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investigated how individuals exploit the predictive relationships to their advantage and 

address the following questions: 1) Does exploitation of predictive relationships occur 

when there is no explicit knowledge of the underlying structure? 2) Might some of the 

findings in implicit learning have very limited generalizability? 3) Lastly, does averaging 

across subject data mask what is learned by individuals? Altogether, my dissertation 
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revealed people 1) strongly favored simple and verbalizable relationships, 2) used explicit 

knowledge of the predictive task-relevant features for optimal performance, 3) used very 

different strategies that were only revealed in post-experiment questioning.  
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Introduction  

 In acquiring a skill, it is often important for people to find ways to exploit 

predictive relationships that may exist in the task domain. These relationships may be 

simple but they can also be quite complex.  My dissertation examines unresolved questions 

about how this exploitation process occurs. 

Some researchers have suggested that people utilize an explicit hypothesis-testing 

process for predicting simple relationships when the predictive features are easy to 

verbalize (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998). On the other hand, they 

propose an implicit and typically nonconscious procedural learning process is used to 

detect and utilize complex relationships when the predictive features are difficult or 

impossible to verbalize (e.g., Ashby & Maddox, 2005; Reber, 1989; Sanchez, Gobel, & 

Reber, 2010). The weather prediction task (Knowlton, Squire, & Gluck, 1994) is a typical 

example used to argue for the dissociation between the two learning systems. In this task, 

amnesiacs and healthy controls had to guess a weather outcome (sunshine or rain) when 

presented with a combination of cue cards. The true weather outcomes were probabilistic 

in nature thus making the predictive features difficult to verbalize. Experimental analysis 

of the task has showcased implicit learning (i.e., amnesiacs’ weather predictions were 

comparable to control subjects).  

However, a resurgent interest in awareness during learning has spurred research 

that seems to indicate that even in tasks that require integration of probabilistic outcomes, 

conscious explicit hypothesis testing may take place (e.g., Haider & Frensch, 2005; 

Lagnado, Newell, Kahan, & Shanks, 2006; Price, 2009; see also, Knowlton, Squire, & 

Gluck, 1994).  
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The main questions posed in my dissertation research are: 1) Does exploitation of 

predictive relationships occur when there is no explicit knowledge of the underlying 

structure? 2) Might some of the findings in implicit learning have very limited 

generalizability? 3) Lastly, does averaging across subject data mask what is learned by 

individuals? In three chapters, a common theme will emerge. Explicit knowledge plays a 

bigger role in incidental learning than previously thought. 

In Chapter 1, subjects were exposed to a unidimensional-bimodal distribution (i.e., 

the spatial location where dots appeared on a line). Incidental learning was then assessed 

by asking subjects to generate novel samples. The results suggest participants do not 

implicitly learn the underlying complex distribution (i.e., bimodality) and default to a 

simple distribution (e.g., uniform). Only when the complex distribution was discretized 

(i.e., bimodal distribution is made extremely apparent) did participants show incidental 

learning of the underlying structure. 

Chapter 2 expands on these findings by examining whether subjects require 

conscious awareness to exploit predictive features. The two experiments employed 

relevant predictive features that were binary and deterministic that were among varying 

irrelevant features. Across both experiments, subjects that were unable to verbalize the rule 

did not show any implicit learning. In other words, explicit knowledge and ability to 

verbalize the rule were necessary to exploit the predictive features to subjects’ advantage. 

However, an alternative explanation could be the usage of a single deterministic dimension 

begs for an all-or-none process (e.g., Sergent & Dehaene, 2004; Smith & Kounios, 1996).  

Therefore, the set of experiments in Chapter 3 were designed to have subjects learn 

an orthogonal 2-feature category space (size and hue) constructed from two uniform 
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distributions. This approach creates a complex decision boundary that requires a 

conjunction of two dimensions. The findings from Chapter 3 converge with results from 

Chapters 1 and 2 where numerous subjects default to simple structures (i.e., using only one 

dimension) and only subjects that were able to verbalize both size and hue were able to 

classify exemplars with the correct diagonal boundary. 

 The findings from the three chapters suggest people favor simple and verbalizable 

relationships and use explicit knowledge of predictive features for optimal performance. 

Implications for each chapter will be discussed in their respective manuscripts. 
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RT, 0000-0002-2353-6858

The idea that people learn detailed probabilistic generative
models of the environments they interact with is intuitively
appealing, and has received support from recent studies of
implicit knowledge acquired in daily life. The goal of this
study was to see whether people efficiently induce a probability
distribution based upon incidental exposure to an unknown
generative process. Subjects played a ‘whack-a-mole’ game in
which they attempted to click on objects appearing briefly, one
at a time on the screen. Horizontal positions of the objects
were generated from a bimodal distribution. After 180 plays
of the game, subjects were unexpectedly asked to generate
another 180 target positions of their own from the same
distribution. Their responses did not even show a bimodal
distribution, much less an accurate one (Experiment 1). The
same was true for a pre-announced test (Experiment 2). On
the other hand, a more extreme bimodality with zero density
in a middle region did produce some distributional learning
(Experiment 3), perhaps reflecting conscious hypothesis testing.
We discuss the challenge this poses to the idea of efficient
accurate distributional learning.

1. Introduction
People often seem to behave effectively based on noisy
observations of uncertain environments. This might seem
surprising because people generally have poor incidental memory
(e.g. the direction that Lincoln faces on the penny; [1]). On the
other hand, probability distributions may be special, and there is
evidence that people are quite good at estimating frequencies of
events even when they have paid little attention to the stimuli
as they appeared [2]. One currently popular interpretation of
this adaptive flexibility assumes that people efficiently learn
probabilistic generative models of their environment and then use
these models to guide their behaviour. Such a capability would
seem to have the potential to assist people in achieving many
of their goals, including goals with strong benefits to Darwinian

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted

use, provided the original author and source are credited.
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fitness (such as finding food and finding mates). If one looks at the literature, however, while there
are many examples of evidence taken to favour the idea of flexible induction of generative models,
the evidence appears somewhat restricted and indirect. For example, Vulkan [3] showed that people
were able to match reward probabilities of several alternatives with their choices, indicating that
they can learn probability distributions over those alternatives. People can also learn the probabilistic
dependency structure in networks of binary variables (e.g. [4,5]). As impressive as these feats are, these
outcomes could potentially be achieved by learning only the first few moments (mean and variance) of a
distribution rather than the full underlying structure. In this paper, we ask more straightforwardly: can
people learn the overall shape of an observed distribution and are they able generate new instances that
retain the properties of the learned distribution?

2. Prior methodological procedures used in distributional learning studies
To date, studies that have shown evidence for (e.g. [6,7]) and against (e.g. [8]) distributional learning have
used tasks that: (i) employ other types of strategies or (ii) seem to allow for an aggregate analysis of only
a few moments of the distribution rather than the whole. Our main focus is on how the methodological
procedures from various studies might limit the ability to tease apart what properties are learned from a
distribution.

Griffiths & Tenenbaum [6] suggested that people have acquired a great deal of information about
the shape of the distribution of quantities such as baking time for cakes, reigns of Pharaohs and booking
time for telephone ticket booking agencies. Their argument for this conclusion was based on participants’
ability to answer questions of the form ‘If you were calling a telephone box office to book tickets and had
been on hold for 3 min, what would you predict for the total time you would be on hold?’ They found
that people’s responses generated from their internal generative models were very similar to the true
statistical distributions. However, Mozer et al. [9] questioned the conclusions of Griffiths & Tenenbaum
[6], arguing that the excellent performance at the aggregate level might be consistent with very limited
learning at the individual level (cf. [10,11]).

A broader concern with studies like Griffiths & Tenenbaum [6] is that we do not know how much
exposure, and what type of exposure, people have had to events like Pharaohs and ticket-service call
lines. Many of the quantities considered by Griffiths & Tenenbaum are subject to soft constraints from
general world knowledge: knowing current average lifespans have increased over time, knowing that
some pharaohs came into power at a very young age all impose constraints on the distribution of Pharaoh
reigns. Thus, distributional knowledge about such world facts need not imply that people efficiently
learn such distributions from direct observation; instead it may imply that people effectively infer this
distribution as needed.

Sailor & Antoine [8] used a more controlled set of stimuli with a task requiring participants to estimate
the size of squares drawn from two distributions (Experiments 1, 3 and 4: overlapping; Experiments 2
and 5: non-overlapping). On a given trial, participants were initially presented with a square drawn
from one of the distributions and were coloured red or blue to distinguish which distribution the square
was drawn from; however, this was never explicitly stated to the participants. Participants then had
to estimate the size of the initially presented square by adjusting the size of a subsequently displayed
square. Only on the last two trials of the experiment were participants asked to estimate the mean size
of the red and blue squares. Sailor & Antoine found that the estimated means for both the red and blue
squares did not differ from the average of the two distributional means. In other words, participants were
unable to distinguish the two different distributions; instead, they grouped the red and blue squares
into a single-unimodal distribution. We argue that the methodology presented by Sailor & Antoine
may not well assess an individual’s ability to learn the shape of a distribution, because it requires only
sensitivity to averages. In a similar task, Gershman & Niv [12] had participants estimate the number
of circles presented on the screen. The circles were either all red or all blue and were drawn from two
different underlying distributions of quantity. In line with the findings from Sailor & Antoine, Gershman
& Niv also discovered that participants’ estimations were biased towards the mean of both distributions.
Participants’ biases, however, were reduced when the red and blue quantity distributions were further
apart (i.e. more easily distinguishable; see Experiment 3 of this article for comparable results).

In a further investigation of these findings, Xu & Griffiths [7] were able to show that participants can
learn properties of a bimodal distribution using a serial reproduction task. Xu & Griffiths employed a
similar procedure to Sailor & Antoine [8] where participants learned to distinguish two types of fish
drawn from two separate size distributions. On a given trial, a to-be-estimated fish was presented on
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the screen and disappeared. Participants then adjusted the size of a subsequent fish to estimate the just-
seen fish. A major novelty in Xu & Griffiths’ procedure was that each estimation made by a participant
was used as subsequent to-be-estimated fish. In other words, participants estimated fish sizes from their
own previous estimates (i.e. a Markov chain) rather than estimating fish sizes from fish independently
drawn from the experimental distribution on each trial. Using this procedure, Xu & Griffiths claimed
to have demonstrated learning of a bimodal distribution. However, the argument rests on people’s
reconstructions of their own estimates where iterated learning can occur from trial to trial. Hence, with
this paradigm, one cannot straightforwardly ask whether or not people can generate new instances that
conform to a learned distribution because each trial is influenced by the previous trial.

3. Present study
The current study was designed to provide a test as simple and direct as possible for the idea that people
implicitly learn the shape of a distribution based on observed samples of that distribution. The study
represented something of a (friendly) ‘adversarial collaboration’ (cf. [13]), in that one of us (EV) was
generally favourably disposed to the idea of implicit learning of generative models, while another of us
(HP) was fairly sceptical of this idea, and RT at least professed neutrality.

To maximize the chances of demonstrating effective distributional learning, several features were
built into the design. First, the variable whose distribution was tested was a variable that was highly
relevant to actions the subjects would be performing. To arrange this, we used a ‘whack-a-mole’-type
game in which the subject sought to click on an object during the brief period before it disappeared. This
required paying close attention to its location as the object’s sole action-relevant property. Second, we
exposed subjects to a distinctive and somewhat unusual (bimodal) distribution to make it possible to test
the fidelity of the distribution they learned. The test of learning used here required subjects to produce
their own sequence of locations, mimicking the locations observed during the learning phase. While
the virtues of this form of test can be debated (see General discussion), the goal here was to maximize
the chance of finding distributional learning (see [14], for arguments that the mental representation of
distributions is embodied in the ability to generate new samples from these distributions).

4. Experiment 1
In Experiment 1, learning was incidental: subjects played the game in Phase 1 with no expectation of
being tested.

4.1. Method

4.1.1. Participants

Thirty undergraduates at the University of California, San Diego participated in this experiment for
course credit. All were naive to the purpose of the experiment.

4.1.2. Distribution used in phase 1

A single fixed sequence of locations was used for all subjects in Phase 1 (the entire sequence is provided
in the electronic supplementary material). The purpose of this was to avoid any confusion of the results
due to sampling variability of the observations. The distribution of values used included only multiples
of 0.01, with one observed value at each position within the unit interval (0, 1), plus additional values
‘piled up’ over two modes, one ranging from 0.10 to 0.26 (with four total observations at each point in
that range) and the other from 0.80 to 0.84 (with seven total observations at each point in that range).
Figure 1 shows this distribution.

4.1.3. Procedure in phase 1

In Phase 1, subjects were told ‘Welcome to the experiment. In the first phase of the study you will
play a game similar to the old computer game Wackamole. On every play, a disk will appear and begin
expanding. Your job is simply to click on it before it disappears. If you click on it before it disappears,
you score. That’s it!’ They played the game 180 times. Average viewing distance from the screen was
about 76 cm on a 1024 × 768-resolution screen. On each trial, a blue disc (initially just 1 pixel) appeared
in a horizontal range of positions 822 pixels in width centred on the screen. Beginning at the moment
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Figure 1. Experiment 1 results: histogram of the training (blue) and reported (red) locations.

of its appearance, each disc grew at 100 pixels s−1 until it reached a size of 100 pixels, at which time it
disappeared. If the subject was able to click on the item during its 1 s expansion phase, they received 1
point. Nothing else appeared on the horizontal line. (If the subject hit the disc, a confirming sound would
play with the word ‘Hit’ displayed on the screen. Otherwise a buzz sound played while the word ‘Miss’
was displayed. The feedback lasted 1.8 s. A streak counter and best streak counter were also visible on
the top left of the screen, displaying the subject’s current hit streak and their best hit streak overall.)

4.1.4. Procedure in phase 2

Immediately after the last play, subjects began the second phase of the study, and were told, ‘Now we
are interested in determining how much of an intuitive sense you have gained for how the locations of
the disks were being determined. Please show us this by generating a new sequence of locations. Please
do NOT click in the same spot over and over.’ They were also told ‘If you think there were any other
patterns in the original sequence, please try to generate a sequence that reflects those patterns, too. Don’t
worry about mimicking the timing of the original sequence. Just try to produce a sequence of locations
which is as much like the original sequence as you can make it.’

In the second phase, subjects’ clicks were self-paced. When they clicked, a disc showed up with the
location of the cursor as the centre of the disc, a click counter on the top left of the screen incremented
with each click. After 180 clicks were registered, an exit screen was displayed, terminating the study.

4.2. Results and discussion

The average hit rate of clicks in Phase 1 was M = 0.51, s.d. = 0.14, s.e. = 0.02. Scores ranged from 0.25 to
0.74 with a median of 0.50. As with the real Whack-a-mole game, we expected to find a wide range of
hit rates during Phase 1. Figure 1 shows the distribution of generated click positions aggregated across
subjects for Phase 2. The subjects’ responses show no obvious similarity to the bimodal pattern presented
in Phase 1.

5. Experiment 2
In Experiment 2, the task was the same, but the subjects were warned that they would be tested on the
distributions of locations.
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Figure 2. Experiment 2 results: histogram of the training (blue) and reported (red) locations.

5.1. Method

5.1.1. Participants

Thirty-one undergraduates drawn from the same population as Experiment 1 participated. All were
naive to the purpose of the experiment.

5.1.2. Materials and design

Materials and design were identical to Experiment 1 with the exception of a difference in instructions.

5.1.3. Procedure

The procedure was identical to that of Experiment 1 except that prior to performing the first phase
(playing Whack-a-mole), the subjects were told: ‘Just one more thing: please pay attention to the sequence
of locations where the disk appears. After you’re done playing, we’ll ask you to try to generate a sequence
of locations that simulates the sequence the computer is generating. So please see if you can learn the
characteristics of the sequence of locations where the disks pop up.’

5.2. Results and discussion

One subject was excluded from the subsequent analyses due to a logging error in the subject’s file. The
average hit rate of clicks in Phase 1 was M = 0.57, s.d. = 0.18, s.e. = 0.03. Scores ranged from 0.17 to 0.89
with a median of 0.60. Figure 2 shows the subjects’ response distribution for Phase 2. Again, there was
no sign in the aggregate responses that subjects learned the bimodality of the distribution, despite an
explicit instruction to try to learn the characteristics of the sequence.

6. Experiment 3
In Experiment 3, the procedure followed Experiment 1, except the distribution used was more extremely
bimodal, with zero density outside of the intervals of the modes ([0.10, 0.26] and [0.8, 0.84]; figure 3).
Thirty-one undergraduates from the same subject pool participated (one subject was excluded due to a
file logging error). The complete stimulus sequence is provided in the electronic supplementary material.
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Figure 3. Experiment 3 results: histogram of the training (blue) and reported (red) locations.

6.1. Results and discussion

The average hit rate of clicks in Phase 1 was M = 0.58, s.d. = 0.16, s.e. = 0.03. Scores ranged from 0.24 to
0.83 with a median of 0.63. Figure 3 shows that here in Phase 2, subjects did indeed pick up on the now
discrete bimodality much better than in the previous studies.

7. Quantifying learning
While one of us (HP) felt that the results clearly showed that distributional shape learning was negligible
except when the distribution had a gross qualitative feature (zero density in the middle region), EV felt
it would still be useful to explore the extent of learning quantitatively.

To characterize learning in these experiments, we therefore ascertained which precision of a kernel
density estimate applied to the training observations (xi being the position seen on a given training trial)
best captured the responses produced by our observers. As the range of possible responses is bounded,
we created a ‘Beta kernel’ parametrized by one precision parameter, k:

f̂ k(x) = 1
n

n∑

i=1

Kk(x|xi)

and
Kk(x|xi) = Beta(x|1 + xi × 10k, 1 + (1 − xi) × 10k)

This fitting was done by obtaining the distribution over positions as the kernel density estimate
(sum over all kernels for all training data, normalized), for a given k. Then the likelihood of a subject’s
responses under that distribution was calculated for each k. Finally, the maximum-likelihood k was taken
as the estimate. When k is large (greater than 0), the kernel amounts to a beta distribution peaked at the
observed value, with the distribution approaching a single spike at the observed value as k increases.
When k is small (less than 0), the kernel loses just about all of the information about the observed value,
and yields a uniform (0, 1) distribution (figure 4). We fit the kernel precisions parameter to individual
subjects in each of our experiments, as well as the aggregate across-subject data shown in figures 1–3.

Figure 5 shows how well different values of k fit individual subjects in each of our experiments. Only
Experiment 3 shows that subjects learned something from the training distribution—as indicated by an
advantage of kernel precisions greater than 0 (23 of 30 subjects have a best-fitting kML > 0). By contrast,
for Experiments 1 and 2, the best-fitting kernel precision is very negative for most subjects (kML > 0 for
10/30 and 9/30, respectively), indicating that most subjects’ responses reflect effectively zero influence of
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Individual subject fits are shown in red, while the fit to the aggregate data is shown in black. Grey bars at the bottom of each panel are a

histogram (across subjects) of the best-fitting k-values (black circle indicates the best-fitting value for the aggregate over all subjects).
Although aminority of subjects reveal some learning (positive kernel precision) in Experiments 1 and 2, for themost part, kernel precisions

are very negative, indicating that subjects do not reliably capture any of the training distribution signal in their responses. By contrast,

Experiment 3 shows reliable learning.
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the training distribution. To examine these results across experiments, we estimated maximum a posteriori
values of k (with loosely informative priors of k ∼ N(0, 5) to avoid indistinguishable regions for very
negative values of k) for each subject. A one-way ANOVA on subject MAP estimates (figure 6) showed
statistical significance across the three experiments, F2,89 = 8.54, p < 0.001.

8. General discussion
The results reported here show that when people are exposed to a stream of stimuli whose properties
on an action-relevant dimension (here, location) conform to a bimodal distribution, they fail to
spontaneously learn the bimodality. The same is true even when they are told to try to learn the
distribution of locations (Experiment 2). However, when the continuous bimodal distribution was
discretized by adding a zero-density gap between the two modes, people showed clear distributional
knowledge (Experiment 3). We are inclined to reject the possibility that subjects learned the distribution
in Experiments 1 and 2, but failed to produce under the ‘generate samples’ testing procedure because the
same procedure yielded clear positive findings in Experiment 3.

The results are amenable to a number of possible interpretations, some of which we will mention here
without taking any strong view (reflecting the current authors’ friendly adversarial collaboration noted
in the Introduction). One intriguing interpretation is that there is no general non-parametric learning
of continuous probability distributions, and the results of Experiment 3 arose because the distribution
could be readily discretized on account of the zero-density interval between the two modes. This would
be consistent with the idea that discreteness affects the ease in which distributions can be abstracted.

Another possibility is that people have a strong tendency to learn by ‘parameter tuning’ of
particular functional forms of distributions, rather than learning distributions non-parametrically—
an account echoed in results suggesting that perceptual learning amounts to parameter tuning of
feature relationships, rather than learning new relationships among features [15]. A more mundane
but still interesting possibility is that non-parametric learning of a distribution proceeds with imperfect
and incomplete memory, which renders the distributions in Experiments 1 and 2 too subtle to be
learned. Although learning does occur when the subtle bimodal distribution was made more notable
in Experiment 3. These findings contrast the conclusions from Acerbi et al. [16] where the discernibility
of complex distributions does not modulate performance. However, their subjects were given explicit
distribution information to be used in their spatial estimation task. This discrepancy may reflect different
processes when using explicit information versus generating novel samples from distributions. Yet
another possibility, attributed to a referee suggestion on an earlier version of this manuscript, might be
subjects represent the distribution faithfully as changes in distance from trial-by-trial (i.e. allocentrically)
rather than over the spatial width of the line. Finally, a related possibility is that people have prior
assumptions strongly favouring unimodal distributions, and the data provided in Experiments 1 and
2 (perhaps corrupted by memory) are insufficient to overcome such priors.
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Further support for this possibility comes from a recent study by Sanborn & Beierholm [17]. These

investigators had subjects estimate the number of circles in a display (the number ranged from a
minimum of 23 to at most 35). Quantities were drawn from discretized bimodal or quadrimodal
distributions and feedback was provided. While Sanborn & Beierholm’s bimodal distribution did not
have zero density in the middle, by contrast with our Experiment 3, the two modes were always at the
most extreme left and right positions within the distribution (e.g. trials with 23 and 29 circles appeared
with a probability of 0.3 and trials with 24–28 circles appeared with a probability of 0.08 with a total
of 700 trials). The quadrimodal distribution combined two bimodal distributions with a zero density
region interposed between them (e.g. trials with 23, 25, 29 or 31 circles appeared with a probability of
0.2; trials with 24 or 30 circles appeared with a probability of 0.1; all other possible quantities of circles
had a probability of 0). Subjects’ behavioural responses (shown as conditional response distributions)
suggested they had learned a good deal about the distributions. Given their discrete character, these
findings seem consistent with the findings of Experiment 3.

9. Suggestions for future research
So what do these three studies tell us? It seems that learning fine-grained structure of observed
probability distribution may not be as efficient as prior literature might seem to imply. The clear
discrepancy between Experiments 1 and 2, and Experiment 3 suggests an intriguing possibility: only
when a continuous distribution may be easily discretized do people engage in some form of non-
parametric learning; otherwise, they tend to learn only a few moments of the distribution (such as the
commonly investigated tendency to learn the mean and variance).

Of course, before such a hypothesis might be acknowledged, it would be important to untangle more
mundane accounts: perhaps strong priors about unimodality, coupled with an imperfect memory for
exemplars, is responsible for this pattern of results.
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Abstract

It is often assumed that implicit learning of skills based on predictive relationships proceeds

independently of awareness. To test this idea, four groups of subjects played a game in

which a fast-moving “demon” made a brief appearance at the bottom of the computer

screen, then disappeared behind a V-shaped occluder, and finally re-appeared briefly on

either the upper-left or upper-right quadrant of the screen. Points were scored by clicking on

the demon during the final reappearance phase. Demons differed in several visible charac-

teristics including color, horn height and eye size. For some subjects, horn height perfectly

predicted which side the demon would reappear on. For subjects not told the rule, the subset

who demonstrated at the end of the experiment that they had spontaneously discovered the

rule showed strong evidence of exploiting it by anticipating the demon’s arrival and laying in

wait for it. Those who could not verbalize the rule performed no better than a control group

for whom the demons moved unpredictably. The implications of this tight linkage between

conscious awareness and implicit skill learning are discussed.

Introduction
A critically important aspect of skill acquisition is learning to take advantage of the various

predictive relationships that exist within the relevant domain. Through reinforcement learning

and other learning processes, people are assumed to discover and exploit such predictive rela-

tionships and to optimize their performance accordingly, achieving greater rewards as their

skill grows (e.g., [1]). The question posed in the present article is: do people learn to exploit

predictive relationships without showing any conscious awareness of the relationship that they

are exploiting?

Anyone acquainted with the cognitive psychological literature might suppose that the

answer to this question is clearly “yes”. Indeed, there are several well-known lines of research

which seem to show beyond any doubt that implicit procedural learning takes place without

conscious awareness (see [2], for a review; c.f., [3]). Moreover, in the past 15 years or so, rather

little in the way of new research on the topic seems to have been published, possibly suggesting
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that the issue has seen by many as “settled”. However, as will be seen below, these results,

though intriguing, involve very limited kinds of behavioral changes that are not necessarily

representative of skill learning in the broader sense. The remainder of this introduction pro-

vides a brief overview of research demonstrating unconscious procedural learning, pointing

out how these studies leave open the general question posed above. We then go on to describe

the construction of a very simple videogame designed expressly to revisit and shed light on the

question posed here.

Evidence for unconscious implicit learning
A number of experimental designs have produced results that appear to show extensive

implicit learning without awareness. In the best known of these studies, Willingham, Nissen,

and Bullemer [4] had people make a series of button pushes in response to a spatial sequence

of stimuli, and repeated a 10-item sequence throughout the experiment. Subjects were divided

into 3 different groups depending on their ability to explicitly describe the repetition. Most

subjects showed a speed-up in performance for repeated sequences, but were unable to ver-

bally describe the sequences that repeated. While the reduction in RT with practice was greater

for subjects who could describe the repeated sequence, there was substantial improvement

even for those who could not describe it (for discussion, see [5–9].)

Another commonly cited line of evidence for learning of predictive relationships without

awareness comes fromMiller [10,11], who had subjects respond to the identity of a central

“target” characters while ignoring some other “flanker” characters that were presented on

either side of the central character. The identity of the flanker characters partially predicted the

identity of the target character. Subjects responded faster on trials that conformed to this pre-

dictive relationship, as compared to trials that deviated from it ([10,11]). Several pieces of evi-

dence argued for a dissociation between awareness of the predictive relationship and

behavioral reliance upon the relationship. For example, a small proportion of subjects were

unable to report the most common flanker-character pairing, and for these “unaware” subjects

the flanker effect on response latencies was actually stronger, rather than weaker, than for other

subjects (although the difference was not statistically significant.)

While these results would appear to suggest that unconscious implicit learning is probably

ubiquitous, the research designs represent only a rather narrow set of behavioral changes com-

pared to the typical real-world skill acquisition challenge that people face. For one thing, the

choice reaction-time tasks used in some studies required people to respond quickly and accu-

rately to the stimuli that were only partially predictable based on the covert relationship (in the

Willingham et al. [8] design, that was based on the identity of the previous stimulus; in the

Miller [10,11] studies, that was the identity of the flanker.) Exploiting the presence of these sti-

muli may therefore have involved tuning the perceptual system itself to lower the threshold for

identifying stimuli likely given the context. This seems quite different than choosing overt

actions taken based on anticipations of predictable future events. It is also possible that people

might have failed the tests of awareness given by these investigators because these tests

required them to produce information that was valid only on some proportion of trials (sub-

jects might not comment on a regularity they had consciously noticed at one point in learning

if they had later observed apparent disconfirmation of the regularity).

Moreover, the repetition of the stimulus series in the Willingham, Nissen, and Bullemer [8]

design also meant that a sequence of responses was repeated. Subjects may have formed higher

level "chunks" of motor programs that represented multiple finger responses. These may be

poorly verbalized precisely because they represent motor response patterns (just as we would

not expect people to be well able to verbalize what they do when they play ping-pong.)

Skill acquisition and awareness
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Empirical challenges to unconscious learning
Another set of studies from Lewicki and colleagues would appear to be more directly on point

for the question posed above—and relatively immune to the objections raised in the preceding

paragraph. Lewicki and colleagues published numerous studies that purported evidence for

learning hidden covariations (e.g., [12]; see also [13] for a review.). For example, in Hill et al.

[12], subjects were shown faces that covaried facial features and personality characteristics

(e.g., “fair professors always had ‘long’ faces. . .unfair professors always had ‘short faces’.”) in

the training phase. Next, subjects rated the “fairness” of novel faces in the testing phase. The

data showed that subjects tended to rate novel long faces to be fair and novel short faces to be

unfair (Hill et al. [12], Experiment 1). However, the subjects were unable to verbalize the hid-

den covariation in their exit survey and were therefore said to have acquired it unconsciously.

The evidence from Hill et al. suggest unconscious acquisition of hidden covariation can be

exploited for future events.

Unfortunately, however, there is reason to doubt the replicability of these studies. Hen-

drickx, de Houwer, Baeyens, Elen, and Van Avermaet [14] attempted 9 conceptual and 3 direct

replications and only one of these efforts confirmed the original finding. Hendrickx et al. [14]

suggested that their replication attempts were actually better controlled than the original stud-

ies (i.e., minimized correlated features) and had more sensitive awareness measures (e.g., a rec-

ognition questionnaire with elaboration instead of free response). Hendrickx et al.’s [14]

replication of the described study showed that only subjects who were able to describe the hid-

den covariation in the exit survey showed the predicted pattern of results (e.g., long faces rated

as fair, short faces rated as unfair). Subjects who were unable to describe the covariation did

not show this effect. Given the large number of non-replications, we would suggest that the

results of Lewicki and colleagues should not be assumed valid. Moreover, the Hill et al. [12]

designs also provided only very coarse measures of awareness; in the studies described here,

we provide a more fine grained temporal window on this process.

Current approach
As described above, most past studies of implicit learning of predictive regularities have

focused on very austere choice-reaction time designs in which subjects’ task is merely to make

one of a small number of button-press responses chosen in compliance with a fixed stimulus-

response mapping provided by the experimenter, or on tasks in which people make repeated

sequences of motor responses. We felt that by moving to a computer game environment we

could examine the effect of embedding hidden predictive relationships on a more robust and

compelling example of skill learning.

The very simple videogame used in both experiments described below was designed with

two specific aims in mind. One aim was to introduce a predictive regularity that would be

valid on 100% of trials, to reduce the likelihood that people would abandon whatever con-

scious access they might achieve due to encountering contrary cases. Second, rather than rely-

ing on subtle latency changes due to priming as in the studies described above, the game was

devised so that detection of a regularity would allow the participant to improve his or her score

by making active behavioral choices in anticipation of what would happen next in the game

environment.

Experiment 1
The simple computer game used in Experiment 1 worked as follows (Fig 1). Each play began

with a simple cartoonlike figure (a “demon”) moving upward from the bottom of the screen to

the location shown in Fig 1 (point A). At this point, the demon came to a rest, and remained
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there until the subject placed the computer mouse cursor over the demon and clicked on it.

The purpose of this requirement was to insure that subjects fixated briefly on the demon. Once

the mouse click was registered, the demon resumed its upward motion, moving behind a large

black V-shaped occluder (point B in Fig 1). After 3 seconds, it re-emerged, either on the left

side of the screen heading leftward (point C1 in Fig 1), or on the right side of the screen head-

ing rightward (point C1 in Fig 1). In this phase, it was now moving quite fast (217 pixels/sec),

and the player’s challenge was to click on the demon before it left the screen. If they could do

so, they would earn one point. Subjects performed up to 180 separate “plays”, each lasting

about 10.5 seconds. Between blocks of 30 plays, subjects were required to rest for 20 seconds

without opening any other browser windows (their scores on all blocks of play completed thus

far were displayed during this rest period.)

Pilot work in our lab looking in detail at behaviors emerging in this game showed that sub-

jects who were told the rule found it easy to reach near-perfect scoring levels on every trial,

and that they accomplished this (as expected) by moving the cursor in advance to the place

where the demon was to reappear, and laying in wait for it. Unlike the graded latency changes

seen in the implicit learning literature described above, this strategy did not produce a mere

subtle modulation of response latency, but rather a change in strategy resulting in a drastic

improvement in the rate of scoring (raising performance from not much better than 50% up to

nearly 100% in most cases).

In Experiment 1, subjects were randomly assigned to one of four groups. For the first group

(Control), whether the demon went left or right was random and not predictable based on any

property of the demon. Thus for the Control Group, reliably anticipating the location of

Fig 1. Example of the game screen.General appearance of the screen viewed by subjects in the “Demon
Hunting Game”. The “demon” is paused at the bottom of the screen (A), waiting for the subject to click on it.
When the subject does this, the demon resumes its upward trajectory which takes it behind the black V-
shaped occluder (B), whereupon it finally emerges moving more rapidly in the location labeled C1 or C2. At
this point, the subject must click on the demon before it leaves the screen in order to score. Neither the lines
nor the letters are present on the game screen. Unbeknownst to some groups of subjects, the height of the
demon’s horns predicts whether the demon reappears on the left or right side.

https://doi.org/10.1371/journal.pone.0179386.g001
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reappearance was impossible. For Groups 2–4, the height of the demon’s horns perfectly pre-

dicted where the demon would reappear: long horns meant that it would go left and short

horns meant that it would go right. The difference in horn height was a very salient 5:1. For

Group 2 (Predictable/No Instruction Group), the instructions did not mention anything about

the predictive relationship. The final two groups of subjects were told either simply that horn

height would be relevant (Dimension Instruction Group) or they were given a precise descrip-

tion of the exact rule (Full Instruction Group).

The experiment was divided into 6 blocks of 30 plays. All subjects were told that if they

were able to score a point on every single play within a given block of 30, their participation

would be complete at the end of the block, and they would be paid as soon as they answered a

few final questions (“exit interview”). In this exit interview, subjects in all groups (except the

Full Instruction group) who reached the performance threshold were asked if they had any

hunches enabling them to predict which way the demon would go. The opportunity to be

excused from the study after a perfect-scoring block served two purposes: it motivated the sub-

jects to do as well as they could, and it insured that exit interviews took place only a short time

after the moment at which the subject first demonstrated mastery of the game.

Method

Participants
Subjects were drawn from our laboratory’s on-line research subject pool, which provides a

diverse panel of subjects of various ages from a wide variety of countries. The subjects provided

written informed consent, and the research was approved by the University of California San

Diego Social and Behavioral Sciences Institutional Review Board. Subjects are pre-screened for

comprehension of English, careful attention to instructions and conscientious performance in

prior experiments. A total of 97 subjects completed the study in return for payment of $6.00.

Subjects were randomly assigned to one of the four between-subject conditions.

Stimuli
The experiment was created using Flash web programming IDE; the program ran on client

machines and intermittently sent data back to the lab webserver using the JSON protocol

(source code is available on request). Demons differed on three dimensions: eye diameter,

color of body, and horn height (see Fig 2 for an example). Eye diameter was a random number

from a uniform distribution in the range (5 pixels, 35 pixels). Demon bodies were randomly

assigned a color from the set {red, green}. For Conditions 2, 3, and 4, horn heights were 10 pix-

els for demons that went right and 50 pixels for demons that went left. For Condition 1, horn

height was chosen from the same set, but it did not predict anything about the demon’s behav-

ior. In all cases, horn width was a constant 20 pixels.

Fig 2. Example stimuli. Example of a demon used in the game.

https://doi.org/10.1371/journal.pone.0179386.g002
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Procedure
Subjects began by reading instructions. All subjects were given a multiple choice quiz on each

element of the instructions that they had read. Subjects who made any mistakes on this quiz

were required to reread the instructions and retake the quiz, a process that was repeated until

they responded perfectly. For subjects in Condition 1 and 2 (Control and Predictable/Unin-

structed groups) the instructions described the goal of the game but said nothing about the

location of reappearance of the demon. For subjects in Condition 3 (Dimension Instruction),

the instructions stated “One important thing you should know: the height of the demon’s

horns predicts something about the demon’s behavior.” For subjects in Condition 4 (Full

Instructions), the instructions stated “One important thing you should know: the height of the

demon’s horns predicts whether the demon will re-appear on the left or right. Long-horned

demons reappear on the left, and short-horned demons reappear on the right.” (Each of these

elements was included on the comprehension quiz given to this group of subjects.)

Subjects then played for 180 trials (unless they achieved a perfect score on any block, at

which point their play was terminated). Finally, all subjects (except those in the Full Instruc-

tion condition) saw a screen asking them to list up to three hunches they might have about

how they could predict which direction the demon would go. For each response, the subject

was asked to indicate a level of confidence (using increments of 10%.)

Results and discussion
To be included in the analysis, subjects had to finish the experiment and answer the survey

questions. Data from two subjects (one from the Full Instruction Condition, one from the

Dimension Instruction Condition) who completed the experiment were dropped from further

analysis because it turned out that they were missing data from more than four trials in one of

the blocks due to internet connectivity problems. A few other subjects had missing trials for

the same reason, but were missing fewer than four trials total. Those data were included in the

analysis. There was a significant main effect of group, F(4, 97) = 21.76, p< 0.001, and block, F
(5, 485) = 38.35, p< 0.001, as well as a significant interaction, F(20, 485) = 3.10, p< 0.001.

Control group performance
The Control group, for whom prediction was not possible, contained 21 subjects. In Fig 3, the

line labeled Control Group shows the average performance of this group of subjects (as well as

the standard error). The average performance shows no more than a very gradual rise in score

level. Thus was expected, because when a subject has failed to anticipate the position of the

demon (as would have been the case in at least 50% of plays), it is only occasionally possible to

get the mouse over to the appropriate side of the screen rapidly enough to click on it before it

disappears—and continued practice produces for most subjects only a limited improvement in

score levels achieved by this strategy. A small fraction of subjects do manage this, however,

and indeed, two of the 21 subjects (10%) in this condition reached the criterion of perfect per-

formance on a block (neither reported any hunches about predicting the demon’s trajectory).

The Supplementary Online Materials (S1 File) show the verbatim exit-interview responses of

the 17 subjects in this group who were willing to comment in response to the request to specify

any rule they thought might possibly have predicted the direction the demon would go in (of

course, the direction was actually chosen randomly.) The average confidence reported by the

17 subjects who provided hunches was 59%. Interestingly, there were many highly confident

reports of predictive rules that had no valid correspondence to the rules that generated the sti-

muli (e.g., 70% confidence in “The bigger ears came from the right, whereas the smaller ears

ones came from the left.” and 70% confidence in “the more i miss on one side is the more it
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goes to that side” and 90% confidence in “coming on to the end of each trial the demons

would go either to the left or right about 3 to 5 times straight”.)

Full instructions/dimension instructions group performance
As expected, subjects who were explicitly told the predictive rule or relevant dimension had

near perfect mastery by the end of the game. Recall that this game is not a 2-alternative forced

choice task, thus some variability can be introduced through motor errors or trials where

responses were withheld by the subject.

Predictable/No instructions group performance
The group whose performance is of greatest interest for examining behavior/awareness disso-

ciations is the Predictable/No Instruction group, containing 26 subjects. Out of these, 14

(54%) were able to perform perfectly on a block of trials, allowing them to terminate their par-

ticipation. The Supplementary Online Materials show the verbatim exit interview responses of

all subjects in the Predictable/No-Instruction group, classified (blind to other aspects of the

subject’s behavior) according to whether the response indicated complete and accurate knowl-

edge of the rule or not. Two subjects’ hunch texts were judged unclassifiable because they con-

tained partial bits of correct information combined with elements of misinformation, thus

were excluded from analysis.

In Fig 3, the line labeled No-Knowledge� shows the performance of the 11 subjects judged

to have shown no conscious knowledge of the rule. As can be seen, there is no indication that

Fig 3. Experiment 1 subject performance. Proportion of plays resulting in successful scores for Control,
Dimension Instruction, and Full Instruction Groups, as well as for two sub-groups of the Predictive/No-Instruction
groups (Knowledge* subjects who were able to verbally report rule, and No-Knowledge* subjects who could not
do so.) As described in text, for computing these averages, whenever subjects scored on 100% on a 30-trial
block, they were assigned 100% score for computing average performance in the subsequent blocks. No-
Knowledge* subjects scores are not superior to those of control subjects for whom there was no predictive
relationship available to be exploited.

https://doi.org/10.1371/journal.pone.0179386.g003
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they perform any better than subjects in the Control Group for whom there was no predictive

rule, F(1, 33) = 0.73, p = 0.40. If they learned anything about the predictive relationship present

in the game, they evidently made essentially no use of that learning. Of these 11, one achieved

perfect performance in a block, a rate (9%) very similar to the proportion of control subjects

achieving this level.

In the Predictable/No-Instructions group, 13 subjects did succeed in describing the rule. All

13 of these Knowledge� subjects (100%) attained perfect performance in one of the blocks of

trials. Their performance is shown with the line labeled Knowledge� in Fig 3. Note that for

purposes of this graph, whenever subjects scored on 100% of a 30-trial block, they were

assigned 100% score for all subsequent blocks—otherwise the rightmost points on graph

would reflect an increasingly truncated sample as subjects are peeled off due to having reached

perfect performance in an earlier block. (This decision seemed sensible because pilot experi-

mentation in which subjects were required to complete all 6 blocks regardless of performance

showed that after people once attained mastery in a block, they scored on close to 100% of tri-

als thereafter; we suspect that the few failures reflected inattention caused by the boredom of

performing a task that now lacked any challenge.)

Individual knowledge* subjects’ performance
To provide a more fine-grained picture of the Knowledge� subjects’ performance, Fig 4 dis-

plays the scores of all 13 individuals in this group block by block. Subjects are highly variable

in their Block 1 performance. The figure also shows what appears to be relatively steady prog-

ress over the course of the session by most of the subjects who ultimately attain perfect mas-

tery. The latter two statements are jointly confirmed by the strong negative correlation seen

between (a) scores on Block 1 and (b) the block number in which the subject first reaches per-

fect performance (r = -0.63, p = 0.02).

Fig 4. Individual subject performance for knowledge group. Proportion of plays on which the subject
scored as a function of block for subjects in the Knowledge* subset of the Predictable/No-Instruction group
(subjects able to verbally report the predictive rule.) Each line shows a different subject from the group. All
subjects in this group reached 100% performance in one of the blocks.

https://doi.org/10.1371/journal.pone.0179386.g004
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Trial of last error
To provide a more fine-grained look at what precedes the “perfect mastery”, we examined sub-

jects’ performance on 5 trials just prior to each individual’s trial of last error (TLE and TLE�;
see [15], for an early study focusing on this measure in the context of concept learning). The

TLE is specifically constrained to an individual’s last trial such that an incorrect response was

made. Hence, averaged across all subjects, the TLE has a mean accuracy of 0 with no variabil-

ity. Given that the TLE is defined as each individual’s last error in the experiment, all remain-

ing trials must have perfect accuracy. The first TLE line (solid) shows performance hovering

around 75%, followed (as must happen, given the definition of TLE) by a trial with zero accu-

racy (the last error) and then a performance of 100% on the remaining trials of the experiment.

What is striking in the TLE is the relatively flat performance curve over this immediate pre-

mastery period (see Fig 5), and the fact that the level of performance here (76%) is considerably

higher than that seen overall in either the Control or the No-Knowledge� groups. (Superfi-
cially, the flatness of this figure might appear to paint a rather different picture of the buildup

to insight than what is seen in Fig 3—but there is no conflict, because Fig 3 plots improvement

over a far longer time-scale.) The TLE would suggest learners who ultimately attain mastery

tend to reach that point by jumping up from a rather high plateau that already supports perfor-

mance that is much better than what subjects in the Control and No-Knowledge� conditions
generally ever attain.

However, after examining subjects’ cursor locations during the course of Experiment 2, we

came to think that our early termination criteria (a completed block of 100%) might make that

TLE potentially a bit misleading. Suppose a subject gained insight to the predictive feature rela-

tively early in a block. They could still make a motor error (e.g., not moving or clicking the

mouse fast enough to score the point), and indeed they would have rather little incentive to

Fig 5. Experiment 1 TLE and TLE performance. Performance for subjects in the Knowledge* subset of the
Predictable/No-Instruction group for 24 trials prior to the subject’s Trial of Last Error (TLE), averaging over pairs
of adjacent plays. TLE(-5:-1) mean: 76%; TLE*(-5:-1) mean: 44%.

https://doi.org/10.1371/journal.pone.0179386.g005
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score perfectly on the remaining trials within that block (since the reward of leaving early was

available only for a perfect score on an entire block). We suspect this is likely the case given the

non-perfect scoring in the Full Instructions group.

When subjects made a motor error after attaining insight, the apparent TLE would be

shifted relative to the “true TLE”. To deal with this subtle measurement pitfall, we computed

another measure of the trial of last error, which we call TLE� (dashed). This is the last error
that precedes five successive errorless trials (0.031 probability of occurrence by chance). The

results of TLE� as rather convincing, in our opinion, in showing that the final mastery was

accomplished de novo by jumping from a state of complete ignorance (44%) of where the

demon will next appear.

Experiment 2
To further investigate the surprising result where unawareness of the predictable feature led to

performance that was no better than chance and final mastery was potentially de novo, we ran

a higher powered version of the first experiment, this time specifically comparing Condition 1

(control) and Condition 2 (Predictive/No Instruction). In addition, we changed a few parame-

ters to increase the difficulty of the game.

Method

Participants
Two hundred undergraduates from the same subject pool participated in this experiment for

course credit. All were naïve to the purpose of the experiment.

Stimuli
Stimuli were created using the same process as Experiment 1 with the following exceptions:

Eye diameter determined direction of the demon {15px: Left, 30px: Right}. For the control

condition, the eye diameter was randomly chosen from the discrete set {15px, 30px}. Eye color

was randomly selected from the color set {yellow, blue} and assigned to 1 of 5 shades of the

selected color. Horn height and width were drawn independently from a uniform distribution

in the range [15 pixels, 60 pixels]. And lastly, the demon bodies were randomly assigned a

color from the set {red, grey}.

Procedure
The procedure was identical to Experiment 1 with the exception that Experiment 2 only

included Condition 1 (Control) and Condition 2 (Predictive/No Instruction). In addition,

the timing of a single trial was modified as follows: The V-shaped occluder appeared on

screen alone for 2 seconds. Then the demon appeared at the bottom on the screen and

paused for 3 seconds. After which, the demon would disappear behind the occluder for 2 sec-

onds and reappear either or the left or right side of the occluder moving off screen with the

demon being visible and clickable for 0.5 second. The trial concluded with a 2-second blank

screen ISI.

Results and discussion
A research assistant scored the hunches while being blind to the conditions. The first scoring

criterion examined was that the subjects had to explicitly mention the predictive feature (i.e.,

the eyes). We also examined a stricter criterion where the statement had to include the idea of

“big eyes to the right and small eyes to the left”. No reliable differences between the two scoring

Skill acquisition and awareness

PLOSONE | https://doi.org/10.1371/journal.pone.0179386 June 20, 2017

26



criteria were observed, so we used the first scoring criterion for the data described here. Of the

100 subjects in the predictive/no-instruction condition, 40 subjects were counted as aware

(Knowledge�) while 60 subjects were scored as No-Knowledge� (25 reported an incorrect

hunch and 35 reported no hunch).

Block performance
Fig 6 shows the same pattern of results. There was a significant main effect of group, F(2, 197)
= 186.7, p< 0.001, and block, F(5, 985) = 42.64, p< 0.001, as well as a significant interaction,

F(10, 985) = 23.61, p< 0.001. In line with Experiment 1, subjects who successfully described

the predictive rule were able to reach a high level of performance while subjects that were

unable to verbalize the predictive rule did not perform better than the control subjects, F(1,
158) = 0.07, p = 0.79. Subjects in the Knowledge� group did have more variability in perfor-

mance (see Fig 7) in which some subjects were unable to complete at least one block at 100%.

We would attribute this to the higher difficulty level of the game (i.e., faster demon exit speed).

Trial of last error
The results from the TLE and TLE� analyses (see Fig 8) as described in Experiment 1 Results

were strikingly similar to what was seen in Experiment 1. Performance prior to the TLE (solid)

was relatively high (72%) given the stringent early termination criteria. However, as discussed

above, the results of TLE� (dashed) indicate that the final mastery was again accomplished de
novo by jumping from a state of complete ignorance (40%) of where the demon will next

appear.

Fig 6. Experiment 2 subject performance. Proportion of plays resulting in successful scores for Control and
Predictive/No-Instruction groups (Knowledge* subjects who were able to verbally report rule, and No-
Knowledge* subjects who could not do so.) Averages were computed in the samemanner as with Experiment 1.
No-Knowledge* subjects scores were not superior to those of control subjects for whom there was no predictive
relationship available to be exploited.

https://doi.org/10.1371/journal.pone.0179386.g006

Skill acquisition and awareness

PLOSONE | https://doi.org/10.1371/journal.pone.0179386 June 20, 2017

27



Fig 7. Individual subject performance for knowledge group. Proportion of plays on which the subject
scored as a function of block for subjects in the Knowledge* subset of the Predictable/No-Instruction group
(subjects able to verbally report the predictive rule.) Each line shows a different subject from the group. The
majority of subjects in this group reached 100% performance in one of the blocks.

https://doi.org/10.1371/journal.pone.0179386.g007

Fig 8. Experiment 2 TLE and TLE performance. Performance for subjects in the Knowledge* subset of the
Predictable/No-Instruction group for 12 trials prior to the subject’s TLE, averaging over pairs of adjacent play.
TLE(-5:-1) mean: 72%; TLE*(-5:-1) mean: 40%.

https://doi.org/10.1371/journal.pone.0179386.g008
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Cursor placement
To uncover the relationship between awareness and exploitation of the predictive feature in

more fine grain, we also looked at where subjects placed the cursor just prior to the demon’s

exit of the occluder in each subject’s last two blocks of plays. This gives us a more sensitive

measure of subjects’ predictions prior to making a committed response (i.e., the mouse click).

Three possible ways subjects might play this game are to: (1) intentionally choose an exit based

on a hunch, (2) randomly choose an exit, or (3) place the cursor in the middle to minimize the

distance between the exits and the cursor. If subjects learned the predictive feature, either

explicitly or implicitly, one would expect that they are more likely to use this to their advantage

by placing the cursor at the correct tunnel exit before the demon exits the tunnel. Given the

two distinctive strategies (side- and middle- choosing), the game screen was sectioned into

equal thirds (Correct Side, Opposite Side, Middle) by pixels along the x-axis. For example, if a

demon came out of the left tunnel, a mouse cursor on the left third of the screen would be

labeled “Correct”, a mouse cursor on the right third would be labeled “Opposite”, and a mouse

cursor in the middle third would be labeled “Middle”. Fig 9 shows the proportion of cursor

location by Group and cursor location for the last two blocks of game play. Across the 3

groups, cursor location was statistically significant, F(2, 388) = 58.66, p< 0.001.

For the Control group, there was a significant difference in where the mouse cursor was

located, F(2, 198) = 13.98, p< 0.001. However, a post-hoc bonferroni-corrected pairwise t-test

revealed subjects did not exhibit any correctly anticipate the side where the demon would

Fig 9. Cursor locations. Proportion of cursor locations just prior to the demon exit for the last two blocks of the game. The screen
was divided into thirds: Correct (i.e., mouse cursor was on the side that the demon will exit), Opposite (i.e., the mouse cursor was on
the opposite side that the demon will exit), and Middle (i.e., the mouse cursor was in the middle 1/3 region).

https://doi.org/10.1371/journal.pone.0179386.g009
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appear (Correct vs. Opposite, p = 1). This was of no surprise and was to be expected given no

predictive feature to be exploited.

For the Knowledge� group, there was a significant difference in where the mouse cursor

was located, F(2, 78) = 596.2, p< 0.001. A post-hoc bonferroni-corrected pairwise t-test

revealed significant differences for Correct vs. Opposite (p< 0.001) and Correct vs. Middle

(p< 0.001) and no significant difference for Opposite vs. Middle (p = 0.21). In other words,

Knowledge� subjects were able to exploit the predictive feature (i.e., small eyes and big eyes) by

placing the cursor in the correct location (i.e., left and right, respectively) in anticipation of the

exiting demon. In addition, we examined the cursor locations for the trials preceding TLE�.
We would predict that if conscious insight did occur at the TLE�, the cursor locations for the
preceding TLE� trials would not differ. This post-hoc analysis revealed no difference in cursor

locations, F(2, 76) = 1.86, p = 0.16, suggesting there was no insight prior to the TLE�.
Lastly, subjects in the No-Knowledge� group did not seem to anticipate where the demons

would exit, F(2, 112) = 0.67, p = 0.51. While these data (e.g., Correct vs. Middle, p = 1; Opposite

vs. Middle, p = 1) show a different pattern compared to the Control group (e.g., Correct vs.

Middle, p = 0.001; Opposite vs. Middle, p = 0.001), we suspect individual subjects used a com-

bination of the side-guessing and neutral-region strategies to different degrees.

General discussion
The studies reported here examined what happens when subjects play a simple video game

that embodies a discrete and very useful predictive relationship (the height of a demon’s

horns, Exp. 1, or diameter of the demon’s eyes, Exp. 2, predicts which way the demon will

“choose” to go, information the player can exploit by laying in wait for the demon). Of most

interest was what happened for a group of subjects who were not given any hints about the

existence of the predictive regularity that they were exposed to (the Predictable/No-Instruction

Condition). Based on the final exit-interview reports, this group of subjects could be divided

surprisingly cleanly into two different subgroups: those who demonstrated clear (and verbaliz-

able) conscious access to the rule (the Knowledge� subgroup), and those who did not (No-
Knowledge� subgroup), with only a few subjects resisting easy classification.

Whereas past studies of implicit learning have generally found only a very weak or nonexis-

tent relationship between conscious insight and behavioral indices of implicit learning, here

the scores attained by the two groups very closely tracked their ability to verbally articulate the

hidden rule. Indeed, for those showing no conscious access, there was no evidence that they

acquired any ability whatsoever to make use of the predictive relationship in their game play.

Their scores remained comparatively to the performance level of control subjects playing a

random version of the game that did not allow prediction of where the demons would reap-

pear. By contrast, the Knowledge� group, who were able to articulate the rule, showed dramati-

cally better overall scores, almost all reaching the criterion of perfect performance within a

whole block. In addition, Knowledge� subjects appear to accomplish this de novo and not

from gradual learning (i.e., an abrupt jump in performance as well as a change in cursor place-

ment behavior in pre-TLE� and post-TLE� trials).
While one might argue that accuracy is not sensitive enough show implicit learning and

measurements such as reaction time must be used, our examination of the cursor data in

Experiment 2 seem to shed some light on the No-Knowledge� subjects. Had there been any

implicit learning, we would expect there to be at least a bias in where cursors were placed

prior to any overt decision response of a mouse-click. Yet the pattern of nearly all No-

Knowledge� subjects’ cursor locations were in all three regions regardless of a demon’s exit

direction.
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Limitations and connections to previous findings
As noted above, the tight linkage between awareness and implicit usage of the regularity in the

present study appears to conflict with the conclusion of several previous lines of research on

implicit learning and awareness (e.g., [4,10,16]). Why is this? One possible reason is that the

learning revealed in the earlier studies is encapsulated within the motor or perceptual systems.

By contrast, in the game used in the current studies, useful learning based on the regularity

would seem to require learning to base an action on the crucial predictor feature, a strategy

change not just a modulation of response latency. Evidence for such unconscious learning is

strikingly absent. One possibility, as noted earlier, is that the fact that the regularities embed-

ded in Willingham et al. [4] and Miller [10] studies were only partially valid suppressed con-

scious utilization of these effects. Each of the differences noted suggests potentially testable

hypotheses for follow-up research.

While the results challenge any assumption that implicit learning in general is unconscious,

powerful, and “cognitively impenetrable”, it is important not to overstate the conclusions. It is

possible that with more training, non-conscious learning might have developed in this situa-

tion to take advantage of the predictive regularity embedded in our game. Perhaps this had

even begun operating far too slowly to have produced any results that could be detected within

the time limits of this study. Thus, it is possible that, like the proverbial tortoise, such a putative

non-conscious learning process might eventually have caught up and enabled the player to

exploit the predictive relationship without any conscious awareness of the relationship. This,

too, is a testable interpretation.

A second limitation is that the results do not clearly indicate whether the learning process

revealed here depends upon active and conscious hypothesis-testing, e.g., consciously and

explicitly checking the relationship between each feature of the demon and the demon’s behav-

ior. It could be that the link to awareness exists because the learning arises from such a con-

scious reasoning process. Alternatively, as noted above, it could be that a slow buildup of

information in a non-conscious learning system results in conscious awareness once a suffi-

ciently high level of predictive success has been achieved. This kind of interpretation was sug-

gested some years ago by Boakes in discussing the tight linkage between awareness and

Pavlovian conditioning (see [17,18]). As mentioned above, the detailed time-course of learning

here arguably fits somewhat better with the latter interpretation than it does with the conscious

hypothesis-testing interpretation.

One intriguing aspect of the present results is the fact that subjects in the control condition

often reported apparently illusory rules for the behavior of the demon (see Supplementary

Online Materials) and in some cases, they voiced these with strong confidence. Future research

might shed light on the interplay of conscious and non-conscious learning processes by exam-

ining in detail the stimulus displays seen by subjects who claimed to have discovered rules that

are (at least on expectation) false. One question of interest is whether these reports reflect

unusual local statistics of what these particular subjects actually experienced, or instead are

completely fanciful.

A third limitation of the current study is that (quite by design) it used a predictive relation-

ship that is potentially easy to verbalize. Naturally, predictive relationships that are not so easily

verbalized (e.g., acquiring dexterity with motor skills like tennis playing and driving for which

most people probably have only a poor descriptive vocabulary) may not show such a close con-

nection to awareness (cf. [19]).

These limitations notwithstanding, the results of the present work lead to several conclu-

sions. One is that it is possible to embed predictive regularities in computer games and to track

their behavioral exploitation (comparing it to conscious reports), thus offering new ways to
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examine implicit learning using behavioral measures more compelling than modulation of

reaction time. Second, given a highly reliable and useful predictive regularity in a game, the

behavioral exploitation of this regularity can sometimes emerge with a far stronger linkage to

conscious awareness than has generally been noted in the implicit learning field.
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Abstract 

In a two-experiment study, we used a simple classification game to examine two 

aspects of perceptual category learning: 1) the classification of novel exemplars as a 

function of varying the relative number of exemplars and prototypes presented during 

training and 2) the linkage between awareness of category relevant features and individual 

subject performance. In the present study, participants learned to classify computer-

generated “pumpkins” into two categories based on two features (size and hue). The ratio 

of exemplars to prototypes during training was varied (1:0, 0.75:0.25, 0.5:0.5, or 0.25:0.75) 

with a fixed 400 trial training. On the final test, participants were asked to categorize new 

exemplars generated from the same categories. Participants were then asked what (if any) 

strategies they used to classify the pumpkins. When the final test was given immediately 

after training, the groups that were trained with some prototypes performed higher than the 

group trained with only exemplars. There was, however, no group difference when the final 

test was given a week later. A strong linkage was found between individual subject’s 

reported strategies and their individual category boundaries. Subjects that were unaware of 

either one or both of the relevant features showed rule-based classification behavior instead 

of the correct information integration classification.   

Introduction 

Our visual systems have evolved to be very good pattern detectors, which in turn 

enable us to distinguish similarities and differences in our visual world. More importantly, 

we can distinguish group membership very quickly and without much cognitive effort. We 

are able to do this with not only objects we have seen before but also for novel objects. 

However, how are we able to identify something we have never seen before? The ability 
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to identify and categorize objects in our visual world has had a long history of research 

with different views and theories, much of which have been thoroughly reviewed (e.g., 

Alfonso-Reese, 1996; Anderson, 1991; Homa, Rhoads, Chambliss, 1979; Posner & Keele, 

1968; Maddox & Asbhy 1993; Nosofsky, Kruschke, & McKinley, 1992). For example, 

three prominent theories: Prototype theory (e.g., Homa et al. 1979; Posner & Keele, 1968; 

Smith & Minda, 1998), Exemplar theory (e.g., Kruschke, 1992; Nosofsky, 1988; Nosofsky, 

Kruschke, & McKinley, 1992), and Decision bound theory (e.g., Ashby & Maddox, 1993; 

Maddox & Ashby, 1993), have been used to describe our ability to classify visual objects. 

Many of these classic studies often have subjects learn categories that range from simple 

perceptual stimuli such as Gabor patches (e.g., Maddox, Ashby, & Bohil, 2003) and dot 

patterns (Posner & Keele, 1968) to more complex stimuli (e.g., Rabi, Miles, & Minda, 

2015), usually to a degree of accuracy during training. 

Exemplars vs. Prototypes 

Given the many different category learning experimental manipulations (e.g., 

number of categories, linear vs non-linear boundaries, feedback vs. no-feedback, feedback 

timing, etc.) that have been used to examine the prototype and exemplary theories, we were 

surprised there has not been a study that manipulated prototype and exemplar exposure 

during training. This contrasts the categorization accuracy during training criteria that has 

been used in category learning. If the amount of exposure to category members plays a 

critical role in learning category structures, varying degrees of category exposure should 

affect how category boundaries are constructed. Thus, when creating a new mental 

category representation and decision boundaries, does having more exposure to exemplars 

or prototype instances promote better categorical classification of novel exemplars? 
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Although there are competing theories of how category members are identified, an 

individual’s category representation is likely to consist of a mixture of exemplars and 

prototypes. Surprisingly, after carefully looking through the literature, we have found that 

previous paradigms do not directly manipulate the amount of exposure to exemplars and 

prototypes during training which a performance training criteria. We propose a more direct 

manipulation of category member exposure during training that will directly affect an 

individual’s formulation of their mental category representations. It goes without saying 

that manipulating exemplar vs. prototype exposure should only produce a shift in the 

category representation. For example, individuals who are only exposed to exemplars 

during training are almost certainly abstracting categorical prototypes. However, it is likely 

that abstracting prototypes from exemplars introduces noise. Whereas those who have 

direct category prototype exposure will have a better categorical representation of category 

prototypes.  

If people use prototypes to identify category members, then those who were 

exposed to only exemplars (with noisy abstracted prototypes) ought to perform worse on 

category identification compared to those who had direct prototype exposure.  

Individual Differences 

 Recent findings in subject’s explicit awareness and strategies used in classification 

have shown direct linkages between behavior (as measured by accuracy) and subjects’ 

knowledge of category relevant attributes (e.g., Tran & Pashler, 2017) as well as defaulting 

to more parsimonious (i.e., simple over complex) strategies (e.g., Tran, Vul, & Pashler,  

2017). Using our paradigm (described below), we also address the question: Are people 
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consciously accessing exemplars/prototypes (or features of the category) during the 

classification of a new exemplar?  

Current Approach 

We had subjects play a game where they had to decide which family (A or B) 

different “pumpkin monsters” belongs. These pumpkins were computer generated stimuli 

in which the determinate categorical features were two dimensions that varied on a 

continuous scale. The conjunction of the two features (size and hue) were required for 

classification (i.e., diagonal decision boundary). The category prototypes were defined as 

the midpoint between the category boundary and the most extreme exemplars (i.e., the 

incenters of the two triangular category spaces). 

During training, we devised four training schedules that manipulated the ratio of 

exemplars to prototypes (i.e., 1:0, 0.75:0.25, 0.50:0.50, 0.25:0.75) presented to subjects. 

By doing this between-subjects, we were able to directly control the exposure to exemplars 

and prototypes for each subject. For example, a subject in the 1:0 condition was exposed 

to only exemplars and no prototypes during training. On the other hand, a subject in the 

0.50:0.50 condition would be exposed to exemplars for 50% of trials and see re-

presentations of the two category prototypes for the other 50% of trials (all in a randomized 

order).  

After training, subjects were given a final test with novel exemplars from the two 

categories either immediately (Exp. 1) or after a 1-week delay (Exp. 2). If subjects used 

exemplar representations of a category to classify novel objects, the conditions that have a 

higher exemplar to prototype ratio ought to have higher performances. On the other hand, 
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if subjects used prototype representations of a category, we would expect the training 

condition with more prototype exposure to have a higher final test performance.  

We also examined the classification of the two categories at the subject level. There 

has been greater interest in recent years to examine individual subject differences 

(Speelman & McGann, 2013) that may not be revealed by standard statistical practices 

(e.g., aggregating data across subjects). Given our previous work on awareness of relevant 

attributes (Tran & Pashler, 2017), we suspect that subject’s explicit knowledge of the 

relevant category dimensions might play a role in classification boundaries and 

performance. 

Experiment 1  

Subjects were trained to classify stimuli into two categories in one of four 

conditions. The final test of novel exemplars was administered immediately after training. 

Method 

Participants. One hundred and thirty six undergraduates at the University of 

California, San Diego participated in this experiment for course credit. All were naïve to 

the purpose of the experiment. The subjects provided written informed consent, and the 

research was approved by the University of California San Diego Social and Behavioral 

Sciences Institutional Review Board.  

Stimuli. The pumpkins differed on five features: square size (width/length in 

pixels), color of the body, left-eye radius, right-eye radius, and mouth width (see Figure 

3.1 for examples). The width/height values were drawn from a uniform distribution of 

(200px, 400px). The color of the body was drawn from a uniform distribution hue with a 

range (0, 1/6) which is analogous to the range (0, 255) for green, 255 for red, and 0 for blue 
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in RGB space. The radius of each eye was independently sampled from a Gaussian (mu = 

25px, sigma = 7px). The mouth width was computed as W = (left-eye radius + right-eye 

radius) * (5 / 2) with a static height of 20px. The remaining facial features were static across 

all pumpkins: nose (each point was 20px from the center) and stem (W = 10px, H = 15px); 

these features were non-predictive of category assignment. 

Category Assignment. The two categories (A and B) were determined by the size 

and hue of the pumpkins (i.e., a diagonal decision boundary). Due to size and hue being 

different units, proportions were used for category assignment. The prototype for category 

A was defined as the 75th percentile for size (i.e., 350px) and the 25th percentile for hue 

(i.e., 1/24) which is the point equidistant between the most extreme exemplar and the 

decision boundary. The prototype for category B was defined as the 25th percentile for size 

(i.e., 250px) and the 75th percentile for hue (i.e., 1/8). The three non-category relevant 

features varied for each prototype instance used in the experiment. Exemplars with size > 

hue were assigned to Category A and exemplars with size < hue were assigned to Category 

B. Figure 3.1 shows the category space for example stimuli for the prototypes and selected 

exemplars (exemplars on the decision boundary are for illustration purposes only).  

Design. A four-level single-factor between-subjects design was used. Each 

condition consisted of two phases: training and testing. An exit survey was also given at 

the end of the testing phase. The training phase for each condition consisted of a different 

exemplar-to-prototype ratio. Condition 1 had a 1:0 ratio where subjects only saw exemplars 

for both categories during training and no prototypes. Condition 2 had a 0.75:25 ratio where 

75% of the trials were of exemplars and 25% of trials were of prototypes. Condition 3 had 

a 0.50:0.50 ratio and Condition 4 had a 0.25:0.75 ratio. See Table 3.1 for the number of 
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trials broken down by category type and ratio. The testing phase consisted of 96 novel 

exemplars (48 from Category A and 48 from Category B) as well as 96 trained items. The 

96 trained items consisted of 24 exemplars from Category A and B (48 in total) and 24 

prototype instances from Category A and B (48 in total). 

Procedure. Subjects were tested individually in sound attenuated rooms for the 

computerized study. The entire session was completed in 1 hour.  

Training Phase. All subjects in the randomly assigned four conditions read the 

same instructions: 

In this experiment, you will be classifying pumpkins into 2 different families: 

the A-pumpkins and the B-pumpkins. You will have to figure out which 

family each pumpkin belongs to on your own. It may seem hard at first, but 

please try your best! You will get periodic rest periods during training. After 

training, there will be a final test on classifying the pumpkins into their 

respective families. Some of the pumpkins may look similar to each other, 

but please try your best to classify them into the correct families. 

Use the C-key to for the A-pumpkin family. 

Use the M-key for the B-pumpkin family. 

Please keep your index fingers on their respective keys for the duration of 

the experiment. Let your experimenter know if you have any questions at 

this time. 

Once subjects finished reading the instructions and had no questions, the experimenter 

began the training phase of the experiment by hitting the “Enter” key. Each trial showed a 

single pumpkin in the middle of the screen on a grey background with the question “Which 



43 
 

 

family does this pumpkin monster belong to?” above the pumpkin. Subject responses were 

self-paced and feedback was given after a response was made. If subjects made a correct 

response, text feedback in green and a score counter displayed below the pumpkin (see 

Figure 3.2) and a correct tone would play. If subjects made an incorrect response, text 

feedback in red and a score counter displayed below the pumpkin and an incorrect tone 

would play. Feedback for correct responses displayed for 1-second and feedback for 

incorrect responses displayed for 2-seconds. The training phase consisted of four blocks 

with 100 trials each (a 20-second rest period was given after the first three blocks).  

Testing Phase. Immediately following the last trial the fourth block, subjects were 

presented instructions for the testing phase of the experiment. Subjects completed testing 

phase without corrective feedback. The testing phase was 192 trials in length and consisted 

of 96 new exemplars generated from the two learned categories (i.e., 48 each) as well as 

48 old exemplars (i.e., 24 each) and 48 old prototypes (i.e., 24 each) that were presented 

during training (condition 1:0 had 96 old exemplars given that no prototypes were seen 

during training). Old trained items were randomly intermixed with the new exemplars. 

Trials were self-paced and each trial began immediately after each response. A final score 

was presented on the screen after the last trial.  

Exit Survey. After the completion of both training and testing phases, subjects 

were given an exit survey asking if they used any strategy in classifying the pumpkins into 

the two categories. Subsequently, all subjects were tested for color deficiency using the 

HRR pseudoisochromatic plates (4th ed.).  
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Figure 3.1. Stimuli category space. Individual pumpkins shown in this figure are examples 

of stimuli used in both Experiments 1 and 2 with both dimensions being continuous. Size 

ranges from 200 to 400 pixels for the width and height. Hue ranges from 0 to 1/6th to obtain 

a color spectrum between red and yellow. Values from the two dimensions were drawn 

uniformly from their respective ranges. Pumpkins were labeled Category A if the relative 

proportion for size was greater than the relative proportion for hue; for example, the 

prototype for Category A (top left boxed pumpkin) has a relative proportion 0.75 for size 

and a relative proportion of 0.25 for hue. Pumpkins were labeled Category B if the relative 

proportion for size was less than the relative proportion for hue. The lower right boxed 

pumpkin denotes the prototype for Category B (0.25 for size and 0.75 for hue). Pumpkins 

shown on the decision line are visual examples, these pumpkins were not used during 

training or testing.  
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Table 3.1. Trial breakdown for each condition in the training phase. There were a total of 

400 trials during the training phase that consisted of different ratios of exemplars to 

prototypes. Subjects in Condition 1 (1:0) were only presented with exemplars during 

training; therefore, all 400 trials were exemplars split among the two categories (i.e., 200 

trials of each category). Subjects in Condition 2 (0.75:0.25) were presented with 75% 

exemplars and 25% prototypes (i.e., 300 exemplar and 100 prototype trials). Subjects in 

Condition 3 (0.5:0.5) were presented with 50% exemplar and 50% prototypes (i.e., 200 

exemplar and 200 prototype trials). Subjects in Condition 4 (0.25:0.75) were presented 

with 25% exemplar and 75% prototypes (i.e., 100 exemplar and 300 prototype trials). Note: 

the parameters for the category defining features on both prototypes (size and hue) were 

always the same. The 3 conditions with multiple prototype trials were representations of 

those prototypes (along with the other randomly varying features). 

 

 

Condition Training Exemplars Training Prototypes 

1 (1:0) 
A: 200 

B: 200 
0 

2 (0.75:0.25) 
A: 150 

B: 150 

A: 50 

B: 50 

3 (0.50:0.50) 
A: 100 

B: 100 

A: 100 

B: 100 

4 (0.25:0.75) 
A: 50 

B: 50 

A: 150 

B: 150 
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Figure 3.2. A screenshot of the experiment during feedback after the subject successfully 

classified the pumpkin as Category A (training phase). 

 

Results and Discussion 

To be included in the analysis, subjects had to complete both phases of the 

experiment and the exit survey as well as pass the color blindness test. Ten subjects failed 

to complete the experiment and six subjects did not pass the color blindness test. The data 

from the remaining 120 subjects (30 subjects in each condition) were used for the analyses.   

Training Performance. Figure 3.3 shows the learning performance for each block 

across the four conditions. There was a main effect of condition, F(3, 464) = 116.77, p < 

0.001, and block, F(3, 464) = 22.16, p < 0.001, but no interaction, F(9, 46) = 0.85, p = 

0.57.  
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Figure 3.3. Training performance for Experiment 1. Each block consisted of 100 trials. 

Subject performance was averaged by condition.  

 

Testing Performance. We examined the final test in two parts: recognition of 

previously presented exemplars/prototypes (Figure 3.4) and classification of novel 

exemplars. This separation allows us to critically examine how well subjects can classify 

new members of each category.  

For the testing performance on novel exemplars, a one-way ANOVA revealed a 

significant difference among the means (1:0 M = 0.719, SD = 0.122, SE =  0.022; 

0.75:0.25 M = 0.789, SD = 0.091, SE = 0.017; 0.50:0.50 M = 0.764, SD = 0.085, SE = 

0.015; 0.25:0.75 M = 0.769, SD = 0.075, SE = 0.014) across the four conditions, F(3, 116) 

= 2.921, p = 0.037 (see Figure 3.5). All conditions had performance statistically above 50% 

chance (ps < 0.001). The three conditions that included prototypes during training did not 

differ on the final test: 0.75:0.25 vs. 0.50:0.50, t(58) = 1.12, p = 0.269; 0.75:0:25 vs. 
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0:25:0.75, t(58) = 0.918, p = 0.362; 0.50:0.50 vs 0.25:0.75, t(58) = 0.268, p = 0.789. This 

suggests that while any combination of exemplars to prototype ratio promotes learning of 

the categories on an immediate test with new category exemplars, subjects exposed to at 

least some prototypes during training had better category representations (as inferred by 

their final test performance). 

 

 

Figure 3.4. Experiment 1 boxplots for final test performance on previously seen exemplars 

and prototypes. Note: No prototypes were seen in Condition 1. 
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Figure 3.5. Experiment 1 boxplots for final test performance on New Exemplars by 

Condition.  

 

In addition to group means, we also examined individual subject performance. 

Instead of looking at group means or even individual means, we visualized subjects’ data 

by plotting their category space heat maps for classification responses on the final test for 

novel exemplars. Figure 3.6 shows an example of 24 subjects’ (6 from each condition) 

individual category space heat maps. Each of the tiny color squares represent proportion of 

trials classified as Category A (i.e., more A responses in the binned area are more red and 

less A responses in the binned area are more purple; less A responses effectively means 

more B responses were made). Each individual’s heat map maps onto the category space 

depicted in Figure 3.1 where the X-axis is the hue and the Y-axis is the size. The ideal 

observer with perfect classification ability would have a diagonal decision boundary 

(Figure 3.7, left) where the upper left region would be all red and lower right region would 

be all purple. Clearly not all subjects show this pattern of results. In fact, there are numerous 
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subjects with vertical- and horizontal-like boundaries, which suggests these subjects are 

using only one of the two critical parameters. The vertical-like boundaries (more red on 

left and more purple on right) are likely due to subjects using only hue (Figure 3.7, middle) 

and horizontal-like boundaries (more red on top and more purple on bottom) are likely due 

to subjects using only size to classify the exemplars on the final test. 

 
Figure 3.6. Item level data from 24 selected subjects. Each box depicts an individual 

subject's classification behavior. The color of the tiny squares within each box represents 

the proportion of trials that the subject classified as Category A, as a function of hue 

(horizontal axis) and size (vertical axis).  

  

 
 

Figure 3.7. Left: perfect categorization. Middle: categorization based on hue. Right: 

Categorization based on size.  
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While our visual analysis clearly showed our subjects engaging in different 

classification strategies, a more in depth analysis is required to determine whether subjects 

actually learned the true classification boundary and if their classification was through an 

explicit strategy.  

A research assistant, blind to the conditions, scored each subject’s exit survey for 

their reported classification strategy. For example, if a subject stated on the exit survey that 

they used color (and irrelevant features such as eye size or mouth width) to determine the 

category of the pumpkins, that subject was labeled as a Color Only strategy user. Subjects 

that mention size (and irrelevant features) were labeled as Size Only strategy users. Those 

that state color and size (and irrelevant features) in their exit survey were labeled as Color 

AND Size users. Finally, subjects that did not mention either color or size were labeled as 

Other (this consisted of subjects that provided no text on the exit survey or stated irrelevant 

features). A logistic regression was used on each subject’s final test classification. The 

slope of the best fit from the model was extracted for each subject and converted into an 

angle using atan(slope) * 180/pi for a possible range of angles [0, 180]. For example, the 

ideal observer with a perfect decision boundary would have a fitted regression with a slope 

equal to 1. The corresponding angle would 45 degrees. Therefore, subjects that used the 

correct integration of both color and size should have angles around 45. Subjects that used 

only color would have a vertical best fit line which translate to angles near 90 degrees and 

subjects that used only size would have a horizontal best fit line which translates to angles 

near 0 degrees. Lastly, using neither relevant features should result in a uniform distribution 

in angle space. The distributions for the four reported strategies are plotted in Figure 3.8. 

There are clearly four distinct distributions such that subjects’ reported strategies map on 
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directly to their classification behaviors. To test the equality of the probability distributions, 

the Two-sample Kolmogorov-Smirnov test was used. All three distributions were 

statistically different from each other, Color & Size vs Size Only: D = 0.73, p < 0.001, 

Color & Size vs Color Only: D = 0.68, p < 0.001, Color Only vs Size Only: D = 0.84, p < 

0.001. The subjects that used Color Only, Size Only, and Other features appear to show no 

learning of the information-integration decision boundary. 

While the ANOVA on group level means (as shown above) would lead us to believe 

that there is clear learning of the category boundary and ability to classify new exemplars 

in every condition (i.e., all above chance), examining individual subject data depicts a 

different story. Only a subset of subjects (across all conditions) learned the relevant 

features to classify the stimuli (the integration of color and size). More importantly, 

subjects’ responses reflected that of their behavioral responses suggesting clear explicit 

strategy in classification. In addition, many subjects used the simple rule-based strategies 

(i.e., Color Only or Size Only) rather than the information-integration strategy (i.e., Color 

and Size) consistently through the experiment (see Figure 3.9). 

 



53 
 

 

 
Figure 3.8. Distribution of classification angles by the four possible exit strategy (as 

determined by an RA blind to the conditions) for Experiment 1. Possible angles range from 

0 to 180. Subjects that stated they used color and size to classify the novel exemplars have 

a distribution centered near the ideal 45 degrees. Subjects that stated they used color but 

not size have a distribution centered near the ideal 90 degrees. Subjects that stated they 

used size only but not color have a distribution centered near the ideal 0 degrees (because 

the angles are bounded between 0 and 180, a transformation of a slight negative slope from 

the regression line results in a large angle value—hence the distribution bump for angle 

values 150 and greater for size). Lastly, subjects that did not provide a strategy or stated 

irrelevant features had a uniform distribution of angles. 
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Figure 3.9. Distributions for the classification angle differences between final block during 

training and final test (Experiment 1). Possible angles range from -180 to +180. All four 

reported strategies essentially center around 0. In other words, subjects’ explicit reported 

strategies on the final test were also utilized on the last block of training. For example, a 

subject that used both size and color to classify the pumpkins during both training and 

testing would have angles of 45 degrees, thereby resulting in a difference of 0. 

 

Experiment 2 

 Experiment 1 showed that having some exposure to prototypes during training 

promoted better learning of the category space. In our second experiment, we examined 

whether this training advantage would still exist if the final test was given at a delay. Here 

we examine the fidelity of learning by using the same experimental paradigm with an added 

delay of 1-week between training and testing. 

Method 

Participants. Two hundred and seventy one undergraduates from the same subject 

pool participated in this experiment for course credit. All were naïve to the purpose of the 

experiment. 

Stimuli. Stimuli were created using the same process as Experiment 1. 
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Design. The design was identical to Experiment 1 with the following exception: 

the testing phase consisted of only novel exemplars (100 from Category A and 100 from 

Category B). The old exemplars and prototypes were removed from the final test to avoid 

any possible influence on the classification for novel exemplars. 

Procedures. The procedures were identical to Experiment 1 with the exception that 

Experiment 2 had a 1-week delay between training and testing.  

Results and Discussion 

As with Experiment 1, to be included in the analysis, subjects had to complete both 

phases of the experiment and the exit survey as well as pass the color blindness test. One 

subject was excluded for being off task, five subjects were excluded for failing the color 

blindness test, three subjects were excluded for not completing the exit survey, and 22 

subjects were excluded due to improper data logging by a research assistant. The data from 

the remaining 240 subjects were used in these analyses.   

Training Performance. The performance for training across the four conditions 

mirror Experiment 1 (see Figure 3.10). There was a main effect of condition, F(3, 944) = 

300.249, p < 0.001, and block, F(3, 944) = 49.445, p < 0.001, but no interaction, F(9, 944) 

= 1.521, p = 0.136.  
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Figure 3.10. Training performance for Experiment 2. Each block consisted of 100 trials. 

Subject performance was averaged by condition. 

 

Testing Performance. A one-way ANOVA revealed no significant difference 

among the means (1:0 M = 0.693, SD = 0.119, SE = 0.015; 0.75:0.25 M = 0.699, SD = 

0.153, SE = 0.020; 0.50:0.50 M = 0.689, SD = 0.155 , SE = 0.020; 0.25:0.75 M = 0.691, SD 

= 0.162, SE = 0.021) across the four conditions, F(3, 236) = 0.047, p = 0.987 (see Figure 

3.11). Subjects in all conditions performed statistically above 50% chance (ps < 0.001). In 

contrast to Experiment 1, subjects who were given the final test after a 1-week delay 

showed no benefit of having some prototype exposure during training.  
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Figure 3.11. Experiment 2 boxplots for final test performance on New Exemplars by 

Condition.  

 

Individual Subject Performance. Using the same method as Experiment 1, we first 

visualized subjects’ performance with a category space heat map. 24 subjects from the four 

conditions are shown in Figure 3.12. Similarly to Experiment 1, there were subjects showed 

a variety of category classification. We used the same analysis procedure as described in 

Experiment 1 (i.e., grouped subjects by stated exit strategy and extracted classification 

boundary angle from logistic regression). The distributions in Figure 3.13 and Figure 3.14 

show an identical pattern to that of Experiment 1. Although the ANOVA showed that the 

group means were not statistically different from each other, we still found, within each 

condition, numerous subjects using different categorization strategies. The three main 

distributions were statistically different from each other, Color & Size vs Size Only: D = 

0.66, p < 0.001, Color & Size vs Color Only: D = 0.52, p < 0.001, Color Only vs Size Only: 
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D = 0.78, p < 0.001. Subjects that did not clearly state an explicit strategy or mention the 

relevant attributes showed a similar uniform-like distribution to that of Experiment 1. 

 

 
Figure 3.12. 24 selected subject from their respective training conditions for Experiment 2. 

Each box depicts a subject’s respective final test response for novel exemplars contingent 

on Category A. A perfect final test would have a positive-slope diagonal boundary such 

that all response above are colored red and all responses below are colored purple. Cells 

are denser due to more final test trials in Experiment 2.  
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Figure 3.13. Distribution of classification angles by the four possible exit strategy (as 

determined by an RA blind to the conditions) for Experiment 2. Possible angles range from 

0 to 180. Subjects that stated they used color and size to classify the novel exemplars have 

a distribution centered near the ideal 45 degrees. Subjects that stated they used color but 

not size have a distribution centered near the ideal 90 degrees. Subjects that stated they 

used size only but not color have a distribution centered near the ideal 0 degrees (because 

the angles are bounded between 0 and 180, a transformation of a slight negative slope from 

the regression line results in a large angle value—hence the distribution bump for angle 

values 150 and greater for size). Lastly, subjects that did not provide a strategy or stated 

irrelevant features had a uniform distribution of angles. 
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Figure 3.14. Distributions for the classification angle differences between final block 

during training and final test (Experiment 2). Possible angles range from -180 to +180. All 

four reported strategies essentially center around 0. In other words, subjects’ explicit 

reported strategies on the final test were also utilized on the last block of training. For 

example, a subject that used both size and color to classify the pumpkins during both 

training and testing would have angles of 45 degrees, thereby resulting in a difference of 

0. 

 

General Discussion 

In Experiment 1, we found that subjects benefited from some exposure to at least 

some prototypes during training. Subjects were better able to classify novel exemplars into 

correct categories. However, this effect disappears after a one-week delay as seen in the 

final test performance for Experiment 2. Although we set out to experimentally manipulate 

how subjects construct their mental representations for each category, our in depth 

individual-subjects analyses revealed a different pattern of results. The aggregate means 

are misleading. Not all subjects showed learning of the diagonal decision boundary by 

integrating both relevant dimensions (size and color). In fact, there were many subjects that 

used a unidimensional boundary as seen by vertical and horizontal decision boundaries.  
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The studies reported here examined if subjects’ categorization ability are affected 

by different levels of exemplar and prototype exposure during training. Our first 

experiment revealed a small effect where some prototype exposure during training 

promoted higher performance on classification of new exemplars. However, this effect 

disappeared when the final test was given at a one-week delay as seen in Experiment 2. 

More importantly, while the aggregate data showed relatively good classification 

ability by subjects, our individual subject analysis revealed that many subjects did not learn 

the correct classification boundary. To correctly classify a given exemplar, subjects must 

integrate both the color and size of the stimuli; instead, subjects used only one of the two 

attributes. Taken altogether, our studies show that there may be a small effect of having 

more prototype exposure during training; however, this disappears when classification of 

new exemplars is not immediate. Why might this be? Given our individual subject analysis, 

we speculate that some subjects may have learned the relevant features (color and size) but 

forgot the integration after a week and only used one of the two relevant features. 

 

Chapter 3, is currently being prepared for submission for publication of the 

material. Tran and Pashler. “Relative proportion of exemplars and prototypes: What best 

promotes category learning?” The dissertation author was the principal researcher and 

author of this material. 

  



62 
 

 

References 

 

Alfonso-Reese, L. (1996). Dynamics of category learning. Unpublished PhD Dissertation. 

University of California, Santa Barbara.  

Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological 

Review, 98(3), 409–429. https://doi.org/http://dx.doi.org/10.1037/0033-

295X.98.3.409 

Ashby, F. G., & Maddox, W. T. (1993). Relations between Prototype, Exemplar, and 

Decision Bound Models of Categorization. Journal of Mathematical Psychology, 

37(3), 372–400. https://doi.org/10.1006/jmps.1993.1023 

Homa, D., Rhoads, D., & Chambliss, D. (1979). Evolution of conceptual structure. Journal 

of Experimental Psychology: Human Learning and Memory, 5(1), 11–23. 

https://doi.org/http://dx.doi.org/10.1037/0278-7393.5.1.11 

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category 

learning. Psychological Review, 99(1), 22–44. 

https://doi.org/http://dx.doi.org/10.1037/0033-295X.99.1.22 

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models 

of categorization. Perception & Psychophysics, 53(1), 49–70. 

https://doi.org/10.3758/BF03211715 

Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback effects on rule-

based and information-integration category learning. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 29(4), 650–662. 

https://doi.org/http://dx.doi.org/10.1037/0278-7393.29.4.650 

Nosofsky, R. M. (1988). Exemplar-based accounts of relations between classification, 

recognition, and typicality. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 14(4), 700–708. 

https://doi.org/http://dx.doi.org/10.1037/0278-7393.14.4.700 

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based 

category representations and connectionist learning rules. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 18(2), 211–233. 

https://doi.org/http://dx.doi.org/10.1037/0278-7393.18.2.211 

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of 

Experimental Psychology, 77(3, Pt.1), 353–363. 

https://doi.org/http://dx.doi.org/10.1037/h0025953 

Rabi, R., Miles, S. J., & Minda, J. P. (2015). Learning categories via rules and similarity: 

Comparing adults and children. Journal of Experimental Child Psychology, 

131(Supplement C), 149–169. https://doi.org/10.1016/j.jecp.2014.10.007 



63 
 

 

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category 

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

24(6), 1411–1436. https://doi.org/http://dx.doi.org/10.1037/0278-7393.24.6.1411 

Speelman, C., & McGann, M. (2013). How Mean is the Mean? Frontiers in Psychology, 

4. https://doi.org/10.3389/fpsyg.2013.00451 

Tran, R, & Pashler, H (2017). Learning to exploit a hidden predictor in skill acquisition: 

Tight linkage to conscious awareness. PLOS ONE, 12(6): e0179386. 

https://doi.org/10.1371/journal.pone.0179386 

Tran, R., Vul, E., & Pashler, H. (2017). How effective is incidental learning of the shape 

of probability distributions? Royal Society Open Science, 4(8), 170270. 

https://doi.org/10.1098/rsos.170270 

 



 

 

649 

Conclusion 

My dissertation addressed the following three questions: 1) Does exploitation of 

predictive relationships occur when there is no explicit knowledge of the underlying 

structure? 2) Might some of the findings in implicit learning have very limited 

generalizability? 3) Lastly, does averaging across subject data mask what is learned by 

individuals? Throughout my dissertation, I demonstrated how explicit awareness can affect 

the learning of predictive relationships between task-relevant features and how simpler 

more discrete components were utilized within participants’ strategies. In Chapter 1, we 

explored whether participants could induce a bimodal probability distribution through a 

whack-a-mole game. It was only when the bimodality was discretized did participants show 

any learned behavior of a bimodal distribution. Extending these findings, we demonstrated 

in Chapter 2, participants’ used the simple rule to their advantage (e.g., placing their cursor 

at the correct tunnel exit) only when they became explicitly aware of the rule. Participants 

that were unable to verbalize the task-relevant feature were unable to utilize the task 

relevant feature and instead relied on a variety of ill-formed strategies. In Chapter 3, we 

explored a more complex predictive relationship. Similarly to Chapter 2, participants relied 

heavily on their explicit knowledge to formulate their classification strategies. 

 In the experiments described throughout all three chapters, participants’ behaviors 

favored simpler components of complex rule that closely tracked their explicit knowledge. 

While prior research has shown implicit learning occurring (e.g., with amnesiac patients), 

it is very likely that not all learning takes place implicitly and even tasks once believed to 

be done implicitly may be done in an explicit manner. Specifically, we found in Chapters 
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2 and 3 that deliberate and conscious formation of strategies played a big role in learning 

where nearly all participants showed awareness of the task-relevant features.   

 While these findings taken altogether suggest exploitation of predictive 

relationships are done explicitly, follow-up studies will be needed to determine boundary 

conditions in which these occur. For example, an exit survey follow-up for Chapter 1 is 

needed to directly compare the impact of continuous and discrete (Chapters 2 and 3) 

responses. This would give us more insight into whether discreteness of the to-be-measured 

response influences participants’ strategies (e.g., Chapter 1 participants may have been 

aware of the bimodal distribution but the continuous nature of the task masked their 

knowledge). The findings from Chapters 2 and 3 suggest complexity of the to-be-learned 

features play a role in participants’ awareness and strategies. A logical follow-up to 

Chapters 2 and 3 would be to use features that use probabilistic outcomes. This would 

address whether all-or-none processes are used and how much insight participants are able 

to gain. 

In summary, my dissertation work examined how people exploit predictive 

relationships to their advantage where there is a strong tendency to favor simple and 

verbalizable relationships and are used explicitly for optimal performance. 




