
Lawrence Berkeley National Laboratory
Recent Work

Title
PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION

Permalink
https://escholarship.org/uc/item/0t37r405

Author
Gey, Fredric.

Publication Date
1976-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0t37r405
https://escholarship.org
http://www.cdlib.org/

,-, ..
~·

'·. ·"

..•

r-

'. :··, ·.,'"
!"'·'.'' ..

LBL-4876 Presented at the Northwest 76 ACM/CIPS
Pacific Regional Symposium, Seattle, · WA,
June.24- 25, 1976

c.\

. •'\

. ',•

·. •PR6FESSIONAL LEVELS OF COMPUTER
PR()(}RA.M DOCUMENTATION

RECEIVED
I.AWP.ENCE .

BERKF:UY LABORATORY

· JUL··~ 6 1976

June 1, 1·9 76
.. LIBRARY ANO

. DOCUMENT$ SECTiON

. ·Prepared fo~ fhe U. S.~. Energy, Research and . ·
Develop~ent·Adirii;nistration und~r Co;ntract w :.'7405-ENG~48

.. '

For Reference

Not to be taken from this room

t'1
.tp
t'
i
,p..
00
-.:i

f) 0'

-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0 0

LBL-4876

PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION

Fredric Gey

Computer Science and Applied Mathematics.
Lawrence Berkeley Laboratory
Berkeley, California 94720

June 1, 1976

..

Abstract

i

LBL-4876

PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION

by

Fredric Gey

Computer Science and Mathematics Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Computer program documentation is more than a collection of
techniques for manipulating code for readability, more than a flow
d·iagram of program logic, and more than a block of comments cards at
the beginning of a module. A professional level of documentation
derives from the systematic syrithesis of technique tempered with good
judgment and lucid composition. The overriding goal of documentation
is understanding, by managers, by users, and by maintenance
programmers. Documentation requires a level of precision rarely
required in programming itself.

~ Words and Phrases

Computer Program Documentation, Coding Techniques, Documentation

CR Categories ~ 4.43

This report was done with support from the United States Energy
Researctt and Development Administ;,ration.

ii

This report was done with support from the United States

Energy Research and Development Administration. Any conclusions

or opinions.expressed in this report represent solely those of

the author(s) and not necessarily those of The Regents. of the

University of California, the Lawrence Berkeley Laboratory or the

United States Energy Research and Development Administration.

0 0 lJt;j5U~:566
iii

TABLE OF CONTENTS 19 MAY 76
LBL-4876

1. PROF&SSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION 1

1.1 INTRODUCTION 1

1.2 THE ELEMENTS OF DOCUMENTATION 2

1.3 THE RIGHT COMMENT. IN THE RIGHT PLACE 3
, I

A HANDY TIP ABOUT ASSEMBLY LANGUAGE DOCUMENTATION 5

1.4 TO FLOWCHART OR NOT JO FLOWCHART 6

1.5 CODING CLEAN AND CODING DIRTY 7

1.6 GOOD DESIGN LEADS TO GOOD DOCUMENTATION 9

A FEW WORDS ON S~RUCTURED PROGRAMMING 9

1.7 THE GUIDE TO THE EMPIRE 10

1.8 IN CONCLUSION LET ME SAY 11

ACKNOWLEDGMENTS 11

1.9 REFERENCES 12

INDEX 13

1.1.

0 0
LBL:...4876

PROPESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION
INTRODUCTION

1.1 INTRODUCTION

1

Recently I had the unfortun&te. experience of having to examine and
evaluate a completely ~ndocumented computer program. Not only were
there 10 pages of FORTRAN code, but no written user's instructions
existed. An important accounting function depended upon this program,
and yet the only iriformation available about the program was locked up
in the heads of two people, the person who used the program for
monthly accounting, and the person who was responsible for its
maint~nance. If misfortune were to fall to the latter, chaos would
result. This state of affairs can be found to exist in almost any
programming group, save those in which rigidly enforced documentation
standards have been established by the group leader. For a small
program as the above mentioned, the problem might not be significant,
but when all the information concerning a large system which has taken
several years to develop is also locked up in one brain, the problem
is indeed significant. A case in point happened at this installation
a few years ago when a computer programmer was killed in a motorcycle
accident, and n~arly six person-months were expended in a vain .~ttempt
to salvage his work. .

Furthermore, as eath programmer gains experience and remains at his
job for a longer period of time (assuming he. doesn't indulge in
frequent job-hopping) the number of computer programs under his
control and their relative complexity increases to saturation point.
Many programmers agree that they usually cannot reme.mber what they did
in a given program for more than six months after they did the work.
Just as 'businesses require written bookeeping proceedures to keep
track of their day-to-day, week-to-w~ek (or any other 'time frame')
bperations, ~ programmer to remain effective needs his own accounting
system. The essence of such a system may be simply stated. It
consists of a professional level .£i. computer program documentation.
The purpose of this paper is to define, in a loose way, what this
phrase might mean.

1.2

(

PROFESSIONAL LEVELS OF COMPUTER PROGRAM~DOCUMENTATION
THE ELEMENTS OF DOCUMENTATI9N

1.2 THE ELEMENTS OF DOCUMENTATION

A computer program might be said to be fully documented if written
descriptions are available which answer all questions concerning the
following four elements

design
user's instructions
demonstration problems
programmer's instructions

For small programs, all of these elements might be taken care of via
comment cards within the program. Most moderate sized programs can
get by with the first three described in a single user's manual, and
the last within the program as comment cards.

2

The extent to which these items are described is a matter of
careful individual judgment. One-shot produc~ion programs might get
by with little or no documentation. However, it has been my
experience that production programs tend to be ressurected at just
that point where the original programmer thought they were forever six
feet underg~ound. Thus the minimal documentation for such .an effort
sh6uld be extensive commentary within the program, so one can
resuscitate the program without having to repeat the original effort.

Utility programs which will be used over and over, either by other
programmers or by non-programmers, should have written instructions
describing the use of the program (or subroutine as the case may be),
as well as adequate internal documentation (in the form of comments)
so that any programmer can maintain or modify the program to suit
individual use. A user's manual for large utility programs which will
be used extensively should include demonstration problems, or examples
of the use of the program. A good rule of thumb is two examples, an
easy one and a hard one.

A program as large as NASTRAN (the NASA computer program for
engineering structural analysis) which consists of more than 150,000
source statements, mostly in FORTRAN and over 1000 distinct
subroutines, requires all four elements to be described in separate
manuals. Thus NASTRAN documentation is contained in the following

The NASTRAN Theoretical Manual
The NASTRAN User's Manual
The NASTRAN Demonstration Manual
The NASTRAN Programmer's Manual [3, 4, 5, and 6]

All this in addition to extensive comments within the actual code.
nASTRAN deserves special mention because I consider it to be an
example of the highest professional level of computer program
documentation. (Kudos to Computer Science Corporation who developed
it) .

1.3

p. 0 5 ~'' ~). 6. 8

PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION
THE RIGHT COMMENT IN THE RIGHT PLACE

1.3 THE RIGHT COMMENT IN THE RIGHT PLACE

3

A pithy quote from Bill H6gan is appropriate .to start this section
"a computer program without comment cards is like a rosetta stone
without the Greek translation." If we are given, then, that comment
cards are necessary, what should be commented and where. The
important factor is not how much commentary, for, to quote [1] a
program can'consist of 70 percent comments and still be undocumented."
The key to g~od documentation is a lucid description of program flow,
i. e. ~right comment~~ right place.

My experience has been that the most useful organization of
comments is into th~ following three classes -

1. At the beginning of the p~ogram put a general, but fairly
detailed description of program (or ~ubroutine) flow, i.
e. Ari algorithm d~~cription.

The depth of detail to which to carry the algorithm description is
also a matter of individual judgment. The length of the program is
not the determining factor, but rather the complexity -- the more
complex the tasks performed, the more detail and clarity needed to
describe the process for performing the tasks.

2. This should be followed by a complete description of the
relevant variables utilized by the program, i. e. a
dictionary of variables.

The importance of a variable dictionary cannot be overemphasized.
Many subroutines can be understood with the aid of a variable
dictionary even if no other documentation exists beyond user's
instructions. My own preference is to organiz~ variables into three
distinct blocks, those associated with named or unnamed common blocks,
those variables which are calling parameters to a subroutine, and
those variables local to the roUtine, i. e. those which are not used
outside the program.

For readability, it is best to use some fancy keypunching to set
off the variable definitio~ block from other parts of the program.
My personal convention has been to place a * (star) in column 2 for
this purpose. The d~finitions are most readable when set up in
tabular format. The variable name can be started in column 10, and
its definition in column 25. Subscripted or array variables should
also have the meanings of the various subscripts defined.

Main programs or ~ubroutines doing input-output should have a
directory of I-0 files included with the dictionary of variables.

The following is an example of the first two classes of
documentation.

1.3

c

PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION
THE RIGHT COMMENT IN THE RIGHT PLACE

SUBROUTINE CVRT360(MODE,WINP,NWD,ICODE,NDEL~IWOUT)

C CVRT360 IS A SUBROUTINE TO CONVERT AN IBM-360 BINARY RECORD TO AN

4

C EQUIVALENT CDC-6600 (OR 7600) RECORD TO BE USED IN FORTRAN PROGRAMS
C OPERATING UNDER THE BKY SYSTEM.
c
C CVRT360 CALLS
C SUBROUTINE UNPACK
C WHICH UNPACKS 15 32-BIT 360 WORDS WHICH FIT
C EXACTLY INTO 8 60-BIT WORDS AND PLACES THEM
C RIGHT-JUSTIFIED (BUT OTHERWISE UNCHANGED) INTO
C 15 60-BIT WORDS
C FUNCTION ICNVRT(I)
C WHICH CONVERTS A 32-BIT IBM-360 INTEGER
C TO ITS CDC EQUIVALENT (TWO'S COMPLEMENT TO
C ONE'S COMPLEMENT TRANSLATION)
C FUNCTION FCNVRT(I)
C WHICH CONVERTS A 32-BIT IBM-360 FLOATING POINT
C NUMBER TO ITS CDC EQUIVALENT
C SUBROUTINE ACVRT
C WHICH CONVERTS FROM IBM-360 ~BCDIC 8-BIT CHARACTER
C CODE TO CDC DISPLAY CODE VIA TABLE LOOKUP
C FUNCTION IBITS
c
C************************
C*
C* DICTIONARY OF VARIABLES
C*
C*
c 1<

C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
c -~
C*
C*
c >'<

C*
C*
C*
C*
C*
C*
C*
C*
C*

CALLING PARAMETER DEFINITIONS
VARIABLE DEFINITION

MODE
=0

~JINP

NWD

=1
=2
=3
=4

ICODE(I)

NOEL

1\.JOUT

=-1
=0
=1
=2
=3

TYPE OF CONVERSION
UNPACK RECORD RIGHT-JUSTIFIED INTO 60-BIT
WORDS
INTEGER CONVERSION
FLOATING POINT CONVERSION
FULL RECORD CHARACTER CONVERSION
WORD-BY-WORD CONVERSION ACCORDING TO !CODE

ARRAY HOLDING INPUT RECORD OF 360 WORDS

NUMBER OF WORDS TO BE CONVERTED

WORD-BY-WORD CONVERSION CODE FOR ITH WORD
DELETE THIS WORD FROM OUTPUT ARRAY
UNPACK RIGHT-JUSTIFIED IN A 60 BIT WORD
FIXED POINT CONVERSION
FLOATING POINT CONVERSION OF WORD I
CONVERT 4 360 CHARACTERS INTO 4H FORMAT

NUMBER OF WORDS TO BE DELETED IN WORD-BY-WORD
CONVERSION

OUTPUT ARRAY FOR CONVERTED RECORD

1 • 3

C*
C*
C*
C*
C*
C*
C*
C*
C*
C*

Q 0 0 4 u 6 9

PROFESSIONAL LEVELS OF COMPUTER PROGRAM ITOCUMENTATION
THE RIGH1 COMMENT IN THE RIGHT PLACE

LOCAL VARIABLE DEFINITIONS
VARIABLE MEANING

UNPK()
FUNPK()

NWDI

15 WORD ARRAY-TO HOLD UNPACKED WORDS
FLOATING POINT ARRAY EQUIVALENCED TO UNPK

NUMBER OF 60 BIT WORDS COMPRISING WINP
C*
C************************
c
c
c
c
c

3. Finally, comments must be pl~ced within the code itself.

This is best done by placing a short commentary in front of each
collection of lines of code which perform a distinct task within the
program flow.

A HANDY TIP ABOUT ASSEMBLY LANGUAGE DOCUMENTATION

5

Documentation of programs written in assembly languages is always a
difficult chore. Too detailed commentary can be confusing, while
insufficient detail can lead to disastrous -misunderstandings of the
function of the code. A valuable practice (where it can be done) is
to place the FORTRAN equivalent to a block of assembly language code
in the comment field to the right of the code on the card.

'·'

1.4 PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION 6
TO FLOWCHART OR NOT TO FLOWCHART ,

1.4 TO FLOWCHART OR NOT TO FLOWCHART

Some people have a mania about flowcharting, I do not. A proper
job of commenting a program usually obviates the need for a flowchart.
For quick-and-dirty jobs, a flowchart is never necessary, otherwise
the job wouldn't fall in that class but rather into the category of
slow, well-considered development jobs. Proper modularization of
programming tasks, at least for FORTRAN progra~s, will usually replace
the function of the flowchart. More will be said on this in the
section on design. Most applications programmers I know draw a
flowchart about every three years, when they are f~ced with an
assignment whose logical complexity precludes handling all the
variables involved within their head. Probably a good rule of thumb
is

if·it didn't require a flowchart to write it, it doesn~t need one
to document it.

As every good rule has exceptions, this one has two. First it is
quite difficult to document assembly language systems without
flowcharting. Second, sometimes a computer program which has been
developed by the seat-of-pants technique becomes so unwi~ldy, as more
options are added, as to require flowcharting for the programmer to
keep tr~ck of what he is doing. *

* An alternative to this is to utilize a 'cleanup' program such as
"'TTDY [7].,

1.5 PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION
CODING CLEAN AND CODING DIRTY

1.5 CODING CLEAN AND CODING DIRTY

The following lines of code appear in [1],

IF (I .LT. 1)
1 • OR. (I .GT • N)
2 • OR. (J .LT • 1)
3 • OR. (J .GT • NPLUS1)
4 • OR. (ABS (TEMP) .GT • BIGGST)) OK = .FALSE.

Most amateur programmers would have coded this as follows

7

IF ((I • L T • 1) • 0 R. (I • G T • N) • 0 R. J • L T • 1) • 0 R. J • G T • N PLUS 1) • 0 R. (A B S (T EM P)
1.GT.BIGGST))OK=.FALSE.

Often as an applications consultant I have been asked by users to
follow my way through statements like

FI=~OF*SN*ETA(I,J)-ZSQ**2*SN*(ETA(I+1,J)+ETA(I-1,J))/DZSQ-ETA(I,
1J+1)*(COF1+COF2)-ETA(I,J-1)*(COF1-COF2)+SN*SLA*(NI(I,J)-NE)

instead of a much more distinct

1
'2

3
4

FI= COF*SN*ETA(I,J)
-ZSQ**2*SN*(ETA(I+1,J)+ETA(I-1,J)) I DZSQ
-ETA(I,J+1)*(COF1+COF2)
-ETA(I,J-1)*(COF1-COF2)
+SN*SLA*(NI(I,J)-NE)

I'm sure you get the point, clean code ~~important~££ the
documentation process. This subject has been covered at length in
other places, so it won't be repeated here. We will only list most of
the important aspects of coding c~eanly in FORTRAN.

variable definitiohs /

1. Intelligent variable mnemonics (SIGMA not V125)

arithmetic statements

2. Start all right-hand side expressions in the same column
(I like 25)

3. Place all equal signs in the ~arne column (optional)

4. Start scalar left hand quantities in the same column
(subscripts)

statement numbers

5. Assign statement numbers in ascending order

6. Increment statement numbers by 10 or 20 while in the early
stages of writing the program

1 • 5 PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION
CODING CLEAN AND CODING DIRTY

7. Right~justify all statement numbers

8. Don't start a statement number in column 1

8

format statements

9. Place format statements at the end of the program.
(This is a subject of some controversy. I find it more
useful to locate the fDrmat at the position of most frequ~nt

use within the program.)

10. Assign blocks of statement numbers for form~t statement
numbers (i.e. 1000-1999 for input formats, 2000~2999 for
output formats)

miscellaneous

11. Indent do loops

12. Parenthesize fully

13. Favor the easier to understand code over the efficient or
elegant in almost all cases.

. '

1.6

0 0 0 7

PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTAtiON
GOOD DESIGN LEADS TO GOOD DOCUMENTATION

1.6 GOOD DESIGN LEADS TO GOOD DOCUMENTATION

There is not too much to say in expansion on the above phrase.
Proper des{gn -- structuring programs and systems into comprehensibl~
functional modules -- and straightforward implementation te~hniques
can immensely ease the documentation task. I ~m fond of a phrase of

~ Dijkstra [8] to the effect that good programming consists of
recognizing 'how to avoid unmanageable complexity.' Proper design
leads to manageable complexity, which in turn avoids unmanagea~ly
complex do~umentation.

A FEW WORDS ON STRUCTURED PROGRAMMING

The important·aspect, from the viewpo.int of documentation, of
current trends toward structured programming is that control
structures are being incorporated at the language level which
facilitate understanding of computer program code. In the past, .a
great deal of documentation has been concerned with clarifying code
which under the newer control structures no longer needs to be
documented.

9

1.7 PROFESSIONAL LEVELS OF COMPUTER-PROGRAM DOCUMENTATION
THE GUIDE TO THE EMPIRE

1.7 THE GUIDE TO THE EMPIRE

10

There comes a time in the life of every good programmer when he
finds that he has more computer programs under his control than he can
remember. He has reached his intellectual saturation point. At this
point he can either quit and start life anew as a real estate
salesman, or he can write the guide !£.the empire.

The guide is a detailed reference catalogue of all computer
programs under his control. It should include, the location of all
source and object decks of all programs, together with listings of the
latest control card sequences for running the program. For an
applications programmer, the organization of the guide might be along
the lines. of major user's. For a systems man, the organiz~tion might
best be along the lines of major program areas. Each area should
include a brief description of the nature, purpose, and use of each
program or system. If different versions of the same system are under
development, the major differences between them must be explained.
The guide should also include tables of all computer tapes and other
permanent storage areas (such as permanent disk files, data cell
space, etc.) under his control.

The guide should be retairied in some easily modifiable form so that
changes may be made as more programming is done. At the iawrence
Berkeley Laboratory, we are fortunate in having two utility programs
whiclt can handle all the requirements for developing writeups
dynamically, the BARB formatting program, and the UPDAT8 card editor.
BARB is an automatic editing program which operates on text entered on
~ard images. Thus to change a BARB writeup, one merely has to be able
to insert and delete cards, which is the facility provided by Control
Data Corporation's UPDATE utility program. The salient features of
BARB are automatic indexing and table of contents generation.

With the guide to his programming empire finished, the programmer
can safely move from project to project with the minimal amcunt of
disruption and inefficiency. He can now drop a programming system for
several months to work on other programs and then return and pick up
his wbrk almost where he dropped it, since all the relevant
information, as well as pertinent memory jogs are in writing.

~ .

•

1 • 8

. 0 0 u 7 2

PROFESSIONAL LEVELS OF COMPUTER PROGRAM DOCUMENTATION
IN CONCLUSION LET ME SAY

1.8 IN CONCLUSION LET ME SAY

1 1

Various reasons have been advanced as to why computer programmers
don't document. their work. Job 'security is one. ~his may have been
true in the early days of programmirtg, but today development projects
usually require the efforts of mo~e than one man, and the person who
doesn't explain his work in satisfactory detail is going to find his
positi~n increasingly prec~rio~s. To those programmers who feel lack
of documentation makes them indi~pensable, Weinberg [9] has the
following sugg~sion for their managers, 'i.f a programmer is
indispensable, ge~ rid of him ~s quickly as possible.'

My own feeling is that good do~umentation requiies all the effort
and precision that goes into any good technical writing, indeed it
calls for a precision rarely needed in programming itself. This is
not to say that skill cannot be gained with experience. As with all
writing skills, capacity to document to a professional level develops
with experience. The lucky programmer is the one who starts out {n an
environment whe~e good documentation is en~ouraged, or even required.
As "with not smoking, a good habit begun in youth saves th~ trauma that
develops when a bad habit must finally be broken.

ACKNOWLEDGMENTS

This summ~ry is a synthe~is o(over a decade of computer
programming. Many of the thoughts are not original, and are the
result of valuable discussions with Dave jensen, Bill Hogan, Marilyn
Mantei, and Manny Clinnick, to nam~ a few. I owe a special debt to
Tom Cundiff of the Princeton Computation Center who first made me
aware of the importance of readable output and adequ~te documentation
when we worked together at Bell Laboratories ten years ago.·

1.9 PROFESSIONAL LEVELS OF COMPUTER PROGgAM DOCUMENTATION
REFERENCES

1.9 REFERENCES

1. D. McCracken and G. Weinberg, ~ .!:.2_ Write a Readable FORTRAN
Program, Datamation, October 1972.

2. G. Perry and J. Sommerfeld, FORTRAN Programming Aids, Software
Age, Oct .-Nov., 1970.

3. Richard Mac~eal, ed., The NASTRAN Theoretical Manual, ·scientific
and Tech n i c a 1 Info rm a ti on Division , NASA, Wash , . D • C. , 1 9 7 0 • ·

4. C. ·W. HcCormick, ed., ~ NASTRAN User's Manual, Scientific and
Technical Information Division, NASA, Wash, D. C. 1970.

5. The NASTRAN Demonstration Problem Martual, Scientific and
Technical Information Division, NASA, Wash, D. C. 1970.

6. The NASTRAN Programmer's Manual, Scientific and Technical
Information Division, NASA, Wash, D .• C. 1972.

7. Harry H. Murphy, j r., TIDY, ~Computer ~ f2.E.. Renumbering and
Editing FORTRAN Source Programs, Technical Report no.
AFWL-TR-66-93, Air Force Weapons Laboratory~ Kirtland Air
Force Base, New Hexico, October, 1966.

8. Edsger W. Dijkstra, Craftsman .2.!. Scientist?, Proceedings of ACH
·Pacific 75, San Francisco, California, April 17-18, 1975, p.

2 2 2.

9. G. M. Heinber:g, The Psychology £!.Computer Programming, Van
No s t r a n d . R e in h ~ C. om p a n y , N e w Yo r k , N • Y • , 1 9 7 1 •

1 2

0 0

. .

7 J

INDEX

3 ALGORITHM DESCRIPTION
5 ASSEMBLY LANGUAGE

3 CALLING PARAMETERS

2 DESIGN
3 DICTIONARY OF VARIABLES.
3 DIRECTORY OF I-0 FILES

3 INPUT-OUTPUT FILES

2 NASTRAN

2 ONE-SHOT PRODUCTION PROGRAMS

10 REAL ESTATE SALES
10 REFERENCE CATALOGUE OF PROGRAMS

2 UTILITY PROGRAMS

1 3

0

(j J u

..---------LEGAL NOTICE-----------.

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.

-"---.•

~~

TECHNICAL INF9RMATI()!'fDH'ISION _·
LAWRENCE BERMELE.Y LABORATORY

UNIVERSITY OF CALFFORNIA . .

BERKELEY, CALIFCEXRNiA ~4720

..

..

"'
·:

'

'

...

;·:

