

N
on

e
L

ef
t t

em
po

ra
l

L
ef

t h
ip

po
ca

m
pa

l s
cl

er
os

is
L

ef
t t

em
po

ra
l

L
ef

t t
em

po
ra

l
L

ef
t t

em
po

ra
l

no
ne

47
2,

43
, F

27
 y

rs
Fe

br
ile

 s
ei

zu
re

s
L

ef
t a

nd
 r

ig
ht

 
te

m
po

ra
l

R
. t

em
po

ra
l c

ra
ni

ot
om

y 
an

d 
hi

pp
oc

am
pa

l r
es

ec
tio

n
R

ig
ht

 te
m

po
ra

l
L

ef
t m

es
ia

l t
em

po
ra

l, 
ri

gh
t o

rb
ito

fr
on

ta
l

L
ef

t m
es

ia
l t

em
po

ra
l, 

ri
gh

t o
rb

ito
fr

on
ta

l
N

/A

47
3,

 6
9,

 M
5 

yr
s

T
B

I
L

ef
t a

nd
 r

ig
ht

 
te

m
po

ra
l

L
ef

t h
ip

po
ca

m
pa

l s
cl

er
os

is
L

ef
t t

em
po

ra
l a

nd
 o

rb
ito

fr
on

ta
l 

hy
po

m
et

ab
ol

is
m

L
ef

t a
nd

 r
ig

ht
 

te
m

po
ra

l
L

ef
t t

em
po

ra
l

N
on

e

47
4,

 4
3,

 F
6 

yr
s

T
B

I
L

ef
t a

nd
 r

ig
ht

 
te

m
po

ra
l

M
ic

ro
bl

ee
d 

in
 r

ig
ht

 
ce

nt
ru

m
 o

va
le

R
ig

ht
 te

m
po

ra
l h

yp
om

et
ab

ol
is

m
L

ef
t a

nd
 r

ig
ht

 
te

m
po

ra
l

L
ef

t a
nd

 r
ig

ht
 

te
m

po
ra

l
N

on
e

Clin Neurophysiol. Author manuscript; available in PMC 2018 April 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Waldman et al. Page 22

Ta
b

le
 2

T
ru

e 
an

d 
fa

ls
e 

ri
pp

le
 o

n 
sp

ik
e 

de
te

ct
or

 s
en

si
tiv

ity
, s

pe
ci

fi
ci

ty
, p

re
ci

si
on

 i.
e.

 p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e 
(P

PV
),

 a
nd

 n
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e 
(N

PV
) 

fo
r 

di
ff

er
en

tia
tin

g 
th

e 
tw

o 
ev

en
t t

yp
es

 in
 th

e 
12

 s
tu

dy
 p

at
ie

nt
 in

 a
n 

un
-b

lin
de

d 
re

vi
ew

.

P
at

ie
nt

 I
D

A
cc

ur
ac

y
Se

ns
it

iv
it

y
Sp

ec
if

ic
it

y
P

re
ci

si
on

 (
P

P
V

)
N

P
V

44
8 

(n
 =

 2
06

)
0.

84
0.

68
0.

91
0.

76
0.

87

44
9 

(n
 =

 1
28

)
0.

93
0.

92
0.

97
0.

99
0.

76

45
1 

(n
 =

 4
00

)
0.

91
0.

92
0.

9
0.

91
0.

91

45
3 

(n
 =

 2
00

)
0.

73
0.

55
0.

96
0.

94
0.

63

45
4 

(n
 =

 4
00

)
0.

95
0.

93
0.

96
0.

93
0.

96

45
6 

(n
 =

 4
00

)
0.

81
0.

76
0.

96
0.

98
0.

58

46
3 

(n
 =

 4
63

)
0.

84
0.

79
0.

94
0.

96
0.

67

46
7 

(n
 =

 2
00

)
0.

95
0.

92
0.

97
0.

94
0.

95

47
0 

(n
 =

 2
00

)
0.

92
0.

8
0.

98
0.

97
0.

89

47
2 

(n
 =

 2
00

)
0.

98
0.

91
1

1
0.

97

47
3 

(n
 =

 2
00

)
0.

91
0.

84
0.

96
0.

95
0.

89

47
4 

(n
 =

 2
00

)
0.

85
0.

78
0.

94
0.

94
0.

78

A
ll 

Pa
tie

nt
s 

(n
 =

 2
93

4)
0.

89
0.

82
0.

95
0.

94
0.

84

Clin Neurophysiol. Author manuscript; available in PMC 2018 April 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Waldman et al. Page 23

Ta
b

le
 3

T
ru

e 
an

d 
fa

ls
e 

ri
pp

le
 o

n 
sp

ik
e 

de
te

ct
or

 s
en

si
tiv

ity
, s

pe
ci

fi
ci

ty
, p

re
ci

si
on

 i.
e.

 p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e 
(P

PV
),

 a
nd

 n
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e 
(N

PV
) 

fo
r 

di
ff

er
en

tia
tin

g 
th

e 
tw

o 
ev

en
t t

yp
es

 in
 th

e 
12

 s
tu

dy
 p

at
ie

nt
s 

in
 a

 b
lin

de
d 

re
vi

ew
 b

y 
tw

o 
ex

pe
rt

s 
co

nd
uc

te
d 

w
ith

ou
t s

pe
ct

ro
gr

am
 d

is
pl

ay
.

P
at

ie
nt

 I
D

A
cc

ur
ac

y
Se

ns
it

iv
it

y
Sp

ec
if

ic
it

y
P

re
ci

si
on

 (
P

P
V

)
nP

V
K

ap
pa

K
. e

rr

44
8 

(n
 =

 5
0)

0.
78

/0
.7

2
0.

72
/0

.7
5

0.
84

/0
.6

4
0.

82
/0

.6
9

0.
75

/0
.7

6
−

0.
14

0.
14

44
9 

(n
 =

 6
2)

0.
71

/0
.5

8
0.

97
/0

.5
2

0.
45

/0
.6

5
0.

64
/0

.5
9

0.
94

/0
.5

7
0.

03
0.

12

45
1 

(n
 =

 2
72

)
0.

82
/0

.6
6

0.
89

/0
.9

4
0.

74
/0

.3
8

0.
78

/0
.6

0.
87

/0
.8

7
0.

07
0.

07

45
3 

(n
 =

 8
6)

0.
71

/0
.5

7
0.

84
/0

.7
4

0.
58

/0
.4

0.
67

/0
.5

5
0.

78
/0

.6
1

−
0.

12
0.

12

45
4 

(n
 =

 2
10

)
0.

74
/0

.7
4

0.
71

/0
.8

5
0.

76
/0

.6
3

0.
75

/0
.7

0
0.

73
/0

.8
1

0.
08

0.
07

45
6 

(n
 =

 1
92

)
0.

71
/0

.6
5

0.
82

/0
.7

9
0.

60
/0

.5
0

0.
68

/0
.6

1
0.

77
/0

.7
1

−
0.

10
0.

08

46
3 

(n
 =

 1
16

)
0.

57
/0

.6
2

0.
60

/0
.6

6
0.

53
/0

.5
9

0.
57

/0
.6

1
0.

57
/0

.6
3

−
0.

12
0.

09

46
7 

(n
 =

 1
08

)
0.

80
/0

.7
1

0.
78

/0
.7

0
0.

82
/0

.7
2

0.
81

/0
.7

2
0.

79
/0

.7
1

0.
07

0.
10

47
0 

(n
 =

 7
2)

0.
61

/0
.6

3
0.

67
/0

.8
1

0.
56

/0
.4

4
0.

60
/0

.5
9

0.
63

/0
.7

0
−

0.
04

0.
12

47
2 

(n
 =

 3
6)

0.
56

/0
.5

0
0.

50
/0

.4
4

0.
61

/0
.5

6
0.

56
/0

.5
0

0.
55

/0
.5

0
−

0.
08

0.
17

47
3 

(n
 =

 7
2)

0.
71

/0
.6

7
0.

58
/0

.7
5

0.
83

/0
.5

8
0.

78
/0

.6
4

0.
67

/0
.7

0
0.

25
0.

11

47
4 

(n
 =

 9
4)

0.
82

/0
.7

2
0.

89
/0

.8
9

0.
89

/0
.5

5
0.

78
/0

.6
7

0.
88

/0
.8

4
0.

02
0.

11

A
ll 

Pa
tie

nt
s 

(n
 =

 1
37

0)
0.

73
/0

.6
6

0.
75

/0
.7

4
0.

67
/0

.5
5

0.
70

/0
.6

2
0.

74
/0

.7
0

0.
01

0.
03

Clin Neurophysiol. Author manuscript; available in PMC 2018 April 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Waldman et al. Page 24

Ta
b

le
 4

Pr
op

er
tie

s 
of

 d
et

ec
te

d 
ri

pp
le

 o
n 

sp
ik

e 
ev

en
ts

 f
or

 v
er

if
ie

d 
tr

ia
ls

. T
he

 m
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

of
 th

e 
av

er
ag

e 
po

w
er

 m
ag

ni
tu

de
, w

ei
gh

te
d 

m
ea

n 

fr
eq

ue
nc

y,
 d

ur
at

io
n 

of
 d

et
ec

te
d 

tr
ue

 r
ip

pl
e 

on
 s

pi
ke

 e
ve

nt
s 

fr
om

 th
e 

ve
ri

fi
ed

 tr
ia

ls
 o

f 
ea

ch
 p

at
ie

nt
 in

di
vi

du
al

ly
 a

nd
 c

om
bi

ne
d.

 T
he

 T
R

on
S 

an
d 

FR
on

S 
SO

Z
 

ra
te

 r
at

io
 f

or
 a

ll 
th

e 
an

al
yz

ed
 tr

ia
ls

 is
 a

ls
o 

sh
ow

n.

P
at

ie
nt

M
ea

n 
P

ow
er

 (
10

^
5 

ar
bi

tr
ar

y 
un

it
s)

M
ea

n 
F

re
qu

en
cy

 (
H

z)
M

ea
n 

D
ur

at
io

n 
(m

s)
T

R
on

S 
SO

Z
 r

at
e 

ra
ti

o
F

R
on

S 
SO

Z
 r

at
e 

ra
ti

o

44
8 

(n
 =

 2
06

)
6.

69
 ±

 9
.1

2
10

4.
95

 ±
 2

2.
02

15
.4

3 
±

 1
0.

52
0.

92
2

0.
96

3

44
9 

(n
 =

 1
28

)
14

.6
6 

±
 1

3.
86

11
1.

65
 ±

 2
1.

85
24

.1
1 

±
 1

3.
06

0.
66

7
0.

77

45
1 

(n
 =

 4
00

)
29

.9
0 

±
 1

41
.0

6
10

8.
00

 ±
 1

9.
76

21
.6

4 
±

 1
3.

60
0.

64
9

0.
86

1

45
3 

(n
 =

 2
00

)
33

.5
5 

±
 4

6.
12

10
9.

48
 ±

 2
5.

67
17

.9
8 

±
 1

0.
24

0.
29

0.
54

6

45
4 

(n
 =

 4
00

)
98

.4
6 

±
 2

24
.8

0
12

2.
66

 ±
 2

9.
17

23
.1

1 
±

 1
3.

42
0.

66
5

0.
62

3

45
6 

(n
 =

 4
00

)
42

.9
8 

±
 6

5.
80

10
2.

90
 ±

 1
9.

20
22

.7
2 

±
 1

3.
70

0.
70

3
0.

7

46
3 

(n
 =

 4
63

)
18

.3
5 

±
 1

5.
50

11
8.

86
 ±

 3
3.

85
25

.4
1 

±
 1

2.
92

0.
83

2
0.

94
1

46
7 

(n
 =

 2
00

)
30

.8
4 

±
 3

8.
26

10
4.

74
 ±

 1
8.

51
18

.2
8 

±
 1

0.
47

0.
71

1
0.

86
8

47
0 

(n
 =

 2
00

)
94

.7
6 

±
 1

94
.4

7
10

6.
43

 ±
 2

8.
54

17
.1

3 
±

 1
0.

64
0.

45
5

0.
57

7

47
2 

(n
 =

 2
00

)
19

3.
82

 ±
 6

37
.7

5
11

0.
13

 ±
 2

7.
88

11
.3

2 
±

 6
.8

2
0.

39
6

0.
48

5

47
3 

(n
 =

 2
00

)
68

.1
8 

±
 2

23
.6

2
10

2.
14

 ±
 1

8.
99

16
.3

8 
±

 1
0.

83
0.

88
1

0.
90

8

47
4 

(n
 =

 2
00

)
22

.8
8 

±
 4

7.
36

10
8.

35
 ±

 2
3.

87
15

.4
1 

±
 9

.5
1

0.
57

3
0.

68
6

A
ll 

Pa
tie

nt
s 

(n
 =

 2
93

4)
47

.8
6 

±
 1

75
.6

3
10

9.
39

 ±
 2

4.
70

20
.5

2 
±

 1
2.

78
0.

64
5 

±
 0

.1
9

0.
74

4 
±

 0
.1

6

Clin Neurophysiol. Author manuscript; available in PMC 2018 April 23.


	Abstract
	1. Introduction
	2. Methods
	2.1. Patients
	2.2. EEG recordings and segment selection
	2.3. Wavelet convolution
	2.4. Topographical analysis of the time-frequency plot
	2.4.1. Defining groups of open- and closed- loop contours
	2.4.2. Quantifying ripple on spike duration, power, and spectral content
	2.4.3. Illustrating detector methodology using simulated data
	2.4.4. Quantifying detector performance using simulated data

	2.5. Validation of detector accuracy by visual inspection

	3. Results
	3.1. Defining true and false high-frequency oscillations
	3.2. Illustration of detector principles
	3.3. Measuring detector performance using simulated data
	3.4. iEEG visual verification and detector performance
	3.5. Properties of detected ripples
	3.6. Detector confounds

	4. Discussion
	4.1. Utility of the detector
	4.2. Methodological aspects
	4.3. Conclusion and future directions

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1
	Table 2
	Table 3
	Table 4



