
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Co-evolutionary Dynamics of Culture, Parochial Cooperation, and Networks

Permalink
https://escholarship.org/uc/item/0t07q77g

Author
Kim, Jae-Woo

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0t07q77g
https://escholarship.org
http://www.cdlib.org/


 

 

 

UNIVERSITY OF CALIFORNIA 
RIVERSIDE 

 

 

 

 

Co-evolutionary Dynamics of  
Culture, Parochial Cooperation, and Networks 

 

 

 

 

A Dissertation submitted in partial satisfaction 
of the requirements for the degree of 

 

Doctor of Philosophy 

in 

Sociology 

by 

Jae-Woo Kim 

 

June 2010 

 

 

 

Dissertation Committee: 
Dr. Robert Hanneman, Chairperson 
Dr. Peter Burke 
Dr. Christopher Chase-Dunn



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 
Jae-Woo Kim 

2010



 

 

 
 
 
 
 
 
 
 

The Dissertation of Jae-Woo Kim is approved: 
 
 
 

________________________________________________ 
 
 

________________________________________________ 
 
 

________________________________________________ 
Committee Chairperson 

 
 
 
 
 
 
 
 
 

University of California, Riverside 
  

 



iv 

 

Acknowledgments 
 

Above all, I would like to express my sincerest gratitude to Robert Hanneman for 

his immense support throughout my graduate years at UCR. My dissertation and other 

works could not have been advanced without his feedback full of sociological 

imagination and critical thinking. Words would be never enough to express a 

tremendous debt and thanks to him. “I have stolen too much of your time, but you can 

finally get some more rest with Pat and your cats, Bob.” 

I was so lucky to get sincere support for my interdisciplinary journey from the 

other committee members, Peter Burke and Christopher Chase-Dunn. I very much 

appreciate it. I am also deeply indebted to Augustine Kposowa, Jonathan Turner, 

Steven Brint, Ellen Reese, Raymond Russell, Edna Bonacich, Adalberto Aguirre, 

Robert Nash Parker (Sociology), and Stephen Cullenberg (Economics) who 

introduced me to behavioral economics, economic methodology, and Analytical 

Marxism. “It has been always a great pleasure to learn from all of you.” I am all 

thumbs at administrative stuff as an international student. I could not have made it 

through the program without the great assistance of Anna Wire and Cathy Carlson. 

Special gratitude should go to Vincent Buskens who was a wonderful host at 

Utrecht University during my visit. From the very first day I arrived there, he always 

went out of his way to support me, not only academically in spite of my slow progress 

in research, but personally as well. I am also thankful to Rense, Dominik, Ozan, 

Davide, Michal, Manuela, and staff members (especially Tineke) for their hospitality 

toward a stranger. I am very thankful to Jeong-Kyu Choi for his constructive 

comments on my immature ideas about the concept of tag-based cooperation and its 



v 

 

modeling at the incipient stage of the present study. I also thank the professors at the 

department of sociology back in Korea for encouraging me to study in the US: 

Jaeyeol Yee, Usic Kim, Ho-Keun Song, Hyun-Chin Lim, and Sang-Jin Han. 

Many thanks to my sociology colleagues at UCR: Kohei, Kirk, Hiroko, Roy, 

Shinji, Jesse, Rick, Kris, Seth, Chrissy, Linda, Franny, Jojo, Shelley, Michelle, Julio, 

Erika, Gary, Mike, Rebeca, Matt, Ashley, Cory, Preeta, Christine, Yvonne, Scott, 

Adam, Shoon, Annebelle, and Sangkwon. I wish all the best for folks at Korean 

Graduate Student Association with whom I have had so much fun. I might otherwise 

be getting drained back and forth between campus and home. 

I cannot thank my father-in-law and mother-in-law enough for consistently 

backing me up in spite of my laziness in duties as the oldest son-in-law. I wish the 

best luck for my sister-in-law and brother-in-law studying in the US. Thanks from the 

heart to my family members, especially my father, who have been always supporting 

my egoistic life against maintaining family solidarity. 

Back to my precious ones at Riverside, I thank my lovely kittens, Judy and Zera, 

who crack me up every day. Lastly but most importantly, it would not have been 

possible for me to get through hard times without my wife, Panya, the only one in the 

world. She really has a magical ability to make everything beautiful. She is the 

ultimate source of energy in my life. 



vi 

 

Dedication 

 

In memories of my late mother  

who had dedicated her entire life to her family members 

without ever making eye contact with them for six years  

after one day in the Spring of 2003. 

 



vii 

 

ABSTRACT OF THE DISSERTATION 

 

Co-evolutionary Dynamics of  
Culture, Parochial Cooperation, and Networks 

 
by 

 
Jae-Woo Kim 

 

Doctor of Philosophy, Graduate Program in Sociology 
University of California, Riverside, June 2010 

Dr. Robert Hanneman, Chairperson 
 

 

 

Theoretically informed by recent computational and mathematical studies 

highlighting the importance of signals and networks in the evolution of cooperation, 

the present research undertakes simulation experiments to investigate socio-

psychological bases and structural foundations of cooperation as institutional order. 

Simulated societies consist of three groups of agents with markers and tolerance: 

altruists, defectors, and parochial egoists. They simultaneously play a one-shot 

Prisoner’s Dilemma game with neighbors by helping tolerably similar ones and by 

declining to help otherwise. They either imitate markers and tolerance of more 

successful neighbors or switch partners by breaking the old ones to out-group 

neighbors after creating new ties to others if both sides accept each other as in-group. 

Our study furthers understanding of the dynamics of cooperation in human 

societies facing the Prisoner’s Dilemma: altruists alone are less likely to defeat 

defectors regardless of network topology as cooperation becomes costly and the 

average number of interaction partners increases; under these conditions, parochialism 
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is necessary for the institutionalization of cooperation; agents adapt themselves to 

increasingly homogenized environments by learning intolerance; emergent 

cooperative societies in the presence of imitation errors are vulnerable to free-riders 

with tolerably similar markers; either persistent cultural diversity or highly clustered 

networks with long paths stabilize cooperation; and even if markers are completely 

mutable, society-wide and robust cooperation is achievable with increased diversity as 

hierarchical networks of cultural groups self-organize where less tolerant agents in the 

periphery shield more tolerant ones in the core from emerging free-riders. 

The current study provides sociologists with theoretical and methodological 

resources for a game-theoretical approach to institutional analysis. Socio-

psychological research maintains that group identity enhances cooperation either 

because human subjects in pre-assigned groups maximize group-level rewards or 

when they expect continuing benefits from in-group favoritism. We rather 

demonstrate the evolution of cooperation without expectations of in-group reciprocity. 

Cultural groups emerge as arbitrary markers become salient together with 

stratification driven by parochial interactions. Our study also contributes to 

understanding of how stable markets can evolve out of repeated plays of a social 

dilemma game among parochial agents locally embedded in on-going exchange 

networks with limited knowledge about costs and opportunities. 
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Chapter 1: Introduction 
_________________________________________________________ 
 
How the society holds together – the problem of social order – is the key question 

from the outset of the discipline of sociology. A society that is not able to maintain 

relatively high levels of cooperation among most of its members may confront 

considerable disintegrative pressures. Cooperation, however, faces a social dilemma 

which refers to a situation where the rational behavior of an individual aggregates to 

Pareto-inefficient outcomes. For instance, ‘the tragedy of the commons’ represents a 

dilemma in which the outcome may end up with the overutilization of a common 

resource when people pursue their own self-interests. Producing public goods through 

voluntary contribution (e.g. building bridges to other communities in a village) is 

another example of showing difficulties in improving the collective outcome when 

there are costs of helping others and incentives for opportunistic behavior. 

A set of norms in societies render stable patterns of cooperative interactions 

possible. Direct reciprocity (‘if you scratch my back, I will do yours’) is one of the 

simplest yet most powerful explanations of where norms of cooperativeness come 
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from (Axelrod, 1984). However, reciprocal cooperation by dyadic sanctions is not 

effective in sizeable groups consisting of those who rarely interact with the same 

partners because actors have to play with unknown others at each round.  

Helping players with good reputation and otherwise declining to do so (Nowak 

and Sigmund, 1998) enhances cooperation even when there is a high risk of non-

reciprocity. But, this principle of ‘indirect reciprocity’ (Alexander, 1987) has its own 

weakness: since those who punish players who do not help others lose their image 

scores, they are less likely to be rewarded by third parties (Nowak and Sigmund, 

2005). Cooperative systems based on indirect reciprocity have to condone 

unconditional defectors who take advantages of others in one-shot interactions. 

Otherwise, such systems may be trapped in cascades of punishment. 

It is a theoretical and empirical puzzle to explain the emergence of cooperation 

(e.g. first-mover cooperation) and its maintenance in the setting of one-shot social 

interactions and economic exchanges without reciprocity. Cooperating with strangers 

in spite of incurred costs requires trust as “the precontractual base of social solidarity” 

(Durkheim, [1893] 1933) from the beginning. However, unconditional cooperation 

based on the highest level of trust is a rare phenomenon. Rather, parochialism 

(Bowles and Gintis, 2004) and ethnocentrism (Hammond and Axelrod, 2006) are 

universal predispositions in human societies. People may read observable markers 

(“cues”) to categorize others into “us” and “them” on the basis of perceived 

similarities, that is, social distances. 

The present study raises the following four questions. First, how can global 

cooperation emerge from local interactions of actors who may have limited tolerance 

for cooperating with others who they see as different from themselves? Such 
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parochial cooperation stops at group boundaries. Within-group cooperation and 

between-group non-cooperation do not result in globalized cooperation. Let us 

consider two ideal-type societies in Figure 1.1, where different colors represent 

different cultural markers. If emergent societies maintain high levels of cooperation, is 

it because their members look very alike in spite of low levels of tolerance (Right), or 

because more tolerant agents constitute a vast majority of the population who accept a 

broader range of diverse neighbors as in-group members (Left)? 

 

 
 
Figure 1.1. Two Ideal-type Cooperative Societies 

Note: Different colors represent different cultural markers. It is not shown here, but 

the society on the left are almost double as tolerant as the society on the right. 

 

 

However, it is less likely that emergent cooperative societies retain cultural 

diversity under social influence. For example, if people learn cultural traits from each 

other, local convergence tends to result in global homogenization in connected 

societies. We need to ask whether or not the diversity of both cultural markers and 

tolerance can be maintained given the tendency of human agents to change cultural 

traits toward those of influential others. Under what conditions would emergent 
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cooperative societies preserve the global divergence of culture in spite of its local 

convergence? 

Societies in which less parochial residents trust heterogeneous others are 

desirable with regard to the diversity of tolerance and cultural markers. But, they are 

more easily vulnerable to deviants displaying tolerably similar markers without 

providing any help (e.g. those who access to the p2p community with cracked 

passwords and just download files without any contribution). Generally, parochial 

cooperators recognize each other by “secret handshaking” (Robson, 1990) to share 

disproportionate benefits of in-group favoritism. However, emergent cooperative 

societies may be no longer stable in the presence of defectors who learn signals 

among conditional cooperators. The failure of secret handshaking may lead to serious 

downward spirals of cooperation. The next question, then, is how cooperation on the 

basis of similarity can be stable in spite of invasion by mutant defectors with tolerably 

similar markers. 

People not only consider how to interact with partners, but usually have the 

option of whether to interact with others. Such partner selection can maintain global 

cooperation since cooperators can benefit from interactions with their own kind while 

avoiding contacts with defectors. But, again, this occurs at a cost. As with Schelling’s 

model (1971), if people select interaction partners based on homophily preferences 

(‘birds of a “cue” flock together’), a moderate degree of preference at the micro level 

can produce a high level of spatial segregation with very homogeneous factions at the 

macro level. The final question is, therefore, how it can be possible that emergent 

cooperative societies are still non-segregated or connected even if human agents 

parochially socialize with each other. 
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The current study is interested in the evolution of cooperation in the setting of a 

one-shot Prisoner’s Dilemma as a paradigmatic example where there is a temptation 

to free-ride, unlike the Stag Hunt game. The theory of kin altruism (Hamilton, 1964) 

is not suitable to explain cooperation among genetically unrelated people. Extant 

mathematical and computational research verifies that as long as agents randomly 

interacting with each other leave offspring in proportion to fitness, globalized 

cooperation is impossible in a one-shot Prisoner’s Dilemma game without reciprocity. 

Even if altruists establish a cooperative society, it can be easily destroyed by mutant 

defectors because they increasingly adopt the higher-scoring-strategy (i.e. defection) 

provided that the payoff from defection (i.e. exploiting cooperators) is higher than the 

payoff from mutual cooperation. The contemporary research across the disciplines has 

thus strived to identify the conditions for society-wide and stable cooperation in 

sizeable groups of non-kin. 

We seek to find cultural bases and structural foundations of cooperation in 

human societies by using computer simulation experiments. In Chapter 2, we examine 

two competing but complementary mechanisms through which cooperators interact 

with each other preferentially so that they can continue to receive disproportionate 

shares of the benefit of cooperation. First, partner identification matters. Heuristic 

cues help agents distinguish those who are trustworthy from those who not. In the 

example of direct reciprocity (Axelrod, 1984), the behavior of an opponent on the 

previous round serves as a cue for the Tit-for-Tat strategy. Instead of always 

cooperating with others or always refusing to do, human agents may want to read tags 

as cultural markers to decide whether to cooperate or not depending on the 

trustworthiness of partners in one-shot interactions. As the number of discriminators 
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in the population increases, the likelihood of assortative interactions among 

cooperative agents increases.  

Second, network embeddedness is another important factor in the evolution of 

cooperative interaction and exchange. Agents interact with randomly selected others 

in the classical research, but this global random matching is not realistic. If agents 

locally interacting with a fixed set of partners leave offspring in the neighborhood in 

proportion to fitness, cooperation can be institutionalized (Nowak and May, 1992). If 

preferential partner selection (e.g. breaking ties with untrustworthy partners) is 

allowed to those agents, cooperative societies become more robust. Emergent clusters 

of cooperators on either static or dynamic networks can benefit from interactions with 

their own kind while avoiding interactions with defectors. 

In Chapter 3, we discuss strengths and weaknesses of computational research 

followed by a full description of models and their assumptions. Agents in the present 

study have two inheritable traits: tags and tolerance. Tags as arbitrary markers are not 

innately related to the behavioral propensity to cooperate or not. Tolerance is an exact 

predictor of strategy (i.e. the higher tolerance, the more likely to cooperate with 

partners), but it is not observable in so-called tag-based societies. Agents 

simultaneously interact with partners in the neighborhood in a one-shot Prisoner’s 

Dilemma game without either direct or indirect reciprocity1.  

The population consists of three types of agents. Altruists (‘the good guys’) 

always help others since they have the highest level of tolerance. Defectors (‘the bad 

guys’) with the lowest level of tolerance always decline to help others. Besides 

altruists and defectors who indiscriminately interact with partners, there is another 

group of agents who have intermediate levels of tolerance. These egoists (‘the 
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ethnocentric guys’) cooperate toward tolerably similar neighbors (‘us’) on the basis of 

the shared belief in in-group favoritism. But, they refuse to cooperate toward 

dissimilar neighbors (‘them’) with a fear of being exploited by strangers. Agents in 

the population tend to break old ties unilaterally with out-group neighbors. Tie 

dissolution is allowed only when they can build new ones to in-group partners by 

mutual consent – who are randomly drawn from either neighbors-of-neighbors or 

players at greater distances. 

In Chapter 4, we begin with the question of how it is possible that society-wide 

cooperation emerges from local interactions among parochial agents. It turns out that 

as agents with higher levels of fitness leave more offspring with their traits in the next 

generation, the population increasingly consists of egoists who take more 

discriminating actions against out-group in increasingly homogenized societies. 

Meanwhile, not only defectors but also altruists are weeded out under the force of 

natural selection. In spite of huge erosions of tolerance, high levels of global 

cooperation are maintained in highly homogeneous populations (cf. mechanical 

solidarity in a Durkheimian sense). 

However, the stability of tag-based parochial cooperation rests on whether or not 

a shared belief continues that tags can predict the trustworthiness of interaction 

partners since tolerance is not an observable trait in tag-based societies. In other 

words, tag-based cooperative societies are not robust against mutant (or immigrant) 

free-riders with tolerably similar tags because they are predisposed to defect, but 

existing cooperators recognize them as in-group to cooperate toward them. Once such 

a shared belief is broken, there occur cascades of non-cooperation (i.e. 

deinstitutionalization) that result in societies of mutual betrayal. This result is 
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consistent with the vulnerability of cue-based conditional cooperation to defectors 

who learn to fake signals of trustworthiness. 

In Chapter 5, we search for alternative societies in which parochial cooperation 

is stable in the face of exploiters. We point out that existing models of tag-based 

cooperation are based on the idea of genetic inheritance. From the perspective of 

cultural evolution of cooperation, the same set of individuals (cf. parents and 

offspring) imitate (cf. copy) tags and tolerance from successful others with a small 

amount of error (cf. mutation) after playing the Prisoner’s Dilemma game at every 

round (cf. generation).  

In existing models of tag-based societies, tags are completely mutable in both 

processes of genetic copying and mutation. It leads to high levels of global 

cooperation because more agents become exactly alike, however long the tag strings 

they have. Also, it is one major reason for the susceptibility of tag-based parochial 

cooperation to invasion by mutant defectors with tolerably similar tags. We can 

reconceptulaize tags as cultural markers (i.e. simple forms of identities) with different 

levels of mutability. Tags are no longer completely mutable – some markers are more 

changeable (e.g. linguistic codes), whereas some others are less (e.g. skin colors). We 

propose alternative models of cultural evolution of tag-based cooperation, where each 

agent has one core identity which is not subject to both payoff-based imitation and its 

error. 

Next, we aim to investigating structural foundations of cooperation, with special 

attention to two faces of social capital: network closure (i.e. making new ties to 

neighbors’ neighbors to form closed triads) and bridging (i.e. making cross-cutting 

ties to agents at greater distances). Existing studies are more concerned with the 
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evolution of reciprocity norms in highly clustered networks in the setting of repeated 

interactions, but they do not consider the effects of clustering on cooperation in one-

shot interactions. Also, little attention is paid to the roles of short paths (‘small-world-

ness’) through which locally emerging cooperation spreads while defectors invade the 

population.  

In Chapter 6, we thus explore the dynamics of tag-based cooperation in static 

networks with different topologies such as regular networks, small-world networks, 

and random networks. The question is which network topology is more likely to 

preserve tolerance and cultural diversity, and render tag-based cooperative societies 

more stable against free-riders with tolerably similar tags even though tags are 

completely mutable. 

In Chapter 7, parochial agents with a preference for homophily tend to socialize 

with the members of one’s group in terms of partner selection. Given a certain level of 

social mobility, they not only take discriminating actions toward neighboring partners, 

but also they either adopt cultural traits from successful neighbors or switch partners 

by breaking ties with perceived out-group unilaterally in favor of in-group by mutual 

consent. New partners are randomly chosen among neighbors’ neighbors (Colemanian 

social capital) or from agents at greater distances (Burtian social capital), given 

another exogenous parameter called the degree of closure. 

 Is it possible that parochial cooperation can be society-wide without network 

disintegration despite the fact that even moderate levels of homophily may lead to 

high degrees of segregation as with Schelling’s model? The research question under 

investigation is whether there is a parameter space of network plasticity and closure 

for alternative tag-based cooperative societies in which parochialism is not strong, 
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cultural diversity is not wiped out, and cooperation is stable in spite of the relentless 

attack by defectors displaying tolerably similar markers. We also intend to discover 

what emerging norm-generating and sustaining networks look like in those societies. 

In Chapter 8, we summarize the major findings of the present study and then 

discuss its contributions to understanding of the evolution of cooperation in human 

societies. We will draw some implications of the current study for research on group 

processes with a critical review of socio-psychological experiments on identity and 

cooperation since the so-called ‘minimal group’ study in the 1980s. The significance 

of our study to economic sociology of market dynamics will be also provided with 

reference to research on trust, parochial transaction, and exchange networks. 
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Chapter 2: Literature Review and Theory 
_________________________________________________________ 
 

Toward a Game Theoretical Approach to Institutional Analysis 

The (Hobbesian) problem of social order is one of the key questions in sociology. 

Institutions can be defined as a set of norms and values (e.g. prosocial norms in our 

study) to organize relatively stable patterns of human activities related to fundamental 

problems in societies (e.g. cooperation). Sociologists have theorized institutions in 

two different ways. One approach defines institutions as regulatory systems or sectors 

such as economy, polity, kinship, education, religion, and law from a top-down 

perspective (Turner, 1997; Turner, 2003). Spencerian1 or Parsonian2 structural 

functionalism is one example in which people are (over-)socialized to follow norms. 

However, “much sociological theory takes social norm as given and proceeds to 

examine individual behavior or the behavior of social systems when norms exist. Yet 

to do this without raising at some point the question of why and how norms come into 

existence is to forsake the more important sociological problem in order to address the 

less important (Coleman, 1990a: 241).”  

The other approach endogenizes institutions to conceptualize them as the 
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collective outcomes of human behaviors rather than as entities that are purposefully 

designed. There are rival views within this bottom-up perspective: the rational choice 

approach and the interactionist approach. First, rational choice theorists in sociology 

such as Hechter (1987) and Coleman (1986) criticize that structural-functional 

arguments do not specify how human agents create social orders. They stress micro-

foundations of macro patterns to locate the mechanism for the evolution of institutions 

as social orders in the decision making of rational actors. Given that the society is not 

equal to the sum of individuals, Coleman’s Boat3 of the macro-micro-macro linkage 

(Coleman, 1990a: 8) translates the direct relationships among macro variables into the 

multi-level causal processes.  

Next, interactionists in sociology such as Berger and Luckmann (1966: 54-58) 

argue that “institutionalization occurs whenever there is a reciprocal typification of 

habitualized actions by types of actors. Put differently, any such typification is an 

institution… The institutions are now experienced as possessing a reality of their own, 

a reality that confronts the individuals as an external and coercive fact.” Durkheim’s 

view on institutions is a prototype of this phenomenological approach: “It may be said 

that nearly all the great social institutions have been born in religion” (Durkheim, 

[1912] 1965: 127). His sociology of emergence (Sawyer, 2002; 2005) conceptualizes 

institutional orders as emergent patterns from the interactionist framework. For 

another example, practitioners of the new institutionalism in sociology consider 

institutions as routinized patterns of human actions and culture as scripts providing 

templates for them (DiMaggio and Powell, 1991). 

In this dissertation, we take a game theoretical approach to institutional analysis4 

for several reasons. First, game theory pays due attention to the discrepancy between 
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individual interest and collective outcomes which is the critical issue in the dynamics 

of institutional orders in human societies (e.g. cooperation, coordination, resource 

allocation, intergroup conflicts, and so forth). In other words, game theory offers a 

powerful set of verbal and mathematical nuts and bolts for formulating theories of 

‘social dilemmas’ (Dawes, 1980; Glance and Huberman, 1994; Kollock, 1998). 

Second, the concept of interaction in a strategic context as its starting point is very 

consistent with Weber’s concept of social action – the action taking into account the 

behavior of others. Furthermore, game theory provides possibilities that the rational 

choice perspective and the interactionist perspective complement each other. Culture 

is a set of shared beliefs – legitimized protocols in the new institutionalism in 

sociology – and available (and appropriate) strategies for Weberian social action. 

Third, game theory has a strong affinity with the evolutionary perspective, which we 

will discuss in detail later. Institutions as social orders emerge, evolve, and dissolve 

out of repeated plays of games: “a social institution – which is none other than a 

shared course-of-action-type Schűtz5 called – is a regularity in the behavior of 

members of a group upon confronting a recurrent situation” (Foss, 1996: 80).  

 

 

The Evolution of Cooperation in the Prisoner’s Dilemma Game 

The Prisoner’s Dilemma game is the most commonly used type of social dilemma 

game to tackle the evolution of cooperation in not only human societies but also 

primate groups. Each thief is offered a reduced jail term if she testifies against her 

partner. Because the jail term is lower regardless of whatever the other player chooses, 

both rationally betray each other. This is a dilemma because mutual cooperation is 
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Pareto optimal, but rationality leads to a collectively suboptimal set of actions. Mutual 

betrayal is the unique Nash equilibrium since the defection strategy is (strictly) 

dominant over the cooperation strategy.  

 

Table 2.1. Payoffs in Prisoner’s Dilemma Game 

 Cooperate Defect 

Cooperate 3 (R) 0 (S) 

Defect 5 (T) 1 (P) 

 

 

Table 2.2. Payoffs in Helping Game 

 Help (C) Refuse to help (D) 

Help (C) b–c –c 

Refuse to help (D) b 0 

 

 

In the payoff matrix of the Prisoner’s Dilemma game (Table 2.1), R, T, S, and P 

stands for Reward for Mutual Cooperation, Temptation to Defect, Sucker’s payoff, 

and Punishment for Defection, respectively. T > R > P > S and 2R > T + S are satisfied 

in the Prisoner’s Dilemma game. It should be noted here that the Prisoner’s Dilemma 

game is the same with the helping game, where if Person 1 (donor) helps Person 2 

(recipient) at a cost c, Person 2 receives a benefit b; if Person 1 does not help, both 

individuals receive zero payoff; and b > c > 0. Table 2.2 is the payoff matrix of this 

helping game. Because the payoff of cooperation, b – c, is smaller than the payoff of 

defection, b, if both individuals are self-interested, then they are worse off.  
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Evolutionary game theory has developed since Maynard Smith (1982) with 

concerns about weaknesses in the classical game theory. The current study draws on 

evolutionary game theory since it is more adequate to explaining the evolution of 

institutional orders than the classical game theory for a couple of significant reasons 

(Hargreaves Heap and Varoufakis, 1995). First, evolutionary game theory is motivated 

by milder assumptions of rationality than the classical game theory. Strategies in 

evolutionary games are conceptualized as genetically coded behavioral propensities 

rather than as rationally calculated ones. Second, the classical game theory has been 

criticized for failing to explain the origins of conventions. The concept of the 

subgame perfect Nash equilibrium (Selten, 1975) does not tell what would happen if 

there were multiple Nash equilibria in indefinitely repeated games. Third, it is also 

difficult to account for why institutions change with the idea of the Nash equilibrium. 

In other words, the classical game theory does not offer a robust theory of dynamic 

equilibria. An evolutionary stable configuration of the population can be called an 

equilibrium of evolutionary games. This concept of Evolutionarily Stable Strategy 

(ESS) is an evolutionary version of the Nash Equilibrium Strategy (NES). It should be 

noted here that ESS is always NES, but not vice versa. 

Unfortunately, evolutionary game theory is never introduced in the literature by 

even evolutionary sociologists including sociobiologists (van der Berghe, 1990; Dietz, 

Burns, and Buttel, 1990; Maryanski, 1994, 1998; Lopreato, 2001; Sanderson, 2001; 

Lenski, 2005), with the exception of Machalek and Martin (2004). As Maynard Smith 

(1982: vii) prefaces his work, “paradoxically, it has turned out that game theory is 

more readily applied to biology than to the field of economic behavior for which it 

was originally designed.” The theory of evolutionary games in complex (adaptive) 
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systems is indeed powerful to model the dynamics of institutional order6 in a 

Darwinian sense (Dixit and Skeath, 2004: 430).  

 

Figure 2.1. Evolutionary Game and Population Dynamics 

 

 

The basic idea (Figure 2.1) is that a game takes place in a population of multi-

agents who have biologically inheritable traits that govern certain patterns of 

behaviors, say whether or not to cooperate toward others (cooperate C and defect D in 

Figure 2.1). Agents at one generation play a game with partners randomly drawn from 

the population (cf. “playing the field” in biology). They leave offspring in proportion 

to fitness (benefit b and cost c in the dashed box of Figure 2.1. See the payoff matrix 

in the Table 2.1 and Table 2.2) at the next generation with some copying errors as 

mutation. Selection pressure suggests that the payoff for a particular strategy s at a 
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generation t affects its frequency at the next generation t + 1. If the frequency of a 

particular strategy, fs increases if its fitness πs exceeds the average fitness of the 

population π, and otherwise it decreases: dfs / dt = fs ( πs – π ). In this way, population 

dynamics is density-dependent (so-called the replicator dynamics). This evolutionary 

game is equivalent to the process that the same set of agents, after playing a game, 

imitate culturally transmissible traits of higher-scoring others (i.e. payoff-based 

imitation) with some learning errors. There are no direct or indirect reciprocity 

elements because it is assumed that agents are minimally cognitive so that they cannot 

choose strategies on the basis of whether or not their partners cooperate in the past. 

Darwin’s theory of natural selection states that the evolutionary force will weed 

out organisms which do not maximize fitness (“the survival of the fittest”). First, a 

cooperative society is impossible if parents leave offspring in proportion to their 

fitness because the defector’s payoff (Temptation to Defect) is higher than the 

cooperator’s payoff (Reward for Mutual Cooperation). Second, even if there is a 

population purely composed of altruists who always help others, such a cooperative 

society is not evolutionarily stable since a mutant defector successfully invades the 

population. For this reason, how to explain society-wide and stable cooperation in 

human societies has been not only an interesting theoretical puzzle but also a 

substantively important question for biologists and social scientists. Under which 

conditions does natural selection favor cooperation in the evolutionary Prisoner’s 

Dilemma game as a one-shot multi-agent game? 
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Mechanisms of Cooperation  

Several mechanisms have been proposed to explain the evolution of cooperation in 

human societies: kin selection, direct reciprocity, indirect reciprocity, network 

reciprocity, and group selection (Nowak, 2006). We focus only on the classical 

models of the first four mechanisms since our models are not based on the theory of 

group selection. Another reason is that an intense debate is still going on in spite of its 

recent resurgence under the idea of ‘multi-level selection.’  

Kin selection theory (Hamilton, 1964) maintains that kinship is the ultimate basis 

of cooperation in primate groups including human societies. Mathematically, altruism 

can be preferred if its benefit-to-cost ratio in Table 2.2 is higher than the probability 

of sharing a gene (Nowak, 2006). The theory of kin selection from the viewpoint of 

sociobiology contributes to our understanding of nepotistic phenomena prevalent even 

in human societies today, not only altruism but also ethnic conflicts and kin-based 

business networks (e.g. Quanxi-based Chinese business). However, humans tend to 

cooperate with non-kin more than other primates. How to explain altruistic behavior 

directed at genetically unrelated others, then? 

‘As long as you help me, I will help you’ can be another route of cooperation 

between two players even if they are not necessarily genetically related. A player 

using Rapaport’s tit-for-tat strategy cooperates at the first round (‘niceness’). And then, 

her next move depends on her partner’s previous move: she chooses the same strategy 

her partner used at the previous round (‘forgiveness’ and ‘retaliation’). Axelrod (1984) 

advances the idea of reciprocal altruism (Trivers, 1971) by demonstrating that a tit-

for-tat player defeats not only defectors, but also any other players employing 

sophisticated strategies. Mathematically, direct reciprocity leads to cooperation if the 
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benefit-to-cost ratio in Table 2.2 is higher than the possibility of another encounter 

between the same two individuals (Nowak, 2006). However, the tit-for-tat strategy is 

not applicable to large-sized populations7 in which people so rarely interact with the 

same partners that there can be very high risks of non-reciprocity. 

Next, the idea of indirect reciprocation, ‘if I will help you, someone else will 

help me,’ explains the evolution of cooperation in such a one-shot Prisoner’s Dilemma 

game in large-sized populations of multiple non-relatives. According to Boyd and 

Richerson (1989), cooperation can emerge and continue if people use the ‘downward 

Tit-for-Tat’ strategy. This conditional strategy is just an extension of the Tit-for-Tat 

strategy: ‘if you cooperate, a third party will cooperate toward you; if you refuse to 

cooperate, a third party will punish you.’ In this sense, indirect reciprocity is a 

consequence of direct reciprocity occurring in the presence of others (Alexander, 

1987).  

Nowak and Sigmund (1998) demonstrate that cooperation can prosper even in a 

one-shot Prisoner’s Dilemma game where agents interact with randomly selected 

partners if the population consists of not only those who always help partners and 

those who always refuse to help partners, but also those who have limited tolerance 

for helping partners with bad reputation. These discriminating egoists are concerned 

with image score building to receive help from others. They conditionally cooperate 

only with partners who have good image scores.  

We note here that the aforementioned three mechanisms commonly consider the 

role of ‘cues’ in the evolution of cooperation (McElreath, Boyd, and Richerson, 2003). 

The kinship hypothesis is that the propensity to cooperate between two individuals is 

determined by the genetic relatedness between them: the more genetically related, the 
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more reliable, and the more likely it is that they cooperate toward each other. Kinship 

is a cue in this kin-based reciprocity. Direct reciprocity is predicated on repeated 

interactions between the same two individuals. Therefore, the behavior of an 

opponent on the previous round can serve as a cue in the Tit-for-Tat strategy as a 

discriminating strategy. In Nowak and Sigmund (1998), an individual’s image score is 

a heuristic cue in an indirect form of reciprocity, that is, ‘your cooperative behavior 

will be rewarded by third parties (not necessarily the recipient of your help) reading 

your increased reputation.’ 

The last mechanism pays due attention to the role of territoriality in the evolution 

of cooperation. As Nowak (2006) points it out, the argument for natural selection of 

defection is predicated on a well-mixed population, where everybody interacts equally 

likely and also randomly with everybody else. This approximation is used by all 

standard approaches to evolutionary game dynamics. But, real populations are not 

well mixed. Instead, some individuals interact more often than others, which indicates 

that people embedded in social networks interact with a subset of population.  

Nowak and May (1992) validate that if agents interact with local neighbors to 

leave offspring in the neighborhood in proportion to fitness, there can exist dynamic 

equilibria in which altruists co-exist with defectors as long as altruists group together 

to form cooperative network clusters, consistent with ‘kaleidoscopes’ predicted by 

Axelrod (1984: 162-3). Natural selection favors defection over cooperation in 

unstructured populations, but global cooperation can be enhanced under the very 

simple condition that the benefit-to-cost ratio in Table 2.2 exceeds the average number 

of neighbors regardless of network topology, degree-homogeneous (e.g. torus, ring 

lattice) or degree-heterogeneous (e.g. small-world network, random network), 
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according to Ohtsuki, Hauert, Lieberman, and Nowak (2006). Altruists (unconditional 

cooperators) are less likely to survive in the presence of defectors as cooperation is 

more costly and the density of social network becomes high. Suffice to say here that 

the term, network ‘reciprocity,’ may cause confusion or misunderstanding when 

applied to one-shot games, but we keep it throughout the dissertation. 

 

Table 2.3. Two Routes to Cooperation 

 
Cue-based Cooperation Network Reciprocity 

What actions 

to choose 

Discriminators 

(Conditional strategies) 

Indiscriminators 

(Unconditional strategies) 

How partners 

are selected 

Random Matching 

(Unstructured populations) 

Spatiality 

(Structured populations) 

 

 

We conclude that both cue-based partner identification and network reciprocity 

highlight the importance of preferential interactions among those who (are more 

likely to) cooperate toward others. Both approaches have complementary strengths 

and shortcomings (Table 2.3). Existing models of cue-based cooperation in the 

evolutionary Prisoner’s Dilemma game assume unstructured populations in which 

agents randomly interact with one another (i.e. global mating or playing). However, 

they aptly underline the role of discriminators in the dynamics of cooperation (Nowak 

and Sigmund, 2005). The population in models of cue-based cooperation is composed 

of not only the ‘good’ guys (indiscriminating altruists) and the ‘bad’ guys 
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(indiscriminating defectors) but also the discriminators who use conditional strategies 

depending on the trustworthiness of interaction partners. This approach is more 

realistic in the sense that cooperation in human societies more often hinges on our 

biological and cognitive capacity to use various symbols and signals than other 

animals. These heuristic cues, albeit inherently fallible, help human agents distinguish 

those who are more trustworthy and also more likely to cooperate from those who are 

not. 

In the existing classical models of network reciprocity, the population consists of 

the ‘good’ guys who unconditionally help all neighbors and the ‘bad’ guys who 

unconditionally refuse to help all neighbors, without the discriminators with 

intermediate levels of tolerance. In other words, it is unrealistically assumed that 

human agents have either the highest or lowest level of tolerance. However, research 

on evolutionary games in networks is aptly concerned with structural mechanisms of 

cooperation by emphasizing ‘assortative meeting’ (Eshel and Cavalli-Sforza, 1982) 

through which cooperators benefit from more interactions with their own kind and 

less interactions with defectors. This approach implies that ‘viscosity’ (Hamilton, 

1964) in animal societies – limited dispersal of offspring in the neighborhood instead 

of their random dispersal – renders network reciprocity workable (Grim, Wardach, 

Beltrani, 2006), while clustering in human societies characterizes norm-generating 

and sustaining networks.  
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Tag-based Parochial Cooperation  

One challenge to the theory of kin selection is that it assumes psychological 

mechanisms through which individuals can identify how much genes they share. “Of 

course, the trick is to distinguish between ‘us’ and ‘them.’ In the ancestral society, it 

was hardly a problem. Clan members were related by blood or ties of marriage, and 

lived their lives in close proximity” (Lopreato, 2002: 423). In this aspect, proximity 

must be a critical heuristic cue for reciprocity on the basis of kin-recognition in earlier 

societies. However, how to explain cooperation in increasingly differentiated and 

highly mobile societies today consisting of genetically unrelated people? 

People strain to detect ‘ethnic markers’ such as genetically transmitted 

phenotypes (e.g. skin color) and behavioral characteristics (e.g. speech, manner), as is 

addressed by van der Berghe (1981: 28-29) who theorizes the dynamics of extended 

nepotism and conflict in ethnic groups (as extended forms of the family). Stating that 

the theory of kin selection is silent on a route to altruism toward nonrelatives, Krebs 

(1987) regards ‘phenotype matching’ as vital for humans to identify who is who8. In 

general, “people often related to each other in ways that are influenced by observable 

features such as sex, age, skin color, and style of dress. These cues allow a player to 

begin an interaction with a stranger with an expectation that the stranger will behave 

like others who share these same observable characteristics… This happens because 

the observed characteristics allow an individual to be labeled by others as a member 

of a group with similar characteristics” (Axelrod, 1984: 146-7).  

Holland (1993; 1995) suggests that ‘tags’ as observable markers are engaged in 

group processes of complex adaptive systems. Human agents have tags as the 

phenotype of “memes” (Dawkins, 1976) to form “memetic kin” (Heylighten and 
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Campbell, 1995). Reading tags enables humans to make distinctions between in-group 

members and ‘others.’ Recent research on tag-based systems reports that tag-based 

discriminating actions among randomly selected agents significantly enhance the 

level of global cooperation in a one-shot multi-agent Prisoner’s Dilemma game (Riolo, 

Cohen, and Axelord, 2001).  

Agents may display “in-group favoritism” (Hammond and Axelrod, 2006), 

“parochialism” (Bowles and Gintis, 2004) in choosing how to interact, based on their 

tolerance of differences with others. For instance, what action an ego chooses is 

contingent on whether or not her perceived social distance to an opponent is less than 

or equal to her tolerance level (Riolo et al., 2001). In Hammond and Axelrod’s model, 

one of four colors is assigned to agents with tags (ethnic markers) whereby their 

group membership is determined. An ethnocentric agent helps a partner of her own 

color, and otherwise does not help. In these examples, the predisposition of 

individuals to behave cooperatively depends on the identities of their interaction 

partners: ‘insiders’ are favored over ‘outsiders,’ but not necessarily with out-group 

hostility. 

 

 

Weaknesses of Tag-based Parochial Cooperative Societies  

Riolo et al. (2001) demonstrate that if agents cooperate only with others with tolerably 

similar tags and they leave offspring in proportion to fitness measured by the payoffs 

at the previous generation, then societies reach high levels of cooperation. But, 

tolerance decreases drastically as the average level of cooperation (measured by the 

donate rate in a helping game) increases rapidly during the first few generations 
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(Figure 2.2). After this transient period, “the agents in the resulting ‘dominant tag 

cluster’ have an advantage as there are more of them to help each other” (Riolo et al., 

2001: 442). Riolo et al. (2001: 442) report that “about 75-80% of the agents have tags 

that are so similar that they are within each other’s tolerance range.”  

 

 

Figure 2.2. Dynamics of Tag-based Cooperation and Tolerance Change. 

Note: Riolo et al. (2001: 441). 

 

 

Cooperators in the dominant tag cluster are, however, vulnerable to invasion by 

relatively intolerant mutants with tags within the range of tolerance of the typical 

members of the dominant cluster. Once these mutants have higher payoffs, a transition 

to a new tag cluster occurs. The average tolerance drops significantly once again, but 

the average donation rate returns to its previous level as with Figure 2.2 (Riolo et al., 

2001: 441). A significant erosion of tolerance is a major trend, but if more tolerant 

agents benefit from each other to spread across the population, the average tolerance 
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can increase temporarily. They conclude: “in our model, the cycle of increasing and 

decreasing tolerance could reflect, for example, a loss of sensory discrimination in a 

population when there is little selection pressure to retain it, followed by a recovery 

when a more discriminating individual succeeds” (Riolo et al., 2001: 442).  

With respect to the four questions of the present study, Riolo et al.’s research 

answers the first two issues in tag-based cooperative societies. The ethnocentric 

tendency in the population becomes increasingly reinforced over generations since 

parochial agents displaying stronger discrimination against out-group are more likely 

to survive. Nonetheless, they continue to cooperate with each other because the 

degree of tag diversity in the population decreases over generations. In other words, 

agents adopt intolerance from more successful others as societies become more 

homogenized, but high levels of cooperation are still possible in spite of a huge 

erosion of tolerance because it is more likely that cooperation occurs among more 

homogeneous agents. 

However, Riolo et al. do not explore theoretical possibilities of alternative 

cooperative societies where culture is globally divergent in spite of its local 

convergence, which is the second question of the current study. They find that tag-

based in-group favoritism significantly facilitates cooperation, but according to the 

replication by Edmonds and Hales (2003: 9.4), “the simulation quickly becomes 

dominated by a single group of individuals, all of whom have exactly the same tag.” 

This indicates that emergent societies in Riolo et al.’s model almost always reach 

universal cooperation in completely homogenized populations consisting of agents 

who have the minimum tolerance and the identical markers. However, “tags can also 

present major obstacles in overcoming segregation,” as is aptly addressed by Sigmund 
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and Nowak (2001: 405). “Although the simulations by Riolo et al. do not produce 

dominant clusters that split into rival tribes, any territorial distribution would favor 

such ‘speciation.’ Tags would then act as self-reinforcing stereotypes, making it hard 

for tolerance to cross the divide.”  

Recall that agents in their model basically play a one-shot Prisoner’s Dilemma 

game with randomly selected partners in unstructured populations. This is why it is 

difficult for Riolo et al. to examine the spatial configuration of parochialism and tag 

clusters. Regarding the fourth question, we intend to investigate the dynamics of tag-

based cooperation in structured populations where agents play the game with 

immediate neighbors: how boundaries of cultural groups evolve over time?; and what 

they look like either at deterministic equilibrium or at dynamic equilibrium? Riolo et 

al. do not consider that tags influence with whom individuals interact, but we will 

furthermore probe into the network topologies of evolving cultural groups that have 

different markers when agents with similar tags tend to socialize with each other (i.e. 

tag-based cooperation on dynamic networks). 

Another fundamental limitation of Riolo et al.’s model is related to the third 

question of the current research. Riolo et al. discover that if a mutant with a lower 

level of tolerance has similar tags tolerable to existing cooperators, such an immigrant 

earns a higher payoff (fitness) so that she can easily invade the population. The 

number of offspring with her tolerance and tags increases over generations. Since less 

parochial agents perceive a broader range of interaction partners as in-group, they are 

more likely to be vulnerable to more parochial mutants displaying similar tags. 

However, there are no unconditional defectors in their model since agents with the 

minimum tolerance are those who still cooperate with partners displaying the identical 
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tags (See Section 4.1 and also Endnote 4 in Chapter 3). We want to investigate the 

third question – the evolutionary stability of tag-based parochial cooperative strategies 

in the presence of mutant defectors9. 
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Chapter 3: Method and Model 
_________________________________________________________ 
 

3.1. Method 

There are three ways of constructing theories for formal sociology: statistical analysis; 

mathematical modeling; and computer simulation. Statistical analysis is the most 

commonly used approach in sociology to find patterns in data and test hypotheses. 

Mathematical sociologists prefer proving theorems based on axioms. Beginning with 

proved propositions (lemmas), they intend to draw another set of propositions to 

verify them. Semi-mathematical computational language can capture both the material 

and cultural aspects of social dynamics for building formal sociology, which is hard to 

do with either everyday languages or mathematical languages (Hanneman, 1989), but 

it seems that computer simulation as ‘thought experiment’ is not widely 

acknowledged as an alternative method among sociologists (Collins, 1988; Macy and 

Willer, 2002). 

Statistical analysis of empirical data comes in very handy, but most statistical 

techniques are designed for the analysis of realizations of systems at equilibrium, and 

hence are appropriate to theories of comparative statics (Collins, 1988: 513). They are 

not adequate to identify social mechanisms as multi-level processes (except 
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hierarchical models, for example) and to distinguish causation from correlation 

(except structural equation models, for example). Mathematical modeling is most 

powerful for building formal sociology by proving theorems based on a set of axioms. 

Nonetheless, deductive reasoning in mathematical models very often requires 

simplified assumptions about the reality in order to make equations solvable. Also, 

mathematics is ‘acausal.’ For example, the formula y = f(x) itself does not tell 

anything what makes y or x, only that quantitative variation in y is formally (not 

substantially) related in some way to quantitative variation in x (Sayer, 1992: 179). In 

the similar vein, a mathematical formula itself is devoid of explanatory power despite 

its descriptive accuracy (Epstein, 1999: 51). Particularly when there are many 

elements in the system interacting with each other in complicated ways, either the 

statistical approach or the deductive approach is not suitable.  

    Computer simulation necessarily must specify what affects what at various 

points in time, and it directs attention to how that process operates over time. The 

resulting dynamic theories are much closer to a full approximation of reality as it 

actually happens (Hanneman, 1995; Collins, 1988: 510-511). It is also acknowledged 

as a third scientific discipline, neither induction nor deduction (Axelrod, 1997), to 

natural and social scientists who increasingly recognize difficulties in analyzing 

complex systems mathematically (Hanneman and Patrick, 1997). Computer 

simulation, like mathematical modeling, begins with a set of explicit assumptions, but 

it generates data to analyze them inductively, instead of proving theorems deductively. 

Unlike typical induction, however, the simulated data comes from a rigorously 

specified set of rules rather than direct measurement of the real world.  

Deduction is much more powerful for theory construction than computer 
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simulation. Any lemma (proved propositions) is definitely true under any combination 

of parameters. But, computational models provide only a set of simulated data that 

cannot cover all possible combination of parameters. This problem becomes more 

serious when the number of parameters increases. Generally, it is highly demanding to 

do an exhaustive search of the whole parameter space and to undertake all possible 

sensitivity tests to confirm the robustness of conclusions from main experiments that 

cover a part of the whole parameter space. Sensitivity test is highly recommended to 

be done for model assumptions as well.  

Verification is another problem in communities of computer simulation 

practitioners (Gilbert and Troitzsch, 1999). Verification refers to the process of 

evaluating whether or not a model is built in the way researchers want to do (internal 

validity). Since researchers very frequently make mistakes in making programs, 

debugging is required at all stages of model building. Furthermore, making 

programming codes open to the public for replication is not firmly established as a 

legitimized practice (Wilensky and Rand, 2007). 

Nevertheless, computer simulation has complementary advantages over either 

statistical analysis or mathematical modeling. Computational research, even 

empirically calibrated simulation model, cannot replace empirical analysis in terms of 

validation (external validity), but researchers rarely have the empirical data (from 

field studies, lab experiments, or surveys) with varying conditions. On the contrary, 

simulation experiment produces different sets of data enough to clarify initial and 

scope conditions of theoretical arguments. In other words, the very fact that computer 

models handle the data in simulated societies, not the real-world data, gives 

simulation studies advantages over statistical analysis of the empirical data. Besides, 
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computational modeling is particularly useful to handle nonlinear behaviors of the 

system under study because linearity is assumed in most statistical techniques.  

Mathematical models are more parsimonious than computational models. The 

analytical intractability of the dynamics on networks and the dynamics of network 

renders analytical methods less attractive, but dynamic processes in complex systems 

(e.g. emergence, non-linearity, self-organization, etc.) may lead to the simulation 

outcomes with highly complicated patterns. This weakness of computational 

modeling can be its strength from another angle, but it is the only solution when 

analytic methods are not available due to the degree of the complexity under study. 

Agent-based modeling has several advantages compared to equation-based 

system dynamics modeling. First, agent-based modeling satisfies both the structure-

agency duality and the group-person duality. System dynamics modeling tends to 

attribute forces to social structure separately from agent’s action (“structuralist 

determinism”), but agent-based modeling is closer to “structuralist constructionism” 

(Emirbayer and Goodwin, 1994) and the structuration theory Giddens (1984). System 

dynamics modeling remains at the aggregated level, while agent-based modeling 

bridges the macro-micro gap focusing on the interplayed relationship between the 

attributes and behavior of individuals and the global properties of groups.  

Second, agent-based modeling does not assume the particular tendency at the 

global level. System dynamics modeling begins with ex ante assumptions about the 

causal relationships among macro variables (e.g. differentiation and integration as the 

master trend of socio-cultural evolution). On the contrary, agent-based modeling 

“decouples” (Epstein, 1999) individual rationality from macroscopic equilibrium. For 

example, individual tendencies do not necessarily extrapolate to group behavior as 
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with Schelling’s model (1971) that pronounced segregation does not necessarily imply 

a high degree of intolerance (Ball, 2004: 315).  

Third, agent-based modeling can handle population of heterogeneous agents 

embedded in spatial environments, unlike system dynamics modeling (Epstein and 

Axtell, 1996). For instance, random interactions among homogenous agents are 

implicitly assumed in the system dynamics model of interaction rituals by Collins and 

Hanneman (1998). The key question is how the decentralized local interactions of 

heterogeneous and autonomous agents could generate the given regularity over time 

at the global level from the bottom-up perspective (Schelling, 1978; Epstein, 1999; 

Sawyer, 2003). This is why agent-based modeling is particularly useful to 

understanding how emergence comes into play in evolutionary dynamics of self-

organizing complex adaptive systems in which boundedly rational agents play social 

dilemma games.  
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3.2. Model 

Agents in all models in the present study are selected in a random order without any 

particular schedules, and they are updated synchronously1. The simulated longitudinal 

data are collected in Excel files through NetLogo Behavior-Space (Wilensky, 1999). 

All models in the present study consist of the steps in Table 3.1, either initialization 

followed by 1, 2, 3, and 4-1 (cooperation in static societies in Chapter 4, 5, and 6) or 

initialization followed by 1, 2, 3, and 4-2 (the co-evolutionary dynamics of 

cooperation and networks in Chapter 7).  

 

Table 3.1. Stages of Simulation  

Initialization 

For each generation (or round), 

1) For each agent, 

Similarity perception 

End 

2) For each agent, 

Interactions 

End 

3) For each agent, 

      Fitness (payoff) calculation 

End 

4-1)  For each agent, 

Reproduction or  

(Imitating cultural traits from more successful neighbors) 

End 

4-2)  For each agent, 

           Cultural evolution or Network evolution 

        End 

End 
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‘Reproduction’ in the baseline model of genetic evolution of cooperation in Chapter 4 

is equivalent to ‘imitating cultural traits, tags and tolerance, from more successful 

neighbors’ in two alternative models in Chapter 5 where each agent has one core 

identity and the models in Chapter 6 and 7 where agents adjust their tolerance levels 

toward those of more successful neighbors by one unit, either on static networks with 

different topologies or on evolving networks, respectively.  

 

Table 3.2. Full List of Models in Main Experiments 

Chapter Model (M) 

Traits are always 
changeable in 
copying and 
mutation? 

A step-wise 
change 

in tolerance? 

4 Baseline (M1) on torus: 
Genetic Inheritance Yes (Genetic) No (Genetic) 

5 

Caste Society (M2) on torus: 
Cultural Transmission 

Modern Society (M3) on torus: 
  Cultural Transmission 

No (Cultural) No 

6 
Baseline (M4) on static networks 
(torus/ regular/ small-world/ random) 

Cultural Transmission 
Yes Yes (Cultural)

7  Baseline (M5) on dynamic networks:
 Cultural Transmission Yes Yes (Cultural)

 

 

Tolerance changes from one level to any other level in the models in Chapter 4. 

In other words, agents can take whichever level of tolerance they adopt from more 
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successful neighbors, regardless of their previous levels of tolerance. This rule is not 

an issue in genetic inheritance given the selection rule that recessive agents are 

replaced by dominant agents in terms of fitness. However, it is problematic from the 

viewpoint of learning cultural traits. First, the reality is rather that people are very 

likely to adjust their tolerance levels in a step-wise manner. Second, agents can 

precisely predict behaviors of their partners with information about tolerance, but it is 

assumed to be unobservable in tag-based societies. Agents instead rely on tag-based 

distinction between ‘us’ and ‘them’ while believing that in-group members are more 

likely to cooperate given that tolerance is not discernable. Tolerance change between 

any two levels implicitly assumes that agents are able to read exactly the tolerance 

levels of their neighbors. For these reasons, a step-wise change in tolerance is applied 

to the models of cultural evolution of cooperation in Chapter 6 and 7. However, tags 

are completely mutable in Chapter 6 and 7, as is the same with the baseline model of 

genetic evolution of cooperation in Chapter 4 because our focus is on how network 

properties affect the dynamics of tag-based parochial cooperation, not on how 

persistently heterogeneous identities come into play (M2 and M3 in Chapter 5). 

 

Initialization. Each agent i has a tag list with its length L in which arbitrary cultural 

traits are binary,2 assuming that agents perceive dissimilarity in a dichotomized way: ti 

∈{0, 1}L. ti(l) denotes agent i’s trait value on the lth position of her tag list. Each agent 

also has tolerance Ti∈{0, 1, …, L+1}. Therefore, min(T) = 0 and max(T) = L + 1. We 

define the neighborhood set Ni as agents who are directly connected with agent i. G 

(N, E) represents a social network, where the set of vertices N denotes agents and the 

set of edges E denotes their relations. The adjacency matrix A(G) in our study is 
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symmetric and the entry is binary, that is, aij = aji =1 if there is a link between agent i 

and j (i≠ j), and aij = 0 otherwise.  

100 agents with randomly assigned tags and tolerance are located on the torus 

(TO hereafter) in Chapter 4 and 5, on fixed networks with different topologies in 

Chapter 6, or on a random network in Chapter 7. In Chapter 4 and 5, the number of 

adjacent neighbors on the torus is 8 (i.e. Moore neighborhood). In Chapter 6, the 

average degree of the regular network (RN hereafter) (i.e. each agent is connected to 

her three neighbors on either side) is exactly 6, and it is 6 on small-world networks 

(SW hereafter) and random networks (RN hereafter). A random network in Chapter 6 

and 7 has a Poisson degree distribution in which every possible edge is created 

independently, given n vertices, with a fixed probability, called Erdös-Rényi 

probability is .06. A small-world network is a graph with n vertices and average 

degree k that exhibits the average path length APL ≈ APLrandom (n, k), but the average 

clustering coefficient ACC >> ACCrandom ≈ k/n (Watts, 1999). A small-world network 

can be generated from its equivalent regular network when the following two tests are 

satisfied at a significant level (α = 0.05) in both: the average clustering coefficient of a 

graph after a certain number of rewiring should be significantly bigger than that of the 

initial regular graph (one-tailed test); and there should be no significant difference in 

the average path lengths between the two graphs (two-tailed test). 

 

Similarity perception. If L ≥ 1, agent i has perception of dissimilarity to neighbor j 

based on Hamming Distance defined by ( ) ( )
1

L

ij i l j l
l

HD t t
=

= −∑ . If HDij < Ti, agent i 

accepts agent j as in-group; otherwise, out-group3. Suffice to say here that HDij 
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always equals to HDji. 

 

Interactions. Agents play a one-shot Prisoner’s Dilemma game with all their 

neighbors at each round. Agent i cooperates with j (sij = 1) if neighbor j is perceived as 

in-group; otherwise, agent i defects (sij= 0)4. It should be noticed here that: if L = 0, 

there is no dissimilarity perception since all agents are identical (HD = 0). Since 

min(T) = 0 and max(T) = 1 at L = 0, one group of agents with T = 1 always cooperate, 

but the other group with T = 0 always defect. In this way, our model at L = 0 

represents a population composed only of unconditional cooperators and defectors (i.e. 

no parochial agents); and generally at L ≥ 1, agents with the minimum tolerance (T = 

0) are unconditional defectors, while agents with the maximum tolerance (T = L + 1) 

are unconditional cooperators, but agents of in-between values (T ∈{1, 2, …, L}) are 

ready for discriminatory actions5. 

 

Payoff calculation. If an ego cooperates, it pays cost c and produces benefit b. If it 

defects but alter cooperates, it gets the benefit b produced by its partner, without 

paying c. If b > c > 0, the payoff matrix6 in Table 2.2 satisfies the Prisoner’s Dilemma 

game in which mutual cooperation is Pareto optimal. The total payoff of agent i at 

each round can be defined by i ij ji
j Ni

s c s bπ
∈

= − +∑ . 

 

Reproduction (Payoff-based imitation). One player i is randomly chosen, and then 

another agent j ∈ Ni is randomly selected. Only if πj > πi (i.e. the no-bias method7), 

agent i dies without producing her offspring, and agent j can leave her offspring not 
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only at her own site but also at the empty site once occupied by agent i (asexual 

reproduction with ‘viscosity’). This rule applied to the baseline model in Chapter 4 is 

equivalent to payoff-based imitation in Chapter 5 – each individual’s payoff is 

compared to the payoff of a role model drawn from the agent’s neighbors. If the role 

model, agent j here, turns out to be more successful than the ego, agent i, agent i 

adopts tags and tolerance from agent j8. Imitation is local and payoff-based in the 

models of Chapter 6 and 7, but since tolerance is not observable in both societies, 

agent i copies agent j’s tags and adjusts her tolerance level by one unit toward agent 

j’s. Imitating tags and tolerance from successful neighbors may be disrupted by 

‘learning error,’ which is equivalent to the concept of mutation in genetic inheritance. 

Either way this stochastic error is implemented into all models with probability μ1, in 

which an ego’s tags and tolerance is replaced by a new set of traits that are randomly 

generated. 

 

In Chapter 7, there are a number of related and contingent processes in the co-

evolution of agent’s tags, tolerance, and network ties. After each round of interactions 

with all neighbors and a payoff calculation, an agent either updates its cultural traits 

toward those of a randomly chosen neighbor, if that neighbor is more successful 

(‘payoff-based imitation’); or, it breaks a tie and makes a new one (‘homophily-based 

partner selection’), if a new partner is available. Each of these processes is subject to 

stochastic errors in learning and partner change (‘cultural perturbation’ and ‘network 

perturbation’). The likelihood of learning versus tie rewiring depends on network 

plasticity (‘cultural evolution or network evolution’). The whole process (4-2 in Table 

3.2) is summarized in Table 3.3. 
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Table 3.3. Pseudo-codes of Evolution of Culture and of Networks 

For each agent,  
Given a random integer r ∈ {0, 1, …, 99} and a random real number m ∈ [0, 1),  
If r > network plasticity p then 

If μ1 > m then 
If Ni≠ ∅  then 

      Error in imitation 
   End 

Else 
   If Ni≠ ∅ then 
      Payoff-based imitation 
   End 

End 
Else 

If μ2 > m then 
If Ni ≠ ∅  then 

      Error in tie-rewiring (Random tie breaking and random tie making) 
   Else 
      Error in tie-rewiring ((Random tie making) 
   End 

Else 
   If Ni ≠ ∅  then 
      Homophily-based Partner Selection (Making new ties to in-group) 
        Else 
      Homophily-based Partner Selection  

(Breaking ties with out-group and making new ties to in-group) 
   End 
      End 

End 
End 

 

Note: μ2 = 0 in static networks where 1% of agents err in learning at μ1 = .01. The 
conditional probability of cultural perturbation, however, decreases as network 
plasticity increases. A single μ = .01 in the main experiments thus implies that one 
agent is exposed to cultural perturbation while another agent errs in partner 
change. For example, μ1 = 1/10 and μ2 = 1/90 at network plasticity p = 10(%), but 
μ1 = 1/50 and μ2 = 1/50 at p = 50(%). In this way, the strengths of two types of 
randomness are equal regardless of the level of network plasticity in the main 
experiments. 
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Homophily-based Partner Selection. Given a randomly selected agent j ∈ Ni, if 

HDij ≥ Ti, an ego i can break ties with j unilaterally only if ego finds a new partner9. 

New partners are selected with a closure bias q(%)10. If closure is selected, an agent r 

is randomly chosen given that r ∈ Nj  and  j ∈ Ni  (r≠ i). If and only if HDir < Ti 

and HDir < Tr, ego i makes a new tie to r. If a partner is selected without the closure 

bias – with (100 – q)(%), agent h (h≠ i) is randomly selected from those not in the 

two-step neighborhood. A new tie can be made only if HDih < Ti and HDih < Th. A 

special rule is needed for agents that become isolated. Isolate i is assumed to make a 

new link to agent z ∈ N (z≠ i) as long as HDiz < Ti and HDiz < Tz. 

With probability μ2, errors may occur in homophily-based partner selection, 

which is called ‘network perturbation.’ Ego breaks one tie to a randomly selected 

neighbor. Ego then makes a new tie to a player y ∈ N (y≠ i) without mutual consent. 

Isolates subject to perturbed partner selection create a new tie to a partner randomly 

drawn from the entire population. The probability of network perturbation is 0 in all 

models of cooperation on fixed networks in Chapter 4, 5, and 6. 

 

Cultural Evolution or Network Evolution. A parameter of network plasticity p is 

introduced to reflect the ratio of a time scale of agent’s switching interaction partners 

(τa) to another time scale of agent learning from neighbors (τe)11. 

100(%)a

a e

p τ
τ τ

= ×
+ . Plasticity (p) controls the relative likelihood of homophily-

based partner selection versus payoff-based learning. For examples, the network 

topology is static (i.e. frozen networks) at p = 0 like all models in Chapter 4, 5, and 6. 
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At p = 100, network is updated after playing the game without learning from 

neighbors. At p = 50, culture and network evolve at the same rate (on the average 

across many trials). 
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Chapter 4: Characteristics of Tag-based Parochial Cooperation 

_________________________________________________________ 

 
4.1. Problem Statement 

The findings in tag-based cooperative societies (Riolo et al., 2001) are discouraging – 

global cooperation can be maintained only with the loss of diversity and with the 

growth of intolerance. However, agents in Riolo et al.’s model interact with others 

randomly chosen from the entire population (i.e. global mating or playing) and 

parents leave offspring globally (i.e. no ‘viscosity’). The first question in this chapter 

is whether those disturbing results still hold true in our structured population where 

agents play the Prisoner’s Dilemma game with local partners (i.e. local mating or 

playing) and they leave offspring in the neighborhood (i.e. ‘viscosity’): what are the 

characteristic levels of tag diversity and tolerance in emergent cooperative societies at 

equilibrium?; whether or not emergent cooperative societies consist of multiple 

parochial clusters with different markers as tags increasingly act as self-enforcing 

stereotypes?; and what their spatial configuration looks like at equilibrium? 

What Riolo et al. (2001) can explore are small-scale fluctuations between 

cooperative societies, as is shown in Figure 2.2. This is due to the fact that agents with 
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the minimum tolerance in their model still cooperate with identical partners – there 

are no unconditional defectors (who indiscriminately refuse to help others) in the 

population. Even in structured populations, altruists alone cannot defeat unconditional 

defectors when the cost of helping and the average number of ties are relatively high, 

as is verified by Ohtsuki et al. (2006). The second question is thus whether the 

cognitive ability to distinguish between in-group members and ‘others’ promotes 

cooperation in competition with defectors in our structured populations under those 

unfavorable conditions for cooperation. 

There is no possibility in Riolo et al.’s model that mutant unconditional defectors 

may cause a great transformation of cooperative societies into betrayal ones. It is 

expected that even the strongest parochial cooperators in their model would have been 

vulnerable to mutant defectors with exactly the same tags because they want to help 

partners with the identical tag list. Generally speaking, tag-based cooperative societies 

may disintegrate in the presence of mutants who are predisposed to defect while 

displaying tolerably similar tags.  

This is consistent with the conclusions from some other studies on the long-term 

dynamics of cue-based cooperation – its high susceptibility to free-riders displaying 

similar cues: cooperators can share the disproportionate benefits of cooperation 

through signaling among them; however, it fails to continue immediately after the 

emergence of defectors who mimic the communication tokens or the linguistic 

markers shared by (conditional) cooperators (Miller, Butts, and Rode, 2002; Nettle 

and Dunbar, 1997). In other words, discriminating cooperators identify each other by 

‘secret handshaking’ (Robson, 1990), but once mutant defectors (or immigrant 

exploiters) uncover cues among those cooperators, cue-based cooperation dissolves as 
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‘secret handshaking’ loses its values. The last question in this chapter is, therefore, 

how evolutionarily stable tag-based parochial cooperation can be under mutation in 

our structured populations. 
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4.2. Experimental Design 

Main Experiments 

We examine the likelihood that cooperation survives, and the average tolerance and 

the average of social distances agents perceive toward neighbors at cooperative 

equilibrium (not necessarily at the state of universal cooperation), under varying 

conditions of the benefit-to-cost ratio (b/c) and the tag length (L) in the absence of 

mutation (Table 4.1). For the baseline model (M1) in which tags are completely 

mutable, each experiment is run until societies reach either universal cooperation or 

universal defection. Otherwise, it is run for 1,000 time steps. 100 replications are done 

for each condition.  

 

Table 4.1. Parameter Setting of Main Experiments on Model 1 (μ = .00). 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 (Moore) 

Benefit-to-cost ratio 2, 4, 6, 8, 10 

Tag length 

Mutation rate 

Condition for cooperation 

Reproduction rules 

0, 2, 4, 6, 8, 10 

0 

| tA – tB | < TA 

Given one neighbor randomly chosen, if 

her score is higher than an ego, the ego 

copies both her tags and tolerance 

 

 

 



47 

 

Supplementary Experiments: Sensitivity Tests of Model 1 

One might ask whether the initial proportion of unconditional defectors (T = 0) 

influences the likelihood of the survival of cooperation and universal cooperation. For 

example, the initial proportion of agents with T = 0 is 1/(L + 2) = 1/2 given L = 0, 

whereas 1/12 at L = 10. Recall that agents with T ≥ 1 cooperate toward identical 

partners in our model. It is, therefore, reasonable to suspect that the longer the tag 

length L and the higher proportion of agents with T ≥ 1 from the beginning, it is more 

likely that cooperation can survive and societies can achieve universal cooperation. 

 

Table 4.2. Parameter Setting for Sensitivity Test 1 of Model 1 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 (Moore) 

Benefit-to-cost ratio 4 

Tag length 

Initial number of unconditional defectors 

Mutation rate 

Condition for cooperation 

Reproduction rules 

 

 

4 

17 to 33 in increments of 1 

0 

| tA – tB | < TA 

Given one neighbor randomly chosen, 

if her score is higher than an ego, the 

ego copies both her tags and tolerance 

 

 

There are two ways of testing the sensitivity of the results about the likelihood of 

the survival of cooperation and universal cooperation. For the first supplementary 

experiment (SE 1) in Table 4.2, we begin with the condition of b/c = 4 and L = 4 since 
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intermediate values of the b/c ratio and the tag length are used for the main 

experiments in Chapter 6 and Chapter 7. Under this condition, the number of 

unconditional defectors at the beginning is approximately 16.7 = (1/6)(100). We 

examine whether there are significant differences in the average likelihood across 

varying numbers of defectors at the initial stage from 17 to 33 in increments of 1. 

Once the number of unconditional defectors is set, agents with T = 1 through T = 5 are 

uniformly distributed. 50 independent replications are done for each condition. Each 

experiment is run until societies reach either universal cooperation or universal 

defection. Otherwise, it continues until 1,000 time steps. 

 

Table 4.3. Parameter Setting for Sensitivity Test 2 of Model 1 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 (Moore) 

Benefit-to-cost ratio 4 

Tag length 

Initial number of unconditional defectors 

Initial number of Tolerance = 1, 2, 3 

Mutation rate 

Condition for cooperation 

Reproduction rules 

 

 

2, 6, 10 

25 (on average) 

25 for each (on average) 

0 

| tA – tB | < TA 

Given one neighbor randomly chosen, 

if her score is higher than an ego, the 

ego copies both her tags and tolerance 
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Another sensitivity test (SE 2) should be done in order to check whether or not it 

is the tag length that affects the likelihoods of the survival of cooperation and 

universal cooperation (Table 4.3). It should be noticed that the numbers of 

unconditional defectors and the rest (T = 1 from T = L + 1) at the beginning vary 

according to the tag length. Since we want to identify the pure effect of the tag length, 

the initial distribution of the experimental population should be controlled. In this 

sensitivity test, we begin with b/c = 4 and L = 2 instead of L = 4 because cooperation 

always survives and emergent societies almost always arrive at universal cooperation 

when L ≥ 4 as in Table 4.4. Given L = 2, the maximum tolerance is 3 (= L + 1). 

Therefore, there are four different groups (T = 0 through T =3) in the population at the 

beginning. Each group is always composed of 25 (= 100/4) agents on average with the 

same level of tolerance. Of course, the number of indiscriminate defectors at the 

initial stage is controlled. The population distribution at the initial stage is determined 

by a single condition (L = 2). But, we manipulate the experiment by allowing agents 

to have different lengths of tag (L = 2, 6, and 10 in increments of 4) before playing the 

game in order to examine the effect of fine-grained partner identification (with longer 

tag strings) on both likelihoods. 100 independent replications are executed at each of 

three conditions, and we employ the same stop conditions used in SE 1.  
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4.3. Results 

Main Experiments 

Our model at L = 0 is equivalent to the classical model of the evolutionary Prisoner’s 

Dilemma game with network reciprocity. Since agents do not have tags, they cannot 

distinguish ‘us’ from ‘them.’ As a result, the population is purely composed of those 

who always help neighbors and those who always decline to help neighbors. Under 

this condition, there exist only three possible states in the long run. The equilibrium 

population consists of defectors (the ‘bad’ guys), altruists (the ‘good’ guys), or both. 

Either altruists alone or both altruists and defectors constitute emergent cooperative 

societies. Also, emergent societies are always culturally homogeneous, either 

cooperative or betrayal.  

 

Table 4.4. Likelihood of Survival of Cooperation and Universal Cooperation in Model 1 

b/c 

L 2 4 6 8 10 

0 0 0 0 0 43 (0) 

2 23 (22) 56 (50) 73 (63) 62 (50) 88 (46) 

4 100 (89) 100 (81) 98 (85) 96 (81) 98 (70) 

6 100 (81) 100 (80) 100 (91) 98 (82) 100 (87) 

8 100 (87) 100 (84) 100 (87) 100 (90) 100 (79) 

10 100 (87) 100 (95) 100 (89) 100 (84) 100 (86) 
 

Note: The number at each cell represents the possibility that societies reach the 
cooperative equilibrium, that is, how many times out of 100 trials cooperators (T ≥ 
1) survive. For example, when b/c = 2 and L = 2, the chance that cooperation 
survives is 23%. The number in parentheses at each cell indicates the probability of 
universal cooperation. It is 22% at b/c = 2 and L = 2. 
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Table 4.4 shows that network reciprocity alone without ‘tagging’ is not sufficient 

for the institutionalization of cooperation when b/c < 8. Recall that we use the Moore 

neighborhood. The results at L = 0 indicate that unconditional cooperators can survive 

in the presence of defectors – in structured populations where agents interact with 

neighbors and then leave offspring in proportion to fitness in the neighborhood – only 

when the benefit-to-cost ratio in the Prisoner’s Dilemma game is higher than the 

average number of interaction partners. This is similar to the finding by Ohtsuki et al. 

(2006)1.  

Tag-based local interaction and the local dispersion of offspring (‘viscosity’) 

significantly increase the likelihood of the survival of cooperation. When agents use 

only a few dimensions (L = 2) to distinguish ‘us’ from ‘them,’ cooperation is more 

likely to evolve even at the benefit-to-cost ratios lower than the average number of 

neighbors. The likelihood that cooperators (T ≥ 1) survive also increases as the 

relative benefit of cooperation increases. If agents make more fine-grained 

distinctions with four or more dimensions of tags, the likelihood increases up to about 

90% within the whole range of the b/c ratios under experiment. 

When conditional strategies on the basis of similarity are available to agents, 

societies in the long run reach either of the two absorbing states. One is that the 

population purely consists of defectors. The level of global cooperation is, therefore, 0. 

The degree of homogeneity in the population at this state ranges from 0 (completely 

heterogeneous) to 1 (completely homogeneous). The cooperative equilibrium is the 

other, either universal cooperation or not.  

 



52 

 

 

Figure 4.1. Average Perceived Distance at Cooperative Equilibrium in Model 1. 

Note: μ = .00. 

 

 

We measure the average of the mean of social distances each agent perceive 

toward all her neighbors across population defined by 
1 1( ( ))

N k

ij
i j

HD
N k∑ ∑ at the 

cooperative equilibrium. Here, N denotes the population size, and k is the number of 

neighbors agent i has. At L = 0, the population is always homogeneous: agents do not 

feel social distances toward neighbors. The overall trend at L ≠ 0 is that tag diversity 

is seriously eroded in emergent cooperative societies as more successful agents 

asexually leave more offspring with their cultural traits. Nonetheless, Figure 4.1 also 

indicates that emergent societies are more (less) likely to become dominated by a 

single group of agents with exactly the same markers as the tag length become shorter 

(longer), the benefit-to-cost ratio becomes lower (higher), or both. 
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Figure 4.2. Average Tolerance at Cooperative Equilibrium in Model 1. 

Note: μ = .00. 

 

 

In the absence of markers (L = 0), the population can consist of altruists with the 

maximum tolerance (T = 1), defectors with the minimum tolerance (T = 0), or both. 

The average tolerance around 0.5 at L = 0 in Figure 4.2 points to the polymorphic 

state in which altruists co-exist with defectors at equilibrium when b/c = 10. In the 

presence of conditional strategies (L ≠ 0), less tolerant agents have advantages over 

not only more tolerant agents but also defectors. When agents have relatively short 

lengths of tags (L = 2), the most parochial cooperators (T = 1) increasingly dominate 

the population. Meanwhile, not only defectors but also more tolerant agents (T = 2) 

and altruists (T = 3) weed out under the force of selection. The significant erosion of 

tolerance in emergent cooperative societies is still the case when agents have longer 

tags. Nevertheless, we notice that as agents have longer lengths of markers and 

cooperation is less costly, the more likely it is that more tolerant agents (T ≥ 2) 
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maintain emergent cooperative regimes together with the most parochial cooperators. 

Accordingly, it is less likely that tag diversity completely disappears as is observed 

from Figure 4.1. 

 

The spatial distribution of tags and tolerance in emergent cooperative societies at 

equilibrium is another question related to their characteristic levels we have examined 

so far. We are particularly concerned with how it sometimes happens that emergent 

societies still reach high levels of global cooperation without the complete loss of 

tolerance or tag diversity, or without both. In other words, what kind of spatial 

topology makes it possible that tagging serves as self-enforcing stereotyping to 

sustain the co-existence of within-group parochial cooperation and between-group 

non-cooperation at the global level in spite of assimilative influence at the local level? 

The archetypal case of the cooperative equilibrium is that the most 

discriminating cooperators (T = 1) dominate the population. Either defectors or more 

tolerant agents including altruists cannot survive. Recall that T = 1 is the minimum 

level for cooperation because agents with T = 1 cooperate only toward neighbors with 

identical phenotypes, and otherwise refuse to do. Most of time, societies based on the 

strongest parochialism reach universal cooperation in completely homogeneous 

populations. But, it occasionally happens that tag diversity persists in cooperative 

societies purely composed of agents who cooperate only toward identical neighbors. 

Some other times, less parochial agents (either with or without the most 

discriminating cooperators) govern emergent societies attaining universal cooperation. 
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Figure 4.3. Aligned Tribes under a Single Level of Tolerance in Model 1 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

 

Note: The number colored red in each agent indicates her tolerance level. T = 1 for all.  

b/c = 4, L = 4, and μ = .00. 

 

 

Figure 4.3 is one of the examples. Given an L-dimensional binary tag space (L = 

4), the number of all possible sets of markers is 16 = 24. We observe the emergence of 

two communities (tribes) with different sets of markers salient. All members have [ 0 

0 0 1 ] in one community (green), whereas [ 1 0 0 0 ] in the other (pink) in the panel 

(a). The spatial distribution of social distances agents feel toward immediate 

neighbors is shown in the panel (b). As in the panel (c), all members in the population 

are those who cooperate only with identical neighbors. However, agents in group 

boundaries help their group members while refusing to cooperate toward neighbors in 

the other community. In sum, Figure 4.3 indicates the case that emerging cooperative 

clusters are structured in segregated enclaves with persistent cultural diversity. 

 

 



56 

 

 

Figure 4.4. Nonaligned Tribes under a Single Level of Tolerance in Model 1 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

Note: The number colored red in each agent indicates her tolerance level. T = 2. 

b/c = 4, L = 4, and μ = .00. 

 

 

Another outcome is shown in Figure 4.4 when controlling for the b/c ratio and 

the tag length. It is less likely to happen, but the population is sometimes occupied by 

a single group with a higher level of tolerance (T ≥ 2). Recall that more tolerant 

agents perceive a broader range of neighbors as in-group. In other words, it is more 

likely that emergent societies consisting of less parochial guys maintain tag diversity. 

In Figure 4.4, we observe that tag diversity remains in spite of universal cooperation 

in an emergent cooperative society purely consisting of agents with T = 2. Generally 

speaking, if tolerance becomes homogenized at T ≥ 2, then cultural groups with 

different markers can emerge which are not necessarily parallel to each other. 
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Figure 4.5. Aligned Tribes under Two Levels of Tolerance in Model 1 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

 

Note: The number colored red in each agent indicates her tolerance level. T = 1 and T = 2. 

b/c = 4, L = 4, and μ = .00. 

 

Figure 4.6. Nonaligned Tribes under Two Levels of Tolerance in Model 1 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

 

Note: The number colored red in each agent indicates her tolerance level. T = 1 and T = 2. 

b/c = 4, L = 4, and μ = .00. 

 

 

We notice from Figure 4.3 that high levels of global cooperation can be 

sometimes maintained in populations structured by tribes with different markers 
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facing each other in parallel. Figure 4.4 indicates that universal cooperation does not 

necessitate the complete loss of diversity if agents in populations are less parochial. 

However, both emergent societies are composed of a single cooperative phenotype. 

Yet another pattern is the emergence of cooperative societies in which agents with 

different levels of tolerance co-exist (cf. ‘polymorphism’ in evolutionary biology). 

Figure 4.5 shows a typical case that there can be two or more groups of agents 

with different strengths of parochialism in emergent cooperative societies: within-

group cooperation and between-group non-cooperation co-exists (as in the society in 

Figure 4.3), but more tolerant agents and less tolerance ones together establish 

universal cooperation even though the population is not completely homogeneous. 

The society in Figure 4.6 represents another example of polymorphism: only one 

agent has a different list of tags, but tag diversity does not completely disappear even 

in the population reaching universal cooperation because she is protected by more 

tolerant members. However, this pattern of enclave formation is very rarely found.  

In sum, societies consisting of altruists, defectors, and parochial agents at the 

beginning become eventually either cooperative or betrayal in the absence of mutation. 

We do not find any case of the dynamic (polymorphic) equilibrium in which defectors 

co-exist with cooperative agents at L > 0. This case occurs only at L = 0. In contrast to 

Riolo et al. (2001), we discover the possibilities, albeit small, of the evolution of 

multiple tribes displaying different tags with sustainable boundaries, either two or 

more cooperative clusters with different levels of tolerance or a single cooperative 

cluster. They are realized only if there is no further stratification in fitness measured 

by material payoff. Not surprisingly, parochial cooperation stops at group boundaries, 

but the level of global cooperation can sometimes be highest (Figure 4.4 and 4.6) or 
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still relatively high (Figure 4.3 and 4.5). Either way emergent cooperative societies 

retain some degrees of tag diversity unless the most discriminating agents dominate 

the population to build universal cooperation without rivals. 

 

 

Supplementary Experiments 

As is discussed in Section 4.2, the effects of tagging on the likelihoods of the survival 

of cooperation and universal cooperation in Table 4.4 might be spurious. Both 

likelihoods might be rather affected by the initial proportion of defectors contingent 

on the tag length. However, we confirm that cooperation is more likely to survive and 

also societies are more likely to reach universal cooperation as agents make 

distinctions with more tags, given the results from the following two supplementary 

experiments. 

 

 

Figure 4.7. Summary of Sensitivity Test 1 Results of Model 1.  

Note: b/c = 4, L = 4, and μ = .00. The numbers of defectors at the initial stage are 

displayed at the X-axis. 
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We first test the sensitivity of the likelihoods of cooperation survival and 

universal cooperation to the initial proportion of defectors at b/c = 4 and L = 4 as is 

described in Table 4.2. Figure 4.7 shows the results. It turns out that both likelihoods 

(100 and 81, respectively, from Table 4.4) are sufficiently robust even when the initial 

percentage of defectors is almost double (33%) the average percentage of defectors in 

the main experiment (16.67%). 

Another sensitivity test discussed in Table 4.3 is undertaken at the same level of 

b/c = 4 and L = 2. But, agents are allowed to have L = 2, 6, and 10 before playing the 

game in order to investigate the effects of making fine-grained distinction on both 

likelihoods. Notice that the initial percentage of unconditional defectors is constant at 

all three experimental conditions of this test (i.e. 25(=100/4), on average, determined 

by L = 2), but it is 12.5(=100/8) at L = 6 and 8.3(=~100/12) at L = 10 in Table 4.4. Out 

of 100 independent runs, the likelihoods of the survival of cooperation are 100% at L 

= 6 and L = 10. These are significantly higher than 56, the likelihood obtained at L = 2 

in Table 4.4. We also have the significantly higher likelihoods of universal 

cooperation, 91% (L = 6) and 87% (L = 10) than 50% (L = 2).  

 

Finally, we present here the dynamics of tag-based cooperation and its 

evolutionary stability in the presence of 1% mutation with a series of snapshots from 

(a) to (d) in Figure 4.8. At the beginning (a), an almost equal number of agents (100 / 

8) have each level of tolerance, from 0 through 7, given the tag length L = 6. For the 

first few generations, there is a transient state in which within-group cooperation co-

exists with between-group discrimination with a significant amount of tag diversity. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.8. Dynamics of Tag-based Cooperation in Model 1. 

Note: b/c = 4, L = 6, and μ = .01. The number colored red in each agent indicates her 
tolerance level. The brightness of each node is proportional to how many neighbors 
with whom she cooperates out of the total number of neighbors. 
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However, agents become less tolerant in increasingly homogeneous 

environments. In other words, dominant tribes displaying stronger parochialism 

emerge as the number of clusters with different tags decreases over time. The level of 

global cooperation goes up in spite of a continuous loss of the average tolerance 

because cooperation occurs among more homogeneous agents. Agents with T = 2 are 

dominant in the population in the panel (a) who cooperate toward not only identical 

neighbors but also very similar neighbors with the same tags except one dimension as 

their own. This is why although the emerging society reaches a high level of 

cooperation with a significant degree of tag diversity.  

Existing cooperators are, however, vulnerable to agents with T < 2, either more 

discriminating guys or defectors. As mutants displaying stronger parochialism (T = 1) 

win against existing leaders (T = 2), a new tag cluster begins to replace the old one. 

Meanwhile, the society becomes much more homogenized. This is why the level of 

global cooperation can be restored to its previous one. Finally, the society based on 

the strongest parochialism arrives at the state of universal cooperation without any 

degree of tag diversity in the panel (b). In this way, our model shows small-scaled 

perturbations between cooperative regimes in Riolo et al. (2001).  

Recall the major difference between our model and Riolo et al.’s: unconditional 

defectors (“the bad guys”) are constantly generated through mutation. Even the new 

leaders with the strongest degree of parochialism fail to maintain their cooperative 

society in the face of mutant defectors who display exactly the same tags as their own 

in the panel (c). This invasion by indistinguishable mutant defectors followed by a 

downward spiral of cooperation is what Riolo et al. (2001) do not consider. In our 

model, there are not only minor shifts between cooperative regimes but also 
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qualitative transitions from cooperative societies to betrayal societies.  

Because defectors do not benefit from each other, cooperation can re-emerge 

locally once parochial agents happen to cluster together (‘network reciprocity’) in the 

panel (d). The emerging cooperative community now consists of moderate 

discriminators with T = 3. We can predict that although they temporarily cooperate 

with heterogeneous neighbors they will be disturbed by more parochial agents in the 

near future with a serious loss of cultural diversity. Otherwise, since they regard a 

broader range of neighbors as in-group, the society will be more quickly destroyed by 

identical mutant defectors or defectors with the same tags except either one or two 

dimensions. 

Generally, parochial cooperators recognize each other by sending and receiving 

signals of trustworthiness. In our study, tags as observable markers play the same role 

in partner identification for discriminators. Once immigrant defectors mimic signaling 

among those discriminators, making distinctions between “us” and “them” no longer 

work. “Secret handshaking” loses its advantages: a self-enforcing belief is broken that 

helping similar partners produces a differential share of the benefits of cooperation. 

Parochial cooperators must establish new signals (Skyrms, 2004). In the long run, this 

competition leads to endless spirals of global cooperation and global betrayal without 

absorbing states in the presence of mutation (equivalent to agent’s error in imitating 

tags and tolerance of more successful neighbors). 
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4.4. Concluding Remarks 

In this chapter, we first confirm that ‘network reciprocity’ can promote global 

cooperation when the benefit-to-cost ratio in the Prisoner’s Dilemma game is higher 

than the average number of local interaction partners. It is otherwise impossible for 

altruists (indiscriminate cooperators) to survive in the face of defectors even in 

structured populations.  

The population at the beginning in tag-based societies consists of altruists (‘the 

good guys’ with the highest tolerance) who always help others, defectors (‘the bad 

guys’ with the lowest tolerance) who always refuse to help others, and egoists (‘the 

ethnocentric guys’ with intermediate tolerance) who can read observable tags to make 

a distinction between ‘us’ and ‘them.’ These discriminating guys help perceived 

similar others on the basis of the shared belief in in-group favoritism, but otherwise 

they refuse to help with a fear of being exploited by dissimilar others.  

If agents cooperate only with in-group members, such parochial cooperation will 

stop at group boundaries. How is society-wide cooperation possible in a mixed 

population of altruists and ethnocentric egoists, then? Consistent with Riolo et al. 

(2001), we find that if agents leave offspring in their neighborhood in proportion to 

fitness, then the population becomes increasingly characterized by stronger 

ethnocentrism under selection pressure. In other words, agents in emergent societies 

become more parochial to adapt themselves to increasingly homogenized 

environments. Meanwhile, both “the bad guys” and “the good guys” are weeded out. 

Since less tolerant agents become more successful than more tolerant ones as tag 

diversity disappears, agents who cooperate only with identical others finally become 

dominant in emergent cooperative societies (cf. Macy and Skvoretz, 1998). In spite of 
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a continuous erosion of tolerance, high levels of global cooperation can be maintained 

in highly homogeneous populations (e.g. ‘mechanical solidarity’ in a Durkheimian 

sense). We also observe emergent societies sometimes arrive at the equilibrium where 

within-group parochial cooperation evolves with between-group non-cooperation.  

In this case, tags act as self-enforcing stereotypes to make it difficult for tolerance to 

cross structurally segregated enclaves with different markers.  

We find that even the strongest parochial cooperators are vulnerable to mutant 

defectors as long as they display exactly the same tags. Since conditional cooperators 

with lower degrees of parochialism perceive a broader range of neighbors as in-group, 

they are more likely to be disrupted by more heterogeneous mutant defectors (not 

necessarily with the identical tags). In this way, the stability of parochial cooperation 

depends on “labeling” (or “stereotyping”) under uncertainty – whether or not a shared 

belief continues that markers predict each other’s behavior, given that tolerance is not 

observable in tag-based societies. Once the shared belief is broken, there occurs a 

downward spiral of cooperation that leads to societies of mutual betrayal. While there 

are no mutual benefits for agents in betrayal societies, once mutant discriminators are 

clustered with each other to receive a differential share of the benefits of cooperation, 

they can establish new cooperative societies with new salient markers. 

Our model discovers that the conditional cooperative strategy based on the 

strongest parochialism is ‘weakly Nash dominant’ since it wins against defectors and 

also it is always as good as any other cooperative strategies based on higher levels of 

tolerance. However, it cannot be an evolutionarily stable strategy in the presence of 

mutation. We show not only quantitative changes between one cooperative regime 

and another but also qualitative shifts back and forth between cooperative societies 
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and betrayal societies in the face of indiscriminating free-riders. These endless cycles 

proceed along with ‘the tide of tolerance” (Sigmund and Nowak, 2001) and the 

formation and dissolution of tag clusters as tribes. The baseline model in this chapter 

demonstrates how tribes emerge as arbitrary markers at the beginning become salient 

over time through the reinforcement of the disproportionate benefits of parochialism, 

and also how they dissolve in the face of deviants displaying tolerably similar markers. 
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Chapter 5: Roles of Persistent Heterogeneity  

in Parochial Cooperation 

_________________________________________________________ 
 
5.1. Problem Statement 

We identified from the previous chapter the loss of diversity, the growth of intolerance, 

and the instability of cooperation on the basis of similarity against mutant defectors in 

societies, where agents have genetically inheritable tags and tolerance. Are there 

mechanisms that may enable tag-based societies to establish robust parochial 

cooperation without a great amount of erosion of tag diversity and tolerance in 

structured populations? There seem to be a couple of solutions.  

First, very high rates of mutation in both tags and tolerance could supply enough 

tag heterogeneity to enable agents to continue to draw distinctions between ‘us’ and 

‘them.’ Also, mutant discriminators would be more frequently generated to form 

cooperative clusters before cooperation is completely wiped out. As the amount of 

mutation increases, tag-based cooperation becomes more robust against the invasion 

by mutant defectors in terms of stability, but the level of global cooperation becomes 

low in terms of efficiency. High levels of mutation in genetic inheritance are 
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equivalent to large amounts of mistakes in payoff-based imitation. Too high and 

arbitrary mutation rates (or learning errors) are not acceptable in genetic transmission 

(or cultural transmission). 

Second, the population size is definitely a critical factor in the dynamics of tag-

based parochial cooperation. In larger societies, either universal cooperation driven by 

the strongest parochial cooperators or universal defection by unconditional defectors 

is less likely to happen because local homogenization through limited dispersal of 

offspring in the neighborhood (‘viscosity’) could hardly overcome an increased 

amount of heterogeneity in tags and tolerance. There would remain a greater number 

of less parochial agents who accept a broader range of heterogeneous partners as in-

group members. It is expected that increased path lengths in large-sized societies 

render tag-based cooperation more robust in terms of stability, but with a decrease in 

the level of global cooperation in terms of efficiency. This is why the present study 

does not intend to examine the dynamics of tag-based parochial cooperation in very 

large-sized populations. 

In this chapter, we first consider recent studies suggesting another solution to 

stable tag-based cooperation: “tags should mutate faster than strategies” (Hales, 2004; 

Edmonds and Hales, 2005). In other words, cooperative tag groups need to spread by 

mutation of tags before free-riders (by mutation on strategies) invade the group. The 

intuition behind the idea of differential mutation rates of tags and tolerance is 

consonant with Labov’s sociolinguistic study addressed by Nettle and Dunbar (1997). 

Labov (1972) demonstrates “not only that the adoption of linguistic variables 

correlates with membership of a social group but that when a group feels itself 

threatened by outsiders, it will increase its usage of the linguistic markers that make it 
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distinctive, thus producing divergence over time” (Nettle and Dunbar, 1997: 94). We 

apply the idea in Hales (2004) and Edmonds and Hales (2005) to our model. The 

characteristics of emergent cooperative societies where tags mutate faster than 

tolerance will be discussed. 

The current study stresses that existing models are basically concerned with 

genetic evolution of cooperation and assume tags are completely mutable so that 

indistinguishable mutant defector can be born through mutation. From the viewpoint 

of cultural transmission, the instability of tag-based cooperative societies is due to the 

fact that mistakes in learning cultural traits often produce agents who have a 

predisposition to defection and the similar (or exact) tag strings of existing 

cooperators. In other words, exploiters can mimic signals shared among existing 

cooperators without difficulty. 

In one study on the co-evolution of cooperation and linguistic codes associated 

with group membership, Nettle and Dunbar (1997: 98) bring up more sociological 

concepts of cultural markers as simple identities: “the free-rider… could not possibly 

survive in populations where each local group had its own language or dialect. Each 

group would be able to tell by his speech that he was an outsider and where he came 

from. This is not to imply, of course, that social identity is an unchanging, clear-cut 

matter. In real life, it is always being renegotiated and redefined and loses or gains 

significance according to the situation at hand.” In other words, some markers are less 

changeable (e.g. skin color), while others are more changeable (e.g. linguistic codes, 

attitudes, and opinions).  

In this chapter, following Nettle and Dunbar’s suggestion, we propose alternative 

models of cultural evolution of cooperation in which tags as cultural markers and 
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simple identities have different levels of mutability (M2 and M3 in Table 3.2). Unlike 

the baseline model in which agents have genetically inheritable traits in the previous 

chapter (M1 in Table 3.2), each agent in alternative societies is assumed to have one 

core identity which is not subject to both learning and its error.  

We compare the evolutionary dynamics of tag-based parochial cooperation 

across three models: the baseline model of genetic evolution of cooperation in the 

previous chapter (M1); a “caste” society where each agent has such a core identity at 

the same dimension, and therefore the society as a whole has one unchangeable 

dimension of culture (M2); and a “modern” society where each agent has such a core 

identity at different dimensions. The society as a whole does not have such an 

intransmissible cultural dimension (M3). 

It is expected that complete homogenization of markers does not occur in both 

caste and modern societies due to those immicable markers. We first need to ask 

whether or not societies can evolve to retain more tolerance, and thereby achieve high 

levels of global cooperation. In addition to the efficiency of cooperation, we also seek 

to understand the roles of persistent tag heterogeneity in the resilience of emergent 

cooperative societies against the invasion by exploiters who fake signals of 

trustworthiness. 
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5.2. Experimental Design 

Main Experiments 

We undertake the same set of experiments done in the previous chapter (See Table 

4.1) on Model 2 (“Caste Societies” in which each agent has one core identity at the 

same dimension) and Model 3 (“Modern Societies” in which each agent has one core 

identity at different dimensions). We intend to examine the possibility of the survival 

of cooperation, and the average tolerance and the averaged social distances each agent 

from her neighbors at cooperative equilibrium, under varying conditions of the 

benefit-to-cost ratio (b/c) and the tag length (L) in the absence of mutation (Table 5.1).  
 

Table 5.1. Parameter Setting of Main Experiments on Model 2 and 3 (μ = .00). 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 (Moore) 

Benefit-to-cost ratio 2, 4, 6, 8, 10 

Tag length 

Imitation error 

Condition for cooperation 

Payoff-based imitation rules 

0, 2, 4, 6, 8, 10 

0 

| tA – tB | < TA 

Given one neighbor randomly chosen, if her 

score is higher than an ego, the ego copies 

both her tags and tolerance 

 

The number of runs each experimental condition is 100. We allow each 

replication 1,000 time-steps, but terminate only if either universal cooperation or 
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universal defection is reached. Note that we use the terms, “imitation error” and 

“payoff-based imitation rules” for Model 2 and Model 3 (Table 5.1) – where agents 

have tags and tolerance as culturally transmittable traits – instead of “mutation rate” 

and “reproduction rules” for Model 1 (Table 4.1) – where agents have them as 

genetically inheritable ones. 

 

Table 5.2. Parameter Setting of Main Experiments on Model 2 and 3 (μ = .01). 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 (Moore) 

Benefit-to-cost ratio 2, 4, 6 

Tag length 

Imitation error 

Condition for cooperation 

Payoff-based imitation rules 

5 

.01 

 

| tA – tB | < TA 

Given one neighbor randomly chosen, if her 

score is higher than an ego, the ego copies 

both her tags and tolerance 

 

 

We explored the dynamics of tag-based cooperation in the presence of mutation 

(μ = .01) under a single experimental condition in the previous chapter (See Figure 

4.8) when tags as genetic traits are completely mutable (Model 1). Now that we are 

concerned with cultural evolution of cooperation when tags as cultural markers are 

not necessarily mimicable, with special attention to possible differences between 

Model 2 and Model 3, we intend to investigate its dynamics under varying conditions 
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of b/c ratios (2, 4, and 6) at the same rate of mutation as imitation error (μ = .01). An 

intermediate tag length L = 5 is chosen. Each replication has 5,000 steps, and 100 

replications are executed for each experimental condition.  

We basically measure the average tolerance and the average social distance at the 

global level, as in the previous chapter. In order to examine the spatial configuration 

of parochialism and tribes as tag clusters in our structured populations, we introduce 

two new measures at the local level: the degree of link homophily in tags and the 

degree of link homophily in tolerance. The minimum is 0 and the maximum is 1 for 

both measures. In Chapter 3, the neighborhood set Ni is defined as immediate partners 

who are directly connected with agent i. For agent i, a function fj = 1 only if 

ij jrHD HD= , and otherwise fj = 0, given that j ∈ Ni and r ∈ Nj . 

ijHD denotes
1 k

ij
j

HD
k∑ . In the same way, jrHD indicates 

1 k

jr
r

HD
k∑ . k is the 

number of neighbors each agent i and j has. We can define the degree of link 

homophily in tags as 
1 1( ( ))

N k

j
i j

f
N k∑ ∑ . Here, N is the population size. Given 

another function gj = 1 only when Ti = Tj , and otherwise gj = 0, the degree of link 

homophily in tolerance can be measured by 
1 1( ( ))

N k

j
i j

g
N k∑ ∑ . Since unconditional 

defectors (T = 0) never cooperate toward neighbors, we exclude them from the 

population when calculating the degree of link homophily in tolerance. 
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Table 5.3. Parameter Setting of Model where ‘Tags Mutate Faster than Tolerance’ 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 (Moore) 

Benefit-to-cost ratio 2, 4, 6 

Tag length 

Mutation rate 

Mutation factor 

Condition for cooperation 

Reproduction rules 

 

5 

.01 

5, 10, 15, 20, 25, 30 

| tA – tB | < TA 

Given one neighbor randomly chosen, if 

her score is higher than an ego, the ego 

copies both her tags and tolerance 

 

 

We test the proposition in Hales (2004) and Edmonds and Hales (2005) that “tag 

should mutate faster than tolerance” in terms of both efficiency and stability of 

parochial cooperation. There are two major parameters in their studies: the rate of tag 

mutation (mf); and the rate of strategy mutation (m). f denotes the mutation factor. For 

example, if f is 10, tags mutate 10 times faster than strategy (equivalent to tolerance in 

our study). We measure not only the average cooperation, the average tolerance, and 

the average perceived dissimilarity at the global level, but also the average link 

homophily in tolerance and the average link homophily in tags at the local level. 100 

independent replications for each experimental group are done under varying 

conditions of the benefit-to-cost ratios and the mutation factor, given the same tag 

length (L = 5). Each replication has 5,000 steps. 
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5.3. Results 

Main Experiments 

In the absence of imitation errors, both caste and modern societies with one core 

marker per agent eventually arrive at either the equilibrium of defection or the 

equilibrium of cooperation. There are no cases where cooperators co-exist with 

defectors. Tag-based local interaction and local imitation significantly enhance the 

likelihood of the survival of cooperation and universal cooperation. All these results 

are congruent with those from the baseline model in the previous chapter. 

 

Table 5.4. Likelihood of Survival of Cooperation and Universal Cooperation in 

Model 1, 2, and 3 

b/c 

L 2 4 6 8 10 

0 0 0 0 0 43 (0) 

2 23/0/0 
(22/0/0) 

56/18/39 
(50/0/0) 

73/62/92 
(63/0/0) 

62/83/98 
(50/0/0) 

88/96/98 
(46/2/0) 

4 100/94/99 
(89/3/0) 

100/89/100 
(81/16/0) 

98/93/100 
(85/26/0) 

96/97/100 
(81/27/0) 

98/100/100 
(70/30/0) 

6 100/95/100 
(81/54/0) 

100/100/100 
(80/70/0) 

100/100/100 
(91/66/0) 

98/100/100 
(82/80/1) 

100/100/100 
(87/73/0) 

8 100/98/100 
(87/82/2) 

100/100/100 
(84/82/2) 

100/100/100 
(87/83/0) 

100/100/100 
(90/80/2) 

100/100/100 
(79/82/5) 

10 100/100/100 
(87/85/6) 

100/100/100 
(95/89/8) 

100/100/100 
(89/89/16) 

100/100/100 
(84/87/8) 

100/100/100 
(86/85/13) 

Note: The numbers at each cell represent how many times out of 100 trials societies reach 
the cooperation equilibrium in the absence of mutation. For example, when b/c = 4 
and L = 4, it is 100% in Model 1, 89% in Model 2, and 100% in Model 3. The 
numbers in parentheses at each cell indicate the likelihood of universal cooperation. 
At b/c = 4 and L = 4, it is 81% in Model 1, 16% in Model 2, and 0% in Model 3. 

 



76 

 

In all three societies, cooperation can survive even at the benefit-to-cost ratios 

lower than the average number of neighbors (k = 8) as long as agents use the very 

short tag strings (L = 2) for partner identification. At L = 2, there are, however, 

significant differences in the likelihood of its survival across three societies 

particularly when cooperation is more costly (b/c = 2 and b/c = 4). Note that the 

likelihood differences become smaller as cooperation is less costly and the complexity 

of culture increases. If the tag length is sufficiently long (L ≥ 4) that agents can make 

more fine-grained distinctions between ‘us’ and ‘them,’ cooperative agents almost 

always win against defectors regardless of the typology of society.  

We observe quite different patterns in the possibility of universal cooperation 

across three societies. Universal cooperation is less likely to happen in both caste and 

modern societies in which each agent has one immutable marker because they are 

resistant to cultural homogenization. This tendency is more remarkable when 

cooperation is relatively costly and the dimension of the tag space is comparatively 

small. However, as the number of available cultural markers increases, there are no 

significant differences in the likelihood of universal cooperation between societies 

with completely mutable tags (Model 1) and caste societies where each agent has one 

non-negotiable identity at the same dimension (Model 2). Universal cooperation is 

much less likely to happen in modern societies where such core identities are 

distributed across different dimensions than in caste societies with the same number 

of cultural markers. The disparities between both societies do not decrease even if the 

tag space size increases. 
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Figure 5.1 Average Perceived Distance at Cooperative Equilibrium in Model 1, 2 and 3

 

Table 5.5. ANOVA Test on Average Perceived Distance across Model 1, 2, and 3 

L Model 1 Model 2 Model 3 Post-hoc Test (Scheffé) 

4 .06 (.134) .55 (.122) .98 (.118) All pairs ** 

6 .10 (.192) .56 (.145) 1.10 (.177) All pairs ** 

8 .13 (.249) .60 (.232) 1.21 (.256) All pairs ** 

10 .14 (.299) .60 (.235) 1.25 (.314) All pairs ** 

Note: * p < .05 ** p < .01 (Two-tailed tests). The number in each cell denotes the average. 

The number in each parenthesis indicates the standard deviation. 

 

 

High levels of cooperation necessitate huge losses of tag diversity in societies 

where tags as genetic inheritable traits are completely mutable (Model 1). The degree 

of tag diversity, in spite of moderately high levels of cooperation, is much higher in 
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both caste and modern societies because one marker per agent which is immutable in 

the process of cultural transmission increases heterogeneity (Figure 5.1). When 

holding the tag length constant, Model 3 ranks highest, Model 2 second highest, and 

Model 1 lowest in the average perceived dissimilarity. The differences between any 

two of them are statistically significant (Table 5.5).  

We notice that the average perceived social distance at the equilibrium of 

cooperation remains almost constant across varying lengths of tag strings in Model 2 

(and Model 1), whereas it increases as the tag space dimension becomes larger in 

Model 3. In other words, although payoff-based imitation results in assimilative 

influence, agents in modern societies continue to look at each other from some 

distances without losing the average degree of cultural heterogeneity at the beginning.  

 

Figure 5.2. Average Tolerance at Cooperative Equilibrium in Model 1, 2, and 3. 
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Table 5.6. ANOVA Test on Average Tolerance across Model 1, 2, and 3 

L Baseline Model Model 1 Model 2 Post-hoc Test (Scheffé) 

4 1.08 (.226) 1.32 (.453) 1.22 (.381) All pairs ** 

6 1.28 (.457) 1.87 (.411) 1.84 (.367) 
Model 1 and Model 2 ** 
Model 1 and Model 3 ** 

8 1.58 (.694) 2.16 (.405) 2.16 (.419) 
Model 1 and Model 2 ** 
Model 1 and Model 3 ** 

10 1.94 (.904) 2.42 (.604) 2.59 (.549) All pairs ** 

Note: * p < .05 ** p < .01 (Two-tailed tests). The number in each cell denotes the average. 

The number in each parenthesis indicates the standard deviation. 

 

Figure 5.2 shows no differences in the average tolerance at the equilibrium of 

cooperation across three societies when the tag space is not much differentiated (L = 

2). First, the most discriminating cooperative strategy (T = 1) is weakly Nash 

dominant. Second, as long as the tag space size is very small, both caste and modern 

societies also rapidly lose tolerance despite the fact that they retain higher degrees of 

cultural heterogeneity than societies with completely mutable tags as in Figure 5.1: at 

L = 2, the average tolerance (and its standard deviation) is .54 (.078) in Model 2, .71 

(.051) in Model 3, and .03 (.082) in Model 1. 

However, societies do not necessarily grow into a fully blown parochialism as 

long as there remain sufficient amounts of heterogeneity for partner identification. 

Figure 5.2 indicates that both caste and modern societies with one immutable marker 

tend to preserve more tolerance as they becomes less homogenized. At L ≥ 4, the 
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average tolerance in those societies at the cooperative equilibrium is significantly 

higher than the average in societies with genetically inheritable tags, according to the 

ANOVA test in Table 5.6. We also notice that as the tag space becomes larger, agents 

in modern societies tend to have higher levels of tolerance than those in caste societies. 

 

In the previous chapter, we observed that emergent cooperative societies with 

completely mutable tags are extremely parochial and highly homogeneous. Under the 

strong force of homogenization, tags rarely act as self-enforcing markers enough to 

stabilize the segregation of emerging enclaves. Given increased cultural heterogeneity 

in caste and modern societies with one immutable marker per agent, how differently is 

parochialism spatially distributed? And, how are “social circles” (equivalent to tribes 

in Model 1) linked to each other in emergent societies?  

The upper panel of Figure 5.3 represents a typical example of emerging social 

circles in caste societies. The society in this figure purely consists of agents displaying 

the strongest parochialism, but it reaches an intermediate equilibrium level of global 

cooperation (.485) due to increased cultural heterogeneity (the average perceived 

social distance is .515). All members have [ 1 0 0 0 ] in one cultural group colored 

green, while [ 0 0 0 0 ] in the other colored pink. In this way, universal cooperation 

with the complete loss of tag diversity (i.e. all agents have T = 1) rarely happen in 

caste societies when the tag length is relatively short (e.g. 25% of tags out of the total 

(1 or 0 in the first dimension) are immutable at L = 4 in Figure 5.3). The emergence of 

multiple groups much more frequently occurs in Model 2 than in Model 1. Also, two 

or three tribes with different tags are aligned along straight lines with their group 

boundaries preserved in Model 1 (See Figure 4.3), whereas the symmetric spatial 
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alignments of tag clusters and strategies are not required in Model 2 in spite of 

synchronous updating. 

 

Figure 5.3. Nonaligned Social Circles under a Single Level of Tolerance in Model 2 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

 

 

Note: The number colored red in each agent indicates her tolerance level. b/c = 4, L = 4, 

and μ = .00. T = 1 for all agents (Upper) and T = 2 for all (Lower). 

 

 

The lower panel of Figure 5.3 presents another case of cooperative caste 

societies divided into multiple social circles. The b/c ratio and the tag length are 

controlled. As is the same with the upper panel, the population is composed of two 

cultural groups: one with [ 0 0 1 1 ] (Green) and the other with [ 1 0 1 1 ] (Pink). 
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Cultural markers in all other dimensions are converged except those in the first 

dimension. However, the level of global cooperation at equilibrium is 1 because 

agents are more tolerant of diversity (T =2 for all agents). This pattern of the 

emergence of multiple groups is similar to the case in Figure 4.4, but it is more likely 

to happen in caste societies. More importantly, social circles in Model 2 are not 

necessarily highly segregated in contrast to tribes in Figure 4.4.  

 

Figure 5.4. Nonaligned Social Circles under Two Levels of Tolerance in Model 2 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

Note: The number colored red in each agent indicates her tolerance level.  

b/c = 4, L = 4, and μ = .00. 

 

As with Model 1 (See Figure 4.5 and Figure 4.6), polymorphism (the co-

existence of more than two cooperative phenotypes) is yet another case of cooperative 

equilibrium in Model 2 although it does not frequently occur in both societies. The 

population in Figure 5.4 consists of 97 agents with T = 2 and three agents with T = 3. 

Two distinguishable social circles stably remain: [ 0 1 0 1 ] (Pink) and [ 1 1 0 1 ] 

(Green). This society, albeit displaying much weaker parochialism, reaches universal 
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cooperation in spite of a significant level of the average perceived social distance 

among agents (.48). Similar to the society in the lower panel of Figure 5.3, emergent 

cultural groups in Figure 5.4 are connected to one another without very high degrees 

of isolation and clustering. This spatial configuration is in stark contrast to that in 

Figure 4.6. 

 

Figure 5.5. Nonaligned Social Circles under a Single Level of Tolerance in Model 3 

(a) Distribution of Markers (b) Perceived Distances (c) Distribution of Strategies 

 

 

Note: The number colored red in each agent indicates her tolerance level. b/c = 4, L = 4, 

and μ = .00. The level of global cooperation is .398 (Upper) and .745 (Lower). T = 

1 for all agents (Upper) and T = 2 for all (Lower). 
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Figure 5.6. Static Equilibrium versus Dynamic Equilibrium 

(a) 

 

(b) 

 

Note: Model 2 (a); Model 3 (b). The number in each agent represents her tolerance level. 

The brightness of each node is proportional to how many neighbors with whom she 

cooperates out of the total number of neighbors. b/c = 4, L = 4, and μ = .00 for both 

models. 

 

The equilibrium co-existence of parochial cooperators with different levels of 

tolerance (‘polymorphism’) does not very often appear in modern societies. In both 

societies (Figure 5.5), all agents have the same level of tolerance (i.e. T = 1 in the 

upper and T = 2 in the lower). Most of time, a single group of cooperators evolve to 

dominate the population in caste societies and modern societies, but we find different 

patterns of the spatial configuration of tags and tolerance between the two societies. In 

three examples of caste societies above, markers in the first dimension of the tag 
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space are immutable. At the equilibrium of cooperation, those in the last three 

dimensions converge to become identical: [ 1 0 0 0 ] and [ 0 0 0 0 ] in Figure 5.3 

(Upper); [ 0 0 1 1 ] and [ 1 0 1 1 ] in Figure 5.3 (Lower); and [ 0 1 0 1 ] and [ 1 1 0 1 ] 

in Figure 5.4. On the contrary, agents in modern societies have one non-negotiable 

marker in different dimensions. Accordingly, cultural heterogeneity is not only high at 

the global level (.98 in the upper and 1.00 in the lower of Figure 5.5) but also more 

persistent at the local level. It is, therefore, more difficult for emergent cultural groups 

to expand their boundaries by assimilating other group members. The consequence is 

that small-sized homogeneous social circles emerge (10 in the upper and 9 in the 

lower of Figure 5.5). Meanwhile, agents with more heterogeneous markers are not 

firmly affiliated with any of adjacent groups. Members at the boundaries of social 

circles, although they hold the same level of tolerance, continue to modify their 

strategies toward those heterogeneous agents. Hence, the cooperation equilibrium is 

always dynamic, not static, in spite of the absence of imitation errors (Figure 5.6). 

 

We discover that the strategy of conditional cooperation based on the strongest 

parochialism is still favored not only in societies with completely mutable tags but 

also in two societies where each agent has one immutable marker. However, even the 

most discriminating cooperators are inevitably gullible to mutant defectors with 

exactly the same markers in tag-based societies. We also know that a broader range of 

mutant defectors can easily disintegrate parochial cooperation based on higher levels 

of tolerance. Are there mechanisms that may enable tag-based societies to stably 

maintain parochial cooperation in spite of persistently emerging defectors in the 

presence of mutation (imitation errors)?  
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Figure 5.7. Level of Cooperation against Mutation Factor  

Note: Hales (2004: 8) 

 

We first consider the relationship between the speed of tag change and the speed 

of tolerance change. Hales (2004) and Edmonds and Hales (2005) provide two 

necessary conditions for tag-based systems to support high levels of cooperation: tags 

must mutate faster than strategies; and cooperative tag groups need to spread by 

mutation of tags before free-riders by mutation on strategies invade the group. 

Applying different rates of mutation μf and μ to the tag change and the strategy 

change respectively, Hales (2004) demonstrates that high levels of cooperation 

continue when the mutation factor f > 5 (Figure 5.7). From the dispersion of the level 

of cooperation across multiple replications in each experimental condition, we notice 

that cooperation also becomes more stable as tags mutate faster than strategies. 

How to select partners, not what actions to choose, is influenced by tagging in 

Hales (2004) and Edmonds and Hales (2005): strategies are not necessarily based on 

tag-based perception and tolerance in their models. Nonetheless, their idea can be 

applied to our models in which tolerance is a proxy strategy to explore the dynamics 

of tag-based cooperation across different levels of the mutation factor. 
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 (a) 

 

(b) 

 

(c) 

 
Figure 5.8. Dynamics of Tag-based Cooperation across Mutation Factors 

Note: b/c = 4, L = 5, and μ = .01. f = 10 (a); f = 20 (b); f = 30 (c). 
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Table 5.7. Population Characteristics in Societies with Tags Mutating Faster than 
Tolerance 

Variables f b/c = 2 b/c = 4 b/c = 6 Post-hoc Test 

(a) 
Average 

cooperation 

5 .727 (.291) .721 (.278) .742 (.261)  
10 .673 (.201) .675 (.194) .676 (.189)  
15 .573 (.148) .575 (.146) .581 (.136)  
20 .459 (.112) .466 (.103) .469 (.100) 2-4*2-6** 
25 .302 (.074) .310 (.074) .312 (.073) 2-4* 2-6** 
30 .197 (.043) .201 (.043) .202 (.045) 2-4** 2-6** 

(b) 
Average 
tolerance 

5 .878 (.313) .902 (.329) .929 (.318) 2-6** 
10 .943 (.228) .952 (.239) .960 (.244)  
15 .978 (.168) .982 (.186) 1.001 (.191) 2-6** 4-6* 
20 1.004 (.125) 1.017 (.126) 1.022 (.134) 2-4** 2-6** 
25 1.022 (.090) 1.031 (.101) 1.039 (.109) 2-4** 2-6** 
30 1.023 (.086) 1.034 (.096) 1.045 (.115) All pairs ** 

(c) 
Average 

link 
homophily 
in tolerance 

5 .841 (.268) .834 (.252) .852 (.230)  
10 .907 (.171) .901 (.172) .900 (.167)  
15 .938 (.111) .928 (.123) .929 (.116)  
20 .956 (.080) .954 (.079) .951 (.081) 2-6* 
25 .967 (.060) .964 (.066) .961 (.069) 2-6* 
30 .968 (.060) .964 (.065) .960 (.070) All pairs ** 

(d) 
Average 

perceived 
distance 

5 .562 (.541) .541 (.502) .495 (.449) 2-6** 
10 .783 (.416) .767 (.395) .755 (.379)  
15 1.074 (.337) 1.056 (.325) 1.046 (.306) 2-6** 
20 1.396 (.285) 1.379 (.267) 1.369 (.262) 2-4** 2-6** 
25 1.815 (.209) 1.797 (.211) 1.797 (.210) 2-4** 2-6** 
30 2.088 (.130) 2.082 (.130) 2.083 (.130) 2-4** 2-6** 

(e) 
Average 

link 
homophily 

in tags 

5 .471 (.223) .464 (.221) .477 (.214)  
10 .269 (.129) .270 (.127) .271 (.127)  
15 .145 (.069) .146 (.069) .147 (.069)  
20 .085 (.033) .086 (.033) .086 (.033) 2-6* 
25 .063 (.014) .063 (.015) .063 (.015) 2-6* 
30 .066 (.014) .066 (.014) .066 (.014) 2-4* 

Note: L = 5 and μ = .01. The number (in the parenthesis) at each cell indicates the average 
of each measure over time from 0 until 5,000 steps (and the averaged value of the 
standard deviation of each measure over time, not the standard deviation of the 
average of each measure). * p < .05; ** p < .01. For example, 2-4*** indicates the 
significant mean difference between b/c = 2 and b/c = 4 at α = .01. 
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Figure 5.8 shows the dynamics of tag-based cooperation across different levels 

of the mutation factor f when the fixed mutation rate μ = 0.01. At f = 10, an emergent 

society is not that robust in the presence of indistinguishable mutant defectors in the 

panel (a). We observe cooperation evolve more stably, but sometimes with cascades of 

non-cooperation at f = 20 in the panel (b). If tags mutate 30 times faster than tolerance, 

cooperation becomes highly robust in the panel (c). Notice that the level of global 

cooperation declines as tags mutate faster than tolerance. In other words, the trade-off 

relationship between the efficiency of tag-based cooperation and its stability depends 

on the ratio of how fast tags mutate to how fast tolerance. 

In Table 5.7, we present the characteristic levels of the average cooperation, the 

average tolerance, the average social distance (global), the average link homophily in 

tolerance, and the average link homophily in tags (local) under varying conditions of 

the mutation factor f and the b/c ratios (μ = 0.01). As tags mutate faster than tolerance 

when controlling for the b/c ratio, emerging societies are less likely to reach high 

levels of cooperation in terms of efficiency in the panel (a). This is because societies 

are still based on the strongest parochialism (T = 1) displayed in the panel (b) in spite 

of increased tag heterogeneity at the global and local level, as in both the panel (d) 

and (e). The measure of local homophily in tolerance in the panel (c) indicates that the 

degree of spatial homogeneity of parochialism increases as tags mutate faster than 

tolerance. In other words, parochial cooperators can develop new signals by changing 

tags rapidly although mutant defectors consistently invade existing cooperative 

clusters.  
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(a) 

 

(b) 

 

(c) 

 
Figure 5.9. Dynamics of Tag-based Cooperation in Model 1, 2, and 3. 

Note: b/c = 4, L = 5, and μ = .01. Model 1 (a); Model 2 (b); Model 3 (c). The 

brightness of each node is proportional to how many neighbors with whom she 

cooperates out of the total number of neighbors. 
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There are a couple of problems with the application of the idea that tags must 

mutate faster than tolerance. First, it is acceptable to assume that tags are completely 

mutable in genetic inheritance. From the perspective of cultural evolution of 

cooperation, tags as cultural markers are not necessarily completely imitable, as 

discussed at the beginning of this chapter. Second, the circumstances should be 

explained under which one genetic string of tags can mutate faster than another string 

of strategies. Relatedly, if tags are regarded as cultural markers, it should be justified 

why errors in imitating tags occur more frequently than errors in adopting tolerance. 

 

We instead seek to find theoretical possibilities of alternative tag-based societies 

in which cooperation is not only more efficient but also stable from our existing 

models. There is no significant difference in the possibility of cooperation survival 

between Model 2 and Model 3 (See Table 5.4), but we find fundamental differences 

between caste societies and modern societies in the long-term dynamics of 

cooperation in the presence of 1% imitation errors (Figure 5.9). At b/c =4 and L = 5, 

caste societies in the panel (b) very frequently undergo downward spirals of 

cooperation followed by its re-institutionalization, which is similar to the pattern in 

societies with completely mutable tags in the panel (a). Under the same conditions, 

tag-based cooperation in modern societies, on the contrary, is highly stable as in the 

panel (c). It is not shown here, but parochial cooperation in modern societies is robust 

against defectors with tolerably similar markers within a broader range of the b/c 

ratios (from 2 through 6) and the tag lengths (from 2 through 10).  
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Table 5.8. Population Characteristics in Caste and Modern Societies  

Variables b/c = 2 b/c = 4 b/c = 6 

 Model 2 Model 3 Model 2 Model 3 Model 2 Model 3

(a) Average 
cooperation 

.427 
(.196) 

.361 
(.048) 

.492 
(.238) 

.429 
(.070) 

.525 
(.234) 

.526 
(.096) 

(b) Average 
tolerance 

.938 
(.409) 

1.022 
(.125) 

1.081 
(.506) 

1.186 
(.216) 

1.147 
(.508) 

1.478 
(.273) 

(c) Average 
link homophily 

in tolerance 

.816 
(.287) 

.951 
(.075) 

.823 
(.238) 

.926 
(.089) 

.839 
(.195) 

.900 
(.097) 

(d) Average 
perceived 
distance 

.688 
(.255) 

1.216 
(.150) 

.652 
(.222) 

1.172 
(.139) 

.637 
(.209) 

1.162 
(.141) 

(e) Average 
link homophily 

in tags 

.180 
(.046) 

.069 
(.015) 

.189 
(.040) 

.072 
(.015) 

.190 
(.037) 

.076 
(.015) 

Note: L = 5 and μ = .01. The number (in the parenthesis) at each cell indicates the average 
of each measure over time from 0 until 5,000 steps (and the averaged value of the 
standard deviation of each measure over time). At b/c = 6, no mean difference in 
the average cooperation between Model 2 and Model 3. In the rest of the case, the 
mean differences in all five measures between the two models are significant at α 
= .01. 

 

 

As with Table 5.7 about societies with tags mutating faster than tolerance, we 

present the demographic characteristics of both caste and modern societies. First, 

modern societies are less efficient in terms of the level of global cooperation than 

caste societies particularly when cooperation is relatively costly (b/c = 2 and b/c = 4) 

in the panel (a) of Table 5.8). Second, most of time, the strongest parochialism (T =1) 
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is dominant in the population, but agents who are more tolerant of culturally different 

neighbors more frequently remain in modern societies than in caste societies, as in the 

panel (b). Third, polymorphism – the equilibrium co-existence of cooperators with 

different levels of tolerance – does not very often occur in both caste and modern 

societies. But, we note that the average degree of link homophily in tolerance tends to 

decrease as the benefit-to-cost ratio goes up in modern societies, which is not the case 

in caste societies, according to the panel (c). This pattern implies that when 

cooperation becomes less costly, it is more likely in modern societies that weak 

discriminators are adjacent to strong discriminators. Consistently high degrees of the 

average link homophily in tolerance in the panel (c) also indicate that modern 

societies are characterized by significantly stable cooperative clusters. Fourth, the 

average Hamming Distance in the population in the panel (d) shows that agents in 

modern societies feel more dissimilar to each other than agents in caste societies when 

holding the tag length L constant. Lastly, the panel (e) indicates that the average 

degree of local link homophily in tags is significantly lower in modern societies than 

that in caste societies.  

 

Parochial cooperation on the basis of similarity is inherently vulnerable to 

mutant defectors with tolerably similar markers. Our experiments reveal that it is not 

stable against those defectors in societies with completely mutable tags (Model 1) and 

caste societies with one non-negotiable marker per agent in the same dimension 

(Model 2). However, it turns out that it is highly stable in the presence of them in 

societies with tags mutating faster than tolerance and modern societies with one non-

negotiable marker per agent in different dimensions (Model 3).  



94 

 

We are now interested in scrutinizing similarities and differences in the dynamics 

of parochial cooperation between the last two societies (Table 5.9). The experimental 

conditions are the same for both societies: b/c = 4, L = 5, and μ = .01. The results 

about societies with faster-mutating tags in Table 5.9 are excerpted from Table 5.7. 

The last two levels of the mutation factor (f = 25 and 30) are selected for the sake of 

comparison, where cooperation is significantly stable (See Figure 5.8). The results 

about modern societies are extracted from Table 4.8. 

 

Table 5.9. Population Characteristics in Societies with Tags Mutating Faster than 

Tolerance and Modern Societies 

Variables 
Societies with tags mutating 

faster than tolerance 
Modern societies 

(a) Average cooperation 
.310 (.074) + 
.201 (.043) ++ 

.429 (.070) 

(b) Average tolerance 
1.031 (.101) + 
1.034 (.096) ++ 

1.186 (.216) 

(c) Average link homophily 
in tolerance 

.964 (.066) + 
.964 (.065) ++ 

.926 (.089) 

(d) Average perceived 
distance 

1.797 (.211) + 
2.082 (.130) ++ 

1.172 (.139) 

(e) Average link homophily 
in tags 

.063 (.015) + 
.066 (.014) ++ 

.072 (.015) 

Note: b/c = 4, L = 5 and μ = .01. + at the mutation factor f = 25 and ++ at f = 30. The 

number (in the parenthesis) at each cell indicates the average of each measure over 

time from 0 until 5,000 steps (and the averaged value of the standard deviation of 

each measure over time). 
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Both societies are very similar for the following reasons. First, the dominant 

group in emerging societies consists of those who cooperate only with neighbors with 

exactly the same tags as theirs (T = 1), according to the panel (b). Second, there is no 

significant difference (α = .01) in the averaged values of the standard deviation of the 

average cooperation across time from 0 to 5,000 steps: .074 at f = 25 in comparison 

to .070 in the panel (a). Third, the average degrees of link homophily in tolerance are 

very high: .964 at f = 25 and f = 30 in comparison to .926 in the panel (c). These last 

two aspects refer to the noticeable robustness of cooperation in both societies. Lastly, 

persistent tag heterogeneity common to both cases enables emergent cooperative 

societies to be more stable in the presence of mutant defectors. As in the panel (e), the 

average degrees of link homophily in tags are sufficiently low: .063 at f = 25 and .065 

at f = 30 in comparison to .072.  

However, different mechanisms contribute to the robustness of cooperation in 

both societies. In societies with tags mutating faster than tolerance, existing 

cooperative clusters are continuously reorganized into new ones before mutant 

defectors with tolerably similar markers attack them. Members in new groups have 

new signals whereby they recognize each other. In modern societies, one immutable 

element of cultural markers is distributed along different dimensions of the tag space. 

Parochial cooperators do not need to develop new signals in the presence of those 

defectors. Even if discriminating cooperators in some clusters accept mutant defectors 

displaying tolerably similar markers as in-group members, it is less likely to happen to 

their neighboring clusters. 

These disparate routes to stable parochial cooperation in both societies result in 

different levels of global heterogeneity and thereby global cooperation. The average 
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degree of tag heterogeneity at the global level in societies with faster mutating tags is 

much higher than that in modern societies: 1.797 at f = 25 and 2.082 at f = 30 in 

comparison to 1.172 from the panel (d). Consequently, modern societies reach 

significantly higher levels of cooperation (.429) than societies with faster mutating 

tags (.310 at f = 25 and .201), as is presented in the panel (a). Relatively high and also 

stable cooperation is achievable only in modern societies – where each agent has one 

non-negotiable marker in different dimensions of the cultural space, but the society as 

a whole does not have any unchangeable dimension. 
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5.4. Concluding Remarks 

We recognize from the previous chapter that cooperation can evolve even in the 

setting of one-shot interaction when agents read tags and conditionally help reliable 

partners by reading tags as genetically inherited traits. Emergent cooperative societies 

are highly parochial and homogeneous. Emergent cooperative societies are inevitably 

vulnerable to mutant defectors displaying tolerably similar tags who are thereby 

identified as in-group members. In the long term, tag-based societies experience the 

endless cycles of global cooperation and global betrayal. 

In search for alternative societies, we first apply the suggestion by Hales (2004) 

and Edmonds and Hales (2005) that tags should mutate faster than strategies 

(equivalent to tolerance in our study). And then, we consider tags (and tolerance) as 

culturally transmissible traits rather than as genetically inheritable ones in most of 

existing studies such as Riolo et al. (2001), Hales (2004), and Edmonds and Hales 

(2005). From the viewpoint of cultural evolution of cooperation, tags are no longer 

completely mutable – some markers are more mimicable (e.g. linguistic codes), 

whereas some others are less (e.g. skin colors). We construct two new societies, one 

where each agent has one non-negotiable identity at the same dimension (caste 

societies) and the other where such an identity in different dimensions (modern 

societies). 

The first main finding is that the faster tags mutate than tolerance, the more 

stable tag-based cooperation. Recall the ideas of “secret handshaking” and “learning 

secret handshaking.” As parochial cooperators change their signals (e.g. passwords) 

more frequently, the chance of the invasion by defectors (e.g. hacking passwords) will 

decrease. We discover that if tags mutate fast, but it is not sufficient, emergent 
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societies are yet frequently damaged by cascades of non-cooperation triggered by 

mutant defectors; and if tags mutate fast enough parochial cooperation shows high 

robustness despite the fact that all elements of tags are easily mimicable. 

Next, we find that both caste and modern societies are highly parochial as in 

societies in the previous chapter: agents with the minimum tolerance for cooperation 

are still in the majority of the population although emergent societies tend to be more 

tolerant as cooperation becomes less costly. In the absence of imitation errors, there is 

no significant difference in the likelihood of the survival of cooperation in both caste 

and modern societies. 

The societies are significantly different in some aspects. First, universal 

cooperation rarely happens in highly heterogeneous modern societies because agents 

have immicable markers in different dimensions. Besides, those who are more 

tolerant of culturally diverse others constitute modern societies. Nonetheless, 

parochial cooperation is very stable against mutant defectors displaying tolerably 

similar identities only in modern societies.  

We identify the conditions for the stable institutionalization of relatively society-

wide cooperation in tag-based societies. First, parochial cooperators should share a 

minimal number of markers that are difficult for defectors to imitate: the average 

dissimilarity at the global level should not be too low for the efficiency of cooperation. 

As the number of such core markers increases, the level of global cooperation 

declines. In societies with faster mutating tags, parochial cooperators are able to 

develop new signals by changing tags rapidly before mutant defectors invade existing 

cooperative clusters. However, if tags mutate faster than a threshold value of the ratio 

of tag mutation and tolerance mutation, emergent societies do not reach high levels of 
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cooperation because too much tag heterogeneity is constantly introduced into the 

population. On the contrary, modern societies reach higher levels of global 

cooperation than societies where tags mutate faster than tolerance because they have 

the lower degrees of cultural heterogeneity at the global level. 

Second, parochial cooperators should have those markers in different dimensions 

of the cultural space: the average homophily in tags at the local level should be low 

enough for the stability of cooperation. We observe that although both caste and 

modern societies retain a similar degree of cultural diversity, cooperation is seriously 

vulnerable to mutant defectors only in caste societies. Given that only a few cultural 

groups emerge, caste societies are destined to disintegrate as long as defectors 

concurrently appear who are identical except the core dimension to parochial 

cooperators. In modern societies, on the contrary, emerging cultural groups are 

manifold. Consequently, modern societies consisting of multiple small-sized groups 

loosely coupled with one another (cf. Perrow, 1984) can be highly robust against 

emerging free-riders. Even if discriminating cooperators in some clusters accept 

mutant defectors displaying tolerably similar markers as in-group members, it is less 

likely to happen to their neighboring clusters. In this way, multiple social circles in 

modern societies tend to self-organize their group boundaries through ‘tagging’ as 

self-enforcing labeling even in the presence of cultural perturbation. 
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Chapter 6: Parochial Cooperation on Static Networks  

with Different Topologies 
_________________________________________________________ 

 
6.1. Problem Statement 

Human agents interact with randomly selected others in the classical model of 

evolutionary games, but this global random matching is not realistic. For example, 

Riolo et al. (2001) implicitly consider the average number of interaction partners (i.e. 

“pairings” defined by the number of times per generation each agent has an 

opportunity to interact with a randomly encountered other), but agents in their model 

play the Prisoner’s Dilemma game with randomly chosen partners in unstructured 

populations. Human agents may have stable sets of interaction partners relative to the 

rate of cultural evolution, as in our study. Furthermore, human agents may switch 

partners based on their preferences under a certain level of mobility, which will be 

explored in the next chapter.  

Researchers have paid due attention to ‘spatialized’ evolutionary games since the 

classical study of network reciprocity as another route of cooperation (Nowak and 

May, 1992), as is discussed in Chapter 2. In most spatial models agents, however, play 

a game with neighboring partners on the toroidal lattice. In this sense, extant spatial 
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models are concerned exclusively with the effects of network degree (e.g. Von 

Neumann, hexagonal, Moore) on the evolution of cooperation.  

This limitation is the case with existing models of tag-based cooperation. Only a 

few of them consider spatiality in the sense that agents play the Prisoner’s Dilemma 

game with their neighbors, but on the torus: either they leave offspring in proportion 

to fitness (Hammond and Axelrod, 2006) or they imitate cultural traits from more 

successful neighbors (Choi, Yang, and Jo, 2006). The torus structure is degree-

homogeneous, but agents may have different numbers of interaction partners. 

None of the existing tag-based models scrutinizes how the dynamics of 

cooperation may vary across societies with different network topologies. Clustering is 

ubiquitous in networked world and provides different types of benefits (as network 

externalities). People tend to trust each other in cohesive small groups consisting of 

more homogeneous members (Granovetter, 1985). In a similar vein, Coleman (1986) 

raises two interesting questions: how cooperation toward strangers (foreigners) can 

spread across the population (or can be possible in large-sized societies); and how 

cooperating with others depends on the degree of social closure. We note here that he 

addresses these questions in the setting of repeated interactions, not one-shot 

interaction in our study. In other words, the effects of clustering on the evolution of 

cooperation in a one-shot game are not fully understood. 

Second, small-world-ness matters in the evolution of cooperation. For example, 

asking how collective rationality is affected by community network structure, 

Granovetter (1973) points out that interpersonal relations based on cohesive ties may 

cause the overall fragmentation of social network at the community level. His 

hypothesis is that the community’s capacity of acting in concert increases on small-
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world networks where cohesive groups are connected through a few bridges. In other 

words, it is expected that fully globalized cooperation rarely happen in large societies 

with long path lengths. Granovetter (1973) does not consider how fast deviants can 

disrupt cooperative relations in a small-world community, but we expect that more 

robust cooperation in the presence of free-riders, which is discussed in the beginning 

of the previous chapter. 

 

Table 6.1. Network Topologies and Structural Features 

Ring Lattice:  
RG 

Watts-Strogatz (1998): 
SW 

Random Network:  
RN 

Large world 
Highly clustered 

Small-world 
Well clustered 

Small-world 
Poorly clustered 

 

 

p = 0 (Order) 0 < p < 1 p = 1 (Disorder) 
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Agents in this chapter play the game on static networks in which local clustering 

(i.e. making new ties to neighbors’ neighbors to form closed triads) and global 

reachability (i.e. making outward ties towards different clusters) vary. The ring lattice 

in the left panel of Table 6.1 is a high clustered network of overlapping local tribes of 

equal size with long path lengths. This regular network is homogeneous in terms of 

the degree distribution. The society on the other end of network topology is 

characterized by randomized connections of interaction partners with lower degrees of 

clustering in the right panel. A network of different-sized tribes between the world of 

order (the rewiring probability p = 0) and the world of disorder (p = 1) shows a small-

world-ness, like a random network, despite the fact that it is more clustered than an 

equivalent random network, as is shown in the middle panel. 

We intend to examine which network topology can preserve higher tolerance and 

more cultural diversity without imitation errors (i.e. mutation). We also investigate 

how much the dynamics of the local reinforcement of parochial cooperation, its global 

diffusion through cross-cutting ties, and the collapse of cooperative regime by mutant 

defectors can differ across static networks with different topologies in the presence of 

the same amount of imitation error. 

We hypothesize that global cooperation is less likely to be wiped out through 

cascades of non-cooperation on large regular networks with higher degrees of 

clustering and longer path lengths than on small-world or random networks of the 

same size. Tag-based cooperation can be more stable on large regular networks, but 

with a decrease in its efficiency. When controlling for the population size, it will be on 

small-world networks rather than on random networks that mutant discriminators are 
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expected to be more frequently generated and clustered before cooperation is 

completely destroyed by mutant defectors. There will be no significant differences in 

the likelihood of universal cooperation between small-world networks and random 

networks of the same size because their path lengths are almost the same.  
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6.2. Experimental Design 

Main Experiments 

The first experiments are on the dynamics of cooperation on fixed networks with 

different topologies in the absence of mutation: regular networks (RG); small-world 

networks (SW), and random networks (RN). We use the experimental design, where 

the benefit-to-cost-ratio and the tag length are manipulated, at the average degree k = 

8 (Table 6.2). Each experiment is terminated if societies reach either universal 

cooperation or universal defection. Otherwise, each replication runs until 5,000 time 

steps (instead of 1,000 time steps in Chapter 4 and 5) since we consider long path 

lengths of regular networks. Each experimental group has 100 replications.  

 

Table 6.2. Parameter Setting of Main Experiments on Model 4 (μ = .00). 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Regular/ Small-world/ Random networks 

8 

Benefit-to-cost ratio 2, 4, 6, 8, 10 

Tag length 

Imitation error 

Condition for cooperation 

Payoff-based imitation rules 

0, 2, 4, 6, 8, 10 

0 

| tA – tB | < TA 

Given one neighbor randomly chosen, if her 

score is higher than an ego, the ego copies 

her tags and adjusts his tolerance toward her 

level by one unit. 

 

 

 



106 

 

As is discussed in the previous chapters, as the benefit-to-cost ratio and the tag 

length increases, there are higher possibilities that more tolerant agents and tag 

diversity are preserved. This is why the experiment continues at the intermediate 

conditions of b/c = 4 and L = 5 in the presence of the same amount of imitation errors 

(Table 6.3)1. 

 

Table 6.3. Parameter Setting of Main Experiments on Model 4 (μ = .01). 

Parameters  Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Regular/ Small-world/ Random networks 

8 

Benefit-to-cost ratio 2, 4, 6 

Tag length 

Imitation error 

Condition for cooperation 

Payoff-based imitation rules  

5 

.01 

| tA – tB | < TA 

Given one neighbor randomly chosen, if her 

score is higher than an ego, the ego copies 

her tags and adjusts his tolerance toward her 

level by one unit. 

 

 

We compare the outcomes at b/c = 4 to those at b/c = 2 and b/c = 6, holding the 

tag length constant (L = 5). The treatment condition varies in terms of network 

topology: regular networks (RG); small-world networks (SW), and random networks 

(RN). Each replication has 5,000 time steps as with the experiments under mutation in 

the previous chapters. 100 replications are executed for each network topology.  
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We examine whether there are significant differences in the dynamics of the 

local reinforcement of cooperation, its global diffusion, and the invasion by mutant 

defectors across those three societies with the following measures: the first emergence 

time of universal cooperation; how often mutant defectors after their emergence 

constitute the majority of the population; and the frequency of the transition from 

universal cooperation to universal defection.  

 

Table 6.4. Average Clustering Coefficients and Average Path Lengths of Regular, 

Small-world, and Random Networks (μ = .00) 

ACC N Mean SD Min Max Post-hoc Test 

RG 
SW 
RN 

3000
.6429 
.1027 
.0798 

.0000 

.0094 

.0104 

.643 

.081 

.046 

.643 

.134 

.119 
All pairs *** 

APL N Mean SD Min Max Post-hoc Test 

RG 
SW 
RN 

3000
6.6970 
2.4377 
2.4367 

.0000 

.0007 

.0470 

6.697 
2.433 
2.277 

6.697 
2.438 
2.614 

RG vs. SW *** 
RG vs. RN *** 

Note: ** p < .05; *** p < .01.  

 

 

Table 6.4 and Table 6.5 present the average clustering coefficients (ACC) and the 

average path lengths (APL) of three static networks. In the absence imitation errors, 

the average clustering coefficient is highest in RG, second highest in SW, and lowest 

in RN at each experimental group holding b/c and L constant (p = .00). There is no 

mean difference in the average path lengths between SW and RN (p = .351). In the 
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presence of mutation errors, we find the same patterns in both ACC and APL across 

three network topologies. The average difference in APL between SW and RN is not 

statistically significant (p = .862). 

 

Table 6.5. Average Clustering Coefficients and Average Path Lengths of Regular, 

Small-world, and Random Networks (μ = .01) 

ACC N Mean SD Min Max Post-hoc Test 

RG 
SW 
RN 

300 
.6429 
.1028 
.0798 

.0000 

.0010 

.0109 

.643 

.081 

.045 

.643 

.133 

.109 
All pairs *** 

APL N Mean SD Min Max Post-hoc Test 

RG 
SW 
RN 

300 
6.6970 
2.4377 
2.4364 

.0000 

.0007 

.0482 

6.697 
2.435 
2.330 

6.697 
2.438 
2.608 

RG vs. SW *** 
RG vs. RN *** 

Note: ** p < .05; *** p < .01.  

 

Supplementary Experiments 

We want to compare the outcomes from Model 4 with those from Model 1 because 

agents change their tolerance in a step-wise manner in the models in this chapter and 

the next chapter as well. It is likely that the average tolerance is higher in Model 4 due 

to a slower downward change in tolerance, but it is lower because of a slower upward 

change in tolerance. We are particularly interested in whether or not these forces in 

opposite directions will be cancelled out. 
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Table 6.6. Parameter Setting for Sensitivity Test of Model 4. 

Parameters Values or Ranges 

Number of agents 

Interaction space 

Number of adjacent neighbors 

100 

Torus 

8 

Benefit-to-cost ratio 2, 4, 6, 8, 10 

Tag length 

Imitation error 

Condition for cooperation 

Payoff-based imitation rules 

0, 2, 4, 6, 8, 10 

0 

| tA – tB | < TA 

Given one neighbor randomly chosen, if her 

score is higher than an ego, the ego copies 

her tags and adjusts his tolerance toward her 

level by one unit. 

 

 

The likelihood of the survival of cooperation, the average tolerance, and the 

average social distance will be compared across those two models under the same 

experimental conditions (Table 6.6). Each experiment is run until societies reach 

either universal cooperation or universal defection. Otherwise, it is run for 1,000 time 

steps. 100 replications are taken for each condition.  
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6.3. Results 

Main Experiments 

Table 6.7 presents the likelihoods of the survival of cooperation and universal 

cooperation in societies with different network topologies. All societies have 

completely mutable markers, but agents in them adjust tolerance levels towards those 

of more successful neighbors in a step-wise manner. Consistent with the dynamics on 

the torus presented at the first row in Table 6.10 (See Supplementary Experiments), 

there is no chance of the survival of cooperation in spite of network reciprocity unless 

the benefit-to-cost ratio is higher than the average number of neighbors regardless of 

network topology when altruists play a one-shot Prisoner’s Dilemma game with 

defectors. We observe that it sometimes occurs that altruists win against defectors on 

highly clustered regular networks lacking in small-world-ness and societies can reach 

universal cooperation. 

Emergent societies are more likely to attain the state of universal cooperation 

when making a distinction between ‘us’ and ‘them’ is available. However, universal 

cooperation more frequently happens on regular networks than on small-world 

networks or random networks since discriminators can defeat defectors more easily 

due to higher degrees of clustering and longer paths. These advantages of regular 

networks become more noticeable in societies where cultural markers are less 

differentiated and cooperation is relatively costly. 
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Table 6.7. Likelihood of Survival of Cooperation and Universal Cooperation in 

Model 4 (Networks) 

b/c 

L 2 4 6 8 10 

0 
0/0/0 

(0/0/0) 
0/0/0 

(0/0/0) 
0/0/0 

(0/0/0) 
0/0/0 

(0/0/0) 
13/0/0 

(13/0/0) 

2 
51/14/22 

(51/14/22) 
76/27/32 

(75/27/32) 
82/16/30 

(80/16/30) 
95/26/54 

(91/26/54) 
100/65/70 

(100/65/70) 

4 
100/84/82 

(100/84/82) 
100/72/71 
(99/72/71) 

100/81/80 
(96/81/80) 

100/92/91 
(99/90/89) 

100/98/99 
(100/96/98) 

6 
100/88/86 
(99/88/86) 

100/88/88 
(99/88/88) 

100/96/94 
(99/95/88) 

100/95/98 
(96/91/95) 

100/98/98 
(100/98/96) 

8 
100/94/80 

(100/94/80) 
100/94/94 
(98/94/94) 

100/98/88 
(100/94/88) 

100/100/94 
(99/97/91) 

100/100/99 
(99/99/97) 

10 
100/91/91 
(96/91/91) 

100/93/95 
(99/93/95) 

100/98/97 
(99/97/95) 

100/100/100 
(98/96/97) 

100/100/100 
(97/98/97) 

Note: The number at the first row represents how many times out of 100 trials 
cooperators survive in the absence of imitation errors. The number in parentheses at 
the second row indicates the likelihood of universal cooperation. Within each row, 
regular networks (RG), small-world networks (SW), and random networks (RN) 
from the left to the right. For examples, when L = 6 and b/c = 6, the possibility of 
the survival of cooperation is 100% (RG), 96% (SW), and 94% (RN). The chance 
of universal cooperation is 99% (RG), 95% (SW), and 88% (RN).  

 

 

As is presented in Figure 6.1, cultural diversity tends to decrease over time since 

agents imitate markers of more successful neighbors, but emergent cooperative 

societies at equilibrium are more likely to retain cultural diversity as cooperation 

becomes less costly and the tag length becomes longer. However, when holding the 

benefit-to-cost ratio of cooperation and the complexity of culture L, we find that 
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agents assimilate into local villages significantly much faster on regular networks 

because of higher degrees of clustering than that on small-world networks and random 

networks. 

 

 

Figure 6.1. Average Perceived Distance at Cooperative Equilibrium in Model 4 

Note: Regular networks (left); small-world networks (middle); random networks (right). 

 

 

Figure 6.2 shows the average of tolerance in the population at the cooperative 

equilibrium. Agents learn intolerance very quickly from more successful neighbors 

because they have to adapt themselves to changing local environments where cultural 

heterogeneity is increasingly eroded which serves as a guide for their discriminating 

interactions to others. Regardless of network topology, it is most likely to happen that 

the overwhelming majority are those who have the most discriminating one among all 

possible cooperative strategies. However, conditional cooperators with higher levels 

of tolerance are more likely to survive as the tag length becomes longer and the 

benefit-to-cost ratio gets higher.  
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Figure 6.2. Average Tolerance at Cooperative Equilibrium in Model 4. 

Note: Regular networks (left); small-world networks (middle); random networks (right). 

 

 

In particular, cooperative agents with the strongest parochialism are more 

favored on regular networks than on small-world networks and random networks 

because the local convergence of cultural markers are faster in those ring lattices. 

Consequently, the average tolerance at the cooperative equilibrium on regular 

networks is lower than that on the other two networks under the same conditions of 

the benefit-to-cost ratio and the complexity of culture. 

We take a robust regression of the average tolerance at the cooperative 

equilibrium on the benefit-to-cost ratio, the tag length, and network topology. The 

iteratively reweighted least squares procedure in STATA is used because the data are 

seriously affected by non-normality and heteroskedasticity rather than by influential 

outliers. Since we do not want to impose any particular pattern in the relationship 
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between dependent and independent variables, we generate four dummy variables of 

the b/c ratio, four dummy variables of the tag length, and two dummy variables of 

network topology, SW and RN, as is in the left panel of Table 6.8.  

 

Table 6.8. Robust Regression on Average Tolerance at Cooperative Equilibrium 

Variable b SE Variable b SE 

b/c = 4 (dummy) .4117** .0241 b/c = 4 (dummy) .4117** .0241 

b/c = 6 (dummy) .6704** .0240 b/c = 6 (dummy) .6697** .0240 

b/c = 8 (dummy) .7912** .0236 b/c = 8 (dummy) .7909** .0236 

b/c = 10 (dummy) .8615** .0234 b/c = 10 (dummy) .8610** .0234 

L = 4 (dummy) .3050** .0271 L = 4 (dummy) .3023** .0271 

L = 6 (dummy) .9264** .0269 L = 6 (dummy) .9235** .0269 

L = 8 (dummy) 1.7273** .0268 L = 8 (dummy) 1.7233** .0268 

L = 10 (dummy) 2.5304** .0268 L = 10 (dummy) 2.5265** .0268 

SW (dummy) .1398** .0181 ACC -1.8226** .5739 

RN (dummy) .2344** .0179 APL .1921** .0744 

Intercept .3964 Intercept .2843 

Probability > F 0.0000 Probability > F 0.0000 

N 6448 N 6448 

Note: * p < .05; ** p < .01. The reference groups are b/c = 2, L = 2 (in both models), and 
RG (in the left model). The OLS regression does not provide significantly different 
results. Adjusted R2 are .7005 (Left) and .6991 (Right) according to the OLS 
regression. 
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First, the higher benefit-to-cost ratio, the higher tolerance at the cooperative 

equilibrium. Controlling for the effects of the tag length and network topology, all the 

average tolerance differences between each of four societies with cooperation more 

costly and the reference society (b/c = 2) are statistically significant. Next, the longer 

tag length, the higher tolerance in emergent cooperative societies. Holding all other 

variables constant, all four societies with longer tag strings are significantly more 

tolerant of cultural diversity than the reference society (L = 2). Lastly, we also find 

that the average tolerance at the cooperative equilibrium is significantly higher in 

random networks and small-world networks than in regular networks when 

controlling for the effects of all other variables.  

In order to separate the effect of average clustering from the effect of small-

world-ness (global reachability), we set another model in the right panel of Table 6.8. 

The average tolerance at the cooperative equilibrium is significantly affected by both 

network properties, controlling for all other variables. 0.2 point increase in the 

average clustering coefficient lowers the average tolerance by approximately 0.4. It 

also turns out that as the average path length increases by one unit, the average 

tolerance goes up by approximately 0.2. These two effects are consistent with the 

results presented in Figure 6.4. In sum, the higher clustering and the more easily 

globally-reachable, it is more likely that emergent cooperative societies are grounded 

on stronger parochialism.  
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(a) 

(b) 

(c) 

Figure 6.3. Dynamics of Tag-based Cooperation in Model 4 across Network Topologies 

Note: b/c = 4, L = 5, and μ = .01. Regular (a); Small-world (b); and Random (c). The number 
in each agent indicates her tolerance level. The brightness of each node is proportional 
to how many neighbors with whom she cooperates out of the total number of 
neighbors. 
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Tag-based cooperative societies are not evolutionarily robust in the presence of 

imitation errors, but the dynamics of the local reinforcement of parochial cooperation, 

its global diffusion, and the invasion by defectors significantly vary across different 

network topologies. We capture a typical run of the simulation on regular networks in 

the panel (a), small-world networks in the panel (b), and random networks in the 

panel (c) of Figure 6.3.  

 

 

Figure 6.4. First Emergence Time of Universal Cooperation 
 

 

We record the first emergence time of universal cooperation (e.g. 353, 27, and 25 

from 1st_etime_all_c in each panel of Figure 6.3). Figure 6.4 displays the average 

time step when societies reach the state of universal cooperation. The local 

convergence of tolerance and cultural markers is much faster on regular networks 

with high degrees of clustering, but it takes much longer for local cooperation to be 
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globalized because of their longer path lengths when holding the benefit-to-cost ratio 

constant. On the contrary, there are no significant differences in the first emergence 

time of universal cooperation between small-world networks and random networks 

across the b/c ratios under experiment. 

 

 

Figure 6.5. How Often Defectors Successfully Form Majority 

 

 

Next, we measure the frequency that indiscriminate defectors becomes the 

majority in the population (e.g. 7, 15, and 15 from T = 0 p > .5 in each panel of 

Figure 6.3). As is shown in Figure 6.5, mutant defectors with tolerably similar 

markers are less likely to become the majority in the population on regular networks 

than on small-world networks and random networks. Emergent cooperative societies 

are more frequently attacked by those defectors as cooperation becomes more costly, 

but the efficiency of the invasion by defectors is more seriously affected by the 
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benefit-to-cost ratio on small-world networks and random networks than on regular 

networks. It is statistically significant (α = .01) that defectors are more successful in 

forming the majority in the population after their emergence on small-world networks 

than on random networks at b/c = 4 and b/c = 6. 

 

Table 6.9. OLS Regression on How Often Defectors Successfully Form Majority 

Variable b SE Beta 

b/c = 4 (dummy) -5.859** .392 -.401 

b/c = 6 (dummy) -8.148** .392 -.558 

ACC 51.549** 12.315 1.949 

APL -8.414** 1.596 -2.454 

Intercept 34.502 

Probability > F .0000 

N 900 

Note: * p < .05; ** p < .01. The reference group is b/c = 2. Adjusted R2 = .528. 
 

 

According to Table 6.9, the benefit-to-cost ratio significantly affects whether 

mutant defectors displaying tolerably similar markers can become the majority in the 

population by triggering a downward spiral of cooperation. Controlling for the effects 

of average clustering and global reachability, societies with less costly cooperation are 

more successful in hindering the invasion by those defectors compared to the 

reference society (b/c = 2). Holding the b/c ratio constant, either societies with higher 
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degrees of clustering or those with more cross-cutting ties are more susceptible to the 

invasion by mutant defectors. For example, 0.2 point increase in the average 

clustering coefficient or one unit of decrease in the average path length heightens the 

frequency that defectors constitute more than half of the population by approximately 

10.  

 

 

Figure 6.6. Frequency of Transition from Universal Cooperation to Universal 

Defection 

 

 

Lastly, we record the number of the half downward cycles from universal 

cooperation to universal defection (e.g. 1, 3, and 5 from # of uc to ud in each panel of 

Figure 6.3). As is in Figure 6.6, regular networks are less likely to experience a 

complete destruction of universal cooperation because very highly clustered societies 

tend to be repaired by re-emerging local clusters of parochial cooperators in the 
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middle of the invasion by mutant defectors. For the same reason, societies with 

relatively high degrees of clustering (SW) are more robust than their counterparts 

(RN) although defectors on small-world networks constitute the majority more 

successfully than those on random networks (Figure 6.5). The average occurrence of 

the transition from universal cooperation to universal defection does not show a 

significant difference between small-world networks and random networks not only at 

b/c = 2 (α = .01) but also at b/c = 6 (α = .05).  

 

 

Supplementary Experiments 

As is presented in Table 6.10, we find no significant differences in the likelihoods of 

the survival of cooperation and universal cooperation between societies where 

markers are completely mutable, but agents adjust tolerance levels towards those of 

more successful neighbors in a step-wise manner (Model 4) and societies with 

completely mutable tags and genetically transmissible tolerance (Model 1). 

First, altruists cannot win against defectors if the benefit-to-cost ratio does not 

exceed the average number of neighbors in structured populations consisting of them 

alone (L = 0). Polymorphism, the co-existence of those two agents, is otherwise 

possible, whereas there is no chance of universal cooperation even at b/c = 10 without 

‘tagging.’  

However, tag-based local interaction and local learning significantly increase the 

chance of the survival of cooperation and universal cooperation as well. The longer 

the tag length, the more likely it is that parochial cooperators defeat not only defectors 

but also altruists. Making a distinction between ‘us’ and ‘them’ with four-length 
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markers is enough for emergent societies to avoiding falling into the trap of mutual 

betrayal up to a 90% chance within the whole range of the b/c ratios under experiment. 

 

Table 6.10. Likelihood of Survival of Cooperation and Universal Cooperation in  

Model 4 (Torus) 

b/c 

L 2 4 6 8 10 

0 
0 
0 

0 
0 

0 
0 

0 
0 

46 (0) 
43 (0) 

2 
30 (30) 
23 (22) 

60 (58) 
56 (50) 

68 (60) 
73 (63) 

88 (61) 
62 (50) 

99 (54) 
88 (46) 

4 
98 (89) 

100 (89) 
90 (78) 

100 (81) 
94 (74) 
98 (85) 

99 (70) 
96 (81) 

100 (77) 
98 (70) 

6 
99 (87) 

100 (81) 
99 (88) 

100 (80) 
99 (82) 

100 (91) 
100 (78) 
98 (82) 

100 (82) 
100 (87) 

8 
99 (86) 

100 (87) 
99 (89) 

100 (84) 
100 (83) 
100 (87) 

100 (89) 
100 (90) 

100 (88) 
100 (79) 

10 
97 (81) 

100 (87) 
99 (89) 

100 (95) 
100 (92) 
100 (89) 

100 (84) 
100 (84) 

100 (87) 
100 (86) 

Note: The number at each cell represents the possibility that societies reach the 
cooperative equilibrium, that is, how many times out of 100 trials cooperators (T ≥ 
1) survives in the absence of imitation errors. The number in parentheses indicates 
the likelihood of universal cooperation. In each cell, the numbers at the first row 
(Model 4) and those at the second row (Model 1) from Table 4.4. 

 

 

It does not necessarily happen that the most discriminating agents dominate a 

completely homogeneous population to take the lead in universal cooperation, as is 

indicated by the discrepancy between the likelihood of the survival of cooperation and 
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the likelihood of universal cooperation. We observe cooperative societies sometimes 

emerge in which tribes with different sets of markers co-exist without penetrating one 

another under various spatial patterns as presented in Figure 4.3 through Figure 4.6.  

 

 

Figure 6.7. Average Perceived Distance at Cooperative Equilibrium in Model 1 and 4 

 

 

Figure 6.8. Average Tolerance at Cooperative Equilibrium in Model 1 and 4 
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Next, we compare the average dissimilarity and the average tolerance at the 

cooperative equilibrium across two societies (Figure 6.7 and Figure 6.8). The overall 

tendency is not different from one society to the other: as agents have longer tags, 

cooperative societies tend to be more heterogeneous and less parochial. More tolerant 

agents are less likely to perish and cultural diversity is thus more likely to be 

maintained in societies of concern in the following two chapters where agents 

relatively slowly learn tolerance from more successful neighbors. However, it turns 

out that there are no statistically significant differences in those tendencies between 

two societies when agents have relatively short tags (L = 2 or 4) at α= .05 when 

controlling for the benefit-to-cost ratio, except in the average dissimilarity at L = 4 

and b/c = 10. 
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6.4. Concluding Remarks  

There are no significant differences in the survival of cooperation across three tag-

based societies with different network topologies. Also, emergent tag-based societies 

can maintain society-wide cooperation only with significant losses of tolerance and 

cultural diversity, regardless of network topology. Nonetheless, we find that the 

degree of parochialism on average is stronger in regular networks because the local 

convergence of cultural markers is faster in highly clustered societies. The likelihood 

of universal cooperation is, therefore, higher in those societies. Agents learn 

intolerance more slowly in small-world networks and random networks. More tolerant 

agents who cooperate with culturally diverse others are more likely to be preserved in 

less cohesive networks.  

None of tag-based societies is stable in the face of deviants displaying tolerably 

similar markers, but we find that the dynamics of the local reinforcement of tag-based 

cooperation, its global diffusion, and cascades of non-cooperation triggered by those 

defectors differ from one network topology to another depending on local clustering 

and global reachability. First, local cooperation is reinforced more quickly on regular 

networks with higher degrees of clustering. Next, it takes much longer for parochial 

societies to reach universal cooperation on regular networks with fewer short cuts 

than on the other two ‘small-world’ networks. Lastly, societies shaped by regular 

networks with very long path lengths are more robust because discriminating egoists 

more frequently are organized into cooperative groups due to high clustering, and 

they impede a complete destruction of cooperation by defectors facing fewer cross-

cutting ties. 

We conclude that high clustering on average contributes to the rapid formation of 
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cooperative clusters. However, existing studies do not consider its negative effects on 

the robustness of cooperation in one-shot interactions. Group members embedded in 

cohesive ties tend to trust each other, but such clustered groups are more easily 

perturbed by defectors with tolerably similar markers (i.e. local cascades of non-

cooperation). Clustering-driven social capital is not always good for the 

institutionalization of cooperation in sizeable groups without reciprocity and sanctions. 

Cooperators in societies should be able to recruit defectors at greater distances to 

achieve high levels of cooperation. However, defectors can invade cooperative 

clusters more efficiently through cross-cutting ties. In these aspects, global 

reachability is a double-edged sword, as Cassar (2007) and Hanaki, Peterhansl, Dodds, 

and Watts (2007) address it. Consistent with our hypotheses at the beginning, we 

uncover that a long path length may delay the accomplishment of society-wide 

cooperation. On the other side, it provides favorable conditions for the stable 

evolution of cooperation by slowing down the speed at which defectors that disrupt 

signals of trustworthiness traverse.  
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Chapter 7: Co-evolutionary Dynamics of Parochial Cooperation  
and Networks 

_________________________________________________________ 

 
7.1. Problem Statement 

Our experiments in the previous chapters indicate that strong parochialism and 

cultural assimilation is characteristic of emergent cooperative societies unless the 

benefits of cooperation are relatively high, the tag space (L) is sufficiently large from 

the beginning, cultural heterogeneity is exogenously induced by immicable markers 

(Chapter 5), or societies have long path lengths (Chapter 6). In particular, the co-

existence of less tolerant agents with more tolerant agents (polymorphism) is rarely 

observed in emergent cooperative societies. 

Our focus in this chapter is on the option that agents can terminate the current 

relationships and choose new partners – instead of learning – from the “non-forced/ 

selective play” (Vanberg and Congleton, 1992; Orbell and Dawes, 1991) paradigm. 

We combine the action approach with the selection approach: the artificial societies 

that we explore below are ones in which agents learn both cultural markers and 

tolerance from more successful neighbors. Alternatively, they may break ties with 

dissimilar neighbors and form new ties to similar new partners selected either by 
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referral, or from the larger society.  

There is no risk of network disconnection in the previous chapter since agents 

play the game with the same set of neighboring partners in fixed networks. Back to 

the fourth question raised in Chapter 2, if agents select interaction partners based on 

homophily preference (“birds of the same tags flock together”), societies, however, 

may be segregated into highly homogeneous factions (e.g. Schelling’s model of 

residential segregation). This leads to a dilemma of integration in a Durkheimian 

sense: local integration requires cohesive ties (strong ties), whereas global integration 

necessitates cross-cutting ties (weak ties). We stress here that this dilemma is 

consistent with the trade-off relationship between the local reinforcement of 

cooperation and its global diffusion discussed in the previous chapter. 

As addressed in the previous chapter, Granovetter (1973) proposes a solution to 

this dilemma, a small-world network as the optimization of strong ties (Colemanian 

social capital in this chapter) and weak ties (Burtian social capital in this chapter). 

Some studies (e.g. Eguíliz, Zimmermann, Cela-Conde, and San Miguel, 2005) 

observe that evolving small-world networks – where agents play the different roles 

such as “leaders,” “conformists,” and “exploiters” named by Eguíliz et al. (2005) – 

strongly promote the evolution of cooperation. However, some others contend that 

scale-free networks are highly conducive to globalized cooperation (e.g. Santos and 

Pacheco, 2005; Li, Zhang, and Hu, 2007). Suffice to say here that those studies, either 

cooperation in fixed networks or cooperation in endogenous networks, do not 

consider its evolutionary dynamics in the presence of the invasion by emerging 

defectors.  

Given our joint model of emergent order and emergent structure, we seek to 
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understand the effects of network plasticity and transitive closure bias in the selection 

of new partners on the evolution of parochial cooperation and network topology. A 

particular interest is whether variation in plasticity and closure bias makes possible 

stable cooperative societies in the face of defectors that avoid the tendency toward 

reduced cultural diversity and high intolerance. 

 

 

Tag-based Actions and Tag-based Selection: Parochialism and Homophily 

There are two distinctive approaches in existing models of tag-based societies. It is 

useful to differentiate what actions to choose (i.e. the action strategy) from how to 

select partners (i.e. the selection strategy) following Yamagishi, Hayashi, and Jin 

(1994). In one usage of tags, agent has tag-mediated perception of dissimilarity to 

interaction partners. Tolerance serves as a proxy strategy. Agent can use different 

strategies toward different partners depending on whether or not her perceived 

distances to her partners are less than her tolerance level (Riolo et al., 2001; Choi et 

al., 2006). Agents globally interact with a few randomly selected others (e.g. Riolo et 

al., 2001) or locally with adjacent neighbors on the lattice (e.g. Choi et al., 2006). 

Either global or local interaction is forced without so-called the “exit option” (Orbell 

and Dawes, 1993). 

Tagging may play another role in the evolution of cooperation by affecting how 

to select partners. In this approach, it is the chance of interactions that is influenced by 

‘tagging’ (Riolo, 1997; Hales, 2000; Hales, 2004; Hales and Edmonds, 2003; 

Edmonds and Hales, 2005). This usage is closer to the original meaning of tagging as 

a pervasive mechanism which facilitates selective interactions through aggregation 
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and boundary formation in complex adaptive systems (Holland, 1993; Holland, 1995). 

For instance, agents move around to search the population for identical partners (e.g. 

Hales, 2000; Hales, 2004; Hales and Edmonds, 2003; Edmonds and Hales, 2005). 

Either no interaction (i.e. ‘unforced play’) or interaction with any of others randomly 

selected (i.e. ‘forced play’) is implemented if there is not any identical partner 

(Edmonds and Hales, 2005). In Riolo (1997), the chance of interaction between agent 

A and B is 1 – | tA – tB | p given that agents have real-number tags t ∈ [0, 1]. A single 

fixed value of “pickiness,” p = 0.2, is used, instead of endogenous tolerance. 

Strategies are not based on tag-based perception in these models, where which agents 

do not have tolerance (as a proxy for strategy in the present study). For example, 

unconditional cooperation and unconditional defection are taken in Hales and 

Edmonds (2003) and Hales (2004). Riolo (1997) employs stochastic strategies 

represented by triple real numbers.  

 

 

Issues in Existing Models of Cooperation on Dynamic Networks 

Research on “emergent order” (institutional order embedded in networks – dynamics 

on networks) has been done separately from research on “emergent structure” 

(network evolution – network dynamics) until recently (Macy and Willer, 2002), but 

models of the co-evolutionary dynamics of cooperation and networks in social 

dilemma games have indeed become a major research focus (Eguíliz et al., 2005; 

Santos, Pachecco, Lenaerts, 2006; Hanaki, Peterhansl, Dodds, and Watts, 2007; 

Buskens, Corten, and Weesie, 2008; Fu, Hauert, Nowak, and Wang, 2008). In such 
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artificial societies, adaptively learning or rational agents interact and are influenced by 

their neighbors, as in fixed multi-agent games. In addition, agents may break ties to 

existing neighbors and form new ties. The interplay of influence of the network 

embedding on the agent and the agent’s (strategic) rewiring of their network positions 

give rise to the co-evolution of agent traits in the population and the topology of the 

network. In other words, the focus is on how (pro-social) norms co-evolve with on-

going relationships in which agents are embedded, who are neither over-socialized 

nor under-socialized (Granovetter, 1985). 

In such co-evolutionary models, the essence of the theory lies in the rules by 

which agents interact with, change their strategies, and break and make ties with 

interaction partners. In (evolutionary) game theoretical approaches, agents imitate 

higher-scoring-strategies in the neighborhood at the previous round (i.e. influence). 

However, there are inconsistencies between how to interact with partners (i.e. action) 

and how to choose them (i.e. selection): agents use a single strategy, which they copy 

from more successful neighbors, toward all neighbors at the next round (e.g. ‘always’ 

cooperate and ‘always’ defect), while they choose partners reading image scores (Fu 

et al., 2008), randomly (Eguíliz et al., 2005), or based on a myopic calculation of 

expected benefits and costs (Hanaki et al., 2007). Furthermore, both tie dissolution 

and tie construction is unilateral (e.g. Fu et al., 2008), or tie breaking is consensual 

and tie making is unilateral (e.g. Eguíliz et al., 2005). Neither is realistic.  

In more classical game theoretical approaches, a consistency between the action 

strategy and the selection strategy is maintained given that boundedly or perfectly 

rational agents attempt to maximize their utilities (e.g. Buskens et al., 2008). But, 

adaptively learning agents in our study imitate cultural tags of interaction partners 
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who are more successful and modify tolerance toward their tolerance levels: they do 

not have complete knowledge about the status of the network and they cannot 

consider all possible choices of strategy, tie formation, and its deletion: they do not 

change their tolerance as a proxy strategy to maximize utility; and they do not manage 

their ties strategically in a forward-looking manner. Cultural tags play a role in 

interaction: agents help similar alters, but do not if their perceived social distances 

towards alters are bigger than their tolerance levels. Cultural tags also play a role in 

selection. Agents break the old ties unilaterally with dissimilar others and create new 

ties to similar others. For a new tie to be formed, however, the difference between the 

two agents must fall within the tolerance of both agents. That is, new ties are formed 

by mutual consent. 

We need to address here some important differences between our model in this 

chapter and existing studies of cooperation on dynamic networks. In their models, 

partner switching tends to accelerate preferential association among cooperators. First, 

both defectors and cooperators are inclined to terminate the relationship with 

defectors because they gain nothing from their own kind. Second, defectors attempt to 

make new ties to cooperators, while cooperators want to hang around with their own 

kind. Regarding building new links, it is strongly assumed that agents are always able 

to recognize new partners as defectors or cooperators. Otherwise, agents believe that 

other players will continue with their current strategy. Agents presumably have 

information about the strategies of new partners at the previous round particularly 

when they are chosen by referral. Without any information, agents can construct new 

relationships with randomly selected partners.  

Those assumptions and rules can be reasonable for repeated interactions, but we 
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question how agents know who are cooperators and who are defectors in one-shot 

interactions. In our models, as is addressed earlier, tolerance is an exact predictor of a 

predisposition to cooperation (i.e. the higher tolerance, the more likely to cooperate; 

the lower tolerance, the less likely to cooperate), but tolerance is not observable in 

tag-based societies. If tolerance is visible, there is no risk of invasion by mutant 

defectors because existing cooperators are able to notice whether or not mutant 

defectors exploit them.  

Tolerance can be another plausible heuristic for partner change, but it leads to an 

inconsistency between the action rule and the selection rule. The former is driven by 

tag-based similarity perception and parochial cooperation, whereas the latter is based 

on partner selection by reading tolerance. Besides, there will be a strong built-in bias 

toward cooperation by breaking ties with less tolerant neighbors (i.e. they are more 

likely to defect) and creating new ones with more tolerant players (i.e. they are more 

likely to cooperate). We cannot overemphasize here that parochial agents in tag-based 

societies, instead, rely on tag-based similarity to predict behaviors of interaction 

partners: they cooperate with similar others in the shared belief that ‘in-group 

members will help each other.’ Very often, however, tag-based similarity does not 

exactly predict behavioral predispositions. This is why existing cooperators are 

supposed to accept all mutants, as long as they have tolerably similar tags, as in-group. 

But, unfortunately, some of them turn out to be those who have lower levels of 

tolerance and they are therefore more likely to exploit others. 

As is in existing models of cooperation on dynamic networks, if cooperators can 

at least break ties with mutant defectors, instead of being influenced by them, then 

cooperative societies will definitely become more stable. However, even if 
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opportunities of switching partners are provided, parochial agents in the present study 

cannot break ties with those who are predisposed to defect (i.e. players with lower 

levels of tolerance) in favor of those who are predisposed to cooperate (i.e. players 

with higher levels of tolerance). The only thing they can do is to break ties with out-

group in search for in-group based on their homophily preferences (i.e. ‘birds of a 

‘cue’ flock together’).  

 

 

Two Faces of Social Capital 

Social capital indicates an advantage people can obtain due to their location in a social 

network. Coleman (1990a) stresses that if a dense network of social relations between 

the group members provides favorable conditions for the emergence of norms to make 

their collective actions possible: “Because social relationships consist of obligations 

and expectations. . . and because each actor continues to control some events in which 

the other is interested, there exists . . . leverage which can be used for the purpose of 

developing sanctions” (Ibid: 270). On the contrary, Burt (1992) highlights another 

aspect of social capital to maintain that the entrepreneurship of individuals takes 

advantages of structural holes between clustered groups. 

As is summarized in Table 7.1, closure and bridging are complementary features 

of social capital (Burt, 2005; Burger and Buskens, 2009), but it is yet to be fully 

understood how those opposite two forces shaping network evolution affect the 

dynamics of cooperation, especially both in the setting of one-shot interactions 

without reciprocity and in the presence of mutant defectors. Following our discussion 

in the previous chapter, cooperation is more likely to be locally reinforced in societies 
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of highly clustered networks. However, such societies are more vulnerable to local 

cascades of non-cooperation in the presence of defectors displaying tolerably similar 

cultural markers. Also, local integration necessitates cohesive ties – strong ties in 

Granovetter (1973), but global integration requires cross-cutting ties (i.e. “the strength 

of weak ties”). Cooperation is less likely to be fully blown in networks with longer 

path lengths, but it can be more stable in those networks where defectors have more 

difficulties in penetrating every corner of the society.  

 

Table 7.1. Two Faces of Social Capital: Closure and Bridging 

 Closure Bridging 

Features 
More closed, exclusive 
Redundant, strong ties 

More open, inclusive 
Non-redundant, weak ties 

Measure Average clustering coefficient Average path length 

Partner 
selection 

Making new ties to  
neighbors-of-neighbors 

Making new ties with  
agents at greater distances 

Effects on 
cooperation 

Local reinforcement (+) 
Cascades of non-cooperation (-) 

Global expansion (+) 
Defectors diffuse rapidly (-) 

 

 

How Network Plasticity and Closure Matter  

Our agents either interact with the agents in their current neighborhood, or break a tie 

and form a new one, rather than doing both at the same time. The likelihood of these 

alternatives is exogenous (e.g. Santo et al., 2006; Fu et al., 2008), which we call 

‘network plasticity’ (i.e. the relative likelihood of homophily-based partner selection 
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versus adopting cultural traits of more successful interaction partners). 

If an agent chooses to break ties, they search for new partners with varying 

degrees of a transitive closure bias (Granovetter, 1973; Watts, 1999), which is treated 

exogenously (e.g. Hanaki et al., 2007; Fu et al., 2008): agents may form new ties, by 

mutual consent, with neighbors-of-neighbors (high clustering) or random other agents 

at greater distances. 

We are concerned with the consequences of variation in network plasticity and 

homophily-driven triadic closure on the demography of agents: how much tag 

diversity is there in the population?; and how tolerant are agents of cultural 

differences? We also examine the topology of evolving networks in which agents are 

embedded: under what conditions do ‘small-world’ networks emerge?; and what are 

the shape of evolved networks in terms of clustering, path length, and the degree 

distribution? Finally, we focus on the stability of parochial cooperation including the 

level of global cooperation: how frequently do mutant defectors lead to the collapse of 

global cooperation; how often does defection become the dominant culture?; and how 

is it possible that parochial cooperation is significantly more robust on evolving 

networks? 
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7.2. Experimental Design 

Main Experiment 

We focus on an intermediate case (b/c = 4 and L = 4), as is the same as the main 

experiments in the presence of imitation errors in the previous chapter (Table 7.2). All 

conditions of the main experiments include two sources of stochastic errors – 

imitation errors (‘cultural perturbation’) and tie-rewiring errors (‘network 

perturbation’). The final design for the main experiment does not consist of the 6 by 5 

(q by p) factorial, but rather the truncated version shown in Table 7.3.  

 

Table 7.2. Parameter Setting of Main Experiments on Model 5 

Parameters Values/ Ranges 

Number of agents 100 

Benefit-to-cost ratio 4 

Tag length 

Erdös-Rényi probability 

4 

.06 

Error .01 for both imitation and tie rewiring 

Network plasticity (p) 10 through 50 with the interval of 10 

Closure (q) 

Condition for cooperation 

Payoff-based imitation rules 

0 through 50 with the interval of 10 

| tA – tB | < TA 

Given one neighbor randomly chosen, if her 

score is higher than an ego, the ego copies her 

tags and adjusts his tolerance toward her level 

by one unit. 
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Table 7.3. Design of Main Experiments on Model 5 

p 

q 10 20 30 40 50 

0      

10      

20     --- 

30    --- --- 

40   --- --- --- 

50  --- --- --- --- 

 
Notes: Models in which changing partners is more common than learning cultural traits 

from more successful neighbors (i.e. p > 50) almost always result in disconnected 
structures within 2,000 time steps even at the minimal level of clustering in our 
experimental setting (q = 10). Even at p ≤ 50, when agents are quite likely to 
break ties with dissimilar others and form new ties from among the neighbors of 
remaining neighbors, there is a strong tendency for society to dissolve into 
separate tribes (---s in this table). We restrict our attention to lower levels of 
plasticity and clustering, where the population remains connected.  

 

 

In each of the 20 remaining conditions (i.e. shaded areas in Table 7.3), 100 

replications are performed. G(i,j) hereafter denotes the experimental group at p = i and 

q = j. Each trial is run for 2,000 time steps. All outcome measures will be taken only 

between time point 1,000 and time point 2,000 to allow the model to reach its 

characteristic state from the varying initial conditions.  
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7.3. Results 

We have already shown the dynamics of parochial cooperation on static random 

networks in Figure 6.2, but we should address its several aspects. Beginning with the 

lower right in Figure 7.1, the first point is about a random drift toward more tolerance. 

This is indicated by an increase in the yellow areas (Plot of ‘Evolution of Tolerance’ 

in lower right, where ‘Yellows’ for 2 ≤ T ≤ 4 and ‘Blue’ for T = 5). As long as the 

majority of less parochial agents have the same tag strings as those of the strongest 

discriminators (i.e. T = 1), societies can achieve a high level of global cooperation 

without a significant increase in tag diversity.  

Second, even relatively low rates of perturbation have big impacts on the long-

run dynamics of parochial cooperation. Once parochial agents (i.e. 1 ≤ T ≤ 5) 

cooperate with, and are exploited by intolerant mutants, global cooperation collapses. 

The chance of a transition to a “betrayal society” increases whenever the demography 

gradually changes toward the co-existence of cooperators with different levels of 

tolerance. A significant increase in more tolerant agents in the population (‘cultural 

drift’ equivalent to ‘genetic drift’ in evolutionary biology) makes global cooperation 

more vulnerable (cf. Young and Foster, 1996).  

Third, ‘betrayal societies’ are rather quickly repaired when agents err in learning 

from neighbors. Since defectors do not benefit from each other, once perturbations 

create discriminating cooperators, other agents preferentially interact with them and 

learn tags and tolerance from each other, they can reconstruct a new cooperative 

society. However, the reconstructed societies do not increase significantly in cultural 

diversity (Plot of ‘Average Dissimilarity Distribution’). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 7.1. Dynamics of Tag-based Cooperation on Static Random Network 
Notes: A typical run of the simulation. Numbers in each node indicate tolerance levels. The 

node size and its brightness are proportional to agent degree and to the proportion of 
neighbors with whom each agent cooperates, respectively. N = 100, b/c = 4, L = 4, k = 
6, p = 0, and μ = .01 after 50 time-steps. 
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Homogeneity and Tolerance.  

On fixed random networks cooperation can be sustained, but only with a loss of 

diversity. Results from the main experiments show that societies with greater 

plasticity are more likely to retain global diversity than those in which payoff-based 

learning outweighs partner selection. To the extent that agents move about, global 

diversity is protected against the emergence of a single dominant culture. Also, when 

new partners are selected from among neighbors of neighbors (i.e. stronger closure 

bias), there is an additional modest tendency toward sustaining diversity. The 

clustering effects on cultural diversity are significant (α = .05) at G(10, 50), G(20, 40), and 

G(30, 30) compared to G(10, 0), G(20, 0), and G(30, 0) respectively.   

In societies where tolerance is learned from successful neighbors on random 

static networks, there is a strong tendency for tolerance of cultural differences to 

erode. In the main experiments, we find that the tendency toward lower levels of 

tolerance is not much affected by network plasticity. There are, however, the strong 

clustering effects on agent’s learning intolerance. As is shown in Table 7.4, the most 

discriminating cooperators still predominate in societies with more plasticity. 

However, it is also true that agents are less likely to learn intolerance on evolved 

networks with higher clustering. The average tolerance is significantly higher (α 

= .05) at G(10, 10) through G(10, 50), G(20, 20) through G(20, 40), G(30, 20) and G(30, 30), G(40, 20), 

and G(50, 10) compared to each reference experimental group G(i, 0). 
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Table 7.4. Proportions of Agents by Level of Tolerance at Varying Levels of Plasticity 

and Closure Bias 

 Gij T = 5 T = 4 T = 3 T = 2 T = 1 T = 0 

G(10, 0) 
G(10, 10) 
G(10, 20) 
G(10, 30) 
G(10, 40) 
G(10, 50) 

.0032(.0021) 

.0030(.0018) 

.0035(.0024) 

.0038(.0028) 

.0046(.0048) 

.0048(.0046) 

.030(.016)

.033(.020)

.036(.018)

.038(.021)

.035(.021)

.041(.020)

.11(.036)

.12(.036)

.12(.041)

.12(.037)

.13(.042)

.13(.041)

.27(.047)

.28(.046)

.28(.050)

.28(.046)

.29(.050)

.29(.047)

.50(.060) 

.48(.061) 

.48(.066) 

.48(.065) 

.46(.073) 

.47(.071) 

.10(.054) 
.091(.047)
.071(.043)
.075(.049)
.086(.046)
.065(.048)

G(20, 0) 
G(20, 10) 
G(20, 20) 
G(20, 30) 
G(20, 40) 

.0036(.0024) 

.0037(.0053) 

.0048(.0023) 

.0037(.0021) 

.0042(.0031) 

.030(.015)

.033(.016)

.034(.019)

.035(.021)

.040(.025)

.11(.038)

.12(.041)

.13(.041)

.12(.041)

.13(.042)

.26(.048)

.28(.052)

.29(.057)

.29(.054)

.30(.055)

.50(.065) 

.47(.072) 

.47(.071) 

.48(.073) 

.47(.082) 

.095(.046)

.089(.046)

.074(.050)

.072(.046)

.057(.039)

G(30, 0) 
G(30, 10) 
G(30, 20) 
G(30, 30) 

.0041(.0028) 

.0039(.0027) 

.0051(.0049) 

.0056(.0048) 

.026(.013)

.031(.017)

.033(.018)

.036(.023)

.11(.039)

.12(.048)

.12(.045)

.12(.041)

.28(.050)

.29(.055)

.29(.090)

.29(.061)

.49(.068) 

.47(.073) 

.48(.074) 

.48(.085) 

.092(.051)

.092(.053)

.073(.048)

.070(.046)

G(40, 0) 
G(40, 10) 
G(40, 20) 

.0044(.0024) 

.0044(.0036) 

.0048(.0020) 

.027(.018)

.031(.017)

.033(.019)

.10(.041)

.11(.042)

.12(.043)

.28(.058)

.29(.059)

.29(.056)

.49(.074) 

.48(.070) 

.49(.081) 

.10(.058) 
.090(.056)
.067(.049)

G(50, 0) 
G(50, 10) 

.0049(.0019) 

.0050(.0018) 
.025(.013)
.028(.012)

.10(.035)

.10(.038)
.29(.063)
.29(.059)

.49(.068) 

.49(.069) 
.098(.055)
.082(.054)

 
Note: The numbers in each cell indicate Mean (Standard deviation). The shaded areas 

denote the groups in which the average tolerance is significantly higher or lower 
than their reference groups G(i, 0)s.   
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Network Topologies 

Unsurprisingly, for any given level of plasticity, the greater the tendency to select new 

interaction partners from among neighbors-of-neighbors, the greater the clustering of 

the overall network. Also unsurprisingly, as the tendency to clustering (q) increases, 

average path lengths in the whole population increase. As the joint effects of network 

plasticity and a bias of triadic closure continue, the density of local clusters increases 

at a decreasing rate, while the density of ties between clusters declines. At the extreme, 

high biases toward transitive partner selection result in the graph becoming 

disconnected. 

A small-world network is a graph with n vertices and average degree k that 

exhibits the average path length APL ≈ APLrandom(n,k), but the average clustering 

coefficient ACC >> ACCrandom ≈ k/n (Watts, 1999). For each of the conditions of the 

main experiment, tests were performed if the mean average clustering coefficients 

(and the mean average path lengths) of 100 evolved networks are significantly greater 

than (and differ significantly from) the mean average clustering coefficients and (the 

mean average path lengths) of 100 random networks. Only one condition of the 

experiment (p = 10 and q = 10) satisfy the small-world properties. Evolved networks 

in all other groups cannot be classified as “small-world” because they display longer 

average path lengths than those of small-world networks (Table 7.5 and Table 7.6). 
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Table 7.5 Average Clustering Coefficients of Evolved Networks 

p 

q 10 20 30 40 50 

0 .0532(.00909) .0531(.00969) .0520(.00797) .0531(.00783) .0597(.01036)

10 .0693(.01257) .0696(.01192) .0676(.01118) .0702(.01009) .0715(.01123)

20 .0826(.01491) .0853(.01403) .0869(.01410) .0913(.01841)  

30 .1001(.01263) .1041(.01647) .1083(.02490)   

40 .1214(.01599) .1333(.02673)    

50 .1425(.02035)     

 
Note: The numbers in each cell indicate Mean (Standard deviation). 

 

 

Table 7.6 Average Path Lengths of Evolved Networks 

p 

q 10 20 30 40 50 

0 2.734(.07222) 2.757(.07062) 2.767(.07069) 2.760(.07079) 2.755(.07565)

10 2.771(.07134) 2.795(.07620) 2.829(.08917) 2.839(.09609) 2.841(.10145)

20 2.819(.08873) 2.839(.09527) 2.924(.10892) 3.002(0.1097)  

30 2.844(.08643) 2.913(.10805) 3.074(.15484)   

40 2.873(.09434) 3.069(.15669)    

50 2.939(.12120)     

 
Note: The numbers in each cell indicate Mean (Standard deviation). 
 

 

When plasticity is present, there is a modest tendency for evolved networks to 

move toward more unequal distributions of agent degree. This effect is stronger, the 

higher the tendency to transitive closure in partner selection. The clustering effects on 

the maximum degree are significant (α = .05) at G(10, 40) and G(20, 30) to G(20, 40) 

compared to G(10, 0) and G(20, 0), respectively. More tolerant agents are able to find new 
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partners, while less tolerant agents are less successful in rewiring their networks and 

consequently, there is a modest tendency for more tolerant agents to acquire greater 

social capital. Clustering does not always (α = .05) affect the evolution of ‘hubs’ with 

tolerance higher than the minimal tolerance for parochial cooperation (T = 1), except 

G(10, 50). Nonetheless, the overall trend is that the most highly connected actors are 

those who have somewhat higher degrees of tolerance. Accentuating this tendency, 

there are statistically significant tendencies (α = .05) for the average degree of 

unconditional defectors and the most discriminating cooperators to decline with 

increasing closure in the selection of new interaction partners.   

 

The Robustness of Cooperation. 

We investigate the effects of network plasticity and clustering on the stability of 

parochial cooperation by examining the average frequency of cascades toward 

“betrayal society” (i.e. universal non-cooperation) once universal cooperation has 

been established. As network plasticity increases, cooperation generally becomes 

more stable. And, in general, as clustering in forming new ties increases, cooperation 

becomes more stable. The reasons for these results are two-fold. Breaks in the 

cooperative culture of a given local cluster take longer to be transmitted to other 

groups on evolved networks with weaker degrees of global penetration. Additionally, 

high clustering makes it easier for discriminating mutant cooperators to re-enforce 

one another’s propensity to cooperate, which leads to more rapid “repair” of local 

breaks in cooperation. 
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(a) 

 

(b) 

 

Figure 7.2. Dynamics of Tag-based Cooperation on Evolving Network 

Note: A typical run of the simulation with p = 10, q =50 in Panel (a) and p = 20, q = 40 in 
Panel (b). Numbers in each node indicate tolerance levels. Node size is 
proportional to degree. Node brightness is proportional to the proportion of 
neighbors with whom each agent cooperates. 
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Figure 7.2 shows typical examples of moderately plastic (p = 10 and 20) 

evolving networks with a relatively high tendency to transitive tie-making (q = 50 and 

40). The patterns at time-step = 1,229 in Panel (a) and 1,918 in Panel (b) contrast 

notably from those of the static random network shown in Figure 7.1. Although the 

rates of perturbation are the same, plastic networks with transitive closure 

characteristically display more frequent (i.e. the increased size of Black in plot of 

‘Evolution of Tolerance’) – but much less severe cycles toward “betrayal society.” 

The average levels of agent tolerance and the diversity of culture in society are also 

much greater than in static society. We also find that there is a tendency for the degree 

distribution to become unequal, particularly when more tolerant agents successfully 

accumulate social capital, as is indicated by Plot of ‘Degree Distribution’ and the 

average size of more tolerant nodes. 
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7.4. Concluding Remarks 

We investigate the dynamics of tag-based parochial cooperation in societies, where 

actors are not only influenced by successful neighbors but also free to change their 

interaction partners by dropping ties to dissimilar neighbors and making new ties to 

similar others with a closure bias. We find that, if social mobility and clustering are 

too high, societies tend to devolve into cohesive, but disconnected, sub-populations. If 

social mobility and clustering are too low, there are no significant differences between 

societies with random network topologies at the degree of closure = 0% and partly 

mobile societies: parochial cooperation is propelled mostly by the strongest 

discriminators; a highly homogeneous population is needed for globalized 

cooperation; and parochial cooperation is not robust against mutant defectors. These 

patterns in the dynamics of cooperation are not fundamentally different from those in 

static societies where tags are completely mutable. In particular, small-world 

networks are norm-generating, but not norm-sustaining: their high degrees of 

clustering foster the local reinforcement of parochial cooperation, whereas defectors 

can travel more quickly through relatively short paths. 

There is, however, a part of the parameter space between these two outcomes: 

G(10, 50) and G(20, 40). It is on evolving networks with moderately high local clustering 

and fairly low global penetration that the long-run dynamics of parochial cooperation 

manifest significantly different results. The mean average clustering coefficients and 

the mean average path lengths of 100 evolved networks are .143 (.134) and 2.939 

(3.069), and the standard deviations are .0204 (.0267) and .121 (.157) at the 

first (second) experimental condition). Here, parochial cooperation is globally more 

stable in the face of mutant defectors although the invasion of the core by defectors 
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sometimes seriously perturbs cooperative relations at the local level; and emergent 

societies retain relatively high tolerance and more cultural diversity.  

How is this possible? First of all, structural conditions – high clustering and 

reduced global penetration – lessen the likelihood of a successful invasion by mutant 

defectors – the disruptive effects of an apparent ‘in-group’ member betraying others. 

Mutant defectors more frequently attack existing cooperative societies with increased 

tolerance to trigger non-cooperation, but local clusters of parochial cooperators 

quickly re-emerge to inhibit cascades of betrayal. Defectors are less likely to become 

the majority because it is more difficult for them to traverse networks with long path 

lengths. Meanwhile, it more frequently happens that newly emerging tolerant agents 

of diverse tags preferentially interact with and benefit from each other, instead of 

being absorbed into cooperative clusters of stronger parochialism and highly 

homogenized culture. Agents with strong parochialism promote local homogeneity 

since they are more likely to restrict the pool of acceptable neighbors and potential 

partners, while agents who display moderate degrees of tolerance construct inclusive 

ties to culturally diverse others. This tendency becomes stronger as clustering 

increases: evolving networks are characterized by a moderate inequality in social 

capital because less parochial agents build outward social networks more easily than 

intolerant agents. To the extent that all these processes reinforce each other 

immediately after invasion by mutant defectors significantly destructs the established 

parochial institutional orders and networks, a new cooperative society of high 

tolerance and more cultural diversity can emerge.  
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Chapter 8: Discussion and Conclusions 
_________________________________________________________ 
 
Relatively robust and high levels of cooperation in human societies are commonly 

observed empirically, but have been a challenge to research on a multi-agent one-shot 

Prisoner’s Dilemma game. Societies composed of altruists who always help others are 

readily undermined by indiscriminating defectors under the force of natural selection. 

Recent theories notice that it is not realistic for agents to play the game with randomly 

matched partners in a pairwise manner. They demonstrate that cooperation can be 

sustained even in populations purely consisting of indiscriminating altruists and 

defectors if agents simply interact with immediate neighbors and leave offspring in 

proportion to fitness in their neighborhood. This reciprocation through network helps 

altruists preferentially interact with their own kind while avoiding defectors. However, 

the effect of spatiality operates only if the benefits of cooperation are relatively high 

and the number of neighboring interaction partners is limited. 

The population in the classical models of a spatial evolutionary Prisoner’s 

Dilemma game is idealistic since it is purely composed of two groups of 

indiscriminators: those who always cooperate toward others with the highest level of 
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trust and those who always refuse to do that with the lowest level of trust. Some other 

studies pay due attention to the roles of discriminators in the evolution of cooperation 

in human societies. They verify that cooperation is more likely to prosper as the 

number of agents increases who use conditional strategies depending on the 

trustworthiness of partners even in unstructured populations where agents interact 

with randomly selected partners. However, emergent cooperative societies are highly 

susceptible to those who fake signals of trustworthiness but are predisposed to defect 

toward others. Pairwise random interaction is another limitation of extant models of 

cooperation through signaling because it is not realistic. Human agents may have 

relatively stable sets of interaction partners, as is assumed in the classical model of 

network reciprocity. Also, they may switch partners based on their preferences under a 

certain level of social mobility. 

Theoretically informed by existing research highlighting the importance of 

networks and signals (as “heuristic cues”) in the evolution of cooperation, the current 

study inquires into cultural bases and structural foundations of cooperation in human 

societies as complex systems. Social structure has three dimensions in our study. First, 

culture is a set of shared beliefs and available strategies for Weberian social action, 

the action taking into account the behavior of others in game theory. Second, 

institution is conceived as behavioral regularity from a bottom-up perspective in the 

sense that institutionalization occurs through a reciprocal typification of habitualized 

actions. Third, network as the relational dimension provides an interpersonal setting 

of actions. Human agents embedded in on-going relationships interact with one 

another.  

The present study investigates the evolutionary dynamics of cooperation in 
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artificial societies in which agents have tags and tolerance. In the setting of a one-shot 

Prisoner’s Dilemma, they simultaneously interact with neighbors, and they either 

imitate tags and tolerance of more successful neighbors or break and make ties with 

others. The theoretical question under study is thus how individuals sharing cultural 

elements in the Blau Space (“the tag space”) create network patterns of social 

relations which simultaneously affect the evolution of cultural groups, and how 

emerging networks of social groups come into play in the institutionalization of 

cooperation and its deinstitutionalization. 

The current research offers a list of findings and propositions to further 

understanding of the evolution of cooperation as institutional order when societies are 

situated in the Prisoner’s Dilemma. In Chapter 4, we reconfirm the received finding 

that altruists alone can beat defectors even in a one-shot game where agents interact 

with the same set of adjacent neighbors if the benefit-to-cost ratio of cooperation is 

higher relative to the average number of neighbors. Cooperation otherwise cannot 

survive. We demonstrate that it holds true, regardless of network topology. 

Second, we manipulate the population to have not only altruists and defectors but 

also the discriminators who categorize partners into ‘us’ and ‘them’ by reading tags as 

observable markers. Since tolerance is not an observable trait in tag-based societies, 

tags serve as heuristic cues for how to interact with neighbors. Egoistically, those 

discriminators cooperate only with neighbors who have tolerably similar markers, and 

otherwise decline to cooperate. We discover that reading markers and cooperating 

only with trustworthy partners significantly facilitates the survival of cooperation. 

This implies that ethnocentric egoists can be even necessary to trigger and maintain 

cooperation when helping others is relatively costly.  
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Third, we ask how society-wide cooperation is possible from local interactions 

among agents who have limited tolerance for cooperating with others who they see as 

different from themselves. Such parochial cooperation stops at group boundaries.  

Emergent cooperative societies do not consist of relatively tolerant agents including 

altruists with the highest level of tolerance, who trust heterogeneous neighbors. 

Tolerance for diversity is rather rapidly eroded in emerging societies with an 

increasing loss of heterogeneity. Agents become more discriminating against 

perceived out-group, but high levels of global cooperation are still possible in 

increasingly homogenized populations. Most of time, the most discriminating egoists 

form the vast majority of the population. They are those who are willing to cooperate 

only toward neighbors with exactly the same markers.  

Emergent parochial societies are, however, unstable in the presence of mutant 

defectors with tolerably similar tags. There occur downward spirals of cooperation 

that lead to a society of mutual betrayal once those defectors perturb “secret 

handshaking” among parochial cooperators. This generally indicates that cooperation 

on the basis of sending and receiving exclusive signals is highly efficient, but it is not 

successful in terms of stability – such cooperation fails to continue once free-riders 

can easily learn to fake signals of trustworthiness. 

In Chapter 5, we point out that the evolutionary instability of tag-based parochial 

cooperation is partly because tags are completely changeable. Conceptualizing tags as 

cultural markers as a simple form of identities (rather than modeling them as 

genetically inheritable traits), we build one society where each agent has one 

immutable marker at the same dimension (‘caste society’) and the other society where 

such an immutable marker in different dimensions (‘modern society’).  
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Cooperative agents with the strongest parochialism are still in the majority of the 

population in those two societies. But, tag-based cooperation is significantly stable in 

a modern society despite the fact that agents in it are more tolerant enough to accept a 

broader range of defectors as in-group. We find that persistent cultural heterogeneity 

in such a modern society helps agents continue to make distinction between ‘us’ and 

‘them,’ with none of identities constantly predominant in the society as a whole. It is 

characterized by loosely coupled small-sized groups (tribes) with different cultural 

identities. 

We know that when markers are completely mutable, tag-based parochial 

cooperation is inevitably vulnerable to defectors displaying tolerably similar markers. 

The following two chapters intend to seek structural solutions to efficient and stable 

cooperative societies promoting the diversity of tags and tolerance. We first 

investigate the effects of network topology on the evolution of cooperation in tag-

based societies in Chapter 6. We present that the dynamics of the local reinforcement 

of parochial cooperation, its global diffusion, and cascades of non-cooperation 

triggered by defectors are significantly affected by the interplay of clustering and 

global reachability.  

Parochial cooperation diffuses more slowly in regular networks, but it becomes 

more robust against indistinguishable mutant defectors in them than in small-world 

networks and random networks. It is because high degrees of clustering promote the 

rapid formation of local cooperative clusters, while long average path lengths render 

the invasion by mutant defectors less efficient.  

In Chapter 7, we finally examine the co-evolution of three dimensions of social 

structure: cooperation as its institutional dimension, tags and tolerance as its cultural 
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dimension, and social network as its relational dimension: how does cooperation as a 

behavioral regularity evolves with “CatNets” named by White (Tilly, 1978: 63) as 

groups of (cultural) categories plus networks? In artificial societies under 

investigation, agents not only take discriminating actions toward neighbors, but they 

also have a homophily preference for socializing with the members of one’s group. 

Agents have the option of either imitate tags and tolerance of more successful 

neighbors or switching partners based on the homophily preference with varying 

probabilities of network plasticity. They break ties with out-group neighbors in search 

for similar others either from neighbors-of-neighbors (Colemanian cohesive ties) or at 

greater distances (Burtian cross-cutting ties) with varying degrees of closure.  

We find that, if social mobility and clustering are too high, societies devolve into 

cohesive, but disconnected, sub-populations. If social mobility and clustering are too 

low, there are no significant differences between static societies and partly mobile 

societies: parochial cooperation is propelled mostly by the strongest discriminators; a 

highly homogeneous population is needed for globalized cooperation; and parochial 

cooperation is not robust against mutant defectors. There is, however, a part of the 

parameter space between these two outcomes where global cooperation is possible 

without network disintegration despite that emergent societies are not highly 

homogenous. With moderately high clustering and fairly low global penetration 

(reachability), society-wide and stable cooperation is achievable in emerging 

hierarchical networks of cultural groups that acquire differential shares of social 

capital and economic capital even though cultural markers are completely mimicable. 

The current study has broader significance for studying group processes and 

market dynamics. First, the tag-based partner identification (‘tagging’) in our study is 
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consonant with socio-psychological theories of group membership as social identities 

(Hogg, 2006). People tend to make distinctions between ‘us’ and ‘them’ through 

‘categorization’ (Tajfel, 1974) as a cognitive process of classifying stimuli on the 

basis of ‘similarities’ between them (Turner, 1982).  

Social psychologists have been interested in how the intergroup-outgroup bias 

influences cooperation since the ‘minimal group’ experiments in the 1970s. They have 

observed a consistent pattern of results that ‘belonging to a pre-assigned group’ 

positively affects the level of cooperation. Simple categorization is enough to create 

in-group favoritism, and human subjects in those experiments maximize their group-

level rewards. For examples, Kramer and Brewer (1984) and Brewer and Kramer 

(1986) conclude that when subjects see themselves as in-group members, they are 

more likely to contribute to the public goods even at the cost of individual gains.  

Cooperation may increase when human subjects expect that its benefits will be 

shared with in-group members. The classical minimal group experiments do not 

consider the expectation of reciprocity among in-group members as a confounding 

factor, however. In this aspect, cooperation can emerge (and prosper) when subjects 

begin to expect enduring benefits from in-group favoritism (and continue to have such 

egoistic expectations). Our research rather demonstrates the evolution of cooperation 

in one-shot interactions without the expectation of in-group reciprocity. Cultural 

groups, rather than they are pre-assigned, emerge as cultural markers, albeit 

meaningless at the beginning, become salient through the reinforcement of the 

disproportionate benefits of parochial interaction. They dissolve in the face of in-

group deviants who disturb self-enforcing labeling that promotes within-group 

solidarity. In this aspect, our study shows cognitive and socio-psychological bases of 



157 

 

stratification, and vice versa.  

Economic sociologists have proposed to conceptualize markets as social 

structures. Economic actors are neither over-socialized nor under-socialized 

(Granovetter, 1985). How economic exchanges are embedded in on-going networks is 

one of the core questions in economic sociology: “The anonymous market of 

neoclassical models is virtually nonexistent in economic life and transactions of all 

kinds are rife with the social connection described (Granovetter, 1985: 495).” In these 

respects, the current study provides a game theoretical view of market dynamics – 

systematic processes of adaptive learning and networking by agents who interact with 

neighboring partners without perfect information about costs and opportunities to be 

found.  

Macy and Sato (2002)1 undertake a computational research on trust, signaling, 

parochialism, and market formation in the setting of Prisoner’s Dilemma game. They 

begin with an interesting question raised by Yamagishi and Yamagishi (1994): why 

are Japanese businesses more likely to shun better deals in the open market in favor of 

established suppliers in their local markets? Why do more individualistic Americans 

show higher trust than more collectivistic Japanese? 

They conclude that Japanese businesses try to minimize the transaction cost by 

decreasing the chance of being cheated by strangers, while they must pay the 

opportunity cost by reducing the pool of potential transaction partners. A global 

market is maintained when agents learn trust to cooperate with strangers within a 

middle range of social mobility – which is neither too low to disturb a parochial 

equilibrium nor too high to disturb a signaling equilibrium. 

From a different angle, our study examines the conditions under which a global 
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market evolves out of repeated interactions among economic actors facing one-shot 

transactions and sending and receiving signals of trustworthiness with limited 

tolerance toward outside strangers. Markets consisting of more tolerant agents who 

trust diverse others can easily establish large-scaled cooperative relations, but they are 

more likely to be cheated by free-riders. Parochial agents are indispensible for the 

evolution of costly cooperation in one-shot exchanges, but global cooperation is 

possible only when agents in markets are highly homogenous. Emergent markets 

based on parochial cooperation may not be robust against free-riders who fake signals 

of trustworthiness. Also, they tend to become fragmented when parochial agents are 

more likely to socialize with similar others. 

We suggest that a global market can evolve consisting of more exclusive 

parochial networks driven by local search (i.e. the closedness of cohesive ties) and 

more inclusive networks by global search (i.e. the openness of cross-cutting ties) 

within a certain range of social mobility. In such a global market at dynamic 

equilibrium, the transaction cost and the opportunity cost may be balanced so that 

global efficiency can be achieved. Also, an emerging market can be relatively stable 

against those who learn to fake signals of trustworthiness.  
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Endnotes 

_________________________________________________________ 

 
Chapter 1 

1 The multi-agent Prisoner’s Dilemma game in the present study is not the same as 

the so-called N-person Prisoner’s Dilemma game (e.g. the tragedy of the commons 

and the public goods game). It is also different from the trust game as a one-sided 

Prisoner’s Dilemma game in which agents sequentially interact with each other. 

 

Chapter 2 

1 Perrin (1975; 1976; 1995) rather emphasizes similarities between Spencer’s 

sociology and Durkheim’s. Spencer frequently stresses that institutions arise not by 

design but by incidental growth. Spencer discusses the concept of unintended 

consequences. Spencer makes a distinction between causal analysis and functional 

analysis. He does consistently underline the importance of the microfoundations of 

social integration such as rituals and ceremonies even in complex societies. 

2 Parsons ([1934]1990) can be seen as an attempt to establish a footing for the 

subjective approach to institutions based on a theory of rational action, opposing the 

objective approach, according to Coleman (1990b: 333-334). However, “Parsons later 

abandoned his attempt to develop a social theory based on a theory of rational action; 

from The Social System (1951) onward, his theoretical efforts took the form of 

classification schemes for social systems and other macro-social phenomena” (Ibid: 

335). Similarly, Sawyer (2005: 41-2) points out that Parsons draws heavily on 

emergence concepts in The Structure of Social Action (1937), but he turns to a 

structural-functional theory of systems in The Social System. The concepts of values 

and norms in his earlier works is closer to scripts and rules (Alexander, 1987). 
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3 Coleman’s Boat model consists of three processes (Hedström and Swedberg, 1998: 

21-3): situational (how macro-level events or conditions affect the individual); action-

formation (how the individual assimilated the impact of macro-level events); and 

transformational (how a number of individuals, through their actions and interactions, 

generate macro-level outcomes). 

4 Another promising approach to institutional analysis is taken by practitioners of the 

neo-functionalism. See Alexander and Colomy (1985) and Colomy (1986; 1990; 

1998). 

5 Schűtz as a core member of the Austrian school of economics seeks to synthesize 

rational choice theory and phenomenology albeit not addressed in the sociological 

literature with the exception of Prendergast (1986). “Several writers have interpreted 

Schűtz as a rational-choice theorist. However, we think it probable that most social 

scientists familiar with Schűtz neglect his rational-choice side, viewing him instead as 

a hermeneutic or ‘interpretive’ theorist” (Koppl and Whitman, 2004: 303). Foss 

(1996) emphasizes that Schűtzian insights can be a corrective to the problem with the 

classical game theory that it throws away information as common knowledge which 

players need in order to take into account each other’s choice of actions. The Austrian 

school of economics agrees that the market as a core institution is the outcome of 

human action as opposed to human design. It is decentralized and primarily 

constituted through local knowledge about costs and opportunities to be found. 

Accordingly, the market dynamics is a systematic process of mutual discovery by 

participants without perfect information (Langlois, 1992).  

6 Veblen argues that economics should be reconstructed as a post-Darwinian science 

because Darwinism would contribute significantly to our understanding of social 

evolution – the origins, growth, persistence, and variation of institutions in particular 

– without relying on any version of teleology (Hodgson, 2003). 

7 “The generalized Tit-for-Tat” is applicable to large-sized populations: each actor 

calculates the fraction of her neighborhood that cooperated at the last round, if this 

fraction is greater than a cut-off point, cooperate, and otherwise, defect (Watts, 1999). 
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For example, when the cut-off point is 0.5, agents will cooperate if cooperation is the 

majority strategy at the last round among their local neighbors, and otherwise decline 

to cooperate. However, we note that each agent indiscriminately use a single strategy, 

cooperate or defect, toward all of her neighbors. 

8 What shared genes are to the biology of altruism, empathy is to the psychology of 

altruism. In the same way that genes connect people physically, empathy connects 

them emotionally. Just as sociobiologists suggest that altruistic dispositions evolve 

when they foster the propagation of shared genes, so psychologists propose that 

individuals are motivated to help others when it enhances their shared affective state 

(Krebs, 1987: 104). Empathy may therefore serve as a proximal psychological 

mechanism intervening between phenotype matching and altruism. People are more 

strongly motivated to tell those who are truly trustworthy from those who pretend to 

be trustworthy. Therefore, cooperators have a strong incentive to send the signals of 

their trustworthiness that cannot easily be imitated by free-riders who want to exploit 

them. Frank (1988) maintains that emotional signals such as sympathy and 

compassion enable cooperation between strangers in human societies since such 

moral sentiments are difficult to fake. 

9 We note here the weakness of the ‘green-beard’ altruism – which is not resistant to 

individuals who have the gene displaying the ‘green-beard’ phenotype but not the 

gene coding altruism (Hamilton, 1964; Dawkins, 1976; Van Baalen and Jansen, 2003). 

 

 

Chapter 3 

1 Synchronous updating assumes a global clock so that all agents update their status at 

the same time in each time-step (i.e. non-overlapping generations). As a well known 

example, Huberman and Glance (1993) demonstrate that the results of Nowak and 

May’s model (1992) could have changed significantly if they had used asynchronous 

updating, that is, updating a randomly selected agent at a time (i.e. overlapping 
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generations). Substantively, asynchronous updating “might seem at odds with the 

original Prisoner’s Dilemma game, where both players decide simultaneously and 

find out about each other’s actions only in retrospect. However, synchronous updating 

is quite degenerate in any kind of distributed, multiplayer context where it is virtually 

inconceivable that everyone would decide upon their next action at the same time, 

every time’ (Watts, 1999: 209). However, “substantial but distinct regions of the 

parameter space lead to the persistence of cooperators with both synchronous and 

asynchronous updating” (Nowak and Sigmund, 2000: 140). Also, either fully 

synchronized updating or fully asynchronized one is idealistic. Rather, the reality may 

be somewhere in between. 

2 Some studies use real-number tags (e.g. Riolo, 1997; Riolo et al., 2001) while others 

use binary tags (e.g. Hales, 2000; Hales, 2004; Edmonds and Hales, 2005; Choi et al., 

2006) or integer tags (e.g. Hales and Edmonds, 2003). Real-number tags are not 

realistic in the sense that human agents cannot make such fine-grained distinctions. 

Either integer tags with a single bit (e.g. t ∈ [1, 2,… , 500] in Hales and Edmonds 

(2003)) or long-winded binary tags (e.g. L ≥ 32 in Hales (2000), Hales (2004), and 

Edmonds and Hales (2005)) are also somewhat problematic, given the experimental 

result that human agents use a small number of dimensions on average to construct 

their identities, for instance, 5.4 in the context of international relations (Rousseau and 

van der Veen, 2005). 

3 The Hamming Distance indicates that agents count the presence or absence of 

attributes across a certain number of dimensions available. The average of Hamming 

Distance across the whole population (or all local neighbors) can be regarded as the 

mean perceived social distances. ‘1 – Standardized Hamming Distance’ is the same as 

the ‘Simple Matching Index’ (Hanneman and Riddle, 2005) which is a common 

measure of similarity in social network analysis. 

4 In our model, unlike Riolo et al. (2001), i will defect in spite of no difference 

between two tags as long as Ti is 0 (i.e. “always defect”). In the same way, i will 

cooperate as long as Ti is L + 1 (i.e. “always cooperate”) given that the maximum tag 
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difference is L. As Roberts and Sherratt (2002: 500) and Edmonds and Hales (2003) 

point it out, Riolo et al. (2001) would have had lower levels of cooperation if a ‘strict 

tolerance’ rule HDij < Ti had been used. 

5 An ego of T ≥ 1 cooperates with others as long as their tags are identical to its own, 

as in Riolo et al. (2001).  

6 We employ the same payoff matrix as that in Riolo et al. (2001), but b/c = 2 in our 

model, for example, is equivalent to the cost-to-benefit ratio=0.5 in Riolo et al. (2001) 

because b = 1 is fixed in their model. 

7 The ‘selected bias’ method for reproduction (i.e. “higher than or equal to” instead of 

“higher than”) is another factor that contributes to higher donation rates in Riolo et al. 

(2001). See Edmonds and Hales (2003). 

8 The classical rule of strategy updating in evolutionary games on networks is that 

agent i randomly selects one of her neighbors j, and then agent i adopts agent j’s 

strategy when πi < πj with the probability W influenced by the total payoff difference 

between the two agents: 
1

1 exp[ ( )]i j
j i

W
β π π← =

+ − −  (Santos et al., 2006; Fu et 

al., 2007). Here, the parameter β as an inverse temperature in statistical physics 

reflects the strength of selection. β → 0 leads to neutral drift, while β → ¶ 

corresponds to the imitation dynamics where agent i’s strategy is replaced by agent j’s 

strategy. Our model assumes that β → ¶. This deterministic updating rule of tags and 

tolerance leads to a more rapid homogenization of the population than stochastic 

updating rules. In this way, we put the feasibility of alternative cooperative societies 

to a stricter test. However, we acknowledge that using the accumulated payoff in the 

formula may be problematic since agents in our model have different numbers of 

neighbors (i.e. heterogeneous, not homogeneous), unlike those on the torus. Either 

using the accumulated payoff divided by the number of ties or introducing costly ties 

is an alternative approach that considers the average rate of return on investment (i.e. 

economic capital per social capital). 
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9 Agent’s tolerance has limited effects on agent’s degree in the model. Agents can 

break ties only if they can find new partners. For example, unconditional defectors 

perceive all players as out-group, but they do not continue to lose their ties. 

10 Given 100 agents and k = 6 in Chapter 7, an ego’s choice for selecting new 

partners outside neighbors of her neighbors can be restricted. This is why we use 

r∈N2
i + h∈N and h∉N2

i instead of r∈N2
i + h∈N which is closer to the original 

meaning of closure-biased random selection. 

11 See Santos et al. (2006) and Fu et al. (2008). They define W = τe / τa. Hence, with 

W → 0, the evolution of cooperation on static graphs is recovered; and with 

increasing W, agents promptly adjust their co-players. W = 1 is equivalent to p = 

50(%) in our study since a strategy update event is chosen with probability (1 + W)-1 

and a network update event is selected otherwise. In Eguíliz et al. (2005: 989), for 

values of social plasticity z << 1, strategies change much faster than network evolution 

(a situation similar to the frozen network of z = 0), while for z = 1, strategies and 

network evolve at the same rate (fluid social network). We note here that network 

changes without strategy updating either at W → ¶ or z → ¶ in their studies. This is 

equivalent to p = 100(%) in our research. 

 

Chapter 4 

1 Ohtsuki et al. (2006) introduce three different rules of strategy updating: ‘death-

birth updating’; ‘birth-death updating’; and ‘imitation updating.’ For death-birth 

updating, at each time step a random individual is selected to die, and then her 

neighbors compete for the empty site proportional to their fitness. For birth-death 

updating, at each time step an individual is chosen for reproduction proportional to 

fitness, and then the offspring replaces a randomly selected neighbor. For imitation 

updating, at each time step a random individual is chosen to update her strategy; she 

will stay with her own strategy or imitate one of her neighbors proportional to fitness. 
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They verify that cooperation can survive if the benefit-to-cost ratio exceeds the 

average number of neighbors in structured populations of altruists and defectors when 

the death-birth updating rule is applied: b/c > k. The birth-death rule does not favor 

cooperation. It holds true that b/c > k + 2 under the imitation updating rule. Our 

finding is that b/c > k. However, we should point out that the imitation rule in Ohtsuki 

et al. (2006) is not the same with the strategy updating rule in our models explained in 

Endnote 8 of Chapter 3. 

 

Chapter 6 

1 It should be also noted here that as the tag length gets longer, there is less chance 

that mutant defectors are introduced who have similar tags within the tolerance range 

of a dominant group of cooperators, when controlling for the mutation rate. This is 

another reason why we select an intermediate tag length (L = 5). 

 

Chapter 8 

1 Macy and Sato’s model rests on different assumptions. First, the Prisoner’s 

Dilemma game in their model has the “exit” option (T > R > E ≥ P > S, given the exit 

payoff E). Second, dyadic interactions are assumed, whereas agents interact with 

multiple (neighboring) partners in our model. Third, agents stochastically either 

behave parochially or cooperate if their partner cooperates, and otherwise defect (i.e. 

signal reading). In our model, agents read tags and cooperate only with perceived in-

group members, given that tolerance (as a proxy for strategy) is not observable in 

societies. Fourth, each agent has a vector of three propensities for entering a global 

market or not, cooperating or not, and trusting or not. Each agent in our model has 

predispositions for parochial cooperation and homophilic association, but social 

mobility and clustering (local versus global search) are exogenous. Fifth, agents’ 
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propensities are updated through social learning and reinforcement learning (based on 

the Bush-Mosteller algorithm). Payoff-based imitation is used in our model. Sixth, 

agents are not able to mimic signals. Instead, random moving, exogenously 

implemented (i.e. social mobility), generates newcomers (strangers). Defectors with 

tolerably similar tags are born due to mutation (i.e. an error in payoff-based imitation) 

in our model in which agents basically play a one-shot game. Therefore, strictly 

saying, neither Macy and Sato’s model nor our model consider those who 

(intentionally) learn to fake signals of trustworthiness. 

 

 



167 

 

Appendix: NetLogo Code for Models 
_________________________________________________________ 
 
The original codes are copied in the following order: 

1. Variable declaration ………………………………………………….. 167 

2. Setup procedures ……………………………………………………... 169 

2-1.  Chapter 4 and 5 (Common procedures) ……………………….. 169 

2-1-1.  Model 1 (Genetic inheritance) ………………………………. 169 

2-1-2.  Model 2 (Caste societies) …………………………………… 169 

2-1-3.  Model 3 (Modern societies) ………………………………… 170 

2-2.  Chapter 6 and 7 (Common procedures) ………………………. 170 

2-2-1.  Model 4 (Static networks with different topologies) ………... 171 

3. Go procedures ………………………………………………………… 173 

3-1.  Similarity perception …………………………………………... 173 

3-2.  Interaction ……………………………………………………… 173 

3-3.  Payoff calculation ……………………………………………… 174 

3-4.  Reproduction (Payoff-based imitation) ………………………… 174 

3-4-1.  Model 1 (Genetic inheritance) ……………………………….. 174 

3-4-2.  Model 2 (Caste societies) ……………………………………. 175 

3-4-3.  Model 3 (Modern societies) …………………………………. 175 

3-4-4.  Faster-mutating-tag-based societies …………………………. 176 

3-4-5.  Model 4 and Model 5 (A step-wise change of tolerance) …… 177 

3-4-6.  Model 5 (Evolution of culture and networks) ……………….. 177 

4. Plotting procedures ……………………………………………………. 181 

 

Variable declaration 
globals [ 
  ;; the following global variables are used in all models 

go? 
  proportion_cooperation_list 
  tolerance_list 
  average_hamming_distance_list 
  homophily_list_coop ;; local homophily in tolerance 
  homophily_coop ;; local homophily in tolerance 
  homophily_list_distance ;; local homophily in tags 

homophily_distance ;; local homophily in tags 
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number_rewired ;; for small-world network generation in Model 4 
 
tol_dependent_degree_list ;; used only in Model 5 
 
;; the following global variables are used both in Model 4 and Model 5 
clustering-coefficient 
clustering-coefficient-of-lattice  
average-path-length 
average-path-length-of-lattice 
infinity 
average_degree 
density 
cooperation_history 
first_emergence_time_all_coop 
first_emergence_time_all_defect 
first_emergence_time_either 
phase 
cum_duration_fall 
duration_fall 
cum_duration_rise 
duration_rise 
count_fall 
count_rise 
mode_tolerance_list_history 
count_zero_block 

] 
 
turtles-own [ 

score 
  tag-list 
  tolerance 
  average_hamming_distance 
  dissimilarity_list 
  neighbor_list 
  temp-score 
  temp-strategy 

strategy-list  
neighborhood 
sus-list ;; susceptibility for Model 2 and Model 3 

 
  ;; the following variables are used in Model 4 and Model 5 

node-clustering-coefficient  
  distance-from-other-turtles 
] 
 
;; the following procedures are used in Model 4  
links-own [  

rewire-one? 
] 
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Setup 

Chapter 4 and 5 
to setup 
  ca 
  ask patches [ create-agents ] 
  ask turtles [  
    set neighborhood turtles-on neighbors ;; Moore neighborhood 
    set neighbor_list sort [ who ] of neighborhood 
    similarity-perception 
  ] 
  update-plot 
end 
 
A. Model 1 (Genetic inheritance) 

to create-agents 
  sprout 1 [ 
    set tag-list [ ] 
    let i 0 
    while [ i < num-of-tag-item ] 
    [  

set tag-list fput random 2 tag-list  
set i i + 1  

] 
let l num-of-tag-item 

    set tolerance random ( l + 2 )     
set shape "circle"     

  ] 
end 
 

B. Model 2 (Caste societies) 
to create-agents 
  sprout 1 [ 
    set tag-list [ ] 
    set sus-list [ ] 
    let i 0 
    while [ i < num-of-tag-item ] 
    [  
      set tag-list fput random 2 tag-list 
      set sus-list fput 0 sus-list 
      set i i + 1 
    ]     

set sus-list replace-item 0 sus-list 1 ;; the first item does not change 
let l num-of-tag-item 

    set tolerance random ( l + 2 )     
set shape "circle"     

  ] 
end 
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C. Model 3 (Modern societies) 
to create-agents 
  sprout 1 [ 
    set tag-list [ ] 
    set sus-list [ ] 
    let i 0 
    while [ i < num-of-tag-item ] 
    [  
      set tag-list fput random 2 tag-list 
      set sus-list fput 0 sus-list 
      set i i + 1 
    ]     

set sus-list replace-item ( random num-of-tag-item ) sus-list 1  
;; the item including 1 in the suslist does not change 

    let l num-of-tag-item 
    set tolerance random ( l + 2 )     

set shape "circle"     
  ] 
end 
 
 
Chapter 6 and 7 
to setup 
  ca 
  set infinity 999 

set-default-shape turtles "circle"   
  make-nodes-links initial_network ;; a random network by default for Model 5 
  no-display 
  set clustering-coefficient-of-lattice clustering-coefficient 
  set average-path-length-of-lattice average-path-length 
  ask turtles [  
    set neighbor_list sort [ who ] of link-neighbors  
    similarity-perception 
  ]   
  update-plot 
  display 
end 
 
to make-nodes-net 
  crt num_of_agents [ 
    set tag-list [ ] 
    let i 0 
    while [ i < num-of-tag-item ] 
    [ set tag-list fput random 2 tag-list 
     set i i + 1 
    ]     
    let j 0 
    while [ j < num_of_agents ] 
    [ let l num-of-tag-item 
     set tolerance random ( l + 2 )  
     set j j + 1 
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    ]     
layout-circle ( sort turtles ) max-pxcor - 1 

  ] 
end 
 

A. Model 4 (Static networks with different topologies) 
;; the procedures for calculating the average clustering coefficient and the average path length 

are not presented below because we follow those in the NetLogo Small Worlds model by 
Wilenski (2005): to-report do-calculations… end; to-report in-neighborhood? [ hood ]… 
end; to find-clustering-coefficient… end; and to find-path-lengths… end. 

 
to make-nodes-links [ initial ] 
  if ( initial = "random-network" ) [ 
    make-nodes-net 
    if ( erdos_renyi_probability = 0 or erdos_renyi_probability = 1 ) [ stop ] 
    ask turtles [ 

create-links-with turtles with [self > myself and random-float 1.0 <= 
erdos_renyi_probability ]  

      [ set color grey – 3 ] 
    ] 
    let success? not any? turtles with [ count my-links = 0 ]  
    set success? do-calculations 
    ifelse average-path-length = 999 [  
      setup ;; if there is any isolate by any chance, setup again 
      clear-all-plots 
    ] [ 
      ask turtles [ set size ( size + 0.10 * count my-links ) ] 
      set success? do-calculations  
    ] 

] 
  if ( initial = "regular-network" ) [ 
    make-nodes-net 
    ring-lattice 
    ask turtles [ set size ( size + 0.10 * count my-links ) ]  
    let success? true 
    set success? do-calculations 

] 
  if ( initial = "small-world-network" ) [ 
    make-nodes-net 
    ring-lattice 
    rewiring 
  ] 
end   
 
to ring-lattice 
  let i 0 
  while [i < count turtles ] 
  [ 
    make-edge turtle i turtle ( (i + 1) mod count turtles ) 
    make-edge turtle i turtle ( (i + 2) mod count turtles ) 
    make-edge turtle i turtle ( (i + 3) mod count turtles ) 
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    make-edge turtle i turtle ( (i + 4) mod count turtles )                 
    set i i + 1 
  ]   
end  
 
to make-edge [ node1 node2 ] 
  ask node1 [ create-link-with node2 [ set rewire-one? false ] 

] 
end 
 
;; the average clustering coefficient and the average path length from 1000 random graphs are 
0.08001 and 2.43586. Their standard deviation are 0.010216 and 0.048826, respectively. 
;; z-test (one-tail) : [ 0.08001 - ACC from a small-world network ] / ( 0.010216 / sqrt 1000 ) = 
-1.645 (alpha level is 0.05) 
;; z-test (two-tail) : [ 2.43586 - APL from the same small-world network ] / ( 0.048826 / sqrt 
1000 ) = 1.96 (alpha level is 0.05) 
;; rewiring is allowed until both conditions are satisfied. 
 
to rewiring 

set number_rewired 0  
  while [ number_rewired < 200 ] [ 
    let potential-edges links with [ not rewire-one? ] 
    if any? potential-edges [ 
      ask one-of potential-edges [ 
        let node1 end1 
        if [ count link-neighbors ] of end1 < ( count turtles – 1 ) 
        [ 
          let node2 one-of turtles with [ ( self != node1 ) and ( not link-neighbor? node1 ) ] 
          ask node1 [ create-link-with node2 [ set color grey - 3 set rewire-one? true ] ] 
          set number_rewired number_rewired + 1 
          die 
        ] 
      ] 
    ] 
  ]     
  let success? true 
  set success? do-calculations 
  while [ ( average-path-length < 2.4333201 or average-path-length > 2.4383999 ) or 

clustering-coefficient < 0.0805414 ] [   
    let potential-edges links with [ not rewire-one? ] 
    if any? potential-edges [ 
      ask one-of potential-edges [ 
        let node1 end1 
        if [ count link-neighbors ] of end1 < (count turtles - 1) 
          [ 
          let node2 one-of turtles with [ ( self != node1 ) and ( not link-neighbor? node1 ) ] 
          ask node1 [ create-link-with node2 [ set color grey - 3  set rewire-one? true ] ] 
          set number_rewired number_rewired + 1 
          die 
        ] 
      ] 
    ] 
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    set success? do-calculations 
    if number_rewired = 400 [ ;; if a small-world network satisfying both conditions is not 

generated, then another try 
      setup 
      clear-all-plots 
    ] 
  ] 
  ask turtles [ set size ( size + 0.10 * count my-links ) ]       
  set clustering-coefficient-of-lattice clustering-coefficient 
  set average-path-length-of-lattice average-path-length 
] 
end 
 
 
Go 
to go 
  set go? true  
  ask turtles [ similarity-perception ] 

ask turtles [ interaction] 
ask turtles [ payoff ] 

  ask turtles [ tag-tolerance-update ] 
  tick 
  update-plot 
end 
 

Similarity perception 
;; if count link-neighbors = 0 [ set average_hamming_distance 0 ] in Model 5 
to similarity-perception 

set dissimilarity_list [ ] 
let j 0 

  while [ j < 8 ] ;; while [ j < count link-neighbors ] for Model 4 and 5 
  [  

let b length filter [ ? = true ] ( map [ ?1 = 1 and ?2 = 0 ]  
[ tag-list ] of self [ tag-list ] of turtle item j neighbor_list )  

    let c length filter [ ? = true ] ( map [ ?1 = 0 and ?2 = 1 ]  
[ tag-list ] of self [ tag-list ] of turtle item j neighbor_list ) 

set dissimilarity_list lput ( b + c ) dissimilarity_list 
    set j j + 1 
  ]     
  set average_hamming_distance mean dissimilarity_list 
end 
 

Interaction 
to interaction 
  set temp-score [ ] 
  set strategy-list [ ] 
  let j 0 
  while [ j < 8 ] [ ;; while [ j < count link-neighbors ] [ for Model 4 and 5 
    let partner turtle item j neighbor_list 
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    let ego self 
    let p position [ who ] of ego [ neighbor_list ] of partner 
    ask partner [ 
      ifelse [ tolerance ] of partner > item p [ dissimilarity_list ] of partner [ 
        set temp-strategy true ;; partner j cooperates toward the ego 
      ] [ 
        set temp-strategy false ;; partner j declines to cooperate toward the ego 
      ] 
    ] 
    ifelse [ tolerance ] of ego > item j [ dissimilarity_list ] of ego [ 
      set [ temp-strategy ] of ego true ;; the ego cooperates toward partner j 
      set strategy-list lput 1 strategy-list 
      ifelse [ temp-strategy ] of partner = true [ 
        set temp-score fput ( b/c - 1 ) temp-score ;; reward for mutual cooperation 
      ] [ 
        set temp-score fput ( - 1 ) temp-score ;; sucker’s payoff 
      ]  
    ] [ 
      set [ temp-strategy ] of ego false ;; the ego does not cooperate toward partner j 
      set strategy-list lput 0 strategy-list 
      ifelse [ temp-strategy ] of partner = true [ 
        set temp-score fput b/c temp-score ;; temptation to defect 
      ] [ 
        set temp-score fput 0 temp-score ;; punishment for mutual defection 
      ]      
    ]   
    set j j + 1 
  ] 
end 
 
Payoff calculation 

to payoff 
set score 0 
set score sum temp-score 

end 
 

Reproduction (Payoff-based imitation) 

Model 1 (Genetic inheritance) 

to tag-tolerance-update 
  let reference one-of turtles-on neighbors 
  let what-to-compare [ score ] of reference 
  let self-score [ score ] of self 
  ifelse mutation-rate > random-float 1.0 [ 
    set tag-list [ ] 
    let j 0 
    while [ j < num-of-tag-item ] 
    [ set tag-list fput random 2 tag-list 
     set j j + 1 
    ]  
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    set tolerance random ( num-of-tag-item + 2 ) 
  ] [ 
    if what-to-compare > self-score [ 
      set tag-list [ ] 
      set tag-list [ tag-list ] of reference 
      set tolerance [ tolerance ] of reference 
    ] 
  ] 
end 
 
Model 2 (Caste societies) 

to tag-tolerance-update 
  let reference one-of turtles-on neighbors 
  let what-to-compare [ score ] of reference 
  let self-score [ score ] of self 
  ifelse mutation-rate > random-float 1.0 [ 
    let a item 0 tag-list 
    set tag-list [ ] 
    let j 0 
    while [ j < num-of-tag-item ] 
    [ set tag-list fput random 2 tag-list 
     set j j + 1 
    ]  
    set tag-list replace-item 0 tag-list a 
    set tolerance random ( num-of-tag-item + 2 ) 
  ] [ 
    if what-to-compare > self-score [ 
      let a item 0 tag-list 
      set tag-list [ ] 
      set tag-list [ tag-list ] of reference 
      set tag-list replace-item 0 tag-list a 
      set tolerance [ tolerance ] of reference    
    ] 
  ] 
end 
 

Model 3 (Modern societies) 

to tag-tolerance-update 
  let reference one-of turtles-on neighbors 
  let what-to-compare [ score ] of reference 
  let self-score [ score ] of self 
  ifelse mutation-rate > random-float 1.0 [ 
    let p position 1 sus-list 
    let a item p tag-list 
    set tag-list [ ] 
    let j 0 
    while [ j < num-of-tag-item ] 
    [ set tag-list fput random 2 tag-list 
     set j j + 1 
    ]  
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    set tag-list replace-item p tag-list a 
    set tolerance random ( num-of-tag-item + 2 ) 
  ] [ 
    if what-to-compare > self-score [ 
      let p position 1 sus-list 
      let a item p tag-list 
      set tag-list [ ] 
      set tag-list [ tag-list ] of reference 
      set tag-list replace-item p tag-list a 
      set tolerance [ tolerance ] of reference                 
    ] 
  ] 
end 
 

Faster-mutating-tag-based Societies 
to tag-tolerance-update 
  let reference one-of turtles-on neighbors 
  let what-to-compare [ score ] of reference 
  let self-score [ score ] of self 
  let a random-float 1.0 
  ifelse mutation-rate * mu_factor > a [ 
    set tag-list [ ] 
    let j 0 
    while [ j < num-of-tag-item ] 
    [ set tag-list fput random 2 tag-list 
     set j j + 1 
    ]  
  ] [ 
    if what-to-compare > self-score [ 
      set tag-list [ ] 
      set tag-list [ tag-list ] of reference   
    ] 
  ] 
  ifelse mutation-rate > a [ 
    set tolerance random ( num-of-tag-item + 2 ) 
  ] [ 
    if what-to-compare > self-score [ 
      set tolerance [ tolerance ] of reference 
    ] 
  ] 
end 
 
 
 
Model 4 and Model 5 (A step-wise change of tolerance) 
to tag-tolerance-update 
  let reference one-of link-neighbors 
  let what-to-compare [ score ] of reference 
  let self-score [ score ] of self 
  ifelse mutation-rate > random-float 1.0 [ 
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    set tag-list [ ] 
    let j 0 
    while [ j < num-of-tag-item ] 
    [ set tag-list fput random 2 tag-list 
     set j j + 1 
    ] 

set tolerance random ( num-of-tag-item + 2 )  
  ] [ 
    if what-to-compare > self-score [ 
      set tag-list [ ] 
      set tag-list [ tag-list ] of reference 

ifelse tolerance > [ tolerance ] of reference [ 
        ifelse tolerance = 0 [ 
          set tolerance tolerance 
        ] [ 
          set tolerance tolerance - 1 
        ] 
      ] [ 
        ifelse tolerance = [ tolerance ] of reference [ 
          set tolerance [ tolerance ] of reference 
        ] [ 
          ifelse tolerance = num-of-tag-item + 1 [ 
            set tolerance tolerance  
          ] [ 
            set tolerance tolerance + 1 
          ] 
        ] 
      ] 
    ] 
  ] 
end 
 
 
Model 5 (Evolution of culture and networks) 
;; the mutation rates, mu1 and mu2, are controlled as 0.01 for cultural perturbation and 
network perturbation,  
;; given the codes below, the following values were selected in our experiments.  
;; at p=10, mu1=1/90; mu2=1/10  
;; at p=20, mu1=1/80; mu2=1/20  
;; at p=30, mu1=1/70; mu2=1/30  
;; at p=40, mu1=1/60; mu2=1/40  
;; at p=50, mu1=1/50; mu2=1/50 
;; if network plasticity = 0, if the mutation rate is 0.01 given N=100, one agent errs in 
imitating tags and tolerance. 
;; if network plasticity = 50 given the same mutation rate (0.01), the chance of cultural 
perturbation would decrease, which accordingly reduces the frequency of the emergence of 
mutant defectors (i.e. conditional probability). 
;; to avoid this issue, regardless of different levels of network plasticity, we model that one 
agent experiences cultural perturbation, and one agent experiences network perturbation per 
round. 
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to tag-tolerance-update  
  let p random 100 
  let m random-float 1.0 
  ifelse ( p < network_plasticity and p >= 0 ) [ 
    ifelse mu1 > m [ 
      ifelse count link-neighbors != 0 [ 
        random_breaking_making  
      ] [ 
        random_making  
      ] 
    ] [ 
      ifelse count link-neighbors != 0 [       
        breaking_if_outgroup_making_if_ingroup  
      ] [ 
        making_if_ingroup   
      ] 
    ] 
  ] [ 
    ifelse mu2 > m [ 
      ifelse count link-neighbors != 0 [ 
        set tag-list [ ] 
        let j 0 
        while [ j < num-of-tag-item ] 
        [ set tag-list fput random 2 tag-list 
         set j j + 1 
        ]  
        set tolerance random ( num-of-tag-item + 2 )  
      ] [ 
        stop  
      ] 
    ] [ 
      ifelse count link-neighbors != 0 [ 
        let reference one-of link-neighbors 
        let what-to-compare [ score ] of reference 
        let self-score [ score ] of self         
        if what-to-compare > self-score [ 
          set tag-list [ ] 
          set tag-list [ tag-list ] of reference 
          ifelse tolerance > [ tolerance ] of reference [ 
            ifelse tolerance = 0 [ 
              set tolerance tolerance 
            ] [ 
              set tolerance tolerance - 1 
            ] 
          ] [ 
            ifelse tolerance = [ tolerance ] of reference [ 
              set tolerance [ tolerance ] of reference 
            ] [ 
              ifelse tolerance = num-of-tag-item + 1 [ 
                set tolerance tolerance 
              ] [ 
                set tolerance tolerance + 1 



179 

 

              ] 
            ] 
          ]           
        ]    
      ] [ 
        stop  
      ] 
    ] 
  ]       
end 
 
to random_breaking_making 
  let node1 one-of link-neighbors 
  let f [ who ] of node1 
  let node3 self 
  let g [ who ] of node3 
  ifelse ( node1 = nobody ) [ 
    stop 
  ] [ 
    let node2 one-of turtles with [ ( not link-neighbor? node3 ) and ( self != node3 )]  
    let h [ who ] of node2 
    ask node3 [ create-link-with node2 [ set color green - 1 ] ] 
    ask link [ who ] of node3 [ who ] of node1 [ die ] 
    set [ neighbor_list ] of self fput h [ neighbor_list ] of self 
    set [ neighbor_list ] of self sort remove f [ neighbor_list ] of self 
    set [ neighbor_list ] of node2 sort fput g [ neighbor_list ] of node2   
    set [ neighbor_list ] of node1 sort remove g [ neighbor_list ] of node1       
  ]  
end 
 
to random_making 
  let node1 self 
  let b [ who ] of node1 
  let node2 one-of turtles with [ ( not link-neighbor? node1 ) and ( self != node1 ) ] 
  let a [ who ] of node2 
  ask node1 [ create-link-with node2 [ set color green - 1 ] ] 
  set [ neighbor_list ] of self sort fput a [ neighbor_list ] of self 
  set [ neighbor_list ] of node2 sort fput b [ neighbor_list ] of node2 
end 
 
to breaking_if_outgroup_making_if_ingroup 
  let node1 one-of link-neighbors  
  let b length filter [ ? = true ] ( map [ ?1 = 1 and ?2 = 0 ]  

[ tag-list ] of self [ tag-list ] of node1 )  
  let c length filter [ ? = true ] ( map [ ?1 = 0 and ?2 = 1 ]  

[ tag-list ] of self [ tag-list ] of node1 ) 
  let dis1 ( b + c )  
  ifelse dis1 >= [ tolerance ] of self [  
    let f [ who ] of node1 
    let node3 self 
    let g [ who ] of node3 
    ifelse ( node1 = nobody ) [  
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      stop 
    ] [   
      let q random 100 
      ifelse ( q < closure_probability and q >= 0 ) [ 
        set target one-of link-neighbors 
        ifelse count [ link-neighbors ] of target >= 2 [ 
          let node2 one-of other [ link-neighbors ] of target  
          let a length filter [ ? = true ] ( map [ ?1 = 1 and ?2 = 0 ]  

[ tag-list ] of self [ tag-list ] of node2 )  
          let d length filter [ ? = true ] ( map [ ?1 = 0 and ?2 = 1 ]  

[ tag-list ] of self [ tag-list ] of node2 ) 
          let dis2 ( a + d )        
          ifelse ( dis2 < [ tolerance ] of self ) and ( dis2 < [ tolerance ] of node2 ) [  
            let h [ who ] of node2 
            ask node3 [ create-link-with node2 [ set color white - 1 ] ] 
            ask link [ who ] of node3 [ who ] of node1 [ die ]       
            set [ neighbor_list ] of self sort fput h [ neighbor_list ] of node3 
            set [ neighbor_list ] of self sort remove f [ neighbor_list ] of self       
            set [ neighbor_list ] of node2 sort fput g [ neighbor_list ] of node2 
            set [ neighbor_list ] of node1 sort remove g [ neighbor_list ] of node1  
          ] [ 
            stop 
          ] 
        ] [ 
          stop 
        ] 
      ] [ 
        let node2 one-of turtles with [ ( not link-neighbor? node3 ) and ( self != node3 )  

and ( not member? self [ link-neighbors ] of link-neighbors ) ]  
        let a length filter [ ? = true ] ( map [ ?1 = 1 and ?2 = 0 ]  

[ tag-list ] of self [ tag-list ] of node2 )  
        let d length filter [ ? = true ] ( map [ ?1 = 0 and ?2 = 1 ]  

[ tag-list ] of self [ tag-list ] of node2 ) 
        let dis2 ( a + d )        
        ifelse ( dis2 < [ tolerance ] of self ) and ( dis2 < [ tolerance ] of node2 ) [  
          let h [ who ] of node2 
          ask node3 [ create-link-with node2 [ set color blue - 1 ] ] 
          ask link [ who ] of node3 [ who ] of node1 [ die ]       
          set [ neighbor_list ] of self sort fput h [ neighbor_list ] of self 
          set [ neighbor_list ] of self sort remove f [ neighbor_list ] of self               
          set [ neighbor_list ] of node2 sort fput g [ neighbor_list ] of node2 
          set [ neighbor_list ] of node1 sort remove g [ neighbor_list ] of node1                      
        ] [ 
          stop 
        ]  
      ] 
     ]  
   ] [ 
    stop 
  ]  
end 
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to making_if_ingroup  
  let node1 self 
  let b [ who ] of node1 

let node2 one-of turtles with [ ( not link-neighbor? node1 ) and ( self != node1 ) and  
( not member? self [ link-neighbors ] of link-neighbors ) ] 

let a length filter [ ? = true ] ( map [ ?1 = 1 and ?2 = 0 ]  
[ tag-list ] of self [ tag-list ] of node2 )  

let d length filter [ ? = true ] ( map [ ?1 = 0 and ?2 = 1 ]  
[ tag-list ] of self [ tag-list ] of node2 ) 

  let dis2 ( a + d )        
  ifelse ( dis2 < [ tolerance ] of self ) and ( dis2 < [ tolerance ] of node2 ) [ 
    let c [ who ] of node2 
    ask node1 [ create-link-with node2 [ set color blue - 1 ] ] 
    set [ neighbor_list ] of self sort fput c [ neighbor_list ] of node1 
    set [ neighbor_list ] of node2 sort fput b [ neighbor_list ] of node2 
  ] [ 
    stop 
  ] 
end 
 
Plotting 
;; the calculate the frequency of an item in the given list, the following codes are used. 
to-report occurrences [x the-list] 
  report reduce 
    [ ifelse-value ( ?2 = x ) [ ?1 + 1 ] [ ?1 ] ] ( fput 0 the-list ) 
end 
 
;; the following procedures are used in all models for plotting. 
to update-plot 

set-current-plot "tolerance distribution" 
plot-pen-reset 
set-plot-x-range 0 num-of-tag-item + 2 
set-plot-y-range 0 round ( count turtles / ( num-of-tag-item + 1 ) + 100 ) 
set-histogram-num-bars ( num-of-tag-item + 2 )    
histogram [ tolerance ] of turtles 

 
set-current-plot "average dissimilarity distribution" 
plot-pen-reset 
ifelse num-of-tag-item = 0 [ 

    set-plot-x-range 0 1 
] [ 

    set-plot-x-range 0 num-of-tag-item 
] 
set-plot-y-range 0 count turtles 
set-histogram-num-bars 10 
histogram [ average_hamming_distance ] of turtles  

  
set tolerance_list [ tolerance ] of turtles 
set average_hamming_distance_list [ average_hamming_distance ] of turtles 
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ifelse count turtles with [ tolerance >= 1 ] >= 1 [ 
    let i 0 
    set homophily_list_coop [ ] 
    while [ i < count turtles ] [ 
      ask turtle i [ 
        let z [ tolerance ] of self 
        if z >= 1 [ 
          set homophily_list_coop fput ( count neighborhood with [ tolerance = z ] /  

count [ neighborhood ] of self ) homophily_list_coop  
        ] 
      ] 
      set i i + 1 
    ] 
    set homophily_coop sum homophily_list_coop / count turtles with [ tolerance >= 1 ] 

] [  
    set homophily_coop 0 

] 
   

let i 0 
set homophily_list_distance [ ] 
while [ i < count turtles ] [ 

    ask turtle i [ 
      let z [ average_hamming_distance ] of self 
      set homophily_list_distance fput ( count neighborhood with 

[ average_hamming_distance = z ] / count [ neighborhood ] of self ) 
homophily_list_distance  

    ] 
    set i i + 1 

] 
set homophily_distance sum homophily_list_distance / count turtles      

   
set-current-plot "local homophily" 
set-current-plot-pen "tol" 
plotxy ticks homophily_coop 
set-current-plot-pen "tag" 
plotxy ticks homophily_distance 

        
ifelse go? = true [ 

    set proportion_cooperation_list [ ] 
let j 0  

    while [ j < count turtles ] 
    [ 
      set proportion_cooperation_list fput ( ( sum [ strategy-list ] of turtle j ) / 8 ) 

proportion_cooperation_list 
      set j j + 1 
    ]  
    set-current-plot "proportion of cooperation" 
    plot ( sum proportion_cooperation_list ) / count turtles  

] [ 
    set proportion_cooperation_list [ 0 ]  

] 
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;; the following codes are used only for Model 4 and Model 5. 
ifelse member? 0 modes tolerance_list and member? 1 modes tolerance_list [ 

    set mode_tolerance_list_history fput 0 mode_tolerance_list_history  
] [  

    set mode_tolerance_list_history fput ( mean modes tolerance_list ) 
mode_tolerance_list_history  

] 
if ( length mode_tolerance_list_history > 2 ) [ 

    ifelse item 0 mode_tolerance_list_history = 0 and item 1 mode_tolerance_list_history = 
0 and ( item 2 mode_tolerance_list_history != 0 ) [ 

      set count_zero_block count_zero_block + 1 
    ] [ 
      set count_zero_block count_zero_block 
    ] 

]   
       

let max-degree max [ count link-neighbors ] of turtles 
set-current-plot "degree distribution" 
plot-pen-reset  
set-plot-x-range 1 ( max-degree + 1 ) 
histogram [ count link-neighbors ] of turtles   

   
set average_degree ( count links * 2 ) / count turtles  
set density ( 2 * count links ) / ( ( count turtles ) * ( count turtles - 1 ) ) 

   
ifelse go? = true [ 

set cooperation_history fput ( sum proportion_cooperation_list / count turtles ) 
cooperation_history 

    if ( occurrences 1 cooperation_history = 1 and first cooperation_history = 1 ) [ 
      set first_emergence_time_all_coop ticks - 1  

;; considering that the list, cooperation_history, at the beginning is a blank array 
      set first_emergence_time_either ticks - 1 
      set phase 1 
      set count_fall 1 
    ]  
    if ( occurrences 0 cooperation_history = 1 and first cooperation_history = 0 ) [ 
      set first_emergence_time_all_defect ticks - 1  

;; otherwise, the second emergence time would replace the first one 
      set first_emergence_time_either ticks - 1 
      set phase 0  
      set count_rise 1 
    ] 
    if ( sum proportion_cooperation_list / count turtles > 0 and sum 

proportion_cooperation_list / count turtles < 1 ) and  
( first_emergence_time_either = 0 ) [ 

      set phase 2 
]         

] [  
    set proportion_cooperation_list [ 0 ] 
    set cooperation_history [ ] 
    set phase 2 

] 
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ifelse ( phase = 1 ) [ 

    ifelse ( sum proportion_cooperation_list / count turtles != 0 ) and ( ticks > 
first_emergence_time_either ) [ ;;and ( occurrences 1 cooperation_history >= 1 ) [ 

      set phase 1 
      set cum_duration_fall cum_duration_fall + 1 
      set duration_fall duration_fall + 1 
      set count_rise count_rise 

set cum_duration_rise cum_duration_rise 
      set duration_rise 0         
    ] [  
      set phase 0 
      set cum_duration_fall cum_duration_fall 
      set duration_fall 0 
      set count_rise count_rise + 1 

] [ 
    if ( phase = 0 ) [  
      ifelse ( sum proportion_cooperation_list / count turtles != 1 ) and ( ticks > 

first_emergence_time_either ) [ ;;and ( occurrences 0 cooperation_history >= 1 ) [ 
        set phase 0 
        set cum_duration_rise cum_duration_rise + 1  
        set duration_rise duration_rise + 1 
        set count_fall count_fall 
        set cum_duration_fall cum_duration_fall 
        set duration_fall 0         

] [ 
        set phase 1 
        set cum_duration_rise cum_duration_rise 
        set duration_rise 0  
        set count_fall count_fall + 1    

] 
    ] 

] 
 

set-current-plot "duration rise and fall dynamics"  
set-current-plot-pen "cum_dur_fall" 
plot cum_duration_fall  
set-current-plot-pen "dur_fall" 
plot duration_fall  
set-current-plot-pen "cum_dur_rise" 
plot cum_duration_rise  
set-current-plot-pen "dur_rise" 
plot duration_rise 

 
;; the following codes are used in order to calculate the tolerance-dependent degree in Model 

5 under the experimental condition of L = 4. 
let i 0  
set tol_dependent_degree_list [ ] 
while [ i < 6 ] [ 

    let pool turtles with [ tolerance = i ] 
      ifelse ( any? pool with [ length new_neighbor_list != 0 ] ) [  
        set tol_dependent_degree_list lput mean [ length new_neighbor_list ] of turtles with 
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[ tolerance = i ] tol_dependent_degree_list 
      ] [  
        set tol_dependent_degree_list lput 0 tol_dependent_degree_list 
      ] 
      set i i + 1 
    ]  
    set tol_dependent_degree_list tol_dependent_degree_list 
 
;; the following codes are used to draw the plot of tides of tolerance in Model 5 given L = 5. 

if num-of-tag-item = 4 [ 
    set-current-plot "evolution of tolerance" 
    let tot 0 

set-plot-y-range 0 1 
    set-current-plot-pen "5" 
    plot-pen-up plotxy ticks tot 
    set tot tot + ( count turtles with [ tolerance = 5 ] / count turtles ) 
    plot-pen-down plotxy ticks tot 
    set-current-plot-pen "4" 
    plot-pen-up plotxy ticks tot 
    set tot tot + ( count turtles with [ tolerance = 4 ] / count turtles ) 
    plot-pen-down plotxy ticks tot 
    set-current-plot-pen "3" 
    plot-pen-up plotxy ticks tot 
    set tot tot + ( count turtles with [ tolerance = 3 ] / count turtles ) 
    plot-pen-down plotxy ticks tot 
    set-current-plot-pen "2" 
    plot-pen-up plotxy ticks tot 
    set tot tot + ( count turtles with [ tolerance = 2] / count turtles ) 
    plot-pen-down plotxy ticks tot 
    set-current-plot-pen "1" 
    plot-pen-up plotxy ticks tot 
    set tot tot + ( count turtles with [ tolerance = 1 ] / count turtles ) 
    plot-pen-down plotxy ticks tot 
    set-current-plot-pen "0" 
    plot-pen-up plotxy ticks tot 
    set tot tot + ( count turtles with [ tolerance = 0 ] / count turtles ) 
    plot-pen-down plotxy ticks tot   

] 
end 
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