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ABSTRACT OF THE DISSERTATION

Stability as a Criterion for Metabolic Systems

by

Matthew Theisen
Doctor of Philosophy in Bioengineering
University of California, Los Angeles, 2016

Professor James C. Liao, Chair

Simulation of metabolic systems with kinetic models requires a large number of
parameter values, which are either difficult or impossible to obtain experimentally. Network
information, such as stoichiometry, reversibility and steady state flux, can be used to determine
mechanistically realistic rate laws, and these can be used to constrain the parameter space to only
those values which satisfy the constraints. Until now, stability has been overlooked when
considering kinetic metabolic models. However, dynamical stability and robustness to
perturbation are important qualities for living organisms, since they may encounter changing
environments or stochastic variation across time or within populations. Considering stability can
both provide constraints on the parameter space and be used to interpret the response of the
model to queries about the performance of the metabolic system under various perturbations. I
have used stability analysis to predict the performance of many metabolic systems, with an

emphasis on providing guidance for experimental efforts and uncovering biological significance.
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The uses of stability analysis have encompassed several projects. Optimization of a novel
methanol condensation cycle (MCC) was accomplished by tuning the amount of an irreversible
phosphoketolase enzyme to a local productivity and stability maximum, as predicted by stability
analysis and confirmed by in vitro experimentation. Several other in vitro enzymatic were
subjected to stability analysis, and predictions matched previously published experimental
results.

Stability analysis was also applied to several microbial systems to maximize production
of a desired compound: n-butanol in Escherichia coli, isobutanol in Clostridium thermocellum
and lipids in Yarrowia lipolytica. In these systems, production simulations matched the
observations and predictions for further production improvements were made.

Stability analysis was also applied to gain biological understanding of the significance of
structural features of the Calvin-Bassham-Benson (CBB) pathway in plants. The
phosphate/glyceraldehyde-3-phosphate translocator was identified as more important for stability
than a proposed glucose-6-phosphate shunt. Further, productivity was increased after
overexpression of sedoheptulose-1,7-biosphosphatase, but not RuBiSCO, in agreement with
previous experimental reports.

The importance of stability in analysis of metabolic systems is affirmed by this work, and

the techniques demonstrated here pave the way for even further explorations.
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1. Introduction
1.1 Background

Increasing availability of natural gas has spurred interest in the conversion of single-carbon
(C1) compounds, with particular interest in methanol.! Methane, the main component of natural
gas, can be converted to methanol by a variety of methods including chemical conversion at the
wellhead?, while upgrading methanol to multi-carbon compounds remains difficult.** Concerns
over the climate effects of carbon dioxide have spurred action to minimize its release into the
atmosphere. Thus, more carbon-efficient methods for the utilization of methanol represents a goal
which would address strong societal needs in these areas. As a reference point, natural enzymatic
pathways for methanol processing would allow for a maximum of 67% carbon efficiency from
methanol to higher alcohols, due to decarboxylation during the pyruvate dehydrogenase step.> To
address this need, we have developed the methanol condensation cycle (MCC).> MCC converts
one-carbon methanol to longer carbon-chain alcohols like n-butanol with 100% theoretical carbon
efficiency.

Metabolic simulation tools have great promise to guide the development of new enzymatic
pathways like MCC. One of the most popular tools developed so far is flux balance analysis
(FBA). FBA uses stoichiometric information about a pathway to predict characteristics of the
pathway like theoretical yield.” However, FBA is unable to utilize kinetic information about a
pathway or organism. In general, functions (i.e. Michaelis-Menten) which relate enzymatic-
reaction rate to substrate concentrations and parameters (Vmax, Km, etc.) are available.® However,
a major difficulty in using kinetic models is obtaining accurate parameters.” A relatively new
method for simulation of metabolic systems called ensemble modelling allows for kinetic

simulation without a priori knowledge of parameters.!®!! This is accomplished by using network



information, like steady state enzyme fluxes to constrain guesses about enzyme parameters to
realistic values.

This simulation strategy may be helpful in the design of a methylotrophic E. coli strain.
There are three critical enzymes for methylotrophy (growth on methanol): alcohol dehydrogenase
(Adh), 3-hexulose-6-phosphate synthase (Hps) and 3-hexulose-6-phosphate isomerase (Phi). My
preliminary results have shown that methanol consumption by E. coli is possible, and that it can
be converted to biomass. Further, literature reports have identified methanol assimilation in E.
coli.'> However it is likely that levels of other enzymes, especially related to carbon rearrangement
and glycolysis may require expression at different levels to accommodate the high carbon flux
required for primary metabolism.

MCC bypasses the decarboxylating enzyme pyruvate dehydrogenase (Pdh) which
generates key metabolic intermediate acetyl-CoA. Instead, it generates acetyl-CoA from acetyl-
phosphate produced by phosphoketolase. The productivity of the pathway is hypothesized to have
a local maximum relative to the concentration of phosphoketolase. Further, the pathway can be
shown to be fully catalytic by analyzing '*C labelling patterns of MCC products formed by reacting
unlabeled sugar phosphates with '3C labelled formaldehyde. In silico modelling of the cycle can
be performed to confirm our understanding of experimental results.

Ensemble modelling and its extension ensemble modelling robustness analysis (EMRA)
are relatively new methods for simulating metabolic systems.'®!* In this work, EMRA and
stability more broadly, will be demonstrated as useful tools for pathway development. Literature
accounts have reported enzymatic systems with anomalous productivity characteristics.>!*!> For
example, a glycolysis system showed decreasing productivity with increasing feed rate.!* EMRA

is a way to unify these anomalies with theoretical understanding.



Methylotrophic and non-methylotrophic organisms have fundamentally different
metabolism. For example, the highly studied methylotroph Bacillus methanolicus MGA3 is not
capable of growth on glucose and its only known multi-carbon growth source is mannitol.'® There
are very few reports of organisms which can utilize both glucose and methanol, with the most
recent of such reports dating from the 1980s. These organisms have relatively long lag phases on
both substrates.!”!® Thus, it is possible that there are fundamental metabolic trade-offs that make
simultaneous compatibility with methanol and glucose difficult. Elucidation of these fundamental
differences will be attempted with ensemble modelling, yielding potential experimental insights.
Further, overexpression and knockout targets will be identified by using ensemble modelling
robustness analysis (EMRA).!*1
1.2 Importance of Cycles in Metabolism

The metabolism of life is a complex network of reactions. There are thousands of different
reactions occurring even in a relatively simple life-form such as the bacterium Escherichia coli.
However, many of these reactions occur with very little flux, and therefore it is often useful to
break down metabolism into ‘pathways’, often focusing on the pathways that are highest in flux—
the so-called primary metabolism. The exploration of these pathways and their variations is a
major emphasis of this work.

Some pathways form a simple linear sequence (Fig 1-1), like glycolysis. Ignoring cofactors
for the moment (NADH, ATP), glycolysis is a linear pathway, with each successive metabolite
being converted to the next—without any complexities like branching or cycles. Glycolysis is one
of the most important pathway for life, and is a highly conserved pathway found in almost all
forms of life. It takes the energy locked up in the chemical bonds of glucose, and makes it available

for the uses of life.



Simple Linear Pathway

As starting substrate increases...

...pathway flux increases...

...and final product increases.

Fig. 1-1) Example of simple linear pathway. As substrate increases, pathway flux increases. Depletion of intermediates does not
adversely affect pathway performance.

However, cyclic pathways have an equally, if not more important role in the chemistry of
life. In general, the class of C1 biochemistry (single carbon compound chemistry), relies heavily
on metabolic cycles, many of which are complex and have multiple branch points. These pathways
include the Calvin-Bassham-Benson (CBB) pathway, used by plants for the fixation of carbon
dioxide into sugars, and the ribulose monophosphate (RuMP) pathway of methanol assimilation.

Why is C1 biochemistry so important? Carbon dioxide is a low energy molecule, and the
carbon contained in it can be used, along with some other source of energy (reducing power from
NADPH, for instance), to form the organic molecules which make up life. To form carbon
skeletons (sugars) in this way power the rest of life on this planet, one carbon dioxide needs to be
bonded with other carbons, a feat which allows the rest of life to flourish.

Why are cycles so important to C1 biochemistry? Chemically it is infeasible to bond two
C1 molecules directly to a C2. No enzymes are known which can accomplish this reaction, so
instead, the C1 molecule must be incorporated into a longer molecule, as is the case in the CBB

and RuMP pathways, where a CI1 is incorporated into a C5 molecule to form a C6. The C6
4



molecule is then reshuffled back down to a C5, such that 5xC6 molecules shuffle down to 6xC5

molecules, resulting in a net gain fixed carbon (Fig 1-2).

®+0 ®

; 00000
X
oo

etV

Fig. 1-2) Most C1 metabolism uses cycles. The reaction C1 + C1 = C2 is mechanistically unfeasible. Thus, C1 molecules like
carbon dioxide and methanol must be incorporated into longer carbon chains (usually C5 sugars) to complete assimilation.

Given the importance and complexity of C1 metabolism, we need to understand how it can
fail. A critical difference between linear pathways and cycles is that, in the case of cycles, if an

intermediate is depleted, the pathway can no longer operate (Fig 1-3).

Pathway with Cycle

Additional substrate will not
be converted into product.

If intermediate metabolite
is depleted. ..

" Flux stops.

Fig. 1-3) Cyclic metabolism relies on the presence of intermediates for pathway function. For example, if the pathway cyclic
intermediates are depleted, the addition of more starting substrate (S) will not result in more production.



1.3 Demonstrating Instability in a Simplified Metabolic Cycle
To demonstrate how we may begin to understand the stability of cyclic pathways, I
defined a ‘simplified’ version of a cyclic pathway (Fig 1-4), and analyzed when it would fail,

finding an analytical solution mathematically.

Fig. 1-4) Simplified version of MCC pathway. Graphs showing B’ vs. B for different parameter values, showing that for some
values, a non-zero stable steady state exists.

The system is kinetically defined as mass action with the following equations. B, C and F
are assumed to have no initial concentration, only A.
A = —k;AS + 2k3BC — 2k;A?
B = k;AS — k,B — k3BC + k3 A?
C = k,B — k3BC + k3A?

F == sz - kOlltF

Eqns. 1a)—1e)



Where ki is rate constant i and capital letters indicate metabolite concentrations. The system is
conserved, meaning the total amount of metabolites in the cycle (A, B, C) is constant. This can be

found by observing the following:

A=A,—¢& + 2&
B=0+¢& —¢& —¢&
C=0+¢& —&
A+B+C =4,
C=A4,—-A-B

Eqns. 2a) —e)

Where &i indicates extent of reaction i. To find the nature of the steady state equation set Eqn. 1a)
equal to zero. It is then possible to solve for A in terms of only Ao, B, S and k parameters using
2e). At this point, substituting this expression for A into Eqn. 1b) would yield an ‘A-static’
derivative of B—meaning that given A has stabilized, what is the time change of B? The result is

the following:

B—lsk A B 3132+le5+ ky S2 — Bk, — k 1<1252+k115;s
27T 4 4k, 16ks> 2 73\ 8k,2 4k,

Egn. 3

The roots of this equation would indicate the overall steady state—where A, B and C are not

changing. The roots are:



k2 S2(k.A, — k
B=0}B=1 (30 2)

K
P (kg © 52+ 2Kk S + 4k, )

Eqn. 4

The second root of B must be positive for a non-zero steady state to exist. Thus:

Eqn. 5

This is a beginning discussion on the importance of cycles in metabolism, and the role
stability plays in performance of metabolic systems, both of which are major themes and will
receive much more sophisticated treatments throughout.
2. Methanol Condensation Cycle & Methanol Growth
2.1 Methanol Condensation Cycle (MCC)
2.1.1 MCC Introduction

This chapter discusses work on developing the methanol condensation cycle (MCC) and
attempts to engineer E. coli for growth on methanol. MCC (Fig. 2-1) uses methanol dehydrogenase
to convert methanol to formaldehyde. From there, hexulose-phosphate synthase (Hps) us used to
incorporate formaldehyde into ribulose-5-phosphate (Ru5P). Phosphoketolase then cleaves
fructose-6-phosphate (F6P) to erythrulose-4-phosphate and acetyl-phosphate. Carbon is then

rearranged to regenerate RuSP.

CH,0H CH,OH
Mdh | e
HCHO
v ~— -—
HCHO _ Hps RuSP .
Hos /7 ‘1I . Rpe RSP
¥ v ™,
HEP  HEP
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Fig. 2-1. Full version of MCC pathway. (Enzyme and compound names in Appendix B)

One concern in the implementation of MCC is the presence of a ‘kinetic trap’ whereby
phosphoketolase completely consumes five- and six-carbon sugar phosphates (F6P, X5P, R5P,
Ru5P). This leaves only G3P and/or E4P which cannot react with each other in the presence of
only MCC enzymes. Phosphoketolase is known to be irreversible’® and its thermodynamic
properties (AG = -40 kJ/mol) support this interpretation. In contrast, other enzymes of the cycle
(Rpe, Rpi, Tkt, Tal, Phi) are highly reversible.

MCC can be approximately modeled by a simple metabolic cycle of the form shown in
Chapter 1. Due to the simple nature of this cycle, the conditions under which it will reach a stable
steady state can be solved for analytically. The solution requires the irreversible enzyme rate
(represents phosphoketolase) to be slower than the reversible enzyme rate (stands for Rpe, Rpe,
Tkt, Tal). Additionally, the total amount of cycle intermediate must be higher than the ratio of the
two rates. This requirement for maintenance of cycle intermediates is reminiscent of the well-
known feature of the TCA cycle, cataplerosis.?! TCA intermediates are replenished via pyruvate
carboxylase or phosphoenolpyruvate carboxylase in response to acetyl-CoA flux which allows the

cycle to continue functioning.?
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Fig. 2-2. Ensemble Modelling Robustness Analysis (EMRA) of the core MCC pathway. Y-axis represents the stability of the
system. Specifically, it is the fraction of parameter sets that have a stable steady state. X-axis represents the log10 fold change of
enzyme amount. Phosphoketolase (Fpk) shows a local maximum in robustness relative to enzyme amount while other enzymes
show only increasing robustness for increasing amounts.

2.1.2 Ensemble Robustness Analysis of MCC in vitro

Ensemble Model Robustness Analysis (EMRA) is a method which analyzes the robustness
of metabolic systems using only knowledge of the stoichiometry of the system and a pre-
determined reference steady state!>. Values for enzymatic parameters like Km can be randomly
drawn such that the reference steady state is maintained. Then, each set of parameters can be
inspected for robustness by ‘perturbing’ the system by altering the amount of various enzymes.
Some sets of parameters may be observed to become unstable at various levels of perturbation.
This instability is detected by noting the sign of the real part of the eigenvalues of the Jacobian.?

A model of an in vitro MCC system (not including other cell metabolism) was developed
which included the stoichiometry of the system, the reversibilities of the enzymes and the reference
steady state. Using the ensemble modelling robustness analysis method, the robustness of the
pathway to changes in each enzyme was analyzed. (Fig. 2-2) The reversible carbon rearrangement

10



enzymes (Rpe, Rpi, Tkt, Tal) must be present at a high level for maximum robustness and

productivity. The irreversible enzyme, phosphoketolase (Fpk), shows a local maximum for

robustness with both too little and too much being harmful for productivity, while all other

enzymes have only increasing robustness with increasing amount.

2.1.3 Demonstration of catalytic MCC

Demonstrating the recycling feature of MCC is key to proving its overall function. This is

because product can be formed using carbon only from the sugar phosphate intermediates, without

incorporating significant amounts of foromaldehyde. An assay tested the core of MCC, going

from formaldehyde to acetate. '3C labelled formaldehyde was added to unlabeled ribose-5-

phosphate (R5P).
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o } o §
2CH,0 OP, 2CH.0 OP,
o o 2RuSP e Rpi :_ Hos, 2RuSPs__ Rpi
o] _.) Hps b o 0 « Hps)y o]
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| P
Phi $omegon %o Pn $O Mo "8 o
t 2X5P - 2x5p
o0 * . ™ OP, 2o * L 0’:
Fee o | s O 1 i FeP &0 | o =0 1)
OP; \ Fok { FeP 4 - 0P\ rox i FeP 4
» oP, \ [ OP, o OP, \ OP,
- \ | -
AcP \ 1a1/ AcP /
:; £4P \?/, o e ; e \o) , e
oP, :$° $° OP, ©
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B Acetic Acid From 13C CH,0
Acetic Acid Standard
M M=2

§ 100% 100%
(3]
=
=
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50% Mot
2 i
©
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Fig. 2-3. A) Tracing 13C labelled carbon as it works through the cycle, generation of isotope 62 (M+2) requires a fully catalytic
cycle where carbon is successfully regenerated. B) Acetic acid standard mass scatter showing m/z = 60 is the dominant peak. In
an in vitro assay using purified enzymes, m/z = 62 was identified as the dominant peak, indicating fully catalytic cycle.
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There are three distinguishable isotopes of acetic acid: the unlabeled 60-isotope (M), the
single-labeled 61-isotope (M+1) and the double-labelled 62-isotope (M+2). The 62 (M+2) isotope
is only generated in a fully catalytic process (Fig 2-3A), where carbon is turned over through the
cycle at least twice. In fact, 62 is the dominant isotope detected in the labelling experiment (Fig
2-3B).

For this experiment, acetic acid was quantified on GC/MS. A standard curve for acetate
was generated with relative standard deviation (RSD) of 3-7%. Quantifying acetate and its
isotopes has previously been reported using the 60/61/62 m/z peaks as the ‘quant’ ions.?* Using
60/61/62 as a quant ion is beneficial since in unlabeled acetate, 60 is a lone peak without
surrounding peaks (Fig 2-3B).?* Thus, it is very straightforward to quantify each isotope of acetic
acid present when using 13C substrates for production.

2.1.4 Demonstration of an in vitro Kkinetic trap in MCC

To confirm the existence of a kinetic trap in MCC, in vitro assays of MCC using purified
enzymes were carried out. These assays tested the core of MCC, going from formaldehyde to
acetate. '*C labelled formaldehyde was added to unlabeled ribose-5-phosphate (R5P). Varying the
amount of phosphoketolase (Fpk) enzyme used in the reaction mixture was shown to cause a local
maximum in the amount of acetic acid produced (Fig 2-4, bars) in the reaction mixture. This

confirms the algebraic cycle analysis (Appendix A) as well as the EMRA analysis from Fig. 3.
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Acetic Acid Isotopes Generated in Batch Reaction
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Fig. 2-4. Results of in vitro (bars, N=3, SSD shown) and in silico (lines) experiments for batch conversion of formaldehyde to
acetic acid. Total acetic acid and isotope distributions shown.

Additionally, the distribution of acetic acid isotopes generated at each Fpk level was
measured. A kinetic model of the system including 13C labelling effects was constructed (Fig. 2-
4, lines). Time domain simulation of the experiment also showed a similar trend for overall acetic
acid production and the distribution of acetic acid isotopes generated by the '*C formaldehyde.
The simulation used a kinetic Michaelis-Menten model using Km values randomly selected over
a 10-fold range and Vmax values (besides Fpk) randomly selected over a 3-fold range. The average
of ten scenarios was taken.

2.1.5 Formaldehyde feeding of MCC for higher production in cycle
To push production higher, formaldehyde feeding assays were performed. An excessive

initial bolus of formaldehyde was found to be ineffective [Data not shown]. This may because of
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formaldehyde enzyme toxicity. Formaldehyde is known to be reactive to proteins by causing
cross-linking.?

To reduce the concentration in the reaction mixture formaldehyde feeding was performed
at 5 mM/hr for 4 hours with an initial bolus of 5SmM formaldehyde and 2 mM R5P. A control
without transaldolase (Tal) was used to illustrate the impact of carbon recycling on cycle

performance. Additionally, a no feed control was also used.

A Formaldehyde Feed to Generate Acetyl B
Phosphate
16
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Fig. 2-5. A) In vitro conversion of formaldehyde to acetyl-phosphate. In the feed condition, formaldehyde was fed during the first
4 hours at 5 mM/hr. B) An Hps/Phi expressing strain of E. coli is resistant to formaldehyde up to 2 mM. XB strain is wild type
(XL1 Blue). HP- is Hps/Phi expressing strain, no IPTG. HP+ is Hps/Phi expressing strain, with IPTG.

The cycle was found (Fig. 2-5A) to perform conversion to 100% (theoretical conversion
would be 25/2 + 2 = 14.5 mM) (within error). In other experiments, when formaldehyde was fed
at a faster rate, or for a longer time period, overall production at 24 hours was found to be less than
100%.

2.2 In vivo methylotrophy & Formaldehyde Tolerance
2.2.1 Formaldehyde tolerance of E. coli
In vivo formaldehyde toxicity is likely to be an issue considered during the induction of

methylotrophy in E. coli and MCC production in E. coli. Formaldehyde is known to be toxic to
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cells.”” One possible mechanism for this toxicity is DNA-protein crosslinking?’?%. A
formaldehyde-resistant strain of E.coli has been identified which uses plasmid-based expression
of a formaldehyde dehydrogenase 2*-*°.

Genes for the enzymes 3-hexulose-6-phosphate synthase (Hps) and 3-hexulose-6-
phosphate isomerase (Phi) were introduced into E. coli on a plasmid with an IPTG-inducible
promoter to generate strain HP. These genes have been functionally expressed as a bifunctional
fusion protein in E. coli, but have not previously been shown to confer formaldehyde resistance 3'.
Cells were induced at OD600 0.4-0.6 with IPTG at 0.25 mM and allowed to grow overnight to
saturation at 25 C. Then they were then diluted to ODeoo ~0.5 with LB while maintaining
concentrations of IPTG and kanamycin. Formaldehyde was added in three different
concentrations, 0, 1 and 2 mM. Additionally, three conditions of cells were tested: XL1-Blue
(Commerical cloning strain from Agilent Technologies, XB), HP+ (+IPTG) and HP- (-IPTG).

The results (Fig. 2-5B) show that at 2 mM formaldehyde, there is a significant difference
between HP+ and the two other experimental types. Specifically, HP +IPTG continues growing
from about OD 0.5 to 0.9 in four hours while without IPTG and without plasmid, they advance to
only about 0.6. Formaldehyde tolerance may be an important part of allowing E. coli to become
methylotrophic, since formaldehyde is a key intermediate in the consumption of methanol, and

3233 No difference in behavior

native methylotrophs have formaldehyde detoxification systems
was observed at 0 and 1 mM formaldehyde and growth was normal (not shown).
2.2.2 Methanol tolerance and consumption

Wild type E. coli is relatively tolerant to methanol, growing at up to 8% methanol in LB

(Fig. 2-6A). Concentrations of up to 4% do not significantly affect E. coli growth. Cells were

grown to saturation, then diluted at 1% and allowed to grow to OD600 of approximately 0.4-0.5.
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These exponential phase cells were then allowed to grow in LB with various methanol
concentrations as shown. The result shows that at 8% methanol, growth is significantly reduced,
but still present. This result is encouraging for bioprocessing of methanol with E. coli. Longer
chain alcohols like isobutanol completely stop growth at levels below 1%>*, so the tolerance of up
to 8% methanol is favorable for the use of methanol as a feedstock.

A E. Coli Methanol Tolerance B
E. coli methanol consumption

MeOH w/v%
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Fig. 2-6) A) Methanol tolerance of exponentially growing JCL16 E. coli in LB with varying methanol concentrations. B) Methanol
consumption by transformed strains of E. coli. Media contained 2 g/L methanol. Adh/Hps/Phi are the three genes required for
methylotrophy while MutD5 is a mutator allele.

Methanol consumption theoretically requires only three enzymes in E. coli: Adh, Hps and
Phi, since the other enzymes of RuMP are already on the E. coli genome’>°. Initial tests have
shown that these three enzymes are indeed sufficient for some methanol consumption. An
inducible plasmid containing genes for all three enzymes was constructed and introduced to E.
coli. Another strain also containing mutDS5, a mutator allele, was also measured (Fig. 2-6B). The
strains were then grown and induced overnight.  The strains were then fed 50 mM MeOH (~2
g/L) and grown for 24 hours. Methanol was measured at four time points. The net change in
methanol was compared to native E. coli strains which do not have methanol assimilation genes
and an evaporation control (LB Only).
2.2.3 Partial methylotrophy by E. coli
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Partial methylotrophy (conversion of methanol to biomass) by E. coli has been
demonstrated using JCL16 E. coli expressing Adh, Hps & Phi—the three RuMP genes not natively
expressed by E. coli. The cells were first induced in exponential phase and grown to saturation.
After that, the cells were diluted with M9 and fed with 5% LB medium. The cells were well mixed
to ensure homogeneous distribution of cells and nutrients, then separated into two groups, one to
which methanol was added, and a no methanol control. The cells were also fed methanol daily
(50 mM) throughout the experiment and IPTG was re-added on day 3. This experiment was also

performed with JCL16 wild type.

A JCL16 + Adh/Hps/Phi B JCL16
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Fig. 2-7) Partial methylotrophy by E. coli A) JCL16 E. coli transformed with the genes essential for methylotrophy shows additional
growth in the presence of 100mM methanol. The base medium was M9 with 3% LB. B) The wild type control (JCL16) showed no
additional growth with methanol.

The wild type control showed no additional growth in the methanol condition (Fig. 2-7B),
while the cells expressing Adh/Hps/Phi (Fig. 2-7A) showed significant additional growth with

methanol.
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3. Stability Predicts Productivity of in vitro Enzymatic Systems
3.1 Introduction
(Note: This chapter is from “Stability of Ensemble Models Predicts Prouctivity of Enzymatic
Systems” in PL0OS Computational Biology. Co-author Jimmy G Lafontaine Rivera provided
valuable discussions and James Liao served as PI and corresponding author)*®

Metabolic systems typically operate either under a stable steady state or an oscillatory
mode. A non-oscillatory unstable system may result in multiple problems, including depletion of
metabolites essential for growth, accumulation of toxic intermediates, or depletion of cofactors in
the pathway—all ultimately leading to loss of production or cell death. While systems with stable
steady states or sustained oscillation have been studied extensively *’*2, to our knowledge
metabolic systems prone to instability have not been investigated as much. Both stable (Fig. 3-1a)
or unstable (Fig 3-1b) system have a mathematical steady state (or fixed point), but the unstable
steady state is not realizable in the physical world because any deviations from the steady state are
amplified. Therefore, through evolution the unstable systems are selected against or stabilized by

various levels of controls. However, the issue of stability is particularly important when

engineering a novel pathway or altering an existing one.
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Fig. 3-1) Schematic figure showing how instability can occur and how it can cause lower production in batch experiments. a-b)
In a one-dimensional dynamical system, the sign of dX/dx determines stability of a fixed point (X = 0). If the sign of dX/dx is
negative (a), the system is stable to stochastic perturbations from the fixed point. In contrast, if dx/dx positive (b), the fixed point
is unstable. In a multivariate system, the analogous value is the maximum of the real parts of the eigenvalues of the Jacobian
matrix. (i.e. if max(Re(Eig(Jac)))) is greater than 0 (the jacobian is singular), the fixed point will be unstable, if it is less than zero
the fixed point will be stable unstable). ¢) (adapted from Lee, Rivera & Liao) Instability may be detected by using Ensemble
Modelling Robustness Analysis. Bifurcational robustness investigates the distance between the reference steady state and the
bifurcation point. d) A kinetic trap in which multiple reactions (vi & v2) are competing for the same substrate (A). If the enzyme
catalyzing v increases greatly, it may cause instability by decreasing [A] so much that v2 can not continue. e) Traditional sensitivity
analysis calculates the sensitivity coefficient which represents the derivative of steady state production with respect to enzyme
amount. However, sensitivity analysis doesn’t investigate the likelihood of instability.

Furthermore, even starting from a stable steady state system, increasing an enzyme activity
beyond a specific level may result in system failure (see Fig. 3-1c, adapted from Lee et al. 2014
13) because the system enters an unstable region, resulting in loss of a productive steady state. The
likelihood of losing stability is characterized by bifurcational robustness using Ensemble Modeling
for Robustness analysis (EMRA) '*. Instability caused by enzyme perturbation has been predicted

13,43

in proposed synthetic pathways and natural pathways in previous analyses One means of

stability loss, among other possibilities, is a kinetic trap (Fig. 3-1d), resulting from a metabolic
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branch point within a cyclic pathway. Upon perturbation, a kinetic trap may cause a sudden,
unexpected, and qualitative change in dynamic behavior (Fig. 3-1c). Since cyclic pathways are
common in metabolism, particularly when cofactor recycling are involved, such examples are
copious. The bifurcational robustness is a measure of how far an enzyme amount must be perturbed
before bifurcation occurs (Fig. 3-1¢). Sudden system failure due to entering an unstable regime
differs from the gradual deterioration of performance characterized by local sensitivity analysis.

4448 or metabolic control analysis (MCA) # is

Sensitivity analysis, Biochemical Systems Theory
concerned with identifying the sensitivity coefficient (Fig 3-1e), which is the derivative of steady
state production flux with respect to enzyme amount. In this work, we further examine the
tendency for a metabolic system to be unstable based on their intrinsic network structure, which is
determined by the network stoichiometry and kinetic rate laws. One way that this work builds on
global sensitivity analysis is in that it focuses heavily on what we term the bifurcational robustness
(Fig 3-1c), rather than the value of the sensitivity coefficient.

In previous uses of EMRA, unstable parameter sets found while constructing ensembles
were discarded '**. Here, we examine the intrinsic probability for a system to be unstable. This
is fundamentally distinct from the tendency to bifurcate upon change from a stable steady state. In
addition, previous EMRA simulations were applied to continuous processes. However, production
experiments using enzymatic systems—whether in vitro or in vivo—are often carried out as a batch
system due to practical considerations. Thus, it is unclear how simulations from a continuous
mode can inform experimental strategies for new metabolic pathways which are investigated in

batch or cell free experiments. Using four metabolic systems, we showed that the instability

problem discussed above is indeed an issue, even with batch experiments. Interestingly, this type
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of abrupt change is observed in common biological systems, including glycolysis. The results
suggest that the stability issues may be more prevalent than previously appreciated.
3.2 Systems Description

We use the following enzymatic systems as examples for our investigation. Three of
these systems have been described previously and some experimental data are available to
validate our predictions. The other system (glucose to isoprene pathway) has not been

experimentally investigated.
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Fig. 3-2) Schematics showing four enzymatic systems which can be investigated by EMRA. a) A methanol condensation cycle
(MCC) which converts formaldehyde to acetyl-phosphate with 100% carbon efficiency. Acetate can be generated enzymatically.
b) A molecular purge valve which dissipates reducing power in order to convert pyruvate to polyhydroxybutyrate (PHB) in a redox
balanced way. ¢) A chimeric glycolysis system which converts glucose to lactate in a redox- and ATP-balanced route. It uses a
non-phosphorylating GapN to maintain ATP balance. The corresponding route through standard Embden-Meyerhof-Parnas (EMP)
glycolysis is shown with blue enzyme labels. d) Glucose to isoprene pathway which uses NADPH-dependent glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and pyruvate dehydrogenase (PDH). An NADPH drain is required to maintain redox balance.
This pathway is also ATP-balanced. G6P inhibition is also considered in this system.

3.2.1 Methanol Condensation Cycle (MCC)
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Methanol condensation cycle (MCC) (Fig. 3-2a) is a metabolic pathway to convert
methanol to higher alcohols with 100% theoretical carbon yield, in contrast to natural pathways
like ribulose monophosphate (RuMP) which have a maximum of 67% theoretical carbon yield due
to the decarboxylation of pyruvate °°. The core of the pathway creates a C-C bond between two
formaldehyde molecules derived from methanol for the generation of acetyl-phosphate, which can
be enzymatically converted to acetate or ethanol.

In this cycle, formaldehyde is incorporated into ribulose-5-phosphate (Ru5P) (Fig. 3-2a) to
generate hexulose-6-phosphate (H6P) by hexulose phosphate synthase (Hps). HO6P is then
isomerized to fructose-6-phosphate (F6P) which can be cleaved by phosphoketolase. Erythrulose-
4-phosphate (E4P) and F6P can then recombine via transaldolase, transketolase and isomerases
(Tal, Tkt, Rpe, Rpi) to regenerate Ru5P. Alternately, xylulose-5-phosphate (X5P) can be cleaved
by phosphoketolase, yielding G3P and acetyl-phosphate. G3P is then shuffled with F6P by
transketolase to generate E4P and X5P, which can proceed to regenerate RuSP via Tal, Tkt, Rpe,
and Rpi. The X5P- and F6P-cleaving activities of phosphoketolase are referred to as Xpk and Fpk,
respectively, and the pathway is investigated with different combinations of these activities.

3.2.2 Pyruvate to poly-hydroxybutyrate

A molecular purge valve for the production of polyhydroxybutyrate from pyruvate in vitro
was demonstrated by Opgenorth et al (Fig. 3-2b) '°. This system needs special attention to achieve
redox balance, since pyruvate has a more reduced oxidation state than the product. To alleviate
this cofactor imbalance, a method for dissipating excess reducing equivalents, termed a molecular
purge valve, was designed for the conversion of pyruvate to downstream products like isoprene
and poly(hydroxybutyrate) (PHB). Two different pyruvate dehydrogenases (PDH) were used in

the system—one with cofactor specificity for NADPH and one with specificity for NADH. The
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downstream pathway enzymes use NADPH to reduce metabolites and an NADH oxidase (NoxE)
to dissipate the generated NADH. From two acetyl-CoA molecules, two enzymes are required to
generate the final product PHB.
3.2.3 A chimeric ATP-balanced glycolysis system

A chimeric glycolysis system was demonstrated by Ye et al '* (Fig. 3-2¢c). Canonical
Embden-Meyerhof-Parnas (EMP) glycolysis generates a net of two ATP per glucose. In the
chimeric system, a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) was
used. This results in a system which is ATP balanced, making it more convenient for in vitro
assays. Additionally, the system is NADH balanced since the final product was lactate, which has
the same redox state as glucose.
3.2.4 Glucose to isoprene system

A system is considered for the conversion of glucose to isoprene (Fig. 3-2d). NADPH-
dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and NADPH-dependent
pyruvate dehydrogenase are used in the pathway. NADPH is used since the downstream reactions
in isoprene synthesis use NADPH. The pathway converts three glucose to two isoprene molecules.
Interestingly, this pathway is also ATP-balanced, with the ATP generated by the glycolytic
pathway being used stoichiometrically downstream in the isoprene pathway reactions. However,
to maintain redox balance, NADPH must be drained from the system, potentially via an oxidase
or similar enzyme. This system is investigated both with and without a substrate-level regulation
of glucokinase (GK) by G6P, implemented using an irreversible version of modular rate laws ®
proposed by Liebermeister. The kinetic form used is known as competitive inhibition, though

many other kinetic forms are plausible. Inhibition of this step by G6P is well-known. For example,
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a human enzyme catalyzing this reaction is G6P-inhibited °!. These equations show the effective

kinetic forms of glucokinase used without and with regulation:

No Regulation: Vg = Vmax
P GK Km,Glc + Km,ATP + Km,ATPKm,Glc +1
[Glc] [ATP] [ATP][GIc]
With G6P Inhibition Vg = Vnax
GK Km,Glc+Km,ATP _I_Km,ATPKm,Glc (1 + [G6P] )+ 1
[Glc] [ATP] [ATP][GIc] Ki,eff,ATP

3.3 Network intrinsic stability & bifurcational robustness upon perturbation
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Fig. 3-3) Characterizing intrinsic stability of different pathway systems. a) For different pathways, two measures of intrinsic
stability are presented. First, in dark blue, is the fraction of unconstrained, random parameter sets which reach a productive steady
state. Second, in light blue, is the fraction of EMRA-determined parameter sets constrained to a steady state which are also stable.
The intrinsic stability of pathways differs greatly between pathways, and also depending on which measure is used. Thus, a rational
method of pathway balancing would be useful. (SD <2% for all systems, n =3 x 1000 parameter sets). Since phoshoketolase has
two activities, cleaving either FOP (called Fpk) or X5P (called Xpk), we investigated used a ratio of Fpk/Xpk activites, 1:3. b) A
representation of how steady state is not always stable. After perturbation from a constrained steady state, the fraction of parameter
sets which retain stability tends to decrease, and steady state flux may change. Eventually, a parameter set may become unstable
after perturbation.

We used the four systems described in Fig. 3-2 to examine the stability problem. In

particular, we investigated how network structure affects the intrinsic possibility of reaching
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stability. Previous EMRA work starts from an ensemble of parameter sets that give the same
reference steady state, and discards the parameter sets that generate a Jacobian matrix with a real
part of an Eigenvalue greater than zero, which indicates instability.

However, experimental systems are not guaranteed to be stable or reach a steady state. To
place stability and steady state in a context which is more meaningful to experimental efforts,
enzyme parameters were chosen completely at random, and the systems were then integrated in
time domain to determine if a productive steady state was reached (Fig. 3-3a, dark blue bars). This
method is more representative of experimental efforts which often have either little or indirect
control over enzyme amount or activity (in vivo), or don’t have rational methods for pathway
balancing (both in vivo and in vitro). Interestingly, the results show that pathways have very
different likelihoods of resulting in a steady state (Fig. 3-3a, dark blue). The glucose to isoprene
system had only 21% of randomly generated parameter sets reaching a non-trivial (non-zero)
steady state. This could be because it is a relatively large system in terms of enzyme number and
uses two different cofactors (NADPH and ATP). A large system may be less likely to reach a
steady state. If each enzyme has an acceptable range of values, then in a large system it is more
likely that at least one of these values would be outside the range, resulting in system instability.
However, when regulation of glucokinase was introduced via activation by ATP and inhibition by
ADP, the likelihood of productivity jumped to 36% (Fig. 3-3a). Overall, these results show that
intrinsic pathway structure and kinetic forms (including regulation) have a strong influence on
possibility of reaching a productive steady state. The result is a varying, and sometimes low,
likelihood of achieving stability and productivity. Thus, finding rational ways to balance pathways

is an important goal which can improve and accelerate the pathway development process.
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If the enzyme parameters were first constrained to a fixed point by solving for parameter
values which give reaction rates equal to the reference flux, then the probability of attaining
stability is greatly increased. While this is not practical in experiments, the method proves useful
in model construction. We found that (Fig. 3-3a, light blue bars) the fraction of fixed points which
were stable varied depending on the network structure. While most systems showed at least 99%
of the parameter sets sampled to be at a stable steady state, the MCC (Xpk-only) system showed
only 61% of parameter sets to be stable. Although for some systems the fraction of stable steady
states is similar—5 systems which all show at least 99% stability by this measure—they have
varying tendency to lose stability upon perturbation (Fig. 3-3b). Starting from the reference state,
where parameter sets are chosen under the fixed point constraint, the region of instability could
grow when enzyme parameter changes (Fig. 3-3b). Depending on the structure of the system, the
instability region might grow in a different fashion upon perturbation, and eventually some might
lose stability. This shows that stability of fixed points in metabolic systems is not guaranteed and
that stability could be a critical factor in metabolic systems.

3.4 Stability of continuous systems can inform results of batch systems
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Fig.3-4) Investigating the instability in the MCC pathway using Fpk/Xpk ratio as 1:3. a) In a continuous system, an arbitrary
parameter set determined by EMRA is perturbed up and down with respect to phosphoketolase, on the X-axis. On the Y-axis, the
continuous, steady state, acetate flux is plotted. As phosphoketolase increases, the system bifurcates at ~1.5x increase. b) Time
domain simulation is performed, at different amounts phosphoketolase (PK). The final titer for each condition is plotted. The
production gradient appears gradual, but is the result of a sudden instability. ¢) The production rate for acetate is shown for each
phosphoketolase amount over time. In the stable condition (1x), production rate reaches a constant, implying the system enters a
“pseudo-steady state”, until substrate depletes. In the other conditions, production rate is never steady, but decreases over time. d)
The amount of acetate is plotted over time. It is observed that as the amount of phosphoketolase increases beyond bifurcation, the
production decreases. €) At the 1x and 2x conditions, the concentrations of G3P and F6P are plotted. In the 1x condition, F6P is
maintained at a nonzero-level throughout production, while in the 2x condition, it is quickly depleted and G3P accumulates. f)
The R5P & X5P levels are plotted with time in the 1x and 2x conditions. g) Data from Bogorad et al 3 shows that as
phosphoketolase level increased, the amount of acetate produced by the cycle decreased, supporting a link between instability in a
continuous system and production in an analogous batch system. An icon shows this data is experimental.
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EMRA uses continuous production models to simulate enzymatic systems. However,
many experiments, including in vivo and in vitro, are conducted as batch processes. Thus, it’s not
clear how a perturbation which causes bifurcation in a continuous system will inform the batch
experiment. Where a pseudo-steady state may exist, the pseudo-steady state behavior can be
predicted by the continuous model. In these systems, if a parameter set resides in a domain where
no stable steady state exists in the continuous mode, then no stable pseudo-steady state exists in
the batch mode. This can be justified by locally linearizing the input function to convert a pseudo-
steady batch system to a continuous system. However, an experimentalist measuring only the
product output at the end point would not detect the lack of stability. In this case, the product yield
will gradually decrease even when the system has entered an instability region.

To show how the existence of a continuous bifurcation could manifest itself in a batch
system, we simulated a batch system in time domain. First, stable parameter sets were generated
via EMRA in a continuous MCC system using Fpk/Xpk ratio as 1:3. Then, the parameter sets
were integrated using the continuation method to increase the phosphoketolase level until
instability occurs, increasing Vmax for Fpk & Xpk at the same ratio. A representative parameter
set is plotted in Fig. 4a to show the effect of increased phosphoketolase on continuous steady state
acetate flux up to the point of instability. As phosphoketolase increases, the flux towards product
increases slightly before decreasing and finally becoming unstable.

This parameter set was found to become unstable at a ~I1.5-fold increase of
phosphoketolase. Different amounts of phosphoketolase perturbation (1x, 1.1x, 1.7x, 1.8x, 2x,
10x — multiplier applied to both Fpk & Xpk Vmax values) were chosen to show the dynamic
response of the system in a batch simulation. All rate equations, parameter values and initial

conditions were kept the same as in the continuously model (i.e. all starting metabolite
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concentrations were normalized to unity), except that starting formaldehyde concentration was
multiplied by 200 and the “in” and “out” reactions used in the continuous mode were eliminated
to observe product accumulation in time domain simulation of the batch system. 200-fold increase
in initial formaldehyde concentration was chosen arbitrarily to signify a batch reaction, in which
the starting substrate was included as a single charge instead of being fed over time. It was found
to adequately demonstrate the phenomena we were interested in, though other values could have
worked as well. See Tables 1&2 in the method section

Interestingly, the final batch production observed for this system decreases gradually as
phosphoketolase (PK) amount (Fig. 3-4b) increases. In the continuous system, the underlying
phenomenon is instability, a step change in the nature of the steady state. In the corresponding
batch system, pseudo-steady state disappears because of instability. However, the product
formation does not stop until key intermediates are depleted. Batch acetate production rate over
time is plotted in Fig 4c. For the stable 1x and 1.1x conditions, a pseudo-steady state was achieved
in which acetate production rate reached a constant level, only decreasing when the formaldehyde
had been consumed. However, for the conditions which are past the instability point (1.7x — 10x),
a steady rate of acetate production is never achieved. Instead, the rate decreases monotonically
until it reaches zero. The productivity of the 10x condition falls the fastest, eventually resulting in
the lowest production. This shows that a decrease in production, even gradually, in a batch system
could be associated with an instability issue in an analogous continuous system. In Fig. 3-4d, the
acetate concentration over time is plotted to show how the system evolves over time.

For systems that are stable, because the initial concentration of the starting substrate is
much higher than the Km value of the uptake system, the rate of input holds largely constant until

the substrate concentration approaches the Km value. During this time, the system is operating
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under a pseudo-steady state similar to a stable continuous system. This is seen in Fig, 4 for 1x and
1.1x phosphoketolase concentrations. Thus, the property of continuous system simulation carries
over, until substrate concentration approaches Km. Thus, the system is run almost the same as in
a continuous system in the first 50 min time units or so (Fig, 3-4c), when most of the acetate is
produced (Fig 3-4d)

For systems that are unstable (Fig. 3-4, 1.7x, 1.8x, 2x, 10x phosphoketolase
concentrations), the output flux was not able to reach a steady-state (Fig. 3-4c), and it decreases
rapidly from the start and approaches zero despite the presence of the initial substrate. The
cumulative product formed (acetate) is the integral of flux over time (Fig. 3-4d), which decreases
as the system moves further away from the bifurcation point.

Additionally, we investigated the mechanism by which the bifurcation causes decreased
production. In the 1x condition, F6P is maintained at a nonzero-level throughout production, while
in the 2x condition, it is quickly depleted (Fig. 3-4e). RSP and XS5P are also shown to deplete
quickly in the 2x condition (Fig. 3-4f). Thus, it is the depletion of these cycle intermediates which
causes cycle failure. A previous experimental effort (Bogorad et al. ¢, data reproduced in Fig. 3-
4¢g) showed that in in vitro enzymatic experiments, the batch production of acetate with from
formaldehyde reached a local maximum with respect to phosphoketolase amount, supporting the
EMRA analysis. In sum, EMRA could potentially have useful insights into experimental systems,
by identifying enzymes which may be most sensitive to bifurcation, and how they affect the system
in question.

3.5 Systems Analysis

3.5.1 EMRA predicts behavior of a molecular purge valve
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Fig. 3-5) Stability of a biosynthetic purge valve for production of isoprenoids by dissipation of reducing equivalents. a) Pathway
schematic showing cofactor requirements. b) Stability profiles predicted by EMRA (n = 1000) as enzyme amounts vary. It is
shown that to maintain stability, high levels of PDHNAP? and low levels of PDHNAP are required. ¢) Data from (4, Figure 4) which
shows that a high ratio of PDHNAPP: PDHNAP is required for optimal performance of the pathway. Image analysis of line graph
figure from reference yielded numerical data to generate the bar graph shown. (1) indicates NADH-dependent PDH and (2)
indicates NADPH-dependent PDH. An icon shows this data is experimental.

A purge valve system converting pyruvate to PHB was analyzed (Fig 3-5a). Each enzyme
is represented by a canonical Michaelis-Menten kinetic rate law, and the reference flux is fixed
since there are no degrees of freedom. EMRA methodology was implemented in this system to
show the effects of perturbation of each enzyme. High NADPH-dependent PDH (PDHNAPPH) (Fig
3-5b) and low NADH-dependent PDH (PDHNAPH) resulted in the most stability for the pathway.
PDHNAPH must be low to prevent too much pyruvate from taking this route which generates
unusable NADH reducing power, while PDHNAPPH myst be high to ensure that enough NADPH is
generated to allow for 100% yield from acetyl-CoA to PHB. The imbalance of these activities

may cause system instability, according to EMRA. Indeed, the PHB pathway was experimentally
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demonstrated to have reduced production with a lower ratio of PDHNAPPH:PDHNAPH (Opgenorth,
et al 19)(Fig. 3-5¢), matching the results of EMRA.

3.5.2 EMRA predicts chimeric glycolysis system’s sensitivity to glucose feed rate
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Fig. 3-6) The ATP-balanced synthetic chimeric glycolysis pathway from glucose to lactate (Ye et al'4). a) Pathway schematic
contrasting cofactor production between standard Canonical Embden-Meyerhof-Parnas (EMP) glycolysis (Gap & Pgk, red
lettering) with the chimeric non-phosphorylating GapN system. b) EMRA stability profiles (n = 1000) as enzyme amounts and
glucose feed rate (IN) vary. Glucose feed rate is shown to produce moderate instability at higher levels. ¢) Data from (Ye et al,
Figure 6A'%) which shows that increased glucose feed rate can cause lower production. An icon shows this data is experimental.
d-e) Simulation of fed-batch production of a sample parameter set for the chimeric glycolysis system. Numerical integration of
time domain behavior shows instability at higher feed rates caused by ATP depletion and resulting in lower overall lactate
production. Priming intermediates are fed in the same proportion as the experimental condition, and feed rates are also
demonstrated in the same proportion (1, 2, 4). d) ATP concentration over time at the three different glucose feed rates. e) Lactate
production over time at three different glucose feed rates.

Another example of EMRA application is in a thermotolerant, cell-free glycolysis system
which was demonstrated for the production of lactate from glucose by Ye et al (Fig 3-6a) 4.
Canonical Embden-Meyerhof-Parnas (EMP) glycolysis generates two net ATP per glucose, (Fig.
3-6a, Gap & Pgk enzymes). However, in the chimeric system, to prevent cofactor imbalance, a
)

non-phosphorylating glyceraldehade-3-phosphate dehydrogenase (GapN)>~ was used—resulting
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in a net balance of ATP and NADH from glucose to lactate. Again, the system was modeled using
EMRA methodology. The results show that increased glucokinase (GK) amount and glucose feed
rate (Fig. 3-6b, GK, IN) may cause instability.

This system was experimentally tested for lactate production at different glucose feed rates
(Fig. 3-6¢, adapted from Ye et al '4). It was found that beyond a certain point, increasing glucose
feed rate reduced lactate production, even if the same total amount of glucose had been fed,
matching the instability to feed rate (IN) predicted by EMRA. The instability apparently occurs by
the depletion of ATP by glucokinase. = ATP is required for both glucokinase and
phosphofructokinase (PFK). However, if glucose is fed too quickly, ATP may become depleted
by glucokinase before it can be regenerated in lower glycolysis. A time domain simulation of this
system was carried out using initial conditions similar to the experimental conditions reported !4
(Fig. 3-6d, e) and a parameter set from EMRA which became unstable after increase of feed rate.
The time domain simulation showed that at reference feed rate (1x), ATP level is maintained and
lactate production continues. However, at 4x feed rate, the ATP is depleted and the lactate
production stops.

EMRA was also carried out on canonical EMP glycolysis converting glucose to lactate and
similar instabilities were found (Not shown). In both systems, reduction in PFK activity was shown
to strongly increase chance of instability. This is because once a metabolite is past PFK, it may
be used to regenerate ATP, so it’s important to ensure that the flux past PFK is sufficient to supply
ATP for all of upper glycolysis. However, it’s more paradoxical that an increase in an enzyme
would cause productivity and instability issues, particularly glucokinase, or even feed rate.

3.5.3 EMRA predicts unstable enzymes in uncharacterized system from glucose to isoprene
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Fig. 3-7) An NADPH-dependent pathway from glucose to isoprene. a) A pathway schematic showing an outline of the enzymatic
reactions, cofactor flow, and regulation added (glucokinase). b) EMRA profiles for all (n = 1000) enzymes in the unregulated
isoprene pathway in blue. EMRA profiles for all (n = 1000) enzymes in the GK-regulated isoprene pathway in red. Select enzymes
are highlighted to show their position in the pathway. The enzymes dealing with ATP cycling are most changed by the presence
of regulation.

To demonstrate the utility of EMRA in identifying potential points of instability, a not yet
characterized pathway producing isoprene from glucose was investigated with EMRA. The
pathway is ATP-balanced and maintains redox balance using an NADPH drain. EMRA identifies
that the NADPH drain must be balanced, not too low or too high. GK & IN must not be too high,
while all other enzymes must only not be too low (Fig. 3-7b). By introducing regulation of GK
using modular rate laws ®, the fraction of productive steady states increased (Fig 3-3a). The
stability to perturbation is also slightly improved for feed rate (IN), GK and PFK (Fig. 3-7b).

Interestingly, the NADPH drain is unstable to both decrease and increase. This could be
because if the rate is too low, then NADP" is not sufficiently available for GAPDH, and lower
glycolysis is unable to regenerate ATP needed for earlier in glycolysis and later in the pathway —
while if the rate is too high, NADPH will not be available for the biosynthetic steps of the isoprene

pathway. This analysis shows that a longer pathway has many complex, interacting factors that
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can cause instability and that EMRA is able to identify some of these potential issues. Similar to
the previously simulated glycolysis system, glucokinase, (GK) and phosphofructokinase (PFK)
and feed rate (IN) showed some instability. Other enzymes show less sensitivity upon increase
(Fig. 3-7b). Instability caused by decreasing enzyme concentration is common and seen in most
if not all pathways.

A rational experimental plan for this pathway would thus focus on having sufficiently high
levels of most enzymes (all except feed, glucokinase and drain), for example, by ensuring the total
activity of each enzyme is significantly higher than the feed rate. Ensuring these enzymes are at a
high level would ensure both stability, according to EMRA results, and the possibility of maximum
productivity. For enzymes which become unstable at higher levels, more optimization is required.
Levels of glucokinase, NADPH drain, and feed rate should be varied in order to avoid instability
and to find the highest productivity condition. This significantly narrows the focus from 21
variables to just 3.

3.6 Discussion & Conclusions

The results show that EMRA has potential to be a valuable tool for investigating the
propensity for stability of complex enzymatic pathways without a priori knowledge of specific
enzyme parameter values. In three cases presented, (MCC, molecular purge valve, chimeric
glycolysis) the experimental investigators were able to heuristically identify productivity issues ad
hoc, but EMRA is able to unify all these results with a theoretical framework based on instability.
Importantly, although some of the phenomena were experimentally determined, it was not
necessarily known that instability of the system—causing a step change in the nature of the steady
state, rather than a smooth change predictable by sensitivity analysis—could be an underlying

reasomn.
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The success of the method with these systems presented here shows that it deserves
consideration as a design tool in the invention of new pathways. The method has proven versatile
enough to successfully predict features in three different pathways investigated in different
laboratories and powerful enough to do so without a priori knowledge of specific enzyme
parameter values. EMRA simulation of a longer and not-yet characterized pathway demonstrates
the range of possibilities for potential applications of this technique. While the characterized
pathways were optimized based on intuition, it’s possible that a longer pathway with more
enzymes, such as the glucose-to-isoprene pathway, would be much more difficult to optimize
without rational balancing methods like those presented here. The reduction of search space from
22 to 3 variables represents an exponentially more approachable experimental path towards
productivity, resulting in 27 (3*) experiments rather than about 10 million (3!) if three different
enzyme amounts are tested.

Another insight provided by EMRA and follow-up analysis is the determination of failure
modes for the pathways investigated. Using parameter and enzyme amount values in stable and
unstable regions of the parameter continuation, time domain integration allows us to determine the
failure modes for these pathways upon instability. In the MCC pathwayi, it is depletion of pathway
intermediates—especially X5P, RSP and F6P—which causes productivity decline and eventual
stopping. Although time domain simulations weren’t carried out in all systems, the demonstration
of failure mechanism in the MCC system may lend credence to the other EMRA examples. In the
chimeric glycolysis pathway, depletion of ATP eventually caused that pathway to stop when
glucose feed rate was too high. Identifying these failure modes with EMRA is another potentially

fruitful area of discovery.
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Glycolysis is a fundamental pathway of life and functions successfully in many organisms.
However, our simulations and previous experiments (Fig. 3-6, Ye et al, '#) have shown it can be
unstable under high glucose feed conditions which apparently deplete ATP and accumulate
hexose-monophosphates (Fig. 3-6d, ). Some hexokinase enzymes are product-inhibited by G6P,
3 however, the particular enzyme used in the experimental investigation (from Thermus
thermophilus) was investigated and no G6P-inhibition was reported.’* Interestingly, glycolysis
has also been shown to be unstable to low levels of inorganic phosphate in yeast, a condition which
prevents GAPDH from proceeding *°. Glycolysis is a nearly universal pathway, but this evidence
shows it to be unstable in some cases. This helps to explain the presence of elaborate regulations

56,57

such as insulin and glucagon in animals and the massively sophisticated regulation of

58,59 ;

phosphofructokinase in many organisms. Rather than stability, alternate explanations such as

chemical necessity ® and thermodynamic efficiency ©°':%2

are more likely reasons for the
universality of glycolysis.

In these analyses, EMRA was used to successfully evaluate the stability of complex cell-
free pathway assays. In vitro biocatalysis systems are a powerful alternative and complement to
in vivo systems . Importantly, however, this does not exclude the possibility of success with
simulation of in vivo systems. Depending on growth mode (exponential growth, stationary phase,
fermentation etc.) in vivo systems may have different reference fluxes, so more exploration is
required to identify different possibilities.

It is unsurprising that lower amounts of pathway enzymes or feed rate would hinder
productivity. The powerful insight provided by these results is that for the pathways identified,

increasing levels of certain enzymes or feed rates were shown to cause instability and consequently

reduce production. A typical metabolic engineering approach may be to simply maximize the
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reaction rate of all pathway enzymes. However, we show here that for many enzymes, this will
not always result in an optimal outcome.

Additionally, we have shown that the intrinsic stability of pathways varies significantly
depending on structure and kinetic forms. This highlights the importance of stability analysis in
understanding metabolic systems. Additionally, it shows that many metabolic systems may be
very difficult to balance without sufficient rational methods for analyzing which enzymes are most
likely to contribute to pathway instability, and in which amounts. This shows the importance of
EMRA and stability analysis in general in understanding pathways theoretically and exploiting
them practically.

The lack of requirement for a priori knowledge of specific enzyme parameter values could
make EMRA particularly approachable for experimental researchers working with new pathways
or unknown enzymes. This may be hampered somewhat by the need for sophisticated
mathematical operations, though this obstacle could be overcome if an appropriate software suite
is made available. We believe EMRA can significantly contribute to pathway development efforts
and is an important contribution to the toolbox of metabolic engineering.

3.7 Additional Example: Glycerol-to-alcohol (GtA) pathway

This section did not appear in the manuscript: “Stability Predicts Productivity of Enzymatic
Systems”, but it serves as an additional example of EMRA predictions proving to be accurate. An
application of the previously demonstrated non-oxidative glycolysis (NOG) pathway is the GtA
pathway which converts glycerol to fuel alcohols with 100% theoretical carbon yield (Fig 3-8A).%
GtA uses a unique fructose-6-phosphate aldolase (Fsa) to combine glyceraldehyde-3-phosphate

(G3P) with the non-phosphorylated triose dihydroxyacetone (DHA) to form fructose-6-phosphate
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(F6P).% NOG alone, like MCC, was shown by EMRA analysis to be non-robust with respect to
phosphoketolase. !

GtA is not redox balanced and requires the input of reducing equivalents to fully utilize
the glycerol feedstock. This was overcome by supplementing formate dehydrogenase (Fdh) and
formate to the reaction mixture (Fig. 3-8A) However, EMRA shows that in this system, Fdh is the
enzyme associated with greatest non-robustness (Fig. 3-8B), whereas non-robustness associated
with phosphoketolase (Fpk & Xpk) is minimal, in contrast to the NOG and MCC systems which
also include phosphoketolase. This is because at high levels of Fdh, NADH is produced very
quickly, preventing the forward operation of glycerol dehydrogenase. Subsequently, the carbon
flow to the main portion of the cycle and the reduction to final alcohol product is cut off. This
non-robustness of Fdh production was confirmed by in vitro experiment (Fig. 3-8C). In the
experiment, ethanol production showed a local maximum with respect to Fdh amount

[Experiments conducted by Tony Wu], confirming the EMRA prediction.
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Fig 3-8). The synthetic glycerol-to-alcohol (GtA) pathway. A) Pathway schematic showing the requirement for additional reducing
equivalents. B) EMRA robustness profiles predicted by EMRA (n = 1000) as enzyme amounts vary. Fdh is the shown to have a
local maximum for stability. C) Data from unpublished in vitro experiments [Tony Wu] shows that Fdh has a local maximum for
ethanol productivity. D) Full GtA pathway.
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4. In vivo EMRA applications
4.1 Using Kinetically Accessible Yield (KAY) and EMRA for in vivo applications

Although constructing models of in vitro systems is much simpler, construction of in vivo
models using EMRA is nonetheless feasible and desirable. Because of the complexity of in vivo
systems, it is often necessary to make choices about the scope of the model—i.e. how much of the
overall metabolism to include. These choices are often related to the overall purpose for the model,
usually the production of some compound of interest.

Additionally, it is necessary to determine a reference flux which is appropriate for the
organism and condition to be modeled. For instance, the reference flux for a bacteria in growth
phase would be different for that in stationary phase, etc. One method to provide information about
the reference flux, used extensively in this chapter, is to use information about the extracellular
metabolites produced under the condition of interest, and use that to constrain the flux. This can
be accomplished in combination with diverting metabolites to a reaction signifying the biomass
accumulation, important in growth phase simulations. In such cases, it is necessary to define a
realistic biomass objective function.

This chapter demonstrates three instances in which EMRA is applied to in vivo systems,
bringing together modelling, data from literature reports, metabolomics data from collaborators,
all three of which examples were conducted in collaboration with other institutions. These
examples demonstrate the flexibility and power of the EMRA method, and provide actionable
insights for experimental researchers.

4.1.1 Conceptual idea of kinetically accessible yield
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Fig. 4-1) Classifying the chemical transformation space. Chemical transformations are bounded by several factors. In the most
permissive formulation, any chemical transformation is allowed—bounded only by an atom balance. This defines the “chemically
feasible range”. In a given biochemical system, only certain transformations, governed by the stoichiometry of the system, are
allowed. This defines the stoichiometric range. Another constraint, within the stoichiometric constraints, is the kinetically
accessible region. This kinetically accessible region governs the stability of the system. Imposition of growth requirements will
further limit the allowed set of chemical transformations, since some amount of flux must be directed to biomass.

When considering the conversion yield of a raw material to a product, several factors come
into play. First, the balance of atoms, which gives the largest feasible yield range (Fig. 4-1). The
atomic balance does not involve energetics or kinetics, thus this yield involves the minimum
constraint and represents the highest bound. When enzymatic pathways are chosen for the
conversion, the stoichiometry of the pathway imposes an additional constraint, within the atomic
balance, and gives the maximum theoretical yield allowable by the pathway. At this level,
energetics plays an implicit role through the choice of the pathway, but kinetic effects are not
considered.

4.1.2 Generation of Toy Model

A simplified model of microbial metabolism with butanol synthesis®® was generated to

illustrate the concept of KAY. This pathway for 1-butanol synthesis passes through the keto acid

synthesis pathway,®’ and differs from the common 1-butanol pathway that proceeds by coenzyme-
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A (CoA) dependent reverse beta-oxidation.” The model consists of 11 reactions (Fig. 4-2A), and
is heavily abridged, where pathways of multiple reactions, such as glycolysis, have been modeled
as a single reaction. Michaelis-Menten style rate laws with saturation features were chosen
according to reversibility and number of substrates, and products if reversible. Parameters are
single valued positive numbers. The model outputs up to six exometabolites and has no biomass
generation. The model was assigned arbitrary parameters so that five outputs, other than butanol,
had roughly equal orders of magnitude for their output flux.
4.1.3 Determination of Kinetically accessible yield using flux integration

Here we examine the kinetic stability of the system when a flux is directed to generate a
product. As a starting point for developing the concept, we consider a host system with complete
kinetic parameters.

i—)t( =F(X,k) = Sv(X,k) =0 (“4-1)
Flux v is a function of metabolite concentrations X, kinetic parameters k, and is multiplied
by a stoichiometric matrix S, to provide an equation, F, describing a system of differential
equations. Suppose we wish to incorporate information for a new pathway for which kinetics are
unknown.
Although a new pathway may introduce new metabolites that may affect the kinetics of the
host, for parsimony, we assume that the metabolites in the new pathway do not interact with the

host system and only consider how the new pathway flux might affect the kinetics of the existing

host metabolic system. Under this assumption, we can represent the new model as:

dX 4-2
E = F(X, k, ([)) = SV(X; k) + Snew(p ( )
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where Shew 1S a vector representing the stoichiometry of the new pathway and ¢ is a scalar
parameter which represents the amount of flux going through the pathway. Snew would include the
metabolites drawn out of native metabolism into the heterologous pathway. Since, we are not
considering the effect new metabolites may have on the host system, Shew does not include the
stoichiometry of metabolites not present in the host system. By its definition, parameter ¢ is 0 at

the reference state (host only).
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Fig. 4-2) Overexpression of the butanol pathway in the toy model. A) Diagram of toy model with butanol production reaction
circled. B) The overexpression of the butanol pathway accomplished by integration with respect to reaction flux using Eqn (5).
Acetyl-CoA and threonine concentrations are plotted—scaled to the maximum of each metabolite—with respect to pathway flux.
C) Plot of butanol flux with respect to Vmax integration of the butanol pathway. The system does not bifurcate as in B), but the
flux does reach a plateau as Vmax increases, corresponding to the same flux value observed in B). D) A plot of scaled threonine
and acetyl-CoA concentrations with respect to Vmax for the butanol output reaction. For C) and D), all other parameter values
remained fixed (no repression). Threonine depletes, while acetyl-CoA, doesn’t fully deplete. E) The overexpression of the butanol
pathway accomplished by integration with respect to reaction Vmax. This integration included a repression effect where the threonine
synthesis Vmax was decreased as the butanol reaction was overexpressed. F) A plot of scaled threonine and acetyl-CoA
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concentrations, for repression the condition. G) A plot showing how different measures of yield compare. Chemically feasible is
limited by carbon atom balance, while stoichiometry is limited by the pathways present in the toy model. KAY value depicts the
yield corresponding to maximum flux determined in B) & C), while biologically likely lies between the theoretical (stoichiometric)
yield and the biologically realistic value, placing a lower ceiling on calculations of yield in a specific genetic background.

In the toy model (Fig 4-2A), one can investigate different methods of simulation, and their
effects on predicted yield. For example one can use integration with flux as a parameter, as
demonstrated in Eqn (5) using the continuation method shown in Eqn (3). In that case, the flux
parameter (¢), was used to represent the 1-butanol production reaction, instead of the kinetic rate
law [V11, Thr + AcCoA -> (butanol out)]. The concentrations of Thr and AcCoA are plotted vs.
increasing 1-butanol flux (¢) in Fig 4-2B. Thr decreases to zero, while AcCoA decreases, but not
to zero. As threonine reaches zero, the integration fails as the system bifurcates. Note the maximum
flux achievable is 4.4 mmol hr!. The yield (product flux/substrate consumption flux)
corresponding to this flux is defined as the Kinetically Accessible Yield (KAY). In this integration,
we did not consider the kinetic rate law of the butanol reaction (V11), but integrated with respect
to the butanol flux as described in Eqn (5).

4.1.4 Determine kinetically accessible yield using kinetic parameter integration

One can also incorporate kinetics of the perturbed pathway into the model:

dX (4-3)
1 = F& k@) = Sv(X K) + Snew Vnew (X, knew)
The kinetic form used to represent this reaction is shown in Table 1, Reaction V11. We can
determine the steady state metabolite concentrations using the continuation as a function of Vmax
(K14 in Reaction Vi1). Interestingly, the system is fully robust against increases in Vmax (Ki4 in
Reaction V11) for the butanol reaction. The system does not encounter a bifurcation point, but the
butanol flux reaches a plateau at the value corresponding to the KAY in the previous integration

(Fig 4-2C). With the overexpression of the butanol reaction itself, Vmax may be increased to an

arbitrarily high value (Fig 4-2C), and the system remains stable, although flux through the pathway
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asymptotically approaches a maximum. During this integration, it was assumed that other
parameters would not be changed (i.e., the other Vmax’s etc.), (Fig. 4-2C). The fact that the flux
value approached asymptotically by the Vmax integration (Fig 4-2C) corresponds to KAY
determined using flux integration (Fig 4-2B) lends support to the idea that there is an intrinsic
kinetic limitation to the amount of flux that can be directed towards a pathway by overexpression
of that pathway.

In the Vmax integration, As Vmax increases, steady state flux plateaus, but threonine
decreases, approaching zero (Fig 4-2D). While acetyl-CoA is consumed in the same reaction,
acetyl-CoA concentration never approaches zero. From this, we can infer that threonine is the
limiting metabolite for the production of 1-butanol, and even though there is sufficient carbon to
produce more 1-butanol, the kinetics of the system prevent the acetyl-CoA flux from redistributing
towards threonine. This is one reason the KAY is less than the maximum theoretical yield (Fig 4-
2B). It is possible that with other genetic manipulations, such as overexpression of other upstream
enzymes or knocking out competing enzymes, a higher yield would result.

4.1.5 Kinetic parameter integration when the new pathway negatively affects the host

We can also include a system which may be more biologically realistic (Fig 4-2E). As one
enzyme or pathway becomes highly overexpressed, the new pathway may negatively affect the
host metabolism through various mechanisms. It is possible that the expression and activity of
other enzymes could decrease due to competition for energy, amino acids, or amino acyl-tRNAs.
To investigate these effects, in the toy system, the butanol pathway overexpression was tied to
repression of threonine synthesis. Again, the steady-state metabolite concentrations were
determined by continuation and the butanol flux was calculated as a function of Vmax for Vi1, kia.

In this integration, the resulting butanol flux went through a maximum and decreased as Vmax
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continued to increase (Fig 4-2E). Thus, the final butanol production yield was less than for the
unrepressed condition (Fig 4-2C). Additionally, for the repressed condition, threonine was
decreased to zero as before (Fig 4-2D), but the acetyl-CoA did not.

4.1.6 Chemical & Biological Reasoning

To fully cover the chemical transformation space, one must consider other hypothetical
reaction systems. For example, if only chemical constraints are considered, the synthesis of butanol
is limited by the number of carbons, for example. The maximum butanol synthesis is given by the
following reaction:

1.5 H20 + CsH1206 — 1.5 C4H100 + 3 O2

Resulting in a total yield of 1.5 butanol/glc. In our simplified cellular model (Fig 4-1),
stoichiometry limits butanol synthesis to 1 butanol/glc, since one pyruvate and one acetyl-CoA are
required for each butanol. The kinetically accessible flux and biologically realistic flux (Figs 4-
2C, 4E) are determined from the integration carried out above, as the Vmax for butanol synthesis
approaches infinity for the no repression and with repression conditions, respectively. A
comparison of all these yield determinations is presented in Fig 4-2G.

Biological realism in this system was modeled as repression of the reaction for threonine
synthesis as overexpression of the propanol pathway increases. The exact implementation of
‘biological realism’ is arbitrary, but the analysis is meant to show the limitations of the KAY
method, and that it may not correspond to observed yields due to mismatches between model and
biological reality. Although in this case, the interaction causes the yield to be less than the KAY
value, it cannot be ruled out that actual yield may be higher than predicted KAY, through
interactions not included in a kinetic model. In other words, positive regulation of the host by the

new pathway would cause the maximum yield to increase beyond the KAY value calculated above.
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In general, these effects would involve inhibition of competing pathways relative to the pathway
of interest. This could be caused by various signal transduction pathways, such as sigma factors
influencing ® expression level, redox state ®, or substrate-level regulation not included in the
model. Any mathematical model is imperfect, but the KAY concept allows us to use kinetic models
in a powerful way and push them to their limits of predictive power and usefulness. The KAY
concept is used in the upcoming sections to predict the effects of genetic manupulations on
exometabolite yields.
4.2 EMRA for predictions in E. coli, Yarrowia lipolytica and Clostridium thermocellum

Y. lipolytica and C. therm are non-model organisms which have promise to address rising
metabolic engineering challenges. Y. lipolytica is an oleaginous yeast which produces lipids at
high titer (~30 g/L).”* Canonical understanding of yeast biomass combined with more recent
knowledge of the lipid composition can give insights about the reference steady state of this

strain.”!

C. therm is a cellulolytic thermophile, addressing the need to address more recalcitrant
substrates for bioprocessing.’>”> Models of C. therm, Y. lipolytica as well as the model organism
E. coli will investigate ways to improve production of desired compounds and demonstrate the
viability of using EMRA and the KAY concept on in vivo systems.
4.3 Constructing a model of n-butanol production in E. coli

The n-butanol production model was based on a previously generated model of E. coli
generating isobutanol during growth phase based on the data published in 7. The original model

used pathway information from the Ecocyc database 7

. The original model was constructed by
lab mate Jimmy Rivera and was featured in other published work.

Several changes were made to the model for the purpose of using the model to analyze n-

butanol production data provided by Osaka University. First, the biomass term in the model was
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eliminated, since the experiments data provided by Osaka University were conducted at high cell
density and in stationary phase, so biomass accumulation is likely to be small. Second, the n-
butanol synthesis pathway was added. This pathway encompasses six reactions, starting from two
acetyl-CoA molecules and requiring four reducing equivalents per butanol . Third, export
reactions were added for eight metabolites: pyruvate, succinate, lactate, formate, acetate, butyrate,

ethanol and butanol. The final model contained 60 reactions and 47 metabolites.

Pyruvate

Glucose )
: Succinate
>

Lactate Pyruvate

Formate
Acetate «-----{------—---- Acetyl-CoA - *Ethanol

----- -+ Multiple Reactions
— Single Reaction

Fig. 4-3) Overview of the model used for generating insights about n-butanol production in E. coli. Overall, the model contained
60 reactions and 47 metabolites. 8 exo-metabolites export reactions were included in the model to make use of data provided by
the Osaka University lab.

4.3.1 Using data from Osaka University to Generate a Reference Steady State

Osaka University provided data for the extracellular concentrations of the eight metabolites
mentioned. There were four different strains, the first of which JCL16, was used to build the
reference steady state discussed here. The overall configuration of the model is shown in Fig 4-3.
These metabolite concentrations were used to represent the fluxes of the export reactions in the
model. The export fluxes were constrained to the OU data and linear programming was used to
find a solution minimizing the respiration reaction flux, since the culture was carried out
anaerobically. Data was also provided for glucose consumption. However, when glucose

consumption was constrained to the observed value, no solution was found. The system was
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overdetermined, such that no solution simultaneously satisfied all of the observations. Possible
explanation for this may be error in experimental measurement, or the imperfections of the
stoichiometric model.

Instead, the system used linear programming to minimize the difference between the
observed glucose consumption and the glucose intake flux value in the model, rather than setting
glucose flux as a hard constraint. The result showed that the model was able to replicate the
observed product yields within less than 10% (Fig 4-4). This discrepancy could be from random
experimental error, unexpected sources of carbon in the culture, or missing reactions in the model
which might allow for more carbon-efficient metabolism. In any case, error within 10% was

considered proceed with the model to make further predictions.

T T T

| I Observed Value | |
| [ 1Reference Model |

Yield, {mol/mol glc consumed)

Fig. 4-4) Linear programming was used to minimize the difference in measured yield (dark blue bars, exometabolite
measurement/glucose consumption measurement) and the result obtained when fluxes were calculated subject to steady state and
the model stoichiometry (yellow bars). The difference in the two was about 5%, within possible measurement or other experimental
error, and the flux distribution thus calculated was used as the reference state for further calculations.

4.3.2 Testing the model on different genotypes
After setting the reference steady state of the model (Fig 4-4), work can continue on the
application of the EMRA to the model. In the EMRA framework, realistic rate laws are assigned

to each reaction using the network stoichiometry and reversibility of each reaction. After the rate
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laws are determined, the reference steady state is used, a suitable number of parameter sets (n =
500) were generated, comprising an ensemble. The parameter sets were constrained to the
reference steady state fluxes, and were determined to be dynamically stable, or discarded. Bacterial

strain JCL16 was used as the reference steady state.

Table 4-1) Genotypes for the four strains involved with the butanol production project.

Strain Name Genotype (E. coli strains)
JCL16 Wild Type( BW25113/F'[ traD36 proAB+ laclqZ M15 (Tetr) ]) +
Butanol Plasmid
JCL16F JCL16 + fdh
JCL166F JCL16F AldhA AadhE AfrdBC
JCL299F JCL166F Apta

The JCL16 ensemble was then used to ‘predict’ the extracellular metabolite fluxes on the
basis of genetic manipulations. These prediction values were then compared to the experimental
observations of the Osaka University group.

The predictions were generated using parameter continuation methods that have been
described previously'®. In short, the system is constrained to steady state and perturbed by
changing the amount of some enzyme. This is accomplished mathematically by parameter-domain
integration, rather than time-domain integration, which would have a higher computational burden.
The amount of enzyme is changed by this method until the system becomes unstable, or until a
pre-set fold-change is reached (in this instance, 10-fold). In this way, overexpression and
knockdown can be suitably represented.

In the case of JCL16F, the overexpression target is Fdh (formate dehydrogenase). For this
genotype, the Fdh reaction flux was integrated from zero to bifurcation for all members of the
ensemble (the method termed kinetically accessible flux). For JCL166F & JCL299F the
appropriate knockouts were made first, by integrating the relevant Vmax values to 10% of their

original values, then applying the Fdh overexpression to bifurcation.
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The compound of interest in this investigation is n-butanol. Thus, an important feature of
the model is its ability to reproduce the correct n-butanol yields from glucose, in comparison with

the experimental observations.

0.7 T T T T

I Chserved Value
0.6k [ 1 EMRA Prediction / Reference Model(JCL16)

0.4k

0.3F

JH IH

JCL16 JCL16F JCL166F JCLZ99F
Strain

0.2

Yield, (mol/mol glc consumed)

0.
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Fig. 4-5) Comparison of observed n-butanol yields for each genotype (dark blue bars) with the yield values obtained by ensemble
modeling and robustness analysis (yellow bars). The predictions match well overall for the three simulated genotypes (JCL16F,
JCL166F, JCL299F) despite the fact that the observed value changes dramatically, roughly four-fold, from the reference, JCL16

genotype.
The results show that the model performs well overall, particularly with the JCL166F and

JCL299F conditions (Fig 4-5), which have the biggest differences from the original reference state.
These values, the model predicts well, within 15% of actual value, even when, in the case of
JCL299F, the observed value is four-fold higher than the original reference state. This shows that
the model is capable of correctly capturing large changes of behavior in model, a feat which may
be difficult to achieve with linear or less sophisticated kinetic models.

Even though we are most interested in n-butanol as a product in this model, we can still
compare the predictions of the model for other compounds as well. As a byproduct of the

parameter continuation calculations, the simulations also generate expected values for reaction
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fluxes of the eight export fluxes. These can readily compared to i) the original reference values

(JCL16) and ii) the measured experimental values.
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Fig. 4-6) Comparison of observed exometabolite yields for each genotype (teal bars) with the reference (JCL16) values (dark blue)
and the simulated yield values obtained by ensemble modeling and robustness analysis (yellow bars). The predictions match well
overall for the three simulated genotypes (JCL16F, JCL166F, JCL299F) despite the fact that the observed values sometimes change
dramatically from the reference, JCL16 genotype. Notable exceptions are the pyruvate and acetate predictions for JCL299F.

We find that in general, the model performs well for most compounds in JCL16F and
JCL166F (Fig 4-6). However, the model fails drastically in predicting the amounts of pyruvate
and acetate for the JCL299F strain (Fig 4-6, 299F, lower panel). Overall, however, and in

particular with regard to the performance with butanol, the model performs well, and demonstrates
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the feasibility of using EMRA to integrate experimental data with kinetic metabolic models to
make realistic predictions about the effect of genetic manipulations.

4.3.3 Finding new genetic targets

Top 5 OE Targets Top 5 KO Targets
Predicted Predicted
Enzyme Name Butanol Yield Isobutanol
(mol/mol glc) Enzyme Name ;o1 (momol
Butyryl-CoA glc)
dehydrogenase 0.58 Butyryl-CoA
(PduP) Hydrolase (butyrate- 0.63
Thiolase (AtoB)  0.56 forming)
Acetyl-CoA
Pyruvate Dehydrogenase 0.59
Dehydrogenase 0.54 (acylating)
(Pdh) Ethanol Export 0.58
Butanol Alcohol
Dehydrogenase 0.54 Dehydrogenase 0.58
(Bdh) (ethanol)
Hbd 0.53 Pyruvate Export 0.57

JCL299F Reference Flux Baseline Yield = 0.52

Fig. 4-7) A model of the JCL299F as a reference steady state was generated from the JCL299F observed yields. Each enzyme was
then perturbed up and down and n-butanol yield for each perturbation was tabulated. The top 5 knockout and overexpression targets
are shown here.

After using the JCL16 reference strain as a means of demonstrating the model, we can
identify which targets would be most effective in further increasing the butanol yield of the best-
performing 299F strain. To do this, a reference state based on the JCL299F data was constructed.
Then all of the enzymes in the model were subjected to perturbation, overexpression and
knockdown of 10-fold. The genetic changes that result in the highest butanol yields from glucose
were ranked and the top 5 knockdowns and overexpressions are presented here (Fig 4-7).

These genetic targets form the basis of a set of recommendations that are actionable by
experimental researchers. Such actionable insights are often touted as justifications for metabolic
simulations, but rarely provided. Here I have provided them, based on a validated kinetic model

capable of reproducing highly non-linear phenotypes.
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4.3.4 Changes to the Model That Increase Model Performance

A Formate
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Fig. 4-8) Comparison of observed exometabolite yields for each genotype (teal bars) with the reference (JCL16) values (dark
blue) and the simulated yield values obtained by ensemble modeling and robustness analysis (yellow bars). The predictions
match well overall for the three simulated genotypes (JCL16F, JCL166F, JCL299F) despite the fact that the observed values
sometimes change dramatically from the reference, JCL16 genotype. Notable exceptions are the pyruvate and acetate predictions
for JCL299F.

While overall, the model performs relatively well in predicting exometabolite yield in the
various genotypes, there are a notable exceptions with the pyruvate and acetate predictions for the
299F genotype. In consultation with the Osaka University Group, we hypothesized that CoA
limitation was an important factor in determining the behavior of the cells and the 299F. In the
original model, free CoA was not included as a metabolite in the model. Thus, effects of the
depletion of CoA on the model were not manifest in this model.

To correct this, and other defects in the model, changes were made. First, free CoA was
added as a metabolite to the model. Thus, CoA would appear as a reactant or product in the relevant

reactions in the model (Fig 4-8A).
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Second, the pta knockout in 299F was used as a screen for models. Previously, to model
knockouts, all parameter sets in the ensemble were perturbed by changing Vmax down to 1% of the
original reference value, and the parameter set was included in the final prediction regardless of
whether bifurcation occurred before the 1% threshold. In other words, models which bifurcated at
20% of reference Vmax value would still be included, at the values calculated just before
bifurcation. As a change, I included only models which could be successfully perturbed to 1% of
pta Vmax in the JCL299F predictions (Fig 4-8B). Combined, these two changes to the model were
found to greatly improve the predictions of pyruvate and acetate production for the JCL299F
genotype (Fig 4-8C).

Using successful knockout to 1% as a screen for other knockout perturbations was
performed, but it was found not to make a significant difference in predictions for these genotypes
[data not shown].

4.3.5 Lessons Learned from Modeling E. coli Production of n-Butanol

The performance of this modelling strategy with this production system shows that
ensemble modelling can go beyond just the in vitro systems described previously. This application
shows that ensemble modelling and robustness analysis (EMRA) provide methods to go from a
low information description of a system to effective kinetic models in an automated way.

While the EMRA method is or can be automated, it is also clear from these results that
attention to model construction is also required. It is not clear a priori whether inclusion of CoA
as a free metabolite would result in a more accurate model or not. For instance, a cell under CoA
limitation could respond by synthesizing more. However, we now have evidence that the cell does

not, mostly, respond in such a fashion. This is an interesting point both from a modelling
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perspective to improve model performance, and from a descriptive biological perspective to better
understand the nature of E. coli metabolism.
4.4 Ensemble Modelling Using Clostridium thermocellum

Using non-edible plant material as a feedstock for bioprocessing is an important goal 6.
Clostridium thermocellum has shown the ability to convert cellulose, a recalcitrant store of
carbohydrates, into a useful product like isobutanol”’. A model of C. therm metabolism was
created by a team at Penn State University including Satyakam Dash and Ali Khodayari under
Professor Costas Maranas. The model included a stoichiometric matrix of relevant reactions, as
determined by discussion with the Lee Lynd group at Cornell. In collaboration with Penn State, I
developed the model for analysis with EMRA.

4.4.1 Development of C. thermocellum Ensemble Model

Stability analysis, termed ensemble modeling robustness analysis (EMRA)'® was carried
out. The stoichiometric matrix of the underlying model was used to create a kinetic model of the
system. Reversibilities were assigned according to reported reversibilities or thermodynamics.
Stoichiometry and reversibilities were used to assign realistic reaction modular rate laws as
described by Liebermeister and used previously %13,

H', H2 and H2S metabolites were removed. It is likely that the maintenance of these
metabolites’ steady states is accomplished by mechanisms not reflected in the model, so steady
maintenance of steady state for these metabolites is an unnecessary kinetic constraint which may
distort the model.

Secreted metabolite (exometabolite) concentration data was obtained from a previously
published study of C. therm ”7. In the previous exploration, ten exometabolites (isobutanol,

ethanol, valine, citrate, malate, succinate, lactate, formate, acetate, fumarate) (Fig 4-9A) were
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measured after a 75hr high density fermentation for both a wild type (WT) and isobutanol
overproducing strain (CT24). CT24 overexpresses the isobutanol production pathway (Fig 4-9B).

Reference fluxes were assigned in the wild type by constraining export reactions for the
ten measured exometabolites to the measured value. Other export reactions were removed.
Theoretical glucose consumption was estimated by determining the molar amount of glucose
required to produce each metabolite (0.5 mol glc for ethanol, succinate, lactate, acetate and
fumarate—1 mol glc for isobutanol, valine, citrate, malate—0 for formate). Through discussion
with the Penn State group, biomass was left in the model, with 3% glucose flux directed to biomass.
Low biomass accumulation is expected since it is a high density fermentation. The biomass
equation from the underlying model was used to determine the flux towards each biomass
component and separate kinetic equations for each component were used.

Reasonable estimates were made for other flux determinations. The ratio of POR:FDH
was set at 1:1. PEPCKr to PPDK was set at 1:1. PGM:PGCD was set at 8:1. PGCD catalyses the
conversion of 3PG to 3P-hydroxypyruvate, which can be converted to serine and recycled in a
futile cycle through hydroxypyruvate and glycerate back to 3PG. The overall flux determination
was carried out using linear programming to minimize the ATP lost from a futile glycogen cycling
pathway.

Ensemble modeling was carried out by selecting realistic kinetic parameter values
constrained to the reference fluxes used and discarding models which were not dynamically stable.
The models (n = 100) were then perturbed by increasing the Vmax of the isobutanol production
pathway enzymes and export reaction by 100x using parameter continuation integration. If a
bifurcation was detected by finding a singular Jacobian during any step of the integration, it was

halted. About 10% of the models remained stable to 100x overexpression. The flux values at
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bifurcation or 100x overexpression (whichever came first) were used to generate an ensemble
average of predicted fluxes. To determine enzymes which have the best impact on further
improving isobutanol yield from glucose in the CT24 strain, all enzymes were overexpressed 10x
and knocked down 10x using parameter continuation to determine steady state isobutanol
production.

4.4.2 Results of C. thermocellum Modeling
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Fig. 4-9) A) Diagram showing input and output from experimental C. therm data. Exometabolite data was used to constrain
metabolic fluxes in the reference steady state. The reference steady state is used to constrain kinetic parameters to realistic values.
B) Detailed view of major pyruvate- and acetyl-CoA-derived exometabolites. The isobutanol pathway from pyruvate was
overexpressed in the CT24 isobutanol overproducing strain. C) Comparison of measured exometabolite yields for WT, CT24 and
CT24 simulations. Simulation was accomplished by increasing Vmax for isobutanol pathway enzymes using parameter
continuation until bifurcation or 100x increase. Values are presented as molar yield per mol glucose. Theoretical glucose was
calculated by determining total amount of glucose required to generate all observed products for all 3 conditions. D) To further
improve the CT24 strain, the top overexpression and knockdown targets for isobutanol production were identified.

For eight out of ten exometabolites (all except valine and isobutanol), the sign of the
measured change of the molar yield from glucose was predicted correctly by the simulation (Fig
4-9C). Interestingly, the acetyl-CoA derived products were predicted almost correctly. Acetate
had error of only 0.01 out of a total change of about 0.1 while ethanol was about 0.06 out of a

measured change of 0.26. However, larger errors were found in the pyruvate-derived
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exometabolites. Isobutanol showed error of +0.14 while lactate was -0.23. Overall, it appears that
the simulation correctly predicted the shift from acetyl-CoA-derived to pyruvate-derived
exometabolites, but did not correctly determine the split between isobutanol/lactate. This could
indicate there were unanticipated effects on the activity of lactate dehydrogenase (e.g. the activity
of LDH was upmodulated in CT24 by some unknown mechanism) which were not reflected in the
parameter continuation integration used. Another possibility is that the fermentation took place in
distinct stages with flux distributions varying as time increased to 75 hours. A steady state
simulation would not necessarily capture all dynamics at play.

The top 5 knockdown and overexpression targets were also identified to improve the
isobutanol yield in the CT24 genotype (Fig 4-9D). Only one overexpression and one knockdown
target were predicted to raise isobutanol yield from 0.29 mol/mol glc equiv to above 0.4. The
knockdown target was lactate dehydrogenase while the overexpression target was acetolactate
synthase. These enzymes compete for pyruvate. Thus, it makes sense that these enzymes
controlling pyruvate-derived exometabolites would be important in isobutanol production in a
CT24 strain. Acetolactate synthase is already overexpressed in the CT24, but it could be that
further overexpression of this enzyme may further improve isobutanol yield. Other enzymes in
the isobutanol pathway did not appear in the top 5 overexpression targets.

Other identified targets also have some intuitive rationale. a-Ketoglutarate dehydrogenase,
was also an overexpression target, possibly because it provides NADPH for the isobutanol
pathway. Pyruvate, phosphate dikinase is predicted to operate in the pyruvate direction in this
model and was another oeverexpression target. Other knockouts included reactions which
produced acetaldehyde and acetate (Acetaldehyde and aldehyde dehydrogenase) which could

further shift the overall exometabolome from acetyl-CoA-derived to pyruvate-derived products.
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Overall, the results indicate the feasibility and usefulness of kinetic models using ensemble
modeling for C. therm in particular, and organism-wide metabolic simulations in general. At the
same time, this endeavor shows the shortcomings of assuming that overexpressing a protein in a
cellular system will increase the activity of that protein while leaving others unchanged. Potential
follow-up work could include integration of this approach with proteomics to include system-wide
changes.

4.5 Ensemble modeling of acetate conversion in Y. lipolytica

Previous work undertaken by the UCLA and Chalmers University Teams has resulted in a
plausible model of Yarrowia lipolytica metabolism’ under conditions of glucose conversion to
fatty acids. This model construction consisted of finding a suitable set of reactions for the purpose
of representing metabolism and lipid synthesis. This encompassed glycolysis, pentose phosphate
pathway for the generation of NADPH, pyruvate transport to the mitochondria and tracylglycerol
synthesis in the lipid body. The model found contained a total of 120 reactions and 106 metabolites
and was able to fit fluxes from both the wild type and the lipid overproducing strain.

4.5.1 Acetic Acid Metabolism in Yarrowia

Acetic acid metabolism by yeast is a common trait. Yarrowia and other yeast strains
including the model strain Saccharomyces cerivisiae have been observed to be capable of growth
on acetic acid. A quantitative mRNA study of S. cerevisiae was undertaken which pinpointed
many of the genetic changes associated with a switch of carbon source from glucose to acetic acid
7. By this study, it was found that the major route for acetic acid metabolism is by the reaction
acetyl-CoA synthetase, which converts acetic acid into acetyl-CoA powered by the conversion of
ATP to AMP. We used this as the route for acetic acid metabolism in Yarrowia for the model.

Additionally, we achieved acetyl-CoA transport into the mitochondria via the acyl-
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carnitine/carnitine translocase system. The glyoxylate cycle is presumed to be active in the
mitochondria under acetate conditions, which allows for a net conversion of two acetyl-CoA
molecules into a 4-carbon dicarboxylic acid (malate). Malate is then decarboxylated in the
mitochondria by malic enzyme which has been noted to be localized there®. A pyruvate carrier *!
then moves pyruvate to the cytosol where it can be used for gluconeogenesis etc.

In contrast to glucose conditions, this represents a reversal of the usual pyruvate and acetyl-
CoA flow from mitochondria to cytosol. In glucose conditions, pyruvate is transported into the
mitochondria by the pyruvate carrier, where it undergoes decarboxylation by pyruvate
dehydrogenase. Acetyl-CoA is then effectively exported to the cytosol by the citrate-malate
antiporter. This system is not reversible since cytosolic ATP-citrate lyase and mitochondrial
citrate synthase are irreversible.
4.5.2 Using Previously Reported Acetic Acid Conversion Experiments to Find Reference
Fluxes

One of the most comprehensive studies of acetic acid consumption and conversion by
Yarrowia to date was conducted by Fontanille et al 2. The authors reported that in bioreactor
experiments using Yarrowia in growth phase, the yield of biomass from acetic acid was 0.50 (g
biomass / g acetic acid consumed) and the lipid yield was 0.15 (g lipid / g acetic acid consumed).

To use the conditions reported by the author, the mass/mass yields of lipid and biomass
were converted into molar fluxes for the model. In the original Yarrowia model, a biomass term
was included which was based on work done by Gombert et al #. On this basis, a biomass function
was derived which used the correct ratio of each amount of each metabolite for yeast in rapid
growth conditions. The average molar mass of each unit of biomass was calculated, and from that

and the biomass mass yield a biomass flux was determined. The lipid composition of the acetic-
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82 and the average molar mass of each fatty acid was

acid grown Yarrowia was reported in
calculated, allowing the molar flux of lipid production to be set. After fixing biomass and lipid
production, linear programming was used to bring acetate uptake as close as possible to the

observed value, and achieved a result within 4% of the reported value. Acetyl-CoA was removed

from the biomass term, since that is represented by the lipid synthesis reactions.
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Fig. 4-10) Diagram showing the flux distribution determined for Y. lipolytica growth under acetate conditions. This distribution is
approximated by using biomass objective function and acetate metabolism information from the model yeast species A. cerivisiae.
Compartmentalization is maintained by including separate metabolites for each compartment.

4.5.3 Determination of genetic targets

This model of Yarrowia metabolism (Fig 4-10) under acetic acid feed conditions is a
reasonable representation of the system and can be used for further simulations. Key assumptions
about compartmentalization and metabolite flow have been identified, which will allow this model
to be adapted to many other conditions, including high density production schemes with low

biomass accumulation. Additionally, the network and fluxes identified here allow for analysis of
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genetic changes to this organism under these conditions to identify which changes would increase
lipid yield using the ensemble modelling framework.

The model was perturbed by changing each enzyme amount 10-fold up or down for a
suitable number of parameter sets (n=100). The resulting fluxes were investigated to determine
which enzymes could be perturbed to cause the greatest increase in lipid yield from acetate. The

results are presented here, for top 6 knockdown and overexpression targets.
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Fig. 4-11) Diagram showing the flux distribution determined for Y. lipolytica growth under acetate conditions. This distribution is
approximated by using biomass objective function and acetate metabolism information from the model yeast species A. cerivisiae.
Compartmentalization is maintained by including separate metabolites for each compartment.
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These genetic targets provide useful insights (Fig 4-11) for experimentalists looking to
improve the performance of Y. lipolytica with acetic acid. The conversion/valorization of acetic
acid with Y. lipolytica is an area of lively and greatly expanding interest, and this work will allow
for rational targeting of new research directions.

4.6 Summary & Conclusion

The performance and success of EMRA with these in vivo systems paves the way for its
use in yet more systems. This variety of applications show that the EMRA method is both highly
flexible and surprisingly powerful. It is able to take a low information network skeleton and
convert it into a queryable kinetic model. These models have demonstrated a high degree of fidelity
to observed exometabolite yield, especially in the E. coli n-butanol model. The 3 genotype, 8
exometabolite data set is a high-dimensional standard to match, yet the model performs well
without any modifications. With small tweaks, the model matches every yield almost perfectly,

illuminating biological significance in the process.
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5. Network Structural Features Affect Stability of Calvin Bassham Benson Cycle in Plants

The stability of the Calvin Bassham Benson (CBB) cycle remains an area of active
computational research. Our understanding of biology and the prospect for bioengineered plants
with higher productivity may both be impacted by a greater understanding of this area. Here we
use the ensemble modelling robustness analysis (EMRA) framework to show that the action of the
phosphate/G3P antiporter is much more significant for maintenance of stability than a recently
proposed G6P shunt. Additionally, we interpret recent results suggesting that overexpression of
RuBiSCO does not improve growth rate of plants but overexpression of sedohuptulose-
bisphosphate phosphatase (SBPase) does. Our simulations reproduce this result, but only in
models which do not include the G6P shunt. Taken together, these results may suggest a situational
role for the G6P shunt, possibly in dynamic situations under starvation or other stress conditions.
5.1 Introduction

The Calvin Bassham Benson cycle (CBB) is responsible for CO:2 fixation by plants,
including the C3 & C4 variants, of which the C4 is an adaptation which allows for plants in high

temperature or low water environments 84-87

. Plants have advanced regulatory systems which
allow them to successfully grow and thrive in an unpredictable and changing world ¥2. For
example, sugars generated from CO:2 during daylight are stored as starch in photosynthetic and
non-photosynthetic chloroplasts. Nighttime consumption of starch is tuned to leave only a small
amount remaining by morning—and this consumption rate is dynamically tuned to adjust for
changing day length?*~>.

Among canonical metabolic pathways, the CBB pathway is highly branched and complex,
much more so than simple linear pathways like glycolysis or simple loops like the TCA cycle.

96,97

This is in some ways the result of the chemical difficulty of aerobic CO: fixation which seems
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to require a carbon reshuffling step to regenerate a suitable starting substrate like ribulose-1,5-

bisphosphate *%.

The complexity of the pathway, in which there is not a linear pathway from
substrate to product, results in instability if intermediates are depleted. For example, if the sugar
phosphates in a chloroplast become depleted, the pathway is not able to continue since some
starting substrate (RuBP) is required to continue CO: fixation %°.

There are two main mechanisms of transport of sugars across the chloroplast membrane.
First, there is the G3P/phosphate antiporter '®. This transporter moves a G3P from the CBB
pathway in the chloroplast to the cytosol, where it is used for various cellular functions. In return
a phosphate molecule is transported into the chloroplast, effectively keeping the total number of
phosphates (including phosphate attached to sugars) in the chloroplast constant. Second, there are

) 190 and maltose transporters ', of which the maltose transporter is known to be

glucose (putative
essential for starch breakdown. G3P is a CBB intermediate and is directly interconvertible with
other sugar phosphates, so a depletion of G3P would be problematic for CBB. However, glucose
and maltose are more removed from the CBB pathway itself and are possibly only produced as
starch breakdown products *°.

The direct regulation of plastidic enzymes involved in photosynthesis is accomplished by
redox-mediated proteins called thioredoxins ', In light conditions, the NADPH/NADP" ratio is
higher because the photosystems which generate NADPH from light are active. As a result, the
disulfide bonds in thioredoxins and other regulated proteins are broken, mediating enzyme activity.
In Arabidopsis thaliana several enzymes are known to be redox regulated in this manner ',

Some enzymes of the CBB cycle are activated in a reducing (light) environment by the

breaking of their disulfide bonds. In the dark, these enzymes are attenuated in the oxidizing

environment. Of the 12 enzymes of the canonical CBB cycle, 4 are known to be redox regulated
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in the ferredoxin/thioredoxin system !°*. First, GAPDH converts 1,3-bisphosphoglycerate to
glyceraldehyde-3-phosphate using reducing power from NADPH. GAPDH is reversible, although
in dark conditions scarce NADPH is required for other critical cellular functions.

In addition to GAPDH, enzymes which catalyze the cleavage of high-energy phosphate
bonds are also thioredoxin-regulated, presumably to reduce thermodynamic losses in dark
conditions. Phosphoribulokinase (Prk) catalyzes the cleavage of ATP to ADP coupled with the
conversion of ribulose-5-phosphate to ribulose-1,5-bisphosphate. Prk and GAPDH are inactivated
in the non-enzymatic oligomerization with chloroplast protein CP12 in oxidizing conditions,
which is reversed by NADPH '%°.  Sedoheptulose-1,7-bisphosphatase catalyzes the irreversible
loss of phosphate from the sedoheptulos-1,7-bisphosphate to result in sedoheptulose-7-phosphate.
Fructose-1,6-bisphosphatase catalyzes an analogous reaction and loss of phosphate to result in
F6P. These enzymes are all regulated to lose function in dark conditions when NADPH is low
and CO2 fixation cannot continue ',

The Calvin cycle has many enzymes in common with the pentose phosphate pathway,
except that it functions in the reverse direction, leading to the distinction between the traditional
or oxidative pentose phosphate pathway (oPPP) and the CBB-synonymous reductive pentose
phosphate pathway (rPPP) '%. Distribution of oPPP and rPPP enzymes within plant cellular
compartments (plastid vs. cytosol) is an area of research 7, but in Arabidopsis, it is recognized
that the first three steps of the oPPP (glucose-6-phosphate dehydrogenase, gluconolactonase and
6-phosphogluconate dehydrogenase) are localized to both the plastids and the cytosol ', In
addition to the CBB enzymes above, the plastidic enzymes of the oPPP, particularly GO6PDH, are

subject to redox-based regulation 1%
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G6PDH is most active in oxidizing conditions which prevail in night darkness. The oPPP
provides NADPH for critical cell functions when light is unavailable. Activity is highly attenuated
by the presence of light. This is rationalized to be for the prevention of thermodynamic losses due
to a futile cycle ''°. However, interestingly, the attenuation of G6PDH in reducing conditions is
far from complete and varies widely by species. In the investigation of three different plastidic
G6PDHs, activity is attenuated to anywhere from 10-30% of maximum in reducing conditions
109111112 "1t has recently been suggested that flux through G6PDH and the next two oPPP enzymes
(generating Ru5P) may stabilize the CBB pathway ''*. This opens the door for investigation into
possible competitive benefits of a futile cycle which in terms of thermodynamics, is a clear loss.

Some previous efforts have attempted to address stability in the CBB pathway, but these

have had shortcomings such as not considering phosphate ''*

which our work suggests has a critical
role in stability, or considering only a single set of parameter values !'°, which doesn’t reflect the
range of stochastic and environmental variability encountered in biological reality. Other works
focused on the well-documented oscillations of the CBB pathway ''®, without considering general
propensity towards stability (nonsingular Jacobian), or instability (singular Jacobian). In this
work, we consider the present evidence that multiple structural features of CBB in plants and
Arabidopsis thaliana in particular stabilize the pathway, independent of their effect on oscillatory
behavior. In particular, we investigate the role of the G3P/phosphate translocator, the oxidative
pentose phosphate pathway, as well as covalent modification of triose phosphate isomerase '!”.
We use ensemble modeling robustness analysis, a method which investigates the stability of
metabolic pathways using network information such as reference flux, network stoichiometry,

reaction reversibility and substrate-level regulations . We also consider the potential applications

toward biotechnological work attempting to increase the productivity and growth rates of plants.
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5.2 Building a model of chloroplastic metabolism

First, a consensus model of chloroplast metabolism flow in light conditions was developed
(Fig. 5-1). Steps of the CBB cycle, starch synthesis and starch degradation were included.
Additionally, G3P transport from chloroplast to cytosol is also included. NADPH generation by
the light reactions and ATP generation through respiration were included as single reactions in the
model.

Fluxes were set by linear programming to determine a reference steady state. Carbon was
assumed to be split 50:50 between G3P and starch synthesis. Starch degradation was assumed to
be at 2/3 the rate of starch synthesis. Starch degradation is represented as non-negligible in the
model, since starch degradation rate was found to be almost unchanged by light in spinach leaves
118 G3P export and import were modeled as parallel reactions in dynamic equilibrium, additionally
at a 2:3 ratio for parsimony. Beyond these specifications, the system has no degrees of freedom
so flux rate was completely determined.

Reactions were modeled kinetically using realistic rate laws which take into account
number of substrates and products, and the reversibility of the reaction using modular reaction
rates according to the method of Liebermeister ®. Substrate-level regulations were added to the
model as described in the Methods section. Parameter values were sampled constrained to
reference fluxes and stability at the reference steady state was insured. A suitable number of
parameter value sets (n = 300) were generated and tested. Enzyme levels were perturbed by using
the parameter continuation method, where the system is perturbed, constrained to a fixed point,
until the Jacobian becomes singular, or a metabolite concentration becomes negative. The fraction
of parameter sets, or ‘models’ which become unstable at each level of integration, is plotted.

Further details about the model are available in the methods section.
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Fig. 5-1 The overall model of chloroplast flux used in this paper. Reactions in the carbon shuffling steps and G6P shunt are
modelled individually but are shown in a simplified format. Light reactions and respiration were modeled as single reactions for
simplicity. NADPH/NADP+ & ATP/ADP cofactors included in all simulations, free phosphate held constant in some simulations
as noted. CO2 was held constant in all simulations.

5.3 G3P/phosphate translocator almost completely stabilizes CBB

The G3P/phosphate translocator and phosphate in general is known to have an important
role in the action of the CBB pathway (Fig. 5-2A) ''°. However, to date, this role has not been
thoroughly tested by simulation efforts. Here we test the idea of the phosphate antiporter as a CBB
pathway stabilizer by doing EMRA simulations of the CBB enzymes with and without holding
phosphate constant. Allowing plastidic phosphate to vary freely as a metabolite in the simulation
is a proxy for the effects of the antiporter, since if phosphate was transported independently from
the cytosol, there would be effectively no steady state requirement for phosphate—any deviation
would simply be made up by transport to or from the cytosol. The inclusion of phosphate fixes

the steady state requirement to the one-to-one antiport of G3P and inorganic phosphate.
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Without Pi, the model was found to have noticeable instability in essentially all of the CBB
enzymes, and, seven of the 12 CBB enzymes were noted to have instability upon increase.
Inclusion of phosphate as a metabolite was shown to almost completely eliminate instability with
one notable exception. With phosphate, triose phosphate isomerase was noticeably unstable to
decrease. Without phosphate, that enzyme was unstable to increase—the inclusion of phosphate

reversed the tendency towards instability (Fig. 5-2B, red lines).
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Fig. 5-2 Comparison of stability with and without holding phosphate constant. A) Schematic showing the flow of phosphate through
the phosphate/G3P antiporter in relation to the CBB pathway. B) EMRA stability profile for the enzymes of the CBB pathway
upon perturbation of 10x and 0.1x. Both Tkt reactions were perturbed simultaneously (n = 300). Including the effects of the
G3P/phosphate antiporter (red line) significantly stabilizes the pathway.

5.4 Glutathionylation of triose phosphate isomerase improves stability (with phosphate)
The one enzyme of the CBB pathway which was unstable after the inclusion of phosphate
was triose-phosphate isomerase. There seems to be further experimental confirmation of the
importance of sufficient triose phosphate isomerase (TPI) activity. A plastidic TPI mutant with
reduced activity was installed in Arabidopsis and the resulting plants were found to grow at a
highly stunted rate '2°. Interestingly, if grown in the dark with nutrients provided (heterotrophic
growth), there was no growth deficiency, indicating that the plastidic TPI is important for

autotrophic (light) metabolism, but not critical for heterotrophic (dark) metabolism.
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There are multiple possible methods for accommodating this loss of stability. First, triose-
phosphate isomerase is a highly active, reversible enzyme with no stability penalty indicated (Fig.
2B) for high activity, so it’s possible TPI is operating mostly or exclusively in the high activity
domain, where stability is not an issue. Another possibility is that TPI instability is partly rescued
by the effect of glutathionylation. A recent analysis showed the first evidence of glutathionylation
of plant enzymes. The authors found that a cytosolic TPI from Arabidopsis thaliana was
inactivated in the presence of oxidized glutathione (GSSG) but reactivated in the presence of

reduced glutathione '!7.

Since GSH is regenerated by the reducing power of NADPH, this
regulatory network can be represented as NADPH activation of TPI combined with NADP*
inactivation (Fig. 5-3A).

Interestingly, the stability of the TPI with NADPH/NADP+ regulation improves noticeably
(Fig. 5-3B). Although there is no direct evidence if glutathionylation of plastidic TPI (pdTPI) in
Arabidopsis, the protein sequences show 62% sequence identity and have similar numbers of

methionine residues (2 & 3), (UniProt entries Q9SKP6 & P48491 2!, aligned by BLASTP 2.3.0+

122,123y~ Regulation of plastidic TPI may be an interesting area of future research.
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Fig. 5-3 Possible regulatory mechanism for plastidic TPI. A) Possible schematic for TPI activation by glutathionylation. This is
represented in the model by NADPH activation and NADP* repression. B) Stability profile for the TPI enzyme in the ‘with
phosphate’ model showing the effect of NAPDH regulation on TPI.
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5.5 Glucose-6 phosphate shunt affects stability of no phosphate condition

A perhaps paradoxical aspect of the plastidic glucose 6 phosphate dehydrogenase enzyme
is that it retains some activity after deactivation, which seems to be thermodynamically
unfavorable, since carbon decarboxylated by the oxidative pentose phosphate pathway has to be
re-fixed by RuBiSCO, including the use of 3 ATP per carbon fixed. It has recently been proposed
that this is a feature of chloroplastic metabolism which may stabilize the CBB pathway itself ''3.
This was discussed in great detail but so far has seen no mathematical justification. Looking at the
CBB with stabilization by the phosphate translocator, there is little stability improvement to be
made. In stress conditions, however, such as phosphate limitation, plant metabolism is known to

124126 " including changing expression of plastidic transporters '*’. This could

change radically
potentially alter the stabilizing, protective effects of the phosphate/G3P antiporter, which can be
modelled (as before) by the removal of phosphate as a metabolite. In such cases, other structural
features would be required to provide stability.

The so-called glucose-6 phosphate shunt (Fig. 5-4A) has been proposed to provide stability
to the CBB. To test the effects of the proposed glucose-6 phosphate shunt, simulation of the no-
phosphate condition with various levels (0% of RubisCO, 10%, 30%) of flux through the first three
enzymes of the oxidative pentose phosphate pathway (G6PDH, GLNase & GLNDH) was
undertaken via EMRA. For nearly all enzymes, the 10% & 30% conditions showed stability
improvements over the 0% condition for increases in enzyme activity from the reference steady
state (Fig. 4B, red & green lines). However, interestingly, several enzymes showed slightly higher
instability in the 10% and 30% conditions upon decrease in enzyme amount, though higher

stability upon increase. One possible explanation is that transketolase, and the aldolases are highly

active, reversible enzymes, and thus more likely to operate in the high activity regime than the low
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activity. Another possible explanation is that the operation of the G6P shunt is situational, and
that it is meant to operate in dynamic scenarios to replenish cycle intermediates, rather than to

operate continuously to maintain steady state.
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Fig. 5-4 Comparison of stability of various fluxes through the proposed G6P shunt. A) Schematic showing the flow of metabolites
through the G6P shunt relative to the CBB pathway. B) EMRA stability profile for the enzymes of the CBB pathway upon
perturbation of 10x and 0.1x. Both Tkt reactions were perturbed simultaneously (n = 300). Including the effects of the G6P shunt
(red line & green lines) improves stability of the pathway upon increase of many enzymes, hurts stability upon decrease of many
enzymes (Tkt, aldolases, phosphatases particularly).

5.6 Assessing methods for improving plant productivity, SBPase and RuBiSCO
overexpression

Use of stability analysis to provide biological insight into the mechanisms of stability in
the CBB is one powerful demonstration of its capabilities. However, it doesn’t provide insight into
engineering and biotechnological efforts which are aimed at increasing the productivity of plants,
particularly relating to growth rate and the CO2-fixing rate of the CBB pathway. Thus, in addition
to assessing the effect of genetic changes on stability, we can additionally look at the predicted
impact on net carbon fixation rate.

Many efforts to increase growth rate and carbon fixation rate of plants have understandably
focused on RuBiSCO. Some projects have focused on methods to modify the amino acid sequence

of RuBiSCO !212%_ Others have attempted to overexpress RuBiSCO or, more recently, replace
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native RuBiSCO with a heterologous enzyme which has higher specific activity 1*°. These efforts
have increased the content and activity of RuBiSCO, but they have not convincingly increased
plant productivity '*!. However, looking at the CBB pathway as a network problem rather than a
problem with a single enzyme opens up many different possibilities. Interestingly, one group
reported that overexpression of SBPase increased carbon fixation rate by 6-12% 32,

To investigate consistency of these results with simulation, the average model-predicted
net CO2-fixation rate for different genetic changes and flux configurations can be compared.
Interestingly, results show that for the 0% G6PDH condition with phosphate, overexpression of
SBPase slightly increased CO2-fixation rate, while RuBiSCO overexpression was,
counterintuitively, found to decrease RuBiSCO flux. Other targets in the CBB pathway which
were also investigated, with Prk showng the largest projected increase on carbon fixation rate (Fig.
5-5A). For other conditions (no phosphate, with G6PDH flux) (Fig. 5-5B & C), no improvement
was observed for either, except a small improvement for SBPase in the no phosphate model. This
suggests that perhaps network effects are more determinative of the response of the CBB pathway
than performance of individual enzymes. Additionally, it seems to suggest that in laboratory
conditions, the models not including G6P shunt flux are more reflective of biological reality, and

thus that the role of the G6P shunt may be situational.
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5.7 Discussion

This analysis reveals the importance of structural features for the stability of the CBB
pathway in plants. Stability is an important characteristic of metabolic pathways, since they are
subject to stochastic variability in protein expression as well as different environmental conditions
which can perturb the system. While oscillations in the CBB are a point of previous research ''°,
we here present an analysis of the stability of the underlying fixed points involved. So far, stability,
and in particular the ensemble modeling robustness analysis framework has been applied to
explore the performance relatively simple in vitro pathways, but this paper shows how it can also

uncover and illuminate biologically significant features and phenomena.
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Additionally, this manuscript sheds additional light on some specific details of these
mechanisms. For instance, these results indicate that the G3P/phosphate antiporter is more
significant for the stability of the CBB than the G6P shunt under normal steady state. However, if
the one-to-one link between phosphate- and G3P-transport is broken (as in the no phosphate
simulations), the action of the glucose-6-phosphate shunt does change the stability profile of CBB
enzymes noticeably. However, the true purpose of the G6P shunt may be to restore steady state in
dynamic situations. This sheds light on the apparent paradox of thermodynamic losses in this
‘futile’ cycle. The thermodynamic involved in one turnover of the oPPP would be involve loss of
one ATP in the Prk step and two ATP at the Pgk step.

Among heterotrophic organisms using the CBB cycle, there is a remarkable amount of
diversity in the arrangement and function of metabolism !**"137. Thus, it is likely that depending
on environmental constraints and chance occurrences in evolutionary history, the stabilizing
mechanisms used by different species are a combination of those presented here and those yet to
be discovered. Thus, this manuscript is not a comprehensive or conclusive look at the mechanisms
of stability in the CBB pathway but is an initial, provisional investigation into some possible
explanations for the success of the CBB pathway despite its apparently unstable underlying
structure. The model presented here is advances on some previously described models 47116 in
important ways. This work provides answers and more questions to pave the way for yet more
complete and sophisticated simulation of CBB.

So far, attempts to increase the productivity of plants have mostly focused on individual
enzymes, rather than investigating the CBB pathway as a network. Here, we give plausible
explanation to results that show SBPase overexpression increases plant growth rate while

RuBiSCO overexpression has so far not shown any increase in plan performance. While the
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methods employed here are not conclusive, they provide new insights which lay out potential
targets of future exploration in the biotechnological engineering of plants.
5.8 Methods

The model of chloroplast metabolism, including the CBB, the G3P/phosphate translocator
and the was constructed by inspecting the latest literature about plastid metabolism®>. The full
stoichiometric matrix, reversibilities and reference flux are shown in Supplementary Table 1.
Adjustments were made as necessary (removal of phosphate, adjustment of fluxes to include G6P
shunt etc.). Based on stoichiometry and reversibility, realistic Michaelis-Menten style rate laws
were assigned. Regulation of PGM, G6PDH were included and TPI was regulated in some
simulations. Parameters were obtained by randomly sampling normalized affinity parameters
from a uniform distribution (0.1,10) as described previously. Vmax was then solved for,
constraining the rate law to the reference steady state. Simulations of steady state perturbations
were carried out using the parameter continuation method described previously '*. Calculations

were done in MATLAB and full code is at: https://github.com/theis188/CBB-theisen.
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6 Future work
6.1 User-friendly web based EMRA simulation tool
The development of a user-friendly EMRA simulation tool is an important next step for
the expanding its impact as a simulation tool. Although EMRA simulation requires some fairly
sophisticated mathematical operations (matrix multiplication, linear programming, numerical
integration, differentiation, calculating eigenvalues, etc.), the required input is minimal, and may
be further minimized by the generation of curated reaction sets. In many cases, picking the relevant
enzymes from a pre-constructed list would be enough. Further, the javascript library NumericJS,
(created by Sebastian Loisel) allows all these operations to be carried out by a web browser. Work
will proceed using SEASNet-provided hosting, with other options being pursued if more
sophisticated hosting needs arise.
6.2 Evolution of E. coli using mutDS5 to consume methanol/induce methylotrophy
Formaldehyde tolerance, methanol consumption and methylotrophy have the potential to
be significantly enhanced by the use of laboratory enhanced evolution techniques. One strategy
that has great promise is the use of mutator strains such as mutD5-containing strains. MutD5 is a
mutated copy of dnaQ which is a subunit of DNA Polymerase with proofreading function and

dominant mutagenesis activity!$-140,

MutD5 strains have been shown to have their highest
mutation rates in early stages when other mechanisms for mutation correction are saturated 41142,

If the correct selection pressure is provided, a mutD5 strain of E. coli may undergo
evolution at an accelerated rate and adapt to a nutrient-poor methanol-containing environment. If

limited other sources of carbon are provided, (e.g. dilute LB or glucose), then the cells would

benefit if they are able to utilize the carbon and reducing power locked up in methanol. Thus,
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mutations that facilitate this ability would be enriched in the culture and would eventually
dominate.
6.2.1 Approaches for enhanced laboratory evolution

It may be the case that growth-promoting mutations do not arise in the first round attempts.
Thus, it will be necessary to increase the probability of finding beneficial mutations. To facilitate
faster mutational iteration, I have proposed a system of mutation accumulation and enrichment
termed GOGOGO (Goal-Oriented, Genetic Optimization for Growth on One-carbon
compounds). This system is a multi-reactor system in which selection pressure for methylotrophy
and methanol consumption are applied at different levels. At low selection pressure (i.e. relatively
LB-rich and lower methanol), growth will be very fast and mutations will accumulate rapidly.
However, they will not necessarily be enriched very quickly since the selection pressure would be
relatively low. To accelerate the process of selection, cells from the low selection pressure reactors
can be inoculated into higher selection pressure (dilute LB, higher methanol) reactors. Thus, the
beneficial mutations which had accumulated in the fast-growth reactor would be enriched. This
would likely not be accomplished as quickly using only high selection pressure reactors since
growth of strains is slow and mutation accumulation, especially using mutD5 will be low. This is
because at low growth rate, the other proofreading mechanisms of E. coli will be active, reducing

the overall mutation rate.
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Fig. 6-1) GOGOGO for the generation of a methylotrophic E. coli strain.

6.2.2 Inspiration from natural methylotrophs

Natural methylotrophs utilize methanol by a variety of mechanisms. For example, the
serine and RuMP pathways are used by different classes of methylotrophs. The RuMP pathway
itself has multiple variations that appear in different organisms. For example, obligate
methylotrophs use a version of the pathway that is similar to MCC, with the difference being the
presence of Fba and the absence of Fpk. Facultative methylotrophs use a version of the RuMP
pathway which is ATP-dependent °.

Implementing methylotrophy in E. coli can take inspiration from natural pathways. RuMP
is a natural candidate because of its overlap with both the MCC pathway and the pentose phosphate
pathway in E. coli. Implementation of RuMP in E. coli requires enzyme expression to allow for
flux throuhg the RuMP pathway. In natural methylotroph Bacillus methanolicus MGA3, enzyme
expression is heavily influenced by the presence of methanol. In the presence of methanol,
enzymes of the RuMP pathway of MGA3 are heavily overexpressed, with transcripts becoming 6-
40x more abundant in the presence of methanol.!'®

Additionally, the enzyme substrate specificity and allosteric regulation between E. coli and
Bacillus methanolicus enzymes may be different. For example, GlpX is an enzyme which

catalyzes the removal of phosphate from sugar bispohosphates. MGA3 has two versions of the
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enzyme, one of which has activity on seven-carbon sedoheptulose-1,7-bisphosphate (SBP) and is
overexpressed in response to the presence of methanol. The second one which has activity only
on fructose-1,6-bisphosphate (FBP).!** This indicates that substrate specificity may play an
important role in the RuMP pathway of MGA3. Another enzyme of possible concern is
phosphofructokinase. Phosphofructokinase in E. coli is regulated allosterically by AMP, which
may be detrimental to the performance of the RuMP pathway.'*
6.2.3 Strategies for Implementation of methylotrophy and MCC in E. coli

Implementation of methanol assimilation and carbon shuffling will in theory allow for E.
coli growth on methanol. However, it is unlikely that an efficient methylotrophic E. coli strain
can be designed a priori. Combinatorial expression of enzymes has been used as an effective tool
in many biosynthetic endeavors'* 1% however, it requires labor-intensive library generation and
screening, and when selection is available as an option it is preferred. Therefore, it will be useful
to construct an MCC production strain in multiple steps, optimizing each one separately, and the
entire pathway as a whole. For example, implementation of assimilation and carbon shuffling in
E. coli can be optimized first using selection for methanol growth. After that, combinatorial
expression of key enzymes in the full n-butanol production pathway may provide a means of
maximizing production.

Taking inspiration from previous combinatorial construction and screening efforts, MCC
production can be optimized. For example, the production of isoprenoids such as lycopene has
been boosted by combinatorial expression of enzymes.!*’ Additionally, using different promoter

strengths increased the production of taxol, an important anti-cancer precursor, several-thousand

fold.!4¢
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6.3 Use wild type E. coli fluxes to generate in silico ensembles and subject them to installation
of methylotrophy & identify targets for knockout and overexpression to support
methylotrophy

Wild type models of E. coli will be a useful starting point for the generation of targets for
methylotrophy. In stoichiometric models, it is typical to provide a reaction for the production of
biomass, which may be maximized to approximate wild type steady state fluxes.'>® From this
steady state, an ensemble of kinetic parameters may be generated without prior knowledge of

kinetic properties.'”

S A

Stoichiometric Steady state k= { . ]
model fluxes ’
Parameter
ensembles
o
Hps ot
Phi . <
_ |dh . y= I ' ] —
. . . ] ?
S ‘ Resultant o, e
Updated fluxes .
stoichiometric AA-Symth
models Knockout
targets

Fig. 6-2) The process by which ensemble models will be used to generate knockout (or overexpression) targets to generate
methylotrophic E. coli.

After the generation of this ensemble, addition of methylotrophy reactions can be provided
to identify how their addition affects intracellular flow of metabolites, especially the production of
biomass. Finally, knockouts of many genes can be simulated to identify what knockouts may
enhance the methylotrophic performance of the ‘methylotrophic’ E. coli strain. Further insights
might be gained by examination of metabolism of methylotrophs, which mostly cannot grow on
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multi-carbon compounds. Until recently, computational methods for the identification of

knockout and overexpression targets have used mostly stoichiometric, rather than kinetic, models
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of cellular metabolism.'%!>? Recently, kinetic parameters are starting to be used in these models.'>?
Additionally, ensemble modeling has also been used to engineer strains for production by
analyzing productivity rather than robustness.'%!>*
6.4 Understanding and inventing metabolic cycles

Finding new metabolic cycles to improve over existing pathways is an area of increasing
research interest. In addition to MCC, many other efforts to design better synthetic routes are
under development. A recent novel cycle, non-oxidative glyxolysis (NOG) allows for conversion
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of one glucose to three acetic acids'>>, compared to the typical two through normal metabolism!°,

Also, another synthetic pathway for carbon dioxide fixation, reverse glyoxylate shunt (rGS) has
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been proposed and its pieces have been functionally demonstrated in E. coli Identifying

previously unknown cycles in existing organisms has also recently been an area of importance,
with new carbon fixation and metabolic cycles being identified in the last decade or two’®!198-161,
Understanding what features unify all metabolic cycles may lead towards yet more discoveries.
6.5 Robustness as a ranking characteristic for metabolic cycles

Another goal is to develop an algorithm for identifying and ranking novel cycles. A
previous approach had the same goal and used KEGG, a database of many known enzymes, to

search for alternative carbon fixation pathways!%163,

Pathways were ranked in terms of
productivity per enzyme mass and thermodynamic feasibility. Additionally, another criteria
‘Topological Compatibility” was used which investigated the pathways in a flux balance analysis
(FBA) framework, where a model of cellular metabolism was compared before and after institution

of the novel pathway. Differences in flux distribution were quantified and smaller differences

confered a higher rank.
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However, the analysis is limited in multiple ways. First, only CO: fixation pathways were
considered, while other metabolic cycles that may be of interest were not investigated. Secondly,
FBA analysis is not based on a kinetic understanding of metabolism, but only stoichiometric.
Installation of the enzymes of a pathway, even if they are functionally expressed, does not
guarantee that flux will go in the directions hoped. For metabolic cycles, the problem is more
pronounced, since in many cases, depletion of cycle intermediates will halt cycle function?!. Thus,
ranking of cycles will be refined by consideration of kinetic limitations. Addition of this
consideration may be accomplished by the use of ensemble model robustness analysis (EMRA)"3.
EMRA uses knowledge of functional forms of enzyme flux equations to determine bifurcational
stability of a metabolic system to perturbation of parameters.

Appendix. Enzyme and compound names

Enzyme names: Mdh = methanol dehydrogenase; Hps = 3-hexuolse-6-phospate synthase; Phi =
phosphohexulose isomerase; Fpk = phosphoketolase (FOP activity); Xpk = phosphoketolase (X5P
activity); Tal = transaldolase; Tkt = transketolase; Rpe = D-ribulose-5-phosphate 3-epimerase; Rpi
= ribose-5-phosphate isomerase; PduP = acylating aldehyde dehydrogenase; Adh = alcohol
dehydrogenase; Glk = glucokinase ; Zwf = glucose-6-phosphate dehydrogenase; Pgi = glucose-6-
phosphate isomerase. Compound names: CH20 = formaldehyde; H6P = 3-hexulose-6-phosphate;
F6P = fructose-6-phosphate; E4P = erythrose-4-phosphate; S7P = sedoheptulose-7-phosphate;
XS5P = xylulose-5-phosphate; RSP = ribose-5-phosphate; RuSP = ribulose-5-phosphate; AcP =
acetyl phosphate; EtOH = ethanol.
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