
UC Berkeley
UC Berkeley Previously Published Works

Title
LLM-Aided Compilation for Tensor Accelerators

Permalink
https://escholarship.org/uc/item/0sq61640

ISBN
979-8-3503-7609-8

Authors
Hong, Charles
Bhatia, Sahil
Haan, Altan
et al.

Publication Date
2024-06-29

DOI
10.1109/lad62341.2024.10691720

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sq61640
https://escholarship.org/uc/item/0sq61640#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

LLM-Aided Compilation for Tensor Accelerators

Charles Hong∗, Sahil Bhatia, Altan Haan, Shengjun Kris Dong, Dima Nikiforov, Alvin Cheung, Yakun Sophia Shao
University of California, Berkeley

Berkeley, CA, USA
∗charleshong@berkeley.edu

Abstract—Hardware accelerators, in particular accelerators
for tensor processing, have many potential application domains.
However, they currently lack the software infrastructure to
support the majority of domains outside of deep learning.
Furthermore, a compiler that can easily be updated to reflect
changes at both application and hardware levels would enable
more agile development and design space exploration of accel-
erators, allowing hardware designers to realize closer-to-optimal
performance. In this work, we discuss how large language models
(LLMs) could be leveraged to build such a compiler. Specifically,
we demonstrate the ability of GPT-4 to achieve high pass rates
in translating code to the Gemmini accelerator, and prototype a
technique for decomposing translation into smaller, more LLM-
friendly steps. Additionally, we propose a 2-phase workflow for
utilizing LLMs to generate hardware-optimized code.

I. INTRODUCTION

Hardware accelerators [1], [2], [3] have become a critical
driving force for the recent breakthroughs [4], [5], [6], [7],
[8] in artificial intelligence and machine learning. They pro-
vide hundred-fold improvements in performance and energy
efficiency in running deep neural networks (DNNs). With the
proliferation of new TA designs, the number of compilers and
domain-specific languages (DSLs) has also exploded. For deep
learning applications, compilers like XLA and TVM provide
end-to-end support for the popular deep learning frameworks
PyTorch, JAX, and TensorFlow frameworks which are used to
implement most DNN software [9], [10].

However, these accelerators are not only useful for pro-
cessing DNNs. For example, the systolic array architecture
at the heart of many of these accelerators has long been
known to be useful for a wide range of tensor-related computa-
tions, such as tensor decomposition [11]. Furthermore, recent
work suggests that these accelerators, which we call tensor
accelerators (TAs), have promise in accelerating a range of
applications ranging from graph algorithms like PageRank to
partial differential equations for financial modeling [12], [13].

As shown by these works, in order to leverage the per-
formance benefits of TAs, applications must be compiled to
primitive operations in the domain-specific language (DSL)
supported by one specific TA, and in order for this to occur the
TA must first support the key operators of the application. The
development of both applications and accelerators is limited
by this cyclical dependency. Adapting existing code to DSLs
requires developers to manually translate the code or even

build custom compilers, which must be modified each time
the hardware backend changes.

An ideal compiler framework can adapt to changes both
above it (application-level) and below it (architecture- or
microarchitecture-level). Recent work demonstrates the im-
pressive performance of large language models (LLMs) in
various code-related tasks [14], [15], [16], [17], as well as
general reasoning ability and instruction-following [18], [19].
However, it is unclear how LLMs perform in code analysis and
generation for DSLs with little to no presence in their training
corpora. In this work, we investigate how LLMs can be used
in an agile compiler framework for hardware accelerators, and
propose that optimizing compilers could be implemented in a
two-phase flow. The first phase involves translating the given
source program to a functionally correct implementation in
the DSL, ensuring functional correctness. The second phase
focuses on optimizing the DSL code using a cost model-
driven search approach to maximize performance on the target
hardware accelerator.

II. RELATED WORK

Code translation is essential for keeping software work-
flows updated with recent DSLs and optimizations. Existing
approaches include pattern matching-based compilers [20],
search-based techniques [21], and neural methods [22]. How-
ever, these approaches require significant human effort to
develop and maintain, and often struggle to scale to complex
domains. In this work, we leverage LLMs success in code
generation [23] and optimization [24] to explore their potential
for generating optimized code for TAs.

There has been a significant amount of work in exploring
the performance spaces of hardware and software imple-
mentations for TAs. However, while significant performance
improvements are possible, such design space exploration
techniques are often limited to finding an optimal point within
a given search space [25], [26], or use abstractions from which
bridging the gap to real systems is difficult [27]. Automatic
compilers robust to application and hardware changes will
allow designers to quickly modify search spaces without
significant compiler update efforts.

Existing systems for tensor computation make use of
abstractions like the BLAS library or, as in the case of
Halide, use DSLs to represent computations in a portable and
scheduling-friendly manner [28]. In this work, we focus on
enabling TA developers to compile code to accelerators as979-8-3503-7608-1/24$31.00 ©2024 IEEE

quickly and easily as possible, so we elide the addition of
heavy infrastructure that would add burden to the developer
workflow. However, we are not opposed to the use of inter-
mediate representations or other abstractions when building
LLM-aided compilers, and believe that development in such a
direction will enable LLM-aided compilation and optimization
to be carried out in a more systematic and verifiable manner.

III. PROPOSED METHODOLOGY

A. Overview

In this section we provide an overview of our two phase ap-
proach. In Figure 1 shows our proposed workflow which inte-
grates the search-based translation and hardware cost models.
Our workflow involves a code synthesizer generating potential
translations for a general-purpose code, which are then verified
for functional equivalence with the source program using test-
cases. Subsequently, the verified code is passed to the cost
model, which offers concrete feedback indicating changes the
synthesizer should apply to the generated code.

B. Code Template Generation with LLMs

There are two general approaches to building code trans-
lators: symbolic and neural. Symbolic approaches include
building pattern-matching compilers, for which rules can be
painstaking to manually specify and maintain. To address this,
verified lifting [21] uses search followed by verification to
find a functionally equivalent implementation of the source
program in the target language. However, most lifting-based
approaches rely on symbolic solvers that use strategies like
enumerative or constraint-based search to perform the trans-
lation. Scaling symbolic search requires significant effort and
domain knowledge, as users must explore heuristics such as
type-based filtering, template enumeration, and multi-phase
synthesis to shrink the search space.

LLMs have emerged as a promising alternative to symbolic
approaches. These models have been trained on massive
amounts of code data from sources such as documentation
and code repositories, which potentially allows them to learn
about the syntax and semantics of various programming
languages. TAs and other DSAs present a unique challenge
because their low-level programming languages have little
to no presence in LLMs’ training corpora. We propose that
LLMs can nonetheless be leveraged to simplify the process
of generating optimized code for TAs by exploiting their
contextual reasoning capabilities [18] and decomposing the
problem into multiple semi-structured steps.

To guide the LLM in generating the desired target code,
we provide a structured prompt that consists of three main
components: instructions, target language specification, and
the source program. The instruction section contains a high-
level description of the task, specifying the goal of translating
the source program to the target language. The target language
specification section enumerates the available operators and
constructs in the target language, and optionally provides
example programs in the target language, providing the LLM
with the necessary context about the TA. Finally, the source

program section includes the high-level code that needs to be
translated. Appendix A shows an instantiation of this prompt
structure demonstrating how the components are populated
with specific details, and Section IV-A discusses how well
these prompts work.

C. Cost Model-Driven Code Translation

In addition to being correct, compiler-generated code should
be performant, especially when the target is hardware accel-
erators meant to improve application latency and efficiency.
For performance optimization, we propose a search-based
technique for code translation that integrates feedback from
a TA cost model. Previous work, such as Ansor [29], has
successfully implemented cost model-based approaches for
scheduling tensor operations in the TVM compiler framework.
While these approaches are effective, they rely on manually
designed search spaces and require extensive training for each
new hardware target. In contrast, we seek to leverage LLMs’
knowledge about programs to optimize a less structured space.

In particular, we suggest an iterative and hierarchical ap-
proach. First, we prompt the model with a set of possible
optimizations, such as combining instructions or changing data
movement patterns. The model is then asked to optimize each
block of computation based on the available optimizations
and any latent knowledge about program optimization. We
experiment with two approaches: 1) having the LLM directly
generate the optimized code, and 2) having the LLM generate
Halide-style scheduling operations [28]. Next, we prompt the
model to generate the optimal ordering of these blocks in
the final program. If the LLM understands dependencies and
program performance, it can propose an efficient arrangement
of the blocks, taking into account factors such as data locality
and parallelism. Program performance (and potentially other
indicators, like hardware counters), generated from a cost
model or by running the code, can be used as feedback, pro-
viding domain-specific information for the model to iteratively
refine its optimization decisions.

IV. EXPERIMENTS

In this section, we discuss a number of experiments that
explore the feasibility of utilizing LLMs for various parts of
the accelerator compilation flow. Based on these experiments,
we discuss the most effective strategies we observed and
suggest directions for future exploration.

A. Translating Robotics Kernels to Gemmini’s ISA

Robotics is a driving application with rising interest, both
across the scientific community and in relation to hardware ac-
celeration. Prior work has investigated the potential for custom
hardware accelerators to speed up key robotics kernels [30],
[31]. These kernels are a target for acceleration via systolic
array accelerators on the edge, due to their latency sensitivity
and heavy use of matrix operations. However, implementing
performant code for such applications on custom hardware is
difficult due to the lack of compilers, and building general-
purpose libraries can actually result in control flow-heavy

Code
Synthesizer

Hardware
Cost Model

Unoptimized
Code

Translated
Code

Code Translator Hardware Perf Evaluation

Feedback for
Mutation as

Prompt

Fig. 1. An overview of our proposed framework.

code with worse performance than an assembly implemen-
tation. In this section we demonstrate translation of general-
purpose matrix code from these kernels to the instruction-set
architecture (ISA) for Gemmini [32], an academic systolic
array accelerator. The prompt describing the set of functions
available to the LLM, which effectively represent Gemmini’s
ISA, is given in Appendix A.

We use a simple test to determine whether a correct result
has been generated. However, these results do not provide the
model with access to the test cases, nor is there yet a feedback
loop of test results to code generation. So, it is highly unlikely
that model outputs are overfit to our current set of test cases.

1) Model-Predictive Control (Matrix-Vector Operations):
We begin by translating a kernel from the TinyMPC model-
predictive control implementation [33]. Specifically, we focus
on the backward pass, which contains four matrix-vector
multiplications of different sizes. The sizes reflect those for
a quadrotor drone; the largest operation comprises a 12×12
matrix multiplied by a 12×1 vector. We use a configuration
of Gemmini with a 4×4 systolic array, meaning that such
a computation requires at least 9 compute instructions, plus
instructions to configure the accelerator and move data into
and out of local memory. For this kernel, we translate one
matrix-vector multiplication at a time, following the strategy
from Section III-B.

We ablate a number of prompting techniques. This is to 1)
evaluate the importance of each component of our prompt,
and 2) evaluate the effectiveness of the LLM’s (specifically,
gpt-4-turbo’s instruction following and in-context learning
(ICL) [18] in the context of accelerator DSLs with little
information available in pre-training data.

Specifically, we explore the following options:

• Zero-shot: We try generating Gemmini code with only
ISA descriptions and no implementation example, to eval-
uate the LLM’s ability to generate code based solely on
pre-training and its ability to reason about the functions
in the specification.

• One-shot: We provide a single Gemmini code exam-
ple for a matrix-vector multiplication. This boosts code
correctness significantly, and qualitatively reduces the
variance in generated code hugely. Because generated
code follows the style of the provided examples, syntax
and other compilation errors also decrease significantly.
Note that for all cases, we evaluate pass rate on problems
other than the one used for this example.

• NL annotation: We annotate the one-shot example with
inline natural language (NL) comments explaining each

function call and its arguments. We find that this tech-
nique improves the ability of the LLM to reason about the
provided functions, and extrapolate implementations that
are different from the provided example while following
its style.

• No ISA: We remove the ISA (target language) specifica-
tion from the prompt. The results establish that it is an
essential part of the translation flow.

pass@k
k=1 k=10 k=50

Zero-shot 0.33% 3.33% 16.7%
One-shot ICL 44.67% 84.42% 99.79%
One-shot ICL (NL-annotated) 46.0% 88.81% 99.98%
No ISA, One-shot ICL (NL-
annotated)

1% 9.12% 29.29%

TABLE I
gpt-4-turbo TRANSLATED CODE CORRECTNESS FOR MATRIX-VECTOR

MULTIPLICATIONS, WITH NATURAL LANGUAGE DESCRIPTIONS FOR
FUNCTIONS IN THE INPUT CODE.

We additionally explore whether it is more useful to pro-
vide NL descriptions, or full implementations of functions
in the input (general-purpose) code. We implement matrix-
vector multiplication as the more general matrix-matrix mul-
tiplication. Even though this is a very common operation,
translation correctness improves in both zero-shot and one-
shot scenarios with code implementations. This is consistent
with previous results, as we suspect that like our one-shot
example, a general-purpose implementation provides structure
for the LLM to follow in its response.

As shown in Table II, providing both NL and code hurts
correctness of generated code in both zero-shot and one-shot
cases, showing that increasing prompt size without providing
new information may degrade code generation performance.

pass@k
k=1 k=10 k=50

NL only 46.0% 88.81% 99.98%
Semantics only 50.67% 92.23% 100%
Semantics and NL 46.33% 87.48% 99.96%

TABLE II
gpt-4-turbo TRANSLATED CODE CORRECTNESS FOR MATRIX-VECTOR
MULTIPLICATIONS, WITH DIFFERENT PRESENTATIONS OF SOURCE CODE

FUNCTIONS.

2) Riccati Recursion (Matrix-Matrix Operations): Next we
translate C++ code for Riccati recursion, a well-known method
for solving the finite-horizon discrete time linear quadratic
regulator (LQR) problem [34]. Specifically, we focus on imple-
menting seven matrix-matrix multiplications of various sizes

and types, one of which is used for our prompting example.
In some cases, matrices are multiplied; in some cases, a bias
matrix is added or subtracted from the result. The largest is
a 36×36 and 36×12 matrix-matrix multiplication, with state
and action space sizes based on a quadrotor drone (assuming
an action space size of 4) and a quadruped [30].

Due to cost constraints, we replicate only the best-
performing of experiment from Section IV-A1, that with
reference implementations for input code, as well as an NL-
annotated in-context example. We next compare the case of
providing a matrix-vector example with the case of providing
two matrix-matrix examples, one with a transposed matrix and
a bias, and one without. Providing both examples does not
boost pass rate, but we note that the LLM performs better
when examples are provided before other instructions in the
prompt. Table III shows gpt-4-turbo’s pass rate for these 6
functions. Ultimately, we are able to generate correct code for
5 out of 6 test functions.

pass@k
k=1 k=10 k=50

One-shot ICL (Matrix-vector ex-
ample, NL-annotated)

2.33% 20.55% 64.51%

One-shot ICL (Matrix-matrix
example, NL-annotated)

1.67% 15.21% 51.21%

One-shot ICL (Matrix-matrix
example w/ transpose and bias,
NL-annotated)

50.05% 72.89% 89.65%

Two-shot ICL (Both examples af-
ter instructions)

15.55% 57.39% 81.26%

Two-shot ICL (Both examples
before instructions)

32.41% 75.68% 83.29%

TABLE III
gpt-4-turbo TRANSLATED CODE CORRECTNESS FOR MATRIX-MATRIX

MULTIPLICATIONS.

B. Repairing Translated Code
In the previous section, we successfully translated 8 out of

9 total kernels with the prompting techniques listed. However,
there was one kernel which could not be translated - this kernel
multiplies a 12x4 matrix, transposed, with 4x12 matrix, not
transposed, and subtracts from the result a 12x12 bias matrix.
Manual inspection of generated candidates demonstrated that
there were several cases of near-correct translations, where
errors often occur due to incorrect addressing, strides, or
constants in instruction arguments. This corresponds with prior
observations that even the most powerful LLMs can struggle
with arithmetic-related tasks [35].

Prior work has addressed such challenges by fixing LLM
errors such as syntactic search [36]. For this case, we were
able to produce a working result by breaking down error
correct into multiple steps, i.e. by taking a close-but-incorrect
candidate, prompting the LLM to locate areas of uncertainty
and replace such holes with its own variable names, then
produce candidates for programs with these holes filled using
a set of possible constants. In this case study, this sequence of
prompts was able to produce a correct result, unlike a simple
prompt asking the LLM to fix the constants in its response.
The specific prompts used can be found in Appendix A.

C. Code Optimization

In this section, we describe our preliminary results with
different strategies for optimizing the translated code.

1) Structured LLM-Driven Code Rewrites: We evaluate our
hierarchical optimization process by optimizing the translated
matrix-vector multiplication code described in section IV-A1.
First, we prompt Figure 4 the LLM to generate optimized
versions for each block of computation in the translated code.
Next, we prompt Figure 5 the LLM to reorder the optimized
blocks generated in the previous phase. Upon comparing the
LLM-optimized code with hand-tuned code, we observed that
the generated code was similar in structure and performance.
LLM was able to correctly identify the optimal ordering of
the blocks resulting in minimizing the data movement.

2) LLM-driven Autoscheduling: Instead of directly gener-
ating optimized code, we are also experimenting with using
LLMs as code schedulers. In this approach, the LLM selects
schedule operations (loop reordering, etc.) to apply to the
code. In our preliminary experiments, we use Exo [37] as the
scheduling library. Every successful Exo rewrite is guaranteed
to be semantics preserving, thus eliminating correctness is-
sues due to hallucination. Appendix B shows gpt-4-turbo
scheduling the doitgen kernel from PolyBench [38], a mul-
tiresolution analysis kernel from MADNESS [39], on x86.

V. CONCLUSION: TOWARDS AGILE, AUTOMATED
HARDWARE AND COMPILER CO-DESIGN

In this work, we demonstrate how careful prompting and
breaking down compilation problems into smaller, more LLM-
friendly steps can help make accelerator code translation
tractable for LLMs. Specifically, we use a combination of such
techniques to fully translate a set of robotics kernels to the
Gemmini accelerator’s ISA. Automated code translation will
speed up the accelerator design process and reduce engineering
effort, by reducing the need to build and maintain compilers
early on and allowing for faster evaluations of hardware.
Furthermore, we believe that future work integrating LLMs
into the existing extensive corpus of tensor code optimizations
will help make it easier to apply new DSLs and optimization
techniques that can improve accelerator performance. By au-
tomating software compilation problems that are today solved
ad hoc, hardware-aware, cost model-guided code translation
will serve as a key component for more agile and automated
accelerator design.

ACKNOWLEDGEMENTS

We thank the ISLAD reviewers for their feedback. This
work is supported in part by the National Science Founda-
tion through grants CCF-2238346, IIS-1955488, IIS-2027575,
ARO W911NF2110339, ONR N00014-21-1-2724, and DOE
award DE-SC0016260, DE-SC0021982, as well as by SLICE
Lab industrial sponsors and affiliates. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] NVIDIA, “About cuda,” https://developer.nvidia.com/about-cuda, 2024.
[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in Proceedings of
the International Symposium on Computer Architecture (ISCA), 2017.

[3] Amazon, “AWS Inferentia: High Performance Machine Learning Infer-
ence Chip,” https://aws.amazon.com/machine-learning/inferentia/, 2018.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2012.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), 2017.

[8] OpenAI, “Chatgpt,” https://openai.com/blog/chat-gpt-3-launched/, 2020,
accessed: April 25, 2023.

[9] Xla developer guide. [Online]. Available: https://openxla.org/xla
[10] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,

L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-end Optimizing Compiler for Deep Learning,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[11] H. T. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse
Matrix Proceedings 1978, vol. 1. Society for industrial and applied
mathematics Philadelphia, PA, USA, 1979, pp. 256–282.

[12] K.-C. Hsu and H.-W. Tseng, “Accelerating applications using
edge tensor processing units,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476177

[13] Y. Zhang, P.-A. Tsai, and H.-W. Tseng, “Simd2: a generalized matrix
instruction set for accelerating tensor computation beyond gemm,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 552–566. [Online]. Available:
https://doi.org/10.1145/3470496.3527411

[14] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[15] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[16] N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang,
A. Solar-Lezama, K. Sen, and I. Stoica, “Livecodebench: Holistic and
contamination free evaluation of large language models for code,” arXiv
preprint arXiv:2403.07974, 2024.

[17] S. G. Patil, T. Zhang, X. Wang, and J. E. Gonzalez, “Gorilla:
Large language model connected with massive apis,” arXiv preprint
arXiv:2305.15334, 2023.

[18] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Pro-
ceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[19] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila,
I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian,
J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner,
L. Bogdonoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman,
T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann,
B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis,
D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho,
C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux,
T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling,
S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus,
N. Felix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges,
C. Gibson, V. Goel, T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gor-
don, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo,
C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse,
A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu,
X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang,
H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser,
A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick,
J. W. Kim, C. Kim, Y. Kim, J. H. Kirchner, J. Kiros, M. Knight,
D. Kokotajlo, Łukasz Kondraciuk, A. Kondrich, A. Konstantinidis,
K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike,
J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin,
T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning,
T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew,
S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina,
A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco,
E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély,
A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh,
L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantu-
liano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov,
A. Peng, A. Perelman, F. de Avila Belbute Peres, M. Petrov, H. P.
de Oliveira Pinto, Michael, Pokorny, M. Pokrass, V. H. Pong, T. Powell,
A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh,
C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez,
N. Ryder, M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt,
D. Schnurr, J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov,
J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin,
K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such,
N. Summers, I. Sutskever, J. Tang, N. Tezak, M. B. Thompson, P. Tillet,
A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek, J. F. C.
Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang,
A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda,
P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter,
S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao,
T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang,
M. Zhang, S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph, “Gpt-
4 technical report,” 2024.

[20] C. Radoi, S. J. Fink, R. Rabbah, and M. Sridharan, “Translating impera-
tive code to mapreduce,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA ’14. New York, NY, USA: ACM, 2014,
pp. 909–927.

[21] S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung, “Building Code Tran-
spilers for Domain-Specific Languages Using Program Synthesis,” in
37th European Conference on Object-Oriented Programming (ECOOP
2023), 2023.

[22] B. Mariano, Y. Chen, Y. Feng, G. Durrett, and I. Dillig, “Automated
transpilation of imperative to functional code using neural-guided
program synthesis,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA1,
Apr. 2022. [Online]. Available: https://doi.org/10.1145/3527315

[23] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[24] C. Cummins, V. Seeker, D. Grubisic, M. Elhoushi, Y. Liang,
B. Roziere, J. Gehring, F. Gloeckle, K. Hazelwood, G. Synnaeve et al.,
“Large language models for compiler optimization,” arXiv preprint
arXiv:2309.07062, 2023.

[25] Q. Huang, C. Hong, J. Wawrzynek, M. Subedar, and Y. S. Shao,

“Learning a continuous and reconstructible latent space for hardware
accelerator design,” in Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2022.

[26] C. Hong, Q. Huang, G. Dinh, M. Subedar, and Y. S. Shao, “Dosa:
Differentiable model-based one-loop search for dnn accelerators,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2023.

[27] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019.

[28] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
SIGPLAN Not., vol. 48, no. 6, p. 519–530, jun 2013. [Online].
Available: https://doi.org/10.1145/2499370.2462176

[29] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen et al., “Ansor: Generating {High-Performance} tensor
programs for deep learning,” in 14th USENIX symposium on operating
systems design and implementation (OSDI 20), 2020, pp. 863–879.

[30] S. M. Neuman, T. Koolen, J. Drean, J. E. Miller, and S. Devadas,
“Benchmarking and workload analysis of robot dynamics algorithms,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019, pp. 5235–5242.

[31] D. Nikiforov, S. C. Dong, C. L. Zhang, S. Kim, B. Nikolic, and Y. S.
Shao, “RosÉ: A hardware-software co-simulation infrastructure enabling
pre-silicon full-stack robotics soc evaluation,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589099

[32] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC), 2021.

[33] K. Nguyen, S. Schoedel, A. Alavilli, B. Plancher, and Z. Manchester,
“Tinympc: Model-predictive control on resource-constrained microcon-
trollers,” in IEEE International Conference on Robotics and Automation
(ICRA), 2024.

[34] R. Tedrake, Underactuated Robotics, 2023. [Online]. Available:
https://underactuated.csail.mit.edu

[35] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early
experiments with gpt-4,” 2023.

[36] C. Lee, A. Mahmoud, M. Kurek, S. Campanoni, D. Brooks, S. Chong,
G.-Y. Wei, and A. M. Rush, “Guess & sketch: Language model guided
transpilation,” 2024.

[37] Y. Ikarashi, G. L. Bernstein, A. Reinking, H. Genc, and J. Ragan-Kelley,
“Exocompilation for productive programming of hardware accelerators,”
in Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, ser. PLDI 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
703–718. [Online]. Available: https://doi.org/10.1145/3519939.3523446

[38] “Polybench,” https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1,
accessed: 2024-04-08.

[39] R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann,
J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C.
Hill, J. Jia, J. S. Kottmann, M.-J. Yvonne Ou, J. Pei, L. E. Ratcliff, M. G.
Reuter, A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton,
B. E. Sundahl, W. S. Thornton, E. F. Valeev, A. Vázquez-Mayagoitia,
N. Vence, T. Yanai, and Y. Yokoi, “Madness: A multiresolution, adaptive
numerical environment for scientific simulation,” SIAM Journal on
Scientific Computing, vol. 38, no. 5, pp. S123–S142, 2016. [Online].
Available: https://doi.org/10.1137/15M1026171

APPENDIX A
PROMPTS FOR CODE TRANSLATION

// defined functions

#define config_ex(dataflow, act, A_transpose, B_transpose)
// configure the state of the accelerator
// dataflow is WEIGHT_STATIONARY or OUTPUT_STATIONARY
// act is the activation function, options are NO_ACTIVATION, RELU, LAYERNORM, IGELU, SOFTMAX
// A_transpose is a boolean value that represents whether the matrix A is transposed
// B_transpose is a boolean value that represents whether the matrix B is transposed

#define config_ld(cols, id)
// configure mvin instructions
// cols = number of cols in matrix in DRAM
// id = id of mvin instruction; id = 0 for mvin, 1 for mvin2, 2 for mvin3

#define mvin(dram_addr, spad_addr, cols, rows)
// mvin from DRAM to scratchpad
// mvin, configured by config_ld(..., 0)
// requires rows must be less than or equal to DIM

#define mvin2(dram_addr, spad_addr, cols, rows)
// mvin from DRAM to scratchpad
// mvin2, configured by config_ld(..., 1)
// requires rows must be less than or equal to DIM

#define mvin3(dram_addr, spad_addr, cols, rows)
// mvin from DRAM to scratchpad
// mvin3, configured by config_ld(..., 2)
// requires rows must be less than or equal to DIM

// A = input matrix
// B = weight matrix
// C = output matrix
// assume a weight-stationary dataflow

#define preload_zeros(C_acc_addr)
// preload zeros to the systolic array and set the output address in the accumulator to C_acc_addr

#define preload(B_spad_addr, C_acc_addr, B_cols, B_rows, C_cols, C_rows)
// preload weights, B
// B must be preloaded before compute
// B must have been moved in to the scratchpad first
// B_cols must be less than or equal to DIM, B_rows must be less than or equal to DIM, C_cols must be less than or equal to DIM, C_rows must be less than or equal to DIM
// must run to change the output address to C_acc_addr
// B_spad_addr = 0xffffffff if B already preloaded

#define compute_preloaded(A_spad_addr, bias_spad_addr, A_cols, A_rows, bias_cols, bias_rows)
// compute
// A must have been moved in to the scratchpad first
// first compute after preload, does not accumulate C
// A_cols must be less than or equal to DIM, A_rows must be less than or equal to DIM, bias_cols must be less than or equal to DIM, bias_rows must be less than or equal to DIM
// bias_spad_addr = 0xffffffff if no bias
// if there is a bias, bias_cols and bias_rows are probably equal to B_cols and B_rows from preload instruction

#define compute_accumulated(A_spad_addr, bias_spad_addr, A_cols, A_rows, bias_cols, bias_rows)
// compute
// A must have been moved in to the scratchpad first
// accumulates to same C as previous compute
// A_cols must be less than or equal to DIM, A_rows must be less than or equal to DIM, bias_cols must be less than or equal to DIM, bias_rows must be less than or equal to DIM
// bias_spad_addr = 0xffffffff if no bias
// if there is a bias, bias_cols and bias_rows are probably equal to B_cols and B_rows from preload instruction

#define config_st(cols)
// configure mvout instruction
// cols = number of columns of matrix in DRAM

#define mvout(dram_addr, acc_addr, cols, rows)
// mvout from accumulator to DRAM
// requires rows must be less than or equal to DIM

#define fence() asm volatile("fence")
// fence

’’’
Gemmini’s private memory is "row-addressed", where each row is DIM elements wide, where DIM is the number of PEs across the width of the systolic array. These elements will be of type

inputType in the scratchpad, and of type accType in the accumulator.

Every private Gemmini memory address is 32 bits long. The three most signficant bits are reserved, and have special meanings:

Bit 31 (the MSB) is 0 if we are addressing the scratchpad, and 1 if we are addressing the accumulator.
Bit 30 is ignored if we are addressing the scratchpad, or if we are reading from the accumulator. If, instead, we are writing to the accumulator, then bit 30 is 0 if we want to overwrite

the data at that address, and 1 if we want to accumulate on top of the data already at that address.
Bit 29 is ignored if we are addressing the scratchpad, or if we are writing to the accumulator. If, instead, we are reading from the accumulator, then bit 29 is 0 if we want to read

scaled-down inputType data from the accumulator, and 1 if we want to read accType data from the accumulator.
If bit 29 is 1 for an accumulator read address, then we do not apply activation functions or scaling to the output of the accumulator.

’’’

Fig. 2. Gemmini ISA specification from Section IV-A.

Gemmini is a systolic array accelerator with a scratchpad, a DIM by DIM systolic array, an accumualator, and a backing DRAM.
The set of available functions for the Gemmini accelerator are as follows.

<insert ISA prompt here>

Your task is to rewrite the given ‘test‘ C++ Function. You need to use only the set of provided functions and constants to achieve this.
The rewritten program should be semantically equivalent to the ‘test‘ function.

Please make sure that the generated code fully computes the desired operation and that the output is correct. It is essential and
important that function arguments such as rows and columns should not violate constraints such as "less than or equal to".

Recall that systolic array size is 4 by 4 (DIM equal to 4) and each element is 4 bytes.
Example 1 is a simple example which should only be used for style inspiration. Write the low level code for Example 2.

Fig. 3. Code translation task description, as described in Sections III-B and IV-A.

Your task is to optimize the given program. The program can be optimized by reducing the number of instructions. Instructions can be
reduced by minimizing the data movement, reordering computations, and merging instructions. The rewritten program should be
semantically equivalent to the original program. Do not use any loops. Systolic array size is 4x4 (DIM=4) and each element is 4
bytes.

// heuristics:
1. moving data ahead of time helps
2. do not remove any compute instruction unless it can merged or replaced by another instruction
3. do not remove any preload instruction unless B_spad_addr and C_spad_addr are the same as the previous preload instruction
4. number of mvin rows <= 4

<insert ISA prompt here>

<insert unoptimized block here>

Fig. 4. Task description for optimizing blocks of code.

Your task is to optimize the given program. Generate only a plan to optimize the given program. The rewritten program should be
semantically equivalent to the original program. Do not use any loops. Systolic array size is 4x4 (DIM=4) and each element is 4
bytes.

// Instructions:
1. The exeuction order of the blocks can be changed. Generate the block ordering as a plan. Do not optimize the instructions within

block. Return the plan as a list of blocks.

<insert ISA prompt here>

<insert unoptimized code here>

Fig. 5. Task description for reordering the blocks of unoptimized code for generating optimized code.

Below we describe the functions present in the input code.

‘‘‘
void tiled_matmul_outer_eigen (

float *A,
float *B,
float *C,
int i, int k, int j,
bool transpose_A, bool transpose_B

) {
for (int i_ctr = 0; i_ctr < i; i_ctr++) {

for (int j_ctr = 0; j_ctr < j; j_ctr++) {
for (int k_ctr = 0; k_ctr < k; k_ctr++) {

float A_elem = A_transpose ? A[k][i] : A[i][k];
float B_elem = B_transpose ? B[j][k] : B[k][j];
C[i][j] += A_elem * B_elem;

}
}

}
}

void tiled_matmul_outer_eigen_bias (
float *A,
float *B,
float *D,
float *C,
int i, int k, int j,
bool transpose_A, bool transpose_B, bool sub

) {
for (int i_ctr = 0; i_ctr < i; i_ctr++) {

for (int j_ctr = 0; j_ctr < j; j_ctr++) {
if (sub) {

C[i_ctr][j_ctr] -= D[i_ctr][j_ctr];
} else {

C[i_ctr][j_ctr] += D[i_ctr][j_ctr];
}
for (int k_ctr = 0; k_ctr < k; k_ctr++) {

float A_elem = A_transpose ? A[k_ctr][i_ctr] : A[i_ctr][k_ctr];
float B_elem = B_transpose ? B[j_ctr][k_ctr] : B[k_ctr][j_ctr];
C[i_ctr][j_ctr] += A_elem * B_elem;

}
}

}
}
‘‘‘

Fig. 6. Code implementation of input functions, as described in Section IV-A1.

Below we describe the functions present in the input code.

‘‘‘
void tiled_matmul_outer_eigen (

const Matrix<float, Dynamic, Dynamic, RowMajor>&A,
const Matrix<float, Dynamic, Dynamic, RowMajor>&B,
Matrix<float, Dynamic, Dynamic, RowMajor>&C,
int i, int k, int j,
bool transpose_A, bool transpose_B)

’’’
tiled_matmul_outer_eigen performs a matrix multiplication between a matrix in DRAM, represented as A and a matrix in DRAM, represented

as B. The result is stored in DRAM, represented as C.
The dimensions of A are i by k, the dimensions of B are k by j, and the dimensions of C are i by j. transpose_A and transpose_B are

boolean values that represent whether the matrix A and B are transposed respectively.
Matrix size is represented as rows x cols, but matrices may be transposed.
’’’

void tiled_matmul_outer_eigen_bias (
const Matrix<float, Dynamic, Dynamic, RowMajor>&A,
const Matrix<float, Dynamic, Dynamic, RowMajor>&B,
Matrix<float, Dynamic, Dynamic, RowMajor>&D,
Matrix<float, Dynamic, Dynamic, RowMajor>&C,
int i, int k, int j,
bool transpose_A, bool transpose_B, bool sub)

’’’
tiled_matmul_outer_eigen_bias performs a matrix multiplication between a matrix in DRAM, represented as A, and a matrix in DRAM,

represented as B. It also adds a bias, stored in DRAM and represented as D, to the final output.
The bias is added if sub is false, and subtracted if sub is true. The result is stored in DRAM, represented as C.
The dimensions of A are i by k, the dimensions of B are k by j, the dimensions of D are i by j, and the dimensions of C are i by j.

transpose_A and transpose_B are boolean values that represent whether the matrix A and B are transposed respectively.
Matrix size is represented as rows x cols, but matrices may be transposed.
’’’
‘‘‘

Fig. 7. Natural language descriptions of input functions, as described in Section IV-A1.

Example 1:
#test function
// Multiplication of 4x12 matrix Bdyn, transposed, and 12x1 vector p, not transposed. The matrix and vector are both stored in dram. The

result is stored in the 4x1 vector B_p. Systolic array size is 4x4 and each element is 4bytes.
void test(Bdyn, p, B_p) {

tiled_matmul_outer_eigen(Bdyn, p, B_p, 4, 12, 1, true, false);
}

// rewritten program
‘‘‘
void test(Bdyn, p, B_p) {

config_ex(WEIGHT_STATIONARY, NO_ACTIVATION, true, false);
config_st(1 * sizeof(float)); // output B_p has 1 column in DRAM
config_ld(4 * sizeof(float), 0); // A matrix Bdyn has 4 columns in DRAM, because it is transposed
config_ld(1 * sizeof(float), 1); // B matrix p has 1 column in DRAM
// Bdyn_sp_addr is the address of the scratchpad where the matrix Bdyn is stored
static uint32_t Bdyn_sp_addr = 0; // 12 rows, 0 to 11
// p_sp_addr is the address of the scratchpad where the vector p is stored
static uint32_t p_sp_addr = 12; // 12 rows, 12 to 23
// B_p_acc_addr is the address of the accumulator where the output B_p is stored
static uint32_t B_p_acc_addr = 1 << 31; // 4 rows, 0 to 3
mvin(Bdyn, Bdyn_sp_addr, 12, 4); // mvin Bdyn as A matrix, 4 rows, 12 cols
mvin2(p + 0x0, p_sp_addr, 1, 4); // mvin the first 4x1 block of p, 4 rows, 1 cols
preload(p_sp_addr, B_p_acc_addr, 1, 4, 1, 4); // preload p as matrix B
compute_preloaded(Bdyn_sp_addr, 0xffffffff, 4, 4, 1, 4); // multiply the first 4x4 block of Bdyn with the first 4x1 block of p
mvin2(p + 0x4, p_sp_addr + 4, 1, 4); // mvin the second 4x1 block of p, 4 rows, 1 cols
preload(p_sp_addr + 4, B_p_acc_addr | 1 << 30, 1, 4, 1, 4); // | 1 << 30 since we are accumulating on the same block of B_p
compute_preloaded(Bdyn_sp_addr + 4, 0xffffffff, 4, 4, 1, 4); // multiply the second 4x4 block of Bdyn with the second 4x1 block of p
mvin2(p + 0x8, p_sp_addr + 8, 1, 4); // mvin the third 4x1 block of p, 4 rows, 1 cols
preload(p_sp_addr + 8, B_p_acc_addr | 1 << 30, 1, 4, 1, 4); // | 1 << 30 since we are accumulating on the same block of B_p
compute_preloaded(Bdyn_sp_addr + 8, 0xffffffff, 4, 4, 1, 4); // multiply the third 4x4 block of Bdyn with the third 4x1 block of p
mvout(B_p, B_p_acc_addr, 1, 4); // 4 rows is less than or equal to DIM, 1 col, so we can mvout with one instruction
fence();

}
‘‘‘

Fig. 8. The example matrix-vector multiplication code provided for in-context learning, as described in Section IV-A.

Example 2:
#test function
// Multiplication of 12x4 matrix BPA, transposed, and 4x12 matrix Kt, not transposed, minus 12x12 bias matrix Q. The matrices are all

stored in DRAM. The result is stored in the 12x12 matrix APBK_Q.
void test(BPA, Kt, Q, APBK_Q) {

tiled_matmul_outer_eigen_bias(BPA, Kt, Q, APBK_Q, 12, 4, 12, true, false, true);
}

Fig. 9. Function-specific prompt for a matrix-matrix multiplication from Section IV-A2.

// Configuration for the systolic array
config_ex(WEIGHT_STATIONARY, NO_ACTIVATION, true, false);

// Configure scratchpad and accumulator addresses
static uint32_t BPA_sp_addr = 0;
static uint32_t Kt_sp_addr = 12 * 4; // offset by 12 rows (each row 4 elements wide)
static uint32_t APBK_Q_acc_addr = 1 << 31;
static uint32_t Q_sp_addr = 24 * 4; // offset by 24 rows (each row 4 elements wide)

// Configure loading and output dimensions
config_ld(4 * sizeof(float), 0); // BPA has 4 columns in DRAM when transposed
config_ld(12 * sizeof(float), 1); // Kt has 12 columns in DRAM
config_st(12 * sizeof(float)); // APBK_Q has 12 columns in DRAM

// Move BPA, Kt, and Q into the scratchpad
mvin(BPA, BPA_sp_addr, 4, 12);
mvin2(Kt, Kt_sp_addr, 12, 4);
mvin3(Q, Q_sp_addr, 12, 12);

// Perform tiled matrix multiplication and bias subtraction
for (int i = 0; i < 12; i += 4) { // Iterate over rows of BPA and APBK_Q in blocks of 4

for (int j = 0; j < 12; j += 4) { // Iterate over columns of Kt and APBK_Q in blocks of 4
for (int k = 0; k < 4; k += 4) { // Iterate over K dimension (internal dimension of multiplication)

// Preload Kt blocks
preload(Kt_sp_addr + k * 12 + j, APBK_Q_acc_addr + i * 12 + j, 4, 4, 4, 4);

// First computation is non-accumulating
if (k == 0) {

compute_preloaded(BPA_sp_addr + i, Q_sp_addr + i * 12 + j, 4, 4, 12, 4);
} else {

compute_accumulated(BPA_sp_addr + i, Q_sp_addr + i * 12 + j, 4, 4, 12, 4);
}

}
// After completing K dimension, output the result to DRAM
mvout(APBK_Q + i * 12 + j, APBK_Q_acc_addr + i * 12 + j, 12, 4);

}
}

// Ensure all memory operations are completed before proceeding
fence();

Fig. 10. An example of correct generated code for the function described in Figure 9.

Prompt 1
"The solution is slightly incorrect. Identify a few constants that could be added or replaced to make the code correct, for example

multipliers for iterators or sizes of operations. Replace the code with <CONST> or define your own constants."

Prompt 2
"Fill in the constants with the correct values. Options can be selected from the set {0, 1, 3, 4, 12}."

Fig. 11. The specific prompts used for accelerator-targeted multi-step code repair in Section IV-B.

APPENDIX B
LLM AUTOSCHEDULING

SYSTEM: You are an expert performance engineer with experience in optimizing numerical linear algebra kernels.

USER:
I need help with optimizing a numerical kernel. It is written in a Python DSL
for code optimization called Exo, which is similar to Halide.

Here are my relevant hardware details:

- The target hardware is an x86 CPU with AVX2 support.
- We will be targeting single-core execution, so you can ignore parallelism.
- L1 instruction cache size: 32 KB
- L1 data cache size: 48 KB
- L2 cache size: 2 MB
- L3 cache size: 36 MB

Here is the kernel I need help with, written in Exo:

def doitgen(A: f32[64, 64, 64] @ DRAM, C4: f32[64, 64] @ DRAM,
sum: f32[64] @ DRAM):

for r in seq(0, 64):
for q in seq(0, 64):

for p in seq(0, 64):
sum[p] = 0.0
for s in seq(0, 64):

sum[p] += A[r, q, s] * C4[s, p]
for p in seq(0, 64):

A[r, q, p] = sum[p]

Currently I get 5.64 GFLOPS.

Please provide a step-by-step plan for optimizing the kernel.
Once you have a plan, begin optimizing the kernel by giving me a series of
commands, each of which are described below. I will apply the command one at a
time, and provide you with the new kernel code and its performance.

You can use the following commands:
‘‘‘json
{"optimization": "tile", "description": "tile the loop at ‘line‘ with ‘tile_size‘", "arguments": {"line": "source code of line to apply

tiling", "tile_size": "size of the tile", "outer_name": "name of the new outer loop variable", "inner_name": "name of the new inner
loop variable"}}

{"optimization": "fuse", "description": "fuse the loops at ‘line1‘ and ‘line2‘", "arguments": {"line1": "source code of first line to
fuse", "line2": "source code of second line to fuse"}}

{"optimization": "reorder", "description": "reorder the outer loop at ‘line‘ to be the inner loop", "arguments": {"line": "source code
of outer loop to reorder"}}

{"optimization": "fission", "description": "fission the loop containing ‘line‘ into two consecutive loops, splitting at ‘line‘", "
arguments": {"line": "source code of line to fission at", "location": "split (before | after) ‘line‘"}}

{"optimization": "unroll", "description": "fully unroll the loop at ‘line‘", "arguments": {"line": "source code of loop to unroll"}}
‘‘‘

When you are ready to give the optimization, end your message with JSON as follows:
‘‘‘
APPLY: {"optimization": "optimization name", "arguments": {"arg1": "value1", ...}}
‘‘‘
Only give a single command at a time. Do not give multiple commands in a single
message.

Important Notes:
- Consider reordering loops before applying tiling or vectorization.
- Reorder loops to maximize data reuse and minimize cache misses.
- Assume matrices are stored in row-major order.
- If the same source line appears multiple times in the code, end the line
with ‘ #N‘ where ‘N‘ is the occurrence number (0-indexed). For example,
‘for i in seq(0, 32): #0‘.

Fig. 12. Task description for scheduling the doitgen kernel.

ASSISTANT: To optimize the given kernel, we should focus on improving data locality and reducing cache misses. Here’s a step-by-step
plan:

1. **Loop Reordering**: We’ll start by reordering the loops to maximize data reuse. The innermost loop should iterate over the dimension
that allows us to access continuous memory locations, which is beneficial for a row-major storage format.

2. **Loop Tiling**: This technique will help in fitting the data accessed by the loops into the L1 or L2 cache, reducing the number of
cache misses.

3. **Loop Unrolling**: This can help to increase the instruction level parallelism by executing multiple iterations of a loop
simultaneously. It can also reduce the loop overhead.

4. **Loop Fusion**: If applicable, we can combine loops that iterate over the same range to reduce loop overhead and improve cache
locality.

5. **Vectorization**: Since the target hardware supports AVX2, we should ensure that the innermost loops are conducive to vectorization
by the compiler, which can significantly speed up the computations.

Starting with loop reordering, we aim to access ‘A‘ and ‘C4‘ in a more cache-friendly manner. Currently, the access pattern to ‘A‘ and ‘
C4‘ in the innermost loop (‘sum[p] += A[r, q, s] * C4[s, p]‘) suggests that reordering the loops to bring ‘s‘ loop outside could be
beneficial. This would align the access to ‘C4‘ continuously in memory.

Let’s start by reordering the loops to bring the ‘s‘ loop outside of the ‘p‘ loop:

APPLY: {"optimization": "reorder", "arguments": {"line": "for p in seq(0, 64): #1"}}
==

USER:
An error occurred while applying the optimization:
argument 1, ’nested_loops’ to reorder_loops: expected the body of the outer loop to be a single loop, but it was a def doitgen(A: f32

[64, 64, 64] @ DRAM, C4: f32[64, 64] @ DRAM,
sum: f32[64] @ DRAM):

for r in seq(0, 64):
for q in seq(0, 64):

...
for p in seq(0, 64):

A[r, q, p] = sum[p] # <-- NODE
Please fix the error and try again.

[a few more errors follow...]

ASSISTANT: It appears that my previous attempts to specify the fission location were incorrect. Let’s try a different approach to
optimize the kernel without relying on fission at this point.

Given the structure of the loops and the constraints we’re facing with the fission command, let’s attempt to optimize the kernel by
tiling the loops instead. Tiling can help improve cache locality and potentially expose more opportunities for optimization.

We’ll start by tiling the ‘p‘ and ‘s‘ loops, which are involved in the computation ‘sum[p] += A[r, q, s] * C4[s, p]‘. This should help
keep the accessed data in cache, reducing cache misses. We’ll choose a tile size that is likely to fit well within the L1 cache.

Let’s tile the ‘p‘ loop with a size of 16, which is a common choice for small tiles that fit well in cache lines:

APPLY: {"optimization": "tile", "arguments": {"line": "for p in seq(0, 64): #1", "tile_size": "16", "outer_name": "p_outer", "inner_name
": "p_inner"}}

==

USER:
I have applied the optimization. The new kernel code is as follows:

def doitgen(A: f32[64, 64, 64] @ DRAM, C4: f32[64, 64] @ DRAM,
sum: f32[64] @ DRAM):

for r in seq(0, 64):
for q in seq(0, 64):

for p in seq(0, 64):
sum[p] = 0.0
for s in seq(0, 64):

sum[p] += A[r, q, s] * C4[s, p]
for p_outer in seq(0, 4):

for p_inner in seq(0, 16):
A[r, q,
p_inner + 16 * p_outer] = sum[p_inner + 16 * p_outer]

The new code achieves 6.06 GFLOPS. Please give me another optimization to
apply, using the same format as before.

Fig. 13. LLM autoscheduling excerpt for doitgen, showing erroneous schedule commands and eventual recovery.

ASSISTANT: It seems that directly fusing the ‘r‘ and ‘q‘ loops is not feasible due to their structural positions or other constraints in
the code. Let’s consider another optimization strategy that might be more straightforward to apply given the current loop
structure.

Since we’ve seen some benefits from tiling and unrolling, let’s try to further optimize by unrolling another loop. The ‘s_outer‘ loop,
which controls the outer part of the tiled ‘s‘ loop, is a candidate for unrolling. This could potentially reduce loop overhead and
increase the efficiency of the computations inside.

Here’s the command to fully unroll the ‘s_outer‘ loop:

APPLY: {"optimization": "unroll", "arguments": {"line": "for s_outer in seq(0, 4):"}}
==

USER:
I have applied the optimization. The new kernel code is as follows:

def doitgen(A: f32[64, 64, 64] @ DRAM, C4: f32[64, 64] @ DRAM,
sum: f32[64] @ DRAM):

for r in seq(0, 64):
for q in seq(0, 64):

for p in seq(0, 64):
sum[p] = 0.0
sum[p] += A[r, q, 0] * C4[0, p]
sum[p] += A[r, q, 1] * C4[1, p]
...
sum[p] += A[r, q, 62] * C4[62, p]
sum[p] += A[r, q, 63] * C4[63, p]

for p_outer in seq(0, 4):
A[r, q, 16 * p_outer] = sum[16 * p_outer]
A[r, q, 1 + 16 * p_outer] = sum[1 + 16 * p_outer]
...
A[r, q, 14 + 16 * p_outer] = sum[14 + 16 * p_outer]
A[r, q, 15 + 16 * p_outer] = sum[15 + 16 * p_outer]

The new code achieves 43.33 GFLOPS. Please give me another optimization to
apply, using the same format as before.

Fig. 14. The LLM finds an effective transformation for doitgen.

