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Abstract

In the past, several machine learning algorithms were
developed based on the exemplar view. However,
none of the algorithms implemented the best-
examples model in which the concept representation
is restricted to exemplars that are typical of the
concept. This paper describes a computational best-
examples model and empirical evaluations on the
algorithm. In this algorithm, typicalities of instances
are first measured, then typical instances are selected
to store as concept descriptions. The algorithm is also
able to handle irrelevant attributes by learning
attribute relevancies for each concept. The
experimental results empirically showed that the best-
examples model recorded lower storage requirements
and higher classification accuracies than three other
algorithms on several domains.

1. Introduction

Smith and Medin (1981) proposed the exemplar view
for concept representation and category classification.
Specifically, two cognitive models of the exemplar
view, the proximity model and the best-examples
model, were took up. In the proximity model, each
concept is represented by all of its instances that have
been encountered. The best-examples model assumes
that the representation is restricted to exemplars that
are typical of the concept. It seems impossible for an
adult to remember all instances for each concept. The
best-examples model strongly supports human
concept formation. People tend to remember those
most often encountered instances and forget those
rarely encountered instances. Concepts involved in

1 This research was supported by the Department of
Computer Science at Utah State University and the
Utah State University Faculty Research Grant SCS-
11107. The author would like to thank Steven
Salzberg for providing the datasets of the malignant
tumor classification and diabetes in Pima Indians.
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real world applications usually possess graded
structures (Barsalou, 1985). Instead of being
equivalent, instances of a concept may be
characterized by a degree of typicality in representing
the concept. Typical instances of a concept better
characterize the concept than atypical instances.
Typical instances represent the central tendency of a
concept, so concepts described by typical instances are
more human understandable than those described by
atypical instances and also easier for human to capture
the basic principles underlying these concepts.

In the past, several machine leaming algorithms
were developed based on the exemplar view, these
learning algorithms are called instance-based learning
algorithms, e.g., Protos (Bareiss, et al., 1990), IBL
(Aha, et al., 1991), and Each (Salzberg, 1991).
Although all these algorithms restricted the number
of stored instances, none of them truly implemented
the idea of the best-examples model. These
algorithms selected misclassified instances which
were proved to be near-boundary instances by Aha et.
al (1991). Salzberg (1991) developed a method which
assigned a weight to each stored instance. In his
approach, typical instances got smaller weights than
near-boundary instances, so they played more
important role than near-boundary instances.
However, this approach did not restrict stored
instances to typical instances.

This paper presents a computational best-
examples model developed from the cognitive best-
examples model proposed in (Smith and Medin,
1981). Several problems were addressed in the
computational best-examples model. First, an
algorithm was developed to measure typicalities of
instances. Second, an approach was designed to learn
the weights of attributes for each class. Finally, an
algorithm was proposed to select typical instances of
a concept to store in memory. The computational
model has been implemented and tested on both
artificial and practical domains, and compared with
three different instance-based learning algorithms:
storing all instances, storing only incorrectly
classified instances, and storing near-boundary
instances. The empirical results showed that the
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computational best-examples model recorded lower
storage requirements and higher classification
accuracies than previous instance-based algorithms.

2. Learning Attribute Weights

Relevancies of attributes have a great impact on the
performance of instance-based learning algorithms.
Not all attributes chosen to describe a problem are
relevant, even they do, the degrees of their relevancies
differ. Different concepts in a problem may have
different set of relevant attributes. For instance, an
attribute that well distinguishes Conceptl from
Concept2 may not do well to distinguish Concept2
from Concept3. In our model, the relevancies of
attributes not only affect the classification of an
instance, but also the typicality measured for each
instance.

Both Aha (1989) and Salzberg (1991) assigned a
weight to each attribute as its relevancy. Aha (1989)
also assigned a different weight to the same attribute
for different concepts. This is the approach used in
our algorithm, but the weights were computed
differently. In both (Aha, 1989) and (Salzberg, 1991),
weights are computed incrementally. That is, each
time a new instance was seen, the weights of
attributes were modified based on the classification of
the new instance made by the current descriptions.
Weights were calculated during the process of instance
selection in their algorithms. In our model, instances
are selected according to their typicalities. Weights of
attributes are used in measuring typicalities of
instances, so we need the weights before selecting
instances. Therefore, Aha's and Salzberg's methods
cannot be used in our model. We use a statistical
method to calculate the weights of attributes.

In our method, the weight of the attribute A with
respect to the concept C is computed based on the
difference of the distribution of the positive examples
of C on all values of A and the distribution of the
negative examples of C on all values of A. If the two
distributions are very similar, the attribute A does not
distinguish the concept C from other concepts well.
In this situation, the difference of the two
distributions is very small so the attribute gets a low
weight (close to 0). If the two distributions do not
intersect each other, the attribute A completely
distinguishes C from other concepts. The difference of
the two distributions in this situation reaches the
maximum value so the attribute gets the largest
weight. Generally, a more relevant attribute has a less
intersection and a larger difference between the two
distributions so it gets a larger weight.

Specifically, the weight of the attribute A which
takes a value from {0, 1, ..., n} with respect to the
concept C is computed by the following formula:
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whcre P and N are the sets of positive and negative
examples of the concept C, respectively. I{elA(e)=i A
ee P}l and l{elA(e)=i A ee N}I are the numbers of
positive and negative examples whose value of the
attribute A is i, respectively. The weight ranges from
0to 1. if I{elA(e)=i A e€ F’]I= I{elA(e)=i A ee N}I
’ IPI INI

for all i (0 £ i < n), The weight is O with respect to
I{elA(e)=i A e P}| and

the concept C. IF one of

P!
@““’;:""*N" is 0 for all i (0 < i < n), The

weight equals to 1 and the attribute A completely
distinguishes C from other concepts.

3. Measuring Instance Typicalities

In our model, the typicality of an instance is
measured based on its family resemblance (Rosch and
Mervis, 1975), where family resemblance is defined
as an instance's average similarity to other concept
instances (intra-concept similarity) and its average
similarity to instances of contrast concepts (inter-
concept similarity). The more similar an instance is
to other concept instances and the less similar it is to
instances of contrast concepts, the higher its family
resemblance, and the more typical it is of its concept.
In other words, typical instances have higher intra-
concept similarity and lower inter-concept similarity
than atypical instances. The typicality of an instance
is measured as the ratio of its intra-concept similarity
to its inter-concept similarity. Thus, a larger intra-
concept similarity implies a larger typicality, and a
larger inter-concept similarity implies a smaller
typicality. Generally, the typicalities of typical
instances are much larger than 1, boundary instances
have typicalities close to 1, and the instances with
typicalities less than 1 are either noise or exceptions.
The intra-concept similarity of an instance of a
concept C is computed as the average of the
similarities of the instance to all other instances of C
with respect to C, and the inter-concept similarity of
an instance of a concept C is computed as the average
of the similarities of the instance to all instances of
contrast concepts (negative examples of C) with

respect to C. The similarity of instances el 1o e2
with respect to C sim(C, el ez} is the opposite of
the distance of e! to 2 with respect to C:

sim(C, el, ¢2) = 1 - dis(C, ¢!, €2)
dis(C, el, e2) is computed by measuring the weighted
Euclidean distance of the instance e! to the instance
e2. Specifically,
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where eJj (j = 1, 2) is the value of the ith attribute on

example eJ, max; and min; are respectively the
maximum and minimum values of the ith attribute,
and m is the number of attributes. W(i, C) is the
weight of the attribute i with respect to the concept
C. When the ith attribute is symbolic-valued, cli -
ezi = 1 if they are different, e'i - e2i = 0 otherwise.
For missing values, eli - ezi = (.5. The distance of a
linear attribute is normalized to the range of 0 to 1.

The distance between two instances is also normalized
to the range of O to 1.

4. Selecting Typical Instances

In the sections 2 and 3, we discussed the algorithms
for computing weights of attributes and typicalities of
instances. In this section, we shall first introduce the
method for instance selection and classification, then
present the complete instance-based algorithm in the
computational best-examples model. The nearest
neighbor algorithm stores all instances as concept
descriptions. Aha et al. (1991) and Salzberg (1991)
developed storage reduction instance-based learning
algorithms in which only incorrectly classified
instances were stored. Aha et al. (1991) empirically
demonstrated that their storage reduction algorithm
IB2 significantly reduced the storage requirements, and
only slightly degraded classification accuracies. As
indicated by Aha et al (1991), majority of stored
instances by IB2 were near-boundary instances.

Similar to many IBL algorithms, the instance-
based learning algorithm in our model stores a subset
of training instances in its memory, and uses a
distance measure to decide the distance between new
instances and those stored. New instances are
classified according to their closest neighbor's
classification. The distance measure used is the one
introduced in the section 3 with respect to the concept
to which the stored instance belongs. Each time a
new instance is incorrectly classified, our algorithm
does not store the incorrectly classified instance itself,
instead it stores the most typical instance which
correctly classifies the new instance. That is, the
algorithm finds the most typical instance such that
after the instance is stored into the memory, the new
instance can be correctly classified.
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Similar to Each (Salzberg, 1991) and PEBLS
(Cost and Salzberg, 1991), each stored instance is
associated with a weight. The weight is used in
measuring the distance between a new instance and
the stored instance. The distance between a stored
instance X of a concept C and a new instance Y is:

D(C, X,Y)=Wx *dis(C, X, Y)

where dis(C, X, Y) is the distance measure introduced
in section 3, Wy is the weight of X, and C is the
concept to which X belongs. Each stored instance
covers an area in the instance space. The area covered
by an instance depends on the distribution of all
stored instances and the weight assigned to the
instance. Generally, the smaller the weight of an
instance, the larger the area covered by the instance.
By changing the weight, one can change the area that
the instance covers. Detailed discussion about the
issue can be found in (Cost and Salzberg, 1991). The
weight of an instance in our algorithm is simply the
reciprocal of its typicality. The rationale for this is
that a typical instance is more reliable than a
boundary instance and should cover a larger area.
Namely, it should have a smaller weight. An
exceptional case should cover only a small area so it
should have a large weight.

Specifically, our computational best-examples
model is described as follows:

1. Compute weights of all attributes with respect
to each concept,

2. Compute typicalities for all instances,

3. CD = null,

4. pick up the most typical incorrectly classified
instance x, find the most typical instance y
which correctly classifies x,

5. compute the weight of y: weight(y) =

1
typicaity(y) '

6. add y to CD,

7. repeat the step 4, 5 and 6 until all instances are
comrectly classified.

We have implemented the algorithm in a system
TIBL (Typical-Instance-Base Leamning). To compare
with other instance-based learning algorithms, we
have also implemented three other instance-based
learning algorithms, BIBL (Boundary-Instance-Based
Learning), SRIBL (Storage Reduction Instance-Based
Learning), and IBL (Instance-Based Learning). BIBL
algorithm stores the lest typical instances, that is,
exceptional and boundary instances. This algorithm
repeats the process of finding the incorrectly classified
instance with the smallest typicality and storing it
until all instances are correctly classified. SRIBL is
similar to IB2 (Aha, et al., 1991). It repeats the
process of finding an incorrectly classified instance
and storing it until all instances are correctly covered.



IBL is the 1-nearest neighbor algorithm and stores all
training instances.

5. Empirical Evaluation

To empirically evaluate the typical-instance-based
learning algorithm, we have conducted two kinds of
experiments with TIBL. The first kind of experiments
was designed to evaluate the algorithm in comparison
with other instance-based leamning algorithms, while
the second kind of experiments was to evaluate the
effect of learning attribute relevancies. The
performance was evaluated on two aspects: classi-
fication accuracy and storage requirement.
Classification accuracy was measured as the
percentage of correct classifications made by the
concept description on a set of randomly selected test
instances. Storage requirement was measured by the

number of instances stored in descriptions. All results
reported in this section were averaged over 10 trals.

We applied the four instance-based learning
algorithms: TIBL (Typical-Instance-Based Learning),
BIBL (Boundary-Instance-Based Learning), SRIBL
(Storage Reduction Instance-Based Leaming), and IBL
(Instance-Based Learning) to five domains:
classification of n-of-m concept, classification of
congressional voting recording, malignant tumor
classification, diagnosis of diabetes in Pima Indians,
and diagnosis of heart disease. In these experiments,
TIBL was applied without attribute weight learning.
Table 1 summaries the characteristics of the five
domains and table 2 reports the experimental results
of the four different instance-based learning
algorithms on the five domains. Test sets were
disjoint with training sets except for the n-of-m
concept on which test set was the whole instance
space. In table 2, ACC and #ins represent accuracy
and the number of instances, respectively.

Domain Training Set Size Test Set Size Number of Attributes
n-of-m 400 1024 10
Voting 200 235 16
Tumor 150 219 9
Diabetes 200 568 8
Heart 100 203 13
Table 1: Summary of Domain Characieristics
TIBL BIBL SRIBL IBL
Domains ACC(%) _ #ins ACC(%) _ #ins ACC(%) _ #ins ACC(%) _ #ins
n-of-m 99.5 10.8 76.0 182.8 80.3 2194 85.5 400.0
Voting 90.4 316 920 59.5 924 51.9 934 200.0
Tumor 93.1 19.5 904 294 91.2 28.8 93.7 150.0
Diabetes 70.2 105.6 66.5 106.9 65.5 105.3 69.9 200.0
Heart 82.0 337 739 46.6 75.6 45.2 77.8 100.0

Table 2: Experimental Results of 4 IBL Algorithms on 5 Domains

The n-of-m concept is an artificial domain and
contains 10 binary attributes and 2 concepts, C1 and
C2. If 5 or more of the 10 attributes of an instance
are 1, then the instance belongs to C1, otherwise it
belongs to C2. TIBL significantly improved both
accuracy and storage requirements over BIBL, SRIBL
and IBL. The reason for such a large improvement is
that the n-of-m concept has a very clear graded
structure. When the two most typical instances,
1111111111 and 0000000000, appeared in the
training set, they were the only two instances chosen
by TIBL, 1111111111 for C1 and 0000000000 for
C2. These two instances were weighted differently,
1111111111 had a slightly smaller weight than
0000000000 so that 1111111111 covered larger area
than 0000000000. The concept C1 did cover a larger
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area than C2. 100% accuracy was achieved by these
descriptions. Following is an example of such
descriptions.
1111111111: weight = 0.483
0000000000: weight = 0.523
The congressional Voting database contains the
voting records of the members of the United States
House of Representatives during the second session of
1984. It is described by 16 binary attributes and has
288 missing values among its 435 instances. TIBL's
classification accuracy is slightly lower than BIBL's,
SRIBL's and IBL's, but TIBL saved much fewer
instances. An interesting result is that almost all
descriptions generated by TIBL included only one or
two instances with very high typicalities plus a
number of instances with very low typicalities. Very



few instances with medium typicalities (1.2 to 3)
were included in the descriptions. This is because that
these instances were correctly classified by the typical
instances stored. The typical instances of a description
represented the central tendency, while the instances
with low typicalities were exceptions which could not
be correctly classified by any typical instances. The
lower TIBL accuracy may be due to the fact that the
test set included some exceptions which were not
correctly classified by the typical instances stored.

The malignant tumor classification domain
includes a set of 369 breast cancer patients, of which
201 have no malignancy and the remainder have
confirmed malignancies (Wolberg and Mangasarian,
1989), The problem is to determine whether the
tumors were benign or malignant from these cancer
patients. Each patient is described by nine real-valued
features. Mangasarian et al. (1989) applied a new
linear programming technique to this domain, and
good results have been achieved. Although the
accuracy of IBL was slightly better than TIBL, it
stored about 7 times more instances. TIBL
outperformed both BIBL and SRIBL in terms of both
accuracy and storage requirement, but the accuracy
improvement is not significant. BIBL and SRIBL
performed similarly. Similar to those obtained in the
congressional voting records, the concept descriptions
generated consisted of a few typical instances and a
number of exceptional instances. These exceptional
instances can be removed without degrading the
accuracy.

The Diabetes in Pima Indians data set contains
768 instances, of which 500 (65%) have no diabetes,
and 268 are diabetes patients. Each instance is
described by 8 linear attributes. The problem is to
diagnose who has diabetes and who has no. The
accuracy of TIBL was consistently better than those
of BIBL and SRIBL. The storage requirement of TIBL
is about the same as those of BIBL and SRIBL. TIBL
performed equally well as IBL in accuracy, while it
reduced the storage by half.

The heart disease data set contains 303 instances,
each instance is represented as 13 numeric attributes
plus a classification: presence or absence of heart
disease. 164 of the 303 instances have no heart
disease. The goal is to learn to distinguish presence of
heart disease from absence. Excellent results were
obtained by TIBL on this domain. TIBL'S
classification accuracy was over 80% and higher than
previously published results, Aha et al. (1991)
reported 75.7% accuracy for standard nearest neighbor
and 78% for a variant of NN that discards apparently
noisy instances. They also reported that the C4
decision tree learning algorithm (Quinlan, 1987)
achieved 75.5% accuracy. In our experiments, TIBL
showed a significant accuracy improvement over the
other three methods BIBL, SRIBL and IBL. It stored
fewer instances than BIBL and SRIBL.

TIBL reduced the storage requirements
dramatically on the datasets on which high accuracy
were achieved by learning systems, e.g...
congressional voting records and malignant tumor.
This result was partially caused by the fact that high
quality datasets enabled our algorithm to better
distinguish typical instances from atypical ones,
Another reason was that instances in high quality
datasets are very concentrated and constitute few peaks
which are well represented by a few typical instances.

To evaluate the effect of attribute weight
learning, TIBL has been run on two domains, n-of-m
concept and congressional voting, with and without
attribute weight learning. The congressional voting
dataset was the same as the one used in the
experiments reported above. The n-of-m concept was
modified by adding 5 irrelevant attributes. Table 3
presents the experimental results. Descriptions of n-
of-m were tested on 2000 examples and descriptions
of congressional voting records were tested 335 and
235 examples for the training sizes 100 and 200,
respectively.

Domain Training Set With Attribute Relevancy No Attribute Relevancy
Size ACC #ins ACC #ins

n-of-m 200 95.6% 12.4 85.3% 60.4
400 99.4% 7.5 89.0% 96.3

Voting 100 90.1% 12.6 88.7% 14.2
200 91.3% 27.8 90.4% 31.6

Table 3: Experimental Results with and Without Learning Attribute Relevancies

Significant improvements on both classification
accuracy and storage requirement were achieved on the
domain of n-of-m concept. Although the
improvements on congressional voting records were
minor, they were stable. Improvement on accuracy
was obtained on 19 of the 20 trials made over the two
training set sizes and the improvement on storage
requirement was observed for all 20 trials. These
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improvements were due to the attribute weight
learning. Attribute weights not only helped TIBL in
classifying new instances, but also in identifying
typical instances, because attribute weights were used
to compute typicalities of instances. For example, the
typicalities of the most typical instances of n-of-m
concept were around 1.25 without using attribute
weights and were around 2.5 with using attribute



weights. The typicalities of the most typical
instances of congressional voting records were around
2.8 without using attribute weights and were around
4.0 with using attribute weights.

6. Summary and Future Work

The main contribution of the work described in
this paper is the development of a computational
best-examples model from the cognitive best-
examples model proposed by Smith and Medin
(1981). Three algorithms, attribute weight learning
algorithm, instance typicality measuring algorithm
and instance selection algorithm, were developed in
this computational model. This model was
empirically evaluated and compared with other
instance-based learning algorithms. The results
confirmed that the best-examples model can be
adopted in developing instance-based learning
systems. The results showed that when concepts have
graded structures instances-based learning systems
developed best-examples model may outperform other
instance-based learning systems. The computational
model may also help cognitive researchers to better
understand the best-examples model.

One of the limitations of the computational
model is the way to compute the distance of instances
when attributes are symbolic-valued. In this case,
distance in TIBL is computed by counting the
attribute values that match. As indicated in (Cost and
Salzberg, 1991), this approach for computing distance
may not perform well when the domains are complex.
In the future, we shall implement a more complicated
method called Value Difference Metric (VDM)
(Stanfill and Waltz, 1986; Cost and Salzberg, 1991)
which takes into account the overall similarity of
classification of all instances for each possible value
of each attribute. In this method, a matrix defining
the distance between all values of an attribute is
derived statistically, based on the examples in the
training set. Other future work includes developing a
method for learning weights of linear attributes,
especially continuous attributes. The problem of
classifying new instances with degrees of membership
should be addressed in the future too.
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