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Abstract

Lipschitz Embeddings of Random Objects and Related Topics

by

Riddhipratim Basu

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Allan M Sly, Chair

More than twenty years ago Peter Winkler introduced a fascinating class of dependent or co-
ordinate percolation models with his compatible sequences and clairvoyant demon scheduling
problems. These, and other problems in this class, can be interpreted either as problems of
embedding one sequence into another according to certain rules or as oriented percolation
problems in Z2 where the sites are open or closed according to random variables on the
co-ordinate axes. In most situations, these problems are not tractable by the usual tools
of independent Bernoulli percolation, and new methods are required. We study several
problems in this class and their natural extensions.

We develop a new multi-scale framework flexible enough to solve a number of prob-
lems involving embedding random sequences into random sequences. A natural question in
this class was considered by Grimmett, Liggett and Richthammer in [24] where they asked
whether there exists an increasing M -Lipschitz embedding from one i.i.d. Bernoulli sequence
into an independent copy with positive probability. We give a positive answer for large
enough M . A closely related problem is to show that two independent Poisson processes on
R are almost surely roughly isometric (or quasi-isometric). Our approach also applies in this
case answering a conjecture of Szegedy and of Peled [35]. We also obtain a new proof for
Winkler’s compatible sequence problem. All these results are obtained as corollaries to an
abstract embedding result that can potentially be applied to a number of one-dimensional
embedding questions.

We build upon the central idea of the multi-scale construction in the above work to
apply it to a different problem. On the complete graph KM with M ≥ 3 vertices consider
two independent discrete time random walks X and Y, choosing their steps uniformly at
random. We say that it is possible to schedule a pair of trajectories X = {X1, X2, . . .}
and Y = {Y1, Y2, . . .}, if by delaying their jump times one can keep both walks at distinct
vertices forever. It was conjectured by Winkler that for large enough M the set of pairs
of trajectories {X,Y} that can be scheduled has positive measure. Noga Alon translated
this problem to the language of coordinate percolation. In this representation Winkler’s
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conjecture is equivalent to the existence of an infinite open cluster for large enough M .
With a multi-scale construction we provide a positive answer for M sufficiently large.

The questions of Lipschitz embedding and rough isometry of random sequences have
natural higher dimensional analogues. We consider the higher dimensional analogue of the
Lipschitz embedding problem. We show that for M sufficiently large and two independent
collections of i.i.d. Bernoulli random variables X = {Xv}v∈Z2 and Y = {Yv}v∈Z2 , almost
surely there exists an M -Lipschitz embedding of X into Y. The argument is again multi-
scale using similar ideas, but this is technically much more challenging because of the more
complicated geometry in two dimensions.

This presents an added difficulty in extending the argument in one dimension to show
that copies of two dimensional Poisson processes are almost surely rough isometric. A key
ingredient is to show that one can map measurable sets to smaller measurable sets in a
bi-Lipschitz manner. This motivates the final problem we consider. We show that for
0 < γ, γ′ < 1 and for measurable subsets of the unit square with Lebesgue measure γ there
exist bi-Lipschitz maps with bounded Lipschitz constant(uniformly over all such sets) which
are identity on the boundary and increases the Lebesgue measure of the set to at least 1−γ′.
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Chapter 1

Introduction

Percolation has been studied as a paradigm model for spatial randomness for more than half a
century. The deep and rich understanding that emerged in the study of independent Bernoulli
percolation is a celebrated success story of contemporary probability. In the mean time
several natural questions arising from mathematical physics and theoretical computer science
has necessitated the study of models containing more complicated dependent structures,
which are not amenable to the tools of Bernoulli percolation. In this dissertation we focus
on questions in and around one particular subclass of dependent percolation models, called
“co-ordinate percolation”, which have received significant attention in the past couple of
decades.

In the simplest setting, a co-ordinate percolation model is an oriented percolation model
on the positive quadrant of Z2 (or some modifications thereof), where the vertex (i, j) ∈ Z2

is declared to be open or closed depending on two variables on the co-ordinate axes Xi

and Yj where typically {Xi}i≥0 and {Yj}j≥0 are independent sequences of i.i.d. random
variables. The questions asked about these models are the same ones that are studied in the
independent Bernoulli percolation, e.g. whether there exists an infinite open oriented path
starting at origin and whether the probability of percolation exhibits a phase transition as
certain model parameters are varied. Long range dependent structure makes these models
difficult to study and it turns out that many of these models are fundamentally different
from the independent Bernoulli percolation models in that these exhibit power law decays
for certain tail probabilities as opposed to exponential decays. This is one of the reasons the
techniques for independent percolation do not yield useful results in these models.

Models of co-ordinate percolation were first introduced, motivated by problems of sta-
tistical physics, in late eighties by B. Tóth under the name “corner percolation” which was
later studied by Gábor Pete in [36]. It is curious to observe that a co-ordinate percolation
environment was introduced by Diaconis and Freedman earlier in 1981 in the context of
studying Julesz conjecture on visually distinguishable patterns in [12]. In early nineties a
number of problems in this class were popularised by Peter Winkler, who introduced and
later studied several models of this type arising out of considerations in theoretical computer
science [11, 38, 34, 10].
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Another set of questions in random geometry involving embedding one random sequence
into another can also be cast into the framework of co-ordinate percolation. In several of its
variants this has been investigated in [24, 20, 18, 16, 31]. The simplest problem in this vein
is the problem of embedding one random sequence into another in a Lipschitz manner. This
in turn is intimately connected to quasi-isometries of one dimensional random objects [35].

In this dissertation we focus on Lipschitz embeddings of random objects and some related
problems. We study Lipschitz embeddings of one dimensional random binary sequences,
and the related problem of quasi-isometry of one dimensional Poisson processes and the
problem of compatible sequences. Using similar techniques we also investigate a specific
model of co-ordinate percolation that arises from Winkler’s scheduling problem. We further
extend the Lipschitz embedding result to two dimensions, and obtain certain results towards
establishing on quasi-isometries to random objects in higher dimensions. We start with
formal descriptions of the models we consider.

1.1 Embedding Problems in One Dimension

In the simplest and most natural setting, we first consider the problem of embedding a
random one dimensional object into another. We restrict our attention to i.i.d. binary
sequences.

1.1.1 Lipschitz Embedding of Binary Sequences

Let X = {Xi}i∈Z and Y = {Yi}i∈Z be two binary sequences. For M > 0, we call X M-
embeddable in Y if X can be embedded into Y in an M -Lipschitz manner, i.e. there exists
a strictly increasing function φ : Z → Z such that Xi = Yφ(i) and 1 ≤ φ(i) − φ(i − 1) ≤ M
for all i. Grimmett, Liggett and Richthammer had the following question as the main open
problem in [24] (re-iterated in [20]).

Question 1.1.1. Let X = {Xi}i∈Z and Y = {Yi}i∈Z be independent sequences of independent
identically distributed Ber(1

2
) random variables. Does there exist M > 0 such that X is almost

surely M-embeddable into Y?

The original question of [24] was slightly different asking for a positive probability on
the natural numbers with the condition φ(0) = 0, which is implied by a positive answer to
the above question (and is equivalent by ergodic theory considerations). In this variant, the
question can be cast into the co-ordinate percolation framework as follows.

Consider the following graph with vertex set Z2
≥0, i.e., {(i, j) ∈ Z2 : i, j ≥ 0}, with the

following edge set. There is an edge between (i, j) and (i′, j′) if and only if |i − i′| = 1 and
1 ≤ |j − j′| ≤ M . For any two binary sequence X = {Xi}i≥1 and Y = {Yj}j≥1 as above,
consider the following site percolation on this graph. Call (i, j) closed if Xi 6= Yj and open
otherwise. It is easy to see that there is an M -embedding φ of X into Y (with obvious
modification of the definition above) with φ(0) = 0 if and only if there is an infinite open
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oriented path starting at the origin. See Figure 1.1 for the case M = 3 where we write the
sequences X and Y along the x-axis and y-axis respectively. The open and closed vertices
are denoted by blue and red respectively.

0 1 1 0 1

1

0

1

1

0

Figure 1.1: Lipschitz embedding as co-ordinate percolation

Of course one can ask the same question with independent Ber(p) sequences for any
p ∈ (0, 1). It was shown in [24] that an affirmative answer to Question 1.1.1 for some
p ∈ (0, 1) is equivalent to an affirmative answer for all p ∈ (0, 1). Among other results they
also showed that the answer to the question is negative for M = 2.

In a series of subsequent works Grimmett, Holroyd and their collaborators [13, 20, 21, 23,
22, 26] investigated a range of related problems including when one can embed Zd into site
percolation in ZD and showed that this was possible almost surely for M = 2 when D > d
and the the site percolation parameter was sufficiently large but almost surely impossible for
any M when D ≤ d. Recently Holroyd and Martin showed that a comb can be embedded
in Z2. Another important series of work in this area involves embedding words into higher
dimensional percolation clusters [9, 32, 29, 30]. Despite this impressive progress the question
of embedding one random sequence into another had remained open. The difficulty lies in
the presence of long strings of ones and zeros on all scales in both sequences which must be
paired together.

In Chapter 2 we provide an affirmative answer to Question 1.1.1 for M sufficiently large.
See Theorem 2.1.

1.1.2 Rough Isometry of One Dimensional Random Objects

Intimately connected with the embedding problem is the question of a rough, (or quasi-),
isometry of two independent Poisson processes. Informally, two metric spaces are roughly
isometric if their metrics are equivalent up to multiplicative and additive constants. The
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formal definition, introduced by Gromov [25] in the case of groups and more generally by
Kanai [27], is as follows.

Definition 1.1.2. We say two metric spaces X and Y are roughly isometric with parameters
(M,D,C) if there exists a mapping T : X → Y such that for any x1, x2 ∈ X,

1

M
dX(x1, x2)−D ≤ dY (T (x1), T (x2)) ≤MdX(x1, x2) +D,

and for all y ∈ Y there exists x ∈ X such that dY (T (x), y) ≤ C.

Whether two random metric spaces (or two i.i.d. copies of the same random metric space)
are almost surely rough isometric have been asked in several instances. Originally Abért [1]
asked whether two independent infinite components of bond percolation on a Cayley graph
are roughly isometric. Szegedy asked the problem when these sets are independent Poisson
process in R (see [35] for a fuller description of the history of the problem). An important
progress on this question is by Peled [35] who showed that Poisson processes on [0, n] are
roughly isometric with parameter M =

√
log n. The main open question of [35] was the

following.

Question 1.1.3. Let X and Y be independent homogeneous Poisson processes on R viewed
as metric spaces, i.e., X and Y are metric subspaces of R induced by independent Poisson
processes on R. Does there exist (M,D,C) such that almost surely X and Y are (M,D,C)-
roughly isometric?

The same question can also be asked about two independent copies of Bernoulli percola-
tion on Z. That is, considering the random metric subspaces of Z given by the set of open
sites in two copies of site percolation on Z, where each vertex is declared open with prob-
ability p ∈ (0, 1) with different vertices receiving independent assignments. Results of [35]
show that an affirmative answer to Question 1.1.3 is equivalent to an affirmative answer for
percolation on Z and the answer is independent of the parameter p.

Again the challenge is to find a good matching on all scales, in this case to the long
gaps in the each point processes with ones of proportional length in the other. In Chapter
2 we provide an affirmative answer to Question 1.1.3 for M,D,C sufficiently large. See
Theorem 2.2. The isometries we find are also weakly increasing answering a further question
of Peled [35].

1.1.3 Compatible Sequence Problem

In a similar vein, we also consider the compatible sequence problem introduced by Peter
Winkler. Given two binary sequences {Xi}i∈N and {Yi}i∈N, we say they are compatible
after removing some zeros from both sequences, there is no index with a 1 in both sequence.
Equivalently there exist increasing subsequences k1, k2, . . . , (respectively k′1 . . .) such that if
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Xj = 1 then j = ki for some i (resp. if Yj = 1 then j = k′i) so that for all i, we have
XkiYk′i = 0.

The question of compatibility can be cast into the co-ordinate percolation frame work as
well. Consider the directed graph with vertex set Z2

>0 where we have edges leading from the
vertex (i, j) to vertices (i + 1, j), (i, j + 1) and (i + 1, j + 1). Consider the following bond
percolation on this graph. If Xi = 1 then we declare the edges from (i, j) to (i+ 1, j) closed
for all j. Similarly if Yj = 1 we declare the edges from (i, j) to (i, j + 1) closed for all i. If
Xi = Yj, we declare the edge from (i, j) to (i+ 1, j + 1) closed. All other edges are declared
open. It is easy to see that the sequences {Xi} and {Yj} are compatible if and only if there
is an infinite open (oriented) path from (1, 1).

Now suppose {Xi}i∈N and {Yi}i∈N are independent i.i.d. sequences of Ber(q) random vari-
ables where q ∈ (0, 1). It is not hard to show that if q is sufficiently large then the sequences
are compatible with positive probability. Winkler and Kesten independently obtained upper
bounds on q that are strictly smaller than 1/2. The following question was asked by Winkler.

Question 1.1.4. Does there exist q > 0 two independent Ber(q) sequences {Xi}i∈N and
{Yi}i∈N are compatible with positive probability?

Numerical simulations suggest that the above question has affirmative answer for q < 0.3.
An affirmative answer for q sufficiently small was given by Gács in [18]. Other recent progress
was made on this problem by Kesten et. al. [31] constructing sequences with a positive density
of zeros which are compatible with a random sequence with positive probability. We give a
new proof of Gács’ result in Chapter 2. See Theorem 2.3. Our proof is different and we believe
more transperant. We also provide deterministic construction of a sequence with positive
density of zeros that is compatible with an i.i.d. Ber(q) sequence with positive probability
for q sufficiently small.

In each of Theorems 2.1, 2.2 and 2.3 the main difficulty is the presence of difficult to
embed strings of arbitrarily large length. The challenge is to be able to simultaneously
match these strings with their suitable partners (in the other sequence) at all length scales.
Like essentially all results in this area, our approach is multi-scale using renormalization.
The novelty of our approach is that, as far as possible, we ignore the anatomy of what
makes different configurations difficult to embed and instead consider simply the probability
that they can be embedded into a random block proving recursive power-law estimates for
these quantities. It is thus well suited to addressing embedding questions in a range of
different models even in the ones where to give a description of bad configurations becomes
exceedingly difficult. Indeed, we prove an abstract embedding result for general alphabets
satisfying certain conditions. See Theorem 2.4 in Chapter 2. Theorems 2.1, 2.2 and 2.3
follow in turn from this abstract theorem. The general idea of our multi-scale construction
yields useful results in other co-ordinate percolation type problems as well.
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1.2 Winkler’s Scheduling Problem

We consider the following problem introduced by Winkler, which in its original formulation
relates to clairvoyant scheduling of two independent random walks on a complete graph.
More precisely, on the complete graph KM with M ≥ 3 vertices consider the trajectories
of two independent discrete time random walks X and Y which move by choosing steps
uniformly at random, for convenience we assume the graphs have self-loops at each vertex.
We say that it is possible to schedule X and Y if it is possible to introduce delays (i.e., with
the knowledge of both X and Y, at each time only one of the random walks is chosen and
allowed to move) in the random walk trajectories such that the random walks never collide.
The following question, asked by Winkler, became prominent as the clairvoyant demon
problem.

Question 1.2.1. Does there exist M > 0 such that it is possible to schedule two independent
random walks on KM with positive probability?

For M = 3 it was shown in [38, Corollary 3.4] that the answer to the above question is
negative, i.e., even with the knowledge of infinite future of both the random walks, it is not
possible to schedule the walks on K3. However an affirmative answer to Question 1.2.1 was
conjectured in [11] for large enough M . In particular it is believed based on simulations,
that for M ≥ 4 the set of trajectories {X,Y} that can be scheduled has positive measure.

Noga Alon translated this problem into the language of coordinate percolation. Namely,
let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two i.i.d. sequences with

P(Xi = k) = P(Yj = k) =
1

M
for k = 1, 2, . . . ,M and for i, j = 1, 2, . . . .

Consider the following oriented percolation on the subgraph of the two-dimensional Eu-
clidean lattice induced on the vertex set Z2

>0. Call a vertex (i1, i2) ∈ Z2
>0 closed if Xi1 = Yi2

an call it open otherwise. It is curious to notice that this percolation process (for M=2) was
introduced much earlier by Diaconis and Freedman [12] in the completely different context
of studying visually distinguishable random patterns in connection with Julesez’s conjecture.
It is easy to observe that a pair of trajectories {X,Y} can be scheduled if and only if there
is an open oriented infinite path starting at the vertex (1, 1). See Figure 1.2 where blue and
red vertices respectively denote open and closed ones and open paths from (1, 1) are shown.

This scheduling problem first appeared in the context of distributed computing [11] where
it is shown that two independent random walks on a finite connected non-bipartite graph will
collide in a polynomial time even if a scheduler tries to keep them apart, unless the scheduler
is clairvoyant. In a recent work [3], instead of independent random walks, by allowing coupled
random walks, it was shown that a large number of random walks can be made to avoid
one another forever. In the context of clairvoyant scheduling of two independent walks,
the non-oriented version of the oriented percolation process described above was studied
independently in [38] and [4] where it is established that in the non-oriented model there is
percolation with positive probability if and only if M ≥ 4. In [19] it was established that,
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Figure 1.2: Scheduling problem as co-ordinate percolation

if there is percolation, the chance that the cluster dies out after reaching distance n must
decay polynomially in n, which showed that, unlike the non-oriented models, this model was
fundamentally different from Bernoulli percolation, where such decay is exponential.

In Chapter 3 we prove that for M sufficiently large it is possible to schedule two indepen-
dent random walks on KM with positive probability, thus providing an affirmative answer to
Winker’s question. See Theorem 3.1. Our proof uses a similar multi-scale structure devel-
oped in Chapter 2 but with crucial differences. An exceedingly complex proof of the same
result was previously given in [17]. Our proof is different and we believe more transparent.
In addition, we believe that our proof is robust and can be applied for more general graphs
and also for the situation when we try to schedule multiple random walks.

1.3 Higher Dimensional Embedding Problems

The first natural question one can ask by way of generalising the results in Chapter 1 are
the following higher dimensional analogues of Questions 1.1.1 and 1.1.3.

Question 1.3.1. Let X = {Xi}i∈Zd and Y = {Yi}i∈Zd be independent collections of i.i.d.
Ber(1

2
) random variables. Does there exist M > 0 such that X is almost surely M-embeddable

into Y?

Question 1.3.2. Let X and Y be independent homogeneous Poisson processes on Rd viewed
as metric spaces, i.e., X and Y are metric subspaces of Rd induced by independent Poisson
processes on Rd. Does there exist (M,D,C) such that almost surely X and Y are (M,D,C)-
roughly isometric?

Here the definition of M -embedding is the obvious modification of the definition in one
dimension where we consider M -Lipschitz maps from Zd to Zd. In Chapter 4 we provide
an affirmative answer to Question 1.3.1 for d = 2 and M sufficiently large; see Theorem
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4.1. The same argument works for d > 2 with minor modifications. The argument here is
also multi-scale and in spirit similar to the arguments presented in Chapter 2, but this is
much more technically challenging than the proof of Theorem 2.1 as in higher dimensions
the difficult to embed regions can have very complicated shapes.

1.3.1 Bi-Lipschitz Expansion

The complicated geometry of higher dimensional spaces presents an added challenge while
investigating Question 1.3.2. One key feature of the proof of Theorem 2.2 is that we have
to map large gaps between points in our Poisson process to relatively smaller gaps. In one
dimension it is straightforward to do as the geometry is linear and the gaps are all intervals.
But for d ≥ 2, we need to deal with arbitrary measurable sets. This motivates the following
question, which is also of independent interest.

Question 1.3.3. Fix 0 < γ < 1 − γ′ < 1. Does there exist C = C(γ, γ′) > 0 such that for
each measurable subset A of [0, 1]2 with Lebesgue measure γ, there exists a bijection ΦA :
[0, 1]2 → [0, 1]2 which is identity on the boundary and bi-Lipschitz with Lipschitz constant C
and such that ΦA(A) has Lebesgue measure at least 1− γ′?

In Chapter 5 we provide an affirmative answer to this question. See Theorem 5.1. Al-
though our construction of such maps is deterministic, the analysis is probabilistic using
martingale techniques. This result lets us map big holes in the Poisson process into smaller
holes in a bi-Lipschitz manner while maintaining a uniform control on the Lipschitz constant.
See Theorem 5.2 for an illustration of why this result is useful in proving rough isometry of
Poisson processes.

1.4 Note on Prior Publication and Collaboration

The results presented in this dissertation were obtained in collaboration with other re-
searchers and some have already been published elsewhere. Chapter 2 is based on a joint
work with Allan Sly [8] that has been published by Probability Theory and Related Fields.
We acknowledge the journal as the first published source of this material. The remaining
chapters are based on joint works with Vladas Sidoravicius and Allan Sly. Chapter 3 is based
on [7], which is available on Arxiv. Chapter 4 is based on [6], a work in preparation. Chapter
5 is based on [5], which is also available on Arxiv. I express my sincere thanks towards my
co-authors for allowing the inclusion of joints works with them in this dissertation.
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Chapter 2

Embeddings of One Dimensional
Random Objects

In this chapter we study embeddings of one dimensional random objects, i.e., binary se-
quences or Poisson processes on R. We provide affirmative answers to Questions 1.1.1, 1.1.3
and 1.1.4 using a multi-scale argument. Theorems 2.1, 2.2 and 2.3 are our main results in
this chapter.

2.1 Main Results

We start with Lipschitz embedding of binary sequences. We prove the following result.

Theorem 2.1. Let {Xi}i∈Z and {Yi}i∈Z be independent sequences of independent identically
distributed Ber(1

2
) random variables. For sufficiently large M almost surely there exists a

strictly increasing function φ : Z→ Z such that Xi = Yφ(i) and 1 ≤ φ(i)− φ(i− 1) ≤M for
all i.

Recall Definition 1.1.2 for rough isometry of two metric spaces. We have the following
theorem for random metric spaces given by independent Poisson processes on R.

Theorem 2.2. Let X and Y be independent Poisson processes on R viewed as metric spaces.
There exists (M,D,C) such that almost surely X and Y are (M,D,C)-roughly isometric.

Our final result is the compatible sequence problem of Winkler. Recall the definition of
compatible sequences from § 1.1.3. We give a new proof of the following result of Gács [18].

Theorem 2.3. For sufficiently small q > 0 two independent Ber(q) sequences {Xi}i∈N and
{Yi}i∈N are compatible with positive probability.

Independent Results: Two other researchers have also solved some of these problems
independently. Vladas Sidoravicius [37] solved the same set of problems and described his
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approach to us. His work is based on a different multi-scale approach, proving that for certain
choices of parameters p1 and p2 one can see random binary sequence sampled with parameter
p1 in the scenery determined by another binary sequence sampled with parameter p2, with
positive probability. This generalizes the main theorem of [28] and a slight modification of
it then implies Theorems 2.1, 2.2 and 2.3.

Shortly before uploading this work to arXiv Peter Gács sent us a draft of his paper [16]
solving Theorem 2.1. His approach extends his work on the scheduling problem [17]. The
proof is geometric taking a percolation type view and involves a complex multi-scale system
of structures. Our work was done completely independently of both.

As already mentioned in Chapter 1, each of Theorems 2.1, 2.2 and 2.3 follows from an
abstract embedding result for general alphabets which we now turn to.

2.1.1 General Theorem

To apply to a range of problems we need to consider larger alphabets of symbols. Let
CX = {C1, C2, . . .} and CY = {C ′1, C ′2, . . .} be a pair of countable alphabets and let µX and
µY be probability measures on CX and CY respectively.

We will suppose also that we have a relation R ⊆ CX × CY. If (Ci, C
′
k) ∈ R, we denote

this by Ci ↪→ C ′k. Let GX
0 ⊆ CX and GY

0 ⊆ CY be two given subsets such that Ci ∈ GX
0 and

C ′k ∈ GY
0 implies Ci ↪→ C ′k. Symbols in GX

0 and GY
0 will be referred to as “good”.

Definitions

Now let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two sequences of symbols coming from
the alphabets CX and CY respectively. We will refer to such sequences as an X-sequence and
a Y-sequence respectively. For 1 ≤ i1 < i2, we call the subsequence (Xi1 , Xi1+1, . . . , Xi2) the
“[i1, i2]-segment” of X and denote it by X[i1,i2]. We call X[i1,i2] a “good” segment if Xi ∈ GX

0

for i1 ≤ i ≤ i2 and similarly for Y.
Let R be a fixed constant. Let R0 = 2R, R−0 = 1, R+

0 = 3R2.

Definition 2.1.1. Let X and Y be sequences as above. Let X = (X1, . . . Xn) and Y =
(Y1, . . . Yn′) be segments of X and Y respectively. We say X R-embeds or R-maps into Y ,
denoted X ↪→R Y if there exists 0 = i0 < i1 < i2 < . . . < ik = n and 0 = i′0 < i′1 < i′2 < . . . <
i′k = n′ satisfying the following conditions.

1. For each r, r ≥ 0, either ir+1 − ir = i′r+1 − i′r = 1 or ir+1 − ir = R0 or i′r+1 − i′r = R0.

2. If ir+1 − ir = i′r+1 − i′r = 1, then Xir+1 ↪→ Yi′r+1.

3. If ir+1 − ir = R0, then R−0 ≤ i′r+1 − i′r ≤ R+
0 , and both X[ir+1,ir+1] and Y[i′r+1,i′r+1] are

good segments.

4. If i′r+1 − i′r = R0, then R−0 ≤ ir+1 − ir ≤ R+
0 , and both X[ir+1,ir+1] and Y[i′r+1,i′r+1] are

good segments.
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We say that X R-embeds or R-maps into Y, denoted X ↪→R Y if there exists 0 = i0 <
i1 < i2 < . . . and 0 = i′0 < i′1 < i′2 < . . . satisfying the above conditions.

Throughout we will use a fixedR defined in Theorem 2.4 and will simply refer to mappings
and write that X ↪→ Y (or X ↪→ Y ) except where it is ambiguous. The following elementary
observation is useful. Suppose we have n0 < n1 < . . . nk and n′0 < n′1 < . . . n′k such that
X[nr+1,nr+1] ↪→ Y[n′r+1,n′r+1] for 0 ≤ r < k, then X[n0+1,nk] ↪→ Y[n′0+1,n′k].

A key element in our proof is tail estimates on the probability that we can map a block
X into a random block Y and so we make the following definition.

Definition 2.1.2. For X ∈ CX, we define the embedding probability of X as SX
0 (X) =

P(X ↪→ Y |X) where Y ∼ µY. We define SY
0 (Y ) similarly and suppress the notation X,Y

when the context is clear.

General Theorem

We can now state our general theorem which will imply the main results of this chapter as
shown in § 2.2.

Theorem 2.4 (General Theorem). There exist positive constants β, δ, m, R such that for
all large enough L0 the following hold. Let X ∼ µX and Y ∼ µY where µX and µY are
probability distributions on alphabets such that for all k ≥ L0,

µX({Ck+1, Ck+2, . . .}) ≤
1

k
, µY({C ′k+1, C

′
k+2, . . .}) ≤

1

k
. (2.1.1)

Suppose the following conditions are satisfied

1. For all 0 < p ≤ 1− L−1
0 ,

P(SX
0 (X) ≤ p) ≤ pm+1L−β0 , P(SY

0 (Y ) ≤ p) ≤ pm+1L−β0 . (2.1.2)

2. Most symbols are “good”,

P(X ∈ GX
0 ) ≥ 1− L−δ0 , P(Y ∈ GY

0 ) ≥ 1− L−δ0 . (2.1.3)

Then for X = (X1, X2, . . .) and Y = (Y1, Y2, . . .), two sequences of i.i.d. symbols with laws
µX and µY respectively, we have

P(X ↪→R Y) > 0.
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2.1.2 Proof Outline

The proof makes use of a number of parameters, α, β, δ,m, k0, R and L0 which must satisfy
a number of relations described in the next subsection. Our proof is multi-scale and divides
the sequences into blocks on a series of doubly exponentially growing length scales Lj = Lα

j

0

for j ≥ 0 and at each of these levels we define a notion of a “good” block. Single characters
in the base sequences X and Y constitute the level 0 blocks.

Suppose that we have constructed the blocks up to level j denoting the sequence as
(X

(j)
1 , X

(j)
2 . . .). In § 2.3, we give a construction of (j + 1)-level blocks out of j-level sub-

blocks in such way that the blocks are independent and apart from the first block, identically
distributed and that the first and last L3

j sub-blocks of each block are good. For more details,
see § 2.3.

At each level we distinguish a set of blocks to be good. In particular this will be done in
such a way that at each level any good block maps into any other good block. Moreover,
any segment of Rj = 4j(2R) good X-blocks will map into any segment of Y-blocks of length
between R−j = 4j(2− 2−j) and R+

j = 4jR2(2 + 2−j) and vice-versa. This property of certain
mappings will allow us to avoid complicated conditioning issues. Moreover, being able to
map good segments into shorter or longer segments will give us the flexibility to find suitable
partners for difficult to embed blocks and to achieve improving estimates of the probability
of mapping random j-level blocks X ↪→ Y . We describe how to define good blocks in § 2.3 .

The proof then involves a series of recursive estimate at each level given in § 2.4. We
ask that at level j the probability that a block is good is at least 1 − L−δj so that the
vast majority of blocks are good. Furthermore, we show tail bounds on the embedding
probabilities showing that for 0 < p ≤ 1− L−1

j ,

P(SX
j (X) ≤ p) ≤ pm+2−jL−βj

where SX
j (X) denotes the j-level embedding probability P[X ↪→ Y |X] for X, Y random

independent j-level blocks. We show the analogous bound for Y-blocks as well. This is
essentially the best we can hope for – we cannot expect a better than power-law bound here
because of the probability of occurrences of sequences of repeating symbols in the base 0-level
sequence of length C log(Lαj ) for large C. We also ask that good blocks have the properties
described above and that the length of blocks satisfy an exponential tail estimate. The full
inductive step is given in § 2.4.1. Proving this constitutes the main work of this chapter.

The key quantitative estimate in the chapter is Lemma 2.7.3 which follows directly from
the recursive estimates and bounds the chance of a block having an excessive length, many
bad sub-blocks or a particularly difficult collection of sub-blocks measured by the product
of their embedding probabilities. In order to achieve the improving embedding probabilities
at each level we need to take advantage of the flexibility in mapping a small collection of
very bad blocks to a large number of possible partners by mapping the good blocks around
them into longer or shorter segments using the inductive assumptions. To this effect we
define families of mappings between partitions to describe such potential mappings. Because
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m is large and we take many independent trials the estimate at the next level improves
significantly. Our analysis is split into 5 different cases.

To show that good blocks have the required properties we construct them so that they
have at most k0 bad sub-blocks all of which are “semi-bad” (defined in § 2.3) in particular
with embedding probability at least (1 − 1

20k0R
+
j+1

). We also require that each subsequence

of L
3/2
j sub-blocks is “strong” in that every semi-bad block maps into a large proportion of

the sub-blocks. Under these condition we show that for any good blocks X and Y at least
one of our families of mappings gives an embedding. This holds similarly for embeddings of
segments of good blocks.

To complete the proof we note that with positive probability X
(j)
1 and Y

(j)
1 are good for

all j with positive probability. This gives a sequence of embeddings of increasing segments of
X and Y and by taking a converging subsequential limit we can construct an R-embedding
of the infinite sequences completing the proof.

We can also give deterministic constructions using our results. In Section 2.10 we con-
struct a deterministic sequence which has an M -Lipschitz embedding into a random binary
sequence in the sense of Theorem 2.1 with positive probability. Similarly, this approach
gives a binary sequence with a positive density of ones which is compatible sequence with a
random Ber(q) sequence in the sense of Theorem 2.3 for small enough q > 0 with positive
probability.

Parameters

Our proof involves a collection of parameters α, β, δ, k0,m and R which must satisfy a system
of constraints. The required constraints are

α > 6, δ > 2α ∨ 48, β > α(δ + 1),m > 9αβ, k0 > 36αβ,R > 6(m+ 1).

To fix on a choice we will set

α = 10, δ = 50, β = 600,m = 60000, k0 = 300000, R = 400000. (2.1.4)

Given these choices we then take L0 to be a sufficiently large integer. We did not make a
serious attempt to optimize the parameters or constraints and indeed at times did not in
order to simplify the exposition.

2.1.3 Organization of the Chapter

In Section 2.2 we show how to derive Theorems 2.1, 2.2 and 2.3 from our general Theorem 2.4.
In Section 2.3 we describe our block constructions and formally define good blocks. In
Section 2.4 we state the main recursive theorem and show that it implies Theorem 2.4. In
Sections 2.5 and 2.6 we construct a collection of generalized mappings of partitions which we
will use to describe our mappings between blocks. In Section 2.7 we prove the main recursive
tail estimates on the embedding probabilities. In Section 2.8 we prove the recursive length
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estimates on the blocks. In Section 2.9 we show that good blocks have the required inductive
properties. Finally in Section 2.10 we describe how these results yield deterministic sequences
with positive probabilities of M -Lipschitz embedding or being a compatible sequence.

2.2 Applications to Lipschitz Embeddings, Rough

Isometries and Compatible Sequences

In this section we show how Theorem 2.4 can be used to derive our three main results. Notice
that since Theorem 2.4 does not require X and Y to be independent. Hence all the three
results shall remain valid even if we drop the assumption of independence between the two
sequences.

2.2.1 Lipschitz Embeddings

Defining the sequences X and Y and the alphabets CX and CY

Let X∗ = {X∗i }i≥1 and Y ∗ = {Y ∗i }i≥1 be two independent sequences of i.i.d. Ber(1
2
) variables.

Let M0 be a large constant which will be chosen later. Let Ỹ ∗ = {Ỹ ∗i } be the sequence given

by Ỹ ∗i = Y ∗[(i−1)M0+1,iM0]. Now let us divide the {0, 1} sequences of length M0 in the following
3 classes.

1. Class ?. Let Z = (Z1, Z2, · · · , ZM0) be a sequence of 0’s and 1’s. A length 2-
subsequence (Zi, Zi+1) is called a “flip” if Zi 6= Zi+1. We say Z ∈ ? if the number
of flips in Z is at least 2R+

0 .

2. Class 0. If Z = (Z1, Z2, · · · , ZM0) /∈ ? and Z contains more 0’s than 1’s, then Z ∈ 0.

3. Class 1. If Z = (Z1, Z2, · · · , ZM0) /∈ ? and Z contains more 1’s than 0’s, then Z ∈ 1.
For definiteness, let us also say Z ∈ 1, if Z contains equal number of 0’s and 1’s and
Z /∈ ?.

Now set X = (X1, X2, . . .) = X∗ and construct Y = (Y1, Y2, . . .) from Ỹ ∗ as follows. Set

Yi = 0,1 or ? according as whether Ỹ ∗i ∈ 0,1 or ?.
It is clear from this definition that X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) are two indepen-

dent sequences of i.i.d. symbols coming from the alphabets CX and CY having distributions
µX and µY respectively where

CX = {0, 1}, CY = {0,1, ?}.

We take µX to be the uniform measure on {0, 1} and µY to be the natural measure on {0,1, ?}
induced by the independent Ber(1

2
) variables.

We take the relation R ⊆ CX × CY to be: {0 ↪→ 0, 0 ↪→ ?, 1 ↪→ 1, 1 ↪→ ?} and the good
sets GX

0 = {0, 1} and GY
0 = {?}.
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It is now very easy to verify that CX, CY, µX, µY,R, GX
0 , G

Y
0 , as defined above satisfies all

the conditions described in our abstract framework.

Constructing the Lipschitz Embedding

Now we verify that the the sequences X and Y constructed from the binary sequences X∗ and
Y ∗ can be used to construct an embedding with positive probability. Note that though we
constructed the sequences X and Y from i.i.d. Ber(1

2
) sequences X∗ and Y ∗ in the previous

subsection, the construction is deterministic and hence can be carried out for any binary
sequence. We have the following lemma.

Lemma 2.2.1. Let X∗ = {X∗i }i≥1 and Y ∗ = {Y ∗i }i≥1 be two binary sequences. Let X and
Y be the sequences constructed from X∗ and Y ∗ as above. There is a constant M , such that
whenever X ↪→ Y, there exists a strictly increasing map φ : N→ N such that for all i, j ∈ N,
Xi = Yφ(i) and |φ(i)− φ(j)| ≤M |i− j|, φ(1) < M/2.

Before proceeding with the proof, let us make the following notation. We say X∗ ↪→∗M Y ∗

if a map φ satisfying the conditions of the lemma exists. Let us also make the following
definition for finite subsequences.

Definition 2.2.2. Let X∗[i1,i2] and Y ∗[i
′
1,i
′
2] be two segments of X∗ and Y ∗ respectively. We

say that X∗[i1,i2] ↪→∗M Y ∗[i
′
1,i
′
2] if there exists a strictly increasing φ̃ : {i1, i1 + 1, . . . , i2} →

{i′1, i′1 + 1, . . . , i′2} such that

(i) Xk = Yφ̃(k) and k, l ∈ {i1, i1 + 1, . . . , i2} implies |φ(k)− φ(l)| ≤M |k − l|.

(ii) φ̃(i1)− i′1 ≤M/3 and i′2 − φ̃(i2) ≤M/3.

In what follows, we shall always be taking M ≥ 6. The following observation is trivial.

Observation 2.2.3. Let 0 = i0 < i2 < . . . and 0 = i′0 < i′2 < . . . be two increasing sequences
of integers. If X∗[ik+1,ik+1] ↪→∗M Y ∗[i

′
k+1,i′k+1] for each k ≥ 0, then X∗ ↪→∗M Y ∗.

Proof of Lemma 2.2.1. Let X∗, Y ∗,X,Y be as in the statement of the Lemma. Let X ↪→ Y.
Let 0 = i0 < i1 < i2 < . . . and 0 = i′0 < i′1 < i′2 < . . . be the two sequences obtained from
Definition 2.1.1. The previous observation then implies that it suffices to prove that there
exists M (not depending on X∗ and Y ∗) such that for all h ≥ 0,

X∗[ih+1,ih+1] ↪→∗M Y ∗[i
′
hM0+1,i′h+1M0].

Notice that since {ih+1− ih} and {i′h+1− i′h} are bounded sequences, if we can find maps
φh : {ih + 1, . . . , ih+1} → {i′hM0 + 1, . . . , i′h+1M0} such that X∗i = Y ∗φh(i), then for sufficiently

large M and for all h we shall have X∗[ih+1,ih+1] ↪→∗M Y ∗[i
′
hM0+1,i′h+1M0]. We shall call such a

φh an embedding.
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There are three cases to consider.

Case 1: ih+1 − ih = i′h+1 − i′h = 1. By hypothesis, this implies Xih+1 ↪→ Yi′h+1. If

X∗ih+1 = 0 and Y ∗[i
′
hM0+1,i′hM0+M0] ∈ {0, ?}, then Y ∗[i

′
hM0+1,i′hM0+M0] must contain at least one

0 and hence an embedding exists. Similarly if X∗ih+1 = 1 and Y ∗[i
′
hM0+1,i′hM0+M0] ∈ {1, ?}

then also an embedding exists.
Case 2: i′h+1 − i′h = R0, R

−
0 ≤ ih+1 − ih ≤ R+

0 . In this case, Y [i′h+1,i′h+1] is a “good”

segment, i.e., Y ∗[(i
′
h+k)M0+1,(i′h+k+1)M0] ∈ ?, for 0 ≤ k ≤ i′h+1 − i′h − 1. By what we have

already observed it now suffices to only consider the case ih+1− ih = R+
0 . Now by definition

of ?, there exist an alternating sub-sequence of 2R+
0 0’s and 2R+

0 1’s in Y ∗[i
′
hM0+1,(i′h+1)M0].

It follows that there is an embedding in this case also.
Case 3: ih+1 − ih = R0, R

−
0 ≤ i′h+1 − i′h ≤ R+

0 . Similarly as in Case 2, there exists an
embedding in this case as well, we omit the details.

Proof of Theorem 2.1

We now complete the proof of Theorem 2.1 by using Theorem 2.4.

Proof of Theorem 2.1. Let CX, µX, CY, µY be as described above. Let X ∼ µX, Y ∼ µY.
(Notice that µY implicitly depends on the choice of M0). Notice that (2.1.1) holds trivially
if L0 ≥ 3. Let β, δ,m,R, L0 be given by Theorem 2.4. First we show that there exists M0

such that (2.1.2) and (2.1.3) hold.
Let Z = (Z1, Z2, . . . , ZM0) be a sequence of i.i.d. Ber(1

2
) variables. Observe that

P(Z ∈ ?) ≥ (1− 2
1−b M0

2R+
0

c
)2R+

0 → 1 as M0 →∞.

Hence we can choose M0 large enough such that

µY(?) ≥ max{1− L−δ0 , 1− 2−(m+1)L−β0 }. (2.2.1)

Since all X blocks are good and ? is a good Y block, P(X ∈ GX
0 ) = 1 and P(Y ∈ GY

0 ) ≥
µY(?) ≥ 1− L−δ0 and hence 2.1.2 holds. For (2.1.3), notice that SX

0 (X) > 1− L−1
0 for all X

and SY
0 (Y ) ≥ 1

2
for all Y . Hence P(SY

0 (Y ) ≤ p) = 0 if p ≤ 1
2
. For 1− L−1

0 ≥ p ≥ 1
2
,

P(SY0 (Y ) ≤ p) ≤ P(Y 6= ?) ≤ (
1

2
)m+1L−β0 ≤ pm+1L−β0 ,

and hence (2.1.3) holds.
Now let X∗ = {X∗i }i≥1 and Y ∗ = {Y ∗i }i≥1 be two independent sequences of i.i.d. Ber(1

2
)

variables. Choosing M0 as above, construct X, Y as described in the previous subsection.
Then by Theorem 2.4, we have that P(X ↪→R Y) > 0. Using Lemma 2.2.1 it now follows that
for M sufficiently large, we have P(X∗ ↪→∗M Y ∗) > 0. This gives an embedding for sequences
indexed by the natural numbers which can easily be extended to embedding of sequences
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indexed by the full integers with positive probability. To see that this has probability 1 we
note that the event that there exists an embedding is shift invariant and i.i.d. sequences are
ergodic with respect to shifts and hence it has probability 0 or 1 completing the proof.

2.2.2 Rough Isometry

Proposition 2.1 and 2.2 of [35] showed that to show that there exists (M,D,C) such that two
Poisson processes on R are (M,D,C)-roughly isometric almost surely it is sufficient to show
that two independent copies of Bernoulli percolation on Z with parameter 1

2
, viewed as sub-

sets of R, are (M ′, D′, C ′)-roughly isometric with positive probability for some (M ′, D′, C ′).
We will solve the percolation problem and thus infer Theorem 2.2.

Defining the sequences X and Y and the alphabets CX and CY

Let X∗ = {X∗i }i≥0 and Y ∗ = {Y ∗i }i≥0 be two independent sequences of i.i.d. Ber(1
2
) variables

conditioned so that X∗0 = Y ∗0 = 1. Now let us define two sequences k0 < k1 < k2 < . . . and
k′0 < k′1 < k′2 < . . . as follows. Let k0 = 0 and ki+1 = minr>ki X

∗
r = 1. Similarly let k′0 = 0

and k′i+1 = minr>k′i Y
∗
r = 1. Let X̃∗i = X∗[ki−1,ki−1] and Ỹ ∗i = Y ∗[k

′
i−1,k

′
i−1]. The elements

of the sequences {X̃∗i }i≥1 and {Ỹ ∗i }i≥1 are sequences consisting of a single 1 followed by a
number (possibly none) of 0’s. We now divide such sequences into the following classes.

Let Z = (Z0, Z1, . . . ZL), (L ≥ 0) be a sequence of 0’s and 1’s with Z0 = 1 and Zi = 0 for
0 < i ≤ L. We say that Z ∈ C0 if L = 0 and for j ≥ 1, we say Z ∈ Cj if 2j−1 ≤ L < 2j.

Now construct X = (X1, X2, . . .) from X̃∗ and Y = (Y1, Y2, . . .) from Ỹ ∗ as follows. Set

Xi = Cj if X̃∗i ∈ Cj. Similarly set Yi = Cj if Ỹ ∗i ∈ Cj.
It is clear from this definition that X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) are two

sequences of i.i.d. symbols coming from the alphabets CX and CY having distributions µX

and µY respectively where
CX = CY = {C0, C1, C2, . . .}

and µX = µY is given by

µX({Cj}) = µY({Cj}) = P(Z ∈ Cj)
where Z = Z∗[0,i−1], Z∗0 = 0, Z∗t are of i.i.d. Ber(1

2
) variables for t ≥ 1 and i = min{k > 0 :

Z∗k = 1}.
We take the relation R ⊆ CX × CY to be: Ck ↪→ Ck′ if |k − k′| ≤ M0. The “good”

sets are defined to be GX
0 = GY

0 = {Cj : j ≤ M0}. It is now very easy to verify that
CX, CY, µX, µY,R, GX

0 , G
Y
0 , as defined above satisfy all the conditions described in our abstract

framework.

Existence of the Rough Isometry

Lemma 2.2.4. Let X∗ = {X∗i }i≥0 and Y ∗ = {Y ∗i }i≥0 be two binary sequences with X∗0 =
Y ∗0 = 1. Let NX∗ = {i : X∗i = 1} and NY ∗ = {i : Y ∗i = 1}. Let X and Y be the sequences
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constructed from X∗ and Y ∗ as above. Then there exist constants (M ′, D′, C ′), such that
whenever X ↪→R Y, there exists φ : NX∗ → NY ∗ such that φ(0) = 0 and

(i) For all t, s ∈ NX∗,

1

M ′ |t− s| −D
′ ≤ |φ(t)− φ(s)| ≤M ′|t− s|+D′.

(ii) For all t ∈ NY ∗, ∃s ∈ NX∗ such that |t− φ(s)| ≤ C ′.

That is, X ↪→R Y implies NX∗ and NY ∗ (viewed as subsets of R) are (M ′, D′, C ′)-roughly
isometric.

Proof. Suppose that X ↪→ Y and let 0 = i0 < i1 < i2 < . . . and 0 = i′0 < i′1 < i′2 < . . . be
the two sequences satisfying the conditions of Definition 2.1.1. Let 0 = k0 < k1 < k2 < . . .
and 0 = k′0 < k′1 < k′2 < . . . be the sequences described in the previous subsection while

defining X and Y. For r ≥ 1, define X∗∗r = X∗[kir−1
,kir−1] and Y ∗∗r = Y ∗

[
k′
i′r−1

,k′
i′r
−1

]
, i.e., X∗∗r

is the segment of X∗ corresponding to X[ir−1+1,ir] and Y ∗∗r is the segment of Y ∗ corresponding
to Y[i′r−1+1,i′r] Define NX,r = NX∗ ∩ [kir−1 , kir − 1] and NY,r = NY ∗ ∩ [k′i′r−1

, k′i′r − 1]. Notice

that by construction, for each r, X∗kir−1
= 1 and Y ∗k′

i′r−1

= 1, i.e., kir−1 ∈ NX,r ⊆ NX∗ and

k′i′r−1
∈ NY,r ⊆ NY ∗ .

Now let us define φ : NX∗ → NY ∗ as follows. If s ∈ NX,r, define φ(s) = k′i′r−1
. Clearly

φ(0) = 0. We show now that for M ′ = 2M0+2R+
0 , D

′ = 22M0+3(R+
0 )2 and C ′ = 2M0+1R+

0 , the
map defined as above satisfies the conditions in the statement of the lemma.

Proof of (i). First consider the case where s, t ∈ NX,r for some r. If s 6= t then clearly
X[ir−1+1,ir] is a good segment and hence |s− t| ≤ 2M0R+

0 . Clearly |φ(s)−φ(t)| = 0. It follows
that for the specified choice of M ′ and D′,

1

M ′ |t− s| −D
′ ≤ |φ(t)− φ(s)| ≤M ′|t− s|+D′.

Let us now consider the case s ∈ NX,r1 , t ∈ NX,r2 where r1 < r2. Clearly then kir1−1 ≤
s < kir1 and kir2−1 ≤ t < kir2 . Also notice that by choice of D′, for any good segment

X[ih+1,ih+1] we must have |kih+1
− kih| ≤ 2M0R+

0 ≤ D′
2M ′ . Further if for some h, ih+1 = ih + 1,

we must have that |NX,h+1| = 1. It follows that s ≤ kir1−1 + D′
M ′ and t ≤ kir2−1 + D′

M ′ . It is
clear from the definitions that φ(s) = k′i′r1−1

and φ(t) = k′i′r2−1
.

Then we have,

|φ(t)− φ(s)| =
r2−1∑
h=r1

|k′i′h − k
′
i′h−1
|

and
r2−1∑
h=r1

|kih − kih−1
| − D′

M ′ ≤ |t− s| ≤
r2−1∑
h=r1

|kih − kih−1
|+ D′

M ′ .
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It now follows from the definitions that for each h,

1

M ′ |kih − kih−1
| ≤ |k′i′h − k

′
i′h−1
| ≤M ′|kih − kih−1

|.

Adding this over h = r1, . . . , r2 − 1, we get that

1

M ′ |t− s| −D
′ ≤ |φ(t)− φ(s)| ≤M ′|t− s|+D′

in this case as well, which completes the proof of (i).
Proof of (ii). Let t ∈ NY ∗ and let r be such that k′i′r ≤ t < k′i′r+1

. Now if i′r+1 − i′r = 1

we must have t = k′i′r and hence t = φ(s) where s = kir ∈ NX∗ and hence (ii) holds for t. If

i′r+1− i′r 6= 1 we must have that Y[ir+1,ir+1] is a good segment and hence k′i′r+1
−k′i′r ≤ 2M0R+

0 .

Setting s = kir ∈ NX∗ we see that φ(s) = k′i′r and hence |t−φ(s)| ≤ 2M0R+
0 ≤ C ′, completing

the proof of (ii).

Proof of Theorem 2.2

Now we prove Theorem 2.2 using Theorem 2.4.

Proof of Theorem 2.2. Let CX, µX, CY, µY be as described above. Let X ∼ µX, Y ∼ µY.
Notice first that

µX(C0) = µY(C0) =
1

2
and µX(Cj) = µY(Cj) = (

1

2
)2j−1 − (

1

2
)2j

for j ≥ 1, hence (2.1.1) is satisfied for for all k. We first show that there exists M0 such
that (2.1.2) and (2.1.3) hold if β, δ,m,R and L0 are constants such that the conclusion of
Theorem 2.4 holds.

First observe that everything is symmetric in X and Y. Clearly, we can take M0 suffi-
ciently large so that SX

0 (X) ≥ 1− L−1
0 for X = Ck for all k ≤M0.

Now suppose X = Ck, where k > M0.

SX
0 (X) =

∑
k′:|k′−k|≤M0

µY(C ′k) = (
1

2
)2k−M0−1 − (

1

2
)2k+M0 .

Let us fix p ≤ 1− L−1
0 . Then we have
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P(SX
0 (X) ≤ p) ≤

∑
k>M0

µX(Ck)I((
1

2
)2k−M0−1 − (

1

2
)2k+M0 ≤ p)

≤
∑
k>M0

µX(Ck)I((
1

2
)2k−M0 ≤ p)

≤
∑

k≥M0+log2(− log2 p)

(
1

2
)2k−1 − (

1

2
)2k

≤ (
1

2
)2M0+log2(− log2 p)−1

(
1

2
)2M0−1(− log2 p)

= p2M0−1 ≤ pm+1(1− L−1
0 )2M0−1−m−1 ≤ pm+1L−β0

for M0 sufficiently large. Also, since
∑

k µ
X(Ck) = 1, by choosing M0 sufficiently large we

can make
∑

k≤M0
µX(Ck) ≥ 1− L−δ0 .

Hence there exist some constant M0 for which both (2.1.2) and (2.1.3) hold. This together
with Lemma 2.2.4 and Theorem 2.4 implies a rough isometry with positive probability for
two independent copies of site percolation on N∪{0} and hence on Z. The comments at the
beginning of this subsection then show that the conditional results of [35] extend this result
to Poisson processes on R proving Theorem 2.2.

2.2.3 Compatible Sequences

Defining the alphabets CX and CY

Let X = {Xi}i≥1 and Y = {Yi}i≥1 be two independent sequences of i.i.d. Ber(q) variables.
Let us take CX = CY = {0, 1}. The measures µX and µY are induced by the distribution of
Xi’s and Yi’s, i.e., µX({1}) = µY({1}) = q and µX({0}) = µY({0}) = 1 − q. It is then clear
that X and Y are two independent sequences of i.i.d. symbols coming from the alphabets
CX and CY having distributions µX and µY respectively.

We define the relation R ⊆ CX × CY by

{0 ↪→ 0, 0 ↪→ 1, 1 ↪→ 0}.

Finally the “good” symbols are defined by GX
0 = GY

0 = {0}. It is clear that all the conditions
in the definition of our set-up is satisfied by this structure.

Existence of the compatible map

Lemma 2.2.5. Let X = {Xi}i≥1 and Y = {Yi}i≥1 be two binary sequences. Suppose X ↪→ Y.
Then there exist D,D′ ⊆ N such that,

(i) For all i ∈ D, Xi = 0, for all i′ ∈ D′, Yi′ = 0.
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(ii) Let N − D = k1 < k2 < . . . and N − D′ = k′1 < k′2 < . . .. Then for each i, Xki 6= Yk′i
and hence XkiYk′i = 0.

Proof. The sets D and D′ denote the set of sites we will delete. Let 0 = i0 < i1 < i2 < . . .
and 0 = i′0 < i′1 < i′2 < . . . be the sequences satisfying the properties listed in Definition
2.1.1. Let H∗1 = {h : ih+1 − ih = R0}, H∗2 = {h : i′h+1 − i′h = R0}, H∗3 = {h : ih+1 − ih =
i′h+1 − i′h = 1, Xih+1 = Yi′h+1 = 0}. Let H∗ = ∪3

i=1H
∗
i . Now define

D =
⋃
h∈H∗

[ih + 1, ih+1] ∩ N, D′ =
⋃
h∈H∗

[i′h + 1, i′h+1] ∩ N. (2.2.2)

It is clear from Definition 2.1.1 that D,D′ defined as above satisfies the conditions in the
statement of the lemma.

Proof of Theorem 2.3

Now we complete proof of Theorem 2.3 using Theorem 2.4.

Proof of Theorem 2.3. Let CX, µX, CY, µY be as described above. Let X ∼ µX, Y ∼ µY.
(Notice that µX, µY implicitly depend on q) Let β, δ,m,R, L0 be constants such that the
conclusion of Theorem 2.4 holds. Take q0 = L−δ0 . Let q ≤ q0. Clearly, then, for any X ∈ CX
(resp. for any Y ∈ CY) we have SX

0 (X) ≥ 1− q ≥ 1− L−1
0 (resp. SY

0 (Y ) ≥ 1− L−1
0 ). Hence,

(2.1.2) is vacuously satisfied. That (2.1.3) holds follows directly from the definitions. Notice
that since the alphabet sets are finite (2.1.1) trivially holds. Theorem 2.3 now follows from
Lemma 2.2.5 and Theorem 2.4.

2.3 The Multi-scale Structure

Let X, Y, CX, CY, GX
0 , G

Y
0 be as described in the previous section. As we have described in

§ 2.1.2 before, our strategy of proof of Theorem 2.4 is to partition the sequences X and
Y into blocks at each level j ≥ 1. Because of the symmetry between X and Y we only
describe the procedure to form the blocks for the sequence X. For each j ≥ 1, we write
X = (X

(j)
1 , X

(j)
2 , . . .) where we call each X

(j)
i a level j X-block. Most of the time we would

clearly state that something is a level j block and drop the superscript j. Each of the X-block
at level j is a concatenation of a number of level (j − 1) X-blocks, where level 0 blocks are
just the characters of the sequence X. At each level, we also have a recursive definition of
“good” blocks. Let GX

j and GY
j denote the set of good X-blocks and good Y-blocks at j-th

level respectively. Now we are ready to describe the recursive construction of the blocks
X

(j)
i . for j ≥ 1.
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2.3.1 Recursive Construction of Blocks

We only describe the construction for X. Let us suppose we have already constructed the
blocks of partition upto level j for some j ≥ 0 and we have X = (X

(j)
1 , X

(j)
2 , . . .). Also

assume we have defined the “good” blocks at level j, i.e., we know GX
j . We can start off the

recursion since both these assumptions hold for j = 0. We describe how to partition X into
level (j + 1) blocks: X = (X

(j+1)
1 , X

(j+2)
2 , . . .).

Recall that Lj+1 = Lαj = Lα
j+1

0 . Suppose the first k (k ≥ 0) blocks X
(j+1)
1 , . . . , X

(j+1)
k at

level (j + 1) has already been constructed and suppose that the rightmost level j-subblock

of X
(j+1)
k is X

(j)
m . Then X

(j+1)
k+1 consists of the sub-blocks X

(j)
m+1, X

(j)
m+2, . . . , X

(j)

m+l+L3
j

where

l > L3
j + Lα−1

j is selected in the following manner. Let Wk+1,j+1 be a geometric random

variable having Geom(L−4
j ) distribution and independent of everything else. Then

l = min{s ≥ L3
j + Lα−1

j +Wk+1,j+1 : Xm+s+i ∈ GX
j for 1 ≤ i ≤ 2L3

j}.

That such an l is finite with probability 1 will follow from our recursive estimates.
Put simply, our block construction mechanism at level (j + 1) is as follows:

Starting from the right boundary of the previous block, we include L3
j many sub-blocks, then

further Lα−1
j many sub-blocks, then a Geom(L−4

j ) many sub-blocks. Then we wait for the
first occurrence of a run of 2L3

j many consecutive good sub-blocks, and end our block at the
midpoint of this run.

This somewhat complex choice of block structure is made for several reasons. It guar-
antees stretches of good sub-blocks at both ends of the block thus ensuring these are not
problematic when trying to embed one block into another. The fact that good blocks can be
mapped into shorter or longer stretches of good blocks then allows us to line up sub-blocks
in a potential embedding in many possible ways which is crucial for the induction. Our
blocks are not of fixed length. It is potentially problematic to our approach if conditional on
a block being long that it contains many bad blocks. Thus we added the geometric term to
the length. This has the effect that given that the block is long, it is most likely because the
geometric random variable is large, not because of the presence of many bad blocks. Finally,
the construction means that block will be independent.

We now record two simple but useful properties of the blocks thus constructed in the
following observation. Once again a similar statement holds for Y-blocks.

Observation 2.3.1. Let X = (X
(j+1)
1 , X

(j+1)
2 , . . .) = (X

(j)
1 , X

(j)
2 , . . .) denote the partition of

X into blocks at levels (j + 1) and j respectively. Then the following hold.

1. Let X
(j+1)
i = (X

(j)
i1
, X

(j)
i1+1, . . . X

(j)
i1+l). For i ≥ 1, X

(j)
i1+l+1−k ∈ GX

j for each k, 1 ≤ k ≤ L3
j .

Further, if i > 1, then X
(j)
i1+k−1 ∈ GX

j for each k, 1 ≤ k ≤ L3
j . That is, all blocks at level

(j + 1), except possibly the leftmost one (X
(j+1)
1 ), are guaranteed to have at least L3

j

“good” level j sub-blocks at either end. Even X
(j+1)
1 ends in L3

j many good sub-blocks.
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2. The blocks X
(j+1)
1 , X

(j+1)
2 , . . . are independently distributed. In fact, X

(j+1)
2 , X

(j+1)
3 , . . .

are independently and identically distributed according to some law, say µX
j+1. Further-

more, conditional on the event {X(k)
i ∈ GX

k for i = 1, 2, . . . , L3
k, for all k ≤ j}, the

(j + 1)-th level blocks X
(j+1)
1 , X

(j+1)
2 , . . . are independently and identically distributed

according to the law µX
j+1.

From now on whenever we say “a (random) X-block at level j”, we would imply that it
has law µX

j , unless explicitly stated otherwise. Similarly let us denote the corresponding law
of “a (random) Y-block at level j” by µY

j . Also for convenience, we assume µX
0 = µX and

µY
0 = µY.

Also, for j ≥ 0, let µX
j,G denote the conditional law of an X block at level j, given that it

is in GX
j . We define µY

j,G similarly.
We observe that we can construct a block with law µX

j+1 (resp. µY
j+1) in the following

alternative manner without referring to the the sequence X (resp. Y).

Observation 2.3.2. Let X1, X2, X3, . . . be a sequence of independent level j X-blocks such
that Xi ∼ µX

j,G for 1 ≤ i ≤ L3
j and Xi ∼ µX

j for i > L3
j . Now let W be a Geom(L−4

j ) variable
independent of everything else. Define as before

l = min{i ≥ L3
j + Lα−1

j +W : Xi+k ∈ GX
j for 1 ≤ k ≤ 2L3

j}.

Then X = (X1, X2, . . . , Xl+L3
j
) has law µX

j+1.

Whenever we have a sequence X1, X2, . . . satisfying the condition in the observation
above, we shall call X the (random) level (j + 1) block constructed from X1, X2, . . . and we
shall denote the corresponding geometric variable to be WX and TX = l − L3

j − Lα−1
j .

2.3.2 Embedding Probabilities and Semi-bad Blocks

Now we make some definitions that we are going to use throughout our proof.

Definition 2.3.3. For j ≥ 0, let X be a block of X at level j and let Y be a block of Y at
level j. We define the embedding probability of X to be SX

j (X) = P(X ↪→ Y |X). Similarly
we define SY

j (Y ) = P(X ↪→ Y |Y ). As noted above the law of Y is µY
j in the definition of SX

j

and the law of X is µX
j in the definition of SY

j .

Notice that j = 0 in the above definitions corresponds to the definition we had in Sec-
tion 2.1.1.

Definition 2.3.4. Let X be an X-block at level j. It is called “semi-bad” if X /∈ GX
j ,

SX
j (X) ≥ 1 − 1

20k0R
+
j+1

,|X| ≤ 10Lj and Ck /∈ X for any k > Lmj . Here |X| denotes the

number of CX characters in X. A “semi-bad” Y block at level j is defined similarly.
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We denote the set of all semi-bad X-blocks (resp. Y-blocks) at level j by SBX
j (resp.

SBY
j ).

Definition 2.3.5. Let Ỹ = (Y1, . . . , Yn) be a sequence of consecutive Y blocks at level j. Ỹ
is said to be a “strong sequence” if for every X ∈ SBX

j

#{1 ≤ i ≤ n : X ↪→ Yi} ≥ n(1− 1

10k0R
+
j+1

).

Similarly a “strong” X-sequence can also be defined.

2.3.3 Good Blocks

To complete the description, we need now give the definition of “good” blocks at level (j+1)
which we have alluded to above. With the definitions from the preceding section, we are now
ready to give the recursive definition of a “good” block as follows. Suppose we already have
definitions of “good” blocks upto level j (i.e., characterized GX

k for k ≤ j). Good blocks at
level (j + 1) are then defined in the following manner. As usual we only give the definition
for X-blocks, the definition for Y is exactly similar.

Let X(j+1) = (X
(j)
1 , X

(j)
2 , . . . , X

(j)
n ) be a X block at level (j + 1). Notice that we can

form blocks at level (j + 1) since we have assumed that we already know GX
j . Then we say

X(j+1) ∈ GX
j+1 if the following conditions hold.

(i) It starts with L3
j good sub-blocks, i.e., X

(j)
i ∈ GX

j for 1 ≤ i ≤ L3
j .

(ii) It contains at most k0 bad sub-blocks. #{1 ≤ i ≤ n : Xi /∈ GX
j } ≤ k0.

(iii) For each 1 ≤ i ≤ n such that Xi /∈ GX
j , Xi ∈ SBX

j , i.e., the bad sub-blocks are only
semi-bad.

(iv) Every sequence of bL3/2
j c consecutive level j sub-blocks is “strong”.

(v) The length of the block satisfies n ≤ Lα−1
j + L5

j .

Finally we define “segments” of a sequence of consecutive X or Y blocks at level j. Notice
that for j = 0 the following definition reduces to the definition given in § 2.1.1.

Definition 2.3.6. Let X̃ = (X1, X2, . . .) be a sequence of consecutive X-blocks. For i2 >

i1 ≥ 1, we call the subsequence (Xi1 , Xi1+1, . . . , Xi2) the “[i1, i2]-segment” of X̃ denoted by

X̃ [i1,i2]. The “[i1, i2]-segment” of a sequence of Y blocks is also defined similarly. Also a
segment is called a “good” segment if it consists of all good blocks.
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2.4 Recursive Estimates

Our proof of the general theorem depends on a collection of recursive estimates, all of which
are proved together by induction. In this section we list these estimates for easy reference.
The proof of these estimates are provided in the next section. We recall that for all j > 0
Lj = Lαj−1 = Lα

j

0 and for all j ≥ 0, Rj = 4j(2R), R−j = 4j(2− 2−j) and R+
j = 4jR2(2 + 2−j).

For j = 0, this definition of Rj, R
+
j and R−j agrees with the definition given in § 2.1.1.

2.4.1 Tail Estimate

I. Let j ≥ 0. Let X be a X-block at level j and let mj = m+ 2−j. Then

P(SX
j (X) ≤ p) ≤ pmjL−βj for p ≤ 1− L−1

j . (2.4.1)

Let Y be a Y-block at level j. Then

P(SY
j (Y ) ≤ p) ≤ pmjL−βj for p ≤ 1− L−1

j . (2.4.2)

2.4.2 Length Estimate

II. For X be an X-block at at level j ≥ 0,

E[exp(L−6
j−1(|X| − (2− 2−j)Lj))] ≤ 1. (2.4.3)

Similarly for Y , a Y-block at level j, we have

E[exp(L−6
j−1(|Y | − (2− 2−j)Lj))] ≤ 1. (2.4.4)

For the case j = 0 we interpret equations (2.4.3) and (2.4.4) by setting L−1 = Lα
−1

0 .

2.4.3 Properties of Good Blocks

III. “Good” blocks map to good blocks, i.e.,

X ∈ GX
j , Y ∈ GY

j ⇒ X ↪→ Y. (2.4.5)

IV. Most blocks are “good”.
P(X ∈ GX

j ) ≥ 1− L−δj . (2.4.6)

P(Y ∈ GY
j ) ≥ 1− L−δj . (2.4.7)
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V. Good blocks can be compressed or expanded.

Let X̃ = (X1, X2, . . .) be a sequence of X-blocks at level j and Ỹ = (Y1, Y2, . . .) be a

sequence of Y-blocks at level j. Further we suppose that X̃ [1,R+
j ] and Ỹ [1,R+

j ] are “good
segments”. Then for every t with R−j ≤ t ≤ R+

j ,

X̃ [1,Rj ] ↪→ Ỹ [1,t] and X̃ [1,t] ↪→ Ỹ [1,Rj ]. (2.4.8)

Theorem 2.4.1 (Recursive Theorem). For α, β, δ, m, k0 and R as in equation (2.1.4), the
following holds for all large enough L0. If the recursive estimates (2.4.1), (2.4.2), (2.4.3),
(2.4.4), (2.4.5), (2.4.6), (2.4.7) and (2.4.8) hold at level j for some j ≥ 0 then all the
estimates hold at level (j + 1) as well.

Before giving a proof of Theorem 2.4.1 we show how using this theorem we can prove the
general theorem.

Proof of Theorem 2.4. Let X = (X1, X2, . . .), Y = (Y1, Y2, . . .) be as in the statement of the

theorem. Let for j ≥ 0, X = (X
(j)
1 , X

(j)
2 , . . .) denote the partition of X into level j blocks

as described above. Similarly let Y = (Y
(j)

1 , Y
(j)

2 , . . .) denote the partition of Y into level j
blocks. Let β, δ,m,R, L0 be as in Theorem 2.4.1. Recall that the characters are the blocks
at level 0, i.e., X

(0)
i = Xi and Y

(0)
i = Yi for all i ≥ 1. Hence the hypotheses of Theorem 2.4

implies that (2.4.1), (2.4.2), (2.4.6), (2.4.7) hold for j = 0. It follows from definition that
(2.4.5) and (2.4.8) also hold at level 0. That (2.4.3) and (2.4.4) hold for j = 0 is trivial.
Hence the estimates I − V hold at level j for j = 0. Using Theorem 2.4.1, it now follows
that (2.4.1), (2.4.2), (2.4.3), (2.4.4), (2.4.5), (2.4.6), (2.4.7) and (2.4.8) hold for each j ≥ 0.

Let T X
j = {X(j)

k ∈ GX
j , 1 ≤ k ≤ L3

j} be the event that the first L3
j blocks at level j are

good. Notice that on the event ∩j−1
k=0T X

k = T X
j−1, X

(j)
1 has distribution µX

j by Observation 2.3.1

and so {X(j)
i }i≥1 is i.i.d. with distribution µX

j . Hence it follows from equation (2.4.6) that

P(T X
j | ∩j−1

k=0 T X
k ) ≥ (1 − L−δj )L

3
j . Similarly defining T Y

j = {Y (j)
k ∈ GY

j , 1 ≤ k ≤ L3
j} we get

using (2.4.7) that P(T Y
j | ∩j−1

k=0 T Y
k ) ≥ (1− L−δj )L

3
j .

Let A = ∩j≥0(T X
j ∩ T Y

j ). It follows from above that P(A) > 0 since δ > 3 and L0

sufficiently large. Also, notice that, on A, X
(j)
1 ↪→ Y

(j)
1 for each j ≥ 0. Since |X(j)

1 |, |Y (j)
1 | →

∞ as j → ∞, it follows that there exists a subsequence jn → ∞ such that there exist R-
embeddings of X

(jn)
1 into Y

(jn)
1 with associated partitions (in0 , i

n
1 , . . . , i

n
`n

) and (i′n0 , i
′n
1 , . . . , i

′n
`n)

with `n → ∞ satisfying the conditions of Definition 2.1.1 and such that for all r ≥ 0 we
have that inr → i?r and i′nr → i′?r as n → ∞. These limiting partitions of N, (i?0, i

?
1, . . .) and

(i′?0, i
′?
1, . . .), satisfy the conditions of Definition 2.1.1 implying that X ↪→R Y. It follows that

P(X ↪→ Y) > 0.

The remainder of the chapter is devoted to the proof of the estimates in the induction.
Throughout these sections we assume that the estimates I−V hold for some level j ≥ 0 and
then prove the estimates at level j+1. Combined they complete the proof of Theorem 2.4.1.
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From now on, in every Theorem, Proposition and Lemma we state, we would implicitly
assume the hypothesis that all the recursive estimates hold upto level j, the parameters
satisfy the constraints described in § 2.1.2 and L0 is sufficiently large.

2.5 Notation for maps: Generalised Mappings

Since in our estimates we will need to map segments of sub-blocks to segments of sub-blocks
we need a notation for constructing such mappings. Let A,A′ ⊆ N, be two sets of consecutive
integers. Let A = {n1 + 1, . . . , n1 + n}, A′ = {n′1 + 1, . . . , n′1 + n′}. Let

PA = {P : P = {n1 = i0 < i1 < . . . < iz = n1 + n}}

denote the set of partitions of A. For P = {n1 = i0 < i1 < . . . < iz = n1 + n} ∈ PA, let
us denote the “length” of P by l(P ) = z. Also let the set of all blocks of P , be denoted by
B(P ) = {[ir + 1, ir+1] ∩ Z : 0 ≤ r ≤ z − 1}.

2.5.1 Generalised Mappings

Now let Υ denote a “generalised mapping” which assigns to the tuple (A,A′), a triplet
(P, P ′, τ), where P ∈ PA, P ′ ∈ PA′ , with l(P ) = l(P ′), and τ : B(P ) 7→ B(P ′) be the unique
increasing bijection from the blocks of P to the blocks of P ′. Let P = {n1 = i0 < i1 < . . . <
il(P ) = n1 + n} and P ′ = {n′1 = i0 < i′1 < . . . < i′l(P ′) = n′1 + n′}. Then by “τ is an increasing

bijection” we mean that l(P ) = l(P ′) = z (say), and τ([ir + 1, ir+1] ∩ Z) = [i′r + 1, i′r+1] ∩ Z.
A generalised mapping Υ of (A,A′) (say, Υ(A,A′) = (P, P ′, τ)) is called “admissible” if the
following holds.

Let {x} ∈ B(P ) is a singleton. Then τ({x}) = {y} (say) is also a singleton. Similarly,
if {y} ∈ B(P ′) is a singleton, then τ−1({y}) is also a singleton. Note that since we already
require τ to be a bijection, it makes sense to talk about τ−1 as a function here.

If τ({x}) = {y} or τ−1({y}) = x, we simply denote this by τ(x) = y and τ−1(y) = x
respectively.

Let B ⊆ A and B′ ⊆ A′ be two subsets of A,A′ respectively. An admissible generalized
mapping Υ of (A,A′) is called of class Gj with respect to (B,B′) (we denote this by saying
Υ(A,A′, B,B′) is admissible of class Gj) if it satisfies the following conditions:

(i) If x ∈ B, then the singleton {x} ∈ B(P ). Similarly if y ∈ B′, then {y} ∈ B(P ′).

(ii) If ir+1 > ir + 1 (equivalently, i′r+1 > i′r + 1), then (ir+1 − ir) ∧ (i′r+1 − i′r) > Lj and
1−2−(j+5/4)

R
≤ i′r+1−i′r

ir+1−ir ≤ R(1 + 2−(j+5/4)).

(iii) For all x ∈ B, τ(x) /∈ B′.

Similarly, an admissible generalised mapping Υ(A,A′) = (P, P ′, τ) is called of Class Hj
1

with respect to B if it satisfies the following conditions:
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(i) If x ∈ B, then {x} ∈ B(P ).

(ii) If ir+1 > ir + 1 (equivalently, i′r+1 > i′r + 1), then (ir+1 − ir) ∧ (i′r+1 − i′r) > Lj and
1−2−(j+5/4)

R
≤ i′r+1−i′r

ir+1−ir ≤ R(1 + 2−(j+5/4)).

(iii) For all x ∈ B, n′ − L3
j ≥ τ(x)− n1 > L3

j .

Finally, an admissible generalised mapping Υj(A,A′) = (P, P ′, τ) is called of Class Hj
2

with respect to B if it satisfies the following conditions:

(i) If x ∈ B, then {x} ∈ B(P ).

(ii) L3
j < τ(x)− n1 ≤ n′ − L3

j for all x ∈ B.

(iii) If [ih+1, ih+1]∩Z ∈ B(P ) and ih+1 6= ih+1 then ih+1−ih = Rj and R−j ≤ i′h+1−i′h ≤ R+
j .

2.5.2 Generalised Mapping Induced by a Pair of Partitions

Let A,A′, B,B′ be as above. By a “marked partition pair” of (A,A′) we mean a triplet
(P∗, P

′
∗, Z) where P∗ = {n1 = i0 < i1 < . . . < il(P∗) = n1 + n} ∈ PA and P ′∗ = {n′1 =

i0 < i′1 < . . . < i′l(P ′∗) = n′1 + n′} ∈ PA′ , l(P∗) = l(P ′∗) and Z ⊆ [l(P∗) − 1] is such that
r ∈ Z ⇒ ir+1 − ir = i′r+1 − i′r.

It is easy to see that a “marked partition pair” induces a Generalised mapping Υ of
(A,A′, B,B′) in the following natural way.

Let P be the partition of A whose blocks are given by

B(P ) = ∪r∈Z{{i} : i ∈ [ir + 1, ir+1] ∩ Z} ∪r/∈Z {[ir + 1, ir+1] ∩ Z}.

Similarly let P ′ be the partition of A′ whose blocks are given by

B(P ′) = ∪r∈Z{{i′} : i′ ∈ [i′r + 1, i′r+1] ∩ Z} ∪r/∈Z {[i′r + 1, i′r+1] ∩ Z}.

Clearly, l(P∗) = l(P ′∗) and the condition in the definition of Z implies that l(P ) = l(P ′). Let τ
denote the increasing bijection from B(P ) to B(P ′). Clearly in this case Υ(A,A′) = (P, P ′, τ)
is a generalised mapping and is called the generalised mapping induced by the marked
partition pair (P∗, P

′
∗, Z).

The following lemma gives condition under which an induced generalised mapping is
admissible. The proof is straightforward and hence omitted.

Lemma 2.5.1. Let A,A′, B,B′ be as above. Let P∗ = {n1 = i0 < i1 < . . . < il(P∗) =
n1 + n} ∈ P(A) and P ′∗ = {n′1 = i0 < i′1 < . . . < i′l(P ′∗) = n′1 + n′} ∈ P ′∗ be partitions of A

and A′ respectively of equal length. Let BP∗ = {r : B ∩ [ir + 1, ir+1] 6= ∅} and BP ′∗ = {r :
B′ ∩ [i′r + 1, ir+1] 6= ∅}. Let us suppose the following conditions hold.

(i) (P∗, P
′
∗, BP∗ ∪BP ′∗) is a marked partition pair.
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(ii) For r /∈ (BP∗ ∪ BP ′∗), (ir+1 − ir) ∧ (i′r+1 − i′r) > Lj and 1−2−(j+5/4)

R
≤ i′r+1−i′r

ir+1−ir ≤ R(1 +

2−(j+5/4)).

(iii) BP∗ ∩BP ′∗ = ∅,

then the induced generalised mapping Υ(A,A′, B,B′) is admissible of Class Gj.

The usefulness of making these abstract definitions follow from the following lemma and
next couple of propositions.

Lemma 2.5.2. Let X = (X1, X2, . . .) be a sequence of X blocks at level j and Y = (Y1, Y2, . . .)
be a sequence of Y blocks at level j. Further suppose that n, n′ are such that X [1,n] and
Y [1,n′] are both “good” segments, n > Lj and 1−2−(j+5/4)

R
≤ n′

n
≤ R(1 + 2−(j+5/4)). Then

X [1,n] ↪→ Y [1,n′].

Proof. Let us write n = kRj + r where 0 ≤ r < Rj and k ∈ N ∪ {0}. Now let s = [n
′−r
k

].
Define 0 = t0 < t1 < t2 < . . . tk = n′ − r ≤ tk+1 = n′ such that for all i ≤ k, ti − ti−1 = s or
s+ 1.
Claim: R−j ≤ s ≤ R+

j − 1.

Proof of Claim. From n′
n
≤ R(1 + 2−(j+5/4)) it follows that,

ks ≤ n′ ≤ nR(1 + 2−(j+5/4)) ≤ (k + 1)RjR(1 + 2−(j+5/4)).

Since n > Lj and L0 is sufficiently large we have 1
k
≤ 2Rj

Lj
≤ 2−(j+13/4)(21/4− 1), it follows

from the above that

s ≤
(

1 +
1

k

)
R+
j

(1 + 2−(j+5/4))

(1 + 2−(j+1))

≤ R+
j

(
1 +

1

k

)(
1− 2−(j+5/4)(21/4 − 1)

1 + 2−(j+1)

)
≤ R+

j

(
1 +

1

k

)(
1− 2−(j+9/4)(21/4 − 1)

)
≤ R+

j

(
1− 2−(j+9/4)(21/4 − 1) +

1

k

)
≤ R+

j

(
1− 2−(j+13/4)(21/4 − 1)

)
≤ R+

j

(
1− 1

R+
j

)
,

the last inequality follows as 2jR2(21/4− 1) ≥ 29/4 for all j since R > 10. Hence s ≤ R+
j − 1.

To prove the other inequality in the claim, we note that it follows from 1−2−(j+5/4)

R
≤ n′

n

that
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(k + 1)s+Rj ≥ n′ ≥ n
(1− 2−(j+5/4))

R
≥ kRj

(1− 2−(j+5/4))

R
.

This in turn implies that

s ≥ kRj(1− 2−(j+5/4))

(k + 1)R
− Rj

k + 1

≥ R−j

(
k

k + 1

(1− 2−(j+5/4))

(1− 2−(j+1))
− R

(k + 1)(1− 2−(j+1))

)
≥ R−j

(
k

k + 1
(1 + 2−(j+5/4))(21/4 − 1)− 2R

k + 1

)
≥ R−j

where the last inequality follows from the fact that for L0 sufficiently large we have for all

j ≥ 0, k ≥ Lj
2Rj
≥ (2R+1)2j+5/4

21/4−1
. This completes the proof of the claim.

Now, from (2.4.5) and (2.4.8) it follows that, X [iRj+1,(i+1)Rj ] ↪→ Y [ti+1,ti+1] for 0 ≤ i < k
and X [kRj+1,n] ↪→ Y [tk+1,tk+1]. The lemma follows.

Let X = (X1, X2, X3, . . . , Xn) be an X-block (or a segment of X-blocks) at level (j + 1)
where the Xi’s denote the j-level sub-blocks constituting it. Similarly, let a Y-block (or a
segment of Y-blocks) at level (j + 1) be denoted by Y = (Y1, Y2, Y3, . . . , Yn′). Let BX =
{i : Xi /∈ GX

j } = {l1 < l2 < . . . < lKX} denote the positions of “bad” level j X-subblocks.
Similarly let BY = {i : Xi /∈ GY

j } = {l′1 < l′2 < . . . < l′KY } be the positions of “bad” Y -blocks.
We next state an easy proposition.

Proposition 2.5.3. Let X, Y,BX , BY be as above. Suppose there exists a generalised map-
ping Υ given by Υ([n], [n′], BX , BY ) = (P, P ′, τ) which is admissible and is of Class Gj.
Further, suppose, for 1 ≤ i ≤ KX , Xli ↪→ Yτ(li) and for each 1 ≤ i ≤ KY , Xτ−1(l′i) ↪→ Yl′i.
Then X ↪→ Y .

Proof. Let P, P ′ be as in the statement of the proposition with l(P ) = l(P ′) = z. Let us fix
r, 0 ≤ r ≤ z − 1. From the definition of an admissible mapping, it follows that there are 3
cases to consider.

• ir+1− ir = i′r+1− i′r = 1 and either ir + 1 ∈ BX or i′r + 1 ∈ BY . In either case it follows
from the hypothesis that Xir+1 ↪→ Yi′r+1.

• ir+1 − ir = i′r+1 − i′r = 1, ir + 1 /∈ BX , i′r + 1 /∈ BY . In this case Xir+1 ↪→ Yi′r+1 follows
from the inductive hypothesis (2.4.5).

• ir+1 − ir 6= 1. In this case both X [ir+1,ir+1] and Y [i′r+1,i′r+1] are good segments, and it
follows from Lemma 2.5.2 that X [ir+1,ir+1] ↪→ Y [i′r+1,i′r+1].
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Hence for all r, 0 ≤ r ≤ z − 1, X [ir+1,ir+1] ↪→ Y [i′r+1,i′r+1]. It follows that X ↪→ Y , as
claimed.

In the same vein, we state the following Proposition whose proof is essentially similar
and hence omitted.

Proposition 2.5.4. Let X, Y , BX be as before. Suppose there exists a generalised mapping
Υ given by Υ([n], [n′]) = (P, P ′, τ) which is admissible and is of Class Hj

1 or Hj
2 with respect

to BX . Further, suppose, for 1 ≤ i ≤ KX , Xli ↪→ Yτ(li) and for each i′ ∈ [n′] \ {τ(li) : 1 ≤
i ≤ KX}, Yi′ ∈ GY

j . Then X ↪→ Y .

2.6 Constructions

In this section we provide the necessary constructions of generalised mappings which we
would use in later sections to prove different estimates on probabilities that certain X-blocks
can be mapped to certain Y-blocks.

Proposition 2.6.1. Let j ≥ 0 and n, n′ > Lα−1
j such that

1− 2−(j+7/4)

R
≤ n′

n
≤ R(1 + 2−(j+7/4)). (2.6.1)

Let B = {l1 < l2 < . . . < lkx} ⊆ [n] and B′ = {l′1 < l′2 < . . . l′ky} ⊆ [n′] be such that

l1, l
′
1, (n − lkx), (n

′ − l′ky) > L3
j , kx, ky ≤ k0R

+
j+1. Then there exist a family of admissible

generalised mappings Υh for 1 ≤ h ≤ L2
j , such Υh([n], [n′], B,B′) = (Ph, P

′
h, τh) is of class

Gj and such that for 1 ≤ h ≤ L2
j , 1 ≤ i ≤ kx, 1 ≤ r ≤ ky, τh(li) = τ1(li) + h − 1 and

τ−1
h (l′r) = τ−1

1 (l′r)− h+ 1.

To prove Proposition 2.6.1 we need the following two lemmas.

Lemma 2.6.2. Assume the hypotheses of Proposition 2.6.1. Then there exists a piecewise
linear increasing bijection ψ : [0, n] 7→ [0, n′] and two partitions Q and Q′ of [0, n] and [0, n′]
respectively of equal length (= q, say), given by Q = {0 = t0 < t1 < . . . tq−1 < tq = n} and
Q′ = {0 = ψ(t0) < ψ(t1) < . . . ψ(tq−1) < ψ(tq) = n′} satisfying the following properties:

1. None of the intervals [tr−1, tr] intersect both B and ψ−1(B′) but each intersects B ∪
ψ−1(B′). Hence, none of the intervals [ψ(tr−1), ψ(tr)] intersect both B′ and ψ(B) but
each intersects B′ ∪ ψ(B).

2. For all a, b; 0 ≤ a < b ≤ n, 1−2−(j+3/2)

R
≤ ψ(b)−ψ(a)

b−a ≤ R(1 + 2−(j+3/2)).

3. Suppose i ∈ (B ∪ ψ−1(B′)) ∩ [tr−1, tr]. Then |i − tr−1| ∧ |tr − i| ≥ L
9/4
j . Similarly if

i′ ∈ (B′ ∪ ψ(B)) ∩ [ψ(tr−1), ψ(tr)], then |i′ − ψ(tr−1)| ∧ |ψ(tr)− i| ≥ L
9/4
j .
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Proof. Let us define a family of maps ψs : [0, n]→ [0, n′], 0 ≤ s ≤ L
5/2
j as follows:

ψs(x) =


x
L3
j/2+s

L3
j/2

if x ≤ L3
j/2

L3
j/2 + s+

n′−L3
j

n−L3
j

(x− L3
j/2) if L3

j/2 ≤ x ≤ n− L3
j/2

n′ − (n− x)(
L3
j/2−s
L3
j/2

) if n− L3
j/2 ≤ x ≤ n.

(2.6.2)

It is easy to see that ψs is a piecewise linear bijection for each s with the piecewise linear
inverse being given by

ψ−1
s (y) =


y

L3
j/2

L3
j/2+s

if y ≤ L3
j/2 + s

L3
j/2 +

n−L3
j

n′−L3
j
(y − L3

j/2− s) if L3
j/2 + s ≤ y ≤ n′ − L3

j/2 + s

n− (n′ − x)(
L3
j/2

L3
j/2−s

) if n′ − L3
j/2 + s ≤ y ≤ n′.

(2.6.3)

Notice that since α > 4, for L0 sufficiently large, we get from (2.6.1) that 1−2−(j+13/8)

R
≤

n′−L3
j

n−L3
j
≤ R(1 + 2−(j+13/8)). Since each ψs is piecewise linear, it follows that each ψs satisfies

condition (2) in the statement of the lemma.

Let S be distributed uniformly on [0, L
5/2
j ], and consider the random map ψS. Let

E = {|ψS(i)− i′| ≥ 2L
9/4
j , |i− ψ−1

S (i′)| ≥ 2L
9/4
j ∀i ∈ B, ∀i′ ∈ B′}.

It follows that for i ∈ B, i′ ∈ B′, P(|ψS(i) − i′| < 2L
9/4
j ) ≤ 8RL

9/4
j

L
5/2
j

= 8R

L
1/4
j

. Similarly

P(|i− ψ−1
S (i′)| < 2L

9/4
j ) ≤ 8R

L
1/4
j

. Using kx, ky ≤ k0R
+
j+1, a union bound now yields

P(E) ≥ 1−
16Rk2

0(R+
j+1)2

L
1/4
j

> 0

for L0 large enough. It follows that there exists s0 ∈ [0, L
5/2
j ] such that |ψs0(i) − i′| ≥

2L
9/4
j , |i− ψ−1

s0
(i′)| ≥ 2L

9/4
j ∀i ∈ B, i′ ∈ B′.

Setting ψ = ψs0 it is now easy to see that for sufficiently large L0 there exists 0 = t0 <
t1 < . . . < tq = n ∈ [0, n] satisfying the properties in the statement of the lemma. One way

to do this is to choose tk’s at the points
li+ψ

−1(l′
i′ )

2
where i, i′ are such that there does not

exist any point in the set B∪ψ−1(B′) in between li and ψ−1(l′i′). That such a choice satisfies
the properties (1)− (3) listed in the lemma is easy to verify.

Lemma 2.6.3. Assume the hypotheses of Proposition 2.6.1. Then there exist partitions P∗
and P ′∗ of [n] and [n′] of equal length (= z, say) given by P∗ = {0 = i0 < i1 < . . . < iz = n}
and P ′∗ = {0 = i′0 < i′1 < . . . < i′z = n′} such that if we denote BP∗ = {r : B∩[ir+1, ir+1] 6= ∅}
and B′P ′∗ = {r : B′ ∩ [i′r + 1, i′r+1] 6= ∅} then all the following properties hold.
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1 n

1 n′

t1 t2 t3
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j

≥
L
9
/
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≥
L
9
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≥
L
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L
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1 i
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3 i
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1
7
/
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j

Figure 2.1: Partitions described in Lemma 2.6.2 and Lemma 2.6.3

1. (P∗, P
′
∗, BP∗ ∪B′P ′∗) is a marked partition pair.

2. For r /∈ BP∗ ∪ B′P ′∗, (ir+1 − ir) ∧ (i′r+1 − i′r) ≥
L
17/8
j

4R
and 1−2−(j+7/5)

R
≤ i′r−i′r−1

ir−ir−1
≤ R(1 +

2−(j+7/5)).
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3. BP∗ ∩B′P ′∗ = ∅, 0, z − 1 /∈ BP∗ ∪BP ′∗, BP∗ ∪BP ′∗ does not contain consecutive integers.

4. If li ∈ [ir + 1, ir+1], then |li − ir| ∧ |li − ir+1| > 1
2
L

17/8
j . Similarly if l′i ∈ [i′r + 1, i′r+1],

then |l′i − i′r| ∧ |l′i − i′r+1| > 1
2
L

17/8
j .

Proof. Choose a map ψ and partitions Q,Q′ as given by Lemma 2.6.2. Let us fix an interval
[tr−1, tr], 1 ≤ r ≤ q. We need to consider two cases.

Case 1: Br := B ∩ [tr−1, tr] = {b1 < b2 < . . . < bkr} 6= ∅.
Clearly kr ≤ k0R

+
j+1. We now define a partition P r = {btr−1c = ir0 < ir1 < . . . < irzr =

btrc} of [btr−1c+ 1, btrc] as follows.

• ir1 = b1 − bL17/8
j c.

• For h ≥ 1, if [irh−1, i
r
h] ∩ Br = ∅, then define, irh+1 = min{i ≥ irh + bL17/8

j c : Br ∩ [i −
bL17/8

j c, i+ 3bL17/8
j c] = ∅}.

• For h ≥ 1, if [irh−1, i
r
h]∩Br 6= ∅, define irh+1 = min{i ≥ irh+2bL17/8

j c : i+bL17/8
j c+1 ∈ Br}

or btrc if no such i exists.

Notice that the construction implies that irzr−1 = bkr+bL17/8
j c+1. Also irh+1−irh ≥ 2bL17/8

j c
for all h. Also notice that this implies that alternate blocks of this partition intersect Br

and hence zr ≤ 2k0R
+
j+1 + 2. It also follows that the total length of the blocks intersecting

Br is at most 8k0R
+
j+1L

17/8
j .

Now we construct a corresponding partition P ′r = {bψ(tr−1)c = i
′r
0 < i

′r
1 < . . . < i

′r
zr =

bψ(tr)c} of [bψ(tr−1)c+ 1, bψ(tr)c] as follows.

• i′r1 = bψ(ir1)c.
• For 1 ≤ h ≤ zr − 2, i

′r
h+1 = i

′r
h + (irh+1 − irh), when Br ∩ [irh, i

r
h+1] 6= ∅, and i

′r
h+1 =

i
′r
h + bψ(irh+1)− ψ(irh)c otherwise.

Notice that condition (2) of Lemma 2.6.2 and the preceding observation implies that

|(i′rzr − i
′r
zr−1)− (ψ(irzr)− ψ(irzr−1))| ≤ 4R(8k0R

+
j+1L

17/8
j + 2k0R

+
j+1 + 2).

This together with conditions (2) and (3) of Lemma 2.6.2 implies that for L0 sufficiently
large P ′r is a valid partition of [bψ(tr−1)c+ 1, bψ(tr)c] such that for all h

1− 2−(j+7/5)

R
≤ i

′r
h+1 − i

′r
h

irh+1 − irh
≤ R(1 + 2−(j+7/5)).

Case 2: B′r := B′ ∩ [bψ(tr−1)c, bψ(tr)c] = {b′1 < b′2 < . . . < b′k′r} 6= ∅.
Clearly k′r ≤ k0R

+
j+1. In this case, we start with defining a partition P

′r = {bψ(tr−1)c =

i
′r
0 < i

′r
1 < . . . < i

′r
zr = bψ(tr)c} of [bψ(tr−1)c+ 1, bψ(tr)c] as follows.
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• i′r1 = b′1 − bL17/8
j c.

• For h ≥ 1, if [i
′r
h−1, i

′r
h ] ∩ B′r = ∅, then define, i

′r
h+1 = min{i ≥ i

′r
h + bL17/8

j c : B′r ∩ [i −
bL17/8

j c, i+ 3bL17/8
j c] = ∅}.

• For h ≥ 1, if [i
′r
h−1, i

′r
h ]∩B′r 6= ∅, define i

′r
h+1 = min{i ≥ i

′r
h + 2bL17/8

j c : i+ bL17/8
j c+ 1 ∈

B′r} or bψ(tr)c if no such i exists.

As before, next we construct a corresponding partition P r = {btr−1c = ir0 < ir1 < . . . <
irzr = btrc} of [btr−1c+ 1, btrc] as follows.

• ir1 = bψ−1(i
′r
1 )c.

• For zr − 2 ≥ h ≥ 1, irh+1 = irh + (i
′r
h+1 − i

′r
h ), provided B′r ∩ [i

′r
h , i

′r
h+1] 6= ∅, and

irh+1 = irh + bψ−1(i
′r
h+1)− ψ−1(i

′r
h )c, otherwise.

As before it can be verified that the procedure described above gives a valid partition of
[btr−1c+ 1, b(tr)c] such that for L0 large enough we have for every h

1− 2−(j+7/5)

R
≤ i

′r
h+1 − i

′r
h

irh+1 − irh
≤ R(1 + 2−(j+7/5)).

Let us define, P∗ = ∪rP r and P ′∗ = ∪rP ′r where ∪P r denotes the partition containing
the points of all P r’s (or alternatively, B(∪P r) = ∪rB(P r)). It is easy to check that (P∗, P

′
∗)

satisfies the properties (1)-(4) listed in the statement of the lemma.

The procedure for constructing (P∗, P
′
∗) as described in Lemma 2.6.2 and Lemma 2.6.3

is illustrated in Figure 2.1. The upper figure illustrates a function ψ and partitions 0 =
t0 < t1 < . . . < tq = n′ and 0 = ψ(t0) < ψ(t1) < . . . < ψ(tq) = n′ as described in Lemma
2.6.2. The lower figure illustrates the further sub-division of an interval [t1, t2] as described
in Lemma 2.6.3. The neighbourhoods of b′1, b′2, b′3 are mapped rigidly so above we have
i22 − i21 = i

′2
2 − i

′2
1 and i24 − i23 = i

′2
4 − i

′2
3 .

Proof of Proposition 2.6.1. Construct the partitions P∗ and P ′∗ of [n] and [n′] respectively
as in Lemma 2.6.3. Let P∗ = {0 = i0 < i1 < . . . < iz−1 < iz = n} and P ′∗ = {0 = i′0 <
i′1 < . . . < i′z−1 < i′z = n′}. For 1 ≤ h ≤ L2

j we let ihr = ir and so P h
∗ = P∗ while we define

i
′h
r = i′r + h− 1 for 1 ≤ r ≤ z − 1 so that P

′h
∗ = {0 = i

′h
0 < i

′h
1 < . . . < i

′h
z−1 < i

′h
z = n′}.

First we observe that conditions (2) and (3) Lemma 2.6.3 implies that in the above
definition is consistent and gives rise to a valid partition pair (P h

∗ , P
′h
∗ ) for each h, 1 ≤ h ≤ L2

j .

From item (4), in the statement of Lemma 2.6.3 it follows that for each h, (P h
∗ , P

′h
∗ , BPh∗ ∪

BP ′h∗
) forms a marked partition pair. Furthermore, for each h, if L0 is sufficiently large this

marked partition pair satisfies
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1. For r /∈ BPh∗ ∪ BP ′h∗
, (ir+1 − ir) ∧ (i′r+1 − i′r) > L2

j and 1+2−(j+5/4)

R
≤ i′r+1−i′r

ir+1−ir ≤ R(1 +

2−(j+5/4)).

2. BPh∗ ∩BP ′h∗
= ∅.

Using Lemma 2.5.1, for each h, the generalized mapping Υh([n], [n′], B,B′) = (Ph, P
′
h, τh)

induced by the marked partition pair (P h
∗ , P

′h
∗ , BP∗ ∪BP ′∗) is an admissible mapping of class

Gj. It follows easily from definitions that for 1 ≤ h ≤ L2
j , 1 ≤ i ≤ kx, 1 ≤ r ≤ ky,

τh(li) = τ1(li) + h− 1 and τ−1
h (l′r) = τ−1

1 (l′r)− h+ 1. This procedure is illustrated in Figure
2.2.

i0 i1 i2 i3 i4 i5

i′0 i′1 i′2 i′3 i′4 i′5i
′h
1 i

′h
2 i

′h
3 i

′h
4

l1

l′1

τ1(l1) τh(l1)

τ−1h (l′1) τ
−1
1 (l′1)

{ { { {

{

{

h− 1 h− 1 h− 1 h− 1

h− 1

h− 1

Figure 2.2: Construction of generalized mappings (Ph, P
′
h, τh) from (P∗, P∗) as described in

the proof of Proposition 2.6.1

Proposition 2.6.4. For j ≥ 0, let n, n′ > Lα−1
j be such that 1

R
≤ n′

n
≤ R. Let B = {l1 <

l2 < . . . < lkx} ⊆ [n] be such that l1, (n − lkx) > L3
j , kx ≤ k0. Then there exist a family of

admissible mappings Υh for 1 ≤ h ≤ L2
j , Υh([n], [n′]) = (Ph, P

′
h, τh) which are of Class Hj

1

with respect to B such that for 1 ≤ h ≤ L2
j , 1 ≤ i ≤ kx we have that τh(li) = τ1(li) + h− 1.

Proof. This proof is a minor modification of the proof of Proposition 2.6.1. Clearly, as in the
proof of Proposition 2.6.1, we can construct L2

j admissible mappings Υ∗h(A,A
′) = (P ∗h , P

′∗
h )

which are of Class Gj with respect to (B, ∅) where A = {bL3
j/2c+1, bL3

j/2c+2, ..., n−bL3
j/2c}

and A′ = {L3
j +1, L3

j +2, ..., n′−L3
j}. Denote P ∗h = {bL3

j/2c+1 = ih0 < ih1 < . . . < ihz−1 < ihz =
n−bL3

j/2c}. Define the partition Ph of [n] as Ph = {0 < ih0 < ih1 < . . . < ihz−1 < ihz < n}, that
is with segments of length bL3

j/2c added to each end of P ∗h . Define P ′h similarly by adding

segments of length L3
j to each end of P

′∗
h . It can be easily checked that since L0 is sufficiently

large, for each h, 1 ≤ h ≤ L2
j , (Ph, P

′
h, τh) is an admissible mapping which is of Class Hj

1 with
respect to B such that for 1 ≤ h ≤ L2

j , 1 ≤ i ≤ kx we have that τh(li) = τ1(li) + h− 1.
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Proposition 2.6.5. Let For j ≥ 0, n, n′ > Lα−1
j be such that 5

3R
≤ n′

n
≤ 3R

5
. Let B =

{l1 < l2 < . . . < lkx} ⊆ [n] be such that l1, (n − lkx) > L3
j , kx ≤

n−2L3
j

10R+
j

. Then there exist an

admissible mapping Υ([n], [n′]) = (P, P ′, τ) which is of Class Hj
2 with respect to B.

To prove this proposition we need the following lemma.

Lemma 2.6.6. Assume the hypotheses of Proposition 2.6.5. Then there exists partitions P
and P ′ of [n] and [n′] of equal length (= z, say) given by P∗ = {0 = i0 < i1 = L3

j < . . . iz−1 =
n − L3

j < iz = n} and P ′∗ = {0 = i′0 < i′1 = L3
j < . . . < i′z−1 = n′ − L3

j < i′z = n′} satisfying
the following properties:

1. (P∗, P
′
∗, B

∗) is a marked partition pair for some B∗ ⊇ BP ∪{0, z− 1} where BP = {h :
[ih + 1, ih+1] ∩B 6= ∅}.

2. For h /∈ B∗, (ih+1 − ih) = Rj and R−j ≤ i′h+1 − i′h ≤ R+
j .

1 n

1 n′

l1

τ(l1)

l2

τ(l2)
{ { { { { { {

{ { { { { { {

L3
j Rj Rj Rj Rj k L3

j

L3
j s Rj s s+ 1 k L3

j

Figure 2.3: Marked Partition pair of [n] and [n′] as described in Lemma 2.6.6 and the induced
generalised mapping

Proof. Let us write n = 2L3
j +kRj + r where 0 ≤ r < Rj and k ∈ N. Construct the partition

P∗ = {0 = i0 < i1 = L3
j < . . . iz−1 = n− L3

j < iz = n} where we set ih = L3
j + (h− 1)Rj for

h = 2, 3, . . . , (k + 1) and z = (k + 2) or (k + 3) depending on whether r = 0 or not. For the
remainder of this proof we assume that r > 0. In the case r = 0, the same proof works with
the obvious modifications.

Now define B∗ = BP ∪ {0, z − 1} ∪ {k + 1}.
Clearly ∑

h∈BP∪{k+1}

(ih+1 − ih) ≤ Rj

(
n− 2L3

j

10R+
j

+ 1

)
≤ n− 2L3

j

9R
(2.6.4)
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for L0 sufficiently large.

Also notice that since α > 4, for L0 sufficiently large 3
2R
≤ n′−2L3

j

n−2L3
j
≤ 2R

3
.

Now let

s =

⌊
(n′ − 2L3

j)−
∑

h∈BP∪{k+1}(ih+1 − ih)
k + 1− |BP ∪ {k + 1}|

⌋
.

Claim: R−j ≤ s ≤ R+
j − 1.

Proof of Claim. Clearly, |BP ∪ {k + 1}| ≤ (n−2L3
j )

10R+
j

+ 1 ≤ (n−2L3
j )

9R+
j

≤ (k+1)Rj

9R+
j

. Hence

k + 1− |BP ∪ {k + 1}| ≥ (k + 1)(1− Rj

9R+
j

) ≥ 8
9
(k + 1). It follows that

s ≤ n′ − 2L3
j

8
9
(k + 1)

=
(n− 2L3

j)
n′−2L3

j

n−2L3
j

8
9
(k + 1)

≤ 18(k + 1)RRj

24(k + 1)
=

3

4
RRj ≤ R+

j − 1.

To prove the other inequality let us observe using (2.6.4),

s ≥ (n′ − 2L3
j)−

(n−2L3
j )

9R

(k + 1)
− 1

≥ (n− 2L3
j)

3
2R
− (n−2L3

j )

9R

(k + 1)
− 1

≥ 25kRj

18(k + 1)R
− 1 ≥ 4Rj

3R
− 1 ≥ 22j+3

3
− 1 ≥ 22j+1 − 2j = R−j

for all j ≥ 0, since for L0 sufficiently large and n > Lα−1
j , we have k ≥ Lj

2Rj
and 25k

18(k+1)
≥ 4

3
.

This completes the proof of the claim.

Coming back to the proof of the lemma let us denote the set {1, 2, . . . , k + 1} \ (BP ∪
{k + 1}) = {w1 < w2 < ... < wd} where d = k + 1− |BP ∪ {k + 1}|. Also let us write

(n′−2L3
j)−

∑
h∈BP∪{k+1}

(ih+1−ih) = s(k+1−|BP∪{k+1}|)+r′; 0 ≤ r′ < k+1−|BP∪{k+1}|.

Now we define P ′∗ = {0 = i′0 < i′1 = L3
j < . . . < i′z−1 = n′ − L3

j < i′z = n′}. We define i′h
inductively as follows.

• Set i′1 = L3
j .

• For h ∈ BP ∪ {k + 1}, define i′h+1 = i′h + (ih+1 − ih).
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• If h = wt for some t, then define i′h+1 = i′h + (s + 1) if t > d − r′, and i′h+1 = i′h + s,
otherwise.

Now from the definition of s, it is clear that i′k+2 = n′ − L3
j , as asserted. It now clearly

follows that (P∗, P
′
∗) is a pair of partitions of ([n], [n′]) as asserted in the statement of the

Lemma. That (P∗, P
′
∗, B

∗) is a marked partition pair is clear. It follows from the claim just
proved that (P∗, P

′
∗) satisfies condition (2) in the statement of the Lemma. This procedure

for forming the marked partition pair (P∗, P
′
∗) is illustrated in Figure 2.3.

Proof of Proposition 2.6.5. Construct the partitions (P∗, P
′
∗) as given by Lemma 2.6.6. Con-

sider the generalized mapping Υ([n], [n′]) = (P, P ′, τ) induced by the marked partition pair
(P∗, P

′
∗, B

∗). It follows that B∗ ⊇ {0, z − 1} that Υ is an admissible mapping which of class
Hj

2 with respect to B.

2.7 Tail Estimate

The most important of our inductive hypotheses is the following recursive estimate.

Theorem 2.7.1. Assume that the inductive hypothesis holds up to level j. Let X and Y be
random (j + 1)-level blocks according to µX

j+1 and µY
j+1. Then

P(SX
j+1(X) ≤ p) ≤ pmj+1L−βj+1, P(SY

j+1(Y ) ≤ p) ≤ pmj+1L−βj+1

for p ≤ 1− L−1
j+1 and mj+1 = m+ 2−(j+1).

There is of course a symmetry between our X and Y bounds and for conciseness all our
bounds will be stated in terms of X and SX

j+1 but will similarly hold for Y and SY
j+1. For

the rest of this section we shall drop the superscript X and denote SX
j+1 (resp. SX

j ) simply by
Sj+1 (resp. Sj).

The blockX is constructed from an i.i.d. sequence of j-level blocksX1, X2, . . . conditioned
on the event Xi ∈ GX

j for 1 ≤ i ≤ L3
j as described in Section 2.3. The construction also

involves a random variable WX ∼ Geom(L−4
j ) and let TX denote the number of extra sub-

blocks of X, that is the length of X is Lα−1
j + 2L3

j + TX . Let KX denote the number of
bad sub-blocks of X and denote their positions by `1, . . . , `KX . We define Y1, . . . ,WY , TY
and KY similarly and denote the positions of the bad blocks by `′1, . . . , `

′
KY

. The proof of
Theorem 2.7.1 is divided into 5 cases depending on the number of bad sub-blocks, the total
number of sub-blocks of X and how “bad” the sub-blocks are.

Let KX(t) =
∑L3

j+L
α−1
j

i=L3
j+1

I(Xi /∈ GX
j ) and GX(t) = −∑Lα−1

j +t

i=L3
j+1

I(Xi /∈ GX
j )Sj(Xi). Our

inductive bounds allow the following stochastic domination description of KX(t) and GX(t).

Lemma 2.7.2. Let K̃X = K̃X(t) be distributed as a Bin(Lα−1
j + t, L−δj ) and let S = S(t) =∑K̃X(t)

i=1 (1 + Ui) where Ui are i.i.d. rate mj exponentials. Then,

(KX(t),GX(t)) � (K̃X ,S)
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where � denotes stochastic domination w.r.t. the partial order in R2 given by (via a slight
abuse of notation) (x, y) � (x′, y′) iff x ≤ x′, y ≤ y′.

Proof. If Vi are i.i.d. Bernoulli with probability L−δj , by the inductive assumption and the
fact that β > δ we have that for all i, I(Xi 6∈ GX

j ) � Vi and hence(
I(Xi 6∈ GX

j ),−I(Xi 6∈ GX
j ) logSj(Xi)

)
� (Vi, Vi(1 + Ui))

since for x > 1

P[− logSj(Xi) ≥ x] ≤ L−βj e−xmj < L−δj e−(x−1)mj = P[Vi(1 + Ui) ≥ x].

Summing over L3
j + 1 ≤ i ≤ L3

j + Lα−1
j + t completes the result.

Using Lemma 2.7.2 we can bound the probability of blocks having large length, number
of bad sub-blocks or small

∏KX
i=1 Sj(X`i). This is the key estimate of the chapter.

Lemma 2.7.3. For all t′, k′, x ≥ 0 we have that

P

[
TX ≥ t′, KX ≥ k′,− log

KX∏
i=1

Sj(X`i) ≥ x

]
≤ 2L

−δk′/4
j exp

(
−xmj+1 −

1

2
t′L−4

j

)
.

Proof. If TX = t and KX = k then WX ≥ (t− 2kL3
j) ∨ 0. Hence when KX = 0

P [TX ≥ t′, KX = 0] ≤ P[WX ≥ t′] = (1− L−4
j )t

′ ≤ exp[−2

3
t′L−4

j ] (2.7.1)

and of course − log
∏KX

i=1 Sj(X`i) = 0.
By Lemma 2.7.2 and the fact that P[WX ≥ (t− 2kL3

j)] increases with k we have that

P

[
TX ≥ t′, KX ≥ k′,− log

KX∏
i=1

Sj(X`i) ≥ x

]

=
∞∑
k=k′

∞∑
t=t′

P [TX = t,KX(t) = k,GX(t) ≥ x]

≤
∞∑
k=k′

∞∑
t=t′

P[WX ≥ (t− 2kL3
j), KX(t) = k,GX(t) ≥ x]

=
∞∑
k=k′

∞∑
t=t′

P[WX ≥ (t− 2kL3
j)]P[KX(t) = k,GX(t) ≥ x]

≤
∞∑
k=k′

∞∑
t=t′

P[WX ≥ (t− 2kL3
j)]P[K̃X(t) = k,S(t) ≥ x]

≤
∞∑
k=k′

∞∑
t=t′

exp[−2

3
(t− 2kL3

j)L
−4
j ]P[K̃X(t) = k,S(t) ≥ x]. (2.7.2)
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Since K̃X is binomially distributed,

P[K̃X(t) = k] =

(
Lα−1
j + t

k

)
L−δkj

(
1− L−δj

)Lα−1
j +t−k

. (2.7.3)

If k ≥ 1, conditional on K̃X = k, we have that S− K̃X has distribution Γ(k, 1/mj) and so

P[S ≥ x | K̃X(t) = k] =

∫ ∞
(x−k)∨0

mk
j

(k − 1)!
yk−1 exp(−ymj)dy. (2.7.4)

Observe that
mkj

mj+1(k−1)!
yk−1 exp(−y2−(j+1)) is proportional to the density of a Γ(k, 2j+1) which

is maximized at 2j+1(k − 1). Hence

max
y≥0

mk
j

mj+1(k − 1)!
yk−1 exp(−y2−(j+1)) ≤ mk

j

mj+1(k − 1)!
(2j+1(k − 1))k−1 exp(−(k − 1))

≤ (2j+1mj)
k, (2.7.5)

since by Stirling’s approximation (k−1)k−1

(k−1)! exp(k−1)
≤ 1. Since mj+1 = mj − 2−(j+1), substitut-

ing (2.7.5) into (2.7.4) we get that

P[S ≥ x | K̃X(t) = k] ≤ (2j+1mj)
k

∫ ∞
(x−k)∨0

mj+1 exp(−ymj+1)dy

≤ (mj2
j+1emj+1)k exp(−xmj+1). (2.7.6)

Combining (2.7.3) and (2.7.6) we get that,

P[K̃X(t) = k,S(t) ≥ x]

≤
(
Lα−1
j + t

k

)
L−δkj

(
1− L−δj

)Lα−1
j +t−k

(mj2
j+1emj+1)k exp(−xmj+1)

≤
(
1− L−δj

)Lα−1
j +t−k(

1− L−δ/2j

)Lα−1
j +t−k

(L
−δ/2
j mj2

j+1emj+1)k exp(−xmj+1) (2.7.7)

since (
Lα−1
j + t

k

)
L
−δ/2k
j

(
1− L−δ/2j

)Lα−1
j +t−k

= P[Bin(Lα−1
j + t, L

−δ/2
j ) = k] < 1.

Now for large enough L0,(
1− L−δj

)Lα−1
j +t−k(

1− L−δ/2j

)Lα−1
j +t−k

≤ exp(2(Lα−1
j + t)L

−δ/2
j ) ≤ 2 exp(2tL

−δ/2
j ), (2.7.8)



CHAPTER 2. EMBEDDINGS OF ONE DIMENSIONAL RANDOM OBJECTS 42

since δ/2 > α. As Lj = Lα
j

0 , for large enough L0 we have that L
−δ/2
j mj2

j+1emj+1 ≤ 1
10
L
−δ/3
j

and so combining (2.7.7) and (2.7.8) we have that

P[K̃X(t) = k,S(t) ≥ x] ≤ 2

10k
exp(2tL

−δ/2
j )L

−δk/3
j exp(−xmj+1). (2.7.9)

Finally substituting this into (2.7.2) we get that if k′ ≥ 1,

P

[
TX ≥ t′, KX ≥ k′,− log

KX∏
i=1

Sj(X`i) ≥ x

]

≤
∞∑
k=k′

∞∑
t=t′

2

10k
exp[−2

3
(t− 2kL3

j)L
−4
j + 2tL

−δ/2
j ]L

−δk/3
j exp(−xmj+1)

≤ L4
j exp[−1

2
t′L−4

j ]L
−δk′/3
j exp(−xmj+1). (2.7.10)

for large enough L0 since δ/2 > 4. Since δ/3− δ/4 > 4, we get that for k′ ≥ 1,

P

[
TX ≥ t′, KX ≥ k′,− log

KX∏
i=1

Sj(X`i) ≥ x

]
≤ L

−δk′/4
j exp(−xmj+1 −

1

2
t′L−4

j )

which together with (2.7.1) completes the result.

We now move to our five cases. In each one we will use a different mapping (or mappings)
to get good lower bounds on the probability that X ↪→ Y given X.

2.7.1 Case 1

The first case is the generic situation where the blocks are of typical length, have few bad
sub-blocks whose embedding probabilities are not too small. This case holds with high
probability. We define the event A(1)

X,j+1 to be the set of (j + 1) level blocks such that

A(1)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, KX ≤ k0,

KX∏
i=1

Sj(X`i) > L
−1/3
j

}
.

Lemma 2.7.4. The probability that X ∈ A(1)
X,j+1 is bounded below by

P[X 6∈ A(1)
X,j+1] ≤ L−3β

j+1 .

Proof. By Lemma 2.7.3

P

[
TX >

RLα−1
j

2

]
≤ 2 exp

(
−
RLα−5

j

4

)
≤ 1

3
L−3β
j+1 . (2.7.11)



CHAPTER 2. EMBEDDINGS OF ONE DIMENSIONAL RANDOM OBJECTS 43

since α > 5 and L0 is large. Again by Lemma 2.7.3

P[KX > k0] ≤ 2L
−δk0/4
j = 2L

−δk0/(4α)
j+1 ≤ 1

3
L−3β
j+1 , (2.7.12)

since k0 > 36αβ. Finally again by Lemma 2.7.3,

P[

KX∏
i=1

Sj(X`i) ≤ L
−1/3
j ] ≤ 2L

−mj+1/3
j ≤ 1

3
L−3β
j+1 , (2.7.13)

since 1
3
mj+1 >

1
3
m > 3αβ. Combining (2.7.11), (2.7.12) and (2.7.13) completes the result.

Lemma 2.7.5. We have that

P[X ↪→ Y | Y ∈ A(1)
Y,j+1, X ∈ A

(1)
X,j+1, X] ≥ 3

5
, (2.7.14)

and that
P[X ↪→ Y | X ∈ A(1)

X,j+1, Y ∈ A
(1)
Y,j+1] ≥ 1− L−3β

j+1 . (2.7.15)

Proof. We first prove equation (2.7.15) where we do not condition on X. Suppose that

X ∈ A(1)
X,j+1, Y ∈ A

(1)
Y,j+1. Let us condition on the block lengths TX , TY , the number of

bad sub-blocks, KX , KY , their locations, `1, . . . , `KX and `′1, . . . , `
′
KY

and the bad-sub-blocks
themselves. Denote this conditioning by

F = {X ∈ A(1)
X,j+1, Y ∈ A

(1)
Y,j+1, TX , TY , KX , KY , `1, . . . , `KX , `

′
1, . . . , `

′
KY
,

X`1 , . . . , X`KX
, Y`′1 , . . . , Y`′KY

}.

By Proposition 2.6.1 we can find L2
j admissible generalized mappings Υh([L

α−1
j + 2L3

j +

TX ], [Lα−1
j + 2L3

j + TY ]) with associated τh for 1 ≤ h ≤ L2
j which are of class Gj with

respect to B = {`1 < . . . < `KX}, B′ = {`′1 < . . . < `′KY }. By construction we have that
τh(`i) = τ1(`i) + h− 1 and in particular each position `i is mapped to L2

j distinct sub-blocks

by the map, none of which is equal to one of the `′i′ . Similarly for the τ−1
h . Hence we can

construct a subset H ⊂ [L2
j ] with |H| = Lj < bL2

j/2k
2
0c so that for all i1 6= i2 and h1, h2 ∈ H

we have that τh1(`i1) 6= τh2(`i2) and τ−1
h1

(`′i1) 6= τ−1
h2

(`′i2), that is that all the positions bad
blocks are mapped to are distinct.

By construction all the Yτh(`i) are uniformly chosen good j-blocks conditional on F and

since Sj(X`i) ≥ L
−1/3
j we have that

P[X`i ↪→ Yτh(`i) | F ] ≥ Sj(X`i)− P[Yτh(`i) 6∈ GY
j ] ≥ 1

2
Sj(X`i). (2.7.16)

Similarly we have
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P[Xτ−1
h (`′i)

↪→ Y`′i | F ] ≥ Sj(Y`′i)− P[Xτ−1
h (`′i)

6∈ GX
j ] ≥ 1

2
Sj(Y`′i). (2.7.17)

Let Dh denote the event

Dh =
{
X`i ↪→ Yτh(`i) for 1 ≤ i ≤ KX , Xτ−1

h (`′i)
↪→ Y`′i for 1 ≤ i ≤ KY

}
.

By Proposition 2.5.3 if one of the Dh hold then X ↪→ Y . Conditional on F , for h ∈ H, the
Dh are independent and by (2.7.16) and (2.7.17),

P[Dh | F ] ≥
KX∏
i=1

1

2
Sj(X`i)

KY∏
i=1

1

2
Sj(Y`′i) ≥ 2−2k0L

−2/3
j . (2.7.18)

Hence

P[X ↪→ Y | F ] ≥ P[∪h∈HDh | F ] ≥ 1−
(

1− 2−2k0L
−2/3
j

)Lj
≥ 1− L−3β

j+1 . (2.7.19)

Now removing the conditioning we get equation (2.7.15). To prove equation (2.7.14) we
proceed in the same way but note that since it involves conditioning on the good sub-blocks
of X, equation (2.7.17) no longer holds and further the events Xτ−1

h (`′i)
↪→ Y`′i are no longer

conditionally independent. So we will condition on Y having no bad blocks so

F = {X ∈ A(1)
X,j+1, Y ∈ A

(1)
Y,j+1, X, TX , TY , KX , KY = 0, `1, . . . , `KX , X`1 , . . . , X`KX

}.

By the above argument then

P[X ↪→ Y | F ] ≥ P[∪h∈HDh | F(X)] ≥ 1−
(

1− 2−k0L
−1/3
j

)Lj
≥ 1− L−3β

j+1 . (2.7.20)

Hence

P[X ↪→ Y | Y ∈ A(1)
Y,j+1, X, TY ] ≥ P[X ↪→ Y | F ] · P[KY = 0 | Y ∈ A(1)

Y,j+1, TY ]

≥
(

1− L−3β
j+1

)
· P[KY = 0 | Y ∈ A(1)

Y,j+1, TY ].

Removing the conditioning on TY we get

P[X ↪→ Y | Y ∈ A(1)
Y,j+1, X] ≥

(
1− L−3β

j+1

)
· P[KY = 0 | Y ∈ A(1)

Y,j+1]

≥
(

1− L−3β
j+1

)
· (1− L−3β

j+1 − 2L
−δ/4
j ) ≥ 3

5

for large enough L0, where the penultimate inequality follows from Lemma 2.7.3 and Lemma
2.7.4. This completes the proof of the lemma.
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Lemma 2.7.6. When 1
2
≤ p ≤ 1− L−1

j+1

P(Sj+1(X) ≤ p) ≤ pmj+1L−βj+1

Proof. By Lemma 2.7.4 and 2.7.5 we have that

P(P[X 6↪→ Y | X] ≥ L−1
j+1) ≤ P[X 6↪→ Y ]Lj+1

≤
(
P[X 6↪→ Y | X ∈ A(1)

X,j+1, Y ∈ A
(1)
Y,j+1]

+ P[X 6∈ A(1)
X,j+1] + P[Y 6∈ A(1)

Y,j+1]
)
Lj+1

≤ 3L1−3β
j+1 ≤ 2−mj+1L−βj+1

where the first inequality is by Markov’s inequality. This implies the lemma.

2.7.2 Case 2

The next case involves blocks which are not too long and do not contain too many bad sub-
blocks but whose bad sub-blocks may have very small embedding probabilities. We define
the class of blocks A(2)

X,j+1 as

A(2)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, KX ≤ k0,

KX∏
i=1

Sj(X`i) ≤ L
−1/3
j

}
.

Lemma 2.7.7. For X ∈ A(2)
X,j+1,

Sj+1(X) ≥ min

{
1

2
,

1

10
Lj

KX∏
i=1

Sj(X`i)

}

Proof. Suppose that X ∈ A(2)
X,j+1. Let E denote the event

E = {WY ≤ Lα−1
j , TY = WY }.

Then by definition of WY , P[WY ≤ Lα−1
j ] ≥ 1− (1−L−4

j )L
α−1
j ≥ 9/10 while by the definition

of the block boundaries the event TY = WY is equivalent to their being no bad sub-blocks
amongst YL3

j+L
α−1
j +WY +1, . . . , YL3

j+L
α−1
j +WY +2L3

j
, that is that we don’t need to extend the block

because of bad sub-blocks. Hence P[TY = WY ] ≥ (1− L−δj )2L3
j ≥ 9/10. Combining these we

have that
P[E ] ≥ 8/10. (2.7.21)

On the event TY = WY we have that the blocks YL3
j+1, . . . , YL3

j+L
α−1
j +TY

are uniform j-blocks

since the block division did not evaluate whether they are good or bad.
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Similarly to Lemma 2.7.5, by Proposition 2.6.4 we can find L2
j admissible generalized

mappings Υh([L
α−1
j + 2L3

j + TX ], [Lα−1
j + 2L3

j + TY ]) for 1 ≤ h ≤ L2
j with associated τh

which are of class Hj
1 with respect to B = {`1 < . . . < `KX}. For all h and i, L3

j + 1 ≤
τh(`i) ≤ L3

j + Lα−1
j + TY . As in Lemma 2.7.5 we can construct a subset H ⊂ [L2

j ] with
|H| = Lj < bL2

j/k
2
0c so that for all i1 6= i2 and h1, h2 ∈ H we have that τh1(`i1) 6= τh2(`i2),

that is that all the positions bad blocks are mapped to are distinct. We will estimate the
probability that one of these maps work.

In trying out these h different mappings there is a subtle conditioning issue since a map
failing may imply that Yτh is not good. As such we condition on an event Dh ∪ Gh which
holds with high probability. Let Dh denote the event

Dh =
{
X`i ↪→ Yτh(`i) for 1 ≤ i ≤ KX

}
.

and let
Gh =

{
Yτh(`i) ∈ GY

j for 1 ≤ i ≤ KX

}
.

Then
P[Dh ∪ Gh | X, E ] ≥ P[Gh | X, E ] ≥ (1− L−δj )k0 ≥ 1− 2k0L

−δ
j .

and since they are conditionally independent given X and E ,

P[∩h∈H(Dh ∪ Gh) | X, E ] ≥ (1− L−δj )k0Lj ≥ 9/10. (2.7.22)

Now

P[Dh | X, E , (Dh ∪ Gh)] ≥ P[Dh | X, E ] =

KX∏
i=1

Sj(X`i)

and hence

P[∪h∈HDh | X, E ,∩h∈H(Dh ∪ Gh)] ≥ 1−
(

1−
KX∏
i=1

Sj(X`i)

)Lj

≥ 9

10
∧ 1

4
Lj

KX∏
i=1

Sj(X`i) (2.7.23)

since 1− e−x ≥ x/4 ∧ 9/10 for x ≥ 0. Furthermore, if

M = {∃h1 6= h2 ∈ H : Dh1 \ Gh1 ,Dh2 \ Gh2} ,
then

P[M | X, E ,∩h∈H(Dh ∪ Gh)] ≤
(
Lj
2

)
P[Dh \ Gh | X, E ,∩h∈H(Dh ∪ Gh)]2

≤
(
Lj
2

)
2

(
KX∏
i=1

Sj(X`i) ∧ 2k0L
−δ
j

)2

≤ 2k0L
−(δ−2)
j

KX∏
i=1

Sj(X`i). (2.7.24)
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Finally let J denote the event

J =
{
Yk ∈ GY

j for all k ∈ {L3
j + 1, . . . , L3

j + Lα−1
j + TY } \ ∪h∈H,1≤i≤KX{τh(`i)}

}
.

Then

P[J | X, E ] ≥
(
1− L−δj

)2Lα−1
j ≥ 9/10. (2.7.25)

If J ,∪h∈HDh and ∩h∈H(Dh ∪Gh) all hold andM does not hold then we can find at least
one h ∈ H such that Dh holds and Gh′ holds for all h′ ∈ H \ {h}. Then by Proposition 2.5.4
we have that X ↪→ Y . Hence by (2.7.22), (2.7.23), (2.7.24), and (2.7.25) and the fact that
J is conditionally independent of the other events that

P[X ↪→ Y | X, E ] ≥ P[∪h∈HDh,∩h∈H(Dh ∪ Gh),J , ¬M | X, E ]

= P[J | X, E ]P[∪h∈HDh, ¬M | X, E ,∩h∈H(Dh ∪ Gh)]
× P[∩h∈H(Dh ∪ Gh) | X, E ]

≥ 81

100

[(
9

10
∧ 1

4
Lj

KX∏
i=1

Sj(X`i)

)
− 2k0L

−(δ−2)
j

KX∏
i=1

Sj(X`i)

]

≥ 7

10
∧ 1

5
Lj

KX∏
i=1

Sj(X`i).

Combining with (2.7.21) we have that

P[X ↪→ Y | X] ≥ 1

2
∧ 1

10
Lj

KX∏
i=1

Sj(X`i),

which completes the proof.

Lemma 2.7.8. When 0 < p < 1
2
,

P(X ∈ A(2)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. We have that

P(X ∈ A(2)
X,j+1, Sj+1(X) ≤ p) ≤ P

[
1

10
Lj

KX∏
i=1

Sj(X`i) ≤ p

]

≤ 2

(
10p

Lj

)mj+1

≤ 1

5
pmj+1L−βj+1 (2.7.26)

where the first inequality holds by Lemma 2.7.7, the second by Lemma 2.7.3 and the third
holds for large enough L0 since mj+1 > m > αβ.
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2.7.3 Case 3

The third case allows for a greater number of bad sub-blocks. The class of blocks A(3)
X,j+1 is

defined as

A(3)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, k0 ≤ KX ≤

Lα−1
j + TX

10R+
j

}
.

Lemma 2.7.9. For X ∈ A(3)
X,j+1,

Sj+1(X) ≥ 1

2

KX∏
i=1

Sj(X`i)

Proof. The proof is a simpler version of Lemma 2.7.7 where this time we only need consider
a single map Υ. Suppose that X ∈ A(3)

X,j+1. Again let E denote the event

E = {WY ≤ Lα−1
j , TY = WY }.

Similarly to (2.7.21) we have that,
P[E ] ≥ 8/10. (2.7.27)

On the event TY = WY we have that the blocks YL3
j+1, . . . , YL3

j+L
α−1
j +TY

are uniform j-blocks

since the block division did not evaluate whether they are good or bad.
By Proposition 2.6.5 we can find an admissible generalized mapping Υ([Lα−1

j + 2L3
j +

TX ], [Lα−1
j + 2L3

j + TY ]) with associated τ which are of class Hj
2 with B = {`1 < . . . < `KX}

so that for all i, L3
j + 1 ≤ τ(`i) ≤ L3

j + Lα−1
j + TY . We estimate the probability that this

gives an embedding.
Let D denote the event

D =
{
X`i ↪→ Yτ(`i) for 1 ≤ i ≤ KX

}
.

By definition,

P[D | X, E ] =

KX∏
i=1

Sj(X`i) (2.7.28)

Let J denote the event

J =
{
Yk ∈ GY

j for all k ∈ {L3
j + 1, . . . , L3

j + Lα−1
j + TX} \ ∪1≤i≤KX{τ(`i)}

}
.

Then for large enough Lj,

P[J | X, E ] ≥
(
1− L−δj

)2Lα−1
j ≥ 9/10. (2.7.29)
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If D and J hold then by Proposition 2.5.4 we have that X ↪→ Y . Hence by (2.7.28) and
(2.7.29) and the fact that D and J are conditionally independent we have that,

P[X ↪→ Y | X, E ] ≥ P[D,J | X, E ]

= P[D | X, E ]P[J | X, E ]

≥ 9

10

KX∏
i=1

Sj(X`i).

Combining with (2.7.27) we have that

P[X ↪→ Y | X] ≥ 1

2

KX∏
i=1

Sj(X`i),

which completes the proof.

Lemma 2.7.10. When 0 < p ≤ 1
2
,

P(X ∈ A(3)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. We have that

P(X ∈ A(3)
X,j+1, Sj+1(X) ≤ p) ≤ P

[
KX ≥ k0,

1

2

KX∏
i=1

Sj(X`i) ≤ p

]
≤ 2 (2p)mj+1 L

−δk0/4
j ≤ 1

5
pmj+1L−βj+1 (2.7.30)

where the first inequality holds by Lemma 2.7.9, the second by Lemma 2.7.3 and the third
holds for large enough L0 since δk0 > 4αβ.

2.7.4 Case 4

Case 4 is the case of blocks of long length but not too many bad sub-blocks (at least with a

density of them smaller than (10R+
j )−1). The class of blocks A(4)

X,j+1 is defined as

A(4)
X,j+1 :=

{
X : TX >

RLα−1
j

2
, KX ≤

Lα−1
j + TX

10R+
j

}
.

Lemma 2.7.11. For X ∈ A(4)
X,j+1,

Sj+1(X) ≥
KX∏
i=1

Sj(X`i) exp(−3TXL
−4
j /R)
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Proof. The proof is a modification of Lemma 2.7.9 allowing the length of Y to grow at a
slower rate than X. Suppose that X ∈ A(4)

X,j+1 and let E(X) denote the event

E(X) = {WY = b2TX/Rc, TY = WY }.

Then by definition P[WY = b2TX/Rc] = L−4
j (1 − L−4

j )b2TX/Rc. Similarly to Lemma 2.7.7,

P[TY = WY | WY ] ≥ (1− L−δj )2L3
j ≥ 9/10. Combining these we have that

P[E(X)] ≥ 9

10
L−4
j (1− L−4

j )b2TX/Rc. (2.7.31)

By Proposition 2.6.5 we can find an admissible generalized mapping Υ([Lα−1
j + 2L3

j +

TX ], [Lα−1
j + 2L3

j + TY ]) with associated τ which is of class Hj
2 with respect to B = {`1 <

. . . < `KX} so that for all i, L3
j + 1 ≤ τ(`i) ≤ L3

j + Lα−1
j + TY . We again estimate the

probability that this gives an embedding.
Defining D and J as in Lemma 2.7.9 and we again have that (2.7.28) holds. Then for

large enough L0,

P[J | X, E(X)] ≥
(
1− L−δj

)Lα−1
j +b2TX/Rc+2L3

j ≥ exp
(
−2L−δj (Lα−1

j + b2TX/Rc+ 2L3
j)
)
.

(2.7.32)
If D and J hold then by Proposition 2.5.4 we have that X ↪→ Y . Hence by (2.7.28) and

(2.7.32) and the fact that D and J are conditionally independent we have that,

P[X ↪→ Y | X, E ] ≥ P[D | X, E ]P[J | X, E ]

≥ exp
(
−2L−δj (Lα−1

j + b2TX/Rc+ 2L3
j)
) KX∏
i=1

Sj(X`i).

Combining with (2.7.31) we have that for large enough L0

P[X ↪→ Y | X] ≥ exp(−3TXL
−4
j /R)

KX∏
i=1

Sj(X`i),

since TXL
−4
j = Ω(Lα−6

j ) and δ > 5 which completes the proof.

Lemma 2.7.12. When 0 < p ≤ 1
2
,

P(X ∈ A(4)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1
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Proof. We have that

P(X ∈ A(4)
X,j+1, Sj+1(X) ≤ p) ≤

∞∑
t=

RLα−1
j
2

+1

P

[
TX = t,

KX∏
i=1

Sj(X`i) exp(−3tL−4
j /R) ≤ p

]

≤
∞∑

t=
RLα−1

j
2

+1

2
(
p exp(3tL−4

j /R)
)mj+1 exp

(
−1

2
tL−4

j

)

≤ 1

5
pmj+1L−βj+1 (2.7.33)

where the first inequality holds by Lemma 2.7.11, the second by Lemma 2.7.3 and the third
holds for large enough L0 since 3mj+1/R < 1

2
and so for large enough L0,

∞∑
t=RLα−1

j /2+1

exp

(
−tL−4

j

(
1

2
− 3mj+1

R

))
<

1

10
L−βj+1.

2.7.5 Case 5

The final case involves blocks with a large density of bad sub-blocks. The class of blocks
A(5)
X,j+1 is defined as

A(5)
X,j+1 :=

{
X : KX >

Lα−1
j + TX

10R+
j

}
.

Lemma 2.7.13. For X ∈ A(5)
X,j+1,

Sj+1(X) ≥ exp(−2TXL
−4
j )

KX∏
i=1

Sj(X`i)

Proof. The proof follows by minor modifications of Lemma 2.7.11. We take E(X) to denote
the event

E(X) = {WY = TX , TY = WY }.
and get a bound of

P[E(X)] ≥ 9

10
L−4
j (1− L−4

j )TX . (2.7.34)

We take as our mapping the complete partitions {0 ≤ 1 ≤ 2 ≤ . . . ≤ 2L3
j + Lα−1

j + TX} and

{0 ≤ 1 ≤ 2 ≤ . . . ≤ 2L3
j + Lα−1

j + TY } and so are simply mapping sub-blocks to sub-blocks.
The new bound for J becomes

P[J | X, E(X)] ≥
(
1− L−δj

)Lα−1
j +TX+2L3

j ≥ exp
(
−2L−δj (Lα−1

j + TX + 2L3
j)
)
. (2.7.35)

Proceeding as in Lemma 2.7.11 then yields the result.
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Lemma 2.7.14. When 0 < p ≤ 1
2
,

P(X ∈ A(5)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. First note that since α > 4,

L
− δ

40R+
j

j = L
− δαj

40R+
j

0 → 0

as j →∞. Hence for large enough L0,

∞∑
t=0

(
exp(2mj+1L

−4
j )L

− δ

40R+
j

j

)t

< 2. (2.7.36)

We have that

P(X ∈ A(5)
X,j+1, Sj+1(X) ≤ p)

≤
∞∑
t=0

P

[
TX = t,KX >

Lα−1
j + t

10R+
j

,

KX∏
i=1

Sj(X`i) exp(−2tL−4
j ) ≤ p

]

≤ pmj+1

∞∑
t=0

2
(
exp(2mj+1tL

−4
j )
)
L
−
δ(Lα−1

j
+t)

40R+
j

j

≤ 1

5
pmj+1L−βj+1 (2.7.37)

where the first inequality holds be by Lemma 2.7.13, the second by Lemma 2.7.3 and the
third follows by (2.7.36) and the fact that

L
−
δLα−1
j

40R+
j

j ≤ 1

20
L−βj+1,

for large enough L0.

2.7.6 Proof of Theorem 2.7.1

We now put together the five cases to establish the tail bounds.

Proof of Theorem 2.7.1. The case of 1
2
≤ p ≤ 1 − L−1

j+1 is established in Lemma 2.7.6. By

Lemma 2.7.5 and Lemma 2.7.4 we have that Sj+1(X) ≥ 1
2

for all X ∈ A(1)
X,j+1 since L0 is

sufficiently large. Hence we need only consider 0 < p < 1
2

and cases 2 to 5. By Lemmas 2.7.8,
2.7.10, 2.7.12 and 2.7.14 then

P(Sj+1(X) ≤ p) ≤
5∑
l=2

P(X ∈ A(l)
X,j+1, Sj+1(X) ≤ p) ≤ pmj+1L−βj+1.

The bound for SY
j+1 follows similarly.
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2.8 Length Estimate

Theorem 2.8.1. Let X be an X block at level (j + 1) we have that

E[exp(L−6
j (|X| − (2− 2−(j+1))Lj+1))] ≤ 1. (2.8.1)

and hence for x ≥ 0,

P(|X| > ((2− 2−(j+1))Lj+1 + xL6
j) ≤ e−x. (2.8.2)

Proof. By the inductive hypothesis we have for X, a random X-block at level j,

E[exp(L−6
j−1(|X| − (2− 2−j)Lj))] ≤ 1. (2.8.3)

It follows that

E[exp(L−6
j−1(|X| − (2− 2−j)Lj))|X ∈ GX

j ] ≤ P[X ∈ GX
j ]−1 ≤ 1

1− L−δj
≤ 1 + 2L−δj , (2.8.4)

since L0 is large enough. Since 0 ≤ L−6
j ≤ 2L−6

j ≤ L−6
j−1 Jensen’s inequality and equa-

tion (2.8.3) imply that
E[exp(2L−6

j (|X| − (2− 2−j)Lj))] ≤ 1 (2.8.5)

and similarly
E[exp(L−6

j (|X| − (2− 2−j)Lj))|X ∈ GX
j ] ≤ 1 + 2L−δj . (2.8.6)

Let X̃ = (X1, X2, . . .) be a sequence of independent X-blocks at level j with the distri-
bution specified by Xi ∼ µX

j,G for i = 1, . . . , L3
j and Xi ∼ µX

j for i > L3
j . Let X =

(X1, X2, . . . , XLα−1
j +2L3

j+TX
) be the (j + 1) level X-block obtained from X̃. Then since TX is

independent of the first L3
j sub-blocks we have

E[exp(L−6
j |X|)] = E[

∞∑
t=0

exp(L−6
j

2L3
j+L

α−1
j +t∑

i=1

|Xi|)I[TX = t]]

= E
[

exp
(
L−6
j

L3
j∑

i=1

|Xi|
)]

·
∞∑
t=0

P[TX = t]
1
2E
[

exp
(

2L−6
j

2L3
j+L

α−1
j +t∑

i=L3
j+1

|Xi|
)] 1

2

,
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using Hölder’s Inequality. Now using (2.8.5), (2.8.6) and Lemma 2.7.3 it follows from the
above equation that

E[exp(L−6
j |X|)] ≤ 2

(
1 + 2L−δj

)L3
j

∞∑
t=0

exp

(
L−5
j (2− 2−j)(Lα−1

j + 2L3
j + t)− 1

4
tL−4

j

)
≤ 4 exp

(
(2− 2−j)(Lα−6

j + 2L−2
j )
) ∞∑
t=0

(
exp(L−5

j (2− 2−j)− 1

4
L−4
j )
)t

≤ exp
(
(2− 2−(j+1))Lα−6

j

)
,

since α > 6. It follows that

E[exp(L−6
j (|X| − (2− 2−(j+1))Lj+1))] ≤ 1 (2.8.7)

while equation (2.8.2) follows by Markov’s inequality which completes the proof of the the-
orem.

2.9 Estimates for Good Blocks

2.9.1 Most Blocks are Good

Theorem 2.9.1. Let X be a X-block at level (j + 1). Then P(X ∈ GX
j+1) ≥ 1 − L−δj+1.

Similarly for Y-block Y at level (j + 1), P(Y ∈ GY
j+1) ≥ 1− L−δj+1.

Before proving the theorem we need the following lemma to show that a sequence of
bL3/2

j c independent level j subblocks is with high probability strong.

Lemma 2.9.2. X = (X1, . . . XbL3/2
j c

) be a sequence of bL3/2
j c independent subblocks at level

j. Then

(a)

P(X is “strong”) ≥ 1− e−
L
5/4
j
2 .

(b) Let, for i = 1, 2, . . . L
3/2
j , Ei = {X [1,i] is “good” }. Then for each i,

P(X is “strong”|Ei) ≥ 1− e−
L
5/4
j
2 .

Proof. We only prove part (b). Part (a) is similar. Let Y be a fixed semi-bad block at level
j. Each of the events {Xk ↪→ Y } are independent, they are independent conditional on Ei
as well. Now, for k > i

P(Xk ↪→ Y |Ei) ≥ 1− 1/20k0R
+
j+1 (2.9.1)
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and for k ≤ i
P(Xk ↪→ Y |Ei) ≥ (1− 1/20k0R

+
j+1 − L−δj ). (2.9.2)

Since L0 is sufficiently large, we have Lδj > 60k0R
+
j+1. It then follows that, conditional on Ei,

#{k : Xk ↪→ Y } � V

where V has a Bin(bL3/2
j c, (1− 1/15k0R

+
j+1)) distribution. Using Hoeffding’s inequality, we

get

P(#{k : Xk ↪→ Y } ≥ bL3/2
j c(1− 1/10k0R

+
j+1)|Ei)

≥ P(V ≥ bL3/2
j c(1− 1/10k0R

+
j+1)) ≥ 1− 2e

−
bL3/2
j
c

450k20(R
+
j+1

)2 ≥ 1− e−L
5/4
j

for L0 sufficiently large. Since the length of a semi-bad block at level j can be at most 10Lj,
and semi-bad blocks can contain only the first Lmj many characters, there can be at most

L
10mLj
j many semi-bad blocks at level j.

Hence, using a union bound we get, for each i,

P(X is “strong”|Ei) ≥ 1− e10mLj logLje−L
5/4
j ≥ 1− e−

L
5/4
j
2

for large enough L0, completing the proof of the lemma.

Proof of Theorem 2.9.1. To avoid repetition, we only prove the theorem for X-blocks.
Recall the notation of Observation 2.3.2 with (X1, X2, X3, .....) a sequence of independent

X-blocks at level j with the first L3
j conditioned to be good and X ∼ µX

j+1 be the (j + 1)-th

level block constructed from them. Let WX be the Geom(L−4
j ) variable associated with X

and TX be the number of excess blocks. Let us define the following events.

A1 = {(Xi, Xi+1, . . . Xi+bL3/2
j c

)is a strong sequence for 1 ≤ i ≤ 2Lα−1
j }.

A2 = {#{1 ≤ i ≤ Lα−1
j + 2L3

j + TX : Xi /∈ GX
j } ≤ k0}.

A3 = {#{1 ≤ i ≤ 2Lα−1
j : Xi /∈ GX

j ∪ SBX
j } = 0}.

A4 = {TX ≤ L5
j − 2L3

j}.
From the definition of good blocks it follows that

P(X ∈ GX
j+1) ≥ P(A1 ∩ A2 ∩ A3 ∩ A4). (2.9.3)

Now, to complete the proof we need suitable estimates for the quantities P(Ai), i = 1, 2, 3, 4,
each of which we now compute.
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• Let X̃i = (Xi+1, Xi+2, . . . , Xi+bL3/2
j c

). From Lemma 2.9.2, it follows that for each i,

P(X̃i “is strong” ) ≥ 1− e−
L
5/4
j
2 .

It follows that

P[Ac1] ≤ 2Lα−1
j e−

L
5/4
j
2 ≤ 1

10
L−δj+1 (2.9.4)

since L0 is sufficieciently large.
• By Lemma 2.7.3 we have that

P[A2] ≥ 1− L−δk0/4j ≥ 1− 1

10
L−δj+1 (2.9.5)

since k0 > 4α.
• From the definition of semi-bad blocks, we know that for i > L3

j ,

P(Xi /∈ GX
j ∪ SBX

j ) ≤ P(SX
j (Xi) ≤ 1− 1

20k0R
+
j+1

) + P(|Xi| > 10Lj)

+ P(Ck ∈ Xi for some k > Lmj ).

Claim: We have

P(Ck ∈ Xi for some k > Lmj ) ≤ µX({CLmj +1, CLmj +2, . . .})E(|Xi|). (2.9.6)

Proof of Claim. Let Ar denote the event that {Ck ∈ X(j)
r for some k > Lmj } where X

(j)
r

denotes the r-th block at level j. Observation 2.3.1 and strong law of large numbers then
imply

lim
1

n

n∑
r=1

I(Ar) = P(Ck ∈ Xi for some k > Lmj ) a.s. . (2.9.7)

Let Bs denote the event that {X(0)
s = Ck for some k > Lmj } where X

(0)
s denotes the s-th

element of the sequence X, i.e., the s-th block at level 0. Observe that

lim sup
n→∞

1

n

n∑
r=1

I(Ar) ≤ lim sup
N→∞

∑N
s=1 I(Bs)

max{t :
∑t

h=1 |X
(j)
h | ≤ N}

a.s. . (2.9.8)

Dividing the numerator and denominator of the right hand side of (2.9.8) by N and using
strong law of large numbers again we get that the a.s. limit of the right hand side of (2.9.8)
is µX({CLmj +1, CLmj +2, . . .})E(|Xi|). Comparing (2.9.7) and (2.9.8) completes the proof of the
claim.

Using (2.1.1) and (2.4.3), it follows that P(Ck ∈ Xi for some k > Lmj ) ≤ 3L1−m
j ≤ L−βj

for L0 large enough and since m > 2 + β.
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Since for L0 sufficiently large, 1 − 1
20k0R

+
j+1

≤ 1 − L−1
j+1, using (2.4.1) and (2.4.3) we see

that

P(Xi /∈ GX
j ∪ SBX

j ) ≤ (1− 1

20k0R
+
j+1

)mL−βj + P(|Xi| > 10Lj) + L−βj ≤ 3L−βj

since α > 6.
Hence it follows that

P[Ac3] ≤ 6Lα−β−1
j ≤ 1

10
L−δj+1 (2.9.9)

for sufficiently large L0 since β > αδ + α− 1.
• By Lemma 2.7.3 we have that

P[A4] ≥ 1− 2 exp(−1

4
Lj) ≥ 1− 1

10
L−δj+1. (2.9.10)

Now from (2.9.3), (2.9.4), (2.9.5), (2.9.9), (2.9.10) it follows that,

P(X ∈ GX
j+1) ≥ 1−

4∑
i=1

P[Aci ] ≥ 1− L−δj+1,

completing the proof of the theorem.

2.9.2 Mappings of Good Segments

Theorem 2.9.3. Let X̃ = (X̃1, X̃2, . . .) be a sequence of X-blocks at level (j + 1) and Ỹ =

(Y1, Y2, . . .) be a sequence of Y-blocks at level (j + 1). Further we suppose that X̃ [1,R+
j+1] and

Ỹ [1,R+
j+1] are “good segments”. Then for every t with R−j+1 ≤ t ≤ R+

j+1,

X̃ [1,Rj+1] ↪→ Ỹ [1,t] and X̃ [1,t] ↪→ Ỹ [1,R+
j+1]. (2.9.11)

Proof. Let us fix t with R−j+1 ≤ t ≤ R+
j+1. We only prove that X̃ [1,Rj+1] ↪→ Ỹ [1,t], the other

part follows similarly.
Let X̃ [1,Rj+1] = (X1, X2, . . . , Xn) be the decomposition of X̃ [1,Rj+1] into level j blocks.

Similarly let Ỹ [1,t] = (Y1, Y2, . . . , Yn′) denote the decomposition of Ỹ [1,t], into level j blocks.
Before proceeding with the proof, we make the following useful observations. Since both

X̃ [1,Rj+1] and Ỹ [1,t] are good segments, it follows that Rj+1L
α−1
j ≤ n ≤ Rj+1(Lα−1

j +L5
j), and

tLjα−1 ≤ n′ ≤ t(Lα−1
j + L5

j). Since L0 large enough and α > 6, we have

1− 2−(j+7/4)

R
≤ n′

n
≤ R(1 + 2−(j+7/4)). (2.9.12)

Let BX = {1 ≤ i ≤ n : Xi /∈ GX
j } = {l1 < l2 < . . . < lKX} denote the positions of “bad”

X-blocks. Similarly, let BY = {1 ≤ i ≤ n′ : Yi /∈ GY
j } = {l′1 < l′2 < . . . < l′KY } denote the



CHAPTER 2. EMBEDDINGS OF ONE DIMENSIONAL RANDOM OBJECTS 58

positions of “bad” Y-blocks. Notice that KX , KY ≤ k0R
+
j+1. Using Proposition 2.6.1 we can

find a family of admissible generalised mappings Υh, 1 ≤ h ≤ L2
j which are of Class Gj

with respect to (BX , BY ), given by Υh([n], [n′], BX , BY ) = (Ph, P
′
h, τh) such that for all h,

1 ≤ h ≤ L2
j , 1 ≤ i ≤ KX , 1 ≤ r ≤ KY , τh(li) = τ1(li) + h− 1 and τ−1

h (l′r) = τ−1
1 (l′r)− h+ 1.

At this point we need the following Lemma.

Lemma 2.9.4. Let Υh = (Ph, P
′
h, τh), 1 ≤ h ≤ L2

j be the set of generalised mappings as
described above. Then there exists 1 ≤ h0 ≤ L2

j , such that Xli ↪→ Yτh0 (li) for all 1 ≤ i ≤ KX

and Xτ−1
h0

(l′i)
↪→ Yl′i for all 1 ≤ i ≤ KY .

Proof. Once again we appeal to the probabilistic method. First observe that for any fixed
i, {τh(li) : h = 1, 2, . . . L2

j} is a set of L2
j consecutive integers. Notice that the j-th level

sub-blocks corresponding to these indices need not belong to the same (j+ 1)-th level block.
However, they can belong to at most 2 consecutive (j + 1)-level blocks (both of which are
good). Suppose the number of sub-blocks belonging to the two different blocks are a and
b, where a + b = L2

j . Now, by the strong sequence assumption, these L2
j blocks the must

contain at least b a

L
3/2
j

c+ b b

L
3/2
j

c ≥ bL1/2
j c−2 many disjoint strong sequences of length bL3/2

j c.
By definition of strong sequences then, there exist, among these L2

j sub-blocks, at least

(L
1/2
j − 3)L

3/2
j (1− 1

10k0R
+
j+1

) many to which Xli can be successfully mapped, i.e.,

#{h : Xli ↪→ Yτh(li)} ≥ (L
1/2
j − 3)L

3/2
j (1− 1

10k0R
+
j+1

). (2.9.13)

Now, choosing H uniformly at random from {1, 2, . . . , L2
j}, it follows from (2.9.13) that

for each i, 1 ≤ i ≤ KX

P(Xli ↪→ YτH(li)) ≥ (1− 3/L
1/2
j )(1− 1

10k0R
+
j+1

) ≥ 1− 1

10k0R
+
j+1

− 3

L
1/2
j

. (2.9.14)

Similar arguments show that for all i ∈ {1, 2, . . . , KY },

P(Xτ−1
H (l′i)

↪→ Yl′i) ≥ 1− 1

10k0R
+
j+1

− 3

L
1/2
j

. (2.9.15)

A union bound then gives,

P
(
Xli ↪→ YτH(li) : 1 ≤ i ≤ KX , Xτ−1

H (l′i)
↪→ Y(l′i) : 1 ≤ i ≤ KY

)
≥ 1−

2k0R
+
j+1(

1

10k0R
+
j+1

+
3

L
1/2
j

),

and the right hand side is always positive for L0 sufficiently large. The lemma immediately
follows from this.

The proof of Theorem 2.9.3 can now be completed using Proposition 2.5.3.
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2.9.3 Good Blocks Map to Good Blocks

Theorem 2.9.5. Let X ∈ GX
j+1, Y ∈ GY

j+1, then X ↪→ Y .

The theorem follows from a simplified version of the proof of Theorem 2.9.3 so we omit
the proof.
We have now completed all the parts of the inductive step. Together these establish Theo-
rem 2.4.1.

2.10 Explicit Constructions

Our proof provides an implicit construction of a deterministic sequence (X1, . . .) which em-
beds into Y with positive probability. We will describe a deterministic algorithm, based on
our proof, which for any n will return the first n co-ordinates of the sequence in finite time.
Though it is not strictly necessary, we will restrict discussion to the case of finite alphabets.
It can easily be seen from our construction and proof that any good j-level block can be
extended into a (j + 1)-level good block and so the algorithm proceeds by extending one
good block to one of the next level. As such one only needs to show that we can identify all
the good blocks at level j in a finite amount of time.

We will also recover all semi-bad blocks. By our construction all good and semi-bad
blocks are of bounded length so there is only a finite space to examine. To determine if a
block is good at level j+ 1 one needs to count how many of its sub-blocks at level j are good
and verify that the others are semi-bad. It also requires that it has “strong subsequences”.
This can be computed if we have a complete list of semi-bad j-level blocks.

Determining if X, a (j+ 1)-level block, is semi-bad requires calculating its length and its
embedding probability. For this we need to run over all possible (j+1)-level blocks, calculate
their probability and then test if X maps into them. By the definition of an R-embedding
we need only consider those of length at most O(R|X|) so this can be done in finite time.

With this listing of all good blocks one can then construct in an arbitrary manner a
sequence in which the first block is good at all levels which will have a positive probability
of an R-embedding into a random sequence. From this construction, and the reduction in
§ 2.2, we can construct a deterministic sequences which has an M -Lipschitz embedding into
a random binary sequence in the sense of Theorem 2.1 with positive probability. Similarly,
this approach gives a binary sequence with a positive density of ones which is compatible
sequence with a random Ber(q) sequence in the sense of Theorem 2.3 for small enough q > 0
with positive probability.
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Chapter 3

Scheduling of Random Walks on a
Complete Graph

In this chapter we study Winkler’s scheduling problem and provide an affirmative answer to
Question 1.2.1 for M sufficiently large. Recall the problem in the language of co-ordinate
percolation. Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two i.i.d. sequences with

P(Xi = k) = P(Yj = k) =
1

M
for k = 1, 2, . . . ,M and for i, j = 1, 2, . . . .

Define an oriented percolation process on Z+ × Z+: the vertex (i1, i2) ∈ Z2
>0 is closed if

Xi1 = Yi2 and is open otherwise. The issue of settling Winkler’s conjecture then translates
to proving that for M sufficiently large, there is percolation with positive probability, which
is our main result in this chapter. For X and Y as above, we say X←→ Y if there exists an
infinite open oriented path starting from (1, 1).

Theorem 3.1. For all M sufficiently large, P(X←→ Y) > 0, thus clairvoyant scheduling is
possible.

To prove Theorem 3.1, we build upon the methods of Chapter 2, using a similar multi-
scale structure, but with crucial adaptations. The most crucial difference comes in the
definition of good blocks. Unlike in Chapter 2 we work here directly with the percolation
picture, which necessitates considerations of different types of connections across a square
in the plane. Also notice that, it is impossible to define good blocks in this model in such a
manner that good block are typical and a good block in one sequence can always be matched
to any good block in the other sequence. Our multi-scale structure needs to be adapted to
circumvent these difficulties.

3.1 Outline of the Proof

As already mentioned, the proof of Theorem 3.1 is based on a multi-scale argument similar
to the one appearing in Chapter 2. As there we divide the original sequences into blocks of
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doubly exponentially growing length scales Lj = Lα
j

0 , for j ≥ 1, and at each of these levels
j we have a definition of a “good” block. The multi-scale structure that we construct has a
number of parameters, α, β, δ,m, k0, R and L0 which must satisfy a number of relations. For
our purposes we shall take these parameters to be identical to ones defined in (2.1.4). Single
characters in the original sequences X and Y constitute the level 0 blocks.

Suppose that we have constructed the blocks up to level j denoting the sequence of blocks
of level j as (X

(j)
1 , X

(j)
2 . . .). We construction of (j + 1)-level blocks out of j-level sub-blocks

in such way that the blocks are independent and, apart from the first block, identically
distributed, this construction is identical to the one appearing in Chapter 2. Construction
of blocks at level 1 has slight difference from the general construction.

At each level we have a definition which distinguishes some of the blocks as good. This
is designed in such a manner that at each level, if we look at the rectangle in the lattice
determined by a good block X and a random block Y , then, with high probability, it will have
many open paths with varying slopes through it. For a precise definition see Definitions 3.2.4
and 3.2.5. Having these paths with different slopes will help achieve improving estimates
of the probability of the event of having a path from the bottom left corner to the top
right corner of the lattice rectangle determined by random blocks X and Y , denoted by
[X

c,c←→ Y ], at higher levels.
The proof then involves a series of recursive estimates at each level, given in § 3.3. We

require that at level j the probability of a block being good is at least 1− L−δj , so that the

vast majority of blocks are good. Furthermore, we obtain tail bounds on P(X
c,c←→ Y | X)

by showing that for 0 < p ≤ 3
4

+ 2−(j+3),

P(P(X
c,c←→ Y | X) ≤ p) ≤ pm+2−jL−βj ,

where β and m are parameters mentioned at the beginning of this section. We show the
similar bound for Y-blocks as well. We also ask that the length of blocks satisfy an expo-
nential tail estimate. The full inductive step is given in § 3.3. Proving this constitutes the
main work in this chapter.

We use the key quantitative estimate provided by Lemma 3.6.2, which bounds the proba-
bility of a block having: a) an excessive length, b) too many bad sub-blocks, c) a particularly
difficult collection of sub-blocks, where we quantify the difficulty of a collection of bad sub-
blocks {Xi}ki=1 by the value of

∏k
i=1 P[Xi

c,c←→ Y |X], where Y is a random block at the same
level. This lemma is essentially identical to Lemma 2.7.3.

In order to achieve the improvement on the tail bounds of P(X
c,c←→ Y | X) at each level,

we take advantage of the flexibility in trying a large number of potential positions to cross
the rectangular strips determined by each member of a small collection of bad sub-blocks,
obtained by using the recursive estimates on probabilities of existence of paths of varying
slopes through rectangles determined by collections of good sub-blocks.

To this effect we also build upon the notion of generalised mappings developed in Chapter
2 to describe such potential mappings. Our analysis is split into 5 different cases. To push
through the estimate of the probability of having many open paths of varying slopes at a
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higher level, we make some finer geometric constructions. To complete the proof we note
that X

(j)
1 and Y

(j)
1 are good for all j with positive probability. Using the definition of good

blocks and a compactness argument we conclude the existence of an infinite open path with
positive probability.

Parameters

Our proof involves a collection of parameters α, β, δ, k0,m and R which must satisfy a system
of constraints. The required constraints are identical to the ones listed in § 2.1.2.

α > 6, δ > 2α ∨ 48, β > α(δ + 1),m > 9αβ, k0 > 36αβ,R > 6(m+ 1).

To fix on a choice we will the parameters to be the same ones given in (2.1.4). Recalling
from § 2.1.2 we take

α = 10, δ = 50, β = 600,m = 60000, k0 = 300000, R = 400000. (3.1.1)

Given these choices we then take L0 to be a sufficiently large integer. We did not make a
serious attempt to optimize the parameters or constraints, sometimes for the sake of clarity
of exposition.

3.2 The Multi-scale Structure

Our strategy for the proof of Theorem 3.1 is to partition the sequences X and Y into blocks
at each level j ≥ 1. For each j ≥ 1, we write X = (X

(j)
1 , X

(j)
2 , . . .) where we call each X

(j)
i a

level j X-block, similarly we write Y = (Y
(j)

1 , Y
(j)

2 , . . .). Most of the time we would clearly
state that something is a level j block and drop the superscript j. Each of the X-block (resp.
Y-block) at level (j + 1) is a concatenation of a number of level j X-blocks, where the level
0 blocks are just the elements of the original sequence.

3.2.1 Recursive Construction of Blocks

Level 1 blocks are constructed inductively as follows:
Suppose the first k blocks X

(1)
1 , . . . , X

(1)
k at level 1 have already been constructed and

suppose that the rightmost element of X
(1)
k is X

(0)
nk . Then X

(1)
nk+1 consists of the elements

X
(0)
nk+1, X

(0)
nk+2, . . . , X

(0)
nk+l where

l = min{t ≥ L1 : X
(0)
nk+t = 1 mod 4 and X

(0)
nk+t+1 = 0 mod 4}. (3.2.1)

The same definition holds for k = 0, assuming n0 = −1. Recall that L1 = Lα0 .

Similarly, suppose the first k Y-blocks at level 1 are Y
(1)

1 , . . . , Y
(1)
k and also suppose that

the rightmost element of Y
(1)
k is Y

(0)
nk . Then Y

(1)
k+1 consists of the elements Y

(0)
nk+1, Y

0)
nk+2, . . . ,

Y
(0)
nk+l where
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l = min{t ≥ L1 : Y
(0)
nk+t = 3 mod 4 and Y

(0)
nk+t+1 = 2 mod 4}. (3.2.2)

We shall denote the length of an X-block X (resp. a Y-block Y ) at level 1 by LX =

L1 + T
(1)
X (resp. LY = L1 + T

(1)
Y ). Notice that this construction, along with Assumption 1,

ensures that the blocks at level one are independent and identically distributed.
At each level j ≥ 1, we also have a recursive definition of “good” blocks (see Defini-

tion 3.2.7). Let GX
j and GY

j denote the set of good X-blocks and good Y-blocks at j-th level

respectively. Now we are ready to describe the recursive construction of the blocks X
(j)
i and

Y
(j)
i for j ≥ 2.

The construction of blocks at level j ≥ 2 is identical to the one described in § 2.3. We
recall it here for ready reference. Let us suppose we have already constructed the blocks of
partition up to level j for some j ≥ 1 and we have X = (X

(j)
1 , X

(j)
2 , . . .). Also assume we

have defined the “good” blocks at level j, i.e., we know GX
j . We describe how to partition X

into level (j + 1) blocks: X = (X
(j+1)
1 , X

(j+1)
2 , . . .).

Suppose the first k blocks X
(j+1)
1 , . . . , X

(j+1)
k at level (j+1) has already been constructed

and suppose that the rightmost level j-subblock of X
(j+1)
k is X

(j)
m . Then X

(j+1)
k+1 consists of

the sub-blocks X
(j)
m+1, X

(j)
m+2, . . . , X

(j)

m+l+L3
j

where l > L3
j + Lα−1

j is selected in the following

manner. Let Wk+1,j+1 be a geometric random variable having Geom(L−4
j ) distribution and

independent of everything else. Then

l = min{s ≥ L3
j + Lα−1

j +Wk+1,j+1 : Xm+s+i ∈ GX
j for 1 ≤ i ≤ 2L3

j}.

That such an l is finite with probability 1 will follow from our recursive estimates. The case
k = 0 is dealt with as before. Observe that as the recursive construction is identical to the
one in § 2.3. Observation 2.3.1 holds for this model as well.

We use the same notations used there. From now on whenever we say “a (random)
X-block at level j”, we would imply that it has law µX

j , unless explicitly stated otherwise.
Similarly let us denote the corresponding law of “a (random) Y-block at level j” by µY

j .
Also, for j > 0, let µX

j,G denote the conditional law of an X block at level j, given that
it is in GX

j . We define µY
j,G similarly. Note also that Observation 2.3.2 holds for this model

too.
As before, whenever we have a sequence X1, X2, ... satisfying the condition in the obser-

vation above, we shall call X the (random) level (j + 1) block constructed from X1, X2, ....
and we shall denote the corresponding geometric variable by WX and set TX = l−L3

j−Lα−1
j .

We still need to define good blocks to complete the structure, we now move towards this
direction.
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3.2.2 Corner to Corner, Corner to Side and Side to Side
Mapping Probabilities

Now we make some definitions that we are going to use throughout our proof. Let X =
(X

(j)
s+1, X

(j)
s+2, . . . , X

(j)
s+lX

) = (X
(0)
a1 , . . . , X

(0)
a2 ) be a level (j + 1) X-block (j ≥ 1) where X

(j)
i ’s

and X
(0)
i are the level j sub-blocks and the level 0 sub-blocks constituting it respectively.

Similarly let Y = (Y
(j)
s′+1, Y

(j)
s′+2, ..., Y

(j)
s+lY

) = (Y
(0)
b1
, . . . , Y

(0)
b2

) is a level (j + 1) Y-block. Let us
consider the lattice rectangle [a1, a2]× [b1, b2] ∩ Z2, and denote it by X × Y . It follows from
(3.2.1) and (3.2.2) that sites at all the four corners of this rectangle are open.

Definition 3.2.1 (Corner to Corner Path). We say that there is a corner to corner path in
X × Y , denoted by

X
c,c←→ Y,

if there is an open oriented path in X × Y from (a1, b1) to (a2, b2).

A site (x, b2) and respectively a site (a2, y), on the top, respectively on the right side of
X×Y , is called ”reachable from bottom left site” if there is an open oriented path in X×Y
from (a1, b1) to that site.

Further, the intervals [a1, a2] and [b1, b2] will be partitioned into “chunks” {CX
r }r≥1 and

{CY
r }r≥1 respectively in the following manner. Let for any X-block X̃ at any level j ≥ 1,

I(X̃) = {a ∈ N : X̃ contains the level 0 block X(0)
a }.

Let X = (X
(j)
s+1, X

(j)
s+2, . . . , X

(j)
s+lX

), and nX := blX/L4
jc. Similarly we define n′Y := blY /L4

jc.

Definition 3.2.2 (Chunks). The discrete segment CX
k ⊂ I(X) defined as

CX
k :=

∪
kL4

j

t=(k−1)L4
j+1
I(X

(j)
s+t), k = 1, . . . , nX − 1;

∪lX
t=kXL

4
j+1
I(X

(j)
s+t), k = nX ;

(3.2.3)

is called the kth chunk of X.

By CX and CY we denote the set of all chunks {CX
k }nXk=1 and {CY

k }
n′Y
k=1 of X and Y

respectively. In what follows the letters T ,B,L,R will stand for ”top”, ”bottom”, ”left”,
and ”right”, respectively. Define:

CX
B = CX × {1}, CX

T = CX × {n′Y },
CY
L = {1} × CY , CY

R = {nX} × CY .

Definition 3.2.3 (Entry/Exit Chunk, Slope Conditions). A pair (CX
k , 1) ∈ CX

B , k ∈
[Lj, nX − Lj] is called an entry chunk (from the bottom) if it satisfies the slope condition

1− 2−(j+4)

R
≤ n′Y − 1

nX − k
≤ R(1 + 2−(j+4)). (3.2.4)
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Similarly, (1, CY
k ) ∈ CY

L , k ∈ [Lj, n
′
Y − Lj], is called an entry chunk (from the left) if it

satisfies the slope condition

1− 2−(j+4)

R
≤ n′Y − k
nX − 1

≤ R(1 + 2−(j+4)). (3.2.5)

The set of all entry chunks is denoted by Ein(X, Y ) ⊆ (CX
B ∪CY

L ). The set of all exit chunks
Eout(X, Y ) is defined in a similar fashion.

We call (e1, e2) ∈ (CX
B ∪ CY

L ) × (CX
T ∪ CY

R ) is an ”entry-exit pair of chunks” if the
following conditions are satisfied. Without loss of generality assume e1 = (CX

k , 1) ∈ CX
B

and e2 = (n′X , C
Y
k′) ∈ CY

R . Then (e1, e2) is called an ”entry-exit pair” if k ∈ [Lj, nX − Lj],
k′ ∈ [Lj, n

′
Y − Lj] and they satisfy the slope condition

1− 2−(j+4)

R
≤ k′ − 1

nX − k
≤ R(1 + 2−(j+4)). (3.2.6)

Let us denote the set of all ”entry-exit pair of chunks” by E(X, Y ).

Definition 3.2.4 (Corner to Side and Side to Corner Path). We say that there is a corner
to side path in X × Y , denoted by

X
c,s←→ Y

if for each (CX
k , nX), (n′Y , C

Y
k′) ∈ E2(X, Y )

#{a ∈ CX
k : (a, b2) is reachable from (a1, b1) in X × Y } ≥

(
3

4
+ 2−(j+5)

)
|CX

k |,

#{b ∈ CY
k : (a2, b) is reachable from (a1, b1) in X × Y } ≥

(
3

4
+ 2−(j+5)

)
|CY

k |.

Side to corner paths in X ×Y , denoted X
s,c←→ Y is defined in the same way except that

in this case we want paths from the bottom or left side of the rectangle X × Y to its top
right corner and use E1(X, Y ) instead of E2(X, Y ).

Condition S: Let (e1, e2) ∈ E(X, Y ). Without loss of generality we assume e1 =
(CX

k1
, 1) ∈ CX

B and e2 = (nX , C
Y
k2

) ∈ CY
R . (e1, e2) is said to satisfy condition S if there

exists A ⊆ CX
k1

with |A| ≥
(

3
4

+ 2−(j+5)
)
|CX

k1
| and B ⊆ CY

k2
with |B| ≥

(
3
4

+ 2−(j+5)
)
|CY

k2
|

such that for all a ∈ A and for all b ∈ B there exist an open path in X × Y from (a, b1) to
(a2, b). Condition S is defined similarly for the other cases.

Definition 3.2.5 (Side to Side Path). We say that there is a side to side path in X × Y ,
denoted by

X
s,s←→ Y

if each (e1, e2) ∈ E(X, Y ) satisfies condition S.
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It will be convenient for us to define corner to corner, corner to side, and side to side paths
not only in rectangles determined by one X-block and one Y-block. Consider a j + 1-level
X-block X = (X1, X2, . . . , Xn) and a j+ 1-level Y block Y = (Y1, . . . , Yn′) where Xi, Yi are j

level subblocks constituting it. Let X̃ (resp. Ỹ ) denote a sequence of consecutive sub-blocks

of X (resp. Y ), e.g., X̃ = (Xt1 , Xt1+1, . . . , Xt2) for 1 ≤ t1 ≤ t2 ≤ n. Call X̃ to be a segment

of X. Let X̃ = (Xt1 , Xt1+1, . . . , Xt2) be a segment of X and let Ỹ = (Yt′1 , Yt′1+1, . . . , Yt′2) be

a segment of Y . Let X̃ × Ỹ denote the rectangle in Z2 determined by X̃ and Ỹ . Also let
Xt1 = (X

(0)
a1 , . . . , X

(0)
a2 ), Xt2 = (X

(0)
a3 , . . . , X

(0)
a4 ), Yt′1 = (Y

(0)
b1
, . . . , Y

(0)
a2 ), Yt′2 = (Y

(0)
b3
, . . . , Y

(0)
b4

).

• We denote by X̃
c,c←→ Ỹ , the event that there exists an open oriented path from the

bottom left corner to the top right corner of X̃ × Ỹ .

• Let X̃
c,s,∗←→ Ỹ denote the event that{

#{b ∈ [b3, b4] : (a2, b) is reachable from (a1, b1)} ≥ (
3

4
+ 2−(j+7/2))(b4 − b3)

}
and{

#{a ∈ [a3, a4] : (a, b4) is reachable from (a1, b1)} ≥ (
3

4
+ 2−(j+7/2))(a4 − a3)

}
.

X̃
s,c,∗←→ Ỹ is defined in a similar manner.

• We set X̃
s,s,∗←→ Ỹ to be the following event. There exists A ⊆ [a1, a2] with |A| ≥

(3
4

+ 2−(j+7/2))(a2 − a1), A′ ⊆ [a3, a4] with |A′| ≥ (3
4

+ 2−(j+7/2))(a4 − a3), B ⊆ [b1, b2]
with |B| ≥ (3

4
+ 2−(j+7/2))(b2 − b1) and B′ ⊆ [b3, b4] with |B| ≥ (3

4
+ 2−(j+7/2))(b4 − b3)

such that for all a ∈ A, a′ ∈ A′, b ∈ B, b′ ∈ B′ we have that (a4, b
′) and (a′, b4)) are

reachable from (a, b1) and (a1, b).

Definition 3.2.6 (Corner to Corner Connection probability). For j ≥ 1, let X be an X-
block at level j and let Y be a Y-block at level j. We define the corner to corner connecting
probability of X to be SX

j (X) = P(X
c,c←→ Y |X). Similarly we define SY

j (Y ) = P(X
c,c←→

Y |Y ).

As noted above the law of Y is µY
j in the definition of SX

j and the law of X is µX
j in the

definition of SY
j .

3.2.3 Good Blocks

To complete the description, we need to give the definition of “good” blocks at level j for
each j ≥ 1 which we have alluded to above. With the definitions from the preceding section,
we are now ready to give the recursive definition of a “good” block as follows. As usual we
only give the definition for X-blocks, the definition for Y is similar.

Let X(j+1) = (X
(j)
1 , X

(j)
2 , . . . , X

(j)
n ) be an X block at level (j + 1). Notice that we can

form blocks at level (j + 1) since we have assumed that we already know GX
j .
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Definition 3.2.7 (Good Blocks). We say X(j+1) is a good block at level (j + 1) (denoted
X(j+1) ∈ GX

j+1) if the following conditions hold.

(i) It starts with L3
j good sub-blocks, i.e., X

(j)
i ∈ GX

j for 1 ≤ i ≤ L3
j . (This is required only

for j > 0, as there are no good blocks at level 0 this does not apply for the case j = 0).

(ii) P(X
s,s←→ Y |X) ≥ 1− L−2β

j+1

(iii) P(X
c,s←→ Y |X) ≥ 9/10 + 2−(j+4) and P(X

s,c←→ Y |X) ≥ 9/10 + 2−(j+4).

(iv) SX
j (X) ≥ 3/4 + 2−(j+4).

(v) The length of the block satisfies n ≤ Lα−1
j + L5

j .

3.3 Recursive Estimates

Our proof of the theorem depends on a collection of recursive estimates, all of which are
proved together by induction. In this section we list these estimates for easy reference. The
proof of these estimates are provided in the next few sections. We recall that for all j > 0
Lj = Lαj−1 = Lα

j

0 .

3.3.1 Tail Estimate

I. Let j ≥ 1. Let X be a X-block at level j and let mj = m+ 2−j. Then

P(SX
j (X) ≤ p) ≤ pmjL−βj for p ≤ 3

4
+ 2−(j+3). (3.3.1)

Let Y be a Y-block at level j. Then

P(SY
j (Y ) ≤ p) ≤ pmjL−βj for p ≤ 3

4
+ 2−(j+3). (3.3.2)

3.3.2 Length Estimate

II. For X an X-block at at level j ≥ 0,

E[exp(L−6
j−1(|X| − (2− 2−j)Lj))] ≤ 1. (3.3.3)

Similarly for Y , a Y-block at level j, we have

E[exp(L−6
j−1(|Y | − (2− 2−j)Lj))] ≤ 1. (3.3.4)
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3.3.3 Probability of Good Blocks

III. Most blocks are “good”.
P(X ∈ GX

j ) ≥ 1− L−δj . (3.3.5)

P(Y ∈ GY
j ) ≥ 1− L−δj . (3.3.6)

3.3.4 Consequences of the Estimates

For now let us assume that the estimates I − III hold at some level j. Then we have the
following consequences (we only state the results for X, but similar results hold for Y as
well).

Lemma 3.3.1. Let us suppose (3.3.1) and (3.3.5) hold at some level j. Then for all X ∈ GX
j

we have the following.

(i)

P[X
c,c←→ Y | Y ∈ GY

j , X] ≥ 3

4
+ 2−(j+7/2). (3.3.7)

(ii)

P[X
c,s←→ Y | Y ∈ GY

j , X] ≥ 9

10
+ 2−(j+7/2),

P[X
s,c←→ Y | Y ∈ GY

j , X] ≥ 9

10
+ 2−(j+7/2). (3.3.8)

(iii)

P[X
s,s←→ Y | Y ∈ GY

j , X] ≥ 1− L−βj . (3.3.9)

Proof. We only prove (3.3.9), other two are similar. We have

P[X 6 s,s←→ Y | Y ∈ GY
j , X] ≤ P[X 6 s,s←→ Y | X]

P[Y ∈ GY
j ]

≤ L−2β
j (1− L−δj )−1 ≤ L−βj

which implies (3.3.9).

Theorem 3.3.2 (Recursive Theorem). There exist positive constants α, β, δ, m, k0 and
R such that for all large enough L0 the following holds. If the recursive estimates (3.3.1),
(3.3.2), (3.3.3), (3.3.4), (3.3.5), (3.3.6) and hold at level j for some j ≥ 1 then all the
estimates hold at level (j + 1) as well.

We will choose the parameters as in equation (3.1.1). Before giving a proof of Theorem
3.3.2 we show how using this theorem we can prove the main theorem. To use the recursive
theorem we first need to show that the estimates I and II hold at the base level j = 1.
Because of the obvious symmetry between X and Y we need only show that (3.3.1), (3.3.3)
and (3.3.5) hold for j = 1 if M is sufficiently large.
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3.3.5 Proving the Recursive Estimates at Level 1

Let X = (X
(0)
1 , X

(0)
(2) , . . . , X

(0)

(L1+T
(1)
X )

) ∼ µX
1 be an X-block at level 1. Similarly denote a

Y-block at level 1 by Y = (Y
(0)

1 , Y
(0)

(2) , . . . , Y
(0)

(L1+T
(1)
Y )

) ∼ µY
1 .

Theorem 3.3.3. For all sufficiently large L0, if M (depending on L0) is sufficiently large,
then

P(SX
j (X) ≤ p) ≤ pm+2−1

L−β1 for p ≤ 3

4
+ 2−4, (3.3.10)

and
P(X ∈ GX

j ) ≥ 1− L−δ1 . (3.3.11)

Theorem 3.3.3 is proved using the following Lemmas. Without loss of generality we shall
assume that M is a multiple of 4.

Lemma 3.3.4. Let X be an X block at level 1 as above. Then we have for all l ≥ 1,

P(T
(1)
X ≥ l) ≤

(
15

16

) l−1
2

. (3.3.12)

Further we have,

E[exp(L−6
0 (|X| − 3

2
L1))] ≤ 1. (3.3.13)

Proof. It follows from the construction of blocks at level 1 that T
(1)
X � 2V where V has a

Geom(1/16) distribution, (3.3.12) follows immediately from this. To prove (3.3.13) we notice
the following two facts.

P[exp(L−6
0 (|X| − 3L1/2)) ≥ 1

2
] ≤ P[|X| ≥ 3

2
L1 − L6

0 log 2] ≤ P[|X| ≥ 5/4L1]

≤ (15/16)
L1
10 ≤ 1/4

for L0 large enough using (3.3.12). Also, for all x ≥ 0 using (3.3.12),

P[
|X| − 3/2L1

L6
0

≥ x] ≤
(

15

16

)xL6
0/2+L1/4

≤ 1

10
exp(−3x).

Now it follows from above that
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E[exp(L−6
0 (|X| − 3/2L1))] =

∫ ∞
0

P[exp(L−6
0 (|X| − 3/2L1)) ≥ y] dy

=

∫ 1
2

0

P[exp(L−6
0 (|X| − 3/2L1)) ≥ y] dy

+

∫ 1

1
2

P[exp(L−6
0 (|X| − 3/2L1)) ≥ y] dy

+

∫ ∞
1

P[exp(L−6
0 (|X| − 3/2L1)) ≥ y] dy

≤ 1

2
+

1

8
+

1

10

∫ ∞
0

P[(L−6
0 (|X| − 3/2L1)) ≥ z]ez dz

≤ 1

2
+

1

8
+

1

10
≤ 1.

This completes the proof.

We define A(1)
X,1 to be the set of level 1 X-blocks defined by

A(1)
X,1 :=

{
X : T

(1)
X ≤ 100mL1

}
.

It follows from Lemma 3.3.4 that for L0 sufficiently large

P(X ∈ A(1)
X,1) ≥ 1− L−3β

1 . (3.3.14)

Lemma 3.3.5. For M sufficiently large, the following inequalities hold for each X ∈ A(1)
X,1.

(i)

P[X
c,c←→ Y | X] ≥ 3

4
+ 2−4. (3.3.15)

(ii)

P[X
c,s←→ Y | X] ≥ 9

10
+ 2−4 and P[X

s,c←→ Y | X] ≥ 9

10
+ 2−4. (3.3.16)

(iii)

P[X
s,s←→ Y | X] ≥ 1− L−2β

1 . (3.3.17)

Proof. Let Y be a level 1 block constructed out of the sequence Y
(0)

1 , . . .. Let C(X) be the
event {

Y
(0)
i 6= X

(0)
i′ ∀ i, i′, i ∈ [(10m+ 1)L1], i′ ∈ [L1 + T

(1)
X ]
}
.

Let E denote the event
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{
Y ∈ A(1)

Y,1

}
.

Using the definition of the sequence Y
(0)

1 , . . . and the Y-version of (3.3.14) we get that

P[C(X) ∩ E | X] ≥
(

1− 4(100m+ 1)L1

M

)(100m+1)L1

− L−3β
1 ≥ max

{
1− L−2β

1 ,
9

10
+ 2−4

}
for M large enough.

Since X
s,s←→ Y , X

s,c←→ Y , X
c,s←→ Y , X

c,c←→ Y each hold if C(X) and E both hold, the
lemma follows immediately.

Lemma 3.3.6. If M is sufficiently large then

P(P(X
c,c←→ Y | X) ≤ p) ≤ pm+ 1

2L−β1 for p ≤ 3

4
+ 2−4. (3.3.18)

Proof. Since L1 is sufficiently large, (3.3.15) implies that it suffices to consider the case

p < 1
500

and X /∈ A(1)
X,1. We prove that for p < 1

500

P[P(X
c,c←→ Y | X) ≤ p,X /∈ A(1)

X,1] ≤ pm+2−1

L−β1 . (3.3.19)

Let E(X) denote the event

{T (1)
Y = b 1

50m
T

(1)
X c, Y

(0)
i 6= 2 mod 4.∀i ∈ [L1 + 1, L1 + T

(1)
Y ]}

It follows from definition that

P[E(X) | X] ≥
(

1

4

)2(
3

4

)T
(1)
X

50m

. (3.3.20)

Now let Dk denote the event that

Dk = {Y (0)
k 6= X

(0)
i′ ∀ i′ ∈ [50km, 50(k + 2)m ∧ T (1)

Y }.

Let

D =

L1+T
(1)
Y⋂

k=1

Dk

It follows that

P[Dk | X, E(X)] ≥ (1− 400m

M
).

Since Dk are independent conditional on X and E(X)
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P[D | X, E(X)] ≥ (1− 400m/M)L1+T
(1)
X /50m.

It follows that

P[X
c,c←→ Y | X] ≥

(
1

4

)2(
3

4

)T
(1)
X

50m
(

1− 200m

M

)L1+T
(1)
X /50m

≥ 1

20

(
7

10

)T
(1)
X

50m

for M sufficiently large.
It follows that

P[P(X
c,c←→ Y | X) ≤ p,X /∈ A(1)

X,1] ≤ P[T
(1)
X ≥ (50m

log 20p

log 7
10

) ∨ 100mL1]

≤
(

15

16

)20m
log 20p

log 7
10 ∧

(
15

16

)40mL1

≤ (20p)2m ∧
(

15

16

)40mL1

≤ pm+2−1

L−β1

since (15/16)10 < 7/10 and L0 is sufficiently large and m > 100.

Proof of Theorem 3.3.3. We have established (3.3.10) in Lemma 3.3.6. That (3.3.11) holds
follows from Lemma 3.3.5 and (3.3.14) noting β > δ.

Now we prove Theorem 3.1 using Theorem 3.3.2.

Proof of Theorem 3.1. Let X = (X1, X2, . . .), Y = (Y1, Y2, . . .) be as in the statement of the

theorem. Let for j ≥ 1, X = (X
(j)
1 , X

(j)
2 , . . .) denote the partition of X into level j blocks

as described above. Similarly let Y = (Y
(j)

1 , Y
(j)

2 , . . .) denote the partition of Y into level
j blocks. Let β, δ,m,R be as in Theorem 3.3.2. It follows form Theorem 3.3.3 that for all
sufficiently large L0, estimates I and II hold for j = 1 for all sufficiently large M . Hence
the Theorem 3.3.2 implies that if L0 is sufficiently large then I and II hold for all j ≥ 1 for
M sufficiently large.

Let T X
j = {X(j)

k ∈ GX
j , 1 ≤ k ≤ L3

j} be the event that the first L3
j blocks at level j

are good. Notice that on the event ∩j−1
k=1T X

k , X
(j)
1 has distribution µX

j by Observation 2.3.1

and so {X(j)
i }i≥1 is i.i.d. with distribution µX

j . Hence it follows from equation (3.3.5) that

P(T X
j | ∩j−1

k=1 T X
k ) ≥ (1 − L−δj )L

3
j . Similarly defining T Y

j = {Y (j)
k ∈ GY

j , 1 ≤ k ≤ L3
j} we get

using (3.3.6) that P(T Y
j | ∩j−1

k=0 T Y
k ) ≥ (1− L−δj )L

3
j .
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Let A = ∩j≥0(T X
j ∩ T Y

j ). It follows from above that P(A) > 0 since δ > 3. Let
Aj+1 = ∩k≤j(T X

k ∩ T Y
k ). It follows from (3.3.7) and (3.3.5) that

P[X
(j+1)
1

c,c←→ Y
(j+1)

1 | Aj+1] ≥ 3

4
+ 2−(j+9/2) − 2L−δj+1 ≥

3

4
.

Let Bj+1 denote the event

Bj+1 = {∃ an open path from (0, 0)→ (m,n) for some m,n ≥ Lj+1} .
Then Bj+1 ↓ and Bj+1 ⊇ {X(j+1)

1

c,c←→ Y
(j+1)

1 }. It follows that

P[∩Bj+1] ≥ lim inf P[X
(j+1)
1

c,c←→ Y
(j+1)

1 ] ≥ 3

4
P[A] > 0.

A standard compactness argument shows that ∩Bj+1 ⊆ {X↔ Y} and hence P[X↔ Y] >
0, which completes the proof of the theorem.

The remainder of the chapter is devoted to the proof of the estimates in the induction.
Throughout these sections we assume that the estimates I−III hold for some level j ≥ 1 and
then prove the estimates at level j+1. Combined they complete the proof of Theorem 3.3.2.

From now on, in every Theorem, Proposition and Lemma we state, we would implicitly
assume the hypothesis that all the recursive estimates hold upto level j, the parameters
satisfy the constraints described in § 3.1 and L0 is sufficiently large.

3.4 Geometric Constructions

We shall join paths across blocks at a lower level two form paths across blocks at a higher
level. The general strategy will be as follows. Suppose we want to construct a path across
X × Y where X, Y are level j + 1 blocks. Using the recursive estimates at level j we know
we are likely to find many paths across Xi × Y where Xi is a good sub-block of X. So we
need to take special care to ensure that we can find open paths crossing bad-subblocks of X
(or Y ). To show the existence of such paths, we need some geometric constructions, which
we shall describe in this section. We start with the following definition.

Definition 3.4.1 (Admissible Assignments). Let I1 = [a+1, a+t]∩Z and I2 = [b+1, b+t′]∩Z
be two intervals of consecutive positive integers. Let I∗1 = [a + L3

j + 1, a + t − L3
j ] ∩ Z and

I∗2 = [b + L3
j + 1, b + t′ − L3

j ] ∩ Z. Also let B ⊆ I∗1 and B′ ⊆ I∗2 be given. We call
Υ(I1, I2, B,B

′) = (H,H ′, τ) to be an admissible assignment at level j of (I1, I2) w.r.t. (B,B′)
if the following conditions hold.

(i) B ⊆ H = {a1 < a2 < · · · < a`} ⊆ I1 and B′ ⊆ H ′ = {b1 < b2 < · · · < b`} ⊆ I∗2 with
` = |B|+ |B′|.

(ii) τ(ai) = bi and τ(B) ∩B′ = ∅.
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(iii) Set a0 = a, a`+1 = a+ t+ 1; b0 = b, b`+1 = b+ t′ + 1. Then we have for all i ≥ 0

1− 2−(j+7/2)

R
≤ bi+1 − bi − 1

ai+1 − ai − 1
≤ R(1 + 2−(j+7/2)).

The following proposition concerning the existence of admissible assignment follows from
the results in § 2.6. We omit the proof.

Proposition 3.4.2. Assume the set-up in Definition 3.4.1. We have the following.

(i) Suppose we have
1− 2−(j+4)

R
≤ t′

t
≤ R(1 + 2−(j+4)).

Also suppose |B|, |B′| ≤ 3k0. Then there exist L2
j level j admissible assignments

(Hi, H
′
i, τi) of (I1, I2) w.r.t. (B,B′) such that for all x ∈ B, τi(x) = τ1(x) + i − 1

and for all y ∈ B′, τ−1
i (y) = τ−1

1 (y)− i+ 1.

(ii) Suppose
3

2R
≤ t′

t
≤ 2R

3

and |B| ≤ t−2L3
j

10R+
j

. Then there exists an admissible assignment (H,H ′, τ) at level j of

(I1, I2) w.r.t. (B, ∅).

Constructing suitable admissible assignments will let us construct different types of open
paths in different rectangles. To demonstrate this we first define the following somewhat
abstract set-up.

3.4.1 Admissible Connections

Assume the set-up in Definition 3.4.1. Consider the latticeA = I1×I2. Let B = (Bi1,i2)(i1,i2)∈A
be a collection of finite rectangles where Bi1,i2 = [ni1 ]× [n′i2 ]. Let A⊗B denote the bi-indexed
collection

{((a1, b1), (a2, b2)) : (a1, a2) ∈ A, (b1, b2) ∈ Ba1,a2} .
We think of A⊗B as a

∑
i1
ni1×

∑
i2
n′i2 rectangle which is further divided into rectangles

indexed by (i1, i2) ∈ A in the obvious manner.

Definition 3.4.3 (Route). A route P at level j in A⊗ B is a sequence of points{
((vi, b

1,vi), (vi, b
2,vi))

}
i∈[`]

in A⊗ B satisfying the following conditions.



CHAPTER 3. SCHEDULING OF RANDOM WALKS ON A COMPLETE GRAPH 75

(i) V (P ) = {v1, v2, . . . , v`} is an oriented path from (a+ 1, b+ 1) to (a+ t, b+ t′) in A.

(ii) Let vi = (v1
i , v

2
i ). For each i, b1,vi ∈ [Lj−1, nv1i − Lj−1]× {1} ∪ {1} × [Lj−1, n

′
v2i
− Lj−1]

and b2,vi ∈ [Lj−1, nv1i −Lj−1]×{n′
v2i
}∪{nv1i }× [Lj−1, n

′
v2i
−Lj−1] except that b1,v1 = (1, 1)

and b2,v` = (nv1` , n
′
v2ell

) are also allowed.

(iii) For each i (we drop the superscript vi), let b1 = (b1
1, b

1
2) and b2 = (b2

1, b
2
2). Then for

each i, we have 1−2−(j+3)

R
≤ b22−b12

b21−b11
≤ R(1 + 2−(j+3)).

(iv) b2,vi and b1,vi+1 agree in one co-ordinate.

A route P defined as above is called a route in A ⊗ B from (v1, b
1,v1) to (v`, b

2,v`). We
call P a corner to corner route if b1,v1 = (1, 1) and b2,v` = (nv1` , n

′
v2`

). For k ∈ I2, the

k-section of the route P is defined to be the set of k′ ∈ I1 such that (k′, k) ∈ V (P ).

Now gluing together these routes one can construct corner to corner (resp. corner to side
or side to side) paths under certain circumstances. We make the following definition to that
end.

Definition 3.4.4 (Admissible Connections). Consider the above set-up. Let

Sin = [Lj−1, na+1 − Lj−1]× {1} ∪ {1} × [Lj−1, n
′
b+1 − Lj−1]

and
Sout = [Lj−1, na+t − Lj−1]× {n′b+t′} ∪ {na+t} × [Lj−1, n

′
b+t − Lj−1].

Suppose for each b ∈ Sout there exists a level j route P b in A ⊗ B from (1, 1) to b. The
collection P = {P b} is called a corner to side admissible connection in A⊗B. A side to corner
admissible connection is defined in a similar manner. Now suppose for each b ∈ Sin, b′ ∈ Sout
there exists a level j route P b,b′ in A⊗B from b to b′. The collection P = {P b,b′} in this case
is called a side to side admissible connection in A⊗ B. We also define V (P) = ∪P∈PV (P ).

The usefulness of having these abstract definitions is demonstrated by the next few
lemmata. These follow directly from definition and hence we shall omit the proofs.

Now let X = (X1, X2, ...., Xt) be an X-blocks at level j + 1 with Xi being the j-level
subblocks constituting it. Let Xi consisting of ni many chunks of (j − 1)-level subblocks.
Similarly let Y = (Y1, Y2, ..., Yt′) be a Y-block at level j+1 with j-level subblocks Yi consisting
of n′i many chunks of (j − 1) level subblocks. Then we have the following lemmata. Set
A = [t]× [t′]. Define B = {Bi,j} where Bi1,i2 = [n′i1 ]× [n′i2 ].

Lemma 3.4.5. Consider the set-up described above. Let H = {a1 < a2 < · · · < a`} ⊆ [t] and

H ′ = {b1 < b2 < · · · < b`}. Set X̃(s) = (Xas+1, . . . , Xas+1−1) and Ỹ(s) = (Ybs+1, . . . , Ybs+1−1).

Suppose further that for each s, X̃(s)
c,c←→ Ỹ(s) and Xas

c,c←→ Ybs. Then we have X
c,c←→ Y .

The next lemma gives sufficient conditions under which we have X̃(s)
c,c←→ Ỹ(s).
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Figure 3.1: Corner to Corner Paths

Lemma 3.4.6. In the above set-up, let Is1 = [as + 1, as+1 − 1], Is2 = [as + 1, as+1 − 1]. Set
As = Is1 × Is2 and let Bs be the restriction of B to As. Suppose there exists a corner to

corner route P in As⊗Bs such that Xas+1
c,s←→ Ybs+1, Xas+1−1

s,c←→ Ybs+1−1 and for all other

(v1, v2) ∈ V (P ) Xv1

s,s←→ Yv2. Then X̃(s)
c,c←→ Ỹ(s).

The above lemmata are immediate from definition. Now we turn to corner to side, side
to corner and side to side connections. We have the following lemma.

Lemma 3.4.7. Consider the set-up as above. Suppose X and Y contain nX and nY many
chunks respectively. Further suppose that none of the subblocks Xi or Yi contain more than
3Lj level 0 subblocks.

(i) Suppose for every exit chunk in Eout(X, Y ) the following holds. For concreteness con-
sider the chunk (k, nY ). Let Tk denote the set of all i such that Xi is contained in
CX
k . There exists T ∗k ⊆ Tk with |T ∗k | ≥ (1− 10k0L

−1
j )|Tk| such that for all r ∈ T ∗k and

X̃ = (X1, . . . , Xr) we have X̃
c,s,∗←→ Y .

Then we have X
c,s←→ Y .

(ii) A similar statement holds for X
s,c←→ Y .

(iii) Suppose for every pair of entry-exit chunks in E(X, Y ) the following holds. For con-
creteness consider the pair of entry-exit chunks ((k1, 1), (nX , k2)). Let Tk1 (resp. T ′k2)
denote the set of all i such that Xi (resp. Yi) is contained in CX

k1
(resp. CY

k2
). There ex-

ists Tk1,∗ ⊆ Tk1, T ′k2,∗ ⊆ T ′k2 with |Tk1,∗| ≥ (1−10k0L
−1
j )|Tk1 |, |T ′k2,∗| ≥ (1−10k0L

−1
j )|T ′k2|

such that for all r ∈ Tk1,∗, r′ ∈ T ′k2,∗ and X̃ = (Xr, . . . , Xt), Ỹ = (Y1, . . . , Yr′) we have

X̃
s,s,∗←→ Ỹ .

Then we have X
s,s←→ Y .
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Proof. Parts (i) and (ii) are straightforward from definitions. Part (iii) follows from defi-
nitions by noting the following consequence of planarity. Suppose there are open oriented
paths in Z2 from v1 = (x1, y1) to v2 = (x2, y2) and also from v3 = (x3, y1) to v4(x2, y3) such
that x1 < x3 < x2 and y1 < y2 < y3. Then these paths must intersect and hence there are
open paths from v1 to v4 and also from v2 to v3. The condition on the length of sub-blocks
is used to ensure that none of the subblocks in Tk1 \ Tk1,∗ are extremely long.

Figure 3.2: Corner to Corner and Side to Side routes

The next lemma gives sufficient conditions for X̃
c,s,∗←→ Ỹ and X̃

s,s,∗←→ Ỹ in the set-up of
the above lemma. This lemma also easily follows from definitions.

Lemma 3.4.8. Assume the set-up of Lemma 3.4.7. Let X̃ = (Xt1 , Xt1+1, . . . , Xt2) and

Ỹ = (Yt′1 , . . . , Yt′2). Let H = {a1 < a2 < · · · < a`} ⊆ [t1, t2] and H ′ = {b1 < b2 < · · · <
b`} ⊆ [t′1, t

′
2]. Set X̃(s) = (Xas+1, . . . , Xas+1−1) and Ỹ(s) = (Ybs+1, . . . , Ybs+1−1) (a0, b0 etc. are

defined in the natural way).

(i) Suppose that for each s < `, X̃(s)
c,c←→ Ỹ(s) and X̃(`)

c,s,∗←→ Ỹ(`). Also suppose for each s,

Xas

c,c←→ Ybs. Then we have X̃
c,s,∗←→ Ỹ .

(ii) A similar statement holds for X̃
s,c,∗←→ Ỹ .

(iii) Suppose that for each s ∈ [` − 1], X̃(s)
c,c←→ Ỹ(s), X̃(0)

s,c,∗←→ Ỹ(0) X̃(`)
c,s,∗←→ Ỹ(`). Also

suppose for each s, Xas

c,c←→ Ybs. Then we have X̃
s,s,∗←→ Ỹ .

Now we give sufficient conditions for X̃
c,s,∗←→ Ỹ and X̃

s,c,∗←→ Ỹ in terms of routes.

Lemma 3.4.9. In the above set-up, further suppose that none of the level (j − 1) sub-blocks
of Xt1, Xt2, Yt′1, Yt′2 contain more than 3Lj−1 level 0 sub-blocks. Set Is1 = [as + 1, as+1 − 1],
Is2 = [as + 1, as+1 − 1]. Set As = Is1 × Is2 and let Bs be the restriction of B to As. Suppose
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there exists a corner to side admissible connection P in As ⊗Bs such that Xas+1
c,s←→ Ybs+1

and for all other (v1, v2) ∈ V (P) Xv1

s,s←→ Yv2. Then X̃(s)
c,s,∗←→ Ỹ(s). Similar statements hold

for X̃(s)
s,c,∗←→ Ỹ(s) and X̃(s)

s,s,∗←→ Ỹ(s).

Proof. Proof is immediate from definition of admissible connections and the inductive hy-
potheses (this is where we need the assumption on the lengths of j − 1 level subblocks). For

X̃(s)
s,s,∗←→ Ỹ(s), we again need to use planarity as before.

Now we connect it up with the notion of admissible assignments defined earlier in this
section. Consider the set-up in Lemma 3.4.5. Let B1 ⊆ I1 = [t], B2 ⊆ I2 = [t′], let B∗1 ⊇ B1

(resp. B∗2 ⊇ B2) be the set containing elements of B1 (resp. B2) and its neighbours. Let
Υ be a level j admissible assignment of (I1, I2) w.r.t. (B∗1 , B

∗
2) with associated τ . Suppose

H = τ−1(B2) ∪B1 and H ′ = B∗2 ∪ τ(B2). We have the following lemmata.

Lemma 3.4.10. Consider (X̃(s), Ỹ(s)) in the above set-up. There exists a corner to corner
route P in As ⊗ Bs. Further for each k ∈ Is2 , there exist sets Hτ

k ⊆ Is1 with |Hτ
k | ≤ Lj such

that the k-section of the route P is contained in Hτ
k for all k. In the special case where

t = t′ and τ(i) = i for all i, one can take Hτ
k = {k − 1, k, k + 1}. Further Let A′ ⊆ As

with |A′| ≤ k0. Suppose further that for all v = (v1, v2) ∈ A′ and for i ∈ {s, s + 1} we have
||v − (ai, bi)||∞ ≥ k0R

310j+8. Then we can take V (P ) ∩ A′ = ∅.

Proof. This lemma is a consequence of Lemma 3.4.12 below.

Lemma 3.4.11. In the above set-up, consider (X̃(s), Ỹ(s)). Assume for each i ∈ [as+1, as+1−
1], i′ ∈ [bs + 1, bs+1 − 1] we have Lα−5

j−1 ≤ ni, n
′
i′ ≤ Lα−5

j−1 + Lj−1. Let A′ ⊆ As with |A′| ≤ k0.
Suppose further that for all v = (v1, v2) ∈ A′ and for i ∈ s, s+ 1 we have ||v − (ai, bi)||∞ ≥
k0R

310j+8. Assume also as+1−as, bs+1−bs ≥ 5j+6R. Then there exists a corner to side (resp.
side to corner, side to side) admissible connection P in As ⊗ Bs such that V (P ) ∩ A′ = ∅.

Proof. This lemma also follows from Lemma 3.4.12 below.

Lemma 3.4.12. Let A ⊗ B be as in Definition 3.4.3. Assume that 1−2−(j+7/2)

R
≤ t′

t
≤

R(1 + 2−(j+7/2)), and Lα−5
j−1 + Lj−1 ≥ ni, n

′
i′ ≥ Lα−5

j−1 . Then the following holds.

(i) There exists a corner to corner route P in A⊗ B where V (P ) ⊆ R(A) where

R(A) = {v = (v1, v2) ∈ A : |v − (a+ xt, b+ xt′)|1 ≤ 50 for some x ∈ [0, 1]}.

(ii) Further, if t, t′ ≥ 5j+6R, then there exists a corner to side (resp. side to corner, side
to side) admissible connection P with V (P) ⊆ R(A).

(iii) Let A′ be a given subset of A with |A′| ≤ k0 such that A′
⋂

([k0R
310j+8]× [k0R

310j+8]∪
([n−k0R

310j+8, n]× [n′−k0R
310j+8, n′]) = ∅. Then there is a corner to corner route P

in A⊗B such that V (P )∩A′ = ∅. Further, if t, t′ ≥ 5j+6R, then there exists a corner
to side (resp. side to corner, side to side) admissible connection P with V (P)∩A′ = ∅.
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Figure 3.3: Side to Side admissible connections

Proof. Without loss of generality, for this proof we shall assume a = b = 0. We prove (i)
first. Let yi = bit′/tc+ 1 for i ∈ [t] and let xi = dit/t′e for i ∈ [t′]. Define ỹi = (it′/t− yi + 1)
and x̃i = (it/t′ − xi + 1).

Define y∗i = bỹin′yic + 1 and x∗i = dx̃inxie. Observe that it follows from the definitions
that y∗i ∈ [n′yi ] and x∗i ∈ [nxi ]. Now define y∗∗i = y∗i if y∗i ∈ [Lj−1, n

′
yi
− Lj−1]. If y∗i ∈

[Lj−1] define y∗∗i = Lj−1, if y∗i ∈ [n′yi − Lj−1, n
′
yi

] define y∗∗i = n′yi − Lj−1. Similarly define
x∗∗i = x∗i if x∗i ∈ [Lj−1, nxi − Lj−1]. If x∗i ∈ [Lj−1] define x∗∗i = Lj−1, if x∗i ∈ [nxi − Lj−1, nxi ]
define x∗∗i = nxi − Lj−1. Now for i ∈ [t − 1], i′ ∈ [t′ − 1] consider points ((i, ni), (yi, y

∗∗
i )),

((i+1, 1), (yi, y
∗∗
i )), ((xi′ , x

∗∗
i′ ), (i′, n′i′)), ((xi′ , x

∗∗
i′ ), (i′+1, 1)) along with the two corner points.

We construct a corner to corner route using these points.
Let us define V (P ) = {(i, yi), (xi′ , i′) : i ∈ [t− 1], i′ ∈ [t′ − 1]} ∪ {(t, t′)}. We notice that

either y1 = 1 or x1 = 1. It is easy to see that the vertices in V (P ) defines an oriented path
from (1, 1) to (t, t′) in A. Denote the path by (v1, v2, . . . vt+t

′−1). For v = vr, r ∈ [2, t+ t′−2],
we define points b1,vr and b2,vr as follows. Without loss of generality assume v = vr = (i, yi).
Then either vr−1 = (i − 1, yi) = (i − 1, yi−1) or vr−1 = (i, yi − 1) = (xyi−1, yi − 1). If
vr−1 = (i − 1, yi−1), then define {(b1,v

1 , b1,v
2 ), (b2,v

1 , b2,v
2 )} by b1,v

1 = 1, b1,v
2 = y∗∗i−1, b2,v

1 = ni,

b2,v
2 = y∗∗i . If vt−1 = (xyi−1, yi − 1) then define Kv = {(b1,v

1 , b1,v
2 ), (b2,v

1 , b2,v
2 )} by b1,v

1 = x∗∗yi−1,

b1,v
2 = 1, b2,v

1 = ni, b
2,v
2 = y∗∗i . To prove that this is indeed a route we only need to check the

slope condition in Definition 3.4.3 in both the cases. We do that only for the latter case and
the former one can be treated similarly.

Notice that from the definition it follows that the slope between the points (in R2)
(x̃yi−1, 0) and (1, ỹi) is t′

t
. We need to show that

1− 2−(j+3)

R
≤ b2

2 − b1
2

b2
1 − b1

1

=
y∗∗i − 1

ni − x∗∗yi−1

≤ R(1 + 2−(j+3))
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where once more we have dropped the superscript v for convenience. Now if x∗yi−1 ∈ [ni −
Lj−1, ni] and y∗i ∈ [Lj−1] then from definition it follows that

b22−b12
b21−b11

= 1 and hence the slope

condition holds. Next let us suppose y∗i ∈ [Lj−1] but x∗yi−1 /∈ [ni − Lj−1, ni]. Then clearly,
y∗∗i −1

ni−x∗∗yi−1
≤ 1. Also notice that in this case x∗yi−1 > Lj−1 and y∗∗i − 1 ≥ n′yi ỹi(1 − L−1

j−1). It

follows that

1− x∗∗yi−1

ni
= 1− x∗yi−1

ni
≤ 1− x̃yi−1 +

1

ni
≤ (1− x̃yi−1)(1 + L−1

j−1).

Hence

y∗∗i − 1

ni − x∗∗yi−1

≥ n′yi
ni

ỹi
1− x̃yi−1

1− L−1
j−1

1 + L−1
j−1

≥ t′

t

Lα−5
j−1 (1− L−1

j−1)

(Lα−5
j−1 + Lj−1)(1 + L−1

j−1)
≥ 1− 2−(j+3)

R

for L0 sufficiently large. The case where y∗i /∈ [Lj−1] but x∗yi−1 ∈ [ni−Lj−1, ni] can be treated
similarly.

Next we treat the case where x∗yi−1 ∈ [Lj−1 + 1, ni − Lj−1 − 1] and y∗i ∈ [Lj−1 + 1, n′yi −
Lj−1 − 1]. Here we have similarly as before

(1− L−1
j−1)(1− x̃yi−1) ≤ 1− x∗∗yi−1

ni
≤ (1− x̃yi−1)(1 + L−1

j−1)

and

ỹi(1 + 2L−1
j−1) ≥ y∗∗i − 1

n′yi
≥ ỹi(1− 2L−1

j−1).

It follows as before that

(1 + 2Lj − 1−1)

1− L−1
j−1

n′yi
ni

n′

n
≥ y∗∗i − 1

ni − x∗∗yi−1

≥ n′yi
ni

t′

t

(1 + 2Lj − 1−1)

1− L−1
j−1

and hence

R(1 + 2−(j+3))
y∗∗i − 1

ni − x∗∗yi−1

≥ 1− 2−(j+3)

R

for L0 sufficiently large.
Other cases can be treated in similar vein and we only provide details in the case where

y∗i ∈ [n′yi − Lj−1, n
′
yi

] and x∗yi−1 ∈ [Lj−1]. In this case we have that

ỹi(1−
2Lj−1

n′yi
) ≤ y∗∗i − 1

n′yi
≤ ỹi.

We also have that

(1− x̃yi−1)(1− Lj−1

ni
)1− x∗∗yi−1

ni
≤ 1− x̃yi−1.
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Combining these two relations we get as before that

R(1 + 2−(j+3))
y∗∗i − 1

ni − x∗∗yi−1

≥ 1− 2−(j+3)

R

for L0 sufficiently large.
Thus we have constructed a corner to corner route in A ⊗ B. From the definitions it

follows easily that for P as above V (P ) ⊆ R(A) and hence proof of (i) is complete.
Proof of (ii) is similar. Say, for the side to corner admissible connection, for a given

b ∈ Sin, in stead of starting with the line y = (t′/t)x, we start with the line passing through
(b1/n1, 0) and (t, t′), and define x̃i, ỹi to be the intersection of this line with the lines y = i
and x = i respectively. Rest of the proof is almost identical, we use the fact t, t′ > 5j+6R to
prove that the slope of this new line is still sufficiently close to t′/t.

For part (iii), instead of a straight line we start with a number of piecewise linear functions
which approximate V (P ). By taking a large number of such choices, it follows that for one
of the cases V (P ) must be disjoint with the given set A′, we omit the details.

Finally we show that if we try a large number of admissible assignments, at least one of
them must obey the hypothesis in Lemma 3.4.10 and Lemma 3.4.11 regarding A′

Lemma 3.4.13. Assume the set-up in Proposition 3.4.2. Let Υh, h ∈ [L2
j ] be the family of

admissible assignments of (I1, I2) w.r.t. (B,B′) described in Proposition 3.4.2(i). Fix any
arbitrary T ⊂ [L2

j ] with |T | = R6k5
0102j+20. Then for every S ⊂ I1 × I2 with |S| = k0, there

exist h0 ∈ T such that

min
x∈BX ,y∈BY ,s∈S

{|(x, τh0(x))− s|, |(τ−1
h0

(y), y)| − s|} ≥ 2k0R
310j+8.

Proof. Call (x, y) ∈ I1× I2 forbidden if there exist s ∈ S such that |(x, y)− s| ≤ 2k0R
310j+8.

For each s ∈ S, let Bs ⊂ I1 × I2 denote the set of vertices which are forbidden because of
s, i.e., Bs = {(x, y) : |(x, y) − s| ≤ 2k0R

310j+8}. Clearly |Bs| ≤ 102j+18k2
0R

6. So the total
number of forbidden vertices is ≤ 102j+18k3

0R
6. Since |B|, |B′| ≤ k0, there exists H ⊂ T with

|H| = 102j+19R6k4
0 such that for all x, x′ ∈ B, x 6= x′, y, y′ ∈ B′, y 6= y′, h1, h2 ∈ H, we have

τh1(x) 6= τh2(x
′) and τ−1

h1
(y) 6= τ−1

h2
(y′). Now for each x ∈ B (resp. y ∈ B′), (x, τh(x)) (resp.

(τ−1
h (y), y)) can be forbidden for at most 102j+18k3

0R
6 many different h ∈ H. Hence,

#
⋃

x∈B,y∈B′
{h ∈ H : (x, τh(x)) or (τ−1

h (y), y) is forbidden} ≤ 2× 102j+18R6k4
0 < |H|.

It follows that there exist h0 ∈ H which satisfies the condition in the statement of the
lemma.
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3.5 Length Estimate

Theorem 3.5.1. Let X be an X block at level (j + 1) we have that

E[exp(L−6
j (|X| − (2− 2−(j+1))Lj+1))] ≤ 1. (3.5.1)

and hence for x ≥ 0,

P(|X| > ((2− 2−(j+1))Lj+1 + xL6
j)) ≤ e−x. (3.5.2)

The proof of this theorem is identical to the proof of Theorem 2.8.1. We omit the proof.

3.6 Corner to Corner Estimate

In this section we prove the recursive tail estimate for the corner to corner connection prob-
abilities.

Theorem 3.6.1. Assume that the inductive hypothesis holds up to level j. Let X and Y be
random (j + 1)-level blocks according to µX

j+1 and µY
j+1. Then

P
(
P(X

c,c←→ Y |X) ≤ p
)
≤ pmj+1L−βj+1, P

(
P(X

c,c←→ Y |Y ) ≤ p
)
≤ pmj+1L−βj+1

for p ≤ 3
4

+ 2−(j+4) and mj+1 = m+ 2−(j+1).

Due to the obvious symmetry between our X and Y bounds and for brevity all our
bounds will be stated in terms of X and SX

j+1 but will similarly hold for Y and SY
j+1. For

the rest of this section we drop the superscript X and denote SX
j+1 (resp. SX

j ) simply by Sj+1

(resp. Sj).
The block X is constructed from an i.i.d. sequence of j-level blocks X1, X2, . . . conditioned

on the event Xi ∈ GX
j for 1 ≤ i ≤ L3

j as described in Section 3.2. The construction also

involves a random variable WX ∼ Geom(L−4
j ) and let TX denote the number of extra sub-

blocks of X, that is the length of X is Lα−1
j + 2L3

j + TX . Let KX denote the number of bad
sub-blocks of X, and let

BX = {i ∈ [Lα−1
j + 2L3

j + TX ] : Xi /∈ GX
j }

denote the position.s of the bad sub-blocks. Let us also denote the positions of bad subblock
of X and their neighbours by {`1 < `2 < · · · < `K′X}, where K ′X denotes the number of
such blocks. Trivially, K ′X ≤ 3KX . We define Y,WY , TY and KY similarly.The proof of
Theorem 3.6.1 is divided into 5 cases depending on the number of bad sub-blocks, the total
number of sub-blocks of X and how “bad” the sub-blocks are.

We note here that the proof of Theorem 3.6.1 follows along the same general line of
argument as the proof of Theorem 2.7.1, with significant adaptations resulting from the
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specifics of the model and especially the difference in the definition of good blocks. As such
this section is similar to Section § 2.7.

The following key lemma provides a bound for the probability of blocks having large
length, number of bad sub-blocks or small

∏
i∈BX Sj(Xi).

Lemma 3.6.2. For all t′, k′, x ≥ 0 we have that

P

[
TX ≥ t′, KX ≥ k′,− log

∏
i∈BX

Sj(Xi) > x

]
≤ 2L

−δk′/4
j exp

(
−xmj+1 −

1

2
t′L−4

j

)
.

The proof of this Lemma is same as the proof of Lemma 2.7.3 and we omit the details.
We now proceed with the 5 cases we need to consider.

3.6.1 Case 1

The first case is the scenario where the blocks are of typical length, have few bad sub-blocks
whose corner to corner corner to corner connection probabilities are not too small. This case
holds with high probability.

We define the event A(1)
X,j+1 to be the set of (j + 1) level blocks such that

A(1)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, KX ≤ k0,

∏
i∈BX

Sj(Xi) > L
−1/3
j

}
.

The following Lemma is an easy corollary of Lemma 3.6.2 and the choices of parameters,
we omit the proof.

Lemma 3.6.3. The probability that X ∈ A(1)
X,j+1 is bounded below by

P[X 6∈ A(1)
X,j+1] ≤ L−3β

j+1 .

Lemma 3.6.4. We have that for all X ∈ A(1)
X,j+1,

P[X
c,c←→ Y | Y ∈ A(1)

Y,j+1, X] ≥ 3

4
+ 2−(j+3), (3.6.1)

Proof. Suppose that X ∈ A(1)
X,j+1 with length Lα−1

j + 2L3
j + TX . Let BX denote the location

of bad subblocks of X. let K ′X be the number of bad sub-blocks and their neighbours and
let set of their locations be B∗ = {`1 < · · · < `K′X}. Notice that K ′X ≤ 3k0. We condition

on Y ∈ A(1)
Y,j+1 having no bad subblocks. Denote this conditioning by

F = {Y ∈ A(1)
Y,j+1, TY , KY = 0}.
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Let I1 = [Lα−1
j + 2L3

j +TX ] and I2 = [Lα−1
j + 2L3

j +TY ]. By Proposition 3.4.2(i), we can find
L2
j admissible assignments Υh at level j w.r.t. (B∗, ∅), with associated τh for 1 ≤ h ≤ L2

j ,
such that τh(`i) = τ1(`i) +h−1 and in particular each block `i is mapped to L2

j distinct sub-
blocks. Hence we get H ⊂ [L2

j ] of size Lj < bL2
j/9k

2
0c so that for all i1 6= i2 and h1, h2 ∈ H

we have that τh1(`i1) 6= τh2(`i2), that is that all the positions bad blocks and their neighbours
are mapped to are distinct.

Our construction ensures that all Yτh(`i) are uniformly chosen good j-blocks conditional

on F and since Sj(X`i) ≥ L
−1/3
j we have that if X`i /∈ GX

j ,

P[X`i

c,c←→ Yτh(`i) | F ] ≥ Sj(X`i)− P[Yτh(`i) 6∈ GX
j ] ≥ 1

2
Sj(X`i). (3.6.2)

Also if X`i ∈ GX
j then from the recursive estimates it follows that

P[X`i

c,c←→ Yτh(`i) | F ] ≥ 3

4
;

P[X`i

c,s←→ Yτh(`i) | F ] ≥ 9

10
;

P[X`i

s,c←→ Yτh(`i) | F ] ≥ 9

10
.

If X`i /∈ GX
j , or, if neither X`i−1 nor X`i+1 is ∈ GX

j , let Dh,i denote the event

Dh,i =
{
X`i

c,c←→ Yτh(`i)

}
.

If X`i , X`i+1 ∈ GX
j then let Dh,i denote the event

Dh,i =
{
X`i

c,s←→ Yτh(`i)

}
.

If X`i , X`i−1 ∈ GX
j then let Dh,i denote the event

Dh,i =
{
X`i

s,c←→ Yτh(`i)

}
.

Let Dh denote the event

Dh =

K′X⋂
i=1

Dh,i.

Further, S denote the event

S =
{
Xk

s,s←→ Yk′∀k ∈ [Lα−1
j + 2L3

j + TX ] \BX ,∀k′ ∈ [Lα−1
j + 2L3

j + TY ]
}
.

Also let

C1 =
{
X1

c,s←→ Y1

}
and C2 =

{
XLα−1

j +2L3
j+TX

s,c←→ YLα−1
j +2L3

j+TY

}
.
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By Lemma 3.4.5, Lemma 3.4.6 and Lemma 3.4.10 if ∪h∈HDh,S, C1, C2 all hold thenX
c,c←→

Y . Conditional on F , for h ∈ H, the Dh, C1, C2 are independent and and by (3.6.2) and the
recursive estimates ,

P[Dh | F ] ≥ 2−5k032k0L
−1/3
j . (3.6.3)

Hence

P[∪h∈HDh | F ] ≥ 1−
(

1− 2−5k032k0L
−1/3
j

)Lj
≥ 1− L−3β

j+1 . (3.6.4)

It follows from the recursive estimates that

P[∪h∈HDh, C1, C2 | F ] ≥
(

9

10

)2 (
1− L−3β

j+1

)
(3.6.5)

Also a union bound using the recursive estimates at level j gives

P[¬S | F ] ≤ (1 +
R

2
)2L2α−2

j L−2β
j ≤ L−βj . (3.6.6)

It follows that

P[X
c,c←→ Y | F ] ≥ P[∪h∈HDh, C1, C2,S] ≥

(
9

10

)2 (
1− L−3β

j+1

)
− L−βj . (3.6.7)

Hence

P[X
c,c←→ Y | Y ∈ A(1)

Y,j+1, X, TY ] ≥ P[X
c,c←→ Y | F ] · P[KY = 0 | Y ∈ A(1)

Y,j+1, TY ]

≥
(

0.81(1− L−3β
j+1 )− L−βj

)
P[KY = 0 | Y ∈ A(1)

Y,j+1, TY ].

Removing the conditioning on TY we get

P[X
c,c←→ Y | Y ∈ A(1)

Y,j+1, X] ≥
((

9

10

)2 (
1− L−3β

j+1

)
− L−βj

)
· P[KY = 0 | Y ∈ A(1)

Y,j+1]

≥
((

9

10

)2 (
1− L−3β

j+1

)
− L−βj

)
·
(

1− L−3β
j+1 − 2L

−δ/4
j

)
≥ 3

4
+ 2−(j+1)

for large enough L0, where the penultimate inequality follows from Lemma 3.6.2 and Lemma
3.6.3. This completes the lemma.

Lemma 3.6.5. When 1
2
≤ p ≤ 3

4
+ 2−(j+4)

P(Sj+1(X) ≤ p) ≤ pmj+1L−βj+1
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Proof. By Lemma 3.6.3 and 3.6.4 we have that for all X ∈ A(1)
X,j+1

P[X
c,c←→ Y | X] ≥ P[Y ∈ A(1)

Y,j+1]P[X
c,c←→ Y | X, Y ∈ A(1)

Y,j+1] ≥ 3

4
+ 2−(j+4). (3.6.8)

Hence if 1
2
≤ p ≤ 3

4
+ 2−(j+4)

P(P[X
c,c←→ Y | X] ≤ p) ≤ P[X /∈ A(1)

X,j+1]

≤ L−3β
j+1 ≤ 2−mj+1L−βj+1 ≤ pmj+1L−βj+1.

3.6.2 Case 2

The next case involves blocks which are not too long and do not contain too many bad
sub-blocks but whose bad sub-blocks may be very bad in the since that corner to corner
connection probabilities of those might be really small. We define the class of blocks A(2)

X,j+1

as

A(2)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, KX ≤ k0,

∏
i∈BX

Sj(Xi) ≤ L
−1/3
j

}
.

Lemma 3.6.6. For X ∈ A(2)
X,j+1,

Sj+1(X) ≥ min

{
1

2
,

1

10

(
3

4

)2k0

Lj
∏
i∈BX

Sj(Xi)

}

Proof. Suppose that X ∈ A(2)
X,j+1. Let E denote the event

E = {WY ≤ Lα−1
j , TY = WY }.

Then by definition of WY , P[WY ≤ Lα−1
j ] ≥ 1− (1−L−4

j )L
α−1
j ≥ 9/10 while by the definition

of the block boundaries the event TY = WY is equivalent to their being no bad sub-blocks
amongst YL3

j+L
α−1
j +WY +1, . . . , YL3

j+L
α−1
j +WY +2L3

j
, that is that we don’t need to extend the block

because of bad sub-blocks. Hence P[TY = WY ] ≥ (1− L−δj )2L3
j ≥ 9/10. Combining these we

have that
P[E ] ≥ 8/10. (3.6.9)

By our block construction procedure, on the event TY = WY we have that the blocks
YL3

j+1, . . . , YL3
j+L

α−1
j +TY

are uniform j-level blocks.

Define I1, I2, BX and B∗ as in the proof of Lemma 3.6.4. Also set [Lα−1
j +2L3

j+TX ]\BX =
GX . Using Proposition 3.4.2 again we can find L2

j level j admissible assignments Υh of (I1, I2)
w.r.t. (B∗, ∅) for 1 ≤ h ≤ L2

j with associated τh. As in Lemma 3.6.4 we can construct a
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subset H ⊂ [L2
j ] with |H| = Lj < bL2

j/9k
2
0c so that for all i1 6= i2 and h1, h2 ∈ H we have

that τh1(`i1) 6= τh2(`i2), that is that all the positions bad blocks are assigned to are distinct.
We will estimate the probability that one of these assignments work.

In trying out these Lj different assignments there is a subtle conditioning issue since

conditioned on an assignment not working (e.g., the event X`i

c,c←→ Yτh(`i) failing) the distri-
bution of Yτh(li) might change. As such we condition on an event Dh ∪ Gh which holds with
high probability.

If X`i /∈ GX
j , or, if neither X`i−1 nor X`i+1 is ∈ GX

j , let Dh,i denote the event

Dh,i =
{
X`i

c,c←→ Yτh(`i)

}
.

If X`i , X`i+1 ∈ GX
j then let Dh,i denote the event

Dh,i =
{
Yτh(`i) ∈ GY

j , X`i

c,s←→ Yτh(`i) and Xk
s,s←→ Yτh(`i)∀k ∈ GX

}
.

If X`i , X`i−1 ∈ GX
j then let Dh,i denote the event

Dh,i =
{
Yτh(`i) ∈ GY

j , X`i

s,c←→ Yτh(`i) and Xk
s,s←→ Yτh(`i)∀k ∈ GX

}
.

Let Dh denote the event

Dh =

K′X⋂
i=1

Dh,i.

Further, let

Gh =
{
Yτh(`i) ∈ GY

j and Yτh(`i)
s,s←→ Xk for 1 ≤ i ≤ K ′X , k ∈ GX

}
.

Then it follows from the recursive estimates and since β > α + δ + 1 that

P[Dh ∪ Gh | X, E ] ≥ P[Gh | X, E ] ≥ 1− 10k0L
−δ
j .

and since they are conditionally independent given X and E ,

P[∩h∈H(Dh ∪ Gh) | X, E ] ≥ (1− 10k0L
−δ
j )Lj ≥ 9/10. (3.6.10)

Now

P[Dh | X, E , (Dh ∪ Gh)] ≥ P[Dh | X, E ] ≥
(

3

4

)2k0 ∏
i∈BX

Sj(Xi)

and hence

P[∪h∈HDh | X, E ,∩h∈H(Dh ∪ Gh)] ≥ 1−
(

1−
(

3

4

)2k0 ∏
i∈BX

Sj(Xi)

)Lj

≥ 9

10
∧ 1

4

(
3

4

)2k0

Lj
∏
i∈BX

Sj(Xi) (3.6.11)
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since 1− e−x ≥ x/4 ∧ 9/10 for x ≥ 0. Furthermore, if

M = {∃h1 6= h2 ∈ H : Dh1 \ Gh1 ,Dh2 \ Gh2} ,
then

P[M | X, E ,∩h∈H(Dh ∪ Gh)] ≤
(
Lj
2

)
P[Dh \ Gh | X, E ,∩h∈H(Dh ∪ Gh)]2

≤
(
Lj
2

)(
2

(
3

4

)2k0 ∏
i∈BX

Sj(Xi) ∧ 2L−δj

)2

≤ L
−(δ−2)
j

(
3

4

)2k0 ∏
i∈BX

Sj(Xi). (3.6.12)

Let JI = J1 and JF = JLα−1
j +2L3

j+TY
denote the events

JI =
{
X1

c,s←→ Y1 and Xk
s,s←→ Y1 for all k ∈ GX

}
;

JF =
{
XLα−1

j +2L3
j+TY

s,c←→ YLα−1
j +2L3

j+TY
and Xk

s,s←→ YLα−1
j +2L3

j+TY
∀k ∈ GX

}
.

For k ∈ {2, . . . Lα−1
j + 2L3

j + TY − 1, } \ ∪h∈H,1≤i≤K′X{τh(`i)}, let Jk denote the event

Jk =
{
Yk ∈ GY

j , Xk′
s,s←→ Yk for all k′ ∈ GX

}
.

Finally let

J =
⋂

k∈[Lα−1
j +2L3

j+TY ]\∪h∈H,1≤i≤K′
X
{τh(`i)}

Jk.

Then it follows from the recursive estimates and the fact that Jk are conditionally indepen-
dent that

P[J | X, E ] ≥
(

9

10

)2 (
1−RLα−1−β

j

)2Lα−1
j ≥ 3/4. (3.6.13)

If J ,∪h∈HDh and ∩h∈H(Dh ∪Gh) all hold andM does not hold then we can find at least
one h ∈ H such that Dh holds and Gh′ holds for all h′ ∈ H \ {h}. Then by Lemma 3.4.10

as before we have that X
c,c←→ Y . Hence by (3.6.10), (3.6.11), (3.6.12), and (3.6.13) and the

fact that J is conditionally independent of the other events that

P[X
c,c←→ Y | X, E ] ≥ P[∪h∈HDh,∩h∈H(Dh ∪ Gh),J , ¬M | X, E ]

= P[J | X, E ]P[∪h∈HDh, ¬M | X, E ,∩h∈H(Dh ∪ Gh)]
× P[∩h∈H(Dh ∪ Gh) | X, E ]

≥ 27

40

[
9

10
∧ 1

4

(
3

4

)2k0

Lj
∏
i∈BX

Sj(Xi)− L−(δ−2)
j

∏
i∈BX

Sj(Xi)

]

≥ 3

5
∧ 1

5
Lj

(
3

4

)2k0 ∏
i∈BX

Sj(Xi).
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Combining with (3.6.9) we have that

P[X ↪→ Y | X] ≥ 1

2
∧ 1

10

(
3

4

)2k0

Lj
∏
i∈BX

Sj(Xi),

which completes the proof.

Lemma 3.6.7. When 0 < p < 1
2
,

P(X ∈ A(2)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. We have that

P(X ∈ A(2)
X,j+1, Sj+1(X) ≤ p) ≤ P

[
1

10

(
3

4

)2k0

Lj
∏
i∈BX

Sj(Xi) ≤ p

]

≤ 2

(
10p

Lj

(
4

3

)2k0
)mj+1

≤ 1

5
pmj+1L−βj+1 (3.6.14)

where the first inequality holds by Lemma 3.6.6, the second by Lemma 3.6.2 and the third
holds for large enough L0 since mj+1 > m > αβ.

3.6.3 Case 3

The third case allows for a greater number of bad sub-blocks. The class of blocks A(3)
X,j+1 is

defined as

A(3)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, k0 ≤ KX ≤

Lα−1
j + TX

10R+
j

}
.

Lemma 3.6.8. For X ∈ A(3)
X,j+1,

Sj+1(X) ≥ 1

2

(
3

4

)2KX ∏
i∈BX

Sj(Xi)

Proof. For this proof we only need to consider a single admissible assignment Υ. Suppose
that X ∈ A(3)

X,j+1. Again let E denote the event

E = {WY ≤ Lα−1
j , TY = WY }.

Similarly to (3.6.9) we have that,
P[E ] ≥ 8/10. (3.6.15)

As before we have, on the event TY = WY , the blocks YL3
j+1, . . . , YL3

j+L
α−1
j +TY

are uniform

j-blocks since the block division did not evaluate whether they are good or bad.
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Set I1, I2, BX , GX and B∗ as in the proof of Lemma 3.6.6. By Proposition 3.4.2 we can
find a level j admissible assignment Υ of (I1, I2) w.r.t. (B∗, φ) with associated τ so that for
all i, L3

j + 1 ≤ τh(`i) ≤ L3
j + Lα−1

j + TY . We estimate the probability that this assignment
works.

If X`i /∈ GX
j , or, if neither X`i−1 nor X`i+1 is ∈ GX

j , let Di denote the event

Di =
{
X`i

c,c←→ Yτ(`i)

}
.

If X`i , X`i+1 ∈ GX
j then let Di denote the event

Di =
{
Yτ(`i) ∈ GY

j , X`i

c,s←→ Yτ(`i) and Xk
s,s←→ Yτ(`i)∀k ∈ GX

}
.

If X`i , X`i−1 ∈ GX
j then let Di denote the event

Di =
{
Yτ(`i) ∈ GY

j , X`i

s,c←→ Yτ(`i) and Xk
s,s←→}Yτ(`i)∀k ∈ GX

}
.

Let D denote the event

D =

K′X⋂
i=1

Di.

By definition and the recursive estimates,

P[D | X, E ] ≥
(

3

4

)2KX ∏
i∈BX

Sj(Xi) (3.6.16)

Let JI = J1 and JF = JLα−1
j +2L3

j+TY
denote the events

JI =
{
X1

c,s←→ Y1 and Xk
s,s←→ Y1 for all k ∈ GX

}
;

JF =
{
XLα−1

j +2L3
j+TY

s,c←→ YLα−1
j +2L3

j+TY
and Xk

s,s←→ YLα−1
j +2L3

j+TY
∀k ∈ GX

}
.

For k ∈ {2, . . . Lα−1
j + 2L3

j + TY − 1, } \ ∪1≤i≤K′X{τ(`i)}, let Jk denote the event

Jk =
{
Yk ∈ GY

j , Xk′
s,s←→ Yk for all k′ ∈ GX

}
.

Finally let

J =
⋂

k∈[Lα−1
j +2L3

j+TY ]\∪1≤i≤K′
X
{τ(`i)}

Jk.

From the recursive estimates

P[J | X, E ] ≥ 3

4
. (3.6.17)
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If D and J hold then by Lemma 3.4.10 we have that X
c,c←→ Y . Hence by (3.6.16) and

(3.6.17) and the fact that D and J are conditionally independent we have that,

P[X
c,c←→ Y | X, E ] ≥ P[D,J | X, E ]

= P[D | X, E ]P[J | X, E ]

≥ 3

4

(
3

4

)2KX ∏
i∈BX

Sj(Xi).

Combining with (3.6.15) we have that

P[X
c,c←→ Y | X] ≥ 1

2

(
3

4

)2KX ∏
i∈BX

Sj(Xi),

which completes the proof.

Lemma 3.6.9. When 0 < p ≤ 1
2
,

P(X ∈ A(3)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. We have that

P(X ∈ A(3)
X,j+1, Sj+1(X) ≤ p) ≤ P

[
KX > k0,

1

2

(
3

4

)2KX ∏
i∈BX

Sj(Xi) ≤ p

]

≤
∞∑

k=k0

P

[
KX = k,

∏
i∈BX

Sj(Xi) ≤ 2p

(
4

3

)2k
]

≤ 2
∞∑

k=k0

(
2p

(
4

3

)2k
)mj+1

L
−δk/4
j ≤ 1

5
pmj+1L−βj+1 (3.6.18)

where the first inequality holds by Lemma 3.6.8, the third follows from Lemma 3.6.2 and
the last one holds for large enough L0 since δk0 > 4αβ.

3.6.4 Case 4

In Case 4 we allow blocks of long length but not too many bad sub-blocks. The class of
blocks A(4)

X,j+1 is defined as

A(4)
X,j+1 :=

{
X : TX >

RLα−1
j

2
, KX ≤

Lα−1
j + TX

10R+
j

}
.
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Lemma 3.6.10. For X ∈ A(4)
X,j+1,

Sj+1(X) ≥
(

3

4

)2KX ∏
i∈BX

Sj(Xi) exp(−3TXL
−4
j /R)

Proof. In this proof we allow the length of Y to grow at a slower rate than that of X.
Suppose that X ∈ A(4)

X,j+1 and let E(X) denote the event

E(X) = {WY = b2TX/Rc, TY = WY }.

Then by definition P[WY = b2TX/Rc] = L−4
j (1 − L−4

j )b2TX/Rc. Similarly to Lemma 3.6.6,

P[TY = WY | WY ] ≥ (1− L−δj )2L3
j ≥ 9/10. Combining these we have that

P[E(X)] ≥ 9

10
L−4
j (1− L−4

j )b2TX/Rc. (3.6.19)

Set I1, I2, BX , B
∗ as before. By Proposition 3.4.2 we can find an admissible assignment

at level j, Υ of (I1, I2) w.r.t. (B∗, ∅) with associated τ so that for all i, L3
j + 1 ≤ τ(`i) ≤

L3
j + Lα−1

j + TY . We again estimate the probability that this assignment works.
We need to modify the definition of D and J in this case since the length of X could be

arbitrarily large. For k ∈ [Lα−1
j + 2L3

j +TY ]\ τ(BX), let Hτ
k ⊆ [Lα−1

j + 2L3
j +TY ]\BX be the

sets given by Lemma 3.4.10 such that |Hτ
k | ≤ Lj and there exists a τ -compatible admissible

route with k-sections contained in Hτ
k for all k. We define D and J in this case as follows.

If X`i /∈ GX
j , or, if neither X`i−1 nor X`i+1 is ∈ GX

j , let Di denote the event

Di =
{
X`i

c,c←→ Yτ(`i)

}
.

If X`i , X`i+1 ∈ GX
j then let Di denote the event

Di =
{
Yτ(`i) ∈ GY

j , X`i

c,s←→ Yτ(`i) and Xk
s,s←→ Yτ(`i)∀k ∈ Hτ

τ(li)

}
.

If X`i , X`i−1 ∈ GX
j then let Di denote the event

Di =
{
Yτ(`i) ∈ GY

j , X`i

s,c←→ Yτ(`i) and Xk
s,s←→ Yτ(`i)∀k ∈ Hτ

τ(li)

}
.

Let D denote the event

D =

K′X⋂
i=1

Di.

Let JI = J1 and JF = JLα−1
j +2L3

j+TY
denote the events

JI =
{
X1

c,s←→ Y1 and Xk
s,s←→ Y1 for all k ∈ Hτ

1

}
;
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JF =
{
XLα−1

j +2L3
j+TY

s,c←→ YLα−1
j +2L3

j+TY
and Xk

s,s←→ YLα−1
j +2L3

j+TY
∀k ∈ Hτ

Lα−1
j +2L3

j+TY

}
.

For k ∈ {2, . . . Lα−1
j + 2L3

j + TY − 1, } \ ∪1≤i≤K′X{τ(`i)}, let Jk denote the event

Jk =
{
Yk ∈ GY

j , Xk′
s,s←→ Yk for all k′ ∈ Hτ

k

}
.

Finally let

J =
⋂

k∈[Lα−1
j +2L3

j+TY ]\∪1≤i≤K′
X
{τ(`i)}

Jk.

If D and J hold then by Lemma 3.4.10 we have that X
c,c←→ Y . It is easy to see that, in

this case (3.6.16) holds. Also we have for large enough L0,

P[J | X, E(X)] ≥ 3

4

(
1− 2L−δj

)Lα−1
j +b2TX/Rc+2L3

j ≥ 1

4
exp

(
−2L−δj (Lα−1

j + b2TX/Rc+ 2L3
j)
)
.

(3.6.20)
Hence by (3.6.16) and (3.6.20) and the fact that D and J are conditionally independent

we have that,

P[X
c,c←→ Y | X, E ] ≥ P[D | X, E ]P[J | X, E ]

≥ 1

4
exp

(
−L−δj (Lα−1

j + b2TX/Rc+ 2L3
j)
)(3

4

)2KX ∏
i∈BX

S(Xi).

Combining with (3.6.19) we have that

P[X
c,c←→ Y | X] ≥ exp(−3TXL

−4
j /R)

(
3

4

)2KX ∏
i∈BX

Sj(Xi),

since TXL
−4
j = Ω(Lα−6

j ) and δ > 5 which completes the proof.

Lemma 3.6.11. When 0 < p ≤ 1
2
,

P(X ∈ A(4)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. Set t0 =
RLα−1

j

2
+ 1 and for k ≥ k0, set

S(k) =

(
3

4

)2k ∏
i∈BX

Sj(Xi).
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We have that

P(X ∈ A(4)
X,j+1, Sj+1(X) ≤ p) ≤

∞∑
t=t0

∞∑
k=k0

P
[
TX = t,KX = k, S(k) exp(−3tL−4

j /R) ≤ p
]

≤
∞∑
t=t0

∞∑
k=k0

2

(
42kp

32k

)mj+1

exp(3mj+1tL
−4
j /R− tL−4

j /2)L
−δk/4
j

≤ 1

5
pmj+1L−βj+1 (3.6.21)

where the first inequality holds by Lemma 3.6.10, the second by Lemma 3.6.2 and the third
holds for large enough L0 since 3mj+1/R < 1

2
and so for large enough L0, (4/3)2(m+1)L

−δ/4
j ≤

1/2 and
∞∑

t=RLα−1
j /2+1

exp

(
−tL−4

j

(
1

2
− 3mj+1

R

))
<

1

10
L−βj+1.

3.6.5 Case 5

It remains to deal with the case involving blocks with a large density of bad sub-blocks.
Define the class of blocks A(5)

X,j+1 is as

A(5)
X,j+1 :=

{
X : KX >

Lα−1
j + TX

10R+
j

}
.

Lemma 3.6.12. For X ∈ A(5)
X,j+1,

Sj+1(X) ≥ exp(−2TXL
−4
j )

(
3

4

)2KX ∏
i∈BX

Sj(Xi)

Proof. The proof is a minor modification of the proof of Lemma 3.6.10. We take E(X) to
denote the event

E(X) = {WY = TX , TY = WY }.
and get a bound of

P[E(X)] ≥ 9

10
L−4
j (1− L−4

j )TX . (3.6.22)

We consider the admissible assignment Υ given by τ(i) = i for i ∈ B∗. It follows from
Lemma 3.4.10 that in this case we can define Hτ

k = k − 1, k, k + 1. We define D and J as
before. The new bound for J becomes

P[J | X, E(X)] ≥ 3

4

(
1− 2L−δj

)Lα−1
j +TX+2L3

j ≥ 1

4
exp

(
−2L−δj (Lα−1

j + TX + 2L3
j)
)
. (3.6.23)

We get the result proceeding as in the proof of Lemma 3.6.10.
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Lemma 3.6.13. When 0 < p ≤ 1
2
,

P(X ∈ A(5)
X,j+1, Sj+1(X) ≤ p) ≤ 1

5
pmj+1L−βj+1

Proof. First note that since α > 4,

L
− δ

50R+
j

j = L
− δαj

50R+
j

0 → 0

as j →∞. Hence for large enough L0,

∞∑
t=0

(
exp(2mj+1L

−4
j )L

− δ

50R+
j

j

)t

< 2. (3.6.24)

Set k∗ =
Lα−1
j +t

10R+
j

and for k ≥ k∗ set S(k) =
(

3
4

)2k∏
i∈BX Sj(Xi). We have that

P(X ∈ A(5)
X,j+1, Sj+1(X) ≤ p) ≤

∞∑
t=0

∞∑
k=k∗

P
[
TX = t,KX = k, S(k) exp(−2tL−4

j ) ≤ p
]

≤ pmj+1

∞∑
t=0

∞∑
k=k∗

2
(
exp(2mj+1tL

−4
j )
)((16

9

)mj+1

L
− δ

4
j

)k

≤ pmj+1

∞∑
t=0

4
(
exp(2mj+1tL

−4
j )
)
L
−
Lα−1
j

+t

50R+
j

j

≤ 1

5
pmj+1L−βj+1 (3.6.25)

where the first inequality holds be by Lemma 3.6.12, the second by Lemma 3.6.2 and the
third follows since L0 is sufficiently large and the last one by (3.6.24) and the fact that

L
−
δLα−1
j

50R+
j

j ≤ 1

40
L−βj+1,

for large enough L0.

3.6.6 Proof of Theorem 3.6.1

Putting together all the five cases we now prove Theorem 3.6.1.

Proof of Theorem 3.6.1. The case of 1
2
≤ p ≤ 1 − L−1

j+1 is established in Lemma 3.6.5. By

Lemma 3.6.4 we have that Sj+1(X) ≥ 1
2

for all X ∈ A(1)
X,j+1. Hence we need only consider



CHAPTER 3. SCHEDULING OF RANDOM WALKS ON A COMPLETE GRAPH 96

0 < p < 1
2

and cases 2 to 5. By Lemmas 3.6.7, 3.6.9, 3.6.11 and 3.6.13 then

P(Sj+1(X) ≤ p) ≤
5∑
l=2

P(X ∈ A(l)
X,j+1, Sj+1(X) ≤ p) ≤ pmj+1L−βj+1.

The bound for SY
j+1 follows similarly.

3.7 Side to Corner and Corner to Side Estimates

The aim of this section is to show that for a large class of X- blocks (resp. Y-blocks),

P(X
c,s←→ Y | X) and P(X

s,c←→ Y | X) (resp. P(X
c,s←→ Y | Y ) and P(X

s,c←→ Y | Y )) is
large. We shall state and prove the result only for X-blocks.

Here we need to consider a different class of blocks where the blocks have few bad sub-
blocks whose corner to corner connection probabilities are not too small, where the excess
number of subblocks is of smaller order than the typical length and none of the subblocks,
and their chunks contain too many level 0 blocks. This case holds with high probability. Let
X be a level (j + 1) X-block constructed out of the independent sequence of j level blocks
X1, X2, . . . where the first L3

j ones are conditioned to be good.

For i = 1, 2, . . . , Lα−1
j + 2L3

j + TX , let Gi denote the event that all level j − 1 subblocks
contained in Xi contains at most 3Lj−1 level 0 blocks, and Xi contains at most 3Lj level 0
blocks. Let GX denote the event that for all good blocks Xi contained in X, Gi holds. We
define A(∗)

X,j+1 to be the set of (j + 1) level blocks such that

A(∗)
X,j+1 :=

{
X : TX ≤ L5

j − 2L3
j , KX ≤ k0,

∏
i∈BX

Sj(Xi) > L
−1/3
j ,GX

}
.

It follows from Theorem 3.5.1 that P[GcX ] is exponentially small in Lj−1 and hence we
shall be able to safely ignore this conditioning while calculating probability estimates since
L0 is sufficiently large.

Similarly to Lemma 3.6.3 it can be proved that

P[X ∈ A(∗)
X,j+1] ≥ 1− L−3β

j+1 . (3.7.1)

We have the following proposition.

Proposition 3.7.1. We have that for all X ∈ A(∗)
X,j+1,

P[X
c,s←→ Y | Y ∈ A(∗)

Y,j+1, X] ≥ 9

10
+ 2−(j+15/4),

P[X
s,c←→ Y | Y ∈ A(1)

Y,j+1, X] ≥ 9

10
+ 2−(j+15/4). (3.7.2)
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We shall only prove the corner to side estimate, the other one follows by symmetry.
Suppose that X ∈ A(∗)

X,j+1 with length Lα−1
j + 2L3

j + TX , define BX , B∗,K ′X , TY and KY as

in the proof of Lemma 3.6.4. We condition on Y ∈ A(∗)
Y,j+1 having no bad subblocks. Denote

this conditioning by

F = {Y ∈ A(∗)
Y,j+1, TY , KY = 0}.

Let nX and nY denote the number of chunks in X and Y respectively. We first prove the
following lemma.

Lemma 3.7.2. Consider an exit chunk (k, nY ) (resp. (nX , k)) in Eout(X, Y ). Fix t ∈ [Lα−1
j +

2L3
j + TX ] contained in CX

k such that [t, t − L3
j ] ∩ BX = ∅ (resp. fix t′ ∈ [Lα−1

j + 2L3
j + TY ]

contained in CY
k ). Consider X̃ = (X1, . . . , Xt) (or Ỹ = (Y1, . . . , Yt′)). Then there exists an

event St with P[St | F ] ≥ 1− L−αj and on St, F and {X1
c,s←→ Y1} we have X̃

c,s,∗←→ Y (resp.

St′ with P[St′ | F ] ≥ 1− L−αj and on St′, F and {X1
c,s←→ Y1} we have X

c,s,∗←→ Ỹ ).

Proof. We shall only prove the first case, the other case follows by symmetry. Set I1 = [t],
I2 = [Lα−1

j + 2L3
j + TY ]. Also define BX̃ and B∗ as in the proof of Lemma 3.6.4. The slope

condition in the definition of Eout(X, Y ), and the fact that BX is disjoint with [t − L3
j , t]

implies that by Proposition 3.4.2 we can find L2
j admissible generalized mappings Υh of

(I1, I2) with respect to (B∗, ∅) with associated τh for 1 ≤ h ≤ L2
j as in the proof of Lemma

3.6.4. As in there, we construct a subset H ⊂ [L2
j ] with |H| = Lj < bL2

j/3k0c so that for all
i1 6= i2 and h1, h2 ∈ H we have that τh1(`i1) 6= τh2(`i2).

For h ∈ H, i ∈ B∗, define the events Dh,i similarly as in the proof of Lemma 3.6.4. Set

Dh =

K′X⋂
i=1

Dkh,i and D =
⋃
h∈H

Dkh.

Further, S denote the event

S =
{
Xk

s,s←→ Yk′∀k ∈ [t] \ {`1, . . . , `K′X},∀k
′ ∈ [Lα−1

j + 2L3
j + TY ]

}
.

Same arguments as in the proof of yields

P[D | F ] ≥ 1− L−3β
j+1 (3.7.3)

and
P[¬S | F ] ≤ 4L2α−2

j L−2β
j ≤ L−βj . (3.7.4)

Now it follows from Lemma 3.4.8 and Lemma 3.4.11, that on {X1
c,s←→ Y1}, S,D and F ,

we have X̃
c,s,∗←→ Y . The proof of the Lemma is completed by setting St = S ∩ D.

Now we are ready to prove Proposition 3.7.1.
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Proof of Proposition 3.7.1. Fix an exit chunk (k, nY ) or (nX , k
′) in Eout(X, Y ). In the former

case set Tk to be the set of all blocks Xt contained in CX
k such that [t, t− L3

j ] ∩ BX = ∅, in
the later case set T ′k′ to be the set of all blocks Yt′ conttained in CY

k′ . Notice that the number
of blocks contained in Tk is at least (1 − 2k0L

−1
j ) fraction of the total number of blocks

contained in CX
k . For t ∈ Tk (resp. t′ ∈ T ′k′), let St (resp. St′) be the event given by Lemma

3.7.2 Hence it follows from Lemma 3.4.7(i), that on {X1
c,s←→ Y1}

⋂∩k,TkSt⋂∩k′,Tk′St′ , we

have X
c,s←→ Y . Taking a union bound and using Lemma 3.7.2 and also using the recursive

lower bound on P[X1
c,s←→ Y1] yields,

P[X
c,s←→ Y | F , X] ≥ 9

10
+ 2−(j+31/8).

The proof can now be completed by removing the conditioning on TY and proceeding as in
Lemma 3.6.4.

3.8 Side to Side Estimate

In this section we estimate the probability of having a side to side path in X × Y . We work
in the set up of previous section. We have the following theorem.

Proposition 3.8.1. We have that

P[X
s,s←→ Y | X ∈ A(∗)

X,j+1, Y ∈ A
(∗)
Y,j+1] ≥ 1− L−3β

j+1 . (3.8.1)

Suppose that X ∈ A(∗)
X,j+1, Y ∈ A

(∗)
Y,j+1. Let TX , TY , BX , BY , GX , GY be as before. Let

B∗1 = {`1 < · · · < `K′X} and B∗2 = {`′1 < · · · < `′K′Y
} denote the locations of bad blocks and

their neighbours in X and Y respectively. Let us condition on the block lengths TX , TY ,
B∗1 , B

∗
2 and the bad-sub-blocks and their neighbours themselves. Denote this conditioning

by

F = {X ∈ A(1)
X,j+1, Y ∈ A

(1)
Y,j+1, TX , TY , K

′
X , K

′
Y , `1, . . . , `K′X , `

′
1, . . . , `

′
K′Y
,

X`1 , . . . , X`K′
X

, Y`′1 , . . . , Y`′K′
Y

}.

Let
BX,Y = {(k, k′) ∈ GX ×GY : Xk 6 s,s←→ Yk′}

and NX,Y = |BX,Y |. Let S denote the event {NX,Y ≤ k0}. We first prove the following
lemma.

Lemma 3.8.2. Let nX and nY denote the number of chunks in X and Y respectively.
Fix an entry exit pair of chunks. For concreteness, take ((k, 1), (nX , k

′)) ∈ E(X, Y ). Fix
t ∈ [Lα−1

j + 2L3
j + TX ] and t′ ∈ [Lα−1

j + 2L3
j + TY ] such that Xt is contained in CX

k , Yt′
contained in CY

k′ also such that [t, t + L3
j ] ∩ BX = ∅. Also let At,t′ denote the event that
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[t, t+ L3
j ]× [1, L3

j ] ∪ [Lα−1
j + TX + L3

j , L
α−1
j + TX + 2L3

j ]× [t′ − L3
j , t
′] is disjoint with BX,Y .

Set X̃ = (Xt, Xt+1, . . . , XLα−1
j +TX+2L3

j
) and Ỹ = (Y1, Y2, . . . , Yt′), call such a pair (X̃, Ỹ ) to

be a proper section of (X, Y ). Then there exists an event St,t′ with P[St,t′ | F ] ≥ 1 − L−4β
j+1

and such that on S ∩ St,t′ ∩ At,t′, we have X̃
s,s,∗←→ Ỹ .

Proof. Set I1 = [t, Lα−1
j +TX + 2L3

j ]∩Z, I2 = [1, t′]∩Z. By Proposition 3.4.2 we can find L2
j

admissible assignments mappings Υh with associated τh of (I1, I2) w.r.t. (B∗1 ∩ I1, B
∗
2 ∩ I2)

such that we have τh(`i) = τ1(`i) + h − 1 and τ−1
h (`′i) = τ−1

1 (`′i) − h + 1. As before we
can construct a subset H ⊂ [L2

j ] with |H| = 10k0Lj < bL2
j/36k2

0c so that for all i1 6= i2
and h1, h2 ∈ H we have that τh1(`i1) 6= τh2(`i2) and τ−1

h1
(`′i1) 6= τ−1

h2
(`′i2), that is that all the

positions bad blocks and their neighbours are assigned to are distinct.
Hence we have for all h ∈ H

P[X`i

c,c←→ Yτh(`i) | F ] ≥ 1

2
Sj(X`i); (3.8.2)

P[Xτ−1
h (`′i)

c,c←→ Y`′i | F ] ≥ 1

2
Sj(Y`′i). (3.8.3)

If X`i /∈ GX
j , or, if neither X`i−1 nor X`i+1 is ∈ GX

j , let Dh,i,X denote the event

Dh,i,X =
{
X`i

c,c←→ Y
τk,k

′
h (`i)

}
.

If X`i , X`i+1 ∈ GX
j then let Dh,i,X denote the event

Dh,i,X =
{
X`i

c,s←→ Y
τk,k

′
h (`i)

}
.

If X`i , X`i−1 ∈ GX
j then let Dh,i,X denote the event

Dh,i,X =
{
X`i

s,c←→ Y
τk,k

′
h (`i)

}
.

Let Dh,X denote the event

Dh,X =

K′X⋂
i=1

Dh,i,X

Let us define the event Dh,Y similarly and let

Dh = Dh,X ∩ Dh,Y
Finally, let

D =

{∑
h∈H

1Dh ≥ R6k5
0102j+20

}
.
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Conditional on F , for h ∈ H, the Dh are independent and by (3.8.2), (3.8.3) and the
recursive estimates ,

P[Dh | F ] ≥ 2−10k034k0L
−2/3
j . (3.8.4)

Hence using a large deviation estimate for binomial tail probabilities we get,

P[D | F ] ≥ P[Bin(10k0Lj, 2
−10k034k0L

−2/3
j ) ≥ R6k5

0102j+20}] ≥ 1− L−4β
j+1 (3.8.5)

for L0 sufficiently large. Now it follows from Lemma 3.4.13 and Lemma 3.4.11 that if D, S,

and At,t′ all holds than X̃
s,s,∗←→ Ỹ . This completes the proof of the lemma.

Before proving Proposition 3.8.1, we need the following lemma bounding the probability
of S.

Lemma 3.8.3. We have

P[¬S | F ] ≤ 1

3
L−3β
j+1 . (3.8.6)

Proof. Let for k′ ∈ GY ,

V Y
k′ = I

[{
#
{
k ∈ GX : Xk 6 s,s←→ Yk′

}
≥ 1
}]

.

It follows from taking a union bound and using the recursive estimates that

P[V Y
k′ = 1 | F , X] ≤ 2Lα−1−β

j .

Since V Y
k′ are conditionally independent given X and F , a stochastic domination argu-

ment yields

P[
∑
k′

V Y
k′ ≥ k

1/2
0 | X,F ] ≤ P[Bin(2Lα−1

j , 2Lα−1−β
j ) ≥ k

1/2
0 ].

Using a Chernoff bound and setting λ = 1
4
k

1/2
0 L−2α+2+β

j (note λ > 1 as β > 2α and L0 is
large enough) we get

P[
∑
k′

V Y
k′ ≥ k

1/2
0 | F , X] ≤ exp

(
4L2α−2−β

j (λ− 1− λ log λ)
)

≤ exp
(
−2L2α−2−β

j λ log λ
)

≤
(

1

4
k

1/2
0 L−2α+2+β

j

)k1/20 /2

≤ 1

6
L−3β
j+1

for L0 large enough since k
1/2
0 (β + 2− 2α) > 6αβ.

Removing the conditioning on X we get,
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P[
∑
k′

V Y
k ≥ k

1/2
0 | F ] ≤ 1

6
L−3β
j+1 .

Defining V X
k ’s similarly we get

P[
∑
k

V X
k ≥ k

1/2
0 | F ] ≤ 1

6
L−3β
j+1 .

Since on F ,

¬S ⊆ {
∑
k

V X
k ≥ k

1/2
0 } ∪ {

∑
k

V X
k ≥ k

1/2
0 },

the lemma follows.

Now we are ready to prove Proposition 3.8.1.

Proof of Proposition 3.8.1. Consider the set-up of Lemma 3.8.2. Let Tk (resp. T ′k′) denote
the set of indices t (resp. t′) such that Xt is contained in CX

k (resp. Yt′ is contained in CY
k′).

It is easy to see that there exists Tk,∗ ⊂ Tk (resp. T ′k′,∗ ⊂ T ′k′) with |Tk,∗| ≥ (1− 10k0L
−1
j )|Tk|

(resp. |T ′k′,∗| ≥ (1 − 10k0L
−1
j )|T ′k′ |) such that for all t ∈ Tk,∗ and for all t′ ∈ T ′k′,∗, X̃ and Ỹ

defined as in Lemma 3.8.2 satisfies that (X̃, Ỹ ) is a proper section of (X, Y ) and At,t′ holds.
It follows now by taking a union bound over all t ∈ Tk, t′ ∈ T ′k′ , and all pairs of entry

exit chunks in E(X, Y ) and using Lemma 3.4.7 that

P[X
s,s←→ Y | F ] ≥ 1− 1

3
L−3β
j+1 − 4L2α

j L
−3β
j+1 ≥ 1− L−3β

j+1 (3.8.7)

for L0 sufficiently large since β > 2α. Now removing the conditioning we get (3.8.1).

3.9 Good Blocks

Now we are ready to prove that a block is good with high probability.

Theorem 3.9.1. Let X be a X-block at level (j + 1). Then P(X ∈ GX
j+1) ≥ 1 − L−δj+1.

Similarly for Y-block Y at level (j + 1), P(Y ∈ GY
j+1) ≥ 1− L−δj+1.

Proof. To avoid repetition, we only prove the theorem for X-blocks. Let X be a X-block at
level (j + 1) with length Lα−1

j

Let the events Ai, i = 1, . . . 5 be defined as follows.

A1 =
{
TX ≤ L5

j − 2L3
j

}
.

A2 =

{
P[X

c,c←→ Y | X] ≥ 3

4
+ 2−(j+4)

}
.
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A3 =

{
P[X

c,s←→ Y | X] ≥ 9

10
+ 2−(j+4)

}
.

A4 =

{
P[X

s,c←→ Y | X] ≥ 9

10
+ 2−(j+4)

}
.

A5 =
{
P[X

s,s←→ Y | X] ≥ 1− L2β
j

}
.

From Lemma 3.6.2 it follows that

P[Ac1] ≤ L−3β
j+1 .

From Lemma 3.6.3 and 3.6.4 it follows that

P[Ac2] ≤ L−3β
j+1 .

From (3.7.1) and Proposition 3.7.1 it follows that

P[Ac3] ≤ L−3β
j+1 , P[Ac4] ≤ L−3β

j+1 .

Using Markov’s inequality, it follows from Proposition 3.8.1

P[Ac5] = P[P[X 6 s,s←→ Y | X] ≥ L−2β
j+1 ]

≤ P[X 6 s,s←→ Y ]L2β
j+1

≤
(
P[X 6 s,s←→ Y,X ∈ A(∗)

X,j+1, Y ∈ A
(∗)
Y,j+1] + P[X /∈ A(∗)

X,j+1] + P[Y /∈ A(∗)
Y,j+1]

)
L2β
j+1

≤ 3L−βj+1.

Putting all these together we get

P[X ∈ GX
j+1] ≥ P[∩5

i=1Ai] ≥ 1− L−δj+1

for L0 large enough since β > δ.



103

Chapter 4

Lipschitz Embedding in Higher
Dimensions

In this chapter we study the problem of Lipschitz embedding of a collection of i.i.d. Bernoulli
variables indexed by higher dimensional Euclidean lattices. This is a natural generalization
of corresponding one dimensional question studies in Chapter 2. Let X = {Xv}v∈Zd and
Y = {Yv}v∈Zd be collections of binary entries indexed by Zd. We say X can be M -embedded
in Y if there exists an injective map φ : Zd → Zd such that Xv = Yφ(v) ∀v ∈ Zd and
||φ(v1) − φ(v2)|| ≤ M ||v1 − v2|| ∀v1, v2 ∈ Zd where || · || denotes the Euclidean norm in Zd.
The primary question we investigate is the following. Suppose X and Y are independent
collection of i.i.d. Bernoulli variables. Does there exist M sufficiently large such that X can
be M -embedded in Y almost surely? This question was answered affirmatively for d = 1 in
[8]. Our main theorem provides an affirmative answer to Question 1.3.1 for d = 2.

Theorem 4.1. Let X = {Xv}v∈Zd and Y = {Yv}v∈Zd be collections of i.i.d. Ber(1
2
) random

variables. For d = 2, there exists M > 0 such that X can be M-embedded in Y, denoted
X ↪→M Y, almost surely.

By ergodicity, the event X ↪→M Y is a 0 − 1 event, and hence to prove Theorem 4.1 it
suffices to prove that P[X ↪→M Y] > 0 for M sufficiently large. This is what we shall prove.
It will be clear from our proof that the same argument works for any dimensions d ≥ 2 with
minor modifications. We stick to d = 2 for the purpose of notational convenience.

4.1 Outline of the Proof

Our proof again is based on multi-scale analysis and in spirit is similar to the argument used
in Chapter 2. The main challenge, as in one dimension, is to match the difficult to embed
regions in X to their suitable partners in Y simultaneously at all scales. This is technically
much more challenging because the difficult to embed regions can have many different shapes
and complicated geometries in higher dimensions.
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Our proof is multi-scale and divides the collections X and Y into blocks on a series of
doubly exponentially growing length scales Lj = Lα

j

0 for j ≥ 0. A block of level j is typically
(approximately) a square of side length Lj, though we also allow blocks of more complicated
shapes and larger sizes. At each of these levels we define a notion of a “good” block. Single
characters in X constitute the level 0 blocks and in Y squares of a fixed (large) size make
level 0 blocks.

Suppose that we have constructed the blocks up to level j. In § 4.2, we give a construction
of (j + 1)-level blocks as a union of j-level sub-blocks in such way that the blocks are
identically distributed, non neighbouring blocks are independent and there are no bad j-level
subblocks very close to the boundary of a (j + 1)-level block. To ensure the last condition
we need to allow blocks to be of larger size, and in certain cases blocks will approximate a
connected union of squares of size Lj. For more details, see § 4.2.

At each level we distinguish a set of blocks to be good. In particular this will be done in
such a way that at each level (j+ 1) for any good block X in X and any good block Y in Y,
their j-level bad sub-blocks can be matched with suitable partners via a bi-Lipschitz map of
Lipschitz constant (1 + 10−(j+4)) (this is termed as embedding at level (j + 1)). Flexibility
in choosing this map gives us an improved chance to find suitable partners for difficult to
embed blocks at higher levels. We describe how to define good blocks in § 4.2.9. We also
define components which are unions of blocks such that different components containing bad
sub-blocks are separated by good components which are just single good blocks.

The proof then involves a series of recursive estimates at each level given in § 4.3. We
ask that at level j the probability that a block is good is at least 1− L−γj , conditioned on a
subset (possibly empty) of other level j blocks and hence a vast majority of the blocks are
good. Furthermore, we show tail bounds on the embedding probabilities showing that for
0 < p ≤ 1− L−1

j ,

P(SX
j (X) ≤ p, VX ≥ v) ≤ pm+2−jL−βj L

−γ(v−1)
j

where SX
j (X) denotes the j-level embedding probability of a j level component X, and

VX denote the number of squares of size Lj that X approximates, see § 4.2.8 for a formal
definition. We show the analogous bounds for Y-blocks as well. The full inductive step is
given in § ??. Proving this constitutes the main work of the chapter.

The key quantitative estimate in the chapter is Lemma 4.5.2 which follows directly from
the recursive estimates, and bounds the chance of a block having a large size, many bad
sub-blocks or a particularly difficult collection of sub-blocks measured by the product of
their embedding probabilities. In order to achieve the improving embedding probabilities
at each level we need to take advantage of the flexibility in mapping a small collection of
bad blocks to a large number of possible partners in a Lipschitz manner with appropriate
Lipschitz constants. To this effect we define families of maps between blocks to describe
such potential maps. Because m is large and we take many independent trials the estimate
at the next level improves significantly. Our analysis is split into 4 different cases.

To show that good blocks at level (j + 1) have the required properties, we construct
them so that the total size of bad subcomponents contained in them is at most k0 and all of
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which are “semi-bad” (defined in § 4.2.8) in particular with embedding probability close to
1. We also require that every semi-bad block maps into a large proportion of the sub-blocks
in every L

3/2
j × L3/2

j square of j level blocks contained in a (j + 1)-level block. Under these
conditions we show that good blocks can always be mapped to any other good block.

To complete the proof we note that with positive probability the blocks surrounding the
origin are good at each level. The proof is then completed using a standard compactness
argument.

4.1.1 Parameters

Our proof involves a collection of parameters α, β, γ, k0,m and v0 which must satisfy a system
of constraints. The required constraints are

α > 6, γ > 40α, β > 1500αγ, k0 > 6000αγ, v0 > 3000α,

8γ(v0 − 1) > 3αβ,m ≥ 9αβ + 3αγv0, γk0 > 300αβ, k0 > 10γ, (1− 10−10)4v0 >
9

10
.

To fix on a choice we will set

α = 8, γ = 350, β = 4500000, v0 = 45000,m = 15× 107, k0 = 13× 106. (4.1.1)

Given these choices we then take L0 to be a sufficiently large integer. We did not make a
serious attempt to optimize the parameters or constraints, often aiming to keep the exposition
more transparent.

4.1.2 Organization of the Chapter

Rest of this chapter is organised as follows. In Section 4.2 we describe our block constructions
and formally define good blocks. In Section 4.3 we state the main recursive theorem and
show that it implies Theorem 4.1. In Section 4.4 we construct a collection of bi-Lipschitz
functions which we will use to describe our mappings between blocks. In Section 4.5 we
prove the main recursive tail estimates on the embedding probabilities. In Section 4.7 we
show that good blocks have the required inductive properties thus completing the induction.

4.2 The Multi-scale Structure

For reasons of notational convenience that will momentarily be clear, without loss of gen-
erality, we shall take our sequence to be indexed by a translate of Z2 rather than Z2 itself.
Let ι = (1/2, 1/2). Let X = {Xv}v∈ι+Z2 and Y = {Yv}v∈ι+Z2 be collections of i.i.d. Ber(1

2
)

random variables.
As mentioned above, our argument for proof of Theorem 4.1 is multi-scale and depends

of partitioning X and Y into blocks at level j-for each j ≥ 0. The blocks are constructed
recursively. For the purpose of our construction we shall work with R2 rather than Z2. At
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each level j we shall partition R2 into disjoint (except at the boundary) random regions
{Bj,X

α }α∈I1 and {Bj,Y
α }α∈I2 respectively for X and Y.

We shall interchangeably use the term blocks at level j (for X, say) to refer to
the regions Bj,X

α or the collection of random variables contained in these regions:
{Xu : u ∈ Bj,X

α }.
Our blocks will be indexed by elements in a random partition of Z2.

4.2.1 Blocks at Level 0

We start with describing the construction of blocks at level 0. Construction of blocks at
level 0 are different for X and Y. Also level 0 blocks are deterministic (i.e. the regions
corresponding to them are deterministic) and indexed by vertices in Z2.

For each u = (u1, u2) ∈ Z2, the X-block at level 0 indexed by u, denoted by X0(u)
corresponds to the region [u1, u1 + 1]× [u2, u2 + 1].

Let M0 ∈ N denote some large constant to be determined later. For each u = (u1, u2) ∈
Z2, the Y-block at level 0 indexed by u, denoted by Y 0(u) corresponds to the region
[u1M0, (u1 + 1)M0]× [u2M0, (u2 + 1)M0].

For U ⊆ Z2, the collection of blocks {X0(u) : u ∈ U} will be denoted by X0
U (and

similarly for Y 0
U ).

Observe that level 0 blocks are independent for both X and Y. Level 0 blocks are
fundamental units of our multi-scale structure. All the blocks at higher scales will be unions
of blocks at level 0. For the rest of this construction, we rescale space for Y such that blocks
at level 0 become unit squares. Under this rescaling construction of higher level blocks are
performed identically for X and Y.

Good Blocks at Level 0

As we have mentioned before, at each scale of the multi-scale construction, we shall designate
a set of blocks in both X and Y to as good. At level 0, each X-block will be good. For
u ∈ Z2, Y 0(u) is called good if we have the fraction of both 0’s and 1’s contained in Y 0(u)
is at least 1/3 i.e.,

#{v ∈ Y 0(u) : Yv = 1} ∧#{v ∈ Y 0(u) : Yv = 0} ≥ M2
0

3
.

4.2.2 An Overview of the Recursive Construction

After rescaling blocks at level 0 the recursive construction of blocks at higher levels is identical
for both X and Y. Without loss of generality, we shall restrict ourself to construction of the
blocks for X for levels j ≥ 1. Our recursive block construction algorithm is fairly complex
and has many elements to it. To facilitate the reader, before giving the formal definition, in
this subsection we give a rough description of how the construction goes and make a list of
different terms associated with the construction for easy reference.
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• Cells: Cells at level j are basic units of construction at level j. These are squares,
indexed by Z2, of size Lj, that R2 is divided into. Denote the cell corresponding to

u ∈ Z2 by Bj(u). Recall that Lj = Lα
j

0 is the doubly exponentially increasing length
scale.

• Buffer Zones: Buffer zones are regions around the boundary of a cell, which should
be thought of fattened versions of the boundaries of cells.

• Lattice Blocks: At each level j we partition Z2 as a (random) union of lattice animals
(connected finite subsets). The elements of this are called lattice blocks. Let the set
of lattice blocks at level j be Hj = H. The blocks at level j are indexed by elements
of H, typically denoted X = Xj

H , H ∈ H. For H that is a union of elements in H, Xj
H

will denote the union of the corresponding blocks.

• Ideal Multi-blocks: For a lattice block H at level j, we call ∪u∈HBj(u) an ideal
multi-block.

• Domains and Boundary Curves of Blocks: Domains of blocks at level j are small
bi-Lipschitz perturbation of ideal multi-blocks. These are formed in such a way that
the boundaries of the domains are nice (in some sense to be specified later). For a
block X, we typically denote its domain by ÛX and the curve corresponding to the
boundary of ÛX by CX .

• Blocks: We shall define regions ŨX , that are unions of smaller level blocks and these
will define blocks. The regions ŨX will be defined as approximations of the regions ÛX
defined above. We shall denote the term block interchangeably for the region defining
it as well as the collection of random variables in the region. For a block X, we shall
denote by VX the size of a block, i.e., the size of the lattice block corresponding to it.

• Good and Bad Blocks: At each level, we designate some of the blocks to be good
(depending on the configuration), other blocks are called bad. Good blocks will always
correspond to lattice blocks of size 1, but the converse need not be true.

• Components of blocks: We also form components of blocks at each level, where
a component is a connected union of a number of blocks such that two components
containing bad blocks are not neighbouring. Components are deterministically deter-
mined given the blocks and the identity of good blocks. For a component X, the size
of it, i.e., the total size of all lattice blocks contained in that component will be denote
by VX .

• Semi-bad Components: Components are called bad if they contain one or more bad
blocks. Some of the bad components are designated as semi-bad component, depending
on the configuration.
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Observe that, at level 0, lattice blocks are all singletons. Cells, domains and blocks are
all the same and boundary curves are just the boundaries of cells. Now we give a detailed
description of how we construct each of the steps above for j ≥ 1.

4.2.3 Cells and Buffer Zones

Definition 4.2.1 (Cells at level j). For j ≥ 1, set Lj = Lαj−1 = Lα
j

0 . For j ≥ 1 and
u = (u1, u2) ∈ Z2, we define Bj(u) = [u1Lj, (u1 + 1)Lj] × [u2Lj, (u2 + 1)Lj]. These squares
which partition R2, will be called cells at level j.

Observe that cells at level j are squares of doubly exponentially growing length Lj. Also
observe that cells are nested across j, i.e., a cell at level j ≥ 1 is a union of L2α−2

j many cells
at level (j − 1). The above definition is illustrated in Figure 4.1.

Lj

Lj

0

Bj((1, 1)) Bj
U

U = {(3, 1), (3, 2), (4, 1)}

Figure 4.1: Cells and multi-cells at level j

The basic philosophy of constructing the blocks here is similar to that in [8]: we want
the region around the boundary of the blocks at level j to consist of ‘good’ subblocks at
level (j − 1). Because of the more complicated geometry of R2 (as compared to the real line
considered in [8]) we shall need to consider cells of different shapes and sizes at a given level.
This motivates the following sequence of definitions.

Definition 4.2.2 (Lattice animals and Shapes). A connected finite subset of vertices in Z2

is called a lattice animal. Two lattice animals U and U ′ are said to have the same shape
if there is a translation from Z2 to itself that takes U to U ′.

We shall use the term shape also to identify equivalence classes of lattice animals having
the same shape.
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Two cells Bj(u) and Bj(u′) are called neighbouring if they share a common side, i.e.,
if u and u′ are neighbours in Z2.

Definition 4.2.3 (Multi-cells at level j). For a lattice animal U ⊂ Z2, we call Bj
U :=

∪u∈UBj(u) a multi-cell at level j corresponding to the lattice animal U .

The size of a multi-cell at level j is defined to be |U |, i.e., the number of cells contained
in it. The boundary of Bj

U shall be denoted by ∂Bj
U .

Our blocks at levels j ≥ 1 will be suitable perturbations of certain j level multi-cells (ideal
multi-blocks) that ensure that there are no bad (j − 1) level subblocks near the boundary.
To define the appropriate notion of perturbation we need to consider slightly thinned and
fattened versions of cells at levels j ≥ 1.

Definition 4.2.4 (Buffer zones of cells). Consider the squares

Bj,int(0) := [L5
j−1, Lj − L5

j−1]2;

Bj,ext(0) := [−L5
j−1, Lj + L5

j−1]2.

For j ≥ 1, call Bj,int(0) the interior and Bj,ext(0) the blow up of the j-level cell Bj(0).
For u = (u1, u2) ∈ Z2, define the interior and blow up of the cell Bj(u) by setting

Bj,int(u) := (u1Lj, u2Lj) +Bj,int(0);

Bj,ext(u) := (u1Lj, u2Lj) +Bj,ext(0).

We call ∆Bj(u) := Bj,ext(u) \Bj,int(u) the buffer for the cell Bj(u). We write ∆Bj(u)
as the (non-disjoint) union of 4 rectangles called the top, left, bottom and right buffer
zone denoted ∆Bj,T (u), ∆Bj,L(u), ∆Bj,B(u) and ∆Bj,R(u) respectively. Define ∆Bj,T (u) =
∆Bj(u) ∩∆Bj(u′) where u′ = u+ (0, 1), rest are defined similarly.

Observe that if u and u′ are neighbours in Z2, then Bj(u) and Bj(u′) has one rectangular
buffer zone (e.g. ∆Bj,T (u)) in common, and conversely every rectangular buffer zone is shared
between two neighbouring cells. If u and u′ are neighbours in the closed packed lattice of Z2

then also their buffer zones intersect. See Figure 4.2 for illustration of this definition.
We next extend the definition of buffer zone to multi-cells at level j.

Definition 4.2.5 (Buffer zones of Multi-cells). Fix j ≥ 1, and a lattice animal U ⊂ Z2.
Consider Bj

U , the multi-cell corresponding to U at level j. For u ∈ U , and ? ∈ {T, L,B,R},
we call ∆Bj,?(u) an outer buffer zone of Bj

U if this buffer zone is shared with a cell outside
Bj
U . The buffer ∆Bj(U), of the multi-cell Bj

U is defined as the union of all outer buffer zones
of Bj(u) for u ∈ U . The interior and blow up of Bj

U is defined similarly as above.

This is illustrated in Figure 4.3.
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0 Lj

L5
j−1

Bj,int(0)
Bj,ext(0)

∆Bj,T (0)

Figure 4.2: Buffer Zones of Cells

4.2.4 Recursive construction of blocks I: Forming Ideal
Multi-blocks

In this subsection we describe how to recursively construct the blocks at levels j ≥ 1. Suppose
that blocks have already been constructed for some j ≥ 0. Also suppose that the good blocks
at level j have been specified. Further assume that other elements of the structure at level
j have also been constructed. In particular this means components have been identified
with bad and semi-bad components also being specified at level j. We now describe how to
construct the structure at level (j + 1). Notice that the blocks and good blocks at level 0
has already been defined. We postpone the precise definitions of components and semi-bad
components for the moment.

Conjoined Buffer Zones

Our first step is to construct the lattice blocks and ideal multi-blocks at level (j + 1). We
start with the following observation. For each u ∈ Z2, by recursive construction, there exists
a set H(u) = Hj(u) ⊆ Z2 containing such that Xj

H is a component at level j.
To construct the ideal multiblocks at level (j + 1) we start with the following definition.

Definition 4.2.6 (Conjoined buffer zone and Conjoined cells). Fix neighbouring vertices
u, u′ ∈ Z2, consider the shared buffer zone denoted by ∆Bj+1(u, u′) between cells Bj+1(u) and
Bj+1(u′). We call the buffer zone ∆Bj+1(u, u′) conjoined if one of the following conditions
fail.
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00

Bj
U

∆Bj
U

U = (0, 0), (0, 1), (1, 0)

Figure 4.3: Buffer Zones of a Multi-cell

i. Let T ⊆ Z2 be such that Bj
T = ∆Bj+1(u, u′). Then we have

#{t ∈ T : Xj
H(t) is a bad component} ≤ k0.

That is, the total size of bad level j-components contained in the buffer zone is at most
k0.

ii. All the bad components contained in the buffer zone are semi-bad.

Call the (j + 1)-level cells Bj+1(u) and Bj+1(u′) conjoined if ∆Bj+1(u, u′) is conjoined.

Using the notion of conjoined cells above we now define the ideal multi-blocks at level
j + 1 with the property that if two cells sharing a conjoined buffer zone are necessarily
contained in the same ideal multi-block. More formally we define the following.

Definition 4.2.7 (Lattice Blocks and Ideal multi-blocks at level j + 1). Consider the fol-
lowing bond percolation on Z2. For u, u′ neighbours in Z2, we keep the edge between u and
u′ if Bj+1(u) and Bj+1(u′) are conjoined. The connected components of this percolation are
called the lattice blocks at level (j + 1). For a lattice block U at level (j + 1), we call Bj+1

U

an ideal multi-block at level (j + 1).

It will follow from our probabilistic estimates that almost surely all lattice blocks are
finite. The definition of Ideal multi-blocks is illustrated in Figure 4.4. The conjoined buffer
zones and the ideal multi-blocks are marked in the figure.
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(a) Conjoined buffer zones (b) Ideal multi-blocks

Figure 4.4: Formation of Ideal Multi-blocks. Ideal multi-blocks of size bigger than 1 are
marked

4.2.5 Recursive construction of blocks II: Constructing Domains

Let H = Hj+1,X denote the lattice blocks of X at level (j + 1) constructed as above. Clearly
H is a partition of Z2 and {Bj+1

H }H∈H is a partition of R2. As alluded to above, the blocks
at level (j + 1) will be indexed by H and will be “approximations” to the ideal multi-blocks
Bj+1
H . To construct the blocks at level (j + 1), we first start with constructing domains of

blocks which will be some smooth perturbations of the ideal multiblocks Bj+1
H .

Potential Boundary Curves

Ideally we would have liked to use the ideal multi-blocks as our blocks at level (j+1), but in
that case it is not possible to guarantee that the j-level subblocks near the boundary will be
good. Hence depending on the distribution of j-level subblocks in the buffer zone we would
choose boundaries for our blocks. We want the number of possible curves that could serve
as boundaries to be limited and hence we first construct a family of curves through buffer
zones.

Let (Z2, E2) denote the usual nearest neighbour lattice on Z2. The family of curves we
construct would be indexed by {(`v, sv) : v ∈ Z2, se : e ∈ E2} where each `v, se ∈ [2k0]
and each sv ∈ {1, 2}. Here is the rough meaning of the above indexing. Observe that
the buffer zone is union of mutually parallel horizontal and vertical strips, which can be
thought of as a fattened version of the graph (Z2, E2). That is, consider the horizontal strips
S1
v1

= R × [v1Lj+1 − L5
j , v1Lj+1 + L5

j ] for v1 ∈ Z and the vertical strips S2
v2

= [v2Lj+1 −
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L5
j , v2Lj+1 + L5

j ] × R. So the vertex v = (v1, v2) corresponds to the square Sv = S1
v1
∩ S2

v2

and an edge would correspond to the rectangle connecting two such squares. Roughly the
parameters `v and sv determine the curve in the square Sv whereas se determines the curve
in the region of the buffer zones corresponding to the edge e ∈ E2.

Curves we construct through S1
v1

(say) will be images of the horizontal line y = v1Lj+1

under some mild perturbation, and a similar statement is true for vertical strips of buffer
zones. Without loss of generality we describe the construction of these maps of S1

0 , rest are
obtained by translation. Curves through vertical strips are defined similarly.

Let v = (v1, 0). Define points p−v,` = (v1Lj+1 − `100−(j+5)L5
j , 0) and p+

v,` = (v1Lj+1 +

`100−(j+5)L5
j , 0) for ` ∈ [2k0]. Let T`,v denote the square whose centre is (v1Lj+1, 0) and

has a side length 2`100−(j+5)L5
j . Also let e denote the edge between v and v′ = v + (1, 0).

Denote by T`1,`2,e the rectangle [v1Lj+1 + `1100−(j+5)L5
j , 0), (v1 +1)Lj+1− `2100−(j+5)L5

j , 0)]×
[−L5

j/2, L
5
j/2]. Also let R1

`,v = R`,v denote the straightline segment in the intersection of
T`,v and the x-axis. Further let R1

`1,`2,e
denote the straightline segment in the intersection of

T`1,`2,e and the x-axis.
Now suppose we choose `v and `v′ to be corresponding parameters to our curves. Then

the curve passes through points p1 = p−v,`v and p2 = p+
v,`v

(and also through points p3 = p−v′,`v′
and p4 = p+

v′,`v′
). The curve between the points p1 and p2 is determined by the choice of

sv and the curve between the points p2 and p3 is determined by the choice of se. Fix `1,
`2 ∈ [2k0]. Fix functions F s

`1,v
for s ∈ {1, 2} and F s

`1,`2,e
for s ∈ [2k0] satisfying the following

properties (we shall suppress the subscript v and e in the following):

i. F s
` (resp. F s

`1,`2
) is a bijection from T` (resp. T`1,`2) to itself.

ii. F s
` (resp. F s

`1,`2
) is identity on the boundary of T` (resp. T`1,`2) and is bi-Lipschitz with

Lipschitz constant 1 + 10−(j+10).

iii. For all `1, `2 we have F 1
`1

(resp. F 1
`1,`2

) is the identity map.

iv. Let R1
` (resp. R1

`1,`2
) denote the straight line segment formed by the intersection of the

x-axis with T` (resp. T`1,`2). We have that R2
` = F 2

` (R1
` ) (resp. Rs

`1,`2
= F s

`1,`2
(R1

`1,`2
)

for each s ∈ [2k0] \ {1}) is contained in the strip R× [−100−(j+6)L5
j , 100−(j+6)L5

j ].

v. The `∞ distance between R` and R`′ for ` 6= `′ (resp. between Rs
`1,`2

and Rs′
`1,`2

for
s 6= s′) is at least 10L4

j on the interval [p+
v,`1

+ L4
j , p
−
v+1,`2

− L4
j ].

We shall omit the proof of the following basic lemma which easily follows from the fact
L0 is sufficiently large and Lj grows doubly exponentially.

Lemma 4.2.8. For all `, `1, `2 ∈ [2k0], there exist functions F s
` and F s

`1,`2
satisfying the

properties listed above.
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Figure 4.5: Potential boundary curves through a buffer zone

See Figure 4.5 for an illustration of the above construction.
We do similar constructions for vertical strips of buffer zones as well using the same maps

F s
`,v for the squares T`,v. Observe the following. For each choice of {`v, sv}v∈Z2 and {se}e∈E2

we get one curve contained in each horizontal and vertical buffer zone strip. The family of
such curves are called potential boundary curves. When we restrict to one buffer zone,
the family is called potential boundary curves through that buffer zone.

Fix u ∈ Z2. Now observe that if we restrict to the buffer zone ∆Bj+1,B(u), then a
potential boundary curve through ∆Bj,B(u) is determined by `u, `u′ , su, su′ and se where
u′ = u+ (1, 0) and e is the edge joining u and u′, (except at the extremities). In particular,
a potential boundary curve through the buffer zone of a cell is determined by choices of `
and s along the corners and edges of the cell. See Figure 4.6.

Definition 4.2.9 (Potential Boundary Curves of a multi-cell and Potential Domains). Fix
a multi-cell Bj+1

U at level j + 1. Each choice of potential boundary curves through each of
the outer buffer zones of Bj+1

U determines a simple closed curve C through the buffer zone
of Bj+1

U . These curves are called the potential boundary curves of the multi-cell Bj+1
U . The

region surrounded by C is called a potential domain of the multi-cell Bj+1
U .

It follows from the construction, that the number of potential boundary curves of the
multi-cell Bj+1

U is at most (8k0)16|U |k20 .
It is clear from our construction that associated with each potential boundary curve

there is a unique bijection from R2 to itself which is bi-Lipschitz with Lipschitz constant
(1 + 10−(j+5)). Let F denote such a map. Then for all multi-cell Bj+1

U , F (∂Bj+1
U ) is the

potential boundary curve through the buffer zone of Bj+1
U induced by the potential boundary
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(a) (b)

Figure 4.6: Two choices of potential boundary curves of a (multi) cell of size 1

curve corresponding to F That is, potential boundary curves are small perturbations of the
boundaries of multi-cells. We make a formal definition for this.

Definition 4.2.10 (Canonical Maps). For a multi-cell Bj+1
U and for any potential boundary

curve C through ∆Bj+1
U , there exists a unique bi-Lipschitz map F = FC on Bj+1

U with Lip-
schitz constant (1 + 10−(j+5)) such that F (∂Bj+1

U ) = C. These maps and their inverses are
called canonical maps. That is, a canonical map is a map that transforms a multi-cell Bj+1

U

to a potential domain UC and vice-versa. Observe also that the family of canonical maps
only depend on the shape of U upto translation. For two potential boundary curves C1, C2 of
the multi-cell Bj+1

U , the maps FC2 ◦ F−1
C1

from UC1 to UC2 are also called canonical maps.

Valid Boundary Curves and Domains

Recall that we have already constructed the ideal multi-blocks at level (j+1). Our next order
of business is to stochastically choose one boundary curve through the outer buffer zones of
each ideal multi-block satisfying certain conditions. This curve will be called the boundary
curve at level (j + 1) and the potential domain corresponding to this choice of boundary
will be called domain. Since the outer buffer zones of ideal multi-blocks are not conjoined,
the choice of a boundary curve through these boils down to choosing {(`v, sv)}v∈V ∗ and
{se}e∈E∗ . Here V ∗ ⊆ Z2 is the set of all vertices corresponding to the squares (intersection of
a horizontal and a vertical buffer zone) such that not all of the four buffer zones intersecting
at that square are conjoined and E∗ denotes the edges in E2 that correspond to non-conjoined
buffer zones.
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Recall that we want to choose our boundaries so that they are away from the j level bad
components. To this end we restrict our choices to valid boundary curves defined below.

For v ∈ V ∗, we call (`v, sv) (where `v ∈ [2k0] and sv ∈ [2]) valid if there does not exist
any bad j level component within distance 10L4

j of the boundary of Tv,` and F s(R∗), where
R∗ is the intersection of the boundaries of (j + 1)-level cells with Tv,`.

Let e be the edge connecting neighbouring vertices v, v′ ∈ V ∗. For a valid choice of
(`v, sv) and (`v′ , sv′) we call (`v, sv, `v′ , sv′ , se) valid if Rs

`1,`2,e
does not have any j level bad-

component within distance L4 of it.
The following observation is immediate from the definition of conjoined block.

Observation 4.2.11. For all v ∈ V ∗, there exist valid choices of (`v, sv). Also for all
e = (v, v′) ∈ E∗, and for all valid choices of (`v, sv) and (`v′ , sv′) there exist se such that
(`v, sv, `v′ , sv′ , se) is valid.

Given V ∗ and E∗, we choose a valid boundary curve randomly independently of every-
thing else as follows.

• For each v ∈ V ∗, choose a valid (`v, sv).

• If there exist valid (`v, sv) with sv = 1 choose one such with probability at least
(1− 10−(j+10)).

• For e = (v, v′) ∈ E∗, choose se such that (`v, sv, `v′ , sv′ , se) is valid.

• If se = 1 leads to a valid choice, then choose it with probability at least (1−10−(j+10)).

• The probability of each valid choice must be at least (8k0)−4vk20100−(j+10).

This choice leads to a boundary curve, which we shall call the boundary curve at level
(j + 1). The following important properties of the boundary curve as chosen above is easy
to see and recorded as an observation for easy reference.

Observation 4.2.12 (Domains). Let H = Hj+1 denote the set of lattice blocks of X at level
(j + 1). The boundary curve partitions R2 (in a weak sense) into closed connected regions
{ÛX}U∈H, called domains, which have the following properties.

i. For each U ∈ H, ÛX contains the interior of the ideal multi-block Bj+1
U and is contained

in the blow-up of the Bj+1
U .

ii. Given H, for U1, U2 ∈ H such that U1 and U2 are non-neighbouring, the choice of Û1X

and Û2X are independent.

iii. There is a canonical map F , which is a bi-Lipschitz bijection from R2 → R2 with
Lipschitz constant (1 + 10−(j+5)) such that F (Bj+1

U ) = UX for all U ∈ H, and such that
F is identity everywhere except near the boundaries of ideal multi-blocks.
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iv. There are no j-level bad components near the boundaries of the domains.

v. If there are no bad j level component in the buffer zone of the ideal multi-block Bj+1
U ,

then with probability at least (1 − 10−(j+10))4|U |, the canonical map F is identity on
Bj+1
U .

See Figure 4.7 for an illustration of domain constructions. Bad level j components are
marked in red.

Figure 4.7: Domains at level j + 1

4.2.6 Recursive Construction of Blocks III: Forming Blocks out
of Domains

Notice that we have constructed the domains in such a way that boundaries of domains at
level (j+1) avoid the bad components at level j. However observe also that domains at level
j + 1 are not necessarily unions of blocks at level j. This is why we cannot use domains as
blocks themselves and have to do one more level of approximation.

Let {ÛX}U∈H denote the set of domains of X at level (j + 1). Define Ũ ⊆ Z2 to be the
set of all vertices u of Z2 such that the j-level cell Bj(u) is contained in ÛX or the north
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east corner of Bj(u) is contained in ÛX . Then define the block at level j + 1 corresponding
to the lattice block U , denoted by Xj+1

U to be equal to Xj

Ũ
. Notice that this is well defined

because by construction Ũ is a union of lattice blocks for X at level j. The set of all blocks
at level (j + 1) is {Xj+1

U : U ∈ Hj+1}. Notice that blocks at level (j + 1) are union of blocks
at level j with none of the j level bad subcomponents close to the boundary of the (j + 1)
level blocks. Suppose V ⊆ Z2 is such that Xj

V is a bad component at level j. Then the

distance of V from the boundary of Ũ is at least L3
j . We record some useful properties of

the blocks in the following observation.

Observation 4.2.13 (Properties of Blocks). The blocks constructed as above satisfy the
following conditions.

i. Each block corresponds to a unique ideal multi-block, contains its interior and is con-
tained in its blow-up.

ii. The distance between any bad j-level subblock contained in a j+ 1-level block is at least
L3
j level j cells.

iii. Suppose Bj+1
H and Bj+1

H′ are two multi-cells that do not share a buffer zone. Condition
on the event E = E(H,H ′) that none of the external buffer zones of Bj+1

H and Bj+1
H′

are conjoined. Clearly, on E we have that H and H ′ are both unions of lattice blocks
for X at level (j + 1). Then conditioned on E, we have that {Xj+1

H } and {Xj+1
H′ } are

independent.

4.2.7 Geometry of a Block: Components

To complete the description of block construction, it remains to define good blocks at level
j ≥ 1. Before we give the recursive definition of the good blocks, it is necessary to introduce
certain definitions and notations regarding the geometry of the multi-blocks.

Bad Components of blocks

Fix j ≥ 0. Suppose that blocks and good blocks are already defined up to level j. Recall
that good blocks at level j always correspond to lattice blocks of size 1. Let H = {H(u)}u∈Z2

denote the family of lattice blocks at level j, i.e., H(u) denotes the lattice block containing
u. Our objective is to group the neighbouring bad blocks together. To this end we make the
following definition.

Definition 4.2.14 (Lattice Components). Let Q = {Q(u)}u∈Z2 be the family of subsets
having the following properties.

i. Q(u) = ∪v∈Q(u)H(v), i.e., elements of Q form a partition of Z2, where each element is
a union of lattice blocks.
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ii. If |Q(u)| > 1, then Q(u) must contain H such that Xj
H is a bad block at level j.

iii. If |Q(u)| > 1 or if Xj
Q(u) is a bad block at level j, then for all neighbours v of Q(u) in

the closed packed lattice of Z2, Xj
v = Xj

{v} is a good block at level j.

iv. If there are are vertices v, v′ ∈ Q(u) which are not neighbours in the usual Euclidean
lattice but neighbours in the close packed lattice of Z2, then the 2× 2 square containing
v and v′ is also contained in Q(u).

v. The family {Q(u)}u∈Z2 is the maximal family having properties i.-iv. above, i.e., any
other family having the same properties must consist of unions of elements of Q.

Elements of Q are called lattice components at level j.

It is easy to see that Q is well defined. For Q ∈ Q, we call Xj
Q a component of X

at level j. Notice that a component is always a union of blocks at level j. We call Xj
Q a

bad component at level j if it contains a bad block at level j. Often we shall denote the
component Xj

Q(u) by X∗,j(u). The following observation is easy but useful.

Observation 4.2.15. If |Q(u)| ≥ k > 1, there exists Q∗ ⊆ Q(u) with |Q∗| ≥ d k
25
e such that

elements of Q∗ are non-neighbouring and for all v ∈ Q∗, Xj
H(v) is a bad block at level j.

Notice that once we know the blocks at level j, and also know which blocks at level j are
good, we can work out what the components at level j are, as the components only depend
on the geometry of locations of the bad blocks at level j and not on the anatomy of the
blocks themselves. See Figure 4.8 for an illustration. The bad blocks are marked as well as
the boundary of the components.

Sub-blocks and Subcomponents

Let Xj
U be a j-level block or component. Then |U | shall denote the size of the block or

component. Now suppose j ≥ 1. Let U ′ ⊂ Z2 be such that Xj−1
U ′ = Xj

U . For V ⊂ U ′ such
that V is a lattice block (resp. lattice component at level (j − 1)) we call Xj−1

V a sub-block
(resp. sub-component) at level (j − 1) of the the j-level block/component Xj

U . Notice that
by construction we have that all bad subcomponents are away from the boundary of the
component Xj

U .

4.2.8 Embedding, Embedding Probabilities and Semi-bad
components

Embedding at level 0

For v, v′ ∈ Z2, suppose X0
v and Y 0

v′ are blocks at level 0. We call Y 0
v′ ∈ 0 if Y 0

v′ is not good
and Y 0

v′ contains more 0’s than 1’s. Similarly Y 0
v′ ∈ 1 if Y 0

v′ is not good and Y 0
v′ contains at

least as many 1’s as 0’s.
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Figure 4.8: Blocks and Components: Bad blocks are marked in gray, Boundaries of compo-
nents are also marked

For v, v′ ∈ Z2, we call X0
v embeds into Y 0

v′ , denoted X0
v ↪→ Y 0

v′ , if one of the following
three conditions hold.

i. Y 0
v′ is a good block at level 0.

ii. Xι+v = 0 and Y 0
v′ ∈ 0.

iii. Xι+v = 1 and Y 0
v′ ∈ 1.

Let U and U ′ lattice animals. Let h : Z2 → Z2 denote the translation that sends U to
U ′. Then we say X0

U ↪→ Y 0
U ′ if Xu ↪→ Yh(u) for all u ∈ U .

Notice that at level 0, the component X0
U always corresponds to the ideal multi-block

B0
U . This is no longer true for j ≥ 1 as the boundaries can have different shapes. So we need

to make a more complicated recursive definition at level j ≥ 1.

Embedding at higher levels

Fix j ≥ 1. Suppose U is a union of lattice blocks X at level j. Suppose also that V ⊆ Z2

is a union of lattice blocks for Y at level j. Suppose further that U and V have the same
shape. We want to define an event Xj

U embeds into Y j
V , denoted by Xj

U ↪→ Y j
V .

Modulo a translation from R2 → R2 that takes Bj
U to Bj

V , we can assume that U = V .
Define the domain of Xj

U to be the union of the domains of the j level blocks contained in

Xj
U , denote it by ÛX . Define ÛY , the domain of Y j

U , in a similar manner. To define the
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embedding we need to define bi-Lipschitz maps that take ÛX to ÛY . Notice that we already
have one such candidate map, namely the canonical map that takes ÛX to ÛY . We shall
consider small perturbations of that map.

Definition 4.2.16 (α-canonical maps). Let Xj
U , Y j

U , ÛX , ÛY be as above. Let T1, T2, . . . , Tk
⊆ Z2 be such that X

(j−1)
T1

, . . . , X
(j−1)
Tk

are unions of blocks of X at level (j − 1) with domains

T̂i,X for i ∈ [k]. Similarly let T ′1, T
′
2, . . . , T

′
k′ be such that Y

(j−1)

T ′1
, . . . , Y

(j−1)

T ′k
are unions of

blocks of Y at level (j − 1) with domains T̂ ′i,Y for i ∈ [k′]. Let F be the canonical map from

ÛX to ÛY . Then we call Gθ = θ ◦ F to be an α-canonical map from ÛX to ÛY (with respect
to T = {T1, T2, . . . , Tk} and T ′ = {T ′1, . . . T ′k′}) if the following conditions are satisfied.

i. θ is a bijection from ÛY to itself that is identity on the boundary of ÛY and is bi-
Lipschitz with Lipschitz constant (1 + 10−(j+10)).

ii. There exists {Si : i ∈ [k]} (resp. {S ′i : i ∈ [k′]}) such that Si has the same shape as Ti
(resp. S ′i has the same shape as T ′i ) such that Y j−1

Si
is a union of j− 1 level blocks of Y

with domain Ŝi,Y (resp. Xj−1
S′i

is a union of j − 1 level blocks of X with domain Ŝ ′i,X)

such that Gθ(T̂i,X) = Ŝi,Y for all i ∈ [k] and Gθ(Ŝ ′i,X) = T ′i,Y for all i ∈ [k′].

iii. Gθ restricted to Ti (resp. S ′i) coincides with the canonical map from T̂i,X to Ŝi,Y (resp.

from Ŝ ′i,X to T̂ ′i,Y ).

Notice that an α-canonical map by definition is a bi-Lipschitz map with Lipschitz constant
(1 + 10−(j+5)). In the above setting denote Si = Gθ(Ti) and S ′i = G−1

θ (T ′i ).

Observe that an α-canonical map maps a domain to a domain of same shape while
matching up certain sub-blocks in X (resp. in Y) to sub-blocks of same shapes in Y (resp.
in X). For embedding, we want to match up all bad sub-blocks by an α-canonical map as
above. We define embedding at level j formally as follows. Assume that we have defined
embedding at levels upto (j − 1).

Definition 4.2.17 (Embedding at level j). Let X = Xj
U , Y = Y j

U , ÛX , ÛY be as above.

Let T1, T2, . . . , Tk ⊆ Z2 be such that X
(j−1)
T1

, . . . , X
(j−1)
Tk

are unions of blocks of X at level
(j − 1) containing all (j − 1) level bad sub-blocks. Similarly let T ′1, T

′
2, . . . , T

′
k′ be such that

Y
(j−1)

T ′1
, . . . , Y

(j−1)

T ′
k′

are unions of blocks of Y at level (j − 1) containing all bad sub-blocks.

We say X embeds into Y , denoted X ↪→ Y if there exist T = {T1, T2, . . . , Tk}, and T ′ =
{T ′1, . . . T ′k′} as above and there exists an α-canonical map Gθ from ÛX to ÛY with respect to

T and T ′ such that for all i ∈ [k], X
(j−1)
Ti

↪→ Y
(j−1)
Gθ(Ti)

and for all i ∈ [k′] we have X
(j−1)

G−1
θ (T ′i )

↪→
Y

(j−1)

T ′i
.

In the situation of the above definition, we say Gθ gives an embedding of X into Y .
The following sufficient condition for embedding given in terms of components will be useful
for us.
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Lemma 4.2.18. Let X = Xj
U , Y = Y j

U , ÛX , ÛY be as above. Let T1, T2, . . . , Tk ⊆ Z2 be such

that X
(j−1)
T1

, . . . , X
(j−1)
Tk

are all bad level (j − 1) components contained in X. Let W ⊆ Z2

be such that Y = Y j−1
W . Suppose there exists an α-canonical map Gθ from ÛX to ÛY with

respect to T = {T1, T2, . . . , Tk} and ∅ such that for all i ∈ [k], X
(j−1)
Ti

↪→ Y
(j−1)
Gθ(Ti)

and for all

u ∈ W \ ∪iGθ(Ti), Y j
u is a good block at level j − 1. Then X ↪→ Y .

Proof. Follows immediately from Definition 4.2.17.

Random Blocks and Embedding Probabilities

Observe that at a fixed level j the distribution of the blocks and components is translation
invariant. That is, there exist laws µX

j (resp. µY
j ) such that for all u ∈ Z2, the j-level

component X∗,j(u) (resp. Y ∗,j(u)) has the law µX
j (resp. µY

j ).

Fix a component X∗ = Xj
U at level j. Let AY

valid denote the event that the external

buffer zones of Bj
U are not conjoined in Y. On AY

valid, clearly Y ∗ = Y j
U is a union of j level

blocks in Y. Denote the embedding probability of the component X∗

SX
j (X∗) = P[X∗ ↪→ Y ∗, AY

valid | X
∗]. (4.2.1)

In a similar vein we define the embedding probability of a j-level Y-component Y ∗ by

SY
j (Y ∗) = P[X∗ ↪→ Y ∗, AX

valid | Y
∗]. (4.2.2)

We shall drop the superscripts X or Y when it will be clear from the context which block
we are talking about. The embedding probabilities are very important quantities for us. The
key of our multi-scale proof rests on proving recursive power law tail estimates for Sj(X

∗)
when X∗ is distributed according to µX

j and similarly for Sj(Y
∗).

Semi-bad Components and Airports

It will be useful for us to classify the bad components at level j into two types semi-bad
and really bad. A semi-bad component will be one which is not too large in size and has
a sufficiently high embedding probability. We define it only for X-components, semi-bad
Y-components are defined in a similar fashion. For a component X we shall denote by VX
its size, that is the size of the multi-cell it corresponds to.

Definition 4.2.19 (Semi-bad Components). A component X = Xj
U at level j is said to be

semi-bad if it satisfies the following conditions.

i. VX = |U | ≤ v0.

ii. SX
j (X) ≥ 1− 1

v50k
4
0100j

.
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An airport is a region such that most locations in it can be embedded into any semi-bad
component. The formal definition is as follows.

Definition 4.2.20 (Airports). A square S of L
3/2
j−1 × L3/2

j−1 many j − 1 level cells contained
in a j level component of X is called an airport if for all level j − 1 semi-bad component
Y ∗ = Y j−1

U the following condition holds.

• Fix any H ⊆ S having the same shape as U . Let the event that X∗ = Xj−1
H is a union

of blocks at level j − 1 be denoted by AHvalid. We have

#{H : AHvalid, X
∗ ↪→ Y ∗} ≥ (1− v−2

0 k−4
0 100−j)N(S, U)

where N(S, U), denote the number of multi-cells in S having the same shape as U .

Airports are defined for Y blocks in an analogous manner.

4.2.9 Good Blocks

To complete the construction of the multi-scale structure, we need to define good blocks at
level j ≥ 1. With the definitions from the preceding subsections, we are now ready to give
the recursive definition. Fix j ≥ 1. Suppose we already have constructed the structure up
to level j − 1. As usual, in the following definition, we only consider X blocks; j-level good
blocks for Y are defined similarly.

Definition 4.2.21 (Good Blocks). A block X = X(u) at level j is said to be good if the
following conditions hold.

i. X has size 1, i.e., Bj(u) is an ideal multi-block.

ii. The total sizes of j − 1 level bad components contained in X is at most k0.

iii. All the bad components contained in X are semi-bad.

iv. All L
3/2
j−1 × L3/2

j−1 squares of (j − 1) level cells contained in X are airports.

4.3 Recursive Estimates

Our proof of Theorem 4.1 depends on a collection of recursive estimates, all of which are
proved together by induction. In this section we list these estimates. The proof of these
estimates are provided over the next few sections. We recall that for all j > 0, Lj = Lαj−1 =

Lα
j

0 .
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• Tail Estimate: Let j ≥ 0. Let X = Xj
U be a X-component at level j (having the

distribution µX
j ) and let mj = m+ 2−j. Recall VX = |U |. Then

P(SX
j (X) ≤ x, VX ≥ v) ≤ xmjL−βj L

−γ(v−1)
j for 0 < x ≤ 1−L−1

j for all v ≥ 1. (4.3.1)

Let Y = Y j
U be a Y-component at level j (having the distribution µX

j ). Recall VX = |U |.
Then

P(SY
j (Y ) ≤ x, VY ≥ v) ≤ xmjL−βj L

−γ(v−1)
j for 0 < x ≤ 1−L−1

j for all v ≥ 1. (4.3.2)

• Size Estimate: Let j ≥ 0. Let X = Xj
U (resp. Y = Y j

U) be a X-component at level j
having the distribution µX

j (resp. Y-component at level j having the distribution µY
j ).

Then
P(VX ≥ v) ≤ L

−γ(v−1)
j for v ≥ 1. (4.3.3)

P(VY ≥ v) ≤ L
−γ(v−1)
j for v ≥ 1. (4.3.4)

• Good Block Estimate:

• Good blocks embed into to good blocks, i.e., for all good j-level block X and for
all good j-level block Y we have

X ↪→ Y. (4.3.5)

• Conditioned on a partial set of outside blocks, blocks are good with high proba-
bility. Fix u ∈ Z2. Let V ⊆ Z2 \ {u}. Let FX

V (resp. FY
V ) denote the conditioning

FX
V = {Xj

V , X
j(u) /∈ Xj

V } (resp. FY
V = {Y j

V , Y
j(u) /∈ Y j

V }), i.e. we condition on
partial set of j level blocks corresponding to ideal blocks excluding Bj(u) such
that these blocks are not the block corresponding to Bj(u). Then we have the
following for all u ∈ Z2 and for all V ⊆ Z2 \ {u}.

P[Xj
u is good | FX

V ] ≥ 1− L−γj . (4.3.6)

P[Y j
u is good | FY

V ] ≥ 1− L−γj . (4.3.7)

Theorem 4.3.1 (Recursive Theorem). For α, β, γ, m, k0 and v0 as in equation (4.1.1), the
following holds for all large enough L0. If the recursive estimates (4.3.1), (4.3.2), (4.3.3),
(4.3.4), (4.3.5), (4.3.6) and (4.3.7) hold at level j for some j ≥ 0 then all the estimates hold
at level (j + 1) as well.

We shall prove Theorem 4.3.1 over the next few sections. Before that we prove that these
estimates indeed hold at level j = 0.
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Theorem 4.3.2. Fix α, β, γ, m, k0, v0 and L0 such that the conclusion of Theorem 4.3.1
holds. Then for M0 sufficiently large depending on all the parameters the estimates (4.3.1),
(4.3.2), (4.3.3), (4.3.4), (4.3.5), (4.3.6) and (4.3.7) hold for j = 0.

Proof. Observe that (4.3.5) for j = 0 follows from the definition of good blocks at level 0.
Recall that blocks at level 0 are independent and hence by taking M0 sufficiently large we
make sure that (4.3.7) holds for j = 0, and (4.3.6) holds vacuously. As a matter of fact,
by taking M0 sufficiently large, we can ensure that P[Y 0(u) is good] ≥ 1 − L−20β

0 . Notice
that components of X all have size 1 and hence (4.3.3) also holds trivially. For a component
X = X0(u) we have SX

0 (X) ≥ P[Y 0(u) is good] ≥ 1− L−1
0 , and hence (4.3.1) also holds.

Now look at the component Y = Y ∗,0(u) = Y 0
U . If VY = v > 1, there are at least v

9

many bad blocks contained in Y . Since blocks are independent, it follows by summing over
all lattice animals containing u of size v that P[VY ≥ v] ≤ L

−10β(v−1)
j . Also notice that,

SY
0 (Y ) = 1 if Y is good, SY

0 (Y ) = 1
2v

otherwise. Hence it suffices to prove (4.3.2) for x = 1
2v

and v ≥ 1. For x ≤ 1
2
, it follows that for P[SY

0 (Y ) ≤ x, VY ≥ v] ≤ P[VY ≥ max{v, log2 x}] ≤
xmj+1L−β0 L

−γ(v−1)
0 because L0 is sufficiently large. This establishes (4.3.2) for j = 0.

4.3.1 Proof of the Main Theorem

Before proceeding with the proof of Theorem 4.3.1, we show how Theorem 4.3.1 and Theorem
4.3.2 can be used to deduce Theorem 4.1.

Proof of Theorem 4.1. Notice that by ergodic theory considerations it suffices to prove that
P[X ↪→M Y] > 0 for some M . Fix α, β, γ, m, k0, v0, L0 and M0 in such a way that
conclusions of both Theorem 4.3.1 and Theorem 4.3.2 holds. This implies that the recursive
estimates (4.3.1), (4.3.2), (4.3.5), (4.3.3), (4.3.4), (4.3.6) and (4.3.7) hold for all j ≥ 0.

Let u1 = (0, 0), u2 = (0,−1), u3 = (−1, 1) and u4 = (−1, 0). So {Xj
ui

: i ∈ {1, 2, 3, 4}}
denote the blocks surrounding the origin at level j. Let us denote the domains of these
blocks by Dj,X

ui
respectively. Define Dj,Y

ui
similarly. For j ≥ 0, let AX

j (resp. AY
j ) denote the

following event that for all i ∈ [4] we have Dj,X
ui

= Bj
ui

and Xj
ui

is good (resp. Dj,Y
ui

= Bj
ui

and
Y j
ui

is good). The proof is now completed using the following three propositions.

Proposition 4.3.3. Suppose (4.3.1), (4.3.2), (4.3.5), (4.3.3), (4.3.4), (4.3.6) and (4.3.7)
hold for all j ≥ 0. Then

P

[⋂
j≥0

(AX
j ∩ AY

j )

]
> 0.

Proof. Notice that AX
j = AX,G

j ∩ AX,∂
j where AX,G

j denotes the event the the four blocks

around origin at level j are good and AX,∂
j denotes the event that Dj,X

ui
= Bj(ui) for all i.

Clearly P[AX,∂
0 ] = 1. Now for j ≥ 1, let AX,B

j denote the event that the j-level buffer zones in
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these blocks (12 in number) only contain good (j−1) level blocks. Clearly from construction
of the blocks

P[AX,∂
j ] ≥ (1− 10−(j+2))P[AX,B

j ].

It follows from (4.3.6) that for j ≥ 1

P[AX,B
j ] ≥ 1− 12Lα+3−γ

j−1 .

Since γ > α + 3 we get
P[AX,∂

j ] ≥ 1− 10−(j+3/2)

by taking L0 sufficiently large. Combining these estimates we get for all j ≥ 0,

P[AX
j ] ≥ 1− 10−(j+1).

By the obvious symmetry between X and Y the same lower bound also holds for P[AY
j ]. The

proposition follows by taking a union bound over X, Y and all j ≥ 0.

Proposition 4.3.4. Fix J ∈ N. On
⋂
J≥j≥0(AX

j ∩ AY
j ), there exists a map Φ = ΦJ :

[−LJ , Lj]2 → [−LJ , LJ ]2 satisfying the following conditions.

i. Φ(0) = 0 and Φ is identity on the boundary.

ii. Φ is bi-Lipschitz with Lipschitz constant 10.

iii. For each level 0 bad Y-block Y 0(u′) contained in [−1
2
LJ ,

1
2
LJ ]2, there is a X-block X0(u)

at level 0 such that Φ(u) = u′ and X0(u) ↪→ Y 0(u′).

We postpone the proof of Proposition 4.3.4 for the moment.

Proposition 4.3.5. Suppose for all J ∈ N, there exists a ΦJ satisfying the conditions in
Proposition 4.3.4. Then there exists a 20M0-Lipschitz injection φ from Z2 → Z2 such that
Xι+v = Yι+φ(v) for all v ∈ Z2.

Proof. Fix J ∈ N. Define φJ : [−1
4
Lj,

1
4
LJ ]2 ∩ Z2 → Z2 as follows.

Case 1: For u ∈ Z2 suppose ΦJ(u) = v = (v1, v2) be such that Y 0
v is a bad level 0 block

of Y. Clearly, there exists v′ ∈ Z2 such that ι+ v′ ∈ [v1M0, (v1 + 1)M0]× [v2M0, (v2 + 1)M0]
and Xι+u = Yι+v′ . Choose such a v′ arbitrarily and set φJ(u) = v′.

Case 2: If for u ∈ Z2 Case 1 does not hold then there exists v ∈ Z2 such that ||v −
ΦJ(u)|| ≤ 1 and Y 0(v) is a good block. Clearly there are many (at least M2

0/3 in number)
ι+ v′ ∈ [v1M0, (v1 + 1)M0]× [v1M0, (v1 + 1)M0] such that Xι+u = Yι+v′ . Choose one such v′

arbitrarily and set φJ(u) = v′. Since the number of sites u that correspond to v in the above
manner is limited it follows that such a φJ can be chosen to be an injection.

Notice that φJ is 20M0-Lipschitz and also observe that as ΦJ is identity at the origin
it follows that ||φJ(0)|| ≤ M0. It now follows by a compactness argument that there exists
an injective map φ : Z2 → Z2 which is 20M0-Lipschitz and such that Xι+v = Yι+φ(v) for all
v ∈ Z2.
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It remains to prove Proposition 4.3.4 which will follow from the next lemma.

Lemma 4.3.6. Assume the set-up of Proposition 4.3.4. Fix 0 < j ≤ J . Suppose there exists
a map φj : [−LJ , Lj]2 → [−LJ , LJ ]2 satisfying the following conditions.

i. φj(0) = 0 and φj is identity on the boundary.We take φJ to be the identity map.

ii. φj is bi-Lipschitz with Lipschitz constant Cj.

iii. There exists {Xj
U}U∈I1 with respective domains {ÛX}U∈I1 containing all bad level j

blocks of X contained in [−LJ(1 − 10−(j+1)), LJ(1 − 10−(j+1))]2. Also there exists
{Y j

U ′}U ′∈I2 with respective domains {Û ′Y }U ′∈I2 containing all bad level j blocks of Y
contained in [−LJ(1− 10−(j+1)), LJ(1− 10−(j+1))]2.

Also all U ∈ I1, there exists f(U) such that φj restricted to ÛX is a canonical map

to the domain f̂(U)Y of Y j
f(U) and such that such that Xj

U ↪→ Y j
f(U). Further for each

U ′ ∈ I2, there exists f−1(U) such that φ−1
j (Û ′Y ) is the domain ̂f−1(U ′)X of the block

Xj
f−1(U) and such that φj restricted to ̂f−1(U ′)X is a canonical map and Xj

f−1(U) ↪→ Y j
U ′.

Then there exists a function ψj−1 : [−LJ , LJ ]2 → [−LJ , LJ ]2 with ψj−1(0) = 0, ψj−1 identity
on the boundary, bi-Lipschitz with Lipschitz constant (1+10−(j+9)) such that φj−1 := ψj−1◦φj
satisfies all the above conditions with j replaced by j−1 (with setting Cj−1 = Cj(1+10−(j+9))),
that is φj−1 matches up all the bad (j − 1) level components in a Lipschitz manner.

Notice that Proposition 4.3.4 follows from Lemma 4.3.6 using induction and definition of
good block and embedding. Now we prove Lemma 4.3.6.

Proof of Lemma 4.3.6. We shall construct ψj−1 satisfying the requirements of the lemma.

The strategy we adopt is the following. Denote B = {ÛX : U ∈ I1; ̂f−1(U ′)X : U ′ ∈ I2}. Set
B = [−LJ , LJ ]2 \∪A∈BA. For each A ∈ B∪{B}, we shall construct a function ψA : φj(A)→
φj(A) that is a Lipschitz bijection with Lipschitz constant (1 + 10−(j+9)) and is identity on
the boundary of A. We shall take ψj−1 to be the unique function on [−LJ , LJ ]2such that its
restriction to A equals ψA for each A ∈ B∪{B}. We shall then verify that ψj−1 constructed
as such satisfies the conditions of the lemma.

First fix A ∈ B. We describe how to construct ψA. Without loss of generality, take

A = hatUX and hence φj(A) = f̂(U)Y . By definition of Xj
U ↪→ Y j

f(U), there exists an α-

canonical mapGθ from ÛX → f̂(U)Y that gives the embedding. Take ψA = theta. Clearly ψA

is identity on the boundary and is a Lipschitz bijection with Lipschitz constant (1+10−(j+9)),
and also satisfies the hypothesis of the Lemma for all (j − 1) level bad blocks in Xj

U and
Y j
f(U) by Definition 4.2.17.

So it suffices to define ψB in such a way that all the bad components at level (j− 1) that
are not contained in any j-level bad sub-block are matched up.
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Let {Xj−1
W }W∈I′1 denote the set of all (j − 1)-level bad components of X contained in

[−Lj(1 − 10−(j)), Lj(1 − 10−(j))]2 and not contained in A for any A ∈ B, let ŴX denote
their respective domains. Similarly let {Y j−1

W ′ }W ′∈I′2 denote the set of all (j − 1)-level bad

components of Y contained in [Lj(1−10−(j)), Lj(1−10−(j))]2 and not contained in φj(A), let

Ŵ ′
Y denote their respective domains. We shall only describe how to match up the Xj−1

W ’s;
the Y-components can be taken care of similarly.

Notice that since all these are contained in good j-level blocks, these are all away from
the boundaries of B and φj(B) respectively. Also it follows from the definition of good blocks
that there cannot be too many bad components close together. It is easy to see that one
can find squares Sk ⊆ φj(B) such that φj(WX) are all contained in the union of Sk, are at
distance at least L3

j−1 from the boundary of Sk’s and such that Sk does not intersect any of
the bad (j − 1)-level components of Y. Also it can be ensured that for a fixed k, the total
size of components Xj−1

W such that φj(WX) is contained in Sk is not more than k0. Since

by definition of good block the components X
(j−1)
W are all semi-bad, and the region φj(Sk)

contains enough airports it follows that it is possible to define a map ψSk : φ(Sk) → φ(Sk)
which is identity on the boundary and ψSk gives an embedding Xj−1

W ↪→ Y j−1
g(W ) for all the

bad j − 1 level components contained in Sk. Now gluing together all such maps we get the
required ψB that matches up all the bad j − 1 level components contained in B. We omit
the details, see the proof of Proposition 4.4.2 for a similar construction. This completes the
proof.

The remainder of the chapter is devoted to the proof of the estimates in the induction
statement. Throughout these sections we assume that the estimates (4.3.1), (4.3.2), (4.3.5),
(4.3.3), (4.3.4), (4.3.6) and (4.3.7) hold for some level j ≥ 0 and then prove the estimates at
level j + 1. Combined they will complete the proof of Theorem 4.3.1.

From now on, in every Theorem, Proposition and Lemma we state, we would implicitly
assume the hypothesis that all the recursive estimates hold upto level j, the parameters
satisfy the constraints described in § 2.1.2 and L0 is sufficiently large.

4.4 Geometric Constructions

To show the existence of embeddings we need to construct α-canonical maps having different
properties. In this section we develop different geometric constructions which shall imply
the existence of α-canonical maps in different cases. We start with the following simple case
where the blocks are not moved around but only the boundaries of domains are adjusted.
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More specifically, our aim is the following. Consider a potential domain Ũ at level (j + 1).

We want to construct an α-canonical map from Ũ to itself that takes a given set of potential
domains of j-level multi-cells contained in Ũ that are away from the boundary to any other
given set of potential domains of the same multi-cells. We have the following proposition.

Proposition 4.4.1. Fix a lattice animal U ⊆ Z2. Fix a level (j + 1) potential domain

Ũ corresponding to the multi-cell Bj+1
U , i.e., C = C(Ũ), the boundary of Ũ is a potential

boundary curve through the buffer zone of Bj+1
U . Let U1 ⊆ Z2 be such that Bj

U1
denotes the

collection of all level j-cells that intersect Ũ . Let U2 ⊆ U1 be the set of all vertices in U1 such

that the distance from the boundary of U1 is at least
L3
j

2
. Let T = {T1, T2, . . . T`} be a set

of disjoint subsets of U2. Let {UTi}i∈[`] (resp. {ÛTi}i∈[`]) denote a set of potential domains

corresponding to the j-level multi-cells Bj
Ti

that are compatible i.e., there exists a canonical

map Γ (resp. Γ̂) at level j such that Γ(Bj
Ti

) = UTi (resp. Γ̂(Bj
Ti

) = ÛTi). Then there exists
an α-canonical map Υ with respect to T and ∅ such that Υ(Ti) = Ti for each i ∈ [`].

Proof. Notice that the canonical map from Ũ to itself is the identity map. Also observe
that without loss of generality we can assume that U = {0} and T = {{u} : u ∈ U2}. Let
U2 ⊆ U3 ⊆ Z2 be such that U3 contains all sites at a distance 2 from U2. It is clear from
the construction of potential domains that Γ and Γ̂ as in the statement of the proposition
can be chosen such that both Γ and Γ̂ are identity outside Bj

U3
. Define the map Υ on Ũ by

Υ := Γ̂ ◦ Γ−1. It follows from definition that

i. Υ-is identity on Ũ \Bj
U3

, in particular on the boundary of Ũ .

ii. Υ is bi-Lipschitz with Lipschitz constant (1 + 10−(j+5)).

iii. Υ(UTi) = ÛTi for all i.

It follows then from the definition of α-canonical maps that Υ = Υ ◦ Id is an α-canonical
map from Ũ to itself with respect to T and ∅ such that Υ(Ti) = Ti for all i. This completes
the proof.

An α-canonical map as above will be referred to as a ∗-canonical map. Figure 4.9 illus-
trates this construction.

Now we want to move to a more complicated construction of α-canonical maps, where we
want to match up a non-trivial subset of bad blocks in both X and Y. We have the following
proposition.

Proposition 4.4.2. Fix U ⊆ Z2. Consider Ũ1 and Ũ2 to be any two potential domains
corresponding to the j + 1-level multi-cell Bj+1

U . Let U1,1 ⊆ Z2 (resp. U1,2 ⊆ Z2) be such

that Bj
U1,1

(resp. Bj
U1,2

) denotes the collection of all level j-cells that intersect Ũ1 (resp. Ũ2).

Let U2,1 ⊆ U1,1 (resp. U2,2 ⊆ U1,2) be the set of all vertices in U1,1 (resp. U1,2) such that
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Figure 4.9: A ∗-canonical map

the distance from the boundary of U1,1 (resp. U1,2) is at least
L3
j

2
. Let T = {T1, T2, . . . T`1}

and T ′ = {T ′1, T ′2, . . . T ′`2} be a set of disjoint and non-neighbouring subsets of U2,1 and U2,2

respectively such that
∑ |Ti| ≤ v0k0 and

∑ |T ′i | ≤ v0k0. Then there exists a sequence of

α-canonical maps {Υh1,h2}(h1,h2)∈[L2
j ]

2 from Ũ1 to Ũ2 with respect to T and T ′ satisfying the

following conditions.

i. For each i ∈ [`1], Υh1,h2(Ti) = (h1 − 1, h2 − 1) + Υ1,1(Ti) and for each i ∈ [`2],
Υ−1
h1,h2

(T ′i ) = −(h1 − 1, h2 − 1) + Υ−1
1,1(T ′i ).

ii. For all h = (h1, h2) for all i ∈ [`1], i′ ∈ [`2] we have Ti and Υ−1
h (T ′i′) are disjoint and

non-neighbouring.

Proof. For i ∈ [`1] (resp. i′ ∈ [`2]) Let UTi (resp. UT ′
i′
) be the domain corresponding to Bj

Ti

(resp. Bj
T ′
i′
). Also let F denote the canonical map at level (j + 1) that takes Ũ1 to Ũ2. Since

Ũ2,1 and Ũ2,2 are away from the boundaries of U1,1 and U1,2 respectively (by a distance of
order L3

j) and the total sizes of T and T ′ are bounded (independent of Lj) it follows that for

Lj sufficiently large there exists a function Ω : Ũ2 → Ũ2 satisfying the following properties.

i. Ω is identity on the boundary of Ũ2, and bi-Lipschitz with Lipschitz constant (1 +
10−(j+10)).

ii. There exists squares S1, S2, . . . Sk ⊆ Ũ2 with the following properties.
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Ũ1

Ũ2

UT1 UT ′
1

Ω ◦ F

Ω(F (UT1
))

UT ′
1

S1

S2

S1

Figure 4.10: Construction of Si as described in the proof of Proposition 4.4.2

• We have that
(∪iΩ ◦ F (UTi))

⋃(
∪i′UT ′i

)
⊆ ∪ki=1Si.

• For a fixed i ∈ [k], Si intersects at most one of ∪iΩ ◦ F (UTi) and ∪i′UT ′
i′
.

• Distance between Si and Si′ for i 6= i′ is at least L
7/2
j .

• The distance between the boundary of Si and the sets F (UT`) or UT ′
`′

contained

in it is at least L
7/2
j .
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See Figure 4.10 for the above construction. For (h1, h2) ∈ [L2
j ]

2 We shall construct

functions ρh1,h2 : Ũ2 → Ũ2 such that each ρh1,h2 is identity except on the interior of ∪iSi.
Eventually we shall show that Υh1,h2 := ρh1,h2 ◦ Ω ◦ F will be the sequence of α-canonical
maps satisfying the conditions in the statement of the proposition. Without loss of generality
we describe below how to construct ρh1,h2 on S1, similar constructions work for the other Si.

Now consider S1. Without loss of generality assume that S1 contains only Ω ◦ F (UT1),
more general cases can be handled in a similar manner. Fix W , a translate of T1 such that
the distance of F (UT1) from Bj

W is at most 2Lj. For h = (h1, h2) set Wh = (h1, h2) + W .

Let the domain corresponding to the multi-cell Bj
Wh

be denoted by W̃h. Let Gh denote the

canonical map from UT1 to W̃h. On Ω ◦ F (UT1), set ρh := Gh ◦ F−1 ◦ Ω−1. Clearly ρh is

bi-Lipschitz with Lipschitz constant 1 + 10−(j+7), also since F (UT1) and W̃h are sufficiently
far from the boundary of S1, it follows that ρh can be extended to S1 in such a way that ρh
is bi-Lipschitz on S1 with Lipschitz constant 1 + 10−(j+7) and is identity on the boundary of
S1. See Figure 4.11.

Ω(F (UT1
)) Bj

W

Bj
Wh

h = (h1, h2)

S1 S1

ρh

Figure 4.11: Construction of ρh on S1 in the proof of Proposition 4.4.3

It is now easy to check that Υh as defined above does indeed produce a sequence of
α-canonical maps satisfying the conditions in the proposition. This completes the proof.

Finally we want to construct α-canonical maps that match up bad sub-components and
ensures that interior of the corresponding multi-cell is mapped into the interior of the multi-
cell itself. This property is needed to make sure certain boundaries are valid; see Lemma
4.5.8. We have the following proposition.
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Proposition 4.4.3. Fix U ⊆ Z2. Let Ũ1 be any potential domain corresponding to the
j + 1-level multi-cell Bj+1

U . Let U1 ⊆ Z2 be such that Bj
U1

denotes the collection of all level

j-cells that intersect Ũ1. Let U2 ⊆ U1 be the set of all vertices in U1 such that the distance

from the boundary of U1 is at least
L3
j

2
. Let T = {T1, T2, . . . T`1} be a set of disjoint and non-

neighbouring subsets of U2 such that
∑ |Ti| ≤ v0k0. Let U3 ⊆ U2 be such that Bj

U3
= Bj+1,int

U .

Then there exists a sequence of α-canonical maps {Υh1,h2}(h1,h2)∈[L2
j ]

2 from Ũ1 to Bj+1
U with

respect to T and ∅ satisfying the following conditions.

i. For each i ∈ [`1], Υh1,h2(Ti) = (h1 − 1, h2 − 1) + Υ1,1(Ti).

ii. For Ti not contained in U2 \ U3, and for all h = (h1, h2) we have Υh(Ti) ⊆ U3.

Ũ1

Bj+1,int,`

Bj+1,ext,`

Bj+1,int
UT1

UT2

UT3

S1

S3

Figure 4.12: Construction of Si as described in the proof of Proposition 4.4.3

Proof. This proof is similar to the proof of Proposition 4.4.2 except that we have to do some
extra work to ensure condition ii. above. We use the same notations for domains as in the
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proof of Proposition 4.4.2. Let F be the canonical map that takes Ũ1 to Bj+1
U . Without

loss of generality, we take U to be the singleton {0}. Define the squares Bj+1,int,` = [L5
j +

`L4
j , Lj+1−L5

j−`L4
j ]

2 and Bj+1,ext,` = [L5
j−`L4

j , Lj+1−L5
j +`L4

j ]
2 such that 0 < ` < 100k0v0

and such that the distance of F (UTi)’s from the boundaries of Bj+1,int,` and Bj+1,ext,` is at
least L4

j . See Figure 4.12. Observe that by construction of canonical maps F is identity on

Bj+1,ext,`. Now as in the proof of Proposition 4.4.2, it is not hard to see that there exist
squares S1, S2, . . . Sk ⊆ Ũ2 with the following properties.

• We have that
∪iF (UTi) ⊆ ∪ki=1Si.

• The distance between the boundaries of Si and the sets F (UT`) contained in it is at

least L
7/2
j .

• The distance between Si and the boundaries of Bj+1,int,` and Bj+1,ext,` is at least L
7/2
j .

For h = (h1, h2) ∈ [L2
j ]

2, as before our strategy is to construct ρh that is identity except on
the interiors of Si and such that Υh = ρh ◦F is an α-canonical map satisfying the conditions
of the proposition. We construct ρh separately on squares Si. If Si ⊆ Ũ2 \ Bj+1,ext,` or

Si ⊆ Bj+1,int,` then the construction of ρh proceeds as in the proof of Proposition 4.4.2. We

specify below the changes we need to consider if Si ⊆ Bj+1,ext,` \Bj+1,int,`. Without loss of

generality take S1 ⊆ Bj+1,ext,` \ Bj+1,int,` and also that UT1 is the only one (among UTi ’s)
that is contained in S1.

Recall that we only need to worry about condition ii. in the statement of the proposition
being violated if T1 is not contained in U2\U3. Let us assume that to be the case. Notice that
the assumptions on S1 and UT1 implies that there exists W which is a translate of T1 such
that Bj

W has distance at most 10L3
j from UT1 = F (UT1) for all h ∈ [L2

j ]
2 and Wh := h+W we

have that Wh ⊆ U3. See Figure 4.13. With this choice of W , construct ρh exactly as in the
proof of Proposition 4.4.2 and it is easy to verify that Υh = ρh ◦ F satisfies the conclusion
of the proposition. This completes the proof.

4.5 Tail Estimates

The most important of our inductive hypotheses is the following recursive estimate. Let
X = Xj+1

U and Y = Y j+1
U ′ be random (j + 1)-level components in X and Y having laws µX

j+1

and µY
j+1 respectively. Let VX , VY denote the sizes of X and Y respectively. We have the

following theorem establishing (4.3.1) and (4.3.2) at level j + 1.
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UT1

Bj
W

Bj
Wh

h = (h1, h2)

ρh

S1 S1

Figure 4.13: Construction of ρh on S1 in the proof of Proposition 4.4.3

Theorem 4.5.1. In the above set-up, we have for all v ≥ 1 and all p ≤ 1− L−1
j+1

P(SX
j+1(X) ≤ p, VX ≥ v) ≤ pmj+1L−βj+1L

−γ(v−1)
j+1 ;

P(SY
j+1(Y ) ≤ p, VY ≥ v) ≤ pmj+1L−βj+1L

−γ(v−1)
j+1

where mj+1 = m+ 2−(j+1).

Due to an obvious symmetry between our X and Y bounds, we shall state all our bounds
in terms of X and SX

j+1 but will similarly hold for Y and SY
j+1. We shall drop the superscript

X for the rest of this section.
As a consequence of translation invariance we can assume without loss of generality that

X = Xj+1
U = X∗,j+1(0), i.e., U is the lattice component containing the origin. Let UX

denote the domain of X. Also let Ũ ⊆ Z2 be such that Xj

Ũ
= Xj+1

U = X. Let Xj
U1
, Xj

U2
,

Xj

ŨNX
denote the j-level bad subcomponents of X. Let KX denote the total size of the bad

subcomponents, i.e., KX =
∑NX

i=1 |Ui|. Our first order of business is to obtain a bound on

the probability that a component X has either large VX , or large KX or small
∏NX

i=1 Sj(X
j
Ui

).
The following lemma is the key estimate of the chapter.

Lemma 4.5.2. Let X be as above. For all v′ ≥ 1, k, x ≥ 0 we have that

P

[
VX ≥ v′, KX ≥ k,− log

NX∏
i=1

Sj(X
j
Ui

) > x

]
≤ 500L

−γk/10
j exp(−xmj+1)L

−9γ(v′−1)
j+1 .
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For brevity of notation we shall write S∗(X) =
∏NX

i=1 Sj(X
j
Ui

). For v ≥ 1, let Hv denote
the set of all lattice animals of size v containing 0. Clearly, we have

P [VX ≥ v′, KX ≥ k,− logS∗(X) > x] =
∞∑
v=v′

∑
H∈Hv

P [U = H,KX ≥ k,− logS∗(X) > x] .

(4.5.1)
To begin with, let us analyse the event {U = H}. Let Ŵ ⊆ Z2 be such that Bj

Ŵ
=

Bj+1,ext
H , i.e., Ŵ corresponds to the j-level cells contained in the blow-up of the level (j+ 1)

ideal multi-block Bj+1
H . Observe that on {U = H}, there exists a subset H∗ ⊆ H with at

least d v
25
e vertices that are non neighbouring (in the closed packed lattice of Z2) and such

that for all h ∈ H∗, the ideal multi-block containing Bj+1
H must correspond to a bad block.

Hence, for each h ∈ H∗, one of the following there events must hold for the cell Bj+1(h): (a)
it has a conjoined buffer zone or the total size of j level bad components contained in its blow
up is at least k0, (b) it contains a really bad j-level subblock, (c) it fails the airport condition.
Hence at least one of these conditions must must hold for at least v

75
many (j+ 1)-level cells

among the cells corresponding to the vertices of H∗. Hence

{U = H} ⊆ A1 ∪ A2 ∪ A3

where Ai are defined as follows.

• Let A1 denote the event that total size of j-level bad components contained in Xj

Ŵ
is

at least k0v
75

.

• Let A2 denote the event that the total number of really bad components contained in
Xj

Ŵ
is at least v

75
.

• Finally let A3 denote the event that there exists a subset H ′ ⊆ H of non-neighbouring
vertices with |H ′| = v

75
such that ∩h∈H′Sh holds where Sh is the following event. For

h ∈ H ′, let Gh be such that Bj
Gh

= Bj+1,ext
h . Then Sh denotes the event that the

following two conditions hold.

i. The total size of bad components at level j contained in Bj
Gh

is at most k0.

ii. There exists a square S ⊆ Gh of size L
3/2
j such that Bj

S is not an airport at level
j.

Fix v ≥ v′ and H ∈ Hv for now. The corresponding term in the right hand side of (4.5.1)
can be upper bounded by

3∑
i=1

P[− logS∗(X) > x,KX ≥ k,Ai].

We shall treat the three cases separately.
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Lemma 4.5.3. In the above set-up, we have

P[− logS∗(X) > x,KX ≥ k,A1] ≤ 2 exp(−xmj+1)L
−γk/10
j L

−10γ(v−1)
j+1 .

Proof. Fix k′ ≥ k. Fix a collection Tk′ = {T1, T2, · · · , Tn} of non-neighbouring subsets of Ŵ
with

∑
i |Ti| = k′. Let FTk′ denote the event that Xj

Ti
is a j-level bad component of X for

each i. It follows that we have

P [U = H,KX ≥ k,− logS∗(X) > x] ≤
∞∑
k′=k

∑
Tk′

P[− log
n∏
i=1

Sj(Xj
Ti

) > x,FTk′ , U = H].

(4.5.2)
Notice that on the event FTk′ , X

j
Ti

are independent. Observe that on A1, we have KX ≥ k0v
24

.
Now fix Tk′ . Set ti = |Ti|. Let Vi, i = 1, 2, . . . , n be a sequence of independent random

variables with Ber(L
−γti/2
j ) distribution. Let Ri, i = 1, 2, . . . , n be a sequence of i.i.d. exp(mj)

random variables independent of {Vi}. It follows from the recursive estimates that

− logSj(X
j
Ti

)1{Xj
Ti

bad component} � Vi(1 + Ri)

for all i where � denotes stochastic domination. It follows that

P[− log
n∏
i=1

Sj(X
j
Ti

) > x,FTk′ , A1] ≤ P[Vi = 1∀i]P[
n∑
i=1

(1 + Ri) > x]

≤ L
−γk′/2
j P[

n∑
i=1

Ri > x− n]. (4.5.3)

Now observe that
∑n

i=1 Ri has a Gamma(n,mj) distribution and hence

P[
n∑
i=1

Ri > x− n] =

∫ ∞
(x−n)∨0

mn
j

(n− 1)!
yn−1 exp(−ymj)dy. (4.5.4)

Following the proof of Lemma 7.3 in [8] it follows from this that

P[
n∑
i=1

Ri > x− n] ≤ (mj2
j+1emj+1)n exp(−xmj+1). (4.5.5)

Since Lj grows doubly exponentially and n ≤ k′ and k′ > vk0/24 it follows from (4.5.3)
that for L0 sufficiently large we have

P[− log
n∏
i=1

Sj(XTi) > x,FTk′ , A1] ≤ L
−γk′/4
j exp(−xmj+1) ≤ L

−γk′/8
j exp(−xmj+1)L

−10γ(v−1)
j+1

(4.5.6)
as k0 > 6000αγ.

Now notice that total number of choices for Tk′ is bounded by 16v3k
′
Lk
′
j+1 hence summing

over all such choices and then summing over all k′ from k to ∞ we get the desired result as
γ > 40α and Lj is sufficiently large.
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Lemma 4.5.4. In the set-up of Lemma 4.5.3, we have

P[− logS∗(X) > x,KX ≥ k,A2] ≤ exp(−xmj+1)L
−γk/10
j L

−10γ(v−1)
j+1 .

Proof. Fix k′ ≥ k and Tk′ as in the proof of Lemma 4.5.4. Fix a subset N of [n] with
|N | = v

24
. Now, for i ∈ N , Xj

Ti
can be a really bad component in one of two ways: (a)

ti` ≥ v0 and (b) Sj(XTi`
) ≤ 1 − L−1

j . Observe that it follows from the recursive estimates
that for all i ∈ N we have

− logSj(X
j
Ti

)1{Xj
Ti

really bad component} � Wi(1 + Ri)

where {Wi}i∈N is a sequence of i.i.d. Ber(L
−γti/4−(γv0/4∧β/2)
j ) distribution. It follows that

P[− log
n∏
i=1

Sj(X
j
Ti

) > x,FTk′ , A2] ≤
∑
N

P[Vi = 1∀i ∈ [n] \ N ,Wi = 1∀i ∈ N ]

×P[
n∑
i=1

(1 + Ri) > x]

≤
∑
N

L
−γk′/4− v

300
(γv0∧2β)

j P[
n∑
i=1

Ri > x− n]

≤
(
k′

v
75

)
L
−γk′/4− v

300
(γv0∧2β)

j P[
n∑
i=1

Ui > x− n].(4.5.7)

Doing the same calculations as in the proof of Lemma 4.5.3, we obtain that

P[− log
k∏
i=1

Sj(X
j
Ti

) > x,FTk′ , A2] ≤ 2k
′
L
−γk′/5
j exp(−xmj+1)L

− v
300

(γv0∧2β)

j

≤ L
−γk′/8
j exp(−xmj+1)L

−10γ(v−1)
j+1 (4.5.8)

since γv0 ∧ 2β > 3000αγ.
As before, summing over all Tk′ and k′ from k to ∞ gives the result.

Lemma 4.5.5. In the set-up of Lemma 4.5.3, we have

P[− logS∗(X) > x,KX ≥ k,A3] ≤ exp(−xmj+1)L
−γk/10
j L

−10γ(v−1)
j+1 .

Proof. First fix H ′ ⊆ H as in the definition of A3. Fix k′ ≥ k and Tk′ as before. Now fix
h ∈ H ′. Set Ih = (∪ni=1Ti) ∩Gh and observe that by hypothesis |Ih| ≤ k0. It is not too hard
to see that there exists an event S ′h such that Sh ⊆ S ′h and S ′h is independent of Xj

Ih
and

P [S ′h] ≤ L−10β
j . Indeed, that a square is an airport can be verified, even without checking a

limited number of cells, and this can be established using arguments identical to the proof
of Lemma 4.7.5, we omit the details.



CHAPTER 4. LIPSCHITZ EMBEDDING IN HIGHER DIMENSIONS 139

Repeating the same calculations as in the proofs of Lemma 4.5.3 and Lemma 4.5.4 it
then follows that

P[− logS∗(X) > x,KX ≥ k,A3] ≤
∑
H′

∞∑
k′=k

∑
Tk′

P[FTk′ ]L
−10βv/75
j

≤ 2

(
v
v
75

)
exp(−xmj+1)L

−γk/10
j L

−10βv/75
j

≤ exp(−xmj+1)L
−γk/10
j L

−10γ(v−1)
j+1

as Lj is sufficiently large and β > 75αγ.

Putting together all the cases we are now ready to prove Lemma 4.5.2.

Proof of Lemma 4.5.2. Notice that for a fixed v, we have |Hv| ≤ 8v. We now get from
(4.5.1), Lemmas 4.5.3, 4.5.4, 4.5.5 by summing over all H ∈ Hv and then finally summing
over all v from v′ to ∞ that

P [VX ≥ v′, KX ≥ k,− logS∗(X) > x] ≤
∞∑
v=v′

8v50L
−γk/10
j exp(−xmj+1)L

−10γ(v−1)
j+1

≤ 500 exp(−xmj+1)L
−γk/10
j L

−9γ(v′−1)
j+1 ,

this completes the proof of the lemma.

We now move to the proof of Theorem 4.5.1. Our proof will be divided into four cases
depending on the size of X, the total size of its bad components and how bad the bad
components are. In each one we will use different α-canonical map or maps to get good
lower bounds on the probability that X = Xj+1

U ↪→ Y j+1
U . We now present our four cases.

4.5.1 Case 1

The first case is the generic situation where the components are of small size, have small
total size of bad sub-components whose embedding probabilities are not too small. For a
(j+1)-level component X, let NX denote the number of bad j level components contained in
X and let Xj

T1
, Xj

T2
, . . . , Xj

TNX
denote the bad subcomponents. Let KX =

∑NX
i=1 |Ti| denote

the total size of bad subcomponents in X. We define the class of blocks A(1)
X,j+1 as

A(1)
X,j+1 :=

{
X : VX ≤ v0, KX ≤ k0v0,

NX∏
i=1

Sj(X
j
Ti

) ≥ L
−1/3
j

}
.

First we show that this case holds with extremely high probability.
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Lemma 4.5.6. The probability that X ∈ A(1)
X,j+1 is bounded below by

P[X 6∈ A(1)
X,j+1] ≤ L−3β

j+1L
−γ(v0−1)
j+1 .

Proof. This follows from Lemma 4.5.2 by noting 8γ(v0 − 1) > 3αβ, m ≥ 9αβ + 3αγv0 and
γk0v0 > 300αβ + αγv0. We omit the details.

Next we show that Sj+1(X) is at least 1/2 for all X ∈ A(1)
X,j+1.

Lemma 4.5.7. Condition on X = Xj+1
U ∈ A(1)

X,j+1 where U ⊆ Z2 and |U | ≤ v0. Let the bad

j level components of X be Xj
T1
, Xj

T2
, . . . , Xj

TNX
such that

∑NX
i=1 |Ti| ≤ v0k0. Then we have

Sj+1(X) ≥ 1

2
.

Proof. Let UX denote the domain of X, CX denote the boundary of X, and let Ũ ⊆ Z2 be
such that X = Xj

Ũ
. By Proposition 4.4.2, there exist L4

j α-canonical maps at j + 1-th level

{Υj+1
h = Υh : h ∈ [L2

j ]
2} from UC to Bj+1 with respect to T = T1, T2, . . . , TKX and ∅ such

that Υh(Ti) are different for all h ∈ [L2
j ]

2.
Clearly there exists a subset H ⊂ [L2

j ]
2 with |H| = Lj < bL4

j/100v4
0k

4
0c so that for all

i1 6= i2 and h1, h2 ∈ H we have that Υh1(Ti1) and Υh2(Ti2) are disjoint and non-neighbouring.
We will estimate the probability that one of these maps work.

For h ∈ H and i ∈ [NX ], let Dih denote the event

Dih =
{
Y j

Υh(Ti)
valid, Xj

Ti
↪→ Y j

Υh(Ti)

}
.

Since we are only trying out non-neighbouring components, these events are conditionally
independent given X and setting

Dh =
⋂

1≤i≤NX

Dih

we get

P[Dh | X] =

NX∏
i=1

Sj(XTi) ≥ L
−1/3
j .

By construction of H, we also get that {Dh : h ∈ H} are mutually independent given X and
hence setting D = ∪h∈HDh we have

P[D | X] ≥ 1− (1− L−1/3
j )Lj ≥ 1− L−3β

j+1 . (4.5.9)

Let B denote the event that Y j+1
U is valid and has domain Bj+1

U . Let Ũ2 ⊆ Z2 be such that

Ũ2 corresponds to the j-level cells contained in the blow-up of Bj+1
U , i.e., Bj

Ũ2
= Bj+1,ext

U .

Let J denote the event

J =
{
Y j(`) is good for all ` ∈ Ũ2

}
.
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By Lemma 4.2.18 on D∩J ∩B, there exists an embedding and hence Sj+1(X) ≥ P[D∩J ∩B |
X]. Using (4.3.7) at level j we get

P[J | X] ≥
(
1− L−γj

)4v0L
2α−2
j ≥ 9/10 (4.5.10)

as γ > 2α and Lj is sufficiently large. Notice that on J , Y j+1
U is valid and Bj+1

U is a valid
potential domain of Y j+1

U and by construction

P[B ∩ J | X] ≥ P[J | X]P[B | J , X] ≥ 9

10
(1− 10−(j+10))4v0 ≥ 3

5
. (4.5.11)

The lemma follows from (4.5.9) and (4.5.11) since L0 is sufficiently large.

Now to improve upon the above estimate, we want to relax the condition that Y does not
contain any bad-components by weaker conditions that define a generic block. We proceed
as follows.

Let S = Sv0 denote the set of all lattice animals containing the set {0} and having size
at most v0. For S ∈ Sv0 , let US denote the set of all potential domains for Xj+1

S (or Y j+1
S ).

Also set S0 = ∪S∈SS. Let T1, T2, . . . , TNX be subsets of Z2 such that {Xj
Ti

: i ∈ [NX ]} are

the j-level bad subcomponents in Xj+1
S0

. Similarly let T ′1, T
′
2, . . . , T

′
N ′Y

be subsets of Z2 such

that {Y j
Ti

: i ∈ [N ′Y ]} denote the j-level bad subcomponents in Y j+1
S0

. Fix S ∈ S and Ũ ∈ US.

Let Ũ ⊆ Z2 denote the set such that Xj+1
S = Xj

Û
on the event that Ũ is the domain of Xj+1

S .

Let BŨ ,X = BŨ ,S,X = {i ∈ [NX ] : Ti ⊆ Û} and let BŨ ,Y be defined similarly. Let

EŨ ,X =

Xj+1
S valid, Ũ valid,

∑
i∈B

Ũ,X

|Ti| ≤ k0v0,
∏

i∈B
Ũ,X

Sj(X
j
Ti

) ≥ L
−1/3
j


and

EŨ ,Y =

Y j+1
S valid, Ũ valid,

∑
i∈B

Ũ,Y

|T ′i | ≤ k0v0,
∏

i∈B
Ũ,Y

Sj(Y
j
T ′i

) ≥ L
−1/3
j

 .

Finally let BŨ ,X (resp. BŨ ,Y ) denote the event that the domain of Xj+1
S (resp. Y j+1

S ) is

Ũ . We have the following lemma.

Lemma 4.5.8. We have that∑
S∈S

∑
Ũ1∈US

∑
Ũ2∈US

P[Xj+1
S 6↪→ Y j+1

S , EŨ1,X
, EŨ2,Y

,BŨ2,X
,BŨ2,Y

] ≤ L−3β
j+1L

−γ(v0−1)
j+1 . (4.5.12)

Proof. Since |S| ≤ 8v0 and for all S ∈ S we have US ≤ (8k0)16k0v20 , it suffices to prove that

for each fixed S, Ũ1 and Ũ2 we have

P[Xj+1
S 6↪→ Y j+1

S , EŨ1,X
, EŨ2,Y

,BŨ1,X
,BŨ2,Y

] ≤ L−4β
j+1L

−γ(v0−1)
j+1 .
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Now fix S ∈ S and Ũ1, Ũ2 ∈ US. Notice that the total number of ways it is possible to
choose disjoint sets S1, S2, . . . , S`1 ⊆ Ũ1 and S ′1, S

′
2, . . . , S

′
`2
⊆ Ũ2 such that

∑
i |Si| ≤ v0k0

and
∑

i |S ′i| ≤ k0v0 is L4αk0v0
j . For S1 = {S1, S2, . . . S`1} and S2 = {S ′1, S ′2, . . . S ′`2}, let

I (S1,S2) =
{

S1 = {Ti : i ∈ BŨ1,X
},S2 = {T ′i : i ∈ BŨ2,Y

}
}
.

Clearly then it suffices to show that for each choice of S1 and S2 as above, we have

P[Xj+1
S 6↪→ Y j+1

S , EŨ1,X
, EŨ2,Y

,BŨ1,X
,BŨ2,Y

,I (S1,S2)] ≤ L−4β−8k0v0−γv0
j+1 . (4.5.13)

Fix S1 and S2 as above. Condition on {Xj
Si

: Si ∈ S1} and {Y j
S′i

: S ′i ∈ S2}, such that

they are compatible with EŨ1,X
and EŨ2,Y

. Denote this conditioning by F . Observe that, by

Proposition 4.4.2, there exist L4
j α-canonical maps at j + 1-th level {Υj+1

h = Υh : h ∈ [L2
j ]

2}
from Ũ1 to Ũ2 with respect to S1 and S2 satisfying the following conditions.

i. Υh(Si) are different for all h ∈ [L2
j ]

2.

ii. Υ−1
h (S ′i) are different for all h ∈ [L2

j ]
2.

iii. Υh(Si1) 6= S ′i2 for any i1, i2, h.

As before there exists a subset H ⊂ [L2
j ]

2 with |H| = Lj < bL4
j/100v4

0k
4
0c so that the sets

{Υh(Si1) : h ∈ H, Si1 ∈ S1} are disjoint and non-neighbouring and also disjoint and non-
neighbouring with the sets in S2. Also the collection of sets {Υ−1

h (S ′i2) : h ∈ H, S ′i2 ∈ S2}
are disjoint and non-neighbouring and also disjoint and non-neighbouring with the sets in
S1.

For h ∈ H, let Dh denote the event

Dh =

{
Xj
Si1

↪→ Y j
Υh(Si1 ), X

j

Υ−1
h (S′i2

↪→ Y j
S′i2
∀Si1 ∈ S1 ∀S ′i2 ∈ S2

}
.

Arguing as before we have

P[Dh | F ] =
∏
Si∈S1

SX
j (Xj

Si
)
∏
S′i∈S2

SX
j (Xj

S′i
) ≥ L

−2/3
j .

Since these events are independent for h ∈ H it follows that

P[∪h∈HDh | F ] ≥ 1− L−4β−8k0v0−γv0
j+1

since L0 is sufficiently large. Now observing that on

BŨ1,X
∩ BŨ2,Y

∩I (S1 ∩S2) ∩
(
∪h∈HDh

)
we have Xj+1

S ↪→ Y j+1
S and removing the conditioning we get (4.5.13) which in turn completes

the proof of the lemma.
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Lemma 4.5.9. When 1
2
≤ p ≤ 1− L−1

j+1

P(Sj+1(X) ≤ p, VX ≥ v) ≤ pmj+1L−βj+1L
−γ(v−1)
j+1 .

Proof. Clearly it is enough to show that

P[Sj+1(X) ≤ 1− L−1
j+1, VX ≥ v] ≤ 2−mj+1L−βj+1L

−γ(v−1)
j+1 . (4.5.14)

For v ≥ v0 this follows from Lemma 4.5.2 and 8γ(v0− 1) > β, so it suffices to prove that

P[Sj+1(X) ≤ 1− L−1
j+1, VX ≤ v0] ≤ 2−mj+1L−βj+1L

−γ(v0−1)
j+1 . (4.5.15)

Using Markov’s inequality and Lemma 4.5.8 we get that

P[Sj+1(X) ≤ 1− L−1
j+1, VX ≤ v0] ≤ P[X /∈ A(1)

X,j+1] + Lj+1

(
L−3β
j+1L

−γ(v0−1)
j+1 + P[EY ]

)
where

P[EY ] =
∑
S∈S

∑
Ũ∈US

P[(EC,Y )c].

It can be shown as in Lemma 4.5.6 that P[(EY )c] ≤ L−3β
j+1L

−γ(v−1)
j+1 and this completes the

proof of the lemma.

4.5.2 Case 2

The next case involves components which are not too large and do not contain too many
bad sub-components but whose bad sub-components may have very small embedding prob-
abilities. For a (j + 1)-level component X, let NX denote the number of bad j level com-
ponents contained in X and let Xj

T1
, Xj

T2
, . . . , Xj

TNX
denote the bad subcomponents. Let

KX =
∑NX

i=1 |Ti| denote the total size of bad subcomponents in X. We define the class of

blocks A(2)
X,j+1 as

A(2)
X,j+1 :=

{
X : VX ≤ v0, KX ≤ k0v0,

NX∏
i=1

Sj(X
j
Ti

) ≤ L
−1/3
j

}
.

Lemma 4.5.10. Condition on X = Xj+1
U ∈ A(2)

X,j+1 where |U | ≤ v0. Let the bad j level

components of X be Xj
T1
, Xj

T2
, . . . , Xj

TNX
such that

∑NX
i=1 |Ti| ≤ v0k0. Then we have

Sj+1(X) ≥ min

{
1

2
,

1

10
Lj

NX∏
i=1

Sj(X
j
Ti

)

}
.
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Proof. Let us make some notations first. Let UX denote the domain of X. Let Ũ ⊆ Z2 be
such that X = Xj

Ũ
. Let Ũ1 ⊆ Ũ0 ⊆ Ũ2 ⊆ Z2 be defined as follows.

Bj

Ũ0
= Bj+1

U ;

Bj

Ũ1
= Bj+1,int

U ;

Bj

Ũ2
= Bj+1,ext

U .

Now by Proposition 4.4.3, there exist L4
j α-canonical maps at j + 1-th level {Υj+1

h = Υh :

h ∈ [L2
j ]

2} from UX to Bj+1
U with respect to T = {T1, T2, . . . , TNX} satisfying the following

conditions:

i. For each i ∈ [NX ] such that Ti is not contained in Ũ2 \ Ũ1 and for all h ∈ [L2
j ]

2 we have

Υh(Ti) ⊆ Ũ1.

ii. For all h ∈ [L2
j ]

2 and for all i ∈ [NX ] we have Υh(Ti) is at least at a distance L3
j from

the boundaries of U0.

iii. Υh(Ti) are different for all h ∈ [L2
j ]

2.

It is easy to see that there exists a subset H ⊂ [L2
j ]

2 with |H| = L
3/2
j < bL4

j/100v4
0k

4
0c

so that for all i1 6= i2 and h1, h2 ∈ H we have that Υh1(Ti1) and Υh2(Ti2) are disjoint and
non-neighbouring. We will estimate the probability that one of these maps work.

In trying out these L
3/2
j different mappings there is a subtle conditioning issue since a

map failing may imply that YΥh(Ti) is not good. As such we condition on an event Dh ∪ Gh
which holds with high probability. For h ∈ H and i ∈ [NX ], let Dih denote the following

event. If Ti ⊆ Ũ2 \ Ũ1, then

Dih =
{
Xj
Ti
↪→ Y j

Υh(Ti)
;Y j

` is good for all ` ∈ Ti
}
.

Otherwise set
Dih =

{
Xj
Ti
↪→ Y j

Υh(Ti)

}
.

Define
Dh =

⋂
1≤i≤NX

Dih.

Also let
Gih =

{
Y j
` is good for all ` ∈ Ti

}
and

Gh =
⋂

1≤i≤NX

Gih.
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Then using (4.3.7) at level j we get for h ∈ H

P[Dh ∪ Gh | X] ≥ P[Gh | X] ≥ (1− L−γj )k0v0 ≥ 1− 2k0v0L
−γ
j .

Since Dh ∪ Gh, h ∈ H are conditionally independent given X, we have

P[∩h∈H(Dh ∪ Gh) | X] ≥ (1− L−γj )v0k0L
3/2
j ≥ 9/10 (4.5.16)

for Lj sufficiently large. Now

P[Dh | X, (Dh ∪ Gh)] ≥ P[Dh | X] =

NX∏
i=1

(
1

2
∧ Sj(Xj

Ti
)

)
.

Indeed, observe that if Ti ⊆ Ũ2 \ Ũ1, XTi is semi-bad and hence

P[Dih] ≥ Sj(X
j
Ti

)− v0L
−γ
j ≥

1

2
.

Also observe that since none of the multi-blocks that are tried (over all h and i ∈ [NX ])
are non-neighbouring it follows that {Dh : h ∈ H} is independent conditionally on X and
∩h∈H(Dh ∪ Gh) and hence

P[∪h∈HDh | X,∩h∈H(Dh ∪ Gh)] ≥ 1−
(

1− (
1

2
)k0v0

NX∏
i=1

Sj(X
j
Ti

)

)L
3/2
j

≥ 9

10
∧ 1

4
Lj

NX∏
i=1

Sj(X
j
Ti

) (4.5.17)

since 1− e−x ≥ x/4 ∧ 9/10 for x ≥ 0 and L
1/2
j > 2k0v0 for Lj sufficiently large.

Further, set
M = {∃h1 6= h2 ∈ H : Dh1 \ Gh1 ,Dh2 \ Gh2} .

We then have

P[M | X,∩h∈H(Dh ∪ Gh)] ≤
(
Lj
2

)
P[Dh \ Gh | X,∩h∈H(Dh ∪ Gh)]2

≤
(
Lj
2

)
2

(
NX∏
i=1

Sj(X
j
Ti

) ∧ 2v0k0L
−γ
j

)2

≤ 2k0v0L
−(γ−2)
j

NX∏
i=1

Sj(X
j
Ti

). (4.5.18)
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Finally let J denote the event

J =
{
Y j
k is good for all k ∈ Ũ2 \ ∪h∈H,1≤i≤NX{Υh(Ti)}

}
.

Then using (4.3.7) again

P[J | X,∪h∈HDh,∩h∈H(Dh ∪ Gh),¬M] ≥
(
1− L−γj

)4v0L
2α−2
j ≥ 9/10. (4.5.19)

Now let B denote the event that none of the external buffer zones of Y j+1
U are conjoined

and Bj+1
U is the domain of Y j+1

U . Observe that on ∩h∈H(Dh∪Gh)∩J , Bj+1
U is a valid potential

domain for Y j+1
U and hence we have that

P[B | X,∪h∈HDh,∩h∈H(Dh ∪ Gh),J ,¬M] ≥ (1− 10−(j+10))4v0 ≥ 9/10. (4.5.20)

If B,J ,∪h∈HDh and ∩h∈H(Dh ∪ Gh) all hold and M does not hold then by definition
Y j+1
U is valid and there is h0 ∈ H such that Dh0 holds and Gh′ holds for all h′ ∈ H \ {h0}.

The α-canonical map Υh0 then gives rise to an embedding of X into Y = Y j+1
U . It follows

from (4.5.16), (4.5.17), (4.5.18), (4.5.19) and (4.5.20) that

Sj+1(X) ≥ P[∪h∈HDh,∩h∈H(Dh ∪ Gh),J ,B,¬M | X]

= P[J ∩ B | X,∪h∈HDh,∩h∈H(Dh ∪ Gh),J ,¬M]

P[∪h∈HDh,¬M | X,∩h∈H(Dh ∪ Gh)]P[∩h∈H(Dh ∪ Gh) | X] (4.5.21)

≥ 7

10

[(
9

10
∧ 1

4
Lj

NX∏
i=1

Sj(X`i)

)
− 2v0k0L

−(γ−2)
j

NX∏
i=1

Sj(X`i)

]
(4.5.22)

≥ 1

2
∧ 1

10
Lj

NX∏
i=1

Sj(X`i). (4.5.23)

This completes the proof.

Lemma 4.5.11. When 0 < p < 1
2

and v ≥ 1,

P(X ∈ A(2)
X,j+1, Sj+1(X) ≤ p, VX ≥ v) ≤ 1

5
pmj+1L−βj+1L

−γ(v−1)
j+1 .

Proof. We have that

P(X ∈ A(2)
X,j+1, Sj+1(X) ≤ p, VX ≥ v) ≤ P

[
1

10
Lj

NX∏
i=1

Sj(XTi) ≤ p, VX ≥ v

]

≤ 500

(
10p

Lj

)mj+1

L
−γ(v−1)
j+1 ≤ 1

5
pmj+1L−βj+1L

−γ(v−1)
j+1

(4.5.24)

where the first inequality holds by Lemma 4.5.10, the second by Lemma 4.5.2 and the third
holds for large enough L0 since mj+1 > m > αβ.
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4.5.3 Case 3

Case 3 involves components with very large size. The class of components A(3)
X,j+1 is defined

as
A(3)
X,j+1 := {X : VX > v0} .

Lemma 4.5.12. Condition on X = Xj+1
U ∈ A(3)

X,j+1 with |U | = v > v0. Let the bad j level

components of X be Xj
T1
, Xj

T2
, . . . , Xj

TNX
. Then we have

Sj+1(X) ≥ (8k0)−16vk20100−4(j+10)v2−v2−4k0v

NX∏
i=1

Sj(X
j
Ti

)

Proof. Let Û = UX ⊆ R2, Ũ ⊆ Z2, Ũ1 ⊆ Ũ0 ⊆ Ũ2 ⊆ Z2, be defined as in the proof of Lemma
4.5.10. For i ∈ [NX ], let Di denote the following event.

If Ti ⊆ Ũ2 \ Ũ1, then

Di =
{
Xj
Ti
↪→ Y j

Ti
;Y j

` is good for all ` ∈ Ti
}
.

Otherwise set
Di =

{
Xj
Ti
↪→ Y j

υh(Ti)

}
.

Let
D = ∩NXi=1Di.

For ` ∈ Ũ2 \ (∪NXi=1Ti) let
G` = {Y j

` is good}
and set

G = ∩
`∈Ũ2\(∪

NX
i=1Ti)

G`.

Observe that |Ũ2| ≤ 4vL2α
j . Finally let B denote the event that Y = Y j+1

U is valid and

Û is the domain of Y j+1
U . Let Υ be the ∗-canonical map from Û to itself with respect to

T = {T1, T2, . . . , TNX} which exists by Proposition 4.4.1. On D∩G∩B, we get an embedding
of X into Y = Y j+1

U given by Υ. Hence it follows that

Sj+1(X) ≥ P[D]P[G | D]P[B | G,D].

Now observe that the total size of Ti’s contained in Ũ2 \ Ũ1 must be at most 4k0v and
hence arguing as in the proof of Lemma 4.5.10 we get that

P[D] =

(
1

2

)4k0v NX∏
i=1

Sj(X
j
Ti

).
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Also using the recursive hypothesis (4.3.7) we get that

P[G | D] ≥ (1− L−γj )4vL2α
j ≥ 2−v

as γ > α and L0 is sufficiently large. Finally observe that on D∩G, the curve corresponding
to the boundary of Û is a valid level (j + 1) boundary curve for Y and hence,

P[B | G,D] ≥ (8k0)−16vk20100−4(j+10)v.

Putting all these together we get the lemma.

Lemma 4.5.13. When 0 < p ≤ 1
2

and v ≥ 1,

P(X ∈ A(3)
X,j+1, Sj+1(X) ≤ p, VX ≥ v) ≤ 1

5
pmj+1L−βj+1L

−γ(v−1)
j+1 .

Proof. Without loss of generality we can take v ≥ v0. Then we have using Lemma 4.5.12
and Lemma 4.5.2

P(X ∈ A(3)
X,j+1, Sj+1(X) ≤ p, VX ≥ v) =

∞∑
v′=v

P[Sj+1(X) ≤ p, VX = v′]

≤
∞∑
v′=v

P
[
(8k0)−16v′k20100−4(j+10)v′2−v

′−4k0v′

NX∏
i=1

Sj(X
j
Ti

) ≤ p, VX = v′
]

≤
∞∑
v′=v

500pmj+1 × (2000k0)64k20v
′(j+10)mj+1L

−9γ(v′−1)
j+1

≤ 500pmj+1L−βj+1L
−γ(v−1)
j+1

×
(
∞∑
v′=v

(2000k0)64k20(j+10)mj+1L−5γv′
j+1

)
≤ 1

5
pmj+1L−βj+1L

−γ(v−1)
j+1 (4.5.25)

where the penultimate inequality follows from γ(v0−1) > β and v0 > 5 and the last inequality
follows by taking L0 sufficiently large.

4.5.4 Case 4

The final case is the case of components of size not too large, but with a large size of bad
subcomponents. The class of blocks A(4)

X,j+1 is defined as

A(4)
X,j+1 := {X : KX ≥ VXk0, VX ≤ v0} .
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Lemma 4.5.14. Condition on a (j+1) level component X = Xj+1
U ∈ A(5)

X,j+1 with |U | = v ≤
v0. Let the bad j level components of X be Xj

T1
, Xj

T2
, . . . , Xj

TNX
such that

∑NX
i=1 |Ti| ≥ vk0.

Then we have

Sj+1(X) ≥ (8k0)−16vk20100−4(j+10)v2−v2−4k0v

NX∏
i=1

Sj(X
j
Ti

)

Proof of Lemma 4.5.14 is identical to the proof of Lemma 4.5.12, i.e. we once again get
the result by considering the ∗-canonical map from the domain of X to itself and asking tor
X and Y to have the same domain. We omit the details.

To complete the analysis of this case we have the following lemma.

Lemma 4.5.15. When 0 < p ≤ 1
2

and v ≥ 1,

P(X ∈ A(4)
X,j+1, Sj+1(X) ≤ p, VX ≥ v) ≤ 1

5
pmj+1L−βj+1L

−γ(v−1)
j+1 .

Proof. Fix p ≤ 1
2

and v ≥ 1. By definition of A(4)
X,j+1 and using Lemma 4.5.14 and Lemma

4.5.2, we get that

P(X ∈ A(4)
X,j+1, Sj+1(X) ≤ p, VX ≥ v) =

v0∑
v′=v

P[X ∈ A(5)
X,j+1, Sj+1(X) ≤ p, VX = v′]

≤
v0∑
v′=v

P
[NX∏
i=1

Sj(X
j
Ti

) ≤ (2000k0)64k20v
′(j+10)p,

VX = v′, KX ≥ vk0

]
≤

v0∑
v′=v

500pmj+1(2000k0)64k20v
′(j+10)mj+1L

−γv′k0/10
j

≤ 500pmj+1(2000k0)64k20v0(j+10)mj+1

v0∑
v′=v

L
−γv′k0/10
j

≤ 2000pmj+1(2000k0)64k20v0(j+10)mj+1L
−γvk0/10
j

≤ 1

5
pmj+1L−βj+1L

−γ(v−1)
j+1 (4.5.26)

where the final inequality follows because γk0 > 10αβ and k0 > 10αγ and taking L0 suffi-
ciently large. This completes the proof.

4.5.5 Proof of Theorem 4.5.1

We now put together the four cases to establish the tail bounds.
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Proof of Theorem 4.5.1. The case of 1
2
≤ p ≤ 1 − L−1

j+1 is established in Lemma 4.5.9. By

Lemma 4.5.7 and Lemma 4.5.6 we have that Sj+1(X) ≥ 1
2

for all X ∈ A(1)
X,j+1 since L0 is

sufficiently large. Hence we need only consider 0 < p < 1
2

and cases 2 to 4. By Lemmas 4.5.11,
4.5.13 and 4.5.15 then

P(Sj+1(X) ≤ p) ≤
4∑
l=2

P(X ∈ A(l)
X,j+1, Sj+1(X) ≤ p) ≤ pmj+1L−βj+1L

−γ(v−1)
j+1 .

The bound for SY
j+1 follows similarly.

4.6 Estimates on Sizes of Components

Our objective here is to bound the probability the (j + 1)-level components have large size,
i.e., we want to prove recursive estimates (4.3.3) and (4.3.4) at level (j + 1). We only prove
the following theorem, the corresponding bound for Y components is identical.

Theorem 4.6.1. Let X be a component of X at level (j + 1) having law µX
j . Let VX denote

the size of X. Then we have for all v ≥ 1,

P[VX ≥ v] ≤ L
−γ(v−1)
j+1 .

Proof. This follows immediately from Lemma 4.5.2 and observing that L0 and hence Lj is
sufficiently large.

4.7 Estimates for Good Blocks

4.7.1 Most Blocks are Good

First we prove the recursive estimates (4.3.6) and (4.3.7) at level (j+1). We shall only prove
the estimate (4.3.6) as the other one follows in a similar manner.

Theorem 4.7.1. For u ∈ Z2, let X = Xj+1
u denote the corresponding X-block at level (j+1).

For V ⊆ Z2 \ {u}, let FV = FX
V be as defined in § 4.3 (at level j + 1). Then we have

P[X is good | FV ] ≥ 1− L−γj+1.

Let us first set-up some notation before we move towards proving Theorem 4.7.1. Let Cu
denote the set of all potential boundary curves of X provided VX = 1, i.e., Cu denotes the
set of potential boundary curves through the buffer zone of Bj+1(u). Conditional on FV ,
let C∗u,V ⊆ Cu denote the set of all potential boundary curves that are compatible with FV .
By the assumption on FV , we must have that C∗u,V is non-empty, e.g., if V contains all the
vertices surrounding u, then C∗u,V will be a singleton.
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Now let us fix C ∈ Cu. Let Û = Û(C) denote the domain having boundary C Let EÛ
denote the event that Û is the domain of X. On EÛ , let U ⊆ Z2 be such that X = Xj

U , i.e.,
the (j + 1) level block X consists of the j level blocks corresponding to U . Let ∂U denote
the the vertices on the boundary of U (i.e. the vertices in U that have neighbours outside U)
and U∗ = U \ ∂U . Let V ∗ ⊆ Z2 be such that Xj

V ∗ = Xj+1
V . Let FV ∗ denote the conditioning

on Xj
V ∗ being valid, i.e., Xj

V ∗ being a union of j-level blocks.
Fix C ∈ Cu. Let UC

X denote the total size of bad components in U∗ and let WC
X denote

the number of really bad components in U∗. We have the following lemma.

Lemma 4.7.2. In the above set-up P[{UC
X ≥ k0} ∪ {WC

X ≥ 1}] ≤ L
−β/2
j .

Proof. This follows from the arguments in Lemma 4.5.2 and using that β > 4α+ 2γ, γ(v0−
1) > 2β and γk0 > 10β are sufficiently large.

Next define the following event about a stronger notion of airport. A (L
3/2
j −1)×(L

3/2
j −1)

square S of j cells contained in Xj
U∗ is called a strong airport if any L

3/2
j ×L3/2

j square S̃ of j-

level blocks containing S̃ is an airport. Let E∗
Û

denote the event that all (L
3/2
j −1)×(L

3/2
j −1)

square of j level cells contained in Xj
U∗ are strong airports.

Now we have the following Lemma about airports. First observe the following. Fix a
square S1 of size L

3/2
j and a square S2 of size L

3/2
j − 1. Further fix a lattice animal S of size

at most v0. Let N(S, S1) (resp. N(S, S2)) denote the number of subsets of S1 (resp. S2) that
are translates of S. It is easy to see that |N(S, S2)| ≥ (1− L−1

j )|N(S, S1)|.

Lemma 4.7.3. Let S ⊆ Z2 be a fixed square of size (L
3/2
j − 1). Consider the set of blocks

Xj
S. Fix a j-level semi-bad Y-component Y = Y j

S′. Let S denote the set of subsets of S that
are translates of S ′. Let H denote the event that

#{S̃ ∈ S;A
Xj

S̃

valid
, Xj

S̃
↪→ Y } ≥ (1− v−3

0 k−4
0 100−j)|S|.

Then we have P[H | Y ] ≥ 1− e−cL
5/2
j for some constant c not depending on Lj.

Proof. Observe the following. As |S ′| ≤ v0 it follows that S can be partitioned into 4v2
0

subsets Si, i ∈ [4v2
0] such that S̃1, S̃2 ∈ Si for some i implies that S̃1 and S̃2 are non

neighbouring. By using a Chernoff bound and Sj(Y ) ≥ (1− v−5
0 k−4

0 100−j) it follows that for
each i,

P[#{S̃ ∈ Si;¬A
Xj

S̃

valid
or Xj

S̃
6↪→ Y } ≥ v−3

0 k−4
0 100−j|S|] ≤ e−cL

5/2
j

for some constant c not depending on Lj. Taking a union bound over all i we get the
lemma.

Lemma 4.7.4. In the set-up of Lemma 4.7.3, we have

P[Xj
S is a strong airport] ≥ 1− e−c′L

9/4
j

for some constant c′ > 0 not depending on Lj.
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Proof. Observe that, conditioned on Xj

S̃
the event Xj

S̃
↪→ Y is determined by the 0 level

structure of Y , i.e., by looking at whether each 0 level block contained in Y is 0,1 or good.
Hence for our purposes, the different number of semi-bad Y at level j is at most 8v034v0L2

j .
The lemma now follows from Lemma 4.7.3 by taking a union bound over all semi-bad Y as
Lj is sufficiently large, and from the observation immediately preceding Lemma 4.7.3.

Lemma 4.7.5. Fix C ∈ Cu and let Û denote the domain enclosed by C. Then we have

P[E∗
Û

] ≥ 1− e−c′L
9/4
j for some constant c′ > 0 not depending on Lj.

Proof. Follows in a similar manner to Lemma 4.7.4 and noting that the number of L
3/2
j ×L3/2

j

squares in U∗ are O(L2α
j ) and taking a union bound over all of them.

Lemma 4.7.6. On EÛ ∩ E∗Û ∩ {U
C
X < k0} ∩ {WC

X = 0}, we have that X is good.

Proof. Noticing that on EÛ , the j level X-blocks corresponding to ∂U are all good, so this
lemma follows immediately from the definition of good blocks.

Now we are ready to prove Theorem 4.7.1.

Proof of Theorem 4.7.1. For C ∈ C∗u, define U = UC , Û = ÛC and U∗ = U∗C as above. Set

Ṽ = Z2 \ U . Let F∗C denote the event that C is a valid level (j + 1) boundary.
Observe that

P[X is bad | FV ] ≤ max
C∈C∗u

P[X is bad | FV , EÛC ].

Now fix C ∈ C∗u. We have

P[X is bad | FV , Xj

Ṽ
, EC ,F∗C ] =

P[Xis bad, EC | Xj

Ṽ
,F∗C ]

P[EÛ | Xj

Ṽ
,F∗C ]

≤ (8k0)16k20100j+10L−2γ
j+1

where the last inequality follows from Lemma 4.7.7 below and the construction of boundaries
at level j+1. The theorem follows by averaging over the distribution of j level blocks outside
V ∗.

It remains to prove the following lemma.

Lemma 4.7.7. Fix C ∈ C∗u and let Û be as above. Set ICbad = (¬E∗
Û

)∪{UC
X ≥ k0}∩{WC

X ≥ 1}.
Consider the above set-up where we condition on Xj

Ṽ
such that it is compatible with EÛ . Then

we have
P[X is bad, EÛ | Xj

Ṽ
,F∗C ] ≤ 2P[ICbad | Xj

Ṽ
] ≤ 2L−2γ

j+1 .
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Proof. It follows from Lemma 4.7.6 that

P[X is bad, EÛ | Xj

Ṽ
,F∗C ] =

P[Xis bad, EÛ ,F∗C | Xj

Ṽ
]

P[F∗C | Xj

Ṽ
]

≤
P[ICbad | X

j

Ṽ
]

P[F∗C | Xj

Ṽ
]
.

Let GU denote the event that j level blocks Xj(u′) for all u′ ∈ U are good. Observe that
since Xj

Ṽ
is such that it is compatible with EÛ , it follows that on Xj

Ṽ
∩GU we have F∗C . Hence

we have using the recursive estimate (4.3.6) at level j that

P[F∗C | Xj

Ṽ
] ≥ P[GU | Xj

Ṽ
] ≥ 1− 4Lα−γj ≥ 1

2
.

Observe that ICbad only depends on the blocks corresponding to the set U∗C and hence

is independent of Xj

Ṽ
. The lemma now follows from Lemma 4.7.2 and Lemma 4.7.5 since

β > 4αγ and Lj is sufficiently large.

4.7.2 Good Blocks Embed into Good Blocks

Theorem 4.7.8. Let X = Xj+1
u and Y = Y j+1

u be level (j + 1) good X and Y blocks
respectively. Then we have X ↪→ Y .

Proof. Let CX and CY denote the boundary curves of X and Y respectively. Let ŨX and
ŨY denote the domains bounded by these curves. Let ÛX , ÛY ⊆ Z2, such that X = Xj

ÛX
and

Y = Y j

ÛY
. Let T = {T1, T2, . . . , TNX} (resp. T ′ = {T ′1, T ′2, . . . T ′NY }) be the set of subsets of

ÛX (resp. ÛY ) such that Xj
Ti

(resp. Y j
T ′i

) are the j-level bad subcomponents of X (resp. Y ).

By Proposition 4.4.2 there exists canonical maps Υj+1
h1,h2

, (h1, h2) ∈ [L2
j ]× [L2

j ] from ŨX to

ŨY with respect to T and T ′ which are bi-Lipschitz with Lipschitz constant (1 + 10−(j+5))
such that for each i ∈ [NX ] we have Υh1,h2(Ti) = (h1−1, h2−1)+Υ1,1(Ti) and for all i ∈ [NY ]

we have Υ−1
h1,h2

(Ti) = −(h1 − 1, h2 − 1) + Υ−1
1,1(T ′i ). Now since all rectangles of L

3/2
j × L3/2

j

sub-blocks are airports, it follows that for all i ∈ [NX ]

#{(h1, h2) ∈ [L2
j ]× [L2

j ] : Xj
Ti
6↪→ Y j

Υh1,h2 (Ti)
} ≤ v−2

0 k−4
0 100−(j−1)L4

j

and for all i ∈ [N ′Y ]

#{(h1, h2) ∈ [L2
j ]× [L2

j ] : Xj

Υ−1
h1,h2

(T ′i )
6↪→ Y j

T ′i
} ≤ v−2

0 k−4
0 100−(j−1)L4

j .

By taking a union bound it follows that there exists a canonical map Υ = Υj+1 from ŨX to
ŨY with respect to T and T ′ which are bi-Lipschitz with Lipschitz constant (1 + 10−(j+5)),
such that for all i ∈ [NX ] for all i′ ∈ [N ′Y ] we have Xj

Ti
↪→ Y j

Υh1,h2 (Ti)
. The theorem now

follows from definition that X ↪→ Y .
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Chapter 5

Bi-Lipschitz Expansion of Measurable
Sets

Our main result in this chapter concerns bijections from the unit square on the plane to
itself that are identity on the boundary. Here we provide an affirmative answer to Question
1.3.3. Recall the set-up of Question 1.3.3. For any set A of a fixed Lebesgue measure γ, we
are interested in constructing such a function, which additionally is bi-Lipschitz, and maps
A to a set with Lebesgue measure above a fixed threshold 1− γ′. For a fixed choice of γ and
γ′ (with 1− γ′ > γ) we want to maintain a uniform control over the bi-Lipschitz constants
of the such functions. The main result in this chapter Theorem 5.1, establishes that it is
possible to do so.

5.1 Statement of the Results

We denote the sigma algebra of all Borel-measurable subsets of [0, 1]2 by B([0, 1]2) and let λ
denote the Lebesgue measure on R2. Our main result in this chapter is the following.

Theorem 5.1. For each γ, γ′ ∈ (0, 1), γ + γ′ < 1, there exists C0 = C0(γ, γ′) > 0 such that
for all A ∈ B([0, 1]2) with λ(A) = γ, there exists a bijection φ0 : [0, 1]2 → [0, 1]2 such that

1. φ0 is C0-bi-Lipschitz, i.e.

1

C0

|x− y| ≤ |φ0(x)− φ0(y)| ≤ C0|x− y| ∀x, y ∈ [0, 1]2.

2. φ0 is identity on the boundary, i.e., φ0(x) = x, for all x ∈ ∂[0, 1]2.

3. λ(φ0(A)) ≥ 1− γ′.

As mentioned in § 1.3.1 Theroem 5.1 plays a crucial role in the study of rough isometries
of i.i.d. copies of 2-dimensional Poisson point process. Recall the definition of rough-isometry
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between two metric spaces, Definition 1.1.2 from Chapter 1. The importance of Theorem
5.1 in proving rough isometry of Poisson processes is illustrated by our next result.

Let X and Y be two independent Poisson point processes on R2. Let Xn (resp. Yn)
denote the random metric space formed by points of X (resp. Y ) within [0, n]2 along with
the boundary of [0, n]2. Let Xn ↪→(M,D,C) Yn denote the event that there exists a rough
isometry with parameters (M,D,C) between Xn and Yn which is identity on the boundary
of [0, n]2. Let kX(n) denote the number of unit squares in [0, n]2 which contains at least one
point of X. We have the following theorem as a consequence of Theorem 5.1.

Theorem 5.2. Fix ε, δ > 0. Then there exist positive constants M,D,C depending on ε and
δ (not depending on n) such that we have that for all n sufficiently large and for all X with
kX(n) ≥ δn2, P[Xn ↪→(M,D,C) Yn | Xn] ≥ e−εn

2
.

By way of proving Theorem 5.1 we also establish the following result which shows that it
is possible to increase the measure of a set by an arbitrarily small amount in a bi-Lipschitz
manner.

Theorem 5.3. Fix 0 < γ < 1 − γ′ < 1, and η > 0. Then there exists ε = ε(γ, γ′, η) > 0
such that the following holds. For every Borel set A ⊆ [0, 1]2 with λ(A) ∈ [γ, 1 − γ′], there
exists a bijection φ = φA : [0, 1]2 → [0, 1]2 such that

1. φ is (1 + η)-bi-Lipschitz.

2. φ is identity on the boundary of [0, 1]2.

3. λ(φ(A)) ≥ λ(A) + ε.

5.1.1 Related Works

The question of existence of bi-Lipschitz homeomorphisms between different subsets of Rn,
satisfying certain conditions, has been studied classically, notably by McMullen [33]. It is
shown in that paper that there exists a positive function f on Rn, n ≥ 2, such that there
does not exist a bi-Lipschitz homeomorphism φ : Rn → Rn with det Dφ = f . It is also
proved that there exists separated nets in Rn (n ≥ 2) which cannot be mapped into Zn in a
bi-Lipschitz way.

Shortly before posting this work [5] on arXiv we came across a very recent paper [14]
on arXiv which investigates related questions and proves a variant of Theorem 5.1 for sets
A of sufficiently small measure ([14, Proposition 11]), as well as much more. Their proof
uses a covering lemma based on a result of [2], which is no longer true in higher dimensions.
Our proof is different and we believe can be adapted to work in higher dimensions as well.
Moreover, the stretching result only for sufficiently small sets is not sufficient for our purposes
in proving rough isometry. Our work was independent of [14].

The question considered in this chapter has connections to several different problems in
analysis, an interested reader is referred to [14] and the references therein for more details.
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5.1.2 Proofs of Theorem 5.1 and Theorem 5.2

In this subsection we establish Theorem 5.1 from Theorem 5.3 and Theorem 5.2 as a con-
sequence of Theorem 5.1. We start with the easy proof of Theorem 5.1 assuming Theroem
5.3.

Proof of Theorem 5.1. Fix 0 < γ < 1 − γ′ < 1. Fix a set A with λ(A) = γ. Define a
sequence of bijections ψi on [0, 1]2 and a sequence of Borel sets Ai as follows. Set A = A1. If
λ(Ai) < 1− γ′, then define ψi = φAi where φAi is given by Theorem 5.3. If λ(Ai) ≥ 1− γ′,
set ψi to be the identity map. Set Ai+1 = ψi(Ai). Fix η > 0. Set n0 = d 1−γ′−γ

ε(γ,γ′,η)
+ 1e. It

follows from Theorem 5.3 that the function φ0 = ψn0 ◦ · · · ◦ ψ1 satisfies all the conditions of
Theorem 5.1 with C0 = (1 + η)n0 . This completes the proof.

Next we show how Theorem 5.2 follows from Theorem 5.1.

Proof of Theorem 5.2. Fix X such that kX(n) ≥ δn2. Let A denote the union of unit squares
in [0, n]2 that contain points of X. Now fix κ > 0 such that (1− e−κ2)1/κ2 > e−ε and δ′ > 0
such that (1−e−κ2)(1−δ′)κ−2

e−δ
′ ≥ e−ε. Since A has measure at least δn2, by Theorem 5.1 there

exists a C(δ, δ′) bi-Lipschitz map φ from [0, n]2 to [0, n]2 which is identity on the boundary
and such that λ(φ(A)) ≥ (1− δ′)n2 (if λ(A) ≥ (1− δ′)n2, we take φ to be the identity map).
Now let B denote the union of squares in [0, n]2 of the form [κj, κ(j+ 1)]× [κ`, κ(`+ 1)] that
intersect φ(A), and let k′Y (n) denote their numbers. Clearly k′Y (n) ≥ (1− δ′)n2κ−2. Now let
E denote the event that each square of the form [κj, κ(j + 1)] × [κ`, κ(` + 1)] contained in
B contains at least one point of Y and there are no points of Y in [0, n]2 outside B. It is
easy to see that on E , there exists M = M(δ, ε), D = D(δ, ε), C = C(δ, ε) such that we have
Xn ↪→(M,D,C) Yn. Hence

P[Xn ↪→(M,D,C) Yn | Xn] ≥ P[E | X] ≥ (1− e−κ2)(1−δ′)n2κ−2

e−δ
′n2 ≥ e−εn

2

.

This completes the proof.

Rest of this chapter is devoted to proving Theorem 5.3. From now on, γ and γ′ and η
will be fixed positive numbers such that 0 < γ < 1 − γ′ < 1. Also we shall fix a Borel set
A ⊆ [0, 1]2 with λ(A) ∈ [γ, 1− γ′].

5.1.3 An Overview of the Proof of Theorem 5.3

To prove Theorem 5.3 one needs to construct a map satisfying the required conditions which
expands the regions where the set A has higher density and compress the regions where set
A has lower density. For example it is not hard to see that one can construct such a function
if the set A is contained in, say, the left half of the unit square (i.e., [0, 1

2
]× [0, 1]) then the

conclusion of Theorem 5.3 holds. Similar construction works for sets which have different
densities in the left half and the right half of [0, 1]2, (see § 5.2). For more complicated sets
we use the same idea recursively at different scales.
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In § 5.2, we construct an auxiliary family of bijections {Ψδ}δ∈(−1,1) from [0, 1]2 onto itself
which are identity on the boundary and which stretches all regions within the left half of
[0, 1]2 by the same factor 1 + δ. The functions Ψδ also satisfy certain regularity conditions,
in particular these are bi-Lipschitz functions with Lipschitz constant 1 + O(δ). We divide
the unit square into dyadic squares and rectangles at different scales recursively such that
each square (rectangle) at a level is divided in two halves by the rectangles (squares) in
the next level (see § 5.3). We use the auxiliary functions Ψδ to construct bijections on
the dyadic squares (rectangles) at different levels which stretches each half of these dyadic
squares (which are dyadic rectangles at the next scale) proportionally to the density of A
in these dyadic rectangles. Finally we compose these functions (see § 5.4) up to a large
number of levels (with the number of levels depending on the set A and the location of
the dyadic square) to obtain the required stretching function. However, the control on the
Lipschitz constant worsens with the number of compositions and it is necessary to establish
that one can maintain a uniform control over the Lipschitz constant. While the construction
is deterministic, our proof makes use of a probabilistic analysis.

We let X denote a uniformly chosen point in [0, 1]2. Let us reveal sequentially for n ≥ 1,
which dyadic square at level n it belongs to. The expected density of X is then a martingale.
We make use of this martingale to analyse the function described above. Roughly we show
that there exists a stopping time τ such that if we compose the stretching functions up
to level τ , then the area of A is increased by ε, however the bi-Lipschitz constant is still
controlled by 1+η. This argument is spanned over § 5.5, § 5.6, § 5.7 and finally we complete
the proof of Theorem 5.3 in § 5.8. The proofs of a few technical estimates used in § 5.2 is
postponed to § 5.9.

A word about notation: parameters and constants In the course of the proof of
Theorem 5.3 over the next few sections, we shall have occasion of using many constants and
parameters. By an absolute constant we shall mean a constant that depends only on γ and
γ′. We shall denote by C, c absolute constants whose values may vary through the proof while
numbered constants C1, C2, . . . , and ε1, ε2, . . . , will denote fixed constants whose values are
fixed throughout the chapter and in particular are independent of the set A. When we use
a matrix norm for a matrix M, unless otherwise stated, ||M|| will denote its `∞ norm, i.e.,
the maximum of absolute values of its entries.

5.2 The Stretching Function

To construct the map φ we shall need an auxiliary stretching map Ψδ where δ ∈ (−1, 1) is a
stretching parameter. Ψδ will be a bijection on [0, 1]2 which is identity on the boundary of
[0, 1]2. We now move towards the construction of Ψδ.
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5.2.1 Construction of Ψδ

For the rest of this subsection, fix δ ∈ (−1, 1). We first construction the following parametri-
sation.

Parametrisation

Let h : [0, 1
2
)→ [0,∞) be a function with the following properties.

1. h(0) = 0, and h(r) = 0 for all r ≤ 1
10

.

2. h(r)→∞ as r → 1
2
.

3. h is (weakly) increasing.

4. h is thrice continuously differentiable with (h′(r))2 = O((r + h(r))3), h′′(r)h′(r) =
O((r + h(r))3) and h(3)(r) = O((r + h(r))2).

It is easy to see that such an h exists, e.g., we could take a function that behaves like
e−1/(r−1/10) near 1

10
and like (r − 1

2
)−6 near 1

2
. Fix such an h for the rest of this section.

Clearly, there is a unique r0 ∈ (0, 1
2
) such that

2r0h(r0) + r2
0 =

1

4
.

Define Θ(r) as follows.

Θ(r) =

{
arccos h(r)

h(r)+r
if r ≤ r0,

arcsin 1
2(h(r)+r)

if r > r0.

The r − θ parametrisation

Consider the bijection K : [0, 1]× [0, 1
2
) \ {(1/2, 0)} → (0, 1

2
)× (−1, 1) defined as follows. We

have (x1, x2) 7→ (r, θ) defined by

x1 =
1

2
+ (r + h(r)) sin(θΘ(r)), x2 = (r + h(r)) cos(θΘ(r))− h(r).

We shall work with this parametrisation in the lower half of the unit square. The level
lines of the function r and their reflections about the line x2 = 1

2
is shown in Figure 5.1.

Notice that this transformation is C1 except on {r = r0} and the Jacobian matrix J(r, θ)
for the transformation K−1 is given by

J(r, θ) =

[
J1,1(r, θ) J1,2(r, θ)
J2,1(r, θ) J2,2(r, θ)

]
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T 1 = ( 12 , 0)

T 2 = ( 12 , 1)

S1 = {r = r0}

S2

C

x2 = 1
2

Figure 5.1: Level lines of the function r in the r − θ parametrisation and their reflections
about the line x2 = 1

2

where

J1,1(r, θ) = (1 + h′(r)) sin(θΘ(r)) + (r + h(r))Θ′(r)θ cos(θΘ(r))

J1,2(r, θ) = (r + h(r))Θ(r) cos(θΘ(r))

J2,1(r, θ) = (1 + h′(r)) cos(θΘ(r))− (r + h(r))Θ′(r)θ sin(θΘ(r))− h′(r)
J2,2(r, θ) = −(r + h(r))Θ(r) sin(θΘ(r)).

The (absolute value of) the determinant of J(r, θ) is given by

Θ(r)(r + h(r))(1 + h′(r)− h′(r) cos(θΘ(r))).

Constructing Ψδ

Let δ ∈ (−1, 1) be fixed. For r ∈ (0, 1
2
), define the function gr,δ = gr : [−1, 1]→ [−1, 1] with

the following properties.

1. gr is an increasing bijection with g(−1) = −1 and g(1) = 1.

2. For each ` ∈ [−1, 0], we have
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(1+ δ)

∫ `

−1

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ =

∫ gr(`)

−1

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ.

(5.2.1)

3. For each ` ∈ [0, 1] we have

(1− δ)
∫ 1

`

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ =

∫ 1

gr(`)

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ.

(5.2.2)

T 1 = ( 12 , 0)

T 2 = ( 12 , 1)

S2

x2 = 1
2

S1

T 2 = ( 12 , 1)

T 1 = ( 12 , 0)

S1

S2

Figure 5.2: For δ > 0, the functions gr stretch the left half of the level lines of the function r

That such a function exists and is unique follows from the facts that for each r ∈ (0, 1
2
)

the integrand 1 + h′(r) − h′(r) cos(θΘ(r)) is strictly positive on [−1, 1], is invariant under
the transformation θ 7→ −θ and the hypothesis that δ ∈ (−1, 1). Now define the bijection
Hδ = H : (0, 1

2
) × [−1, 1] → [0, 1

2
) × [−1, 1] defined by (r, θ) 7→ (r, gr(θ)). Define Ψδ on

[0, 1]× [0, 1
2
) \ {(1/2, 0)} by

Ψδ(x1, x2) = (Ψ1
δ(x1, x2),Ψ2

δ(x1, x2)) = K−1(Hδ(K(x1, x2))).

We define Ψδ(1/2, 0) = (1/2, 0) and extend Ψδ to [0, 1]2 in the following way. For (x1, x2) ∈
[0, 1]2 with x2 >

1
2

define

Ψδ(x1, x2) = (Ψ1
δ(x1, x2),Ψ2

δ(x1, x2)) = (Ψ1
δ(x1, 1− x2), 1−Ψ2

δ(x1, 1− x2)).
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On the line x2 = 1
2
, we set

Ψδ(x1,
1

2
) = (Ψ1

δ(x1,
1

2
),Ψ2

δ(x1,
1

2
)) =

{
(x1(1 + δ), 1

2
) for x1 ≤ 1

2
,

(1+δ
2

+ (1− δ)(x1 − 1
2
), 1

2
) for x1 ≥ 1

2
.

5.2.2 Basic properties of Ψδ

Over the next few lemmas we list useful properties of the function Ψδ as constructed above.
The next lemma is immediate and we omit the proof.

Lemma 5.2.1. For each δ ∈ (−1, 1), Ψδ as constructed above is a bijection from [0, 1]2 onto
itself and Ψδ(x) = x for all x ∈ ∂[0, 1]2,

Lemma 5.2.2. Ψδ as defined above is continuous on [0, 1]2.

Proof of this lemma is deferred to § 5.9. The next lemma shows that the left and rights
sides are stretched uniformly by ratios of 1 + δ and 1− δ respectively.

Lemma 5.2.3. For each δ ∈ (−1, 1), Ψδ defined as above it satisfies the following properties.

(i) For ΛL = [0, 1
2
]× [0, 1], we have λ(Ψδ(ΛL)) = (1 + δ)λ(ΛL).

(ii) For ΛL as above and ΛR = [1
2
, 1] × [0, 1], we have for i = L,R, and for B ⊆ Λi, B

measurable,
λ(B) = (1 + δ)λ(B ∩ ΛL) + (1− δ)λ(B ∩ ΛR).

Proof. We first prove that for all B ⊆ ΛL, λ(Ψδ(B)) = (1 + δ)λ(B). Fix B ⊆ ΛL. Without

loss of generality assume B ⊆ Λ̃1 as well. We have using (5.2.1),

(1 + δ)λ(B) = (1 + δ)

∫ 1/2

0

∫ 1/2

0

1B dx dy

= (1 + δ)

∫
K(B)

(r + h(r))(1 + h′(r)− h′(r) cos(θΘ(r)))Θ(r) dr dθ

= (1 + δ)

∫ 1/2

0

(r + h(r))Θ(r)

(∫
K(B)r

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ

)
dr

=

∫ 1/2

0

(r + h(r))Θ(r)

(∫
gr(K(B)r)

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ

)
dr

=

∫
H(K(B))

(r + h(r))(1 + h′(r)− h′(r) cos(θΘ(r)))Θ(r) dr dθ

= λ(Ψδ(B)).

Similarly it can be shown using (5.2.2) that for all B ⊆ ΛR, we have λ(Ψδ(B)) = (1 −
δ)λ(B). This completes the proof of the lemma.
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ΛL ΛR

T 1

T 2

Ψδ

δ = −0.5 δ = 0.5

Ψδ(ΛR)Ψδ(ΛL) Ψδ(ΛL) Ψδ(ΛR)

T 1

T 2 T 2

T 1

Figure 5.3: Ψδ for different values of δ

5.2.3 Smoothness of Ψδ

Now we need to establish that Ψδ has certain smoothness properties.

Crack, Twists and Seams: Geometric definitions

We introduce the following geometric definitions for [0, 1]2.

Definition 5.2.4 (Crack and Twists). The line x1 = 1
2

is called the crack C in the unit
square [0, 1]2. Let T 1 and T 2 denote the points where the crack intersects the boundary, T 1

and T 2 are called twists in [0, 1]2. Often we shall call T = T 1 ∪ T 2 as twists in [0, 1]2. For
r1 <

1
10

small, define T 1
r = K−1({r < r1}) and define T 2

r to be the reflection of T 1
r on the

line x2 = 1
2
. We call Tr = T 1

r ∪ T 2
r as the blown up twists of [0, 1]2.
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Definition 5.2.5 (Seams). Let S1 = K−1({r = r0}) in the parametrisation described above.
Let S2 be the reflection of S1 on the line x2 = 1/2. We shall call S1 and S2 (or, S = S1∪S2)
seams of [0, 1]2.

Estimates for Ψ′δ

Proposition 5.2.6. Ψδ is differentiable at all points in [0, 1]2 except possibly on the crack
C and the seams S. For (x1, x2) ∈ [0, 1]2 \ (C∪ S), let JΨδ(x) denote the Jacobian matrix of
the transformation Ψδ evaluated at x = (x1, x2). Then JΨδ is continuous on [0, 1]2 \ (C ∪ S
and there exists an absolute constant C1 (not depending on δ, x, possibly depending on h)
such that

||JΨδ(x)− I|| ≤ C1δ.

To prove this proposition, we shall need a few lemmas, dealing with the functions gr(θ)
and J(r, θ). These lemmas will be proved in § 5.9.

Lemma 5.2.7. There exists an some absolute constant C > 0 such that the following hold.

(i) (gr(`)− `) ≤ Cδ(`+ 1) for all ` ≤ 0.

(ii) We have

sup
0<r< 1

2
,θ∈[−1,0)∪(0,1]

|∂gr(θ)
∂θ

− 1| ≤ Cδ.

(iii) (gr(`)− `) = O( h′(r)
(r+h(r))2

) as r → 1
2

uniformly for all ` ≤ 0.

Proof of this lemma is provided in § 5.9.

Lemma 5.2.8. There exists an absolute constant C > 0 such that we have the following.

(i) We have

sup
0<r< 1

2
,r 6=r0,θ∈[−1,0)∪(0,1]

|∂gr(θ)
∂r
| ≤ Cδ.

(ii) We have |∂gr(θ)
∂r
| ≤ δO

(
h′′(r)

(r+h(r))2
+ h′(r)3

(r+h(r))5

)
as r → 1

2
.

The proof is deferred to § 5.9.

Lemma 5.2.9. Let M(r, θ) = J(r, gr(θ)) − J(r, θ). Then there exists an absolute constant
C such that ||M(r, θ)|| ≤ Cδ.

Proof. This follows immediately from the formula for J(r, θ) and part (i) of Lemma 5.2.7.

Now we are ready to prove Proposition 5.2.6.
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Proof of Proposition 5.2.6. By symmetry it is enough to consider x = (x1, x2) such that
x2 ≤ 1

2
. To start with, we assume x = (x1, x2) with x2 < 1

2
. The differentiability is

easy to establish. Let (r, θ) = K(x1, x2). Let JH(r, θ) denote the Jacobian matrix of the
transformation H evaluated at the point (r, θ). By Chain rule, it follows that

JΨδ(x) = J(r, θ)−1JH(r, θ)J(r, gr(θ)).

It follows that

JΨδ(x)− I = J(r, θ)−1(JH(r, θ)− I)J(r, gr(θ)) + J(r, θ)−1M(r, θ). (5.2.3)

It follows from the definition of H that

JH(r, θ) =

[
1 0

∂gr(θ)
∂r

∂gr(θ)
∂θ

]
.

It follows from Lemma 5.2.7 and Lemma 5.2.8 that there exists an absolute constant C
that

||JH(r, θ)− I|| ≤ Cδ.

Observe the following. Fix r0 >
1
10
> r1 > 0. Observe that there exists a constant C

such that

sup
r1<r<

1
2
,θ

||J(r, θ)|| ∨ ||J(r, θ)−1|| ≤ C. (5.2.4)

Hence it follows from Lemma 5.2.9 and (5.2.3) that there exists and absolute constant C
such that for all x ∈ K−1({r1 < r < 1

2
}) we have

||JΨδ(x)− I|| ≤ Cδ.

Since h(r) = 0 for each r ≤ r1 it follows that for each r < r1, and θ ≤ 0, we have
gr(θ) = −1 + (1 + δ)(θ + 1) and it can be verified by direct computation that there exists
C > 0 such that

sup
0<r≤r1

||J(r, θ)−1(JH(r, θ)− I)J(r, gr(θ)) + J(r, θ)−1M(r, θ)|| ≤ Cδ.

It is also easy to see using symmetry of construction and Lemma 5.2.8 that JΨδ is con-
tinuous on {x2 = 1

2
} \ {(1/2, 1/2)}.

This completes the proof of the proposition by choosing C1 appropriately.

Finally we have the following.

Proposition 5.2.10. Let 1 > χ > 0 be fixed. Then for all δ < δ0 = χ
100(C1+1)

, Ψδ is

bi-Lipschitz with Lipschitz constant (1 + χ).
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Proof. For δ < χ
100C1

∧ 1
100

, it follows from Proposition 5.2.6 that

max{||JΨδ − I||, ||J−1
Ψδ
− I||} ≤ χ

2
.

The proposition follows.

Proposition 5.2.11. For x ∈ [0, 1]2, let d̃(x) denotes its distance from the corners of [0, 1]2.
Then there exists an absolute constant C > 0 such that for all x ∈ [0, 1]2 we have

|Ψδ(x)− x| ≤ Cδd̃(x).

Proof. This follows easily from the definition of Ψδ and part (i) of Lemma 5.2.7.

Estimates for Ψ′′δ

We want to show that the second derivative of Ψδ remains bounded away from the Twists.

Proposition 5.2.12. Ψδ is twice differentiable at all points in [0, 1]2 except possibly on the
crack C and the seams S. Then there exists an absolute constant C2 > 0 (not depending on
δ, x, possibly depending on h) such that for (x1, x2) ∈ [0, 1]2 \ (C ∪ S ∪ Tr1/2), we have

||Ψ′′δ(x1, x2)|| ≤ C2δ.

Proof. Without loss of generality consider x = (x1, x2) with x1 < 1
2

and x2 < 1
2
. Let

(r, θ) = K(x1, x2). Let us denote

H(r, θ) = J(r, θ)−1(JH(r, θ)− I)J(r, gr(θ)).

For the rest of this subsection, let us introduce the following piece of notation. For a
matrix A, Ar (resp. Aθ) shall denote the entrywise derivative w.r.t. r (resp. θ) of the matrix
A. Because of (5.2.4), it suffices to prove that for some absolute constant C we have

||Hr(r, θ)|| ≤ Cδ, ||Hθ(r, θ)|| ≤ Cδ.

It follows now from Lemma 5.2.9 and Propostion 5.2.6 that it suffices to prove the fol-
lowing.

(i) Let us denote J̃(r, θ) = J(r, θ)−1. There exists an absolute constant C > 0 such that

||J̃r(r, θ)|| ≤ C, ||J̃θ(r, θ)|| ≤ C.

(ii) Let J0(r, θ) = (JH(r, θ) − I). Then there exists an absolute constant C such that
||J0

r(r, θ)|| ≤ Cδ, ||J0
θ(r, θ)|| ≤ Cδ.

(iii) There exists a constant C > 0 such that ||Jr(r, gr(θ))|| ≤ C, ||Jθ(r, θ)|| ≤ Cδ.

The above three assertions are proved below in Lemma 5.2.13, Lemma 5.2.14 and Lemma
5.2.15 respectively. This completes the proof of the proposition.
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Lemma 5.2.13. Let J̃r(r, θ) be defined as in the proof of Proposition 5.2.12. Then there

exists an absolute constant C such that for r ∈ (r1,
1
2
) and θ ≤ 0, we have ||J̃r(r, θ)|| ≤

C, ||J̃θ(r, θ)|| ≤ C.

Lemma 5.2.14. Let J0 be defined as in the proof of Proposition 5.2.12. Then there exists
an absolute constant C such that ||J0

r(r, θ)|| ≤ Cδ, ||J0
θ(r, θ)|| ≤ Cδ.

Lemma 5.2.15. There exists a constant C > 0 such that ||Jr(r, gr(θ))|| ≤ C, ||Jθ(r, θ)|| ≤
Cδ.

Proofs of the above three lemmas are deferred to § 5.9.
Finally we have the following proposition.

Proposition 5.2.16. Let x, x′ ∈ [0, 1]2 be such that Ψδ is differentiable at both x and x′.
Let Sx,x′ denote the event that the line joining x and x′ intersects S. Also set

g(x, x′) = min{|x− (1/2, 0)|, |x′ − (1/2, 0)|, |x− (1/2, 1)|, |x′ − (1/2, 1)|}.

Then there exists an absolute constant C3 > 0 such that we have

||Ψ′δ(x)−Ψ′δ(x
′)|| ≤ C3δ

( |x− x′|
g(x, x′)

∧ 1 + 1Sx,x′

)
.

Proof. Clearly it follows from Proposition 5.2.6 that for all x, x′, we have ||Ψ′δ(x)−Ψ′δ(x
′)|| ≤

2C1δ. For x ∈ Tr1 it follows from explicit computations that ||Ψ′′δ(x)|| ≤ C
g(x,x)

for some

absolute constant C > 0. It follows from mean value theorem that for x, x′ ∈ K−1(Tr1) we
have

||Ψ′δ(x)−Ψ′δ(x
′)|| ≤ Cδ

( |x− x′|
g(x, x′)

)
for some absolute constant C. Notice that the same also follows for x, x′ ∈ [0, 1]2 \Tr1 if Sx,x′
does not hold using Proposition 5.2.12. Now consider the case x ∈ Tr1 , x′ /∈ Tr1 , Sx,x′ does
not hold. If x /∈ Tr1/2, g(x, x′) > r1/2 and mean value theorem once again gives the result

using Proposition 5.2.12. In the only remaining case, |x−x
′|

g(x,x′) > 1 and so there is nothing to
check. All these combined proves the lemma for an appropriate choice of C3.

5.2.4 Stretching Rectangles

For the proof of Theorem 5.1, we shall need to stretch not only the unit square but also
squares and rectangles of different sizes. Also we shall need to stretch rectangles not only
along its length (x1-direction) but also along its height (x2-direction). We can do these by
using Ψδ composed with some linear functions as follows.

For u = (u1, u2) ∈ R2, and a, b > 0, let D1,u,a,b : [0, 1]2 → u+ [0, a]× [0, b] be the bijection
given by (x1, x2) 7→ u + (ax1, bx2). Similarly, let D2,u,a,b : [0, 1]2 → u + [0, a] × [0, b] be the
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bijection given by (x1, x2) 7→ u+ (ax2, bx1). When u, a, b are clear from the context we shall
suppress the subscript (u, a, b) and write D1 or D2 only.

Consider the rectangle R = u + [0, a] × [0, b]. For Ψδ = (Ψ1
δ ,Ψ

2
δ) constructed as above,

the function Ψδ,R,→ : R→ R is a bijection defined by Ψδ,R,→ = D1 ◦Ψδ ◦D−1
1 . Similarly, the

function Ψδ,R,↑ : R→ R is a bijection defined by Ψδ,R,↑ = D2 ◦Ψδ ◦D−1
2 . Note that Ψδ,a,b,→

stretches the rectangle in a left-right direction whereas Ψδ,a,b,↑ stretches the rectangle in an
up-down direction.

5.3 Dyadic Squares

For a rectangle R in R2, whose sides are aligned with the coordinate axes (i.e., of the for
[x, x+ a]× [y, y + b]), we call a to be the length of R, and b to be the height of R. At each
level n ≥ 0 we write [0, 1]2 as a union of (not necessarily disjoint) rectangles aligned with
the co-ordinate axes {Λj

n}2n−1

j=1 satisfying the following properties.

1. Λ1 := Λ1
1 = [0, 1]2.

2. For a fixed n, for each j ∈ [2n−1], area of Λj
n = 2−(n−1).

3. If n is odd, then each Λj
n is a square, i.e., has length and height equal. If n is even,

then for each j ∈ [2n−1], the height of Λj
n is twice the length of Λj

n.

4. For each n and j, Λj
n = Λ2j−1

n+1 ∪ Λ2j
n+1. For n odd, Λj

n and Λ2j−1
n+1 has same height. For

n even, Λj
n and Λ2j−1

n+1 have same length.

It is clear that there is a way to partition Λ1 into rectangles at each level in such a
manner, see Figure 5.4. Suppose un,j denote the top right corner of Λn,j. For definiteness
we shall adopt the following convention. For each j, un,2j � un,2j−1 where � denotes the
lexicographic ordering on R2. It is clear that under such a convention there is a unique way
to construct Λj

ns. We shall call the Λn,j dyadic boxes at level n.
Let

Bn = {u ∈ Λ1 : u ∈ Λj
n ∩ Λj′

n for some j 6= j′}.
It is then clear from the construction that we have for B := ∪nBn, λ(B) = 0.

For x ∈ Λ1 \B, let us define Λn,x = Λj
n where j is such that x ∈ Λj

n. Let ρn,x denote the
density of A in Λn,x, i.e.,

ρn,x =
λ(A ∩ Λn,x)

λ(Λn,x)
.

Also, define ∆n,x = ρn+1,x−ρn,x. Notice that |∆n,x| is constant on Λn,x \B. We shall let vn,x
denote the bottom left corner of Λn,x. We shall denote by L1(n, x) and L2(n, x), the length

and height of Λn,x respectively. Also δ(n, x) = ∆n,y

ρn−1,x
for y ∈ Λn,x which is very close to vn,x.
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Λ1 Λ1
2 Λ2

2

Λ1
3 Λ3

3

Λ2
3 Λ4

3

x x x

Λ2,x

Λ3,x

Λ4,x

Figure 5.4: Dyadic squares at different levels

5.3.1 Crack, Seams and Twists on Dyadic Boxes

For x ∈ [0, 1]2, consider Λi,x, the i-th level dyadic box of x. If i is even, then define Si,x =
D2,vi,x,L1(i,x),L2(i,x)(S) to be the seams of Λi,x, Ci,x = D2(C) to be the crack in Λi,x, and
Ti,x = D2(T ) to be the twists in Λi,x. If i is odd, we have same definitions except D2 is
replaced by D1. Notice that, with these definition, it is clear that dyadic boxes at level
(i+ 1) are created by splitting level i dyadic boxes in half along the cracks at level i.

5.4 Stretching

5.4.1 Martingales

Now let X be a random variable which is uniformly distributed on Λ1. Notice that Λn,X ,
ρn,X , ∆n,X are almost surely well-defined. Let Fn denote the σ-algebra generated by Λn,X .
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The following observation is trivial.

Observation 5.4.1. We have ρn,X = P[X ∈ A | Fn] is a martingale with respect the
filtration {Fn}n≥1. Furthermore, ρn,X → I(X ∈ A) a.s. as n→∞.

Clearly it follows from definitions that |∆n,X | is Fn measurable. This leads to following
easy and useful observation.

Observation 5.4.2. Now consider a random time τ which is Fn-measurable. Then we have
using the Optional Stopping Theorem

Var[ρτ,X ] = E

[
τ∑
i=2

E[(ρi,X − ρi−1,X)2 | Fi−1]

]
= E

(
τ−1∑
i=1

∆2
i,X

)
. (5.4.1)

5.4.2 Stretching at Different Scales

For n = 1, 2, . . . ,, define the function ϕn on Λ1 as follows. If n is odd and y ∈ Λn,x, we define

ϕn(y) = Ψδ(n,x),Λn,x,→(y).

If n is even and y ∈ Λn,x, we define

ϕn(y) = Ψδ(n,x),Λn,x,↑(y).

Clearly, each ϕn is a bijection on Λ1 that is identity on the boundary.
Define

Φn(x) = ϕ1 ◦ . . . ◦ ϕn(x). (5.4.2)

Clearly, Φn is also a bijection from Λ1 to itself which is identity on the boundary. Also,
set Φ0 to be the identity. In Figure 5.5, we illustrate the sequence of functions Φ0, Φ1, Φ2,
where δ(1, x) = 0.5 and δ(2, x) = −0.5 on Λ1

2.
Our primary objective will be to control the derivative of Φn which we can write as

Φ′n(x) =
n∏
i=1

ϕ′i(ϕi+1 ◦ . . . ◦ ϕn(x)). (5.4.3)

Notice that the product in the above equation is a product of matrices. We will anaylse the
following Fn-measurable approximation to Φ′n,

Yn =
n∏
i=1

E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn(X)) | Fn] . (5.4.4)

We further define the quantities

Wi,n = E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn(X)) | Fn]− E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn−1(X)) | Fn−1] ; (5.4.5)

Vi,n = E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn−1(X)) | Fn]− E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn−1(X)) | Fn−1] ; (5.4.6)

Ui,n = E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn(X)) | Fn]− E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn−1(X)) | Fn] . (5.4.7)
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Φ0 Φ1 Φ2

Figure 5.5: δ(1, x) = 1
2

and δ(2, x) = −0.5 on Λ1
2

It is clear that Wi,n = Ui,n + Vi,n. Observe that

E [ϕ′i(ϕi+1 ◦ . . . ◦ ϕn(X)) | Fn]−
n∑

j=i+1

Wi,j = E[ϕ′i(X) | Fi].

Since ϕi(X) is identity on the boundary of Λi,X , Green’s Theorem implies that integral of
ϕ′i over Λi,X is equal to the integral of ϕi over the boundary of Λi,X and hence

E[ϕ′i(X) | Fi] = I.

It follows that

Yn =
n∏
i=1

(
I +

n∑
j=i+1

Wi,j

)
. (5.4.8)

Dealing with Twists and Seams:

While the derivative of Ψ is well behaved in most regions, observe that Ψδ is not differentiable
on the seams S, and the second derivative is unbounded on the twists T . These shortcomings
in smoothness are inherited by the functions φi. To deal with these issues we shall need the
following notations.

For a fixed x, let
Ji,x = max{` : Λi+`,x intersects Ti,x}.

Clearly Ji,x is almost surely well defined. It measures for how long the n-th level dyadic box
containing x intersected the twists in Λi,x.
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For a fixed x and i, and for n > i, letAi,n,x denote the event that ϕi+1◦ϕi+2◦. . .◦ϕn(Λn−1,x)
intersects Si,x. Let

αi,n,x = (n− i)1Ai,n,x .
By construction the sets Ai,n,x is decreasing in n. Now let αi,x = max{n : αi,n,x} and define

βi,x = Ji,x ∨ αi,x. We set ∆̃i,x = |∆i,x|2βi,x/10, re weighting ∆i,x when it is close to a twist or
seam. Finally for n > i, we define

∆̃i,x,n = |∆i,x|2(βi,x∧(n−i))/10.

Notice that ∆̃i,x,n is increasing in n and ∆̃i,x,n ≤ ∆̃i,x. Also notice that ∆̃i,x,n is Fn measur-
able.

5.5 Stopping Times

The primary philosophy of our proof is to keep stretching A on smaller scales but stopping
before it violates the Lipschitz constant. To implement this approach we define a series of
stopping times. Let ε1, ε2 be small positive constants that will be chosen later in the proof
and set ε3 = 1

2
min{γ, 1− γ′}, ε4 = η

200
. We set

τ1 := τ1(ε1) = inf{n :
n−1∑
i=1

∆̃2
i,X,n > ε1}, (5.5.1)

τ2 := τ2(ε2) = inf{n : ∆2
n,X > ε2}, (5.5.2)

τ3 := τ3(ε3) = inf{n : |ρn,X − λ(A)| > ε3}, (5.5.3)

τ4 := τ4(ε4) = inf{n : ||Yn(X)− I||∞ > ε4}. (5.5.4)

Also we define
τ := τ1 ∧ τ2 ∧ τ3 ∧ τ4.

It is clear from Observation 5.4.1 that τ is finite almost surely. We primary work of the next
two sections is to prove the following theorem.

Theorem 5.5.1. There exists ε1 and ε2 > 0 such that for the stopping times defined above,
we have

P[τ4 = τ ] <
1

3
.

5.6 Estimates on U and V

In this section we show that for a fixed i, on {n < τ}, ||Ui,n|| and ||Vi,n|| cannot be too
large and decays exponentially with (n− i). We start with the estimate on Vi,n.
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Proposition 5.6.1. There exists some absolute constant C4 > 0 such that for each i ≥ 1,
and n > i, we have

||Vi,n(X)||1{n<τ} ≤ C4∆̃i,X,n2−(n−i)/20 ≤ C4∆̃i,X2−(n−i)/20. (5.6.1)

Proof. Observe that,

||Vi,n(X)|| ≤ max
x,x′∈Λn−1,X

||ϕ′i(ϕi+1 ◦ . . . ◦ ϕn−1(x))− ϕ′i(ϕi+1 ◦ . . . ◦ ϕn−1(x′))||. (5.6.2)

Observe that, we have on {n < τ}, δ(n,X) ≤ 2
γ
∆n,X . Set C5 = 2C1

γ
. Now we need to

consider two different cases.
Case 1: i+ βi,X < n. In this case, we have that the line joining x, x′ does not intersect

Si,X . Fix a constant ε5 > 0 sufficiently small. Notice that we have by Proposition 5.2.10
that if ε2 < ε5

100(C5+1)
, then on {n < τ}, ϕi+1 ◦ . . . ◦ ϕn−1 is a bi-Lipschitz continuous

function on Λn−1,X with Lipschitz constant at most (1+ε5)n−i. Further observe the following.
Since i + βi,X < n, for any point x ∈ Λn−1,X , we have d(x, Ti,X) ≥ 1

4
2−(i+βi,X)/2. By bi-

Lipschitz continuity of ϕi+1 ◦ . . . ◦ ϕn−1 it follows that d(ϕi+1 ◦ . . . ◦ ϕn−1(Λn−1,X), Ti,X) ≥
1
4
(1 + ε5)−(n−i)2−(i+βi,X)/2.

Hence it follows from (5.6.2) and Proposition 5.2.16 that on {n ≤ τ} for some absolute
constants C and ε5 sufficiently small

||Vi,n(X)|| ≤ C∆i,X

maxx,x′∈Λn−1,X
|x− x′||ϕi+1 ◦ . . . ◦ ϕn−1||lip

d(ϕi+1 ◦ . . . ◦ ϕn−1(Λn−1,X), Ti,X)

≤ C
2−n/2(1 + ε5)n−i

(1 + 10ε4)−(n−i)2−(i+βi,X)/2

≤ C∆i,X(1 + ε5)2(n−i)2−(n−i−βi,X)/2

≤ C∆i,X2βi,X/102−(n−i)/20 (5.6.3)

where the final inequality follows by taking ε5 sufficiently small.
Case 2: i+ βi,X ≥ n.
In this case it follows from Proposition 5.2.16 that we have on {i < τ}

max
x,x′∈Λi,X

||ϕ′i(x)− ϕ′i(x′)|| ≤ C∆i,X .

It follows now from (5.6.2) that on {n < τ},

||Vi,n(X)|| ≤ C∆i,X ≤ C∆i,X2(n−i)/102−(n−i)/20. (5.6.4)

The proposition now follows from (5.6.3) and (5.6.4) by choosing C4 appropriately.

We have a similar result for Ui,n where we get a ∆̃i,X∆n,X term instead of the ∆i,X term
in the above proposition.
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Proposition 5.6.2. There exists some absolute constant C6 > 0 such that for each i ≥ 1,
and n > i, we have

||Ui,n(X)||1{n<τ} ≤ C6∆̃i,X,n∆n,X2−(n−i)/20. (5.6.5)

To prove Proposition 5.6.2 we need some additional work to deal with the possibility that
ϕi+1 ◦ · · ·ϕn−1(Λn−1,X) might intersect Si,X . To this end we make the following definition.
For x ∈ Λn,X , let Ai,n,x denote the event that the line segment joining ϕi+1 ◦ . . . ◦ ϕn−1(x)
and ϕi+1 ◦ . . . ◦ ϕn(x) intersects Si,X . Let

Ai,n,X = {x ∈ Λn,X : 1{Ai,n,x} > 0}.

We have the following lemma bounding the measure of the set Ai,n,X .

Lemma 5.6.3. For some absolute constant C > 0, we have on {n < τ}

λ(Ai,n,X) ≤ C∆n,X2(n−i)/202−n. (5.6.6)

Proof. Denote the two seams in Λi,X by S1
i,X and S2

i,X respectively. For x ∈ Λn,X , let A1
i,n,x

denote the event that the line segment joining ϕi+1 ◦ . . . ◦ ϕn−1(x) and ϕi+1 ◦ . . . ◦ ϕn(x)
intersects S1

i,X . Let

A1
i,n,X = {x ∈ Λn,X : 1{Ai,n,x} > 0}.

By symmetry, it suffices to prove that for some absolute constant C > 0, we have on
{n < τ}

λ(A1
i,n,X) ≤ C∆n,X2(n−i)/202−n. (5.6.7)

Interpreting S1
i,X as a directed simple curve there exist a first point y ∈ S1

i,X where S1
i,X

enters ϕi+1◦. . .◦ϕn−1(Λn,X) and a last point y′ ∈ S1
i,X where S1

i,X exits ϕi+1◦. . .◦ϕn−1(Λn,X).
If ε5 is such that the bi-Lipschitz constant of ϕi+1 ◦ . . . ◦ ϕn−1 is at most (1 + ε5)n−i then
we get that |y − y′| ≤ C(1 + ε5)(n−i)2−n/2 for some absolute constant C > 0. Let S1

i,X(y, y′)
denote the curve segment S1

i,X from y to y′. Let `(y, y′) denote the length S1
i,X from y to y′.

It then follows that `(y, y′) ≤ C(1 + ε5)(n−i)2−n/2 for some absolute constant C > 0. Now
define

Ay,y′,C′ = {x ∈ Λi,X : ∃z ∈ S1
i,X(y, y′) such that|x− z| ≤ C ′∆n,X(1 + ε5)(n−i)2−n/2}.

Clearly x ∈ A1
i,n,X implies ϕi+1 ◦ . . . ◦ ϕn−1(x) ∈ Ay,y′,C′ if |ϕn(x)− x| ≤ C ′∆n,X2−n/2. It

follows that

λ(A1
i,n,X) ≤ (1 + ε5)(n−i)λ(Ay,y′,C′).
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Clearly for some constant C > 0,

λ(Ay,y′,C′) ≤ C`(y, y′)∆n,X(1 + ε5)(n−i)2−n/2 ≤ C∆n,X(1 + ε5)2(n−i)2−n

and hence we have

λ(A1
i,n,X) ≤ C∆n,X(1 + ε5)3(n−i)2−n.

By taking ε5 sufficiently small we establish (5.6.7) and the lemma is proved.

We also need the following lemma.

Lemma 5.6.4. For some absolute constant C > 0, we have for each x ∈ Λn,x, on {n < τ}

|ϕi+1 ◦ . . . ◦ ϕn(x)− ϕi+1 ◦ . . . ◦ ϕn−1(x)|
d(ϕi+1 ◦ . . . ◦ ϕn(x), Ti,X)

≤ C∆n,X2(n−i)/20. (5.6.8)

Proof. It follows from Proposition 5.2.11 that for some absolute constant C for all x ∈ Λn,X

we have |ϕn(x)− x| ≤ C∆n,Xd(x, Ti,X). Now for ε5 as in the previous case, we have

|ϕi+1 ◦ . . . ◦ ϕn(x)− ϕi+1 ◦ . . . ◦ ϕn−1(x)| ≤ (1 + ε5)(n−i)d(x, Ti,X)

and also
d(ϕi+1 ◦ . . . ◦ ϕn(x), Ti,X) ≥ (1 + ε5)−(n−i)d(x, Ti,X).

Taking ε5 sufficiently small, (5.6.8) follows from the above two equations.

Now we are ready to prove Proposition 5.6.2.

Proof of Proposition 5.6.2. For the proof of this proposition also we need to consider two
cases.

Case 1: i+ βi,X < n.
In this case, we have that ϕi+1 ◦ · · ·ϕn−1(Λn−1,X) does not intersect Si,X . Hence it follows

that by arguments similar to those in the proof of Proposition 5.6.1 that on {n < τ} we have
using Proposition 5.2.16

||Ui,n(X)|| ≤ 2C3

γ
∆i,X max

x∈Λn,X

|ϕi+1 ◦ . . . ◦ ϕn(x)− ϕi+1 ◦ . . . ◦ ϕn−1(x)|
d(ϕi+1 ◦ . . . ◦ ϕn(x), Ti,X)

. (5.6.9)

Now observe that since i+βi,X < n, we have that d(Λn,X , Ti,X) ≥ 1
4
2−(i+βi,X)/2. Choosing

ε5 and ε2 as in the proof of Proposition 5.6.1 such that the bi-Lipschitz constant of ϕi+1◦ . . .◦
ϕn is at most (1+ε5)n−i we get that d(ϕi+1◦ . . .◦ϕn(Λn,X), Ti,X) ≥ 1

4
(1+ε5)−(n−i)2−(i+βi,X)/2.

Also observe that it follows from Proposition 5.2.11 that for some absolute constant C > 0
we have

max
x∈Λn,X

|ϕn(x)− x| ≤ C∆n,X2−n/2
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It follows now from (5.6.9) that on {n < τ} for some absolute constant C

||Ui,n(X)|| ≤ C∆i,X
||ϕi+1 ◦ . . . ◦ ϕn−1||lipC∆n,X

(1 + ε5)−(n−i)2−(i+βi,X)/2

≤ C∆i,X∆n,X(1 + ε5)2(n−i)2−(n−i−βi,X)/2

≤ C∆i,X∆n,X2βi,X/102−(n−i)/20. (5.6.10)

Case 2: i+ βi,X ≥ n. It follows from Proposition 5.2.16 that

||Ui,n(X)|| ≤ C∆i,X

(
2nλ(Ai,n,X) + max

x∈Λn,X\Ai,n,X

|ϕi+1 ◦ . . . ◦ ϕn(x)− ϕi+1 ◦ . . . ◦ ϕn−1(x)|
d(ϕi+1 ◦ . . . ◦ ϕn(x), Ti,X)

)
(5.6.11)

and using (5.6.11), Lemma 5.6.3 and Lemma 5.6.4 we get for some absolute constant C > 0

||Ui,n(X)|| ≤ C∆i,X∆n,X2(n−i)/20 ≤ C∆i,X∆n,X2(n−i)/102−(n−i)/20 ≤ C∆̃i,X,n∆n,X2−(n−i)/20.

Proof of the proposition is completed by choosing C6 appropriately.

5.7 Bounding Yn

Our next step is to prove Theorem 5.5.1. That is, we need to show that it is unlikely that
||Yn − I|| becomes large before either ρn,X deviates significantly from λ(A), ∆n,X becomes

sufficiently large or
∑

k≤n ∆̃2
k,X,n becomes sufficiently large. For this purpose we construct a

matrix-valued martingale Mn.

5.7.1 Constructing Mn

Define a sequence {Mn}n≥1 of matrix-valued random objects as follows.

1. Set M1 = I.

2. For n ≥ 1, set

Mn+1 −Mn =
n∑
k=1

k∏
i=1

(
I +

n∑
j=i+1

Wi,j

)
Vk,n+1

n∏
i=k+1

(
I +

n∑
j=i+1

Wi,j

)
. (5.7.1)

Clearly, it follows that Mn is Fn measurable and since E[Vk,n+1 | Fn] = 0 it follows that
Mn is a martingale with respect to the filtration {Fn}.

Let τ1, τ2, τ3 be defined by (5.5.1), (5.5.2) and (5.5.3) respectively. Define the stopping
times τ5 and τ6 by
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τ5 = {inf n : ||Yn|| ≥ 2}. (5.7.2)

τ6 = τ6(ε6) = {inf n : ||Mn − I|| ≥ ε6}. (5.7.3)

Let us define

τ ′ = τ1 ∧ τ2 ∧ τ3 ∧ τ5

Observe that τ ≤ τ ′.
We shall prove the following theorem.

Theorem 5.7.1. Set ε6 = η/800. Then there exists ε1, ε2 > 0 such that we have

P[τ6 < τ ′] ≤ 1

5
. (5.7.4)

Before proving Theorem 5.7.1, observe the following. It follows from (5.4.8) that

Mn+1 −Mn =
n∑
k=1

Yn

(
k∏

i=k+1

(
I +

n∑
j=i+1

Wi,j

))−1

Vk,n+1

n∏
i=k+1

(
I +

n∑
j=i+1

Wi,j

)
. (5.7.5)

Choose ε5 sufficiently small and set ε2 = ε5
100(C5+1)

. By choosing ε5 sufficiently small we

have for each i ∈ [k+1, n] we have ||I+
∑n

j=i+1 Wi,j|| ≤ (1+ε5), ||
(
I +

∑n
j=i+1 Wi,j

)−1

|| ≤
(1 + ε5) using Proposition 5.2.6. It follows now using Proposition 5.6.1 that on {n < τ ′} we
have for ε5 small enough and for some absolute constant C > 0

||Mn+1 −Mn||2 ≤ C||Yn||2
(

n∑
k=1

2−(n+1−k)/20(1 + ε5)2(n+1−k)∆̃k,X,n

)2

≤ C||Yn||2
(

n∑
k=1

2−(n+1−k)/50∆̃k,X,n

)2

≤ C||Yn||2
(

n∑
k=1

2−(n+1−k)/100

)(
n∑
k=1

2−(n+1−k)/100∆̃2
k,X,n

)

≤ C

n∑
k=1

2−(n+1−k)/100∆̃2
k,X,n. (5.7.6)
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where the third inequality is by the Cauchy-Schwartz Inequality. Hence on the event {n+1 <
τ ′} we have

n∑
i=1

E[||Mi+1 −Mi||2 | Fi] ≤ C

n∑
i=1

i∑
k=1

2−(i+1−k)/100∆̃2
k,X

≤ C

n∑
i=1

∆̃2
i,X,n ≤ C8ε1. (5.7.7)

Similarly to (5.7.6), we have that on the event {n < τ ′} for some absolute constant C > 0

||Mn+1 −Mn|| ≤ C||Yn||
n∑
k=1

2−(n+1−k)/50∆̃k,X,n

≤ C
n∑
k=1

2−(n+1−k)/50
(
2(n−k)/10√ε2 ∧

√
ε1

)
≤ 3ε

1/2
1 (5.7.8)

for ε2 sufficiently small.
Having bounded the quadratic variation and increment size of Mn+1 we use the follow-

ing inequality for tail probability of a martingale, which is a generalisation of Bernstein’s
inequality.

Theorem 5.7.2 (Freedman, 1975 [15]). Let {Xn}n≥1 be a martingale with respect to the
filtration {Fn}, with |Xk+1 − Xk| ≤ R almost surely. Let Yn =

∑n−1
i=1 E [(Xi+1 −Xi)

2 | Fi].
Then for each t

P[∃n : Xn −X1 > t, Yn ≤ σ2] ≤ exp

{
− t2

2(σ2 +Rt/3)

}
. (5.7.9)

Now we are ready to prove Theorem 5.7.1.

Proof of Theorem 5.7.1. Choose ε1 sufficiently small so that ε6 ≥
(√

20C8 ∨
√

20
)
ε

1/2
1 . For

i, j = 1, 2 let the (i, j)-th entry of Mn be M i,j
n . Consider the martingales {X i,j

n } = {M i,j
n∧τ ′}.

It follows from Theorem 5.7.2 using (5.7.7) and (5.7.8) that

P[∃n < τ ′ : |X i,j
n − δi,j| ≥ ε6] ≤ 2e−5.

Taking a union bound over different values of i and j it follows that

P[∃n < τ ′ : ||Mn − I|| ≥ ε6] ≤ 8e−5 <
1

5
.

This finishes the proof of the theorem.
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5.7.2 Bounding Yn −Mn

We define Dn = Yn −Mn. Note that D1 = 0. We have the following lemma.

Lemma 5.7.3. Set ε8 = η/800. There exists ε1, ε2 > 0, satisfying the conclusion of Theorem
5.7.1 such that we have

||Dt||1{t<τ ′} ≤ ε8. (5.7.10)

Proof. Observe that on {t < τ ′}, we have

||Dt|| ≤
t−1∑
n=1

||Dn+1 −Dn||.

Expanding out Dn we have

Dn+1 −Dn =
n∑
k=1

(
k∏
i=1

(
I +

n∑
j=i+1

Wi,j

)
Uk,n+1

n∏
i=k+1

(
I +

n∑
j=i+1

Wi,j

))

+
∑

S⊆[n],|S|≥2

(
n∏
i=1

(
1{i∈S}Wi,n+1 + 1{i/∈S}

(
I +

n∑
j=i+1

Wi,j

)))
.(5.7.11)

Call the first term on the right hand side of the above equation An, call the second term
Bn. Choosing ε5 = 100(C5 + 1)ε2 and arguing as in (5.7.6) we get that for some absolute
constant C > 0 we get that on {n+ 1 < τ ′},

||An|| ≤ C
n∑
k=1

2−(n+1−k)/20(1 + ε5)2(n+1−k)∆̃k,X,n+1∆n+1,X

≤ C
n∑
k=1

2−(n+1−k)/50
(

∆̃2
k,X,n+1 + ∆2

n+1,X

)
≤ C∆2

n+1,X + C
n∑
k=1

2−(n+1−k)/50∆̃2
k,X,n+1. (5.7.12)

It follows that on {t < τ ′} for some absolute constants C,C9 > 0

t−1∑
n=1

||An|| ≤ C
t−1∑
n=1

∆2
n+1,X + C

t−1∑
n=1

n∑
k=1

2−(n+1−k)/50∆̃2
k,X,t

≤ C
t∑
i=1

∆̃2
i,x,t ≤ C9(ε1 + ε2). (5.7.13)

For obtaining a bound on Bn, observe the following. Fix S ⊆ [n] with |S| ≥ 2. It fol-
lows from Proposition 5.6.1 and Proposition 5.6.2 that for some absolute constant C >
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0 we have |Wi,n+1| ≤ C∆̃i,X2−(n+1−i)/20 for each i ∈ S. Write Fi,n = C∆̃i,X,n+1(1 +
ε5)2(n+1−i)2−(n+1−i)/20. Arguing as in (5.7.6) it follows by taking ε2 sufficiently small, on
{n+ 1 < τ ′}, we have

n∏
i=1

(
1{i∈S}Wi,n+1 + 1{i/∈S}

(
I +

n∑
j=i+1

Wi,j

))
≤ ||Yn||

∏
i∈S

Fi,n

≤
∏
i∈S

C∆̃i,X,n+12−(n+1−i)/50.(5.7.14)

Summing over all S ⊆ [n] with |S| ≥ 2 we get that

||Bn|| ≤
n∏
i=1

(
1 + C∆̃i,X,n+12−(n+1−i)/50

)
− 1−

n∑
i=1

C∆̃i,X,n+12−(n+1−i)/50. (5.7.15)

Now observe that on {n+ 1 < τ ′}, by choosing ε2 sufficiently small we have
n∑
i=1

C∆̃i,X,n+12−(n+1−i)/50 ≤ 1

10

by the argument used in (5.7.8). It then follows that

||Bn|| ≤ 2C
n∑
i=1

∆̃i,X,n+12−(n+1−i)/50 ≤ 10C
n∑
i=1

∆̃2
i,X,n+12−(n+1−i)/200, (5.7.16)

where the final step follows from the Cauchy-Schwarz inequality.
Summing over n we get on {t < τ ′}, for some absolute constant C10 > 0

t−1∑
n=1

||Bn|| ≤ C10

t∑
i=1

∆̃2
i,X,t ≤ C10(ε1 + ε2), (5.7.17)

It now follows from (5.7.11), (5.7.13) and (5.7.17) that we have

||Dt||1{t<τ ′} ≤ (C9 + C10)(ε1 + ε2).

Choosing ε1 and ε2 sufficiently small such that (C9 +C10)(ε1 + ε2) ≤ ε8, we complete the
proof of the lemma.

5.7.3 Proof of Theorem 5.5.1

Now we are ready to prove Theorem 5.5.1.

Proof. Observe that we have ε6 + ε8 < ε4. Fix ε1, ε2 > 0 such that Theorem 5.7.1 and
Lemma 5.7.3 holds. It follows from and Lemma 5.7.3, that on {τ6 ≥ τ ′}, for all n < τ ′ we
have

||Yn − I|| ≤ ε6 + ε8 < ε4.

Proof of Theorem 5.5.1 is then completed using Theorem 5.7.1.
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5.8 Proof of Theorem 5.3

We complete the proof of Theorem 5.3 in this section. We first need the following lemmas.

Lemma 5.8.1. Set ε9 = η/400. Then we can choose ε1, ε2 > 0, in Theorem 5.5.1 so that
we have on {n < τ}, ||Φ′n −Yn|| ≤ ε9.

Proof. Write
ξi,n = ϕ′i(ϕi+1 ◦ . . . ◦ ϕn)− E[ϕ′i(ϕi+1 ◦ . . . ◦ ϕn) | Fn].

Observe that ||ξi,n(X)|| is upper bounded by the right hand side of (5.6.2) with n there
replaced by (n+1). Now arguing as in the proof of Proposition 5.6.1 it follows that for some
absolute constant C > 0 we have

||ξi,n(X)|| ≤ C∆̃i,X,n2−(n−i)/20. (5.8.1)

Notice that

Φ′n =
n∏
i=1

(
I +

n∑
j=i+1

Wi,j + ξi,n

)
. (5.8.2)

It now follows that

Φ′n −Yn =
∑
∅6=S⊆[n]

n∏
i=1

(
1i/∈S

(
I +

n∑
j=i+1

Wi,j

)
+ 1i∈Sξi,n

)
. (5.8.3)

An argument similar to the one used in (5.7.15) gives that for ε2 sufficiently small, we have
on {n < τ}

||Φ′n −Yn|| ≤
n∏
i=1

(
1 + C∆̃i,x,n2−(n−i)/100

)
− 1 ≤ 3C

n∑
i=1

∆̃i,x,n2−(n−i)/100. (5.8.4)

Using the Cauchy-Schwarz inequality as in (5.7.16) we get that for some absolute constant
C > 0 we have

||Φ′n −Yn|| ≤ C(ε1 + ε2).

The lemma follows by taking ε1 and ε2 sufficiently small.

Lemma 5.8.2. We can choose ε1, ε2 > 0 in Theorem 5.5.1 such that for some absolute
constant C11 > 0 we have

E[∆̃2
i,X,τ | Fi+1] ≤ C11∆2

i,X . (5.8.5)

Proof. The above lemma is an immediate consequence of the following lemma.

Lemma 5.8.3. We can choose ε1, ε2 > 0 in Theorem 5.5.1 such that we have P[βi,X ≥
(n− i), τ ≥ n | Fi+1] ≤ 10× 2−(n−i)/3, for n sufficiently large.
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Proof. It is clear from definition that P[Ji,X ≥ (n−i) | Fi+1] ≤ 2×2−(n−i)/3. Hence it suffices
to show that P[αi,X ≥ (n− i), τ > n | Fi+1] ≤ 8× 2−(n−i)/3. It is easy to see that it suffices
to show P[αi,X ≥ (n− i), τ ≥ n | Fi] ≤ 4× 2−(n−i)/3.

From definition, if {αi,X ≥ (n−i), n ≤ τ}, then ϕi+1◦· · ·ϕn(Λn,X) = ϕi+1◦· · ·ϕn−1(Λn,X)
intersects Si,X . Notice that the total length of the curve(s) Si,X is at most C122−i/2 for
some absolute constant C12. Let ε5 be a constant such that on {n < τ}, ϕi+1 ◦ · · ·ϕn is
bi-Lipschitz with Lipschitz constant at most (1 + ε5)n−i. It follows that ϕi+1 ◦ · · ·ϕn∧τ−1

is also bi-Lipschitz with Lipschitz constant at most (1 + ε5)n−i. Note that, as before, ε5

can be made arbitrarily small by taking ε2 small. Hence it follows that there exists a
set M of N = 8C12(1 + ε5)n−i2(n−i)/2 points on Si,X such that any point on Si,X is at
most distance 1

4
(1 + ε5)(n−i)2−n/2 from some point in M. Let M = {x1, x2, . . . , xN}. It

follows that any point on (ϕi+1 ◦ · · · ◦ ϕn∧τ−1)−1(Si,X) is at most at distance 1
4
2−n/2 from

(ϕi+1 ◦ · · · ◦ ϕn∧τ−1)−1(xk) for some k. It follows that for

P[Λn,X intersects ϕi+1◦· · ·◦ϕn−1)−1(Si,X), τ ≥ n | Fi] ≤ 32C12(1+ε5)n−i2−(n−i)/2 ≤ 2−(n−i)/3

by taking ε5 sufficiently small completing the lemma.

Lemma 5.8.4. We have for the stopping time τ w.r.t. the filtration Fi,

λ(Φτ−1(A)) =
Eρ2

τ,X

Eρτ,X
= λ(A) +

1

λ(A)
Var(ρτ,X). (5.8.6)

Proof. Let W1,W2, . . . be the disjoint (except may be at the boundary) τ level dyadic boxes
(i.e., Wk = Λτ,X on {X ∈ Wk}) such that ∪kWk = Λ1. It follows from the definition od ϕτ−1

that for each k we have that subsets of Wk are expanded uniformly

λ(Φτ−1(A ∩Wk))

λ(Φτ−1(Wk))
=
λ(A ∩Wk)

λ(Wk)
, (5.8.7)

and that the measure of the image of a box is proportion to its density

λ(Φτ−1(Wk))

λ(Wk)
=
λ(A ∩Wk)

λ(Wk)λ(A)
. (5.8.8)

Combining (5.8.7) and (5.8.8) we get

λ(Φτ−1(A)) =
∑
k

λ(Φτ−1(A ∩Wk)) =
∑
k

λ(A ∩Wk)
2

λ(A)λ(Wk)

=
1

λ(A)

∑
k

λ(A ∩Wk)
2

λ(Wk)2
λ(Wk) =

1

λ(A)
E[ρ2

τ,X ], (5.8.9)

which completes the proof of the lemma.

Now we are ready to prove Theorem 5.3.
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Proof of Theorem 5.3. Consider τ1, τ2, τ3, τ4 as in Theorem 5.5.1. It follows from Theorem
5.5.1 that one of the following three cases must hold.

(i) P[τ = τ1] ≥ 1
6
.

(ii) P[τ = τ2] ≥ 1
3
.

(iii) P[τ = τ3] ≥ 1
6
. We treat each of these cases separately.

Case 1: P[τ = τ1] ≥ 1
6
.

In this case it follows that

E[
τ−1∑
i=1

∆̃2
i,X ] ≥ ε1

6
.

Now observe that using Lemma 5.8.2 we have

E

[
τ−1∑
i=1

∆̃2
i,X

]
= E

[∑
i

∆̃2
i,X,τ1{τ≥i+1}

]

= E

(∑
i

E[∆̃2
i,X,τ1{τ≥i+1} | Fi+1]

)

≤ C11E

[∑
i

∆2
i,X1{τ≥i+1}

]

= C11E

[
τ−1∑
i=1

∆2
i,X

]
. (5.8.10)

It follows using Obervation 5.4.2 that

Var(ρτ,X) ≥ ε1

6C11

.

It follows now from Lemma 5.8.4 that

λ(Φτ−1(A)) ≥ λ(A) + 2ε

where ε is a fixed constant smaller than ε1
12γ′C11

. Choose m sufficiently large so that P[τ <

m/2] < ε. It then follows that

λ(Φ(τ−1)∧m(A)) ≥ λ(A) + ε.

Also, it follows from Lemma 5.8.1 and the definition of τ4 that ||Φ′(τ−1)∧m − I|| < η/100.
Since Φ(τ−1)∧m is continuously differentiable except on finitely many curves, it follows that
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we have φ := Φ(τ−1)∧m is bi-Lipschitz with Lipschitz constant 1+η. So the proof of Theorem
5.3 is finished in this case.

Case 2: P[τ = τ2] ≥ 1
3
.

In this case we have P[τ2 < ∞] ≥ 1
3
. Hence it follows that there exists x1, x2, . . . xn ∈

Λ1 and i1, i2, . . . , in > 0 such that Λik,xk are disjoint (except may be at the boundary),
|∆ik,xk | ≥

√
ε2, for each k and

∑n
k=1 λ(Λik,xk) ≥ 1

12
. Define the function φ as follows. Set

φ = Ψ√ε2,Λik,xk ,→ on Λik,xk if ik is odd and φ = Ψ√ε2,Λik,xk ,↑ on Λik,xk if ik is even. Set φ to be
identity on Λ1 \ (∪kΛik,xk). It is clear that such a φ is well-defined, identity on the boundary
of Λ1 and is bi-Lipschitz with Lipschitz constant (1 + η) by choosing ε2 sufficiently small.
Now observe that

λ(φ(A ∩ Λxk,ik))− λ(A ∩ Λik,xk)) ≥ λ(Λik,xk))ε2.

Summing over k we get that

λ(φ(A)) ≥ λ(A) +
ε2

12
.

So the conclusion of Theorem 5.3 holds for ε < ε2
12

.
Case 3: P[τ = τ3] ≥ 1

6
.

In this case also it follows that Var(ρτ,X) ≥ ε23
6

. Arguing as in case 1, it follows that in
this case also there is a bi-Lipschitz bijection φ with Lipschitz constant 1 + η such that

λ(φ(A)) = λ(A) + ε

where ε is a constant smaller than
ε23
12

.
This completes the proof of Theorem 5.3.

5.9 Estimates for gr and Ψδ

In this section we provide the proofs of Lemma 5.2.2, Lemma 5.2.7, Lemma 5.2.8, Lemma
5.2.13, Lemma 5.2.14 and Lemma 5.2.15.

Proof of Lemma 5.2.2. Let Λ̃1 = [0, 1]× [0, 1
2
) and Λ̃2 = [0, 1]× (1

2
, 1].

Step 1: Ψδ is continuous on Λ̃1 ∪ Λ̃2.
Notice that it is clear that Ψδ is continuous at (1/2, 0). Hence it suffices to prove that

for gr defined by (5.2.1) and (5.2.2) we have (r, `) → gr(`) is continuous. Without loss of
generality assume l ≤ 0. Define

Hr(`) = (1 + h′(r))`− h′(r) sin(`Θ(r))

Θ(r)
. (5.9.1)

Notice that it follows from (5.2.1) that

(1 + δ)(Hr(`)−Hr(−1)) = Hr(gr(`))−Hr(−1) (5.9.2)
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and the assertion follows from the continuity of Hr.
Step 2: Let x = (x1,

1
2
) with x ∈ [0, 1

2
]. Then Ψδ is continuous at x.

Without loss of generality assume x1 ≤ 1
2
. Take un = (un1 , u

n
2 ) ∈ [0, 1]2 converging to

x. Without loss of generality assume {un} ⊆ Λ̃1. Let (rn, `n) = K(un). Then (rn, `n) →
(1

2
, 2x1 − 1). To prove that `n → ` = 2x1 − 1, observe that,

un2 =
1

2
+ (rn + h(rn)) sin(`Θ(rn)).

Taking limit as rn → 1
2

we get the result. Now taking limit as rn → 1
2
, and `n → ` in (5.9.1)

we get (1 + δ)(`+ 1) = lim(gr(`) + 1), which proves Step 2.

Proof of Lemma 5.2.7. Without loss of generality fix ` ∈ [−1, 0). Observe that

δ

∫ `

−1

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ =

∫ gr(`)

`

(1 + h′(r)− h′(r) cos(θΘ(r))) dθ. (5.9.3)

Using mean value theorem it follows that there exists θ∗ ∈ (−1, `), θ∗∗ ∈ (`, gr(`)) such
that

δ(`+ 1)(1 + h′(r)− h′(r) cos(θ∗Θ(r))) = (gr(`)− `)(1 + h′(r)− h′(r) cos(θΘ∗∗(r))).

It follows that there exists a constant C > 0, such that we have for all r, θ,

(gr(`)− `) ≤ Cδ(`+ 1) (5.9.4)

since h′(r) = O(h(r)2) as r → 1
2
. Moreover, since h′(r) = o(h(r)2) as r → 1

2
, we have

(gr(`)− `) = δ(`+ 1)(1 + o(1)) (5.9.5)

as r → 1
2
.

Differentiating the integral equation (5.9.3), we get

(1 + δ)(1 + h′(r)− h′(r) cos(`Θ(r))) =
∂gr
∂`

(1 + h′(r)− h′(r) cos(gr(`)Θ(r))).

It follows that

(
∂gr
∂`
− 1) = δ

(1 + h′(r)− h′(r) cos(`Θ(r))) + δ−1h′(r)(cos(gr(`)Θ(r))− cos(`Θ(r)))

(1 + h′(r)− h′(r) cos(gr(`)Θ(r)))
.

(5.9.6)
It follows now using (5.9.4) that since h′(r) = O(h(r))2 as r → 1

2
, there is a constant

C > 0 such that supr,θ |∂gr(θ)∂θ
− 1| ≤ Cδ.
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Proof of Lemma 5.2.8. Without loss of generality we again assume that θ ≤ 0. Observe that
by differentiating both sides of (5.9.2) w.r.t. r we get that

∂gr(θ)

∂r

[
∂Hr(`)

∂`

]
`=gr(θ)

+

[
∂Hr(`)

∂r

]
`=gr(θ)

− ∂Hr(θ)

∂r
= δ

(
∂Hr(θ)

∂r
− ∂Hr(−1)

∂r

)
. (5.9.7)

It follows that there exists θ∗ ∈ (θ, gr(θ)) such that the left hand side of (5.9.7) reduces
to

∂gr(θ)

∂r
(1 + h′(r)− h′(r) cos(gr(θ)Θ(r))) +

(gr(θ)− θ)(h′′(r)− h′′(r) cos(θ∗Θ(r)) + h′(r)Θ′(r)θ sin(θ∗Θ(r))).

Similarly there exists θ∗∗ ∈ (−1, θ) such that the right hand side of (5.9.7) is equal to

δ(θ + 1)(h′′(r)− h′′(r) cos(θ∗∗Θ(r)) + h′(r)Θ′(r)θ sin(θ∗∗Θ(r))).

Now observe that

Θ′(r) = − 1 + h′(r)

(r + h(r))
√

4((r + h(r)))2 − 1

for r > r0 and Θ′(r) is bounded away from infinity if r < r0.
Hence it follows from the above equations that as long as h′(r) = o(h(r)2) and h′′(r) =

O(h(r)3) as r → 1
2
, there exists an absolute constant C > 0 such that

|∂gr(θ)
∂r
| (1 + h′(r)− h′(r) cos(gr(θ)Θ(r))) ≤ Cδ.

The final assertion follows using (5.9.5).

Proof of Lemma 5.2.13. Let D(r, θ) denote the determinant of the J(r, θ). Clearly since
D(r, θ) is bounded away from 0 and ∞ it suffices to prove the following two statements.

(i) |∂D
∂r
| ≤ C, |∂D

∂θ
| ≤ C.

(ii) ||Jr(r, θ)|| ≤ C, ||Jθ(r, θ)|| ≤ C.

The first assertion follows directly by differentiating D since (h′(r))2 = O(h(r)3) and
h′′(r) = O(h(r)2) as r → 1

2
. The second assertion follows directly by differentiating J(r, θ)

entrywise (w.r.t. r and θ) since (h′(r))2 = O(h(r)3) and h′′(r) = O(h(r)2) as r → 1
2
.

Proof of Lemma 5.2.14. Without loss of generality, we can assume θ ≤ 0. It suffices to prove
that there exists an absolute constant C such that

(i) |∂2gr
∂θ2
| ≤ Cδ.
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(ii) | ∂2gr
∂θ∂r
| ≤ Cδ.

(iii) |∂2gr
∂r2
| ≤ Cδ.

Since the functions are sufficiently smooth the mixed partial derivatives will be equal.
For the proof of (i) and (ii), consider (5.9.6). Call the numerator A(r, θ) and the denom-

inator B(r, θ). Since B(r, θ) is bounded away from 0 and ∞, it suffices to prove that for
some absolute constant C > 0, we have |∂A

∂r
| ≤ Cδ, |∂A

∂θ
| ≤ Cδ, |∂B

∂r
| ≤ C, |∂B

∂θ
| ≤ C.

We have from (5.9.6) that

∂B

∂r
= h′′(r)(1− cos(gr(θ)Θ(r))) + h′(r) sin(gr(θ)Θ(r))[

∂gr
∂r

Θ(r) + gr(θ)Θ
′(r)].

Since the functions above are bounded if r is bounded away from 1
2

and as r → 1
2

we
have h′′(r) = O(h(r)2), and (h′(r))2 = O(h(r)3) it follows using Lemma 5.2.8 that |∂B

∂r
| ≤ C

for some absolute constant C.
We also have

∂B

∂θ
= h′(r) sin(gr(θ)Θ(r))Θ(r)

∂gr
∂θ

.

It follows that |∂B
∂θ
| ≤ C for some absolute constant C.

Next observe that

∂A

∂r
= δ[h′′(r)(1− cos(θΘ(r))) + h′(r)θΘ′(r) sin(θΘ(r))]

+ h′′(r)(cos(gr(θ)Θ(r))− cos(θΘ(r)))

+ h′(r)Θ′(r)

(
(θ − gr(θ)) sin(gr(θ)Θ(r))− θ(sin(θΘ(r)) sin(gr(θ)Θ(r))

)
− h′(r)

∂gr
∂r

Θ(r) sin(gr(θ)Θ(r)).

As before, notice that everything is bounded if r is bounded away from 0 and 1
2
. It follows

using Lemma 5.2.7, Lemma 5.2.8 and h′(r)2 = O(h(r)3), h′′(r) = O(h(r)2) as r → 1
2

that
|∂A
∂r
| ≤ Cδ for some absolute constant C > 0.
Finally observe that

∂A

∂θ
= δh′(r)Θ(r) sin(θΘ(r)) + h′(r)Θ(r)

×
(

sin(θΘ(r))− sin(gr(θ)Θ(r))− (
∂gr
∂θ
− 1) sin(gr(θ)Θ(r))

)
Arguing as before it follows from Lemma 5.2.7 and h′(r) = O(h(r)2) as r → 1

2
that

|∂A
∂θ
| ≤ Cδ for some absolute constant C > 0. This completes the proof of (i) and (ii) above.
For proof of (iii), consider (5.9.7), let us denote
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A1(r, θ) =

[
∂Hr(`)

∂r

]
`=gr(θ)

− ∂Hr(θ)

∂r
,

A2(r, θ) =

(
∂Hr(θ)

∂r
− ∂Hr(−1)

∂r

)
and

A3(r, θ) = (1 + h′(r)− h′(r) cos(gr(θ)Θ(r))).

Observe that A3 is bounded away from 0 and∞, and there exists a constant C such that
|∂A3

∂r
| ≤ C since h′′(r) = O(h(r)2) and h′(r)2 = O((h(r))3) as r → 1

2
. Hence using (5.9.7), it

suffices to show that for some absolute constant C such that |∂A1

∂r
| ≤ Cδ and |∂A2

∂r
| ≤ C.

Observe that

∂A2

∂r
=

∫ θ

−1

∂2

∂r2
(1 + h′(r)− h′(r) cos(θΘ(r))) dθ

and

∂A1

∂r
=

∫ gr(θ)

θ

∂2

∂r2
(1 + h′(r)− h′(r) cos(θΘ(r))) dθ

+
∂gr(θ)

∂r
(h′′(r)(1− cos(gr(θ)Θ(r))) + h′(r)Θ′(r)gr(θ) sin(gr(θ)Θ(r))) .

Arguing as before, using Lemma 5.2.8, h′′(r) = O(h(r)2), h′(r)2 = O(h(r))3 as r → 1
2

it

follows that it is in fact enough to show that ∂2

∂r2
(1 + h′(r) − h′(r) cos(θΘ(r))) is bounded.

This follows directly by differentiating since h(3)(r) = O(h(r)2) and h′′(r)h′(r) = O(h(r)3)
as r → 1

2
(the second derivative remains bounded if r is bounded away from 0 and 1

2
).

This completes the proof of the Lemma.

Proof of Lemma 5.2.15. Notice that any real valued smooth function F = F (r, θ), let F̃

denote the function F̃ (r, θ) = F (r, gr(θ)). Then we have

∂F̃

∂r
=

[
∂F

∂r

]
r,gr(θ)

+

[
∂F

∂θ

]
r,gr(θ)

∂gr
∂r

.

∂F̃

∂θ
=

[
∂F

∂θ

]
r,gr(θ)

∂gr
∂θ

.

Now the lemma follows from Lemma 5.2.7, Lemma 5.2.8 and the fact that ||Jr(r, θ)|| ≤
C, ||Jθ(r, θ)|| ≤ C which was established in the proof of Lemma 5.2.13.
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