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Abstract. Given a rational polytope P ⊂ Rd, the numerical function counting lattice
points in the integral dilations of P is known to become a quasi-polynomial, called the
Ehrhart quasi-polynomial ehrP of P . In this paper we study the following problem: Given
a rational d-polytope P ⊂ Rd, is there a nice way to know Ehrhart quasi-polynomials of
translated polytopes P + v for all v ∈ Qd? We provide a way to compute such Ehrhart
quasi-polynomials using a certain toric arrangement and lattice point counting functions
of translated cones of P . This method allows us to visualize how constituent polynomi-
als of ehrP+v change in the torus Rd/Zd. We also prove that information of ehrP+v for
all v ∈ Qd determines the rational d-polytope P ⊂ Rd up to translations by integer vec-
tors, and characterize all rational d-polytopes P ⊂ Rd such that ehrP+v is symmetric for
all v ∈ Qd.
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1. Introduction

Enumerations of lattice points in a convex polytope is a classical important theme relating
to algebra, combinatorics and geometry of convex polytopes. A fundamental result on this
subject is Ehrhart’s result which says that, for any rational polytope P ⊂ Rd, the func-
tion Z⩾0 ∋ t 7→ #(tP ∩ Zd) becomes a quasi-polynomial in t, where tP is the tth dilation of P
and #X denotes the cardinality of a finite set X . This function is called the Ehrhart quasi-
polynomial of P and we denote it by ehrP . Let P + v = {x + v | x ∈ P} be the convex
polytope obtained from a convex polytope P by the parallel translation by a vector v ∈ Rd. The
purpose of this paper is to develop a way to understand behaviors of ehrP+v when v runs over
all vectors in Qd, where P is a fixed rational polytope.

One motivation of studying this problem is special behaviors of ehrP+v when we
choose v ∈ Qd somewhat randomly. Let us give an example to explain this. Let T ⊂ R2 be
the trapezoid whose vertices are (0, 0), (1, 0), (2, 1) and (0, 1). The Ehrhart quasi-polynomial
of T + ( 17

100
, 52
100

) becomes the following quasi-polynomial having minimum period 100:

ehrT+( 17
100

, 52
100

)(t) =





3
2
t2 + 5

2
t+ 1 ( t ≡ 0 ),

3
2
t2 + 3

2
t ( t ≡ 25, 50, 75 ),

3
2
t2 − 1

2
t




t ≡ 1, 3, 6, 7, 9, 12, 13, 15, 18, 19, 21, 23, 24, 26, 30,

32, 36, 38, 42, 44, 48, 49, 53, 55, 59, 61, 65, 66, 67,

69, 71, 72, 73, 78, 83, 84, 86, 89, 90, 92, 95, 96, 98


 ,

3
2
t2 + 1

2
t




t ≡ 2, 4, 5, 8, 10, 11, 14, 16, 17, 20, 22, 28, 29, 31, 33, 34,

35, 37, 40, 41, 45, 47, 51, 52, 54, 56, 57, 58, 60, 62, 64, 68,

70, 74, 76, 77, 79, 80, 81, 82, 85, 87, 88, 91, 93, 94, 97, 99


 ,

where “t ≡ a” means “t ≡ a (mod 100)”. This quasi-polynomial has several special properties.
For example, one can see

(α) It has a fairly large minimum period 100, but it consists of only 4 polynomials.

(β) The polynomials 3
2
t2 ± 1

2
t appear quite often comparing other two polynomials.

(γ) The polynomial 3
2
t2 − 1

2
t appears when t ≡ 1, 3, 6, 7, . . . , while the polynomial

3
2
t2 + 1

2
t = 3

2
(−t)2 − 1

2
(−t) appears when t = . . . , 93, 94, 97, 99. There seem to be a

kind of reciprocity about the appearance of these two polynomials.

Our first goal is to explain why these phenomena occur by using a certain generalization of
an Ehrhart quasi-polynomial, which was considered by McMullen [McM78] and is called a
translated lattice point enumerator in [dVY25].

1.1. First result

We introduce a few notation to state our results. A function f : Z → R is said to be a quasi-
polynomial if there is a natural number q and polynomials f0, f1, . . . , fq−1 such that

f(t) = fi(t) for all t ∈ Z with t ≡ i (mod q).
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A number q is called a period of f and the polynomial fk is called the kth constituent of f . For
convention, we define the kth constituent fk of f for any k ∈ Z by setting fk = fk′ with k′ ≡ k
(mod q). For example, if f has period 3, then the 7th constituent equals the 1st constituent f1
and the (−1)th constituent equals the 2nd constituent f2. We note that this definition does not
depend on a choice of a period. We will say that a function L from Z>0 (or Z⩾0) to R is a quasi-
polynomial if there is a quasi-polynomial f : Z → R such that L(t) = f(t) for all t ∈ Z>0

(or Z⩾0), and in that case we regard L as a function from Z to R by identifying L and f .
For a convex set X ⊂ Rd and a vector v ∈ Rd, we define the function TLX,v : Z>0 → R by

TLX,v(t) = #
(
(tX + v) ∩ Zd

)

and call it the translated lattice points enumerator of X with respect to v. When X is a
convex polytope P , we actually consider that TLP,v is a function from Z⩾0 to R by considering
that tP = {0} when t = 0. Clearly TLP,0 is nothing but the Ehrhart quasi-polynomial of P .
Generalizing Ehrhart’s results, McMullen [McM78, §4] proved that, if P is a rational polytope
such that qP is integral then TLP,v is a quasi-polynomial with period q, and showed that there is
a reciprocity between TLint(P ),v and TLP,−v, where int(P ) is the interior of P . As we will see
soon in Section 2, for a rational polytope P ⊂ Rd and v ∈ Qd, it follows from the above result
of McMullen that

the kth constituent of ehrP+v = the kth constituent of TLP,kv (1.1)

for all k ∈ Z. This equation (1.1) was used in [dVY25] when P is a lattice polytope, and is quite
useful to study Ehrhart quasi-polynomials of translated polytopes. Indeed, the equation says
that knowing ehrP+v for all v ∈ Qd is essentially equivalent to knowing TLP,v for all v ∈ Qd.
Our first goal is to explain that the latter information can be described as a finite information
although ehrP+v could have arbitrary large minimum period.

To do this, we first discuss when TLP,u and TLP,v equal for different u,v ∈ Rd using
toric arrangements. For a = (a1, . . . , ad) ∈ Rd and b ∈ R, let Ha,b be the hyperplane of Rd

defined by the equation a1x1 + · · · + adxd = b. Let P be a rational convex d-polytope hav-
ing m facets F1, . . . , Fm such that each Fk lies in the hyperplane Hak,bk with ak ∈ Zd, bk ∈ Z
and gcd(ak, bk) = 1. We consider the arrangement of hyperplanes

AP =
m⋃

i=1

{Hai,k | k ∈ Z}

and let ∆P be the open polyhedral decomposition of Rd determined by AP . Both AP and ∆P

are invariant under translations by integer vectors, so by the natural projection Rd → Rd/Zd

they induce an arrangement of finite hyperplanes on the torus Rd/Zd and a finite open cell de-
composition ∆P/Zd of Rd/Zd. Let [x] ∈ Rd/Zd denote the natural projection of x ∈ Rd

to Rd/Zd.

Theorem 1.1. With the notation as above, for u,v ∈ Rd, if [u] and [v] belong to the same open
cell of ∆P/Zd then

TLP,u(t) = TLP,v(t) for all t ∈ Z⩾0.
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Trapezoid T Arrangement AT

F1

F2

V1

E1 E2

E3

Cell complex ∆T /Z2

(0, 1)

(0, 0)

(2, 1)

(1, 0)

Figure 1.1: Trapezoid T , arrangement AT and the cell complex ∆T/Z2 in R2/Z2.

For an open cell C ∈ ∆P/Zd, define a quasi-polynomial TLP,C by

TLP,C = TLP,v with [v] ∈ C,

which is well-defined by Theorem 1.1. Then (1.1) implies that the kth constituent of ehrP+v is
the polynomial which appears as the kth constituent of TLP,C with [kv] ∈ C. This provides us
a way to compute ehrP+v for any v ∈ Qd from translated lattice points enumerators TLP,C .

Let us compute ehrT+( 17
100

, 52
100

)(t) using this idea, where T is the trapezoid whose vertices
are (0, 0), (1, 0), (2, 1) and (0, 1). Figure 1.1 shows the arrangement AT and the cell com-
plex ∆T/Z2. The complex ∆T/Z2 has two 2-dimensional cells F1, F2, three 1-dimensional
cells E1, E2, E3 and one 0-dimensional cell V1 shown in Figure 1.1. Since T is a lattice polygon,
each TLP,C is a polynomial by McMullen’s result, and here is a list of TLT,C(t):

TLT,F1(t) =
3
2
t2 − 1

2
t,

TLT,F2(t) = TLT,E1(t) = TLT,E2(t) =
3
2
t2 + 1

2
t,

TLT,E3(t) =
3
2
t2 + 3

2
t,

TLT,V1(t) =
3
2
t2 + 3

2
t+ 1.

(1.2)

Also, for k = 0, 1, 2, . . . , 99, a computer calculation says

[
k

(
17

100
,
52

100

)]
∈





V1 ( k ≡ 0 ),

E3 ( k ≡ 25, 50, 75 ),

E2 ( k ≡ 20, 40, 60, 80 ),

F1




k ≡ 1, 3, 6, 7, 9, 12, 13, 15, 18, 19, 21, 23, 24, 26, 30,

32, 36, 38, 42, 44, 48, 49, 53, 55, 59, 61, 65, 66, 67,

69, 71, 72, 73, 78, 83, 84, 86, 89, 90, 92, 95, 96, 98


 ,

F2




k ≡ 2, 4, 5, 8, 10, 11, 14, 16, 17, 22, 28, 29, 31, 33, 34,

35, 37, 41, 45, 47, 51, 52, 54, 56, 57, 58, 62, 64, 68, 70,

74, 76, 77, 79, 81, 82, 85, 87, 88, 91, 93, 94, 97, 99


 .

(1.3)

Since (1.1) says that the kth constituent of ehrP+v equals the kth constituent of TLP,kv, which
equals TLP,C with [kv] ∈ C ∈ ∆P/Zd, the equations (1.2) and (1.3) recover the formula
of ehrT+( 17

100
, 52
100

)(t) given at the beginning of this section.
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As we will see, the proof of Theorem 1.1 is somewhat straightforward, and the way of com-
puting ehrP+v(t) from TLP,C(t) explained above may be considered as a kind of an observation
rather than a new result. But we think that this is a useful observation. For example, this way al-
lows us to visualize how the constituents of ehrP+v change by plotting the points [kv] on Rd/Zd.
Also, we can see why properties (α), (β) and (γ) occur from this observation. For the prop-
erty (α), we only see 4 polynomials in ehrT+( 17

100
, 52
100

) because we have only 4 types of translated
lattice point enumerators. More generally, it can be shown that, if we fix a rational polytope P ,
then we can only have a finite number of polynomials as constituents of ehrP+v (Theorem 3.10).
For the property (β), the polynomials 3

2
t2± 1

2
t appear many times simply because they are poly-

nomials assigned to maximal dimensional cells of ∆T/Z2 (indeed, if we choose v randomly,
then [kv] is likely to belong to a maximal dimensional cell). Finally, we will see in Section 5
that the property (γ) can be figured out from the reciprocity of TLP,v (see Corollary 5.4).

1.2. Second Result

Recently real-valued extension of Ehrhart functions, namely, the function ehrRP : R⩾0 → Z⩾0

given by ehrRP (t) = #(tP ∩ Zd) for all t ∈ R⩾0,catch interests [BBKV13, BER23, Lin11,
Roy17a, Roy17b]. One surprising result on this topic is the following result of Royer [Roy17a,
Roy17b] proving that ehrRP+v for all v ∈ Zd determines the polytope P .

Theorem 1.2 (Royer). Let P and Q be rational polytopes in Rd. If ehrRP+v(t) = ehrRQ+v(t) for
all v ∈ Zd and t ∈ R⩾0, then P = Q.

Our second result is somewhat analogous to this result of Royer. We prove that ehrP+v for
all v ∈ Qd determines the polytope P up to translations by integer vectors.

Theorem 1.3. Let P and Q be rational d-polytopes in Rd. If ehrP+v(t) = ehrQ+v(t) for
all v ∈ Qd and all t ∈ Z⩾0, then P = Q+ u for some u ∈ Zd.

After we submitted the paper, we realized that Theorem 1.3 is not new and appears in the
thesis of Alhajjar in a bit stronger form [Alh17, Theorem 3.9]. But we keep the proof of Theo-
rem 1.3 since we feel that our proof is more precise and some argument in the proof is also used
to prove the third result.

1.3. Third result

The original motivation of this study actually comes from an attempt to generalize results of de
Vries and Yoshinaga in [dVY25], who found a connection between symmetries on constituents
of ehrP+v and geometric symmetries of P . Indeed, the following result is one of the main results
in [dVY25]. We say that a quasi-polynomial f is symmetric if the kth constituent of f equals
the (−k)th constituent of f for all k ∈ Z. Also, a convex polytope P ⊂ Rd is said to be centrally
symmetric if P = −P + x for some x ∈ Rd.
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Theorem 1.4 (de Vries–Yoshinaga). Let P ⊂ Rd be a lattice d-polytope. The following condi-
tions are equivalent.

(1) ehrP+v is symmetric for all v ∈ Qd.

(2) P is centrally symmetric.

As posed in [dVY25, Problem 6.7], it is natural to ask if there is a generalization of this
result for rational polytopes. Theorem 1.4 actually proves that, if a rational polytope P satisfies
the property (1) of the above theorem, then P must be centrally symmetric (see Corollary 7.4).
We generalize Theorem 1.4 in the following form.

Theorem 1.5. Let P ⊂ Rd be a rational d-polytope. The following conditions are equivalent.

(1) ehrP+v is symmetric for all v ∈ Qd.

(2) P is centrally symmetric and 2(P −c) is integral, where c is the center of symmetry of P .

Organization of the paper

This paper is organized as follows: We first quickly review basic known properties of Ehrhart
quasi-polynomials and translated lattice points enumerators in Section 2. In Section 3, we study
translated lattice points enumerators using arrangement AP and prove Theorem 1.1. Then, after
seeing two examples in Section 4, we discuss a reciprocity of translated lattice points enumera-
tors on maximal cells of ∆P/Zd in Section 5. In Section 6, we prove that translated lattice point
enumerators determine the polytope P up to translations by integer vectors. In Section 7, we
study translated lattice points enumerators of polytopes with some symmetry, in particular, prove
Theorem 1.5. In Section 8, we discuss a connection to commutative algebra, more precisely, we
discuss a connection between translated lattice points enumerators and conic divisorial ideals in
Ehrhart rings. We list a few problems which we cannot solve in the last section 9.

2. Ehrhart quasi-polynomials and translated lattice point enumerators

In this section, we recall basic results on Ehrhart quasi-polynomials and explain a connection
between Ehrhart quasi-polynomials of translated polytopes and translated lattice point enumer-
ators.

2.1. Ehrhart quasi-polynomial

We quickly recall Ehrhart’s theorems. We refer the readers to [BR15, Grü03, Zie95] for basics on
convex polytopes. A convex polytope P inRd is a convex hull of finitely many points inRd. The
dimension of a polytope P is the dimension of its affine hull. A k-dimensional convex polytope
will be simply called a k-polytope in this paper. A convex polytopeP is said to be integral (resp.
rational) if all the vertices of P are lattice points (resp. rational points). The denominator of a
rational polytope P is the smallest integer k > 0 such that kP is integral. The following result
is a fundamental result in Ehrhart theory. See [BR15, Theorems 3.23 and 4.1].
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Theorem 2.1 (Ehrhart). Let P ⊂ Rd be a rational polytope and q the denominator of P . Then
the function ehrP : Z⩾0 → R defined by

ehrP (t) = #(tP ∩ Zd)

is a quasi-polynomial with period q.

As we noted in the Introduction, we regard ehrP as a function from Z to R by identifying it
with the corresponding quasi-polynomial f : Z → R that coincides with ehrP on Z>0. Thus,
if q is a period of f , then for a positive integer t > 0 we set ehrP (−t) = fk(−t), where fk is
the kth constituent of f with −t ≡ k (mod q). The quasi-polynomial ehrP is called the Ehrhart
quasi-polynomial of P .

The following reciprocity result is another important result in Ehrhart theory.

Theorem 2.2 (Ehrhart reciprocity). Let P ⊂ Rd be a rational d-polytope. Then

#
(
int(tP ) ∩ Zd

)
= (−1)d ehrP (−t) for t ∈ Z>0.

2.2. Translated lattice points enumerator

Recall that, for a convex set X ⊂ Rd and v ∈ Rd, the translated lattice points enumerator
of X w.r.t. v is the function TLX,v defined by

TLX,v(t) = #
(
(tX + v) ∩ Zd

)
for t ∈ Z>0. (2.1)

When X is a polytope P , we actually consider that TLP,v is a function from Z⩾0 to R by set-
ting TLP,v(0) = #({v} ∩ Zd). Thus TLP,v(0) = 1 if v ∈ Zd and TLP,v(0) = 0 if v ̸∈ Zd.
In this way, we may consider that TLP,v is a counting function of lattice points in the trans-
lated cone. Indeed, for a convex polytope P ⊂ Rd, if we write CP for the cone generated
by {(x, 1) | x ∈ P}, then we have

TLP,v(t) = #
((
CP + (v, 0)

)
∩Hxd+1=t

)
∩ Zd+1 for t ⩾ 0,

where Hxd+1=t = {(x1, . . . , xd+1) | xd+1 = 0}.
McMullen [McM78, §4] proved the following generalization of Ehrhart’s results. (We will

give an algebraic proof of this theorem later in section 8.)

Theorem 2.3 (McMullen). Let P ⊂ Rd be a rational d-polytope and q the denominator of P .
Then

(1) For any v ∈ Rd, the function TLP,v is a quasi-polynomial with period q.

(2) For any v ∈ Rd, one has

TLint(P ),v(t) = (−1)dTLP,−v(−t) for t ∈ Z>0.
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We remark that v is not necessarily a rational point in the above theorem. Also the theorem
says that, if P is integral, then the function TLP,v is a polynomial.

The following connection between Ehrhart quasi-polynomials of translated polytopes and
translated lattice points enumerators, which essentially appeared in [dVY25, Corollary 3.4], is
fundamental in the rest of this paper.

Lemma 2.4. Let P ⊂ Rd be a rational d-polytope and v ∈ Qd. For all k ∈ Z, one has

the kth constituent of ehrP+v = the kth constituent of TLP,kv.

Proof. We may assume k ⩾ 0. Let ρ and ρ′ be positive integers such that ρP is integral
and ρ′v ∈ Zd. Let q be a common multiple of ρ and ρ′. Then q is a common period of quasi-
polynomials ehrP+v and TLP,v. For every integer t ⩾ 0 with t ≡ k (mod q) we have

ehrP+v(t) = #
(
(tP + tv) ∩ Zd

)
= #

(
(tP + kv) ∩ Zd

)
= TLP,kv(t),

where the second equality follows from (t − k)v ∈ Zd. Since both ehrP+v and TLP,v are
quasi-polynomials with a period q, the above equation proves the desired property.

Remark 2.5. Let P ⊂ Rd be a rational d-polytope and v ∈ Rd. Like usual Ehrhart quasi-
polynomials, each constituent of TLP,v is a polynomial of degree d whose leading coefficient
equals the volume of P . Indeed, if fk is the kth constituent of TLP,v and q is a period of TLP,v,
then limt→∞

fk(qt+k)
(qt+k)d

= limt→∞
#((qt+k)P∩Zd)

(qt+k)d
is the volume of P . Since fk is a polynomial, this

means that fk has degree d and the coefficient of td in fk equals the volume of P .

3. Translated lattice points enumerators and toric arrangements

In this section, we study when TLP,v equals TLP,u for different v,u ∈ Rd using toric arrange-
ments. Recall that the translated lattice points enumerator TLP,v can be identified with a gener-
ating function of a translated cone CP + (v, 0) because of the equality

∑

(a1,...,ad+1)∈(CP+(v,0))∩Zd+1

zad+1 =
∞∑

t=0

(
TLP,v(t)

)
zt. (3.1)

This in particular says that if CP + (u, 0) and CP + (v, 0) have the same lattice points, then we
have TLP,u = TLP,v. To prove Theorem 1.1, we mainly study when CP +(u, 0) and CP +(v, 0)
have the same lattice points.

We note that such a study is not very new. Indeed, lattice points in the translated
cone CP+v is closely related to conic divisorial ideals of Ehrhart rings studied in [Bru05, BG03],
and Bruns [Bru05] explains for which u,v ∈ Rd+1 the lattice points in CP + u equal those
in CP + v. We will explain this connection to commutative algebra later in Section 8.
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3.1. Regions associated with hyperplane arrangements

We first introduce some notation on arrangements of hyperplanes. Forx,y∈Rd, we write (x,y)
for the standard inner product. Also, for a ∈ Rd \ {0} and b ∈ R, we write

H⩾
a,b = {x ∈ Rd | (a,x) ⩾ b} and H>

a,b = {x ∈ Rd | (a,x) > b}

for closed and open half space defined by the linear inequalities (a,x) ⩾ b and (a,x) > b,
respectively, and write

Ha,b = {x ∈ Rd | (a,x) = b}
for the hyperplane defined by the linear equation (a,x) = b. In the case where a can be chosen
from Zd and b is from Z, we call the hyperplane Ha,b rational. Let N = {a1, . . . ,am} be a set
of elements in Zd \ {0}. Define the arrangement of hyperplanes

AN = {Ha,k | a ∈ N, k ∈ Z}.

See Figure 3.1. From now on, we fix an order a1, . . . ,am of elements of N . We define the
map φ(a1,...,am) : Rd → Rm by

φ(a1,...,am)(x) =
(
(a1,x), (a2,x), . . . , (am,x)

)
.

For x ∈ R, we write ⌊x⌋ = max{ℓ ∈ Z | ℓ ⩽ x} and ⌈x⌉ = min{ℓ ∈ Z | ℓ ⩾ x}. Also, given
an integer sequence c = (c1, . . . , cm) ∈ Zm, we define

UN
c = {x ∈ Rd | ⌈φ(a1,...,am)(x)⌉ = c} = {x ∈ Rd | ci−1 < (ai,x) ⩽ ci for i = 1, 2, . . . ,m}

where ⌈(x1, . . . , xm)⌉ = (⌈x1⌉, . . . , ⌈xm⌉). We call UN
c an upper region of N . Note that UN

c

could be empty. Also we have the partition

Rd =
⊔

c∈Zd UN
c

where
⊔

denotes a disjoint union. We write ΛN for the set of all upper regions of N . The set ΛN

is stable by translations by integer vectors, so Zd acts on these sets. Indeed, since a1, . . . ,am

are integer vectors, for any n ∈ Zd, we have

UN
c + n = UN

c+φ(a1,...,am)(n).

We writeΛN/Zd for the quotient of these sets by this Zd-action defined by translations by integer
vectors. This set can be considered as a partition of the d-torus Rd/Zd.

Example 3.1. Let N = {(1, 0), (−1, 2)}. Then the set ΛN/Z2 consists of two elements with
the following representatives:

R1 = UN
(1,1) = {(x, y) ∈ R2 | 0 < x ⩽ 1, 0 < −x+ 2y ⩽ 1},

R2 = UN
(1,0) = {(x, y) ∈ R2 | 0 < x ⩽ 1,−1 < −x+ 2y ⩽ 0}.

See Figure 3.1 for the visualization of AN and ΛN/Z2.



10 Akihiro Higashitani et al.

AN

R1

R2

R2

ΛN/Z2

Figure 3.1: AN and ΛN/Z2 when N = {(1,−2), (0, 1)}. Doted and solid lines are open and
closed boundaries respectively. Dashed lines indicate the occurrence of identification inside a
region.

3.2. Upper regions and lattice points in translated cones.

We now explain how upper regions relate to lattice points in translated cones. We first recall
two basic facts on lattice points. The following lemma is an easy consequence of Euclidian
algorithm.

Lemma 3.2. Let a ∈ Zd \ {0}, b ∈ R and g = gcd(a). A linear equation (a,x) = b has an
integral solution if and only if b ∈ gZ.

We also need the following statement which easily follows from Lemma 3.2.

Lemma 3.3. LetH⊂Rd be a rational hyperplane and let v ∈ Rd be a point such thatH+v ̸=H .
There is an ε > 0 such that H + sv contains no lattice points for any 0 < s ⩽ ε.

Lemma 3.4. Let H ⊂ Rd be a rational hyperplane. Any (d− 1)-dimensional convex cone in H
contains a lattice point.

Proof. Let H = Ha,b for some a ∈ Zd and b ∈ Z. Without loss of generality, we may as-
sume b = 0. Since any d-dimensional convex cone in Rd contains a lattice point, the lemma
follows from the fact that H ∩ Zd ∼= Zd−1 as Z-modules.

Let P ⊂ Rd be a rational d-polytope. By the Weyl–Minkowski theorem for convex cones,
the cone CP has the unique presentation

CP = H⩾
a1,0

∩ · · · ∩H⩾
am,0 (3.2)

such that

(1) each ai is primitive (that is, gcd(ai) = 1), and

(2) the presentation is irredundant, that is, eachH⩾
ai,0

cannot be omitted from the presentation.

Note that the second condition says that CP ∩ Hai,0 is a facet of CP . The vectors a1, . . . ,am

in (3.2) are called (inner) normal vectors of CP and we write Ñ(P ) = {a1, . . . ,am} for the set
of all normal vectors of CP . The next statement was given in [Bru05]
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Proposition 3.5 (Bruns). Let P ⊂ Rd a convex polytope and Ñ(P ) = {a1, . . . ,am}.
Let u,v ∈ Rd+1. The following conditions are equivalent.

(1) (CP + u) ∩ Zd+1 = (CP + v) ∩ Zd+1.

(2) ⌈φ(a1,...,am)(u)⌉ = ⌈φ(a1,...,am)(v)⌉, that is, u and v belong to the same upper region
of ΛÑ(P ).

Proof. Let ⌈φ(a1,...,am)(u)⌉ = (c1, . . . , cm) and let ⌈φ(a1,...,am)(v)⌉ = (d1, . . . , dm). Since

CP + u = H⩾
a1,(a1,u)

∩ · · · ∩H⩾
am,(am,u)

and since Lemma 3.2 says

H⩾
a,b ∩ Zd+1 = H⩾

a,⌈b⌉ ∩ Zd+1 for any a ∈ Zd, b ∈ R,

we have

(CP + u) ∩ Zd+1 =
(
H⩾

a1,c1
∩ · · · ∩H⩾

am,cm

)
∩ Zd+1 (3.3)

and
(CP + v) ∩ Zd+1 =

(
H⩾

a1,d1
∩ · · · ∩H⩾

am,dm

)
∩ Zd+1.

These prove (2) ⇒ (1).
We prove (1) ⇒ (2). We assume c1 < d1 and prove (CP +u)∩Zd+1 ̸= (CP + v)∩Zd+1. In

this case F = (CP +u)∩Ha1,c1 contains a d-dimensional cone in Ha1,c1 , so it contains a lattice
point by Lemma 3.4. On the other hand, since c1 < d1 we have Zd+1 ∩ (CP + v) ∩Ha1,c1 = ∅.
These prove (CP + u) ∩ Zd+1 ̸= (CP + v) ∩ Zd+1.

Remark 3.6. If N = Ñ(P ) for some rational d-polytope P ⊂ Rd (that is, N is the set of normal
vectors of the cone CP ⊂ Rd+1), then the set ΛN has a special property that every element of ΛN

has dimension d+1. Indeed, if R ∈ ΛN and x ∈ R then we have x−y ∈ R for all y ∈ int(CP )
that is sufficiently close to the origin, which implies that R has dimension d + 1. As we see in
Example 3.9, this property does not hold when N is the set of normal vectors of a polytope (not
the cone over a polytope).

We have studied lattice points in translated cones CP + v, but we are actually interested in a
special case when v = (v′, 0) since this is the case which is related to translated lattice points
enumerators. Below we describe when CP +(u, 0) and CP +(v, 0) have the same lattice points.
Let P ⊂ Rd be a rational d-polytope. By the fundamental theorem on convex polytopes, there
is the unique presentation

P = H⩾
a1,b1

∩ · · · ∩H⩾
am,bm

such that

(1) each (ai, bi) ∈ Zd+1 is primitive, and

(2) the presentation is irredundant.
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The vectors a1, . . . ,am are called normal vectors of P . We define

N(P ) = {a1, . . . ,am}.

We note that
Ñ(P ) = {(a1, b1), . . . , (am, bm)}

since if H ⊂ Rd is a hyperplane defined by a1x1 + · · · + adxd = b then the cone CH is the
hyperplane defined by a1x1 + · · ·+ adxd = bxd+1. We write

AP = AN(P ) and ΛP = ΛN(P ).

The following statement is essentially a consequence of Proposition 3.5.

Corollary 3.7. LetP ⊂ Rd be a rational d-polytope and letu,v ∈ Rd. The following conditions
are equivalent.

(1) (CP + (u, 0)) ∩ Zd+1 = (CP + (v, 0)) ∩ Zd+1.

(2) (u, 0) and (v, 0) belong to the same upper region in ΛÑ(P ).

(3) u and v belong to the same upper region in ΛP .

Proof. The equivalence between (1) and (2) is Proposition 3.5. Let (a1, . . . ,am) be the se-
quence of normal vectors of P and let ((a1, b1), . . . , (am, bm)) be that of CP . The equiva-
lence between (2) and (3) follows from the fact that φ(a1,...,am)(x) = φ((a1,b1),...,(am,bm))(x, 0)
for all x ∈ Rd.

We now discuss a consequence of Corollary 3.7 to translated lattice point enumerators and
Ehrhart quasi-polynomials. Recall that [x] denotes the image of x ∈ Rd by the natural projec-
tion Rd → Rd/Zd.

Theorem 3.8. Let P ⊂ Rd be a rational d-polytope and let u,v ∈ Rd.

(1) If [u] and [v] belong to the same region in ΛP/Zd, then TLP,u(t) = TLP,v(t) for
all t ∈ Z⩾0.

(2) The set {TLP,w | w ∈ Rd} is a finite set.

Proof. (1) Corollary 3.7 says that if [u] and [v] belong to the same region in ΛP/Zd, then
(
CP + (u, 0)

)
∩ Zd+1 =

(
CP + (v, 0)

)
∩ Zd+1 + (n, 0),

where n ∈ Zd is the vector such that u and v +n belong to the same region of ΛP . Then (3.1)
implies TLP,u(t) = TLP,v(t) for all t ∈ Z⩾0.

(2) Since there are only finitely many hyperplanes in AP that intersect [0, 1)d, the
set {R ∈ ΛP | R ∩ [0, 1)d ̸= ∅} is finite, which implies that ΛP/Zd is a finite set. This
fact and (1) prove the desired statement.
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R2

R1

EV

ATN(T ) ΛT / Z2

Figure 3.2: N(T ), AT and ΛT/Z2.

Example 3.9. Consider the trapezoid T from the Introduction. The set of normal vectors of T
is N(T ) = {(1, 0), (0, 1), (0,−1), (−1, 1)}. Then the set of upper regions ΛT/Z2 consists of 4
elements with the following representatives:

V = U(0,0,0,0) = {(x, y) ∈ R2 | −1 < x ⩽ 0, −1 < y ⩽ 0, −1 < −y ⩽ 0, −1 < −x+ y ⩽ 0},
E = U(1,0,0,0) = {(x, y) ∈ R2 | 0 < x ⩽ 1, −1 < y ⩽ 0, −1 < −y ⩽ 0, −1 < −x+ y ⩽ 0},
R1 = U(1,1,0,0) = {(x, y) ∈ R2 | 0 < x ⩽ 1, 0 < y ⩽ 1, −1 < −y ⩽ 0, −1 < −x+ y ⩽ 0},
R2 = U(1,1,0,1) = {(x, y) ∈ R2 | 0 < x ⩽ 1, 0 < y ⩽ 1, −1 < −y ⩽ 0, 0 < −x+ y ⩽ 1}.

See Figure 3.2 for the visualization of ΛT/Z2 in the torus R2/Z2. Note that V is a one point set.
Theorem 3.8 says that TLT,v only depends on the upper region in ΛT/Z2 where [v] belongs, and
the table below is a list of the polynomials TLT,C(t) in each upper region C ∈ ΛT/Z2.

region polynomial TLT,C(t)
V 3

2
t2 + 5

2
t + 1

E 3
2
t2 + 3

2
t

R1
3
2
t2 + 1

2
t

R2
3
2
t2 − 1

2
t

For a quasi-polynomial f , let Const(f) be the set of constituents of f . Since the kth con-
stituent of ehrP+v is the kth constituent of TLP,kv, the second statement of the above theorem
gives the following finiteness result for constituents of Ehrhart quasi-polynomials of translated
polytopes.

Corollary 3.10. If P ⊂ Rd is a rational d-polytope, then

#
(⋃

v∈Qd Const
(
ehrP+v

))
< ∞.

3.3. Polyhedral decompositions associated with hyperplane arrangements

Theorem 3.8 is slightly different to Theorem 1.1 in the Introduction (indeed the cell
complex ΛT/Z2 has 4 cells while ∆T/Z2 has 6 cells), but it can be considered as a refined
version of Theorem 1.1. We explain this in the rest of this section.
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LetP ⊂ Rd be a rational d-polytope andN(P ) = {a1, . . . ,am}. The arrangementAP gives
a natural polyhedral decomposition of Rd whose maximal open cells are connected components
of Rd \ (⋃H∈AP

H). We write ∆P for this polyhedral complex. Note that this ∆P is the same
as the one defined in the Introduction. Since any half line v + {sw | s ∈ R⩾0}, where v ∈ Rd

and 0 ̸= w ∈ Rd, must hit one of Hai,k ∈ AP , each connected component of Rd \ (⋃H∈AP
H)

is a bounded set, so ∆P is actually a polytopal complex. By the definition of AP , each open
cell A of ∆P can be written in the form

A = A1 ∩ A2 ∩ · · · ∩ Am

such that each Ai is either Hai,k or {x ∈ Rd | k < (ai,x) < k+1}. This means that each upper
region in ΛP can be written as a disjoint union of open cells in ∆P , in particular, each element
in ΛP/Zd can be written as a disjoint union of elements in ∆P/Zd. This proves Theorem 1.1.

Example 3.11. Consider the trapezoid T from the Introduction. As one can see from Fig-
ures 1.1 and 3.2, ΛT/Z2 consists of 4 elements V,E,R1, R2 and ∆T/Z2 consists of 6 ele-
ments V1, E1, E2, E3, F1, F2. We have

V = V1, E = E3, R1 = E1 ∪ E2 ∪ F2, R2 = F1.

While ΛP and ∆P are different in general, there is a nice case that we have ΛP = ∆P . If the
set of normal vectors of P is the set of the form {±a1, . . . ,±al} then each upper region R ∈ ΛP

must be a region of the form

R =
m⋂

i=1

{
x ∈ Rd | ci − 1 < (ai,x) ⩽ ci and c′i − 1 < (−ai,x) ⩽ c′i

}
.

Each non-empty content in the RHS equals either Hai,ci or {x ∈ Rd | ci − 1 < (ai,x) < ci} so
we have ΛP = ∆P in that case. To summarize, we get the following statement.

Proposition 3.12. If P ⊂ Rd is a d-polytope with N(P ) = −N(P ) then ΛP = ∆P .

A typical example of a polytope P satisfying N(P ) = −N(P ) is a centrally symmetric
polytope P with P = −P (or more generally, a polytope P with P = −P+n for somen ∈ Zd).
Remark 3.13. Each element of ∆P/Zd is an open cell ball, so ∆P/Zd is indeed a CW com-
plex. To see that each element of ∆P/Zd is a ball, it suffices to check that for each C ∈ ∆P

the restriction of Rd → Rd/Zd to C is injective. This injectivity follows from Corollary 3.7
since, if we have u = v + n for some u,v ∈ C and 0 ̸= n ∈ Zd, then CP + (v, 0)
and CP + (u, 0) =

(
CP + (v, 0)

)
+ (n, 0) must have different sets of integer points.

4. Some examples

Let P ⊂ Rd be a rational d-polytope. We saw in the previous section that TLP,v only depends
on the cell C in ∆P/Zd (or the upper region C in ΛP/Zd) with [v] ∈ C, so for C ∈ ∆P/Zd

(or C ∈ ΛP/Zd) we write TLP,C = TLP,v with [v] ∈ C. In this section, we give a few examples
of the computations of ehrP+v using translated lattice points enumerators.
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R1 R2 R3

R1

E1 E2 E3

E6E5E4

V1 V2 V3

[v]

[2v]

[4v]

[6v]

[5v]

[3v]

Figure 4.1: Parallelogram P with vertices (0, 0), (1, 0), (1, 3), (2, 3), the cell complex ∆P/Z2

and positions of [kv] when v = (1
3
, 1
6
). All the cells of ∆P/Z2 in the figure are open cells.

Example 4.1. Consider the lattice parallelogram P with vertices (0, 0), (1, 0), (1, 3), (2, 3).
Then N(P ) = {(0, 1), (0,−1), (3,−1), (−3, 1)} and ∆P/Z2 (= ΛP/Z2) consists of three ver-
tices V1, V2, V3, 6 edges E1, E2, . . . , E6 and three 2-dimensional open cells R1, R2, R3 shown in
Figure 4.1. Since P is a lattice polytope, translated lattice points enumerators of P are actually
polynomials. The table below is a list of the polynomials TLP,C(t).

cell polynomial TLP,C(t)
V1 3t2 + 2t+ 1

V2, V3 3t2 + 2t

E1, . . . , E6 3t2 + t

R1, R2, R3 3t2

Now we compute ehrP+v(t) when v = (1
3
, 1
6
) using this information. One can compute the

constituents of ehrP+v visually by drawing a line of direction v in R2/Z2 and plot the points [kv]
for k = 0, 1, 2, . . . as follows. First, by drawing points [kv] on R2/Z2 for k = 0, 1, 2, . . . , one
can see

[kv] ∈





V1, (k ≡ 0 (mod 6)),

R3, (k ≡ 1 (mod 6)),

R1, (k ≡ 2, 4 (mod 6)),

E5, (k ≡ 3 (mod 6)),

R2, (k ≡ 5 (mod 6)).

See the second and the third figures in Figure 4.1. Lemma 2.4 says that the kth constituent
of ehrP+v is nothing but the kth constituent of TLP,C with [kv] ∈ C. Hence we get

ehrP+v(t) =





TLP,V1(t) = 3t2 + 2t+ 1, (t ≡ 0 (mod 6)),

TLP,R3(t) = 3t2, (t ≡ 1 (mod 6)),

TLP,R1(t) = 3t2, (t ≡ 2, 4 (mod 6)),

TLP,E5(t) = 3t2 + t, (t ≡ 3 (mod 6)),

TLP,R2(t) = 3t2, (t ≡ 5 (mod 6)).
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We remark that parallelogram is a special case of a zonotope, and a nice combinatorial for-
mula of the Ehrhart quasi-polynomial of a translated integral zonotope is given in [ABM20,
Proposition 3.1].

Example 4.2. We give a more complicated example. Consider the rhombus Q ⊂ R2 having
vertices (±1, 0) and (0,±1

2
). Then the cell complex ∆Q/Z2 consists of four vertices, eight

edges and four 2-dimensional cells. See Figure 4.2.

V1

V3

V4

V2

F1

F2

F4

F3

E1 E2

E3 E4

E5 E6

E7 E8

Figure 4.2: Cell complex associated with Q.

Since 2Q is integral, TLQ,C is a quasi-polynomial having period 2 for each C ∈ ∆Q/Z2.
For a quasi-polynomial f with period 2, we write f = (f0, f1), where fk is the kth constituent
of f . Below is the table of translated lattice points enumerators of Q.

cell quasi-polynomial TLQ,C

V1 (t2 + t+ 1, t2 + t+ 1)

V2, V3, V4 (t2 + t, t2 + t)

E1, E2, E7, E8 (t2 + 1
2
t, t2 + 1

2
t + 1

2
)

E3, E4, E5, E6 (t2 + 1
2
t, t2 + 1

2
t − 1

2
)

F1 (t2, t2 + 1)

F2, F3 (t2, t2)

F4 (t2, t2 − 1)

Consider u = (1
8
, 1
8
) and w = (1

3
, 1
3
). Then

[ku] ∈





V1, (k ≡ 0 (mod 8)),

F3, (k ≡ 1, 2 (mod 8)),

F4, (k ≡ 3, 4, 5 (mod 8)),

F2, (k ≡ 6, 7 (mod 8)),

and [kw] ∈





V1, (k ≡ 0 (mod 3)),

E3, (k ≡ 1 (mod 3)),

E6, (k ≡ 2 (mod 3)).

Using that the kth constituent of ehrQ+u equals the kth constituent of TLQ,ku, it follows that

ehrQ+u(t) =





t2 + t+ 1, (t ≡ 0 (mod 8)),

t2, (t ≡ 1, 2, 4, 6, 7 (mod 8)),

t2 − 1, (t ≡ 3, 5 (mod 8)),
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and

ehrQ+w(t) =





t2 + t+ 1, (t ≡ 0, 3 (mod 6)),

t2 + 1
2
t− 1

2
, (t ≡ 1, 5 (mod 6)),

t2 + 1
2
t, (t ≡ 2, 4 (mod 6)).

One can also see from the second example that the minimum period of ehrQ+w is not necessary
the denominator of w.

5. Reciprocity in maximal regions

In this section, we explain that the quasi-polynomials TLP,C for maximal dimensional
cells C ∈ ∆P/Zd have a reciprocity which comes from the reciprocity in Theorem 2.3.

5.1. Reciprocity

Let P ⊂ Rd be a rational d-polytope. The reciprocity in Theorem 2.3 says that, for any v ∈ Rd,
one has

TLint(P ),v(t) = (−1)dTLP,−v(−t) for t ∈ Z>0. (5.1)

Since the affine hyperplane arrangement AP is centrally symmetric, that is −AP = AP , we
have R ∈ ∆P if and only if −R ∈ ∆P . For each C ∈ ∆P/Zd with a representative R ∈ ∆P , we
write −C for the element of ∆P/Zd corresponding to the cell −R. By Theorem 1.1 and (5.1)
we have TLint(P ),v(t) = TLint(P ),u(t) when [u] and [v] belong to the same cell in ∆P/Zd. Thus,
for each C ∈ ∆P/Zd, we write TLint(P ),C(t) = TLint(P ),v(t) with [v] ∈ C. Using this notation,
(5.1) can be written in the following form.

Proposition 5.1. Let P ⊂ Rd be a rational d-polytope. For any C ∈ ∆P/Zd, one has

TLint(P ),C(t) = (−1)dTLP,−C(−t) for t ∈ Z>0.

Note that the above equation says that TLint(P ),C is a quasi-polynomial on Z>0.

Example 5.2. Consider the trapezoid T in the Introduction. We have

F1 = −F2, E1 = −E1, E2 = −E2, E3 = −E3, V1 = −V1.

The following tables are lists of polynomials TLT,C(t) and TLint(T ),C(t).
cell polynomial TLT,C(t)
V1

3
2
t2 + 3

2
t + 1

E1, E2
3
2
t2 + 1

2
t

E3
3
2
t2 + 3

2
t

F1
3
2
t2 − 1

2
t

F2
3
2
t2 + 1

2
t

cell polynomial TLint(T ),C(t)
V1

3
2
t2 − 3

2
t + 1

E1, E2
3
2
t2 − 1

2
t

E3
3
2
t2 − 3

2
t

F2
3
2
t2 + 1

2
t

F1
3
2
t2 − 1

2
t
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5.2. Maximal cells

Let P ⊂ Rd be a rational d-polytope with the unique irredundant presentation

P = H⩾
a1,b1

∩ · · · ∩H⩾
am,bm

. (5.2)

We write Fi = P ∩Hai,bi for the facet of P which lies in the hyperplane Hai,bi . The next lemma
follows from Lemmas 3.2 and 3.4.

Lemma 5.3. With the same notation as above, for v ∈ Rd, the cone CFi
+ (v, 0) contains a

lattice point if and only if v ∈ Hai,k for some k ∈ Z.

The lemma says that the cone CP + (v, 0) has no lattice points in its boundary
if v ∈ Rd \⋃H∈AP

H , equivalently, if [v] belongs to a d-dimensional cell of ∆P/Zd. Hence we
have

Corollary 5.4. If P ⊂ Rd is a rational d-polytope and C is a d-dimensional cell of ∆P/Zd, then

TLP,C(t) = (−1)dTLP,−C(−t) for all t ∈ Z⩾0.

Proof. Let v ∈ Rd such that [v] ∈ C. Then v ̸∈ H for any H ∈ AP , which implies that the
cone CP + (v, 0) has no lattice points in its boundary. Thus by Proposition 5.1 we have

TLP,C(t) = TLint(P ),C(t) = (−1)dTLP,−C(−t) for t ∈ Z>0.

Since TLP,C and TLP,−C are quasi-polynomials on Z⩾0, this implies the desired equality.

The above reciprocity has a special meaning for centrally symmetric polytopes. Looking at
the quasi-polynomials TLQ,Fi

in Example 4.2, one may notice that each constituent is a polyno-
mial in t2. In other words, the linear term t vanishes. We explain that this has a reason. We first
remind the following easy fact.

Lemma 5.5. Let P ⊂ Rd be a rational polytope with −P = P + n for some n ∈ Zd.
Then TLP,v(t) = TLP,−v(t) for any v ∈ Rd and t ∈ Z⩾0.

Proof. The assertion follows since, for each integer k ⩾ 0, the correspondence x → −x− kn
give a bijection between lattice points in kP + v and those in −kP − v − kn = kP − v.

Theorem 5.6. Let P ⊂ Rd be a rational d-polytope with −P = P + n for some n ∈ Zd and
let C ∈ ∆P/Zd be a d-dimensional cell. Let f(t) be the kth constituent of TLP,C and let g(t)
be the (−k)th constituent of TLP,C . Then

f(t) = (−1)dg(−t).

Proof. Corollary 5.4 and Lemma 5.5 say

TLP,C(t) = (−1)dTLP,−C(−t) = (−1)dTLP,C(−t) for all t ∈ Z⩾0.

By considering the kth constituent in the above equality, we get the desired assertion.
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If a polynomial f(t) of degree d satisfies f(t) = (−1)df(−t), then it must be a polynomial
in t2 when d is even and t times a polynomial in t2 when d is odd. Hence we get the following
corollary, which explains a reason why we get polynomials in t2 in Example 4.2.

Corollary 5.7. With the same notation as in Theorem 5.6,

(1) the 0th constituent of TLP,C(t) is either a polynomial in Q[t2] or tQ[t2];

(2) if 2P is integral, then the 1st constituent of TLP,C(t) is either a polynomial in Q[t2]
or tQ[t2].

Note that when 2P is integral the quasi-polynomial TLP,C has period 2, so its 1st constituent
equals its (−1)th constituent.

6. Translated lattice points enumerators determine polytopes

It is clear that ifP = Q+n for some integer vectorn, thenTLP,v = TLQ,v for all vectors v. The
goal of this section is to prove the converse of this simple fact, which is equivalent to Theorem 1.3
in the Introduction by Lemma 2.41.

Theorem 6.1. LetP andQ be rational d-polytopes inRd. IfTLP,v(t) = TLQ,v(t) for all v ∈ Rd

and t ∈ Z⩾0 then P = Q+ n for some n ∈ Zd.

To simplify notation, we use the notation

ΓP =
{(

v,TLP,v(t)
)
∈ Rd ×QP | v ∈ Rd

}
,

where QP is the set of all quasi-polynomials in t. Thus, what we want to prove is that ΓP = ΓQ

implies P = Q+ n for some n ∈ Zd.
To prove the theorem, we first recall Minkowski’s theorem, which says that normal vectors

and volumes of facets determine a polytope. Let P ⊂ Rd be a d-polytope with irredundant
presentation P =

⋂m
i=1 H

⩾
ai,bi

, where ∥ai∥ = 1, and let Fi = P ∩Hai,bi be the facet of P which
lies in the hyperplane Hai,bi . We write

M(P ) =
{(

a1, vol(F1)
)
, . . . , (am, vol(Fm))

}
,

where vol(Fi) is the relative volume of Fi. The following result is known as Minkowski’s theo-
rem (see [Ale05, §6.3 Theorem 1]).

Theorem 6.2 (Minkowski). If P and Q are d-polytopes in Rd with M(P ) = M(Q),
then P = Q+ v for some v ∈ Rd.

To apply Minkowski’s theorem in our situation, we will show that we can know volumes of
facets of a polytope from translated lattice points enumerator on codimension 1 cells of ∆P/Zd.
We say that a point x ∈ Ha,k ∈ AP is generic in AP if x ̸∈ H for any H ∈ AP with H ̸= Ha,k.
Note that x ∈ Ha,k is generic if and only if it is contained in a (d− 1)-dimensional cell of ∆P .

1The condition “TLP,v = TLQ,v for all v ∈ Qd” is equivalent to the condition “TLP,v = TLQ,v for all
v ∈ Rd”.
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Lemma 6.3. Let P ⊂ Rd be a rational d-polytope, a ∈ N(P ), and let F be a facet of P
corresponding to the normal vector a. If v ∈ Ha,k is generic in AP , then for all sufficiently
small ε > 0, one has

(1) TLP,v − TLP,v+εa = TLF,v ̸= 0.

(2) TLP,v − TLP,v−εa = 0 if there is no c ∈ R>0 such that −ca ∈ N(P ).

Proof. The fact that TLF,v ̸= 0 follows from Lemma 5.3. By Lemma 3.3, there is an ε > 0 such
that

∂
(
CP + (v + sa, 0)

)
∩ Zd+1 = ∂

(
CP + (v − sa, 0)

)
∩ Zd+1 = ∅ for all 0 < s ⩽ ε.

Let C+
ε = CP + (v + εa, 0) and C−

ε = CP + (v − εa, 0). By the above equation, we have

(i) (C+
ε ∪ C−

ε ) ∩ Zd+1 ⊂ (CP + (v, 0)
)
∩ Zd+1;

(ii) int
(
CP + (v, 0)

)
∩ Zd+1 ⊂

(
C+
ε ∩ C−

ε

)
∩ Zd+1.

Also, regarding lattice points in the boundary of CP + (v, 0), we have

(iii) if x is a lattice point in a facet (CP ∩H(b,k),0) + (v, 0) of CP + (v, 0) with H⩾
(b,k),0 ⊃ CP ,

then

x ∈ C+
ε ⇔ (b,a) < 0 and x ∈ C−

ε ⇔ (b,a) > 0. (6.1)

In particular, since C+
ε and C−

ε have no lattice points in their boundaries, a lattice point in
the boundary of CP + (v, 0) is contained in exactly one of C+

ε and C−
ε .

Now we assume that F is the only facet of P that is orthogonal to a and prove (1) and (2).
Observe CF = CP ∩H(a,k),0 for some k ∈ R. By the assumption and Lemma 5.3, CF + (v, 0) is
the only facet of CP + (v, 0) that contains lattice points, so

∂
(
CP + (v, 0)

)
∩ Zd+1 =

(
CF + (v, 0)

))
∩ Zd+1. (6.2)

On the other hand, lattice points in CP + (v, 0) are not contained in C+
ε by (iii), so by (i) and (ii)

we have
(
CP + (v + εa, 0)

)
∩ Zd+1 = C+

ε ∩ Zd+1 = int
(
CP + (v, 0)

)
∩ Zd+1. (6.3)

Then the equations (6.2) and (6.3) prove (1). Similarly, all lattice points in CP + (v, 0) are
contained in C−

ε by (iii), so again by (i) and (ii) we have
(
CP + (v − εa, 0)

)
∩ Zd+1 = C−

ε ∩ Zd+1 =
(
CP + (v, 0)

)
∩ Zd+1,

proving (2).
Second, we assume that there is a facet G ̸= F of P that is orthogonal to a. This condition

is equivalent to the condition that there is c ∈ R>0 such that −ca ∈ N(P ). Also, the normal
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vector corresponding to the facet G must be equal to −ca and by the assumption and Lemma 5.3
we have

∂
(
CP + (v, 0)

)
∩ Zd+1 =

((
CF + (v, 0)

)
∩ Zd+1

)
∪
((
CG + (v, 0)

))
∩ Zd+1

)
. (6.4)

The property (iii) says
((
CF + (v, 0)

)
∩ Zd+1

)
∩ C+

ε = ∅ and
(
CG + (v, 0)

)
∩ Zd+1 ⊂ C+

ε .

Then by (i), (ii) and (6.4), we have
(
CP + (v + εa, 0)

)
∩ Zd+1 =

(
int

(
CP + (v, 0)

)
∩ Zd+1

)
∪
((
CG + (v, 0)

)
∩ Zd+1

)

=
((
CP + (v, 0)

)
∩ Zd+1

)
\
((
CF + (v, 0)

)
∩ Zd+1

)

proving (1).

Lemma 6.4. If P and Q are rational d-polytopes in Rd with ΓP = ΓQ, then M(P ) = M(Q).

Proof. What we must prove is that the set ΓP determines the directions of inner normal vectors
of P as well as volumes of the facets of P .

By Theorem 3.8(1) and Lemma 6.3(1), x ∈ Rd \⋃H∈AP
H if and only if there is an open

ball B ∋ x such that TLP,x = TLP,y for all y ∈ B. This says that the set ΓP determines AP ,
and the definition of AP says that AP determines the set N = {±(a/∥a∥) | a ∈ N(P )}.
For each a ∈ N , Lemma 6.3 also says ca ∈ N(P ) for some c > 0 if and only if, for a
generic x ∈ Ha,0 ∈ AP , we have TLP,x ̸= TLP,x+εa for a sufficiently small ε > 0. Hence
the set ΓP determines {(a/∥a∥) | a ∈ N(P )}.

It remains to prove that ΓP determines the volumes of facets of P . Let F be a facet of P and
let a ∈ N(P ) be the normal vector associated with the facet F . For any v ∈ Rd, let TL0

P,v(t)
denote the 0th constituent of TLP,v, which must be a degree d polynomial whose leading co-
efficient is the normalized volume of P . If we take a generic point x ∈ Ha,0 in AP , then by
Lemma 6.3 we have

limt→∞
1

td−1TL
0
F,x(t) = limt→∞

1
td−1

(
TL0

P,x(t)− TL0
P,x+εa(t)

)
,

where ε > 0 is sufficiently small. Since TL0
P,x(t) − TL0

P,x+εa(t) is a polynomial of
degree ⩽ d − 1, this limit exists and must be equal to the relative volume of F since TLF,x

can be considered as a translated lattice points enumerator in the Euclidean space Ha,0
∼= Rd−1

with the lattice Ha,0 ∩ Zd ∼= Zd−1. Thus volumes of facets of P are determined by ΓP .

Remark 6.5. If one know ΓP then we can know the volume of P since it appears in the leading
coefficient of a constituent of TLP,v. There is another way to compute the volume of P that was
considered in [Alh17]. Let P ⊂ Rd be a rational convex polytope. For each cell C ∈ ∆P/Zd,
we call the number TLP,−C(1) the multiplicity of C. This number is indeed the multiplicity in
the sense that, if ρ : Rd → Rd/Zd is the natural projection, then for [v] ∈ Rd/Zd one has

TLP,−v(1) = #((P − v) ∩ Zd) = #(P ∩ (v + Zd)) = #(ρ−1([v])).

This equation says that the volume of P equals to the sum of volumes of (maximal dimensional)
cells of ∆P/Zd times their multiplicities. Volumes of facets of P can be also computed using
similar argument given in the proof of Lemma 6.3.
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Let πi : Rd → Rd−1 be the projection given by

πi(x1, . . . , xd) = (x1, . . . , xi−1, xi+1, . . . , xd).

We next show that translated lattice points enumerators of πi(P ) can be determined from those
of P . Let P ⊂ Rd be a d-polytope. We define

∂−
i P = {x ∈ P | x ̸∈ (P + εei) for all ε > 0},

where e1, . . . , ed are the standard vectors of Rd. Intuitively, ∂−
i P is the set of points in P

which is visible from −∞ei (see Figure 6.1). Indeed, ∂−
i P has the following description:

Let Facets(P ) be the set of facets of P and assume P =
⋃

F∈Facets(P ) H
⩾
aF ,bF

. Then, for
anyx∈P and ε∈R, we havex ̸∈P+εei if and only if (aF ,x)− ε(aF , ei)=(aF ,x− εei) < bF
for some F ∈ Facets(P ). This means

∂−
i P =

⋃

F∈Facets(P ), (aF ,ei)>0

F, (6.5)

and the RHS of the above equation is nothing but the set of points in P which is visible
from −∞ei (see [Grü03, §5.2] for more information on visible faces of a polytope).

P P

∂−
1 P ∂−

2 P

Figure 6.1: Visualizations of ∂−
1 P and ∂−

2 P when P is the hexagon with vertices
±(2, 0),±(1, 1),±(1,−1). Thick lines correspond to ∂−

1 P and ∂−
2 P .

Lemma 6.6. With the same notation as above, for any v ∈ Rd, there is an εi,v > 0 such that

(tP + v) ∩ Zd =
((

t(∂−
i P ) + v

)⊔(
tP + v + εi,vei

))
∩ Zd for all t ∈ Z⩾0.

We note that when t = 0, we consider that t(∂−
i P ) = {0} in Lemma 6.6.

Proof. By Lemma 3.3 there is an ε > 0 such that
(
CP + (v, 0)

)
∩ Zd+1

=
((

CP+(v+εei, 0)
)⊔{

x+(v, 0) ∈ CP+(v, 0) | x ̸∈ CP+s(ei, 0) for all s > 0
})

∩ Zd+1.

Cutting the above equation by the hyperplane xd+1 = t, we get the desired equality.
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π1(P )
∪

0≤s<1 ∂
−
1 (P + se1)

Figure 6.2: Lattice points in the projection.

We define TL(−i)
P,v (t) by

TL
(−i)
P,v (t) = #

((
t(∂−

i P ) + v
)
∩ Zd

)
.

Lemma 6.6 says that
TL

(−i)
P,v (t) = TLP,v(t)− TLP,v+εi,vei(t),

where εi,v is a number given in Lemma 6.6. We note that the function TL
(−i)
P,v is zero for almost

all v ∈ Rd. Indeed, we have the following statement.

Lemma 6.7. With the same notation as above, TL(−i)
P,v is not a zero function only when there

is a ∈ N(P ) and k ∈ Z such that v ∈ Ha,k and (a, ei) > 0.

Proof. We have TL(−i)
P,v ̸= 0 only when

(
C∂−

i P + (v, 0)
)
∩ Zd+1 ̸= ∅.

By (6.5) and Lemma 5.3 this condition is equivalent to v ∈ Ha,k for some a ∈ N(P ) and k ∈ Z
with (a, ei) > 0.

The next proposition shows that translated lattice points enumerators of πi(P ) can be deter-
mined from those of P .

Proposition 6.8. Let P ⊂ Rd be a rational d-polytope. For any v ∈ Rd and t ∈ Z⩾0, one has

TLπi(P ),πi(v)(t) =
∑

0⩽s<1, TL
(−i)
P,v+sei

(t)̸=0

TL
(−i)
P,v+sei

(t).

We note that the RHS in the proposition is a finite sum by Lemma 6.7 since the
segment {v+ sei | 0 ⩽ s < 1} meets only finitely many hyperplanes in AP . See Figure 6.2 for
a visualization of the proposition.
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Proof. We may assume i = d. Fix t ∈ Z⩾0 and a lattice point n = (n1, . . . , nd−1) ∈ πd(tP+v).
It suffices to prove that there is a unique integer r∈Z such that (n, r)∈⋃

0⩽s<1(t(∂
−
d P )+v+sed).

(Existence) By the assumption, there is an α ∈ R such that

(n, α) ∈ t(∂−
d P ) + v.

Then, r = ⌈α⌉ satisfies the desired condition since (n, ⌈α⌉) is contained in t(∂−
d P ) + v

+(⌈α⌉ − α)ed.
(Uniqueness) The uniqueness of r follows from the fact that, for any (n, α), (n, α′) which

are contained in
⋃

0⩽s<1(t(∂
−
n P ) + v + sed), we have |α− α′| < 1.

We will also use the following variation of Proposition 6.8. For a d-polytope P , let

∂+
i P = {x ∈ P | x ̸∈ P − εei for all ε > 0}

and
TL

(+i)
P,v (t) = #

((
t(∂+

i P ) + v
)
∩ Zd

)
for t ∈ Z⩾0.

The next statement can be proved by the same argument given in the proof of Proposition 6.8.

Proposition 6.9. Let P ⊂ Rd be a rational d-polytope. For any v ∈ Rd and t ∈ Z⩾0, one has

TLπi(P ),πi(v)(t) =
∑

0⩽s<1, TL
(+i)
P,v−sei

(t)̸=0

TL
(+i)
P,v−sei

(t).

We now prove Theorem 6.1.

Proof of Theorem 6.1. We use induction on d. Suppose d = 1 and ΓP = ΓQ. Let ℓ = #(P ∩Z)
and let p be the maximal integer which is equal to or smaller than minP . Then, by setting

a = min{s ∈ [0, 1) | #((P + s) ∩ Z)−#((P + s+ ε) ∩ Z) ̸= 0}

and
b = min{s ∈ [0, 1) | #((P − s) ∩ Z)−#(P − s− ε) ∩ Z ̸= 0},

where ε > 0 is sufficiently small. We have

P = [p+ (1− a), p+ ℓ+ b].

Since ℓ, a, b only depend on ΓP , this implies P = Q+ n for some n ∈ Z.
Assume d > 1 and ΓP = ΓQ. By Lemma 6.4, we already know Q = P + v for some

v ∈ Rd. By Proposition 6.8 and the assumption ΓP = ΓQ, we have Γπ1(P ) = Γπ1(Q) and
Γπ2(P ) = Γπ2(Q). Since Q = P + v, the induction hypothesis says that π1(v), π2(v) ∈ Zd−1

which guarantees v ∈ Zd.
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7. Group symmetry

In the previous section, we saw that the translated lattice points enumerators determine poly-
topes up to translations by integer vectors. In this section, we study translated lattice points
enumerators of polytopes having some symmetries, in particular, we prove Theorem 1.5 in the
Introduction.

Let GLd(Z) be the subgroup of the general linear group GLd(R) consisting of all ele-
ments g ∈ GLd(R) with g(Zd) = Zd. If we identify each element of GLd(R) with d × d
non-singular matrix in a standard way, then GLd(Z) may be considered as the set of unimodular
matrices. For a rational d-polytope P ⊂ Rd, we define

AutZ(P ) = {g ∈ GLd(Z) | g(P ) = P + n for some n ∈ Zd}

and
AutZ(ΓP ) = {g ∈ GLd(Z) | TLP,g(v) = TLP,v for all v ∈ Rd}.

Proposition 7.1. For a rational d-polytope P ⊂ Rd, one has AutZ(ΓP ) = AutZ(P ).

Proof. We first prove “⊂”. Let g ∈ AutZ(ΓP ). Then, for any v ∈ Rd, we have

TLP,v(t) = TLP,g(v)(t) = #
((
tP + g(v)

)
∩ Zd

)
= #

(
(tg−1(P ) + v) ∩ Zd

)
= TLg−1(P ),v(t)

for all t ∈ Z⩾0. Thus we have ΓP = Γg−1(P ) so P = g−1(P ) + n for some n ∈ Zd by
Theorem 6.1. Then g ∈ AutZ(P ) since P = g(P )− g(n) and g(n) ∈ Zd.

We next prove “⊃”. Let g ∈ AutZ(P ). Then for any v ∈ Rd, we have

#
((
tP + g(v)

)
∩ Zd

)
= #

((
tg(P ) + g(v)

)
∩ Zd

)
= #

(
(tP + v) ∩ Zd

)

for any t ∈ Z⩾0, where the last equality follows from the fact that g ∈ GLd(Z). This im-
plies TLP,g(v) = TLP,v for all v ∈ Rd.

Example 7.2. Consider the rhombus Q in Example 4.2. From the list of translated lattice points
enumerators in the example, one can see that they are equal on E1, E2, E7 and E8. This can be
explained using the symmetry. Let ρ1, ρ2 ∈ GL2(Z) be a reflection by the x-axis and the y-axis,
respectively. Then ρ1, ρ2 do not change Q so they are elements of AutZ(Q). We have

ρ1(E1) = E7, ρ1(E2) = E8, and ρ2(E1) = E2,

which say that translated lattice points enumerators are equal on E1, E2, E7 and E8.

We now focus on centrally symmetric polytopes. Recall that a quasi-polynomial f is said to
be symmetric if its kth constituent equals its (−k)th constituent for all k ∈ Z.

We first prove the following criterion for the symmetry of Ehrhart quasi-polynomials ofP+v.
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Lemma 7.3. Let P ⊂ Rd be a rational d-polytope. The following conditions are equivalent.
(i) ehrP+v is symmetric for all v ∈ Qd.

(ii) For all v ∈ Qd and k ∈ Z⩾0, one has

the kth constituent of TLP,v = the (−k)th constituent of TLP,−v.

Proof. We first prove “(i) ⇒ (ii)”. Fix v ∈ Qd and k ∈ Z⩾0. Then
kth constituent of TLP,v

= kth constituent of ehrP+ 1
k
v (by Lemma 2.4)

= (−k)th constituent of ehrP+ 1
k
v (by (i))

= (−k)th constituent of TLP,−v (by Lemma 2.4),
as desired.

The proof for “(ii) ⇒ (i)” is similar. Indeed, we have
kth constituent of ehrP+v

= kth constituent of TLP,kv (by Lemma 2.4)
= (−k)th constituent of TLP,−kv (by (ii))
= (−k)th constituent of ehrP+v (by Lemma 2.4),

as desired.

Recall that a polytope P ⊂ Rd is said to be centrally symmetric if −P = P + x for
some x ∈ Rd.
Corollary 7.4. Let P ⊂ Rd be a rational d-polytope. If ehrP+v is symmetric for all v ∈ Qd,
then

(i) P is centrally symmetric.

(ii) ehrπi(P )+u is symmetric for all u ∈ Qd−1 and i ∈ {1, 2, . . . , d}.
Proof. (i) Let q be a positive integer such that qP is integral. It suffices to prove that qP is
centrally symmetric. Since ehrqP+qv(ℓ) = ehrP+v(qℓ) for all ℓ ∈ Z⩾0, the kth constituent
of ehrqP+qv is obtained from the qkth constituent of ehrP+v by substituting t with t

q
(as polyno-

mials in t). This fact and the assumption say that ehrqP+qv is symmetric for all v ∈ Qd. Since qP
is a lattice polytope, it follows from Theorem 1.4 that qP is centrally symmetric.

(ii) For any v ∈ Qd, we have
kth constituent of TLπi(P ),πi(v)

= kth constituent of
∑

0⩽s<1TL
(−i)
P,v+sei

(by Proposition 6.8)
= kth constituent of

∑
0⩽s<1

(
TLP,v+sei − TLP,v+sei−εsei

)

= (−k)th constituent of
∑

0⩽s<1

(
TLP,−v−sei − TLP,−v−sei+εsei

)
(by Lemma 7.3)

= (−k)th constituent of
∑

0⩽s<1TL
(+i)
P,−v−sei

= (−k)th constituent of TLπi(P ),−πi(v) (by Proposition 6.9),



combinatorial theory 5 (1) (2025), #13 27

where each εs is a sufficiently small positive number which depends on s. This proves that πi(P )
satisfies the condition (ii) of Lemma 7.3.

We now come to the goal of this section. Let P be a centrally symmetric polytope
with −P = P + x. Then 1

2
x is a center of P , and if p = 1

2
x + p′ is a vertex of P , the

point 1
2
x−p′ is also a vertex of P by the central symmetry. We write this vertex 1

2
x−p′ as p∗.

Theorem 7.5. Let P ⊂ Rd be a rational d-polytope. The following conditions are equivalent.

(i) ehrP+v is symmetric for all v ∈ Qd.

(ii) P is centrally symmetric and p− p∗ ∈ Zd for every vertex p of P .

To prove the theorem, we recall the following basic fact on Z-modules.

Lemma 7.6. Let X ⊂ Rd be a d-dimensional cone with apex 0. There is a Z-basis of Zd which
is contained in int(X).

Proof. Take any integer vector n ∈ int(X) with gcd(n) = 1.
First, we claim that there are n1, . . . ,nd−1 ∈ Zd such that n,n1, . . . ,nd−1 is a Z-basis

of Zd. In fact, by the assumption, the Z-module Zd/(Zn) is a free Z-module of rank d− 1 since
it is torsionfree. If we choose n1, . . . ,nd−1 ∈ Zd so that they form a Z-basis for Zd/(Zn), the
sequence n,n1, . . . ,nd−1 becomes a Z-basis of Zd.

Now, we show that we can choose n1, . . . ,nd−1 from int(X). For each ni, since n is in the
interior of X , by taking a sufficiently large integer ki, the point ni+ kin is contained in int(X).
Then n,n1 + k1n, . . . ,nd−1 + kd−1n is a desired Z-basis.

Proof of Theorem 7.5. ((ii)⇒ (i)) By taking an appropriate translation, we may assumeP =−P .
Then p∗ = −p for every vertex p of P , so the condition (ii) says that 2P is integral. In partic-
ular, every quasi-polynomial TLP,v has period 2. We prove that P satisfies the condition (ii) of
Lemma 7.3.

Let v ∈ Qd and k ∈ {0, 1}. Since P = −P , Lemma 5.5 says

the kth constituent of TLP,v = the kth constituent of TLP,−v.

However, sinceTLP,−v has period 2, the RHS in the above equation equals the (−k)th constituent
of TLP,−v.

((i) ⇒ (ii)) We have already seen that (i) implies that P is centrally symmetric in Corol-
lary 7.4. We prove the second condition of (ii) by induction on d. Suppose d = 1. Then we may
assume

P = [0, x+ p
q
]

for some x, p, q ∈ Z⩾0 with 0 ⩽ p < q. Then we have

the first constituent of ehrP = vol(P )t− p
q
+ 1

and
the (q − 1)th constituent of ehrP = vol(P )t− (q − 1)p

q
+ ⌊(q − 1)p

q
⌋+ 1.
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Then the condition (i) says p − 2p/q = ⌊p(q − 1)/q⌋, but it implies 2p/q ∈ Z. Hence 2P is
integral which guarantees the condition (ii).

Suppose d > 1. Let p ∈ Qd be a vertex of P . Consider the normal cone at the vertex p

X = {a ∈ Rd | max{(a,x) | x ∈ P} = (a,p)}.

This is a d-dimensional cone with apex 0. By Lemma 7.6, there is a Zd-basis e′1, . . . , e′d which
is contained in int(X). Consider the linear transformation g ∈ GLn(Z) which changes the
hyperplane {x ∈ Rd | (x, e′i) = 0} to {x = (x1, . . . , xd) ∈ Rd | xi = 0}. Since g(Zd) = Zd,
we have ehrg(P )+u(t) = ehrP+g−1(u)(t) for all u ∈ Qd, so g(P ) also satisfies the condition (i).
Let g(p) = (y1, . . . , yd). By the choice of e′1, . . . , e′d, we have

g(P ) ∩ {(x1, . . . , xd) ∈ Rd | xi = yi} = {g(p)} for all 1 ⩽ i ⩽ d.

This says that πj(g(p)) is a vertex of πj(g(P )) for j = 1, 2, . . . , d and the same holds
for πj(g(p

∗)) by the central symmetry. For each j = 1, 2, . . . , d, Lemma 7.4 says that πj(g(P ))
satisfies the condition (i), so we have that πj(g(p)− g(p∗)) ∈ Zd−1 by the induction hypothesis.
But then we must have g(p− p∗) ∈ Zd and therefore p− p∗ ∈ Zd.

If P is a centrally symmetric polytope with the center c and p is a vertex of P ,
then p− p∗ = 2(p− c), so Theorem 7.5 is equivalent to Theorem 1.5 in the Introduction.

8. A connection to commutative algebra

In this section, we briefly explain a connection between translated lattice points enumerators and
conic divisorial ideals of Ehrhart rings in commutative algebra. In particular, we explain that
Theorem 2.3 can be proved algebraically using the duality of Cohen–Macaulay modules.

8.1. Conic divisorial ideals

Let S = F[x±
1 , . . . , x

±
d+1] be the Laurent polynomial ring over a field F. We will

consider the grading of S defined by deg(x1) = · · · = deg(xd) = 0 and deg(xd+1) = 1.
For a = (a1, . . . , ad+1) ∈ Zd+1, we write

xa = xa1
1 · · · xad+1

d+1 .

LetP ⊂ Rd be a rational d-polytope. The Ehrhart ring F[P ] ofP (overF) is the monoid algebra
generated by the monomials xa such that a is in the monoid CP ∩ Zd+1. As vector spaces, we
can write

F[P ] = spanF{xa | a ∈ CP ∩ Zd+1}. (8.1)

For a finitely generated graded F[P ]-module M , its Hilbert function is the function defined
by hilb(M,k) = dimFMk for k ∈ Z, where Mk is the degree k component of M , and the
Hilbert series of M is the formal power series Hilb(M, z) =

∑
k∈Z hilb(M,k)zk. Ehrhart



combinatorial theory 5 (1) (2025), #13 29

rings are closely related to Ehrhart quasi-polynomials. Indeed, from (8.1), we can see that the
Hilbert function of F[P ] is nothing but the Ehrhart quasi-polynomial of P .

For any v ∈ Rd+1, the vector space

Iv = spanF{xa | a ∈ (CP + v) ∩ Zd+1} ⊂ S

becomes a finitely generated graded F[P ]-module. The modules Iv are called conic divisorial
ideals of F[P ]. We note that different vectors in Rd+1 could give the same conic divisorial ideal,
more precisely, we have Iv = Iu if and only if the cones CP +v and CP +u have the same lattice
points.

Let us call a conic divisorial ideal I standard if I = I(v,0) for somev ∈ Rd. Hilbert functions
of standard conic divisorial ideals are nothing but translated lattice points enumerators. Indeed,
for any v ∈ Rd, we have

dimF(I(v,0))t = #{a=(a1, . . . , ad+1) ∈ (CP + (v, 0)) ∩ Zd+1 | ad+1= t} = #
(
(tP + v)∩ Zd

)
.

(8.2)

We will not explain algebraic backgrounds on (conic) divisorial ideals of Ehrhart rings since
it is not relevant to the theme of this paper. But in the rest of this section we briefly explain how
algebraic properties of conic divisorial ideals can be used to consider properties of translated
lattice points enumerators. For more detailed information on conic divisorial ideals, see [BG03]
and [BG09, §4.7].

8.2. Hilbert series of conic divisorial ideals and an algebraic proof of Theorem 2.3

We need some basic tools on commutative algebra such as the Cohen–Macaulay property and
canonical modules. We refer the readers to [BH93, §3 and §4] for basics on commutative algebra.

We introduce one more notation. For v ∈ Rd+1, we define

I◦v = spanF
{
xa | a ∈

(
int(CP ) + v

)
∩ Zd+1

}
. (8.3)

The space I◦v is also a conic divisorial ideal. Indeed, if w ∈ int(CP ) is a vector which is suffi-
ciently close to the origin, then we have

(
int(CP ) + v

)
∩ Zd+1 = (CP + v +w) ∩ Zd+1,

which says I◦v = Iv+w. The following facts are known. See [BG09, Corollary 3.3 and Re-
mark 4.4(b)].

• Iv is a (d+ 1)-dimensional Cohen–Macaulay module.

• I◦v is the canonical module of I−v, more precisely, we have

HomF[P ](Iv, ω) ∼= spanF{xa | a ∈ (int(CP )− v) ∩ Zd+1} = I◦−v,

where ω = spanF{xa | a ∈ int(CP ) ∩ Zd+1} is the graded canonical module of F[P ].

These properties give the following consequences on Hilbert series of conic divisorial ideals.
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Proposition 8.1. Let P ⊂ Rd be a rational d-polytope and q the denominator of P .
Let v = (v1, . . . , vd+1) ∈ Rd+1 and α = ⌈vd+1⌉.

(1) Hilb(I◦v, z) = (−1)d+1Hilb(I−v, z
−1).

(2) Hilb(Iv, z) =
zα

(1−zq)d+1Q(z) for some polynomial Q(z) ∈ Z⩾0[z] of degree < q(d+ 1).

Proof. The equality (1) is the well-known formula of the Hilbert series of a canonical module.
See [BH93, Theorem 4.45]. We prove (2). Consider the subring

A = spanF
{
xa | xa ∈ CP and deg(xa) ∈ qZ

}
⊂ F[P ].

Since qP is integral, F[qP ] is a semi-standard graded F-algebra, that is, F[qP ] is a finitely gen-
erated as a module over a standard graded F-algebra F[xaxd+1 | xa ∈ P ∩Zd] (see [Vil15, The-
orem 9.3.6](d)). Then, since A ∼= F[qP ], where the degree k part of F[qP ] corresponds to the
degree qk part of A, any finitely generated A-module M of Krull dimension m has the Hilbert
series of the form Q(z)/(1 − zq)m for some polynomial Q(z), and if M is Cohen–Macaulay
then Q(z) ∈ Z⩾0[z] ([BH93, Corollaries 4.8 and 4.10]).

Since F[P ] is a finitely generated A-module, Iv is a finitely generated Cohen–Macaulay A-
module of Krull dimension d+ 1. Thus there is a polynomial Q(z) ∈ Z⩾0[z] such that

Hilb(Iv, z) =
1

(1− zq)d+1
Q(z).

Since (Iv)k = 0 for k < α = ⌈vd+1⌉ by the definition of Iv, the polynomial Q(z) must be of the
form

Q(z) = c0t
α + c1t

α+1 + · · ·+ cmt
α+m

for some m ⩾ 0, where c0, . . . , cm ∈ Z⩾0 and cm ̸= 0, so it follows that

Hilb(Iv, z) =
zα

(1− zq)d+1
(c0 + c1z + · · ·+ cmz

m).

Now it remains to prove m < q(d+ 1). By statement (1), we have

Hilb(I◦−v, z) = (−1)d+1 z−α

(1− z−q)d+1
(c0 + c1z

−1 + · · ·+ cmz
−m)

=
zq(d+1)−α−m

(1− zq)d+1
(cm + cmz + · · ·+ c0z

m).

This says
−α < min{k ∈ Z | (I◦−v)k ̸= 0} = q(d+ 1)− α−m

proving the desired inequality m < q(d+ 1).

The statements in Proposition 8.1 are known to imply the quasi-polynomiality and reciprocity
of translated lattice points enumerators in Theorem 2.3. Recall that TLP,v coincides with the
Hilbert function of I(v,0). Proposition 8.1(2) says that the Hilbert series of I(v,0) can be written
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in the form 1
(1−zq)d+1Q(z) for some polynomial Q(z) of degree < q(d + 1), which is known to

imply that hilb(I(v,0), t) (= TLP,v(t)) coincides with a quasi-polynomial with period q for t ⩾ 0.
See e.g., [BR15, §3.8] or [Sta97, §4]. Also, Proposition 8.1(1) is essentially equivalent to the
reciprocity in Theorem 2.3(2). See [BR15, §4.3].

Finally, we note that the proposition gives some restriction to the possible values of TLP,v.
If P ⊂ Rd is a lattice d-polytope and v ∈ Rd, then the proposition says

Hilb(I(v,0), z) =
1

(1− z)d+1
(h0 + h1z + · · ·+ hdz

d)

for some h0, h1, . . . , hd ∈ Z⩾0. These h-numbers must satisfy the following conditions

(I) h0 = 1 if v ∈ Zd and h0 = 0 if v ̸∈ Zd;

(II) h0 + · · ·+ hd = d!vol(P ).

The first condition follows from h0 = dimF(I(v,0))0, and the second condition follows
since 1

d!
(h0 + · · · + hd) is the top degree coefficient of the polynomial hilb(I(v,0), t). Below

we give a simple application of this. Consider a lattice polygon P ⊂ R2 whose volume is 3
2
.

Then the possible values of h0 + h1z + h2z
2 are

1 + z + z2, 1 + 2z, 1 + 2z2, 3z, 2z + z2, z + 2z2, 3z2.

If f(t) is a polynomial
∑∞

t=0f(t)z
t= 1

(1−z)3
(h0+h1z+h2z

2), then f(t)=h0

(
t+2
2

)
+h1

(
t+1
2

)
+h2

(
t
2

)
.

So a translated lattice points enumerator of an integral polygon with volume 3
2

must be one of
the following polynomials

3
2
t2 + 3

2
t+ 1, 3

2
t2 + 5

2
t+ 1, 3

2
t2 + 1

2
t+ 1, 3

2
t2 + 3

2
t, 3

2
t2 + 1

2
t, 3

2
t2 − 1

2
t, 3

2
t2 − 3

2
t.

Four of them appear as translated lattice points enumerators of the trapezoid in the Introduction.
See (1.1).
Remark 8.2. Alhajjar [Alh17, §4] studied the numbers h0, h1, . . . , hd mentioned above by a more
combinatorial approach and proved various results including (I) and (II).

9. Problems

In this last section, we list a few problems which we cannot answer.

Gcd property and zonotopes

A quasi-polynomial f with period q is said to have the gcd property if its kth constituent only
depends on the gcd of k and q for all k ∈ Z. We note that if f has the gcd property then f
must be symmetric. It was proved in [dVY25] that, for a lattice d-polytope P ⊂ Rd, ehrP+v

has the gcd property for all v ∈ Qd if and only if P is a zonotope. Considering the statement in
Theorem 1.5, one may ask if a similar statement holds for zonotopes P such that 2P is integral,
but this is not the case. Indeed, the rhombus Q in Example 4.2 is a zonotope and 2Q is integral
but the computation given in the example says that ehrQ+( 1

8
, 1
8
) does not satisfy the gcd property.

We repeat the following question asked in [dVY25, Problem 6.7(2)].
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Problem 9.1. Let P ⊂ Rd be a rational d-polytope. Is it true that, if ehrP+v has the gcd property
for all v ∈ Qd, then P = Q+ u for some integral zonotope Q and some u ∈ Qd?

To consider this problem we can assume that P is a zonotope by the argument similar to the
proof of Corollary 7.4(i) and 2P is integral by Theorem 1.5.

Period collapse

Recall that the denominator of a rational polytope P is always a period of ehrP . If the minimum
period of ehrP is not equal to the denominator of P , we say that period collapse occurs to P . A
period collapse is a major subject in the study of Ehrhart quasi-polynomials (see e.g., [BSW08,
HM08, MM17, MW05]). We ask the following vague question: Can a relation between ehrP+v

and TLP,v be used to produce polytopes giving period collapse? For translations of a lattice
polytope, a period collapse cannot occur. Indeed, if P is a lattice polytope, then the minimum
period of ehrP+v must be the smallest integer k such that kv is integral since the constant term
of the kth constituent of ehrP+v is TLP,kv(0) = #({kv}∩Zn), which is non-zero only when kv
is integral.
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