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Abstract

Many of our results in the problem-solving literature
are from puzzle-game domains. Intuitively, most of us
feel that there are differences between puzzle problems
and open-ended, real-world problems. There has been
some attempt to capture these differences in the
vocabulary of "ill-structured" and "well-structured”
problems. However, there seem to be no empirical
studies directed at this distinction. This paper
examines and compares the task environments and
problem spaces of a prototypical well-structured
problem (cryptarithmetic) with the task environments
and problem spaces of a class of prototypical ill-
structured problems (design problems). Results
indicate substantive differences, both in the task
environments and the problem spaces.

Introduction

At the core of any theory of cognition, there will
need to be a robust model of reasoning and problem
solving. Over the years we have made considerable
progress in developing such models (Chandrasekaran,
1983; Duncker, 1945; Emst & Newell, 1969; Fikes &
Nilsson, 1971; Greeno, 1978b; Kleinmuntz, 1966;
Newell, 1980; Newell & Simon, 1972; Sacerdoti,
1980; Simon, 1978; Simon, 1983). However, much
of this work has been done in the domain of puzzle-
type problems, such as cryptarithmetic and the tower
of hanoi.

While the investigation of puzzle domains has re-
sulted in very important and significant results, most
people share the intuition that there are important dif-
ferences between solving a cryptarithmetic puzzle and,
say, writing a novel or designing a bridge. Itis nota
priori clear that the results from the former will gener-
alize to the latter domains. In fact, there are reasons to
believe the contrary.

Reitman (1964), in a seminal paper, argued for a
classification of problem types based on the distribu-
tion of information in the problem vector. We gener-
ally try to capture this distinction in the vocabulary of
"well-structured” and "ill-structured" problems. Puzzle
games are said to be well structured because the start

states, goal states, evaluation functions, and transfor-
mation functions are well specified. For example, in
cryptarithmetic, the start state is completely specified,
as is the goal state. The transformation function,
which is also specified, is restricted to two operations:
replace a letter with a digit between 0 and 9, and add.
Tasks such as writing a novel and designing a bridge
are considered ill defined because the start state is in-
completely specified, the goal state is specified to an
even lesser extent, and the transformation function is
completely unspecified.

The distinction is not, however, universally ac-
cepted (Simon, 1973), and there seem to be no
empirical studies directed at it. In this paper I would
like to argue that there is a substantive difference
between ill-structured and well-structured problems. I
would like to point out that there are a number of
crucial differences in the task environments of ill-
structured and well-structured problems, and present
data indicating corresponding differences in the
structure of problem spaces. This paper is a brief
summary of work presented in full elsewhere (Goel,
1991; Goel & Pirolli, in press).

The general strategy is to examine and compare
prototypical cases of well-structured problems and
prototypical cases of ill-structured problems.
Cryptarithmetic will be used as an example of a well-
structured category, while various forms of design
problem solving will be used as examples of the ill-
structured category. It may seem odd to restrict the dis-
cussion in this fashion, but the strategy has a number
of advantages. The design and puzzle game distinction
is finer grained, and thus internally more homoge-
neous. This internal homogeneity will sharpen and
highlight any differences across the two categories.

Comparison of Task Environments

There are a number of differences in the structure
of the task environments of ill-structured and well-
structured problems, in addition to the differences in
the distribution of information in the problem vector
noted by Reitman (1964). Some which are specific to
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design and cryptarithmetic task environments are
briefly discussed below.

One very important — but little-noted — differ-
ence has to do with the nature of the constraints in the
two cases. In cryptarithmetic, as in all puzzles and
games, the constraints are logical or constitutive of the
task. That is, if one violates a constraint or rule, one
is simply not playing that game. For example, if we
are playing chess, and I move my rook diagonally
across the board, I am simply not playing chess.

However, the constraints we encounter in most
nongame situations are of a very different character.
Some of these constraints are nomological; many of
them are social, economic, cultural, etc. I will
encompass the latter category under the predicate
"intentional”. While there is much to be said about
this category, what is important for our purposes is
that these constraints are not definitional or constitu-
tive of the task. On the contrary, they are negotiable.
For example, if you go to an architect and ask him to
build you a2 new house, and he convinces you to
renovate your existing house instead, or to live in a
tree in the local park, it seems odd to say that he is not
playing the game of design.

Nomological constraints are constraints dictated by
natural law. So, for example, if a beam is to support a
downward thrust of x psi, it must exert an upward
thrust of equal or greater amount. These constraints,
while never negotiable, are also not definitional or
constitutive of the task. They, in fact, vastly underde-
termine design solutions.

Another difference between design and cryptarith-
metic problems is one of size and complexity.
Cryptarithmetic problems take on the order of minutes
to hours to complete. Design problems typically take
on the order of days to months to complete.

There are also differences with respect to the lines
of decomposition and the interconnectivity of parts. In
both cases, the problems decompose into smaller prob-
lems. However, in cryptarithmetic, the lines of de-
composition are determined by the logical structure of
the problem. (So, for example, each row is treated as a
component or module.) In design, on the other hand,
lines of decomposition are determined by the physical
structure of the world, practice within the community,
and personal preference.

In terms of the interconnectivity of parts, one
finds logical interconnections in cryptarithmetic (i.e.,
there is always the possibility that any row will sum
to greater than 9 and affect the next row). Thus the
subject has no choice or selectivity in attending to in-
terconnections. Interconnections in design problems
are contingent. This gives the designer considerable
latitude in determining which ones to attend and which
ones to ignore.

It is also the case that in design problems, as in
most nongame situations, there are no right or wrong
answers, though there are certainly better and worse
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answers (Rittel & Webber, 1974). In cryptarithmetic,
as in most puzzle games, there are right and wrong an-
swers, and clear ways of recognizing when they have
been reached.

In design, as in many real-world tasks, there are
consequential costs associated with errors. Resources
and lives are often at stake. In cryptarithmetic, as in
mosl games, €Irors may cause some embarrassment to
the subject, but that is about the extent of the

Lastly, in design problems, as in many real-world
situations, there is no immediate feedback from the
world. Hence, it must be simulated, or self-generated.
This requires considerable resource allocation for mod-
eling and performance predicting. In cryptarithmetic
there is genuine feedback after every operator applica-
tion. It is, however, local feedback, and the final solu-
tion needs to satisfy global constraints.

This list is meant to be neither unique nor
exhaustive. It is meant to indicate that there are a
number of substantive differences in the task
environments of at least some well-structured problems
(cryptarithmetic) and some ill-structured problems
(design problems). Given the logic of information
processing theory, such differences should have
psychological consequences at the level of the problem
space. The balance of the paper describes a study which
explores and articulates some of the differences in
design and cryptarithmetic problem spaces.

Methodology and Database

The results presented here are based on single sub-
Ject protocol studies (Ericsson & Simon, 1984). A
total of sixteen protocols, twelve from design
situations, and four from puzzle-game situations, were
examined and compared. The design protocols were
gathered from expert designers from the disciplines of
architecture, mechanical engineering, and instructional
design. The four puzzle protocols were from the
domains of cryptarithmetic and the Moore-Anderson
Tasks.! They were extracted from Newell and Simon
(1972). The methods of collection and analysis of the
data are described below. The results of the analysis of
three of the design protocols — one from each
discipline — and two cryptarithmetic protocols, are
presented below.

Design Protocols

Subjects, Tasks, and Procedure: As noted
above, the design protocols were collected from
professional designers from the disciplines of

1The Moore-Anderson Task is a string transformation task
isomorphic to theorem proving in the propositional calculus.



architecture, mechanical engineering, and instructional
design. The architectural task called for the design of a
self-help automated post office for the UC-Berkeley
campus. The mechanical engineering task required the
design of an "automated postal teller machine” for the
above post office. The instructional design task was
unrelated. It involved the design of a self-contained
instructional package to teach lay people a reasonably
complicated computational environment.

The procedures for collecting the protocols were
the same in each case. Each subject was given a one-
page design brief, and any related documents, and asked
to specify a solution to the problem, to the degree of
specificity allowed by time and resource constraints.
They were allowed to use any external drawing
aids/tools that they desired. All chose to use paper,
pencil and/or pen.

The durations of the sessions varied from two to
three hours. The experimenter was present to answer
any questions relating to the experiment, and otherwise
assume the role of the client. Subjects were encour-
aged to ask clarification questions as the need arose.
The experimenter answered all questions, but at no
time initiated the conversation.

Subjects were asked to "talk aloud” as they solved
the problem. They were cautioned against trying to
explain what they were doing. Rather, they were asked
to vocalize whatever was “passing through their
minds" at that time. Most of the subjects did not have
much difficulty in doing this. Where subjects did lapse
into periods of silence, the experimenter prompted
them by asking "what are you thinking now?".

The sessions were videotaped. The tapes, along
with the written and drawn material, constituted the
data.

Coding Scheme: The protocols were transcribed,
cross-referenced with the written material, and coded.
The coding involved breaking the protocols into
individual statements representing single "thoughts" or
ideas. Content cues, syntactic cues, and pauses were
used to effect this individuation. This resulted in very
fine-grained units with a mean duration of eight
seconds and a mean length of fifteen words. Each
statement was coded for the operator applied (e.g. add,
delete, justify, etc.), the content to which the operator
was applied, the mode of output (verbal or written),
and the source of knowledge (design brief,
experimenter, self, inference).

These statements were then aggregated into mod-
ules and submodules, which are episodes organized
around artifact components. For example, for the ar-
chitect subjects, the modules were components like
site, building, and services. The site submodules were
components like circulation, landscaping, and site
illumination. The building submodules included such
things as doors, roof, and mail storage. The modules
were then further aggregated into design-phase levels.
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The design-phase level coded for several things, the
most important being design development phases such
as problem structuring, preliminary design, refinement,
and detail design. These categories were further coded
for the aspect of design development attended to (e.g.
people, purposes, behavior, function, and structure).

This resulted in a reasonably complex three-level,
hierarchical scheme, similar in spirit, but not detail, to
the one employed by Ullman, Dietterich, and Stauffer
(1988). It is fully detailed elsewhere (Goel, 1991;
Goel & Pirolli, in press).

Cryptarithmetic Protocols

Subjects, Tasks, and Procedures: The two
cryptarithmetic protocols were gathered from published
sources (Newell & Simon, 1972, Appendices 6.1,
7.1), recoded, and compared with the design protocols.
These particular ones were chosen on the basis of their
duration. The subjects for these studies were
undergraduate students. The procedure of collecting the
protocols was similar in relevant aspects to the one
described above.

The task for both subjects (NS6.1 and NS7.1) was
the following problem:

DONALD
+ GERALD

D=5

ROBERT

Each letter stands for a digit. The digits encoded as
DONALD and GERALD add up to the digits encoded
as ROBERT. The task is to transform the letters into
the appropriate digits. The clue given is that D=5.

Coding Scheme: The protocols were re-coded with
a modified subset of the scheme devised for the design
protocols. Three changes were required. First, it was
found that while one could differentiate between
problem structuring and problem solving, it was not
possible to further differentiate problem solving into
preliminary, refinement, and detail phases. Second, the
aspect of design development category was not
applicable. Third, information about mode of output
was not available.

Comparison of Problem Spaces

This section discusses some of the characteristics
of design problem spaces and notes how they differ
from cryptarithmetic problem spaces. The results are
presented in more detail elsewhere (Goel, 1991; Goel
& Pirolli, in press).



Stopping Rules and Evaluation Functions: The
stopping rules and evaluation functions in design prob-
lem spaces are determined by the designer rather than
the structure of the problem. The decisions are bascd
on personal preference and experience, professional
standards and practice, and client expectations. The
personalized nature of the stopping rules and evaluation
functions can be explained by appealing to three faclors
in the task environment. First, there is not enough
information in the problem statement to make these
decisions. Second, there are no right and wrong
terminating states. Third, there are few, if any, logical
constraints.

In cryptarithmetic, the stopping rule is explicitly
supplied and evaluation functions, at least locally, are
determined by the structure of the problem. The issue
of personal preference just does not enter the picture.

Memory Retrieval & Inferences: On a related
front, a very small percentage of statements in design
protocols (1.3%) is generated by overt deductive infer-
ences. Most seem to be the result of memory retrieval
and modification and/or nondemonstrative inference.
The cryptarithmetic problem spaces had a much higher
percentage of statements generated by demonstrative in-
ference (41%).

This large difference in deductive reasoning is what
one would expect, given the structures of the task envi-
ronments. Deductive systems require logical con-
straints. As already noted, the constraints on
cryptarithmetic are logical, while the constraints on
nongame tasks, like design, are nonlogical.

Direction of Transformation Function: In well-
structured domains, the transformation function maps
the start state onto the goal state. In the design prob-
lem spaces, it was noted that the subjects would stop
and turn things around. That is, they would try to ma-
nipulate the problem constraints and client expecta-
tions so as to change the start state to one which better
fits their knowledge, experience, and expertise. One
might call this phenomenon "reversing the direction of
the transformation function," because the subject has
prior knowledge of some goal state and is trying to
transform the problem parameters to fit that goal state.

Again, the reason that this can occur is that the
problem is incompletely specified, and the constraints
are nonlogical, therefore manipulable. It cannot, and
does not, occur in cryptarithmetic because of the logi-
cal nature of the constraints. Any attempt by the sub-
ject to change the parameters would be viewed as an
inability or lack of desire to participate in the assigned
task.

Solution Decomposition: Another interesting dif-
ference across the two problem spaces has to do with
solution decomposition. There are two interesting
findings. First, design problems are decomposed into
many more modules than cryptarithmetic modules, and
second, the density of interconnections between mod-
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ules is higher in the cryptarithmetic case than the de-
sign case.

For example, subject S-A, working on the archi-
lectural task of designing a post office, decomposed
the solution into 34 modules corresponding to struc-
tural and functional components such as roof, door, lo-
cation of equipment, flow of traffic, etc. Given 34
modules, 1,122 interconnections are logically possible.
The subject actually made only 7.4% (83.03) of these
connections.

In cryptarithmetic, on the other hand, the prob-
lems were decomposed into 6 modules (corresponding
to the six columns). But while the actual number of
modules were fewer, the density of interconnections be-
tween modules was considerably greater. Subject
NS6.1, for example, made 20% (6) of the logically
possible connections.

The denser interconnectivity of the cryptarithmetic
modules is what one might expect, given that they are
intended to be multiple constraint satisfaction prob-
lems, and all the constraints are logical (so must be
attended to). This is perhaps why such problems can
have so few components and still be challenging. The
reason design problems can have so many components
and still be tractable is that the interconnections are
contingent rather than logical. This gives the designer
considerable flexibility in determining which one to at-
tend to and which ones to ignore.

Development of Solution: Yet another interesting
difference has to do with the incremental development
of solutions in design problem spaces. One of the
most robust findings in the literature of design prob-
lem solving is that, as design solutions are generated,
they are retained, massaged and nurtured to completion
(Kant, 1985; Ullman et al., 1988). They are not easily
discarded.

A number of aspects of the design task environ-
ment favour such a strategy. First, there is the obvi-
ous fact that the problems are large, and given the se-
quential nature of human information processing,
cannot be completed in a single cycle. Second, since
there are few logical constraints to be violated, and no
right or wrong answers, there is little reason to give up
on a partial solution to start again from scratch. Third,
incremental development is compatible with the “least-
commitment”™ control strategy used by designers (see
below).

In contrast, traversal of cryptarithmetic problem
spaces have an all-or-nothing character about them.
Most paths searched are wrong and independent of the
correct path(s). Thus there is no sense of building up
to a solution. Once a path is searched, and it turns out
not to be on the solution path, the subject is no better
off than before the search began. He must start again
on another path.

Control Structure: There are also a number of in-
teresting differences with respect to control strategies
in the two cases. The design subjects used a control



strategy, not unlike the "least-commitment” control
strategy identified by Stefik (1981). The basic feature
of this strategy is that, when working on a particular
module, it does not require the designer to complete
that module before beginning another. Instead, one has
the option of putting any module on "hold" to attend
to other related (or even unrelated) modules, and
returning to the first at a later time. This embedding
can go several levels deep.

The control structure of the design subjects is nat-
urally analyzed into three hierarchical levels: move-
ment from module to module, movement from sub-
module to submodule, and movement internal to sub-
modules. The first two levels are task-specific; that is,
the modules and submodules vary from task to task.
The third level, however, generalized across all three
design tasks. The control structure within any level is
repetitive, cyclical, and flexible. One effect of this
repetition and reiteration is that most modules and
submodules are considered in more than one context.

The cryptarithmetic strategy was interestingly dif-
ferent in some respects. While one could trace a cycli-
cal, repetitive control structure, as in the design case,
most of the problem solving occurred internal to mod-
ules/episodes. There was little carryover from previous
visits to a module/episode. In fact, Newell and Simon
(1972), in their original analysis of these protocols,
claimed that in returning to a former state, the subject
is in fact returning to a previous knowledge state with
respect to the problem. If the subject goes down the
wrong path and returns to the previous state, all that he
knows is that the path just explored does not lead to
the goal state. He does not have an enriched
understanding of the state he is returning to. The
complete control structures of a design and
cryptarithmetic subject are traced out in Goel (1991).

Making & Propagating Commitments: While the
least-commitment control strategy allows design sub-
jects to keep options open, the solution must ulti-
mately be brought to closure. This requires that one
make and propagate commitments through the problem
space. In the cryptarithmetic protocols, while com-
mitments are certainly made, they are propagated only
until a local evaluation function accepts or rejects
them.

The last aspects of design and cryptarithmetic
problem spaces that I would like to discuss have to do
with the phases of solution development.

The development of a design solution has several
distinct phases. Four of these phases are: problem
structuring, preliminary design, refinement, and detail-
ing. These phases differ with respect to the type of
information dealt with, the degree of commitment to
generated ideas, the level of detail attended to, and the
number and types of transformations engaged in.

Problem structuring is the process of retrieving
information from long-term memory and external
memory and using it to construct the problem space;
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i.e., to specify start states, goal states, operators, and
evaluation functions. Problem structuring relies heav-
ily on the client and design brief as a source of infor-
mation, considers information at a high level of ab-
straction, makes few commitments to decisions, and
involves a high percentage of add and propose opera-
tors.

Preliminary design is a classical case of creative,
ill-structured problem solving. It is a phase where al-
tematives are generated and explored. Altemnative solu-
tions are not, however, fully developed when generated.
They emerge through incremental transformations of a
few kernel ideas. These kernel ideas are images, frag-
ments of solutions, etc. to other problems which the
designer has encountered at some point in his life expe-
rience. Since these “solutions" are solutions to other
problems which are being mapped onto the current
problem, they are, not surprisingly, always out of
context or in some way inappropriate and need to be
modified to constitute solutions to the present prob-
lem.

This generation and exploration of alternatives is
facilitated by the abstract nature of information being
considered, a low degree of commitment to generated
ideas, the coarseness of detail, and a large number of
lateral transformations. A lateral transformation is one
in which movement is from one idea to a slightly
different idea, rather than a more detailed version of the
same idea, These transformations are necessary for the
widening of the problem space and the exploration and
development of kemel ideas.

The refinement and detailing phases are more con-
strained and structured (though still very different from
puzzle games). They are phases where commitments
are made to a particular solution and propagated
through the problem space, They are characterized by
the concrete nature of information being considered, a
high degree of commitment to generated ideas, atten-
tion to detail, and a large number of vertical transfor-
mations. A vertical transformation is one in which
movement is from one idea to a more detailed version
of the same idea. It results in a deepening of the prob-
lem space.

While these phases of design development may
seem trivially obvious, they are rendered interesting by
the fact that cryptarithmetic problem spaces cannot be
individuated into similar phases. As already noted, in
such game problems one gets more of the same activ-
ity. Either one is on a path which will abruptly lead
to the solution, or one is not. There is no sense in
which one builds up to a solution.

Conclusion

I have presented arguments and data to suggest that
there are interesting differences in the task
environments of (at least some) well-structured and (at



least some) ill-structured problems, and that these lead
to some nontrivial differences in ill-structured and well-
structured problem spaces.

The reader may have noted, however, that the
comparison of problem spaces is not carried out at the
level of states and operators, which is the level at
which problem spaces are generally defined. It is
conducted at a much more abstract level. The fact of
the matter is, if one compares the problem spaces at
the level of states and operators, it is difficult to
differentiate the two problem spaces. It is only when
one abstracts away from the low-level details — the
sequence of states and operators — that the differences
emerge. However, the fact that they emerge at this
more abstract level does not make them any less real or
interesting. On the contrary, generalizations at this
level may serve to fill the theoretical gap that some
argue exists in information processing theory between
implementations of specific problem spaces and the
general notion of an information processing system
(Chandrasekaran, 1983; Goel & Pirolli, 1989; Greeno,
1978a).
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