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Abstract

Non-ergodic ground-motion models for California,
Ground-motion embedment factors for the Seattle Region, and

Global fault displacement model

by

Grigorios Lavrentiadis

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Norman A. Abrahamson, Co-chair

Professor Adda Athanasopoulos-Zekkos, Co-chair

Three topics related to seismic hazard estimation are presented in this study: a non-ergodic
ground-motion model (GMM) for California, an approach to adjust a GMM for the site
conditions in Pacific North West, and a fault displacement model.

A new approach is used in the development of a fully non-ergodic GMM for pseudo-spectral
accelerations (PSa). First, a non-ergodic effective Fourier amplitude spectrum (EAS) GMM
is derived, and then, through random vibration theory (RVT), it is converted to a PSa
non-ergodic GMM. The advantage of this two-step approach is that it can better capture
the non-ergodic source, path, and site effects through the small magnitude earthquakes.
Fourier transform is a linear operator, and therefore, the non-ergodic effects from the small
magnitude events can be applied directly to the large magnitude earthquakes. The Bayless
and Abrahamson (2019b) ergodic EAS GMM is used as a backbone for the non-ergodic
EAS GMM; the non-ergodic effects related to the source and site are modeled as spatially
varying coefficients, and the non-ergodic effects related to the path are captured through
a cell-specific anelastic attenuation. Two non-ergodic PSa GMMs are developed using the
ASK14 (Abrahamson et al., 2014) and CY14 (Chiou and Youngs, 2014) ergodic GMMs as
backbone models, respectively. The PSa non-ergodic effects are expressed as ergodic to
non-ergodic PSa ratios, which is the adjustment that needs to be applied to an ergodic PSa
GMM to incorporate the non-ergodic effects. To calculate these ratios, first both the ergodic
and non-ergodic EAS are calculated for a scenario of interest (M , Rrup, VS30, xeq, xsite, etc.)
and then, with RVT, the equivalent PSa values are computed. It is the second step that
introduces the magnitude dependence in the non-ergodic PSa terms. This approach leads to
a 30 to 35% reduction in the total aleatory standard deviation compared to the corresponding
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ergodic GMMs. The epistemic uncertainty associated with the PSa ratios is small in areas
close to stations and past events; in areas with sparse data, the mean of the non-ergodic
ratios goes to zero implying ergodic scaling and the epistemic uncertainty increases.

The site amplification in most GMMs is quantified by the time-average shear-wave velocity of
the top 30m (VS30). However, VS30 is not a fundamental physical property that controls site
amplification. It works as predictor variable for site amplification due to its correlation with
the site velocity profile (VS(z)), which depends on the empirical data set used to develop each
GMM. The VS30 scaling of the NGAWest2 and subduction GMMs may not be applicable to
Seattle, as the geological environment in Seattle is different to the geological environments in
California and Japan, where most of the data in NGAWest2 and subduction GMMs were
recorded, respectively. GMM-to-site scale factors are developed to adjust the NGAWest2
and subduction GMM to the site conditions in Pacific North West. The amplification ratios
between the VS(z) profiles implied by the GMMs and VS(z) profiles representative for Seattle
are estimated with 1D site response analyses.

A model in the wavenumber domain is developed to describe the surface fault displacements
for use in probabilistic fault rupture hazard analysis (PFDHA). The advantages of this method
are that it avoids the surface-rupture length normalization and that it considers the along
strike correlation of displacements. A regularized Fourier Transform (RFT) is used to compute
the Fourier spectra from unevenly sampled surface-slip data which could be potentially biased
towards the peaks. The amplitude spectrum is based on the Somerville et al. (1999) model
used for the generation of slip distributions in kinematic simulations, and the phase-derivative
model is defined as a logistic distribution. Compared to previous models, the wavenumber-
spectrum method leads to narrower tails of the slip distribution which is important for
PFDHA at long return periods. Near the center of the rupture, the wavenumber-spectrum
method gives slip distributions that are consistent with the distributions from the empirical
data, but at the ends of the rupture, the wavenumber-spectrum method underestimates the
range of the slip. This discrepancy may reflect limitations of the current data sets in terms
of mapping the slip near the ends of the ruptures. Improved surface rupture data sets that
are currently being compiled will provide improved constrains at the ends of the ruptures.
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Chapter 1

Introduction

1.1 Overview

In seismically active regions, the estimation of earthquake hazard is of paramount importance
due to the treat to human life and significant financial losses. Any given earthquake can lead
to a number of different hazards including: ground shaking and surface rupture.

Traditionally, the hazard due to ground shaking is estimated through a probabilistic
seismic hazard analysis (PSHA), which computes the annual rate of exceeding a ground-
motion parameter at a site of interest. PSHA breaks the problem in two parts: the seismic
source characterization (SSC), and the ground-motion estimation. SSC involves the modeling
of the earthquake scenarios which includes the rate, magnitude distribution and location of
earthquakes that affect the seismic hazard at the site of interest. For a given earthquake
scenario, the level of ground motion at the site of interest is estimated through Ground-
motion models (GMMs). Due to the small number of regional data, GMMs are typically
derived with global ground-motion data sets based on the ergodic assumption. These models
have robust median estimates due to the larger data sets of global models, but they also
have large aleatory variability, which is the range of ground motion for a given earthquake
scenario, due to combining data from different regions with different medians. The large
aleatory variability of the ergodic GMMs leads to flat hazard curves which, for important
structures that are designed for large return periods, results to large values of design ground
motions. In the non-ergodic approach, it is recognized that different parts of the world have
systematic differences in the source, path, and site effects, which leads to a reduction aleatory
variability, as some of the assumed ergodic aleatory variability is actually repeatable and
hence predictable. The repeatable effects lead to a shift in the median values (either increase
or decrease). The range of systematic effects is quantified by the epistemic uncertainty, which
in areas with little data, where the systematic effects cannot be estimated, accommodates the
reduction of aleatory variability. Non-ergodic GMMs are a promising development in PSHA
because their smaller aleatory variability can have a large impact on the seismic hazard at
large return periods. Non-ergodic GMMs for the state of California are developed in this
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study.
In the Seattle region, it is common to use the NGAWest2 GMMs to estimate the ground

motion from shallow crustal events, and subduction GMMs to estimate the ground motion
from the subduction zones. Both GMM types use the time-averaged shear-wave velocity
measured from the surface to a depth of 30m, VS30, as the main site parameter. However, it
may not be appropriate to use the site VS30 in the NGA-W2 GMMs in Seattle, which often
done by the state of practice, as VS30 is not a fundamental physical property that controls site
amplification. VS30 works as a predictor of site amplification due to its correlation with the
site VS(z) profile, but the VS30 − VS(z) correlation depends on the empirical ground-motion
data set used to develop each GMM. The geological environment in Seattle, in the scale of
kilometers, is different to the geological environment in California, where most of the data in
NGAWest2 data set were recorded, and Japan, where most of the data used in subduction
GMMs were recorded. An approach to adjust shallow crustal and subduction GMM for the
site conditions in the Pacific North West is presented in this study.

The surface rupture hazard is estimated in a framework that is similar to ground-motion
hazard. The main difference between PSHA and probabilistic fault displacement hazard
analysis (PFDHA) is that instead of a GMM a fault displacement model (FDM) is used.
Current FDMs are derived with small data-sets and simplified statistical assumptions, which
assume that the fault displacements along the strike of the fault are uncorrelated. Various
tapering functions (i.e. elliptical, quadratic, triangular, etc.), which have been adopted in
existing FDMs to model the reduction of slip towards the ends of ruptures, are based on
empirical observations but without a underlying physical basis to constrain their extrapolation
to larger magnitude earthquakes. Furthermore, existing FDMs normalize the along-strike
distance (x) by the surface rupture length (SRL) implying that the tapering function scales
linearly with SRL, which may not be appropriate. The wavenumber model developed in this
study considers the along-strike slip correlation, avoids the x/SRL normalization, and is
consistent with the seismological modeling of slip on rupture planes.

1.2 Organization

This thesis is organized in the following chapters:

• Chapter 2 describes the formulation of a non-ergodic ground-motion model (GMM)
for effective amplitude spectral (EAS) values for California. EAS, which is defined in
Goulet et al. (2018), is a smoothed rotation-independent Fourier amplitude spectrum of
the two horizontal components of an acceleration time history. The main motivation for
developing a non-ergodic EAS GMM, rather than a spectral acceleration GMM, is that
the scaling of EAS does not depend on spectral shape, and therefore, the more frequent
small magnitude events can be used in the estimation of the non-ergodic terms. The
model is developed using the California subset of the NGAWest2 dataset (Ancheta et al.,
2013). The Bayless and Abrahamson (2019b) (BA18) ergodic EAS GMM was used
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as backbone to constrain the average source, path, and site scaling. The non-ergodic
GMM is formulated as a Bayesian hierarchical model: the non-ergodic source and site
terms are modeled as spatially varying coefficients following the approach of Landwehr
et al. (2016), and the non-ergodic path effects are captured by the cell-specific anelastic
attenuation attenuation following the approach of Dawood and Rodriguez-Marek (2013).
Close to stations and past events, the mean values of the non-ergodic terms deviate
from zero to capture the systematic effects and their epistemic uncertainty is small. In
areas with sparse data, the epistemic uncertainty of the non-ergodic terms is large, as
the systematic effects cannot be determined. The non-ergodic total aleatory standard
deviation is approximately 30 to 40% smaller than the total aleatory standard deviation
of BA18. This reduction in the aleatory variability has a significant impact on hazard
calculations at large return periods. The epistemic uncertainty of the ground motion
predictions is small in areas close to stations and past events.

• Chapter 3 describes a new approach for creating a non-ergodic PSa ground-motion
model which account for the magnitude dependence of the non-ergodic effects. In this
approach, the average PSa scaling is controlled by an ergodic PSa GMM, and the
non-ergodic effects are captured with non-ergodic PSa ratios, which are the adjustment
that needs to be applied to an ergodic PSa GMM to incorporate the non-ergodic effects.
The non-ergodic PSa ratios are based on EAS non-ergodic effects and are converted
to PSa through Random Vibration Theory (RVT). The advantage of this approach is
that it better captures the non-ergodic source, path, and site effects through the small
magnitude earthquakes. Due to the linear properties of Fourier Transform, the EAS
non-ergodic effects of the small events can be applied directly to the large magnitude
events. This is not the case for PSa, as response spectrum is a non-linear operator,
making PSa non-ergodic effects depended on the spectral shape. Two PSa non-ergodic
GMMs are derived using the ASK14 (Abrahamson et al., 2014) and CY14 (Chiou and
Youngs, 2014) GMMs as backbone models, respectively. The non-ergodic EAS effects
are estimated with the LAK21EAS GMM, presented in Chapter 3. The RVT calculations
are performed with the V75 (Vanmarcke, 1975) peak factor model, the D5−75a estimate
of AS96 (Abrahamson and Silva, 1996) for the ground-motion duration, and BT15
(Boore and Thompson, 2015) oscillator duration model. The California subset of the
NGAWest2 database (Ancheta et al., 2014) is used for both models. The total aleatory
standard deviation of the two non-ergodic PSa GMMs is approximately 30 to 35%
smaller than the total aleatory standard deviation of the corresponding ergodic PSa
GMMs. This reduction has a significant impact on hazard calculations at large return
periods. In remote areas, far from stations and past events, the reduction of aleatory
variability is accommodated by an increase of epistemic uncertainty.

• Chapter 4 describes an approach to adjust a ground-motion model for the site conditions
in Pacific North West. In most GMM, the site conditions are quantified by the time-
averaged shear-wave velocity measured from the surface to a depth of 30m (VS30).
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However, the VS30 works as a predictor of site amplification due to the correlation
of VS30 and the site VS(z) profile. This correlation between VS30 and VS(z) implicit
in GMMs depends on the empirical ground-motion data set used to develop the VS30

dependence of the site amplification in the GMM. The NGA-W2 GMMs (Gregor
et al., 2014) for shallow crustal events are dominated by data from California, so
the correlation between the site amplification and the VS30 in the NGA-W2 GMMs
represents the depositional environment in California. Similarly, subduction GMMs are
derived with ground-motion data that is mainly from Japan; as a result, the correlation
between the site amplification and the VS30 in the subduction GMMs represents the
depositional environment in Japan. In the scale of kilometers which affects ground-
motion amplification of long periods, the depositional environment in Seattle is different
to the depositional environments in California and Japan. In this chapter, GMM-to-site
scale factors for shallow crustal and subduction GMMs are developed for structure in
Seattle with a fundamental period greater than 1 sec. For this, the amplification ratios
between the host and target profiles are estimated with 1D site response analyses. The
host profiles are VS(z) that consistent with the CA and JP VS30 scaling, while the target
profiles are representative for the site conditions in Seattle.

• Chapter 5 describes a new wavenumber-domain methodology to model surface slip
profiles and generate potential displacement profiles for use in PFDHA. The benefits
of this approach are that it captures the correlation of the surface slip variability
along strike and it avoids the surface rupture length normalization. A regularized
Fourier Transform (RFT) approach is used to compute the Fourier spectra from uneven
sampling and biased sampling, typical of surface-slip data sets. The wavenumber
amplitude spectrum for surface displacements is modeled by a functional form based
on the shape of the Butterworth filter. The proposed RFT approach is validated
using synthetic data-set with known model parameters which are down-sampled to
be consistent with the sampling in empirical surface-rupture data sets. Preliminary
models for the scaling of the amplitude and phase derivative as a function of the surface
rupture length are developed using a subset of the earthquakes compiled by Wesnousky
(2008). The analyzed events range from magnitude 6.1 to 7.9 and include both single
and multi-segment ruptures.
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Chapter 2

A Non-ergodic Effective Amplitude
Ground-Motion Model for California

The contents of this chapter are primarily from a journal article submitted to the Bulletin of
Earthquake Engineering by Lavrentiadis, G., Abrahamson, N.A., and Kuehn, M.N., entitled:
“A Non-ergodic Effective Amplitude Ground-Motion Model for California”, which is currently
under review.

2.1 Introduction

Probabilistic seismic hazard analyses (PSHA) estimates the annual rate of exceeding a ground-
motion parameter at a site of interest. It typically breaks the problem in two parts: the
seismic source characterization and the ground-motion model (GMM). The first part defines
the rate, the magnitude distribution, and the location distribution of earthquakes in a region,
and the second part, which is the focus of this study, provides the probability of exceeding
the ground-motion for a specific earthquake scenario. Most GMM are derived empirically
using strong-motion datasets and define the distribution of the ground-motion parameter
as a function of source, path, and site parameters such as magnitude (M), closest rupture
distance (Rrup) and time-averaged shear-wave velocity in the top 30m (VS30). Traditionally,
due to the scarcity of regional data, GMM were developed under the ergodic approach which
assumes the statistical properties of the ground-motion parameter do not change in space
(Anderson and Brune, 1999). These ergodic models tend to have large aleatory variability
as they treat some of the systematic effects for a specific site/source location as random
variability that can occur anywhere. Examples of models that have been developed under
this approach are the NGA-West GMMs for California (Abrahamson et al., 2008), and the
Douglas et al. (2014) GMM for Europe; however, as more data are collected, the ergodic
assumption can be relaxed, and repeatable effects related to the source, path and site can be
properly modeled, which leads to a decrease in the aleatory variability. This reduction has
a large impact on the hazard at large return periods because, the ground-motion aleatory
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variability controls the slope of the hazard curves which has a large influence on the hazard at
large return periods. Al Atik et al. (2010) describes how the aleatory variability of an ergodic
model can be separated into epistemic uncertainty related to the systematic source, path,
and site terms, and the reduced aleatory variability of a non-ergodic GMM. The epistemic
uncertainty refers to the range by which the non-ergodic terms vary in areas with no available
data to constrain them. In areas with data from past earthquakes, the non-ergodic terms can
be estimated, and their epistemic uncertainty can be reduced.

The first step in this new paradigm was to create a regional GMM or a global GMM with
some regionalized terms. Regional GMMs are developed with smaller regional data-sets, for
instance Akkar and Çaǧnan (2010) for Turkey, Bindi et al. (2011) for Italy, Bragato and
Slejko (2005) for Eastern Alps, and Danciu and Tselentis (2007) for Greece. These models
have smaller aleatory variability than global ergodic GMMs, but they suffer from weaker
constrains on the scaling due to the smaller size of the regressed data sets. Global GMMs
with regionalized terms are developed with large global datasets, the same way ergodic GMM
are developed but with the difference that some of the scaling terms are estimated separately
for each region. The NGAWest2 GMM (Bozorgnia et al., 2014) followed this approach. For
example, in Abrahamson et al. (2014), both the VS30 and anelastic attenuation scaling terms
were regionalized: they have a different set of coefficients for Califonia, China, Japan, and
Taiwan.

Partially non-ergodic GMMs that only capture the systematic site effects, known as
single station GMMs, lead to an approximately 30% reduction in the aleatory variance
compared to an ergodic GMM (Coppersmith et al., 2014; Bommer et al., 2015; Tromans
et al., 2019). Similarly, other researchers have developed partially non-ergodic GMMs that
capture repeatable effects related to the source (Yagoda-Biran et al., 2015), path (Dawood
and Rodriguez-Marek, 2013; Kuehn et al., 2019), and single source/single site (Hiemer et al.,
2011). Fully non-ergodic GMMs include non-ergodic terms to capture simultaneously all the
aforementioned systematic effects (source, path, and site); these type of models have 60 to
70% smaller aleatory variance than ergodic GMMs (Lin et al., 2011; Landwehr et al., 2016;
Abrahamson et al., 2019).

The model presented in this study is a fully non-ergodic GMM that captures the systematic
effects of the source, site, and anelastic attenuation from the path. It is developed as spatially
varying coefficient model (VCM), following the methodology used in Bussas et al. (2017) and
Landwehr et al. (2016). The non-ergodic anelastic attenuation is modeled with the cell-specific
anelastic attenuation similar to Dawood and Rodriguez-Marek (2013) and Abrahamson et al.
(2019). VCMs impose a spatial correlation on the coefficients, so that they vary continuously
from location to location; some of the methods to impose the spatial correlation are: splines,
Gaussian Processes (GPs), or neural networks. This is done in order to reduce the number free
parameters and to get a more stable estimate of the non-ergodic effects. In the cell-specific
anelastic attenuation approach, the domain of interest is broken into cells which all have
their own attenuation coefficient. The attenuation along a path from a source to site is equal
to the sum of attenuation of the cells that it traverses.

One distinction of the current model from other non-ergodic GMMs is that it is developed
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for effective amplitude spectral (EAS) values instead of response spectral accelerations. This
is done so that the more frequent smaller magnitude earthquakes (less than magnitude 3) can
be used in the estimation of the non-ergodic terms for linear effects and still be applicable to
larger magnitudes. The response spectrum is a non-linear operator and the scale factors for
response spectral values depend on the spectral shape. This dependence in on the spectral
shape makes it difficult to use small magnitude earthquakes in the development of a GMM
that is applicable to larger magnitudes due to the differences in the spectral shapes of small
and large magnitude earthquakes. This happens because the response spectral value is the
peak in the time domain and the frequencies that affect the peak value depend on the spectral
shape. The shape of a response spectrum and period of the peak change with magnitude: as
the magnitude of an earthquake increases, the period of the response spectrum peak also
increases, making the short period scaling of a PSa GMM magnitude dependent. Therefore,
the short-period non-ergodic terms from smaller magnitudes may not be applicable to larger
magnitudes without modification.

Figure 2.1 shows the average shape of a normalized response spectrum for a M3 and
M7.5 earthquake: the M3 response spectrum has its peak at T = 0.1sec whereas, the M7
response spectrum from has its peak at T = 0.3sec. Due to this spectral shape difference, the
PGA scaling will be consistent with the scaling of the PSa(T = 0.1sec) at small magnitudes
and with the scaling of the PSa(T = 0.3sec) at large magnitudes. For example, to properly
capture the magnitude dependence in a PSa GMM, the VS30 coefficient for PGA would be
close to the VS30 coefficient for T = 0.1sec at small magnitudes, and it should gradually shift
towards the VS30 coefficient for T = 0.3sec as magnitude increases.

The EAS is defined in Goulet et al. (2018) as the smoothed power-averaged Fourier
amplitude spectrum (FAS) of the two horizontal components. The EAS does not suffer
from the same problem as PSa because the Fourier transform is a linear operation, and the
scaling coefficients and non-ergodic terms estimated from small magnitude earthquakes can
be applied directly to large events for linear source, path, and site effects. To ensure that
the proposed model extrapolates reasonably to scenarios outside the rage of events in the
regression data set, we use the Bayless and Abrahamson (2019b) ergodic EAS GMM (BA18)
as a backbone model; we selected BA18 because it was developed on a large global data-set,
and it includes seismological constraints to avoid oversaturation at short distances and large
magnitudes. The non-ergodic terms and cell-specific anelastic attenuation coefficients were
estimated with the total residuals of BA18 from the NGAWest2 California subset.

Lastly, one common comment regarding the usage of an EAS GMM is that, in most
seismic design methods, the intensity of the ground-motion shaking is specified in terms of
PSa and not EAS. We can use an EAS GMM and Random Vibration Theory (RVT) to
compute the equivalent PSa. RVT uses the FAS and duration of an SDOF oscillator response
to a ground motion to compute the root-mean-square amplitude of the response (xrms) using
Parseval’s theorem, and it uses the product of xrms with a peak factor to estimate the peak
response of the SDOF, which is the definition of spectral acceleration. Boore (1983) used RVT
with FAS from seismological theory to calculate the equivalent PSa, and Bora et al. (2015,
2019) derived a duration model which, when used with a Brune (1970, 1971) omega-squared
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Figure 2.1: Schematic of normalized response spectra for M 3.0 and 7.5 earthquakes

FAS model, gives predictions that are consistent with the NGAWest2 data set. Converting
the non-ergodic EAS GMM into an equivalent PSa GMM is not in the scope of this paper;
it is covered in the second part of this study.

2.2 Ground-Motion Data

The NGAWest2 data-base (Ancheta et al., 2014) includes more than 21000 recordings covering
a magnitude range from 3 to 7.9 and a closest distance range (Rrup) from 0.05 to 1500 km.
For this study, a subset of this data-base was used which included the earthquakes and
stations located in California, western Nevada, and northern Mexico. The recordings that
were identified as questionable in Abrahamson et al. (2014) were not used in the regressions.
The final data-set contains 8916 recordings from 188 earthquakes recorded at 1497 stations.
Figure 2.2 shows the magnitude-distance distribution of the data and the number of recordings
per frequency. The earthquake magnitudes in the selected data range from 3.1 to 7.3 and
the distances range from 0.1 to 300 km. The usable frequency range of the majority of the
recordings spans from 1 and 10hz.

Figure 2.3 shows the spatial distribution of the data: most of the stations are located in
Los Angeles, Bay Area, and San Diego metropolitan areas, whereas in less populated areas,
such as northern-eastern California the spatial density of the stations is lower. This difference
in the density of stations has a large impact on the distribution of epistemic uncertainty of
the non-ergodic GMM: the epistemic uncertainty is higher is areas with lower station density
which makes a case for expanding the strong-motion networks in these regions. In this study,
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Figure 2.2: Selected data from the NGAWest2 database. The left figure shows Magnitude
- Distance distribution of the subset used in the regression analysis. The right figure the
number of recordings per frequency used in the regression analysis.

Figure 2.3: Spatial distribution for earthquakes and station used in this study.

the location of the earthquakes and stations is defined in kilometers in UTM coordinates;
the longitude/latitude coordinates were transformed to UTM coordinates using the WGS84
reference ellipsoid and 11S UTM zone.

2.3 Non-ergodic Model Development

Rather than developing the non-ergodic GMM from scratch, the Bayless and Abrahamson
(2019b) (BA18) ergodic EAS GMM was used as a back-bone model to describe the average
ground-motion scaling. The main reasons for that decision were that: i) the local data
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may non be adequate to estimate the scaling of complex terms, and ii) the adoption of the
constraints built into BA18 ensures that it extrapolates properly outside the range of data.

2.3.1 Functional Form

A GMM (Equation (2.1)) is composed of the median model (ymed) and the aleatory variability.
The median model describes the average scaling of a ground-motion parameter with magnitude,
distance, site conditions, etc.; it includes any systematic effects related the source, site, and
path. The aleatory variability describes the misfit between a ground-motion observation and
ymed which is related to the true or apparent (due to simplified modeling) stochastic behavior
of the source, site and path. It is typically expressed as the sum of the between-event (δBe)
and within-event (δWe,s) terms. δBe,s describes average shift of the ground motion for an
earthquake, e, from ymed, and δWe,s describes the variability of the ground motion at site, s
from the median ground motion of that earthquake.

ln(EAS) = ymed + δBe + δWe,s (2.1)

The median EAS model of Bayless and Abrahamson (2019b) is formulated as:

ymed = fM + fR + fS + fztor + fNM + fZ1 (2.2)

where fM is the magnitude scaling, fR is the path scaling, fS is the site scaling, fztor is the
top of rupture scaling, and fNM is the normal-fault scaling. The fM , fR and fS terms were
modified to include the additional non-ergodic terms, whereas fztor, fNM and fZ1 were kept
fixed. The different terms and coefficients are described in detail in Bayless and Abrahamson
(2019b) and Chiou and Youngs (2014).

Magnitude Scaling

The fM in the non-ergodic model is:

fM = c1 + c2(M − 6) +
c2 − c3

cn
ln(1 + ecn(cM−M)) + δc0 + δc0N/S + δc1a(xeq) (2.3)

As an example, Figure 2.4 shows the magnitude scaling at 5hz. In summary, c1 is the
intercept of the model, c2 controls the magnitude scaling for large magnitudes where the
corner frequency is smaller than the frequency of interest, (c2−c3)/cn describes the magnitude
scaling at small magnitudes, where the corner-frequency is larger than the frequency of interest,
cn controls the width of the transition zone between small and large magnitude earthquakes,
and cM is the magnitude at the center of the transition zone.

The additional coefficients in the non-ergodic model are δc0, δc0N/S, and δc1a. δc0 is added
to allow a small constant shift in the non-ergodic model due the difference in the weighting
of residuals between the ergodic and non-ergodic GMMs. δc1a is a function of the earthquake
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cM
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Figure 2.4: Sketch of Bayless and Abrahamson (2019b) magnitude scaling at 5hz for VS30 =
500m/sec and Rrup = 20km

coordinates, xeq, and is intended to capture repeatable non-ergodic effects related to the
source location. For instance, regions with a higher than average median stress drop will have
higher than average median ground-motions resulting in a positive δc1a. δc0N/S is a regional
term that corrects a potential bias in the magnitude estimation of small earthquakes between
northern and southern California. δc0N/S is applied to earthquakes less than magnitude 5
and frequencies less than 5hz. The vertices which define the polygons for the northern and
southern CA subregions are summarized in Table 2.1. The border between northern and
southern CA corresponds approximately to the boundary between the Northern California
Seismic Network (NCSN) and Southern California Seismic Network (SCSN).

The δc0N/S term is believed to address potential magnitude inconsistencies between
northern and southern CA because the NCSN/SCSN boundary was also used in the NGAWest2
dataset Ancheta et al. (2013) for the selection of source parameters (magnitude, hypocenter
location, etc.) for small-to-moderate (less than M 5) earthquakes. If a small earthquake was
located north of the boundary, the NCSN catalog was used for the source parameters, whereas
if a small earthquake was located south of the boundary, the SCSN/CIT catalog was used
for the source parameters. Preliminary regressions which did not include the δc0N/S term
showed significant differences in δc1a between northern and southern CA at small frequencies
(Section 2.4.5). It was found that these differences were caused by a noticeable bias in the
total residuals of BA18 between northern and southern CA for small magnitude events. Chiou
et al. (2010) made a similar observation for the total residuals of CY08: they found a regional
difference in median ground-motion amplitude between north and south CA earthquakes
which was more noticeable at small magnitude events. The results in section 2.4 show that
the difference in the median ground-motion of small events between northern and southern
CA is approximately 0.4 in natural-log units at frequencies between 0.2 and 5.0 hz. At
frequencies well below the corner frequency, a unit change in magnitude leads to a factor
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Table 2.1: Vertices of Northern and Southern CA regions for δc0N/S

Northern CA Southern CA
lat. (deg) lon. (deg) lat. (deg) lon. (deg)

34.5175 -121.5250 37.9775 -116.6225
39.8384 -125.2341 35.2944 -113.4142
41.3595 -124.1684 31.4772 -115.0250
41.3995 -120.7227 31.0082 -117.6898
37.9775 -116.6225 34.5175 -121.5250

of 32 change in the amplitude of the ground motion; thus, a 0.4 natural-log difference in
ground motion can be caused by a 0.11 bias in the magnitude estimation between the NCSN
and SCSN networks, which could be due to different assumptions in the velocity models or
other input parameters used to determine the magnitude of an event. Currently, the δc0N/S

term is not applied to larger than M 5 events as the magnitude of those events is determined
with fault inversion using data from global networks; however, this issue should be further
investigated in future studies to find the exact cause of this regional difference.

Path Scaling

The functional form for fP in the model is:

fP =c4 ln (Rrup + c5 cosh (c6 max(M − chm, 0))) + (−0.5− c4) ln(R̂)

+

ncell∑
i

ccA i(xcell i)∆Ri

(2.4)

where R̂ =
√
R2
rup + 502. The coefficient c4, which corresponds to the geometrical attenuation,

manages how the ground motion attenuates at short distances. The coefficient c5 describes
the short-distance saturation, this term increases the effective distance for large magnitudes
to capture the finite-fault effects (i.e. as the earthquake magnitude increases, the size of the
rupture increases resulting in the seismic energy being spread out over more distant segments
of the rupture leading to a larger effective rupture distance). Coefficients c4 and c6 control
the magnitude saturation at short distances. Full saturation at zero distance is achieved when
c2 = −c4c6 is satisfied, non full saturation (i.e. positive magnitude scaling) is achieved when
c2 > −c4c6. At distances greater than 50km, the term (−0.5 − c4) cancels the empirically
estimated geometrical attenuation and fixes it to 0.5 which is the theoretical geometrical
attenuation of surface waves. To maintain proper distance scaling and magnitude saturation
in the non-ergodic model, all the aforementioned coefficients were fixed to their BA18 values.
The non-ergodic distance scaling is captured with the cell-specific anelastic attenuation.
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Figure 2.5: Schematic showing the calculation of the cell-path segments for the cell-specific
anelastic attenuation. xsite is the site location, xcls is the closest point on the rupture to the
site, the dashed line indicates the source-to-site path, and the ∆Ri of the ith cell (reproduced
from Abrahamson et al. (2019)).

The anelastic attenuation is modeled with the cell-specific anelastic approach, first
proposed by Dawood and Rodriguez-Marek (2013) and then extended by Kuehn et al. (2019)
and Abrahamson et al. (2019). In this method, the states of California and Nevada are
broken into 25× 25km cells and, for each record, the ray path which connects the site (xsite)
to the closest point on the rupture (xcls) is broken into cell-path segments (∆Ri) which are
lengths of the ray within each cell (Figure 2.5). For each record, the sum of cell-path segment
lengths

∑Nc
i=0 ∆Ri, is equal to Rrup.

The cell-specific anelastic attenuation is modeled by
∑Nc

i=0 ccA i∆Ri where ccA i is the cell
attenuation of the ith cell. In this GMM, ccA is modeled so that, in areas away from past
paths ccA i reverts to c7 which is the anelastic attenuation coefficient in BA18, making the
anelastic attenuation of the non-ergodic model equal to the anelastic attenuation of BA18
(
∑Nc

i=0 ccA i∆Ri = c7Rrup); while in areas that are covered by the paths in NGAWest2 dataset,
ccA deviates from c7 to capture the regional attenuation. Figure 2.6 shows the cells and the
path coverage in the selected subset of the NGA-West2 dataset, as well as, the number of
paths per cell.

Site Scaling

The functional form of the fS the model is:

fS = c8 ln

(
min(Vs30, 1000)

1000

)
+ fNL + δc1b(xsite) + δS2S (2.5)
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Figure 2.6: The left figure shows the path coverage for the cell-specific anelastic attenuation
in the CA subset of NGAWest2. The right figure shows the number of paths per cell.

The ergodic components of the site term are: c8 which controls the VS30 scaling of the ground
motion, and fNL which is the non-linear site amplification term. The non-ergodic effects
related to the site are expressed by the δS2S and δc1b coefficients. The station constant,
δc1b, which has a finite correlation length, describes the broader adjustments to the backbone
model to express the regional site effects. δS2S has a zero correlation length and acts on top
of δc1b to describe the site specific adjustments. Coefficients with a finite correlation length
vary continuously across the domain of interest, whereas coefficients with zero correlation
length vary independently from location to location.

The remaining terms fztor, fNM and fZ1 where kept as they are in the ergodic GMM .

2.3.2 Formulation of spatially varying coefficient model

The non-ergodic terms, cell-specific coefficients, and aleatory terms, hereafter collectively
called model parameters (~θ), were estimated by describing the GMM as a hierarchical Bayesian
model using the computer software STAN (Stan Development Team, 2019). In Bayesian
statistics, the posterior distribution of the parameters is proportional to the likelihood times
the prior distribution of the parameters:

p(~θ|y, x) ∝ L(~θ)p(~θ) (2.6)

The prior distributions are the distributions that the model parameters are assumed to follow
in the absence of data; the likelihood function, in general terms, is the probability of observing
the data given the model parameters; and the posterior distributions are the model-parameter
distributions informed by the data.
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The likelihood can be estimated from the density function of the ground motion:

L(~θ) = pdf(~y|f(x, ~θ), φ2
0 + τ 2

0 ) (2.7)

where f(x, ~θ) is the functional form for the median non-ergodic ground-motion:

f(x, ~θ) = (ferg(M,Rrup, VS30, ...)− c7Rrup)

+ δc0 + δc0MS + δc1a + δc1b + δS2S +

ncell∑
i

ccA i(xcell i)∆Ri

(2.8)

It is equal to the ergodic backbone model without the effect of anelastic attenuation
ferg(M,Rrup, VS30, ...)− c7Rrup), plus the non-ergodic spatially varying constants that have
been described the previous section (δci), and the cell-specific anelastic attenuation.

The model is called hierarchical because the prior distributions are defined in multiple
levels. At the lower level, ~θ follow some prior distributions, which are defined in terms of
a different set of parameters, hereafter called hyper-parameters ~θhyp, which, in turn, either
follow some other prior distributions, or they are fixed. In this study, the non-ergodic ergodic
regression was performed in two phases: in the first phase, which included a smaller number
of frequencies, ~θhyp were defined by their own prior distributions that are described later

in this section, whereas, in the second phase, most of ~θhyp were fixed to their smoothed
values, estimated from first phase, and the remaining hyperparameters were left free to follow
the same prior distributions as in the first phase. The main reasons for fixing ~θhyp in the
second phase were to ensure that there are no abrupt changes in the non-ergodic terms
between frequencies, to constrain the model to a more physical behavior, and to reduce
the computational cost of the second phase which included more frequencies. Table 2.2
summarizes the parameters that were classified as ~θ and ~θhyp; the parameters composing ~θ

have been defined in Section 2.3.1, the hyper-parameters composing ~θhyp have defined later

in this section. Table 2.3 summarizes the ~θhyp that were free at each phase. If ~θhyp is free,

the prior distribution of a model parameter, θi, can be explicitly defined in terms of ~θhyp as
follows:

p(θi) = f(θi)dθi =

(∫
f(θi|~θhyp)f(~θhyp) d~θhyp

)
dθi (2.9)

More specifically, the δc0 constant has a normal prior distribution with a zero mean and
a 0.1 standard deviation:

δc0 ∼ N (0, 0.1) (2.10)

The mean is set to zero because in absence of data, there should be no shift between the
ergodic and non-ergodic GMM. The standard deviation is small because any constant shift
informed by the regional data or the re-weighting of the residuals is expected to be small.
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Table 2.2: Summary of model parameters and hyper-parameters

Group Name Group Notation Components

Model parameters ~θ
δc0, δcN/S, δc1a, δc1b, δS2S,
ccA, δW 0

e,s, δB
0
e

Model hyperparameters ~θhyp
ρ1a, ψ1a, ψ1b, ρ1b, φS2S,
ρcA, ψcA, σcA, φ0, τ0

Table 2.3: Free hyper-parameters at each regression phase

Phase Free hyper-parameters

1 ρ1a, ψ1a, ψ1b, ρ1b, φS2S, ρcA, ψcA, σcA, φ0, τ0

2 φ0, τ0

For earthquakes with magnitudes less than M 5 and frequencies less than 5 hz, δc0N/S

follow a normal prior distribution with a zero mean and a 0.2 standard deviation. Preliminary
analyses, which did not include δc0N/S, had a 0.2 to 0.4 regional difference in c1a between
northern and southern California, which have a 16 and 3% probability of being exceeded with
the selected standard deviation. Therefore, the posterior distribution of δc0N/S will deviate
from zero to reach a similar range only if there is significant support by the data; otherwise,
δc0N/S will stay be close to zero implying no systematic difference between northern and
southern CA at small magnitude events.

δc0NS ∼
{

0 for M > 5 or f > 5hz
N (0, 0.2) for M < 5 and f < 5hz

(2.11)

The non-ergodic constants δc1a(xeq) and δc1b(xsite) follow multivariate normal prior
distributions with zero mean and Matern (negative exponential) covariance functions (κ). κ
imposes the spatial correlation on δc1a and δc1b: it ensures that the values of δc1a and δc1b

will be similar for earthquakes or sites in close proximity and that δc1a and δc1b would vary
continuously from location to location.

δc1a ∼ N (0, κ1a)

δc1b ∼ N (0, κ1b)
(2.12)

The covariance function between a pair of earthquakes for κ(xeq, x
′
eq) or between a pair of

stations for κ(xsta, x
′
sta) is defined in equation (2.13); x and x′ are the coordinates of the two

earthquakes or sites depending on the coefficient, ψi is the standard deviation, and ρi is the
correlation length. The ψi controls the variability of the non-ergodic coefficients, that is, how
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much the values of the coefficients could vary between locations that are far from each other.
ρ governs the length scale of the spatial variation of δci; increasing ρi makes δci to vary more
gradually with distance.

κ1a(x, x
′) = ψ2

1ae
−
√
x2−x′2
ρ1a

κ1b(x, x
′) = ψ2

1be
−
√
x2−x′2
ρ1b

(2.13)

Both ρ1a and ρ1b have inverse gamma prior distributions with distribution parameters
α and β equal to 2 and 50 which corresponds to a mode and mean of 16.7 and 50 km,
respectively.

ρ1a ∼ InvGamma(2.0, 50.0)

ρ1b ∼ InvGamma(2.0, 50.0)
(2.14)

Inverse gamma distributions are defined only for positive real numbers which is a desirable
property for the prior distributions of the correlation lengths as negative correlation lengths
do not have any physical meaning. The ρ1a and ρ1b correlation lengths are expected to be
around 10 to 50 km, where the inverse gamma distribution has most of the mass, but larger
values are also possible, if they are supported by the data, due to its exponential tail.

The prior distribution of ψ1a and ψ1b is an exponential distribution with a rate of 20

ψ1a ∼ exp(20)

ψ1a ∼ exp(20)
(2.15)

These prior distributions were chosen for ψ1a and ψ1b to penalize unnecessary model complexity
(Simpson et al., 2017). A ψi equal to zero implies no variability for δci, meaning that there are
no systematic effects related to that parameter. In an exponential distribution, most of the
mass is near zero, which allows δci to deviate from zero to capture systematic effects related
to that parameter only if there is significant support by the ground-motion observations.
For the same reason, exponential prior distributions were used in Kuehn et al. (2020) to
model the standard deviations of the regional terms in the KBCG20 partially non-ergodic
subduction-zone GMM.

The site-specific adjustment, δS2S follows a normal distribution with a zero mean and a
φS2S standard deviation:

δS2S ∼ N (0, φS2S) (2.16)

δS2S is a function of the site location, the same adjustment is applied to all ground
motions recorded at the same station.

The prior distribution for φS2S is a log-normal distribution with a logmean of −0.8 and a
standard deviation of 0.3 natural log units:

φS2S ∼ LN (−0.8, 0.3) (2.17)
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This prior distribution has a median value of 0.45, and a 16th and 84th percentile of 0.33 and
0.6, respectively. Bayless and Abrahamson (2019b) found φSS to range from 0.4 to 0.6 which
is consistent with the prior distribution for φSS.

The prior distribution of ccA is a multivariate normal distribution with an upper truncation
limit at zero:

ccA ∼ N (µcA, κcA)T (, 0) (2.18)

where µcA is the mean of the distribution, and κcA is the covariance function. To ensure
the physical extrapolation of the GMM, ccA is limited to be less or equal to zero, which
is satisfied by setting the upper limit of the normal distribution at zero (T (, 0)). Two key
differences from the Abrahamson et al. (2019) approach when modeling the cells are the
different mean and the different covariance function of the prior distribution. In this model,
the mean of the prior is equal to the value of the anelastic-attenuation coefficient in Bayless
and Abrahamson (2019b) (µcA = c7 BA18); thus, in areas with sparse data, the non-ergodic
attenuation goes back to the ergodic attenuation to ensure reasonable extrapolation at large
distances. This decision was made because the local data may not be sufficient to estimate
both the median shift and the spatial variability of the anelastic attenuation. The covariance
function (equation (2.19)) is the sum of a Matern kernel scaled by ψ2

cA and a diagonal kernel
scaled by σ2

cA. The Matern kernel controls the underlining continuous variation of anelastic
attenuation over large areas, whereas, the diagonal kernel allows for some independence in
the attenuation from cell to cell. ψcA controls the size of the underling variability of ccA over
large distances, the correlation length ρcA controls how fast the underling component of ccA
varies with distance, and σcA controls the size of the independent variability.

κcA(xi, xj) = ψ2
cAe
−

√
x2
i
−x′2

j
ρcA + σ2

cAδ(i− j) (2.19)

ρcA has an inverse gamma distribution with the same parameters as the prior distributions
for ρ1a and ρ1b. ψcA and σcA have an exponential prior distribution with the same parameters
as the prior distributions for θ1a and ψ1b.

ρcA ∼ InvGamma(2.0, 50.0)

ψcA ∼ exp(20)

σcA ∼ exp(20)

(2.20)

The non-ergodic within-event residuals, δW 0
e,s, follow a normal distribution with a zero

mean and φ0 standard deviation.

δW 0
e,s ∼ N (0, φ2

0) (2.21)

The prior distribution of φ0 is a log-normal distribution with a logmean of −1.3 and a
standard deviation of 0.3 natural log units (equation (2.22)). This set of parameters leads to
a prior mean of 0.27 and a 16th to 84th percentile range of 0.2 to 0.37. BA18 is an ergodic
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model, and so an estimate of φ0 is not available to inform the prior distribution of φ0 of this
model. However, φSS, which is available in BA18, is about 0.4 for most frequencies, and
because φ0 is smaller than φSS by definition (Al Atik et al., 2010), the range of the prior
distribution is reasonable.

φ0 ∼ LN (−1.3, 0.3) (2.22)

The non-ergodic between-event residuals, δB0
e , follow a normal distribution:

δB0
e ∼ N (0, τ0) (2.23)

with a zero mean and τ0 standard deviation. δB0
e is a function of the earthquake id, e; that

is, the same δB0
e is applied to all recordings of the same earthquake.

The prior distribution of τ0 is a log-normal distribution with a −1.0 logmean and 0.3
log-standard deviation.

τ0 ∼ LN (−1.0, 0.3) (2.24)

The τ0 distribution parameters are judged to be reasonable because the mean and 16th

and 84th percentiles (0.38, 0.27 and 0.50) are in agreement with other non-ergodic studies
where the total non-ergodic standard deviation (

√
φ2

0 + τ 2
0 ) ranges from 0.36 to 0.55.

2.3.3 Predictive distributions of coefficients at new locations

The non-ergodic coefficients can be estimated at new locations (~x∗) by conditioning them on
the non-ergodic coefficients at the existing locations (~x); that is, the location of stations or
past events depending on the coefficient. Since all non-ergodic coefficients follow multivariate
normal distributions, for known values of the non-ergodic coefficients ( ~δci) at the ~x, the
non-ergodic coefficients at ~x∗ also follow multivariate normal distributions with the mean
and covariance matrix (Rasmussen and Williams, 2006; Landwehr et al., 2016):

~µδc∗i |δci = kᵀ
iK
−1
i
~δci (2.25)

Ψδc∗i |δci = K∗i − kᵀ
iK
−1
i ki (2.26)

where ~µδc∗i |δci mean of non-ergodic ergodic coefficients at ~x′ conditioned on ~δci, Ψδc∗i |δci is the

covariance of non-ergodic coefficients at ~x′ conditioned on ~δci, K is the covariance between the
non-ergodic coefficients at the existing locations (Ki = κi(~x, ~x)), k is the covariance between
the non-ergodic coefficients at the existing and new locations (ki = κi(~x, ~x

∗)), and K∗ is the
covariance between the non ergodic coefficients at the new locations (K∗i = κi(~x

∗, ~x∗)).
However, the non-ergodic coefficients at ~x are not known. There is some epistemic

uncertainty associated with ~δci which is quantified by their posterior distribution. To simplify
the calculations and obtain a closed-form solution, ~δci is assumed to follow a multivariate
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normal posterior distribution (~δci ∼ N (~µδci ,Ψδci)); ~µδci is the posterior mean, and Ψδci is a
diagonal matrix with the posterior variances across the diagonal. This assumption is deemed
reasonable as all ~δci have multivariate normal prior distributions. If all hyper-parameters were
fixed, the posterior distributions of ~δci would indeed be multivariate normal distributions,
but because some of the hyper-parameters are free, the posterior distributions of ~δci may
slightly deviate from the assumption. The epistemic uncertainty of δci can be accounted in
predicting δc∗i by using the marginal distribution of δc∗i :

p(δc∗i ) =

∫
p(δc∗i |δci)p(δci) dδci (2.27)

Due to the previous assumption, p(δc∗i ) is also a multivariate normal distribution with
mean and covariance matrix given in Equations (2.28) and (2.29), respectively (Bishop, 2006).

~µδc∗i = kᵀ
iK
−1
i ~µδci (2.28)

Ψδc∗i
= K∗i − kᵀ

iK
−1
i ki + kᵀ

iK
−1
i Ψδci(k

ᵀ
iK
−1
i )ᵀ (2.29)

2.3.4 Inter-frequency Correlation

The main motivation behind the development of this non-ergodic EAS GMM is to use it with
RVT to create an equivalent non-ergodic PSa GMM; in doing this, it is important to capture
the inter-frequency correlation of the non-ergodic terms, otherwise, as it was demonstrated
by Bayless and Abrahamson (2018), the variability of the PSa values is underestimated. The
correlation coefficient (ρ) is a measure of the linear relationship of two random variables X1

and X2. A ρ that is equal to one implies that X2 can be perfectly defined as a linear function
of X1, and vice versa; a zero ρ implies that the two random variables are linearly independent.
In ground-motion studies, the inter-frequency correlation coefficient is a measure of the width
of the peaks and troughs of a PSa or EAS spectrum: the stronger the correlation of the
amplitudes between frequencies, the wider the peaks and troughs of the spectra will be.

The correlation coefficient for a non-ergodic term δci, at frequencies f1 and f2, is defined
as:

ρδci(f1, f2) =
cov (δci(f1), δci(f2))

σδci(f1)σδci(f2)

(2.30)

where cov is the covariance of δci at the two frequencies, and σi is the standard deviation of
δci. ρ can be determined from the data using the maximum likelihood estimator (Kutner
et al., 2005):

ρδci(f1, f2) =

∑n
j=1

(
δci,j(f1)− δci(f1)

) (
δci,j(f2)− δci(f2)

)√∑n
j=1

(
δci,j(f1)− δci(f1)

)2
√∑n

j=1

(
δci,j(f2)− δci(f2)

)2
(2.31)
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where n is the number of observations, δci,j is the jth sample of δci, and δci is the mean value
of δci. For a large number of samples (n > 25), ρ can be transformed into a random variable
z that follows a normal distribution with equation (2.32) (Kutner et al., 2005); the standard
deviation of z is given in equation (2.33).

z = tanh−1(ρ) =
1

2
ln

(
1 + ρ

1− ρ

)
(2.32)

σ(z) =

√
1

n− 3
(2.33)

The same functional form that was used to model the correlation of the total EAS residuals
in Bayless and Abrahamson (2019a) was used here to fit the empirical correlations of the non
ergodic terms:

ρ(fr) =

{
1 for fr = 0

tanh
(
AeBfr + CeDfr

)
for fr 6= 0

(2.34)

fr =

∣∣∣∣ln(f1

f2

)∣∣∣∣ (2.35)

A, B, C, D are the model parameters, and fr is the absolute value of the natural log of
the ratio of the two frequencies. This functional form allows for a two-term exponential
decay as a function of the logarithm of frequency; this behavior is required because both the
correlation of the total residuals in Bayless and Abrahamson (2019a) and the correlation of
the epistemic uncertainty terms presented in section 2.4 exhibit a steep decay at frequencies
near the conditioning frequency which then flattens at frequencies that are further from the
conditioning frequency. The model parameters were estimated with a non-linear least-squares
regression on z using the MINPACK.LM package (Elzhov et al., 2016) in the statistical
software R (R Core Team, 2020); σ(z) was used as weights in the least-squares regression
emphasising the fit to the higher correlation values which have more samples.

In this study, one difference from the Bayless and Abrahamson (2019a) is it that the
inter-frequency correlation of all epistemic uncertainty terms was modeled as frequency
independent (i.e. A, B, C, D are constants). This was done, because at it can be seen
in section 2.4, δc1b and δS2S, which are the biggest contributors to the total non-ergodic
effects, have an almost frequency independent inter-frequency correlation. δccA show the
most noticeable frequency dependence in inter-frequency correlation, but it becomes more
stable at intermediate and large frequencies which is the frequency range where it has the
biggest impact. The assumption of frequency independence should be re-examined in future
studies with a larger dataset.
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2.4 Results

2.4.1 Hyperparameters

Figure 2.7 presents the mean, 5th and 95th percentiles of the posterior distribution of the
hyper-parameters of the non-ergodic terms; the proposed smoothed values are also presented
in the same figure. As mentioned in section 2.3.2, the regression for this model was performed
in two phases; in the first phase, all model hyperparameter were free and estimated based on
the data and prior distributions, whereas in the second phase, the hyper-parameters of the
non-ergodic terms were fixed to their smoothed values, and τ0 and φ0 were reestimated for
the new set of smoothed hyper-parameters.

Figure 2.7a shows the variation of the correlation length for δc1a with frequency. The
posterior distribution of ρ1a is wide due to the small number of unique earthquakes. Overall,
the mean estimate of ρ1a is around 40km except at low frequencies where at 0.3hz it jumps
up to 85km. Because there is no physical reason for ρ1a to increase at low frequencies, it was
fixed to the average ρ1a over all frequencies. Furthermore, there are less data at low and
high frequencies making the estimates of the hyperparameters at these frequency ranges less
stable.

Figure 2.7b shows how ψ1a changes with frequency. In this case, the posterior mean
of ψ1a stays constant at low and intermediate frequencies, and it exhibits an increase at
high frequencies. Similarly to ρ1a, there is no physical reason for ψ1a to increase at high
frequencies so it was fixed to the average value over all frequencies. One possible cause of the
apparent increase of ψ1a at high frequencies is that some of the non-ergodic site effects could
have been mapped into non-ergodic source effects in the regression. It is expected that the
non-ergodic site effects will increase at high frequencies because the regional differences in
site amplification tend to have a larger impact on the high frequencies. This assumption is
consistent with the behavior of ψ1b and φSS, which both show an increase with frequency.
For this reason, the difference between the estimated and smoothed ψ1a was moved to ψ1b.

In smoothing ψ1b, up to the frequency of 15hz, a piece-wise linear model was fit to
the estimated mean values; whereas beyond 15hz, it was fit to the square root of the sum
of squares of the estimated mean ψ1b and the difference between the estimated mean and
smoothed ψ1a. Minimal smoothing was applied to ρ1b and φSS as they show a relatively small
variation between neighbouring frequencies.

The smoothed ρcA was fixed to the average of the mean estimates that are less than
75km; this upper limit was imposed because the ρcA with large mean estimates also had wide
posterior distributions, meaning that ρcA could not be reliably estimated at those frequencies.

ψcA and σcA exhibit similar characteristics in their variation with frequency: they are
very small at low frequencies, they show an approximately linear increase with the log of
frequency at intermediate frequencies, and they reach a plateau at high frequencies. This
happens because the effects of anelastic attenuation are more noticeable at high frequencies,
and likewise, spatial changes in the anelastic attenuation will have a larger effect on higher
frequencies. This behavior was also observed by Kuehn et al. (2019) who found that the
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standard deviation of the cell-specific attenuation coefficients of their non-ergodic PSa GMM
was smaller at long periods .

Figure 2.8 presents the hyperparamters that were reestimated in the second step. For
most frequencies, φ0 is about 0.47, and τ0 ranges from 0.35 to 0.45. Based on this range, the
total aleatory standard deviation of the non-ergodic GMM ranges from 0.57 to 0.65 which is
about a 40 to 30% reduction from the standard deviation of the ergodic GMM.

Figure 2.9 shows the variation of δc0 and δc0N/S with frequency. The coefficient δc0

corresponds to the shift of the non-ergodic GMM due to the reweighting of the residuals.
For most frequencies, the change in the constant from the ergodic model is less than 10%.
The regional constant δc0N/S, which corrects for the bias due to the differences in the small
magnitude conversion, is about 0.4 for the northern California and zero for the southern
California. In the NGAWest2 dataset, most of the data are located in southern California, so
it is expected that the base model would be consistent with the southern part of the state
with the main correction applied to the northern part of California.

2.4.2 Spatially varying coefficients and cell-specific anelastic
attenuation

Figure 2.10 shows the spatial distribution of the mean estimate and epistemic uncertainty of
δc1a, δc1b, and δS2S for f = 5hz. As mentioned in Section 2.3, the δc1a varies as a function
of the source coordinates, whereas δc1b and δS2S as a function the site coordinates. In
areas with past earthquakes, the mean estimate of δc1a deviates from zero and its epistemic
uncertainty is small. δc1a is positive if the earthquakes in a region have systematically above
average source effects and negative if the source effects are below the average. In areas with
sparse or no data, the systematic effects related to the source cannot be reliably estimated,
thus, δc1a approaches zero and its epistemic uncertainty is large. The same behavior is
observed in the spatial distribution of δc1b: in large metropolitan areas, were most of the
station are located, the δc1b mean estimate deviates from zero, and its epistemic uncertainty is
small; in remote areas, the δc1b mean estimate approaches zero and, its epistemic uncertainty
is large. δS2S is only plotted at the station locations as it has a zero correlation length,
meaning that as we move away from a station it will directly go to zero. The mean estimates
of δS2S do not exhibit any spatial correlation (i.e. there are no regions where δS2S are
systematically positive or negative) meaning that spatially correlated component of the site
effects was properly captured by δc1b

Figure 2.11 illustrates the spatial distribution of the cell-specific anelastic attenuation.
The mean of ccA deviates from c7 BA18 in cells that are crossed by many paths, whereas it
stays close to c7 BA18 in cells crossed by few or zero paths. In addition, cells that are crossed
by few paths have large epistemic uncertainty in ccA. Overall, the epistemic uncertainty is
low in Bay Area and Los Angeles and high in the northern part of California and the state
of Nevada. The main features that stand out in Figure 2.11a are the higher than average
anelastic attenuation north of the San Francisco Bay Area and east of San Diego, and the
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.7: Estimated and smoothed hyperparameters versus frequency; the circular line
depicts the mean estimate of the hyperparameters from the original regression, the vertical
bars correspond to the 5/95 percentiles of the posterior distribution, and the solid line
represent to the smoothed hyperparameters. (a) correlation length of the source constant, ρ1a,
(b) standard deviation of source constant, ψ1a, (c) correlation length of the site constant with
finite correlation length, ρ1b, (d) standard deviation of the site constant with finite correlation
length, ψ1b, (e) standard deviation of the site term with zero correlation length, φS2S, (f)
correlation length of the cell-specific anelastic attenuation, ρcA, (g) standard deviation of
the correlated component of the cell-specific anelastic attenuation, ψcA, and (h) standard
deviation of the correlated component of the cell-specific anelastic attenuation, σcA.
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(a) (b)

Figure 2.8: Estimated hyperparameters of final regression versus frequency; the circular marker
corresponds to the mean estimate, the vertical bars represents the 5/95 percentiles of the
posterior distribution (a) within-event aleatory standard deviation, φ0, and (b) between-event
aleatory standard deviation τ0.

(a) (b)

Figure 2.9: Estimated δc0 and δc0 N/S versus frequency; the circular marker corresponds to the
mean estimate, the vertical bars represents the 5/95 percentiles of the posterior distribution
(a) constant shift, δc0, (b) regional shift, δc0 N/S, the solid line with the square markers
corresponds to the Northern CA, the dashed line with the circular markers corresponds to
the Southern CA
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Spatial distribution of source and site constants at f = 5hz. Triangle markers
show the location of earthquakes, dots show the location of stations. (a) mean estimate of
δc1a, (b) epistemic uncertainty of δc1a, (c) mean estimate of δc1b, (d) epistemic uncertainty
of δc1b, (e) mean estimate of δS2S, and (f) epistemic uncertainty of δS2S.
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(a) (b)

Figure 2.11: Spatial distribution of cell specific anelastic attenuation at f = 5hz. (a) mean
estimate of ccA, and (b) epistemic uncertainty of ccA.

less than average anelastic attenuation in the Central Valley and east of Los Angeles.
These findings are consistent with published attenuation models shown in Figure 2.12;

Figure 2.12a corresponds to the Eberhart-Phillips (2016) Q model for frequencies 6 to 12 hz,
and 2.12a corresponds to the Phillips et al. (2014) Q model for the S-waves at 4km depth.
The quality factor, Q, is inversely proportional to the anelastic attenuation: high Q means low
anelastic attenuation, and vice versa. Both models show small Q values north of Bay Area,
and large Q values in Central Valley; additionally, Eberhart-Phillips (2016), which covers the
entire state of California and Nevada, shows small values of Q east of San Diego and large
values of Q east of Los Angeles. The mean value of ccA and the Q model of Eberhart-Phillips
(2016) differ in Nevada because there are no paths that cover that region. The large epistemic
uncertainty of ccA in Nevada means that the cell-specific anelastic attenuation cannot be
estimated in that region with the current data set. This comparison shows that the cell
specific anelastic attenuation has a physical basis.

Figure 2.13 shows the epistemic uncertainty of the non-ergodic terms as a function of
the number of records for δc1a, δc1b and δS2S, and as a function of the number of paths for
ccA. The epistemic uncertainty of δc1a and δc1b is not sensitive to the number of records,
whereas the epistemic uncertainty of δS2S and ccA decreases as the number of records and
number of paths increases. This happens because δS2S is spatially uncorrelated, and ccA has
a spatially uncorrelated component; δS2S can be estimated more accurately as the number
of ground motions recorded at a station increases, and ccA can be estimated more accurately
as the number of paths crossing a cell increases. δc1a, δc1b are spatially correlated and so
the location of an event or a station is also important. That is, δc1b can have less epistemic
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(a) (b)

Figure 2.12: Seismic attenuation models for California from seismic inversions. (a) Phillips
et al. (2014) attenuation model for frequencies between 6 and 12 hz, and (b) Eberhart-Phillips
(2016) S-wave attenuation model for northern California at depth of 4km.

uncertainty near a group of stations, with few records at each station, than near a remote
station with a large number of records, if collectively, the group of stations has more data to
constrain δc1b. The same holds true for δc1a regarding the spatial distribution of events.

2.4.3 Non-ergodic residuals

The residuals of the non-ergodic model at f = 5hz are presented in Figure 2.14: the dots
represent the residuals, the solid line corresponds to the moving average, and the error bars
correspond to the standard deviation. δBe shows no trend and an approximately constant
standard deviation with magnitude; δWes also shows no trend, but the standard deviation
standard deviation reduces with magnitude. Additionally, δWes shows no trend and a constant
standard deviation with Rrup and VS30

2.4.4 Standard deviation

In the model development, for simplicity, the aleatory standard deviations, τ0 and φ0, were
modeled as magnitude independent. Any magnitude dependence of τ0 and φ0 was determined
in post processing based on the non-ergodic residuals. τ0 was modeled as constant, as, for
the most part, the δB0

e residuals did not exhibit any reduction in standard deviation with
magnitude (Figure 2.14). Because the number of events greater than M 6.5 is small, the model
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(a) (b)

(c) (d)

Figure 2.13: Standard deviations of posterior distributions of non-ergodic terms; (a) δc1a, (b)
δc1b (c) δS2S, and (d) ccA.

for τ0 did not follow the reduction of the empirical standard deviation at large magnitudes,
but instead it followed the standard deviation of the small events. φ0 was modeled as a
piece-wise linear function (equation (2.36)), as δW 0

es residuals exhibit some reduction in the
standard deviation with increasing magnitude: φ0M1 is the within-event standard deviation
for magnitudes less than 5, and φ0M2 is the within-event standard deviation for magnitudes
greater than 6.5.

The aleatory parameters (τ0, φ0M1 , and φ0M2) were smoothed in order to ensure that the
resulting EAS will have a reasonable shape (Figures 2.15 and 2.16). The smoothing was
performed by fitting the aleatory parameters with a fourth order polynomial. The value
of τ0 decreases from small to intermediate frequencies and increases again after f = 3hz,
which is consistent with the behaviour of BA18 and other PSa GMM, such as Abrahamson
et al. (2014). The magnitude dependence of φ0 is more pronounced at high frequencies.
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(a) (b)

(c) (d)

Figure 2.14: Non-ergodic within-event and between-event residuals at f = 5hz. (a) δBe

versus magnitude, (b) δWes versus magnitude, (c) δWes versus rupture distance, and (d)
δWes versus VS30.
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Figure 2.15: Between-event standard deviation, τ0, versus frequency; circular markers corre-
spond to the estimated τ0 at every frequency, solid line corresponds to smoothed τ0.

The higher φ0 of small events at high frequencies is believed to be due to an increased
effect of the radiation patterns. At large events, the effect of radiation patterns is smaller
as seismic rays originate from more locations along the fault, which increases the range of
azimuthal angles, and leads to destructive interference of the radiation patterns resulting in
less ground-motion variability. Figure 2.17 compares the magnitude relationships for τ0 and
φ0 with the empirical standard deviations at f = 5hz. Overall, there is a good fit between the
τ0 and φ0 relationships and the standard deviations of the binned residuals. The differences
at large magnitudes should be reevaluated with a dataset which includes a grater number of
large magnitude events.

φ0 =


φ0M1 for M < 5

φ0M1 + (φ0M2 − φ0M2)(M − 5)/(6.5− 5) for 5 < M < 6.5
φ0M2 for M > 6.5

(2.36)

2.4.5 Regional source term δc0N/S

Figure 2.18 shows the earthquake constant, δc1a, from a preliminary analysis which did
not include δc0N/S, for different frequencies. At low frequencies, f = 0.2 and 1.0hz, the
preliminary δc1a shows a significant regional difference between northern and southern CA,
whereas at higher frequencies, f = 5.0 and 10.0hz, such regional difference is not observed.
These trends were also observed at other frequencies: at frequencies less than 5hz, the spatial
distribution of the preliminary δc1a exhibited a regional difference between northern and
southern CA, while at frequencies greater than f = 5hz, any spatial variability of δc1a was
more localized.
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Figure 2.16: Within-event standard deviation, φ0, versus frequency; circular markers corre-
spond to the estimated φ0 at small magnitudes, square markers correspond to the estimated
φ0 at large magnitudes, solid line corresponds to smoothed φ0 for small magnitudes, dashed
line corresponds to the smoothed φ0 for large magnitudes.

(a) (b)

Figure 2.17: Magnitude scaling of τ0 and φ0 for f = 5hz; circular markers denote the standard
deviations of the binned residuals, and solid lines correspond to the standard deviation models.
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(a) (b)

(c) (d)

Figure 2.18: Spatial distribution of source constant, δc1a, from preliminary analyses, which
did not include δc0N/S, for different frequencies. (a) f = 0.2hz, (b) f = 1.0hz, (c) f = 5.0hz,
(d) f = 10.0hz.

The threshold between the northern and southern range of δc1a at small frequencies
seems to coincide with the NCSN/SCSN border used in the NGAWest2 data set (Ancheta
et al., 2014) for the selection of the source parameters for the small-to-moderate magnitude
events (Figure 2.19). This is why the regional difference of δc1a is believed to be caused by
potential inconsistencies in the magnitude estimation between the Northern and Southern
California seismic networks. The low frequencies are more sensitive to a bias in the magnitude
estimation, because for frequencies much smaller than the corner frequency, a 0.1 change in
magnitude leads to a 40% change in amplitude, whereas at frequencies much larger than
the corner frequency, a 0.1 in magnitude leads to a 10% change in amplitude. In the final
analysis, the regional source differences are captured by the δc0N/S term. The northern and
southern regions for δc0N/S are also shown in Figure 2.19.
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Figure 2.19: Border between Norther California Seismic Network (NCSN) and Seismic
California Seismic Network (SCSN), and Norther and Southern CA regions for δc0N/S.

2.4.6 Inter-frequency correlation

The inter-frequency correlation of the non-ergodic terms is presented in Figure 2.20 and the
model parameters are summarized in Table 2.4. Currently, the correlation of all non-ergodic
terms is modeled as frequency independent: that is, the width of the EAS peaks and troughs
does not depend their central frequency. A frequency independent correlation would mean
that the width of the correlation ridges in Figure 2.20 does not change along the diagonal,
whereas a non-constant width would mean that the correlation changes with frequency. Out
of all the non-ergodic terms, δc1a has the widest confidence intervals because the number
of unique earthquakes is smaller than both the number of unique stations or the number
of anelastic attenuation cells. δc1a has a relatively wide correlation, meaning that if δc1a

is positive at one frequency, it is highly likely that it will also be positive over a wide
range of neighbouring frequencies. The correlation of this term also exhibits some frequency
dependence similar to the δBe frequency dependence found in Bayless and Abrahamson
(2019a): the correlation is the widest at f = 0.5hz, it narrows at intermediate frequencies,
and it widens again at frequencies larger than 8hz. Both δc1b and δS2S have narrow, mostly
frequency independent, inter-frequency correlations, which are similar to the correlation
structure of δS2S in Bayless and Abrahamson (2019a). The correlation of ccA shows the
strongest frequency dependence; there is very little correlation at frequencies less than 1hz,
it gradually increases and reaches the widest point at 5hz, and then, it narrows again. The
narrow frequency correlation at low frequencies is expected as the anelastic attenuation is
very weak for that frequency range; however, it is unclear why the inter-frequency correlation
narrows at high frequencies. It could be an artifact of poor sampling. For now, it is modeled
as frequency independent, but in future studies, this assumption would need to be reevaluated.
As a point of comparison, in seismic numerical simulations, a deterministic velocity model
would imply a perfect inter-frequency correlation on ccA, which is more similar to the width
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Table 2.4: Interfequency model coefficients for non-ergodic terms

A B C D

δc1a 1.94 0.77 0.96 19.49
δc1b 1.30 0.92 1.36 30.85
δS2S 1.83 1.86 2.77 63.96
ccA 1.85 0.41 0.27 10.00

of the correlation of data at f = 5hz

2.4.7 Examples

Figure 2.21 shows the effect of inter-frequency correlation in sampling the non-ergodic terms
for an M 7 earthquake in Hayward fault 10 km from a site in Berkeley, CA. Figure 2.21a shows
the median non-ergodic EAS, the 16th to 84th percentile range of epistemic uncertainty, and
a representative EAS sample with epistemic uncertainty for zero inter-frequency correlation.
Figure 2.21b shows the same information, but in this case, the ground motions were generated
with the inter-frequency correlation model described previously. The median EAS and range
of epistemic uncertainty is the same in both cases; what is different are the representative
EAS samples. The EAS sample with zero inter-frequency correlation has zero width in the
peaks and the troughs, whereas EAS sample with inter-frequency correlation has peaks and
troughs that span approximately a quarter of a decade. It should be noted that these samples
do not include aleatory variability, the inter-frequency correlation of the aleatory variability
will influence the final width of the peaks and troughs.

The distance scaling of the model for f = 5hz for a site in San Jose, CA (SJ) and a site
in Northeastern California (NE) is presented in Figure 2.22; the site in SJ has a station
which has recorded ground motions from past earthquakes to constrain δS2S, whereas the
site in NE does not have one, so δS2S is unconstrained. In both cases, the earthquakes
are located north of sites. North of SJ , ccA is less than average (Figure 2.11a) which causes
the non-ergodic GMM to have higher attenuation than BA18. Due to the small number of
paths in NE, ccA is very close to the mean value which is why the non-ergodic GMM and
BA18 have similar distance scaling. The epistemic uncertainty is less in SJ as there are more
earthquakes and stations to constrain the non-ergodic terms.

2.5 Model Validation

The performance of the non-ergodic GMM was evaluated with a 10-fold cross validation test.
In each of the 10 iterations of the cross-validation test, the data of NGAWest2 CA dataset
were randomly split into a training and test datasets, 80% of the earthquakes composed
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(a) (b)

(c) (d)

Figure 2.20: Inter-frequency correlation of non-ergodic terms; contour plot corresponds to
the inter-frequency correlation of the data, dashed lines corresponds to the inter-frequency
correlation model. (a) inter-frequency correlation of δc1a, (b) inter-frequency correlation of
δc1b, (c) inter-frequency correlation of δS2S, and (d) inter-frequency correlation of ccA.
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(a) (b)

Figure 2.21: Effective amplitude spectra for a M 7 earthquake, 10 km away for a site
located in Berkeley CA. (a) without inter-frequency correlation, and (b) with inter-frequency
correlation.

(a) (b)

Figure 2.22: Distance scaling of EAS(f = 5hz) for (a) a site in San Jose and (b) a site in
northeastern California.
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Figure 2.23: Root-mean-square error of 10-fold cross-validation test

training dataset and the remaining 20% of earthquakes composed the test dataset. The
training set was used to estimate the coefficients of the non-ergodic model, and the test
dataset was used to evaluate the accuracy of the predictions with the estimated coefficients.
The NGAWest2 CA dataset was split based on the earthquakes so that the non-ergodic GMM
is evaluated on events that were not used in the parameter estimation. Figure 2.23 shows
the root-mean-square error (rmse) of the non-ergodic GMM and BA18 for all iterations.
The average rmse of the non-ergodic GMM and BA18 is 0.67 and 0.86, respectively, which
indicates that incorporating the non-ergodic terms improves the ground-motion prediction
for events that were not part of the regression dataset.

2.6 Conclusions and Discussion

A fully non-ergodic EAS GMM is presented in this study. The non-ergodic source and station
effects are captured by spatially varying coefficients; the non-ergodic path effects are captured
with the cell-specific anelastic attenuation. A regional term that accounts for the differences
in the ground motion of small earthquakes between northern and southern California is also
added in the non-ergodic GMM; this term is applied to events less than M 5, and frequencies
less than 5 hz. The exact cause of these differences could not be identified, but it could
be related to a potential bias in the magnitude estimation between the NCSN and SCSN
networks. Future studies should further investigate the cause of these differences.

The proposed non-ergodic GMM has a 30 to 40% smaller standard total aleatory standard
deviation than BA18. Furthermore, the cross-validation test shows that the non-ergodic



CHAPTER 2. A NON-ERGODIC EFFECTIVE AMPLITUDE GROUND-MOTION
MODEL FOR CALIFORNIA 39

GMM performs better than BA18 in predicting the ground motion for events that were not
part of the regression dataset.

The next step is to use this non-ergodic EAS GMM with RVT to develop an equivalent
non-ergodic PSa GMM. The advantage of this approach is that it is easier to transfer the
estimated non-ergodic terms, which are primarily based on small magnitude events, to the
non-ergodic terms for the scenarios of interest, which typically are large magnitude events,
using RVT than it is to estimate the magnitude dependence during the development of the
non-ergodic EAS GMM. For the scenarios of interest, the PSa non-ergodic terms can be
estimated by combining the EAS predictions, for the same scenarios, with RVT. In this
approach, the magnitude dependence of the non-ergodic PSa terms is captured.

As larger data sets become available, future studies should consider the addition of
a spatially varying term for geometrical spreading and test the frequency dependence of
the inter-frequency correlation of the non-ergodic terms. A spatially-varying geometrical-
spreading coefficient may be able to better capture the non-ergodic path effects at short
distances; however, if such a coefficient is added, it should be constrained so that the GMM
does not over-saturate at short distances. Currently, the inter-frequency correlation of the
non-ergodic terms was assumed to be frequency independent, future studies should reevaluate
if this assumption is valid.

Currently, the path for the cell-specific anelastic attenuation connects the site with closest
point on the rupture. This path was chosen because it is the same path that is used in the
Rrup calculation; however, it has not been tested whether a path connecting the site and
a different point on the rupture would be more appropriate for the cell-specific anelastic
attenuation. A large number of broadband earthquake simulations that include 3D velocity
structure effects up to high frequencies (e.g. 5 Hz) would be ideal for solving this problem.
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Chapter 3

A Non-ergodic Spectral Acceleration
Ground Motion Model for California
Developed with RVT

The contents of this chapter are primarily from a journal article submitted to the Bulletin of
Earthquake Engineering by Lavrentiadis, G., and Abrahamson, N.A., entitled: “A Non-ergodic
Spectral Acceleration Ground Motion Model for California Developed with Random Vibration
Theory”, which is currently under review.

3.1 Introduction

Ground-motion models (GMMs) are used to estimate the distribution of a ground-motion
intensity measure (IM) for a given earthquake scenario. The most common IM is pseudo-
spectral acceleration (PSa) as it is a good estimator of seismic loading for a wide range of
structures. PSa is defined as the absolute maximum response of a single degree of freedom
oscillator (SDOF) to an input ground motion. SDOFs are defined by their natural period
(T0) or natural frequency (f0 = 1/T0) and damping (ζ); in GMMs, typically, T0 ranges from
0.01 to 10 sec and, ζ is equal to 5%. The response of the oscillator depends on the frequency
content and timing (compactness of energy) of the ground motion. From the entire frequency
content of the ground motion, the response of the oscillator mainly depends on the amplitudes
of the frequencies near and below f0. Therefore, at small T0 (high f0), the response of the
oscillator depends on the entire frequency content of the ground motion (i.e. spectral shape)
and not just a narrow frequency bin. This makes the coefficients of a PSa GMM at small
T0 magnitude dependent, as the shape of spectral acceleration response spectrum changes
with magnitudes. The peak of a spectral acceleration response spectrum will be at 0.1 sec
for a magnitude (M) 3 event and at 0.3 sec for a M 7.5 event (Figure 3.1); this means that
at small magnitudes, the PGA scaling (e.g. VS30 coefficient) will be consistent with the
scaling of T0 = 0.1 sec, while at large magnitudes, the PGA scaling will be consistent with
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Figure 3.1: Schematic of normalized response spectra for M 3.0 and 7.5 earthquakes

T = 0.3sec.
Most PSa GMMs do not explicitly account for the magnitude dependence of the coeffi-

cients, such as the VS30 scaling or distance scaling; instead, they often use a limited range
of magnitudes where the magnitude dependence of the coefficients is not pronounced. For
instance, the data-set that was used in the development of the NGAWest-1 GMMs had a
limited set of magnitudes that ranged from M 4.5 to M 8 Power et al. (2008). The solution
of using a smaller range of magnitudes works when developing an ergodic GMM, as there is
enough number of moderate-to-large magnitude events globally to estimate the coefficients,
but it can be problematic when developing a non-ergodic GMM.

For the NGA-W2 GMMs, the data set was extended to down to M3 with the objective
of setting the reference ergodic model that could be used to evaluate regional differences
in the site, path, and source terms based on small magnitude data. The NGA-W2 GMMs
modified the magnitude scaling to capture the average effect of the magnitude dependence of
the coefficients, but this does not accurately model the magnitude dependence of the site
and path effects.

GMMs fall into two main categories: ergodic GMM and non-ergodic GMM. Ergodic
GMMs assume that the statistical properties of a ground motion IM do not change in space
(Anderson and Brune, 1999), and therefore, earthquakes and recordings from all around
the world can be merged into a single dataset to estimate the GMM coefficients. Models
developed under this assumption tend to have stable median estimates but large aleatory
variability. Some models developed with the ergodic approach are: the NGA West GMMs
for California Abrahamson et al. (2008), and the Douglas et al. (2014) GMM for Europe.
Non-ergodic GMMs recognize that source, path, and site effects are systematically different
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at different parts of the world and account for these differences in the model development.
Non-ergodic GMMs have smaller aleatory variability than ergodic GMMs, but in areas with
sparse data, where the systematic effects are unknown, the reduced aleatory variability is
accompanied by an increase in the epistemic uncertainty. The use of non-ergodic GMMs in
Probabilistic Seismic Hazard Analysis (PSHA) is very promising, as the reduction in aleatory
variability can have a large impact on the seismic hazard at large return periods. A more
in-depth discussion of ergodic and non-ergodic GMM is provided in Chapter 3.

The estimation of the non-ergodic terms requires a large set of regional data. To achieve
that, the datasets used in the development of non-ergodic GMM need to have a wider range of
magnitudes to include the more frequent small-to-moderate earthquakes. It is this expansion
of the magnitude range that makes the magnitude dependence of the GMM coefficients a
more significant issue in non-ergodic GMMs. One solution to this problem is, first, develop a
non-ergodic GMM for an IM whose scaling does not suffer from the magnitude dependence,
as PSa does, and then for a scenario of interest, calculate the non-ergodic PSa based on the
non-ergodic IM estimate.

The effective amplitude spectrum (EAS), defined in Goulet et al. (2018), is one such
IM : the EAS is a smoothed rotation-independent average power of the Fourier amplitude
spectrum (FAS) of the two horizontal components of an acceleration time history. In EAS,
the amplitude at each frequency is independent of the amplitudes of the adjacent frequencies
making the coefficients of an EAS GMM magnitude independent. Random vibration theory
(RVT) provides a framework to calculate PSa from EAS. It relies on extreme value statistics
to estimate the peak response of the oscillator directly in the Fourier domain; it does not
require a phase-angle spectrum to first convert the ground motion in the time domain to
compute the peak oscillator response. RVT has been used in the past to compute PSa based
on FAS from seismological theory (Hanks and McGuire, 1981; Boore, 1983, 2003) Other
studies, such as Boore and Joyner (1984), Liu and Pezeshk (1999) Bora et al. (2015) and,
Boore and Thompson (2012), focused on semi-empirical adjustments to the RVT framework to
correct for the assumptions not satisfied by ground motions, mainly the fact that acceleration
time histories are not stationary signals. More recently, Kottke et al. (2018) used RVT to
develop an ergodic PSa GMM for the eastern US based on an ergodic EAS GMM for the
same region.

In this study we developed two non-ergodic PSa GMM. The average PSa scaling is
determined by backbone ergodic PSa GMMs. The non-ergodic effects are defined in terms
of non-ergodic PSa factors which are estimated by combining the non-ergodic EAS GMM
in Chapter 2 with RVT.

3.2 Ground-Motion Data

A subset of the NGAWest2 data-set (Ancheta et al., 2014) was used in this study. The selected
subset contains the earthquake and stations that are located in California, western Nevada,
and northern Mexico. Recordings that were flagged as questionable in Abrahamson et al.
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Figure 3.2: Spatial distribution for earthquakes and station used in this study.

(2014) were removed from the regression subset Figure 3.2 shows the spatial distribution of
earthquakes and stations. Most of the stations are located in Los Angeles, Bay Area, and San
Diego metropolitan areas, whereas spatial density of the stations is lower in less populated
areas, such as northern-eastern California. The regression data-set contains 7520 records
from 185 earthquakes recorded at 1410 stations. Figure 3.3 shows the magnitude-distance
distribution of the data and the number of records per frequency. The magnitude of the
earthquakes ranges from 3.1 to 7.3, and the distance of most records ranges from 10 to
200 km. The usable frequency range of the majority of EAS records spans from 0.4 and
20hz. The minimum usable frequency of most PSa records is 0.5 hz.

3.3 Model development

3.3.1 Random-Vibration Theory

RVT uses Parseval’s theorem and extreme value statistics (EV S) to estimate the PSa based
on the frequency content (i.e. FAS) and duration of a ground motion. Parseval’s theorem is
used to calculate the root-mean-square of the oscillator’s response (xrms) to the input ground
motion, and a peak factor (PF ), which is based on EV S, is used to estimate the absolute
peak response of the oscillator, which is the definition of PSa, based on xrms. PFs assume
that the ground motion is a stationary stochastic process, and that it can be described as
a band-limited white Gaussian noise with zero mean. The first assumption means that the
amplitudes of the ground motion are identically distributed, and the second assumption
means that the phase angles of the ground motion are randomly distributed. Although,
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(a) (b)

Figure 3.3: Selected data from the NGAWest2 database. (a) Magnitude - Distance distribution,
(b) number of PSa and EAS recordings per frequency used in the regression analysis

earthquake ground motions violate both assumptions, numerous studies have shown that
RVT provides PSa estimates that are in agreement with observed ground motions (Hanks
and McGuire, 1981; Boore, 1983, 2003)

Oscillator Response

The response of an oscillator to a ground motion can be computed by convolving the ground
motion with the impulse response (IR) of the oscillator. IR is the response an oscillator to
a very brief acceleration pulse; that is a Dirac delta function. For an SDOF oscillator, the
Fourier transform of the impulse response of the spectral acceleration is:

IR(f, f0, ζ) =
−f 2

0

f 2 − f 2
0 − 2j ∗ ζ ∗ f0 ∗ f

(3.1)

where, f0 is the natural frequency of the oscillator, and ζ is the oscillator’s damping. As an
example, Figure 3.4 shows the PSa impulse response, in time and Fourier domain, for an
SDOF oscillator with f0 = 2hz and ζ = 5% In Fourier domain, the convolution is performed
by multiplying the ground motion’s FAS with IR; therefore, the response of an SDOF
oscillator to a ground motion is:

X(f) = FAS(f) IRSD(f, f0, ζ) (3.2)

The xrms of the oscillator’s response is defined as:

xrms =

√
1

Drms

∫ +∞

−∞
x(t)2dt (3.3)
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(a) (b)

Figure 3.4: Impulse response of a single degree of oscillator; (a) Time domain, (b) Fourier
domain

where Drms is a measure of the duration which is defined in Section 3.3.1. Parseval’s theorem
states that the amount of energy in the time domain is equal to the amount of energy in the
Fourier domain (

∫ +∞
−∞ x(t)2dt = 2

∫ +∞
0

X(f)2df) which allows to compute xrms directly in
Fourier domain:

xrms =

√
1

Drms

2

∫ +∞

0

X(f)2df =

√
m0

Drms

(3.4)

with m0 being the zeroth moment of FAS. The kth moment of FAS is defined as:

mk = 2

∫ +∞

0

(2πf)kX(f)2df (3.5)

Peak Factor

The peak factor relates the xrms with the maximum response of the oscillator (xmax), which
is the definition of the PSa.

PSa = PF xrms (3.6)

In general, PFs fall into two main categories: those based on the Cartwright (1956) peak
factor, abbreviated as CLH56, and those that are based on the Vanmarcke (1975) peak factor,
abbreviated as V75.

In the first group, the CLH56 peak factor assumed that the peaks of a time history occur
independently according to a Poisson process. BJ83 peak factor (Boore, 1983; Boore and
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Joyner, 1984; Boore, 2003) reformulated CLH56 and removed an integrable singularity. Dav-
enport (1964) proposed the D64 peak factor based on an asymptotic form that approximates
CLH56 for long time histories.

The main difference between V75 (Vanmarcke, 1975, 1976) and the PFs of the first group
is that V75 dropped the Poisson process assumption. Because of this, V75 PF accounts for
the time spend outside the threshold, which is important for a narrow-band process, and
considers that the peaks could be clustered in time, which is important for a wide-band
process. Der Kiureghian (1980) noted that the D64 peak factor overestimates the number of
zero crossings, and developed the DK80 PF by modifying D65 PF so that it is asymptotically
consistent with V75. V75 and D80 are in general agreement, but they deviate in time histories
with a small number of zero crossings.

The V75 PF is selected for the development of the non-ergodic PSa GMM. V75 is
preferred over the group of PF that are based on CLH56 due to the simplified assumptions in
CLH56, and the complete form of V75 is preferred over the asymptotic forms, as the former
is more accurate for the wide range of ground motions considered in this project. This choice
is consistent with the PF used in Kottke et al. (2018).

V75 expressed the probability distribution of the peaks as a first-passage problem. For
a Gaussian process, the first-passage probability (i.e. the probability of no crossing) a ±a
threshold (type-D barrier) in the time interval (0, t) is equal to:

P (|z| < r) = A exp

(
−fzt exp(−r2/2)

1− exp(−
√
π/2 δe r)

1− exp(−r2/2)

)
(3.7)

where r is the normalized barrier level (r = a/xrms), A is the probability of starting within
the thresholds (A = 1 − exp(−r2/2)), fz is the average rate of zero crossings, and δe is
an semi-empirical measure of bandwidth (δe = δ1+b). b a non-negative constant which, in
this case, is equal to 0.2, and δ is a measure of bandwidth based on the spectral moments
(Vanmarcke, 1972) defined as:

δ =

√
1− m2

1

m0m2

(3.8)

The cumulative distribution function (CDF) of the peak values is obtained by setting t
equal to Dgm in equation (3.7); that is, the probability of the peak of the time history being
less than r × xrms is equal to the probability that the time history will remain within the
thresholds ±r × xrms for the entire ground-motion duration. With that, the CDF of PF is
equal to:

FPF (r) =
(
1− exp(−r2/2)

)
× exp

(
−fzDgm exp(−r2/2)

1− exp(−
√
π/2 δe r)

1− exp(−r2/2)

)
(3.9)
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The expected value of PF can be computed with the probability density function (PDF) of
PF (Equation (3.10)), which requires the derivation of the PDF. However, PF is continuous
and defined on the positive side of the real line; thus, the expected value of PF can be
computed directly from the CDF with equation Equation (3.11).

E[PF ] =

∫ +∞

0

rfPF (r) dr (3.10)

E[PF ] =

∫ +∞

0

(1− FPF (r)) dr (3.11)

The mean estimate of the RVT PSa can be computed by substituting the expected value
of the V 75 PF in Equation (3.6).

Ground-Motion Duration

In RVT, a measure of duration is needed in two steps: in the calculation of the peak factor,
and in the calculation of xrms. Due to transient nature of a ground-motion, the duration
measures used in these two steps are often different. Dgm is the ground-motion duration,
which is used in the calculation of PF ; Drms is the duration measure for the calculation of
xrms. which is defined in section 3.3.1.

In seismology, the ground-motion duration is most commonly defined as either the
bracketed or the significant duration. Bracketed duration is the time interval between the first
and last time the ground motion exceeds a threshold. Significant duration is the difference in
time the normalized Arias intensity reaches two specific values. For instance, the 5− 75%
significant duration is the difference between the time the normalized Arias intensity is 5%
and, the time the normalized Arias intensity is 75%. The Arias intensity is defined as integral
of the squared acceleration time history:

Ia(t
′) =

2π

g

∫ t′

0

x2(t)dt (3.12)

The normalized Arias intensity, also known as Husid curve, is the ratio of Ia at time t
over Ia at the end of the ground motion:

h(t) =
Ia(t)

Ia(+∞)
(3.13)

In some RVT methods, Dgm is set to a measure of significant duration, but in others,
Dgm is treated as a free parameter with units of time. For instance, Boore (2003) used the
Da0.05−0.95 significant duration as Dgm, while Bora et al. (2015) and Bora et al. (2019) treated
Dgm as free parameter and developed a duration GMM with the goal to minimize misfit
between the observed PSa and the PSa computed with RVT.

In this study, Dgm is defined as an interval of significant duration. Different intervals
of significant duration were tested as Dgm candidates to find the one that minimized the
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misfit between the PSa of the used dataset (PSaNGA) and the PSa estimated with RVT
(PSaRV T ); the results of this comparison are shown in Appendix A, Section A.1. The
Da0.05−0.85 significant duration resulted in the best fit of PSaNGA for the entire frequency
range, 0.1 to 100 hz. The Abrahamson and Silva (1996) duration GMM (AS96) was selected
for estimating Da0.05−0.85 for new scenarios, as to our knowledge, AS96 is the only GMM
that provides an estimate for the selected duration interval. Despite the previous results, the
Da5−75, Da5−95, Dv5−75, and Dv5−95 estimates of the Kempton and Stewart (2006) duration
GMM and Da5−75, Da5−95, and 2Da20−80 estimates of the Afshari and Stewart (2016) duration
GMM were evaluated as candidates for Dgm, but the Da0.05−0.85 of AS96 resulted to a better
fit of PSaNGA. The results of this comparison can be found in Appendix A, Section A.2

The AS96 functional form for the mean estimate or the D0.05−0.75 duration is:

lnD5−75

 ln
(

1
fc

+ c1(Rrup −Rc) + c2S
)

for Rrup ≥ Rc

ln
(

1
fc

+ c2S
)

for Rrup < Rc

(3.14)

where fc is the corner frequency of the earthquake:

fc = 4.9 106

(
∆σ

101.5M+16.05

)
(3.15)

β is the shear-wave velocity at the source, and ∆σ is the stress drop. 1/fc is the source duration,
c1(Rrup −Rc) captures the distance dependence, and c2S captures the site dependence. The
scaling of AS96 has a physical basis because the distance and site dependence terms are
additive, instead of multiplicative, to the source duration. The rational for an additive
distance dependence is that small and large magnitude earthquakes are expected to have a
similar increase of duration due to the dispersion of the seismic waves. Similarly, the duration
increase due to the site effects is also expected to be independent of the earthquake size. In
AS96, other interval of significant duration can be calculated with Equation (3.16).

ln

(
D0.05−I

D5−75

)
= a1 + a2 ln

(
I − 0.05

1− I

)
+ a3 ln

(
I − 0.05

1− I

)2

(3.16)

Correction for non-stationarity

One of RVT’s main assumptions that is violated when applied in ground motions is that the
signal stationary. Especially when predicting PSa for large T0, an SDOF oscillator will not
abruptly stop at the end of the ground motion, it will have a transient decaying response,
which if not considered, would lead to an overestimation of xrms. To solve this problem,
Boore and Joyner (1984) (JB84) proposed to include the oscillator duration (Do) in Drms

as shown in Equation (3.17); Do is not included in the calculation of the PF because the
response of the oscillator follows a steady decay after the end of the excitation. Liu and
Pezeshk (1999) (LP99) improved the estimate of Do by considering the spectral shape of the
input time history in the Do scaling. Boore and Thompson (2012) (BT12), and Boore and
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Thompson (2015) (BT15) proposed a relationship for Drms/Dgm; they used a more flexible
functional form compared to the previous studies and considered the magnitude and distance
scaling of Drms/Dgm.

Drms = Dgm +Do (3.17)

The BT15 oscillator duration model was selected for the subsequent analyses, as in
preliminary evaluations, the RVT PSa estimates with BT15 provided a better fit to the
recorded PSa than the alternative models. Although BT12 performed well in estimating
the PSa of medium-to-large earthquakes, it was not selected because its is not applicable to
magnitudes less than 4.

Extrapolation of EAS

To ensure that entire frequency content of the ground-motion is captured in the RVT calcula-
tions, the EAS spectrum is extrapolated at low and high frequencies. At low frequencies,
EAS is extrapolated to 0.01hz with an omega-square model (Brune, 1970):

Ω(f) =
f 2

1 + f 2/f 2
c

EAS(f < fmin) = AfminΩ(f)

(3.18)

where fc is the corner frequency (Equation (3.15)), and Afmin is the amplitude of the omega-
squared model at the minimum frequency of the EAS (fmin). The stress drop for the
calculation of fc for the omega-squared model is estimated with the Atkinson and Boore
(2011) empirical relationship. Afmin is estimated based on the EAS amplitudes of 1.00fmin
to 1.05fmin frequency bin:

Afmin = mean

(
EAS(f)

Ω(f)

)
for f ∈ [1.0fmin, 1.05fmin] (3.19)

At high frequencies, EAS is extrapolated to 100hz with a kappa model (Anderson and
Hough, 1984):

D(f) = exp(−πκf)

EAS(f > fmax) = AfmaxD(f)
(3.20)

κ defines the rate of decay of the high frequencies, and Afmax is the amplitude of the kappa
model at the largest EAS frequency, fmax. κ can be estimated with the Ktenidou et al.
(2014) κ− VS30 empirical relationship:

ln(κ) = −0.4 ln

(
VS30

760

)
− 3.5 (3.21)
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Figure 3.5: Extrapolation of EAS to low and high frequencies. EAS is estimated for M = 7,
Rrup = 30km,and VS30 = 400m/sec.

Afmax is estimated based on the EAS amplitudes in the 0.95fmax to 1.00fmax frequency
bin:

Afmax = mean

(
EAS(f)

D(f)

)
for f ∈ [0.95fmax, 1.00fmax] (3.22)

As an example of the extrapolation procedure, the median estimate of EAS for a M 7
event, at a Rrup distance of 30km, and a VS30 value of 400m/sec is extend to high and low
frequencies using the omega-squared and kappa models in Figure 3.5, which shows that
the amplitudes of the extended frequencies are in agreement with the EAS over the usable
frequency range.

RVT summary and validation

In summary, all subsequent RVT calculations are performed with: the V75 PF , the median
estimate of AS96 for Da0.05−0.85 as Dgm, BT15 for Drms, and the extrapolation procedure
described in the previous subsection.

As a validation, Figure 3.6 shows the residuals between the natural-log of PSaNGA and
the natural-log of PSaRV T with the recommended RV T procedure. Overall, PSaRV T is in
good agreement with PSaNGA for the entire period range (T0 = 0.01− 10sec) with the fit
improving for M > 5. Figure 3.7 shows the mean and the standard deviation of the residuals
versus T0. The residuals have a positive bias at T0 = 1−4sec; however, this is not propagated
in the non-ergodic PSa GMM, as the GMM is developed using non-ergodic ratios, which
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(a) (b)

Figure 3.6: Residuals between the records’ PSa and PSa calculated with RVT. (a) residuals
of records of all M , (b) residuals of records of M > 5

(a) (b)

Figure 3.7: Mean and standard deviation of the residuals between the records’ PSa and PSa
calculated with RVT.

are defined in the next subsection (Section 3.3.2). The standard deviation or the residuals is
approximately 0.2 natural-log units for the entire period range.

3.3.2 Non-ergodic PSa ratios

The non-ergodic effects of the proposed PSa GMM are expressed in terms of non-ergodic
PSa ratios (rnerg); that is, the ratio of the log of the non-ergodic PSa estimate for a scenario
of interest over the ergodic PSa estimate for the same scenario (Equation (3.23)) The non-
ergodic PSa values are calculated with RVT and the non-ergodic EAS GMM (LAK21EAS),
and the ergodic PSa values are calculated with RVT and the Bayless and Abrahamson
(2019b) ergodic EAS GMM (BA18). The scenarios of interest are defined by the magnitude
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(M), closest-rupture distance (Rrup), time-average shear-wave velocity at the top 30m (VS30),
etc., which are input parameters to both the ergodic and non-ergodic EAS GMMs, but also
the earthquake and site coordinates, xeq and xsite, which define the source, path and site
non-ergodic effects in LAK21EAS. In this formulation, rnerg captures the combined effect of all
non-ergodic terms; there are no separate terms for the earthquake, path, and site non-ergodic
effects.

rnerg(T0,M,Rrup, VS30, xeq, xsite, ..) =

= ln (PSaRV T [IR(T0)) EASLAK21EAS(M,Rrup, VS30, xeq, xsite, ...)])

− ln (PSaRV T [IR(T0) EASBA18(M,Rrup, VS30, ...)])

(3.23)

The proposed non-ergodic PSa GMM is developed by coupling the aforementioned
non-ergodic ratios with an existing ergodic PSa GMM:

ynerg(M,R, VS30, xeq, xsite, ...) =

=rnerg(M,R, VS30, xeq, xsite, ...) + yerg(M,R, VS30, ...)
(3.24)

where ynerg is the natural log of the non-ergodic PSa median estimate, and yerg is the natural
log of the ergodic median estimate. The benefit of this approach is that it separates the
non-ergodic effects from the average ground-motion scaling. rnerg does not affect the average
scaling of the non-ergodic PSa GMM, as LAK21EAS is based on BA18, and thus, their
average scaling is canceled out. Furthermore, the small bias of RV T is also canceled out
in this approach, as the same RV T procedure is used to compute PSaerg and PSanerg For
the average scaling of the non-ergodic PSa GMM, yerg, we chose the Abrahamson et al.
(2014) (ASK14) and Chiou and Youngs (2014) (CY14) ergodic PSa GMMs. Hereafter, the
non-ergodic GMM that is based on ASK14 is called non-ergodic GMM1, and the non-ergodic
GMM that is based on CY14 is called non-ergodic GMM2. The main reasons ASK14 and
CY14 are selected to develop the non-ergodic GMM are: i) they were developed with the
same data-set as BA18, and ii) they include complex scaling terms, such as hanging-wall
effects, which can be passed to the non-ergodic GMMs.

The non-ergodic PSa GMM was not developed directly with RVT and LAK21EAS as
that this approach was leading to an overestimation the median PSa at medium-to-large
periods. Figure 3.8 compares the four NGAWest2 GMMs: ASK14, BSSA14, CB14, and
CY14 (Abrahamson et al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou
and Youngs, 2014) with the spectral acceleration response spectrum created with RVT and
BA18. The NGAWest2 GMMs are in good agreement with the PSa from BA18 for the M 5
event, but the comparison worsens as the size of the earthquake increases. For periods of
T0 = 2− 4sec from a M 8 earthquake, the PSa from BA18 is a factor of two higher than the
NGAWest2 GMMs, indicating that, in this period range, BA18 has a stronger magnitude
scaling than the NGAWest2 GMMs. Since LAK21EAS is based on BA18, a non-ergodic PSa
GMM developed with RVT and LAK21EAS will also have a stronger magnitude scaling than
the NGAWest2 GMMs. Due to the effort involved in the development of the NGAWest2
GMMs, we judge that their magnitude scaling is more likely to be correct, which is why
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(a) (b) (c)

Figure 3.8: Comparison of PSa spectra developed with the BA18 EAS GMM and RVT,
shown with the black line, and PSa spectra estimated using the NGAWest2 GMMs, shown
with the colored lines. (a) M 5.0, (b) M 6.5, and (c) M 8.0 earthquake scenario with
Rrup = 30 km and VS30 = 400 m/sec.

we used the non-ergodic ratios approach to develop the non-ergodic GMM; however, future
studies should further investigate the cause of the different magnitude scaling.

3.3.3 Constant Swift and Aleatory Model

The constant shift (δc0), between-event residuals (δB0
e ), and within-event residuals (δW 0

e,s)
are estimated by fitting a mixed-effects linear model to the total residuals of the non-ergodic
models:

εe,s = δc0 + δB0
e + δW 0

e,s (3.25)

The magnitude dependence of δB0
e and δW 0

e,s of the two non-ergodic PSa GMMs for
T0 = 0.25sec is evaluated in Figure 3.9. The mean of δB0

e and δW 0
e,s shows no trend with

M , but their emperical standard deviation decreases with M . Similarly, the Rrup and VS30

dependence of the δW 0
e,s for T0 = 0.25sec is evaluated in Figures 3.10 and 3.11 where no

significant trends are found both in the mean and in the standard deviation.
Figure 3.12 shows the estimated and smoothed δc0 of the two non-ergodic PSA GMMs.

Non-ergodic GMM2, which is based on CY14, is only estimated up to To = 5 sec because at
larger periods δc0 deviated significantly from zero.

Based on the empirical standard deviation of the non-ergodic residuals (Figure 3.9), both
φ0 and τ0 are modeled as magnitude dependent (Equation (3.26) and (3.27)). Figure 3.13
shows the period dependence of φ0 and τ0 for small and large magnitudes. The magnitude
dependence of φ0 and τ0 is more significant at small periods. The increase of the within-event
aleatory variability at the small periods of small magnitudes may be caused by the radiation
patterns which make the amplitude of the ground motion sensitive to the azimuthal angle.
In large magnitudes, which can be thought as many small events, the radiation patterns
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(a) (b)

(c) (d)

Figure 3.9: Between-event and within-event residuals for T0 = 0.25sec versus magnitude. (a)
δBe of non-ergodic GMM1, (b) δWe,s of non-ergodic GMM1, (c) δBe of non-ergodic GMM2,
and (d) δWe,s of non-ergodic GMM2.

(a) (b)

Figure 3.10: Within-event residuals for T0 = 0.25sec versus Rrup. (a) δWe,s of non-ergodic
GMM1, (b) δWe,s of non-ergodic GMM2.
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(a) (b)

Figure 3.11: Within-event residuals for T0 = 0.25sec versus VS30. (a) δWe,s of non-ergodic
GMM1, (b) δWe,s of non-ergodic GMM2.

(a) (b)

Figure 3.12: Estimated and smoothed deltac0 versus T0. (a) non-ergodic GMM1, (b) non-
ergodic GMM2

have less impact on the ground-motion variability, because the individual radiation patterns
destructively interfere with each other due to the different azimuthal angles. Similarly, the
larger between-event aleatory variability at the small periods of small magnitudes is believed
to be caused by differences in stress drop which shifts the ground motions at frequencies
above the corner frequency of the earthquake. Due to the large‘r rupture dimensions of the
large events, any variability in the stress drop along the rupture averages out resulting in
reduced between-event variability.

The total standard deviation of the two non-ergodic GMMs are 30 to 35% smaller than
the total standard deviation of ergodic GMMs.

φ0 =


φ0M1 for M < 5

φ0M1 + (φ0M2 − φ0M2)(M − 5)/(6.5− 5) for 5 < M < 6.5
φ0M2 for M > 6.5

(3.26)

τ0 =


τ0M1 for M < 5

τ0M1 + (τ0M2 − τ0M2)(M − 5)/(6.5− 5) for 5 < M < 6.5
τ0M2 for M > 6.5

(3.27)
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(a) (b)

(c) (d)

Figure 3.13: Period dependence of aleatory model parameters. (a) period dependence of φ0M1 ,
φ0M1 for non-ergodic GMM1 (b) period dependence of τ0M1 , φ0M1 for non-ergodic GMM1 (c)
period dependence of φ0M1 , φ0M1 for non-ergodic GMM2 (d) period dependence of τ0M1 , φ0M1

for non-ergodic GMM2

Figure 3.14 compares the proposed models for φ0 and τ0 with the standard deviations of the
binned residuals for T0 = 0.25sec. Overall, the aleatory models are in good agreement with the
empirical standard deviations. The discrepancy at large magnitudes is considered acceptable,
as the number of large magnitude events is small to reliably estimate the empirically standard
deviation.

As a comparison with previous non-ergodic models, Figure 3.15 shows the total standard
deviation of the two non-ergodic GMMs and the total standard deviation of the SWUS15
partially non-ergodic GMM (Abrahamson et al., 2015). The standard deviations of non-
ergodic GMM1 and GMM2 are within the low and high branches of SWUS15 for entire period
range for both small-to-moderate and large events. More specifically, for small-to-moderate
magnitude events and T0 < 1sec, the total standard deviations of GMM1 and GMM2 are
larger than the median branch of SWUS15. One possible reason for this is that σSS of
SWUS15 was estimated with magnitudes greater than 4, whereas σ0 of GMM1 and GMM2

were estimated with magnitudes greater than 3 which exhibit larger variability at small
periods. At large events, the total standard deviations of GMM1 and GMM2 are between
the central and lower branch of SWUS15. The GMM1 and GMM2 σ0 values are expected to
be less than SWUS15 σSS central branch because in addition to the systematic site effects,
GMM1 and GMM2 capture the systematic source and path effects. However, the fact that the
σ0 GMM1 and GMM2 are larger than the lower branch of SWUS15 means that the majority
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(a) (b)

(c) (d)

Figure 3.14: Magnitude dependence of φ0 and τ0 for T0 = 0.25sec. Circular markers denote
the standard deviations of the binned residuals, and solid lines correspond to the standard
deviation models. (a) φ0 for non-ergodic GMM1, (b) τ0 for non-ergodic GMM1, (a) φ0 for
non-ergodic GMM2, and (b) τ0 for non-ergodic GMM2

of the systematic effects captured by GMM1 and GMM2 are related to the site effects.

3.4 Applications

3.4.1 Effect of EAS inter-frequency correlation in rnerg PSa

In most GMMs, the ground-motion amplitude (i.e. PSa or EAS) at every frequency is
estimated independently; however, an actual ground-motion recording has peaks and troughs.
That is the amplitudes of neighbouring frequencies are correlated. For instance, if amplitude
of some frequency is above the average, it is likely that amplitudes of the nearby frequencies
will also be above the average. This inter-frequency correlation is important in RVT, as the
response of an SDOF oscillator does not only depend on the ground-motion amplitude at
T0 but also at the frequency content around T0. Bayless and Abrahamson (2018) showed
that the PSa variability is underestimated if the inter-frequency correlation of FAS is not
considered.

To illustrate the effect of the inter-frequency correlation in the calculation of rnerg PSa, we
applied the proposed non-ergodic GMM with and without the inter-frequency correlation in
EAS. In both cases, the scenario of interest is a M7 earthquake in Hayward Fault 8km away
from a site in Berkeley, CA. The ergodic and non-ergodic EAS of the two approaches are shown
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(a) (b)

Figure 3.15: Comparison of total standard deviation of non-ergodic GMM1 and GMM1 with
total standard deviation of SWUS15 partially non-ergodic GMM. (a) small-to-moderate
magnitude comparison, and (b) large magnitude comparison

in Figure 3.16, and the corresponding non-ergodic PSa spectra are shown in Figure 3.17. The
non-ergodic EAS in Figure 3.16a are developed without inter-frequency correlation, whereas
the non-ergodic EAS in figure 3.16b are developed using the inter-frequency correlation
model in Section 2.4.6 of Chapter 2.

In EAS space, both approaches resulted in the same median and epistemic uncertainty
range, but in PSa space, only the median is the same. The epistemic uncertainty of PSa
is larger when the EAS inter-frequency correlation is considered, because if EAS is at an
extreme at T0 it will generally stay at the extreme over the neighbouring frequencies; thus,
all the frequencies which influence the response of the oscillator will constructively interfere
leading in a range of PSa amplitudes that is wider. In contrast, if the EAS amplitudes are
uncorrelated, they will have negating effect on the response of the oscillator, resulting in a
narrower range of PSa. This shows the importance of considering the EAS inter-frequency
correlation in the non-ergodic PSa calculations, as otherwise, the epistemic uncertainty of
the PSa is underestimated.

3.4.2 Magnitude dependence rnergPSa

As an application example, Figures 3.18 and 3.19 present the EAS and PSa non-ergodic ratios
for T0 = 0.1sec (f0 = 10hz) for a M3 and M8 earthquake in San Andreas fault. The EAS
non-ergodic ratios are magnitude independent; the median estimate and epistemic uncertainty
of rnerg EAS is the same in both events (Figure 3.18). The magnitude independence allows
rnergEAS to be estimated from the more frequent small magnitude earthquakes and directly
applied to the large magnitude events, which are typically of more interest. This is not the
case for the PSa non-ergodic ratios; rnergPSa depend on the spectral shape; which is why
rnergPSa are different in the M3 and M8 earthquakes (Figure 3.19), which illustrates why
the non-ergodic PSa GMM is developed with non-ergodic ratios that based on EAS. Most
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(a) (b)

Figure 3.16: Effective amplitude spectra for a M 7 earthquake in Hayward fault, 8 km away
from a site located in Berkeley CA. (a) without inter-frequency correlation, and (b) with
inter-frequency correlation.

(a) (b)

Figure 3.17: PSa spectra for a M 7 earthquake in Hayward fault, 8 km away from a site
located in Berkeley CA. (a) without inter-frequency correlation, and (b) with inter-frequency
correlation.
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of the regional data that are used to estimate the non-ergodic effects are in form of small
magnitude events, which couldn’t be used if PSa non-ergodic effects were estimated directly.

In addition, Figures 3.18 and 3.19 show the spatial distribution of the epistemic uncertainty.
In this example, where the location of the earthquake is fixed, the spatial distribution of
the epistemic uncertainty depends on the path and site location. Both the EAS and PSa
epistemic uncertainties are small near stations that have recorded past events, whereas in
remote areas with no available ground-motion data to constrain the non-ergodic terms, the
epistemic uncertainties are larger.

The evaluation of the magnitude dependence of the EAS and PSa non-ergodic ratios
is further examined in Figures 3.20 and 3.21. The three scenarios in this comparison are a
M 3, 5.5 and 8 event in San Andreas Fault, 105km from the site in San Francisco, CA. As
mentioned previously, the non-ergodic EAS ratios are the same for all three events (Figure
3.20, while the non-ergodic PSa ratios are different, especially at small periods (Figure 3.21),
T0 < 0.1sec. This happens because, for f0 > 10hz (T0 < 0.1sec), there is little ground-motion
content in EAS to resonate the SDOF oscillator, making its response, and subsequently
PSa, depended on the peak of each spectrum. Similarly, the non-ergodic PSa ratios for
T0 < 0.1sec depend on the non-ergodic EAS ratios at the peak of each spectrum. In this
example, the M 3 event has the largest non-ergodic PSa ratios at T0 < 0.1sec, because the
non-ergodic EAS ratios are predominately positive over its peak (f = 2 to 6hz). The M 8
event has the smallest non-ergodic PSa ratios at T0 < 0.1sec because its peak (f < 0.1 to
6hz) encompasses the dip of the non-ergodic EAS ratios that occur from f = 0.3 to 2hz.

3.5 Conclusions

A new approach to develop non-ergodic PSa GMMs is presented in this study which considers
the magnitude dependence of the non-ergodic terms. Due to the linear properties of Fourier
Transform, a non-ergodic EAS GMM is used to estimate the non-ergodic effects from the
small magnitude events and transfer them to the events of interest. RVT is used to compute
the non-ergodic PSa effects based on the non-ergodic EAS effects, while the average scaling
of the non-ergodic PSa GMM is controlled by an existing ergodic PSa GMM.

Two non-ergodic PSa GMMs are developed in this study. The first one uses the ASK14
GMM as a backbone model for the average scaling and is applicable to periods T0 =
0.01 − 10sec. The second one uses the CY14 GMM as a backbone model for the average
scaling and is applicable to periods T0 = 0.01 − 5sec. The non-ergodic PSa effects are
quantified in terms of non-erodic PSa ratios, that is the difference between the log of PSa
estimated with RVT and the non-ergodic EAS and the log of PSa estimated with RVT and
the ergodic EAS. In both cases, the LAK21EAS GMM is used for the non-ergodic EAS and
the BA18 GMM is used for the ergodic EAS. The RVT calculations are performed with the
V75 PF , the median estimate of Da5−85 from AS96 for the ground-motion duration, and the
BT15 for the oscillator duration. The RVT components were chosen based on a thorough
evaluation of alternative models for the peak factors, ground-motion duration and oscillator
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(a) (b)

(c) (d)

Figure 3.18: EAS non-ergodic ratios, rnerg EAS, for f0 = 10hz for an earthquake in San
Andreas. The star corresponds to the earthquake location, and the dots correspond the
location of the stations in the used dataset. (a) mean of rnerg EAS for M = 3.0, (b) epistemic
uncertainty of rnerg EAS for M = 3.0 (c) mean of rnerg EAS for M = 8.0, and (d) epistemic
uncertainty of rnerg EAS for M = 8.0
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(a) (b)

(c) (d)

Figure 3.19: PSa non-ergodic ratios, rnerg PSa, for T0 = 0.1sec for an earthquake in San
Andreas. The star corresponds to the earthquake location, and the dots correspond the
location of the stations in the used dataset. (a) mean of rnerg PSa for M = 3.0, (b) epistemic
uncertainty of rnerg PSa for M = 3.0 (c) mean of rnerg PSa for M = 8.0, and (d) epistemic
uncertainty of rnerg PSa for M = 8.0
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(a) (b)

Figure 3.20: (a) Ergodic and non-ergodic EAS for M3, 5.5, and 8 earthquakes in San Andreas
fault, 105km from a site in San Francisco, CA (b) non-ergodic EAS ratios for the same
scenarios.

(a) (b)

Figure 3.21: (a) Ergodic and non-ergodic PSa spectra for M3, 5.5, and 8 earthquakes in San
Andreas fault, 105km from a site in San Francisco, CA (b) non-ergodic PSa ratios for the
same scenarios.
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duration. The objective of the evaluation was to minimize misfit between the observed PSa
and the PSa computed with RVT.

The advantages of developing the non-ergodic GMM with an ergodic backbone model
and non-ergodic PSa ratios, instead of developing it directly with RVT and the LAK21EAS

are: i) the elimination of the small bias of RV T at T0 = 1 − 4sec, ii) the separation of
the non-ergodic effects from average scaling, and iii) the adoption of complex scaling terms
present in ergodic PSa GMMs. Compared to the recorded PSa, the PSa estimated with
RVT has a small positive bias at T0 = 1−4sec. This bias is not propagated in the non-ergodic
PSa ratios; it is canceled out, as both the ergodic and non-ergodic RVT PSa estimates are
calculated with the same approach.

Aleatory aleatory variability of the two non-ergodic PSa GMMs is approximately 30 to
35% smaller than the aleatory variability of an ergodic PSa GMM.

Future studies should reevaluate the RVT and EAS models so that when combined
they result in a PSa predictions consistent with PSa GMMs. Furthermore, the proposed
non-ergodic GMMs were developed with a subset of the NGAWest2 database which was
compiled in 2014. As larger data sets which include more recent and more frequent small
magnitude events become available, the proposed models should be assessed and potentially
expanded with additional non-ergodic terms. Similarly, 3D broadband numerical simulations
or inferred intensity measurements from historical earthquakes should be used to evaluate
the efficacy of the proposed models.

3.6 Software and Resources

The RVT calculations were performed with the pyRVT library (Kottke, 2020) in the computer
language Python (Van Rossum and Drake, 2009). The linear mixed-effects regressions were
performed with the lme4 package (Bates et al., 2015) in the statistical environment R (R
Core Team, 2020).
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Chapter 4

Selection of VS30 for Embedded
Structures in the Seattle Region

4.1 Introduction

For seismic hazard analyses in the Pacific Northwest, it is common to use ground-motion
models (GMMs) that use the time-averaged shear-wave velocity measured from the surface
to a depth of 30m, VS30, as the main site parameter. The VS30 is not a fundamental physical
property that controls site amplification, but in natural soil deposits, the VS30 is often
correlated with the deeper VS profile that is the fundamental physical property controlling
site amplification. The VS30 parameter works as a predictor of site amplification due to
the correlation of VS30 and the site VS(z) profile. The correlation between VS30 and VS(z)
implicit in GMMs depends on the empirical ground-motion data set used to develop the VS30

dependence of the site amplification in the GMM.
For embedded structures, there is controversy about where the VS30 should be measured:

should it be measured from the surface to a depth of 30 m, from the embedment depth to 30
m below the embedment, or something in between? If the VS30 was a physical property that
directly caused the site amplification, then using the VS30 measured from the embedment
depth would be appropriate, but because the site amplification is due to the full VS profile
and not just the time-averaged shear-wave velocity measured over 30 m, this is not the case.
Furthermore, because the empirical correlation between the VS30 and the site amplification in
GMMs is based on the surface VS30, the VS30 measured from the embedment depth may not
have the same correlation with the site amplification as represented by the VS30 in the GMMs.
For example, if a structure is embedded 50 m, this does not change the deeper Vs profile that
controls the site amplification. Removing the top 50 m from the Vs profile changes the site
amplification for periods with wavelengths that are affected by the top 50 m, but it does not
change the deeper part of the profile that controls long-period site amplification. Using a
VS30 measured from the embedment depth to 30 m below the embedment depth as input into
the NGA-West2 GMMs will, in general, be inconsistent with the VS30 scaling in the GMMs.
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In addition to the embedment issue, there is a second, more significant issue to consider
for application of GMMs to the Seattle region: the correlation between the VS30 and the
deeper VS profile may be different in Seattle than it is in the regions that dominate the
empirical ground-motion data sets used to develop the VS30 scaling in the GMM. For example,
the NGA-W2 GMMs that are commonly used in Seattle to model the ground motion from
crustal earthquakes are dominated by data from California, so the correlation between the site
amplification and the VS30 in the NGA-W2 GMMs represents the depositional environment
in California. This correlation may not be applicable to Seattle.

Figure 4.1 compares the Vs profiles for California and Seattle for a VS30 of 300 m/s. This
figure shows that while the Seattle profile and California profile have the same VS30 values,
the Seattle profile has a much weaker velocity gradient than the California profile. Some
of the NGA-West2 GMMs include an additional site term that captures the depth to rock
(Z1.0 or Z2.5). Including the region specific Z1.0 and Z2.5 terms will help to account for the
difference in site amplification for these two profiles.

For subduction zone earthquakes, the empirical GMMs commonly used in the Seattle
region are based on ground-motion data that is mainly from Japan. As a result, the
correlation between the site amplification and the VS30 in the subduction GMMs represents
the depositional environment in Japan. Figure 4.1 also compares the Vs profiles for Japan
and Seattle for a VS30 of 300 m/s. Again, the Seattle profile has a much weaker velocity
gradient than the Japan profile.

4.2 Simplified Approach

The current approach used in seismic hazard studies in the Seattle region uses GMMs with a
site-specific VS30 value and basin amplification factors (BAF) to account for the basin effects.
For crustal earthquakes, the Z2.5-based basin factors from the Campbell and Bozorgnia (2014)
GMM are used (eq 4.1) where Z̄2.5(VS30) is the average Z2.5 for a given VS30 for sites in
California (called the default Z2.5 value). For subduction earthquakes, the simulation-based
basin factors from the M9 simulations (Wirth et al., 2018) are used (eq 4.2). The period
dependence of the basin factors for these two models are shown in Figure 4.2.

BAFcrustal =
SaCB14(M,R, VS30, Z2.5site)

SaCB14(M,R, VS30, Z̄2.5(VS30))
(4.1)

BAFsub(T ) = min(T/2 + 1, 2) (4.2)

With these basin factors, the median ground motion is given by

ln(SAsite(M,R, VS30) = ln
(
SAmed

(
M,R, VS30, Z̄2.5(VS30)

))
+ ln (BAF (Z2.5) (4.3)

The issue being considered in the study is what value of VS30 should be used in the GMM
for embedded structures? In particular, how can the effect of the embedment be included in
a simple manner? The simple approach being considered is to choose the depth at which to
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Figure 4.1: Comparison of a site-specific Seattle profile for a deep basin site (VS30 = 300m/s
and Z2.5 = 7 km) with a representative VS profile for California (VS30 = 300m/s and
Z2.5 = 1.8 km), and a representative VS profile for Japan (VS30 = 300m/s and Z2.5 = 0.4 km)
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Figure 4.2: Comparison basin factors applied to shallow crustal GMMs and subduction zone
GMMs for the Seattle region.



CHAPTER 4. SELECTION OF VS30 FOR EMBEDDED STRUCTURES IN THE
SEATTLE REGION 68

measure the VS30 and use that VS30 value in the GMM. As discussed in the introduction, the
VS30 scaling in the GMM is based on the surface VS30 and may not apply to VS30 measured at
depth and, due to different depositional environments, the VS30 scaling may also be different
for the site region (Seattle) than for the region for which the site factors in the GMM were
derived (e.g., California or Japan).

To keep the approach simple, we consider how to choose a VS30 value to plug into the
scaling in the GMM, which when combined with the Seattle basin terms, will lead to a
reasonable total site factor for the Seattle region. The selected VS30 value should be related
to something that can be measured at the site. Three alternative approaches for choosing the
VS30 are considered: (1) measure VS30 from the surface, (2) measure VS30 starting at one-half
of the embedment depth, and (3) measure VS30 starting at the full embedment depth.

4.3 GMM-to-Site Scale Factors

To address the question of the appropriate VS30 value to use in the GMM for embedded
structures in Seattle, we need to address both the differences in the VS(z) profiles due to
the different regions and the effect of embedment. To develop the scale factors between the
ground motion from the GMM and the ground-motion for Seattle site conditions, the same
input motion is propagated through a representative 1-D VS(z) profile for the GMM and a
site-specific 1-D VS(z) profile for Seattle. To be consistent with the current approach used
for seismic hazard in Seattle, the basin factors shown in Figure 4.2 are applied to the ground
motion computed using the GMM VS(z) profile with default basin depths. We then compute
the ratio of the outcropping ground motions at the embedment depth from the Seattle profile
to the surface motion with basin factors from the GMM profile.

Ratio(VS30x , VS30) =
SASite−V S−embed(VS30)

SAGMM−V S(VS30x , Z̄2.5(VS30x)×BAF
(4.4)

where SAsite−V S−embed(VS30) is the outcropping motion from the Seattle site-specific profile
for a given surface VS30 and SAGMM−V S(VS30x , Z̄2.5(VS30x)) is the surface ground motion from
the GMM profile for VS30x with the default Z2.5. The VS30x is the VS30 measured from depth
x to depth x+ 30 m.

If the ratio in eq 4.4 is near unity, then using VS30x as input into the GMM will lead to
ground motions similar to the outcropping motion at the embedment depth after accounting
for (1) the differences in the VS profile for the site and the VS profile for the GMM, (2) the
differences between the assumed basin factors and the site-specific VS(z) profile, and (3) the
effect of embedment.

The VS30x value (measured at the surface, one-half of embedment depth, or full embedment
depth) that has a ratio closest to unity is selected as the best approach for capturing both
the effects of embedment and the differences in the VS profiles for the site and the GMM.
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Figure 4.3: Representative profiles for the NGA-W2 GMM (California)

4.4 VS profiles for GMMs

For the crustal GMMs, the representative VS(z) for a given VS30 and the default Z2.5 is
developed using the Kamai et al. (2014) California profiles for shallow depths (< 200 m),
and the Kamai et al. (2013) profile by geologic unit for the deeper depths. The deep profile
was modified so that it was consistent with the default Z2.5 values. Representative profiles
for the NGA-W2 GMM are developed for three VS30 values and are plotted in Figure 4.3.
For other VS30 values, the spectral values are interpolated from the spectral values for these
three VS30 cases.

For the subduction GMMs, the representative VS(z) for a given VS30 is developed using
the Kamai et al. (2014) Japan profiles for shallow depths (< 200 m), and the deeper part
was developed based on NGA-W2 relationships between Z1.0, Z2.5 and VS30 for sites in Japan
(Chiou and Youngs, 2014; Campbell and Bozorgnia, 2014). Representative profiles for Japan
are developed for the same three VS30 values used for the crustal GMMs and are plotted in
Figure 4.4. The Japanese profiles have a much smaller Z2.5 for soil sites than the California
profiles with the same VS30 values.

4.5 Site Response Method

The site response is computed in the frequency domain using the Python package pySRA
(Kottke, 2019). For the application to tall buildings, the scale factors at large periods
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Figure 4.4: Representative profiles for the subduction GMMs (Japan)

(T > 2 sec) are of primary interest. Therefore, a linear site-response analyses is sufficient.
The half-space velocity for all cases was set to 3500 m/sec. The density of each layer was

estimated as a function of VS using equation 4.5. For layers with VS less than 1000 m/sec,
the damping was estimated as function of VS with equation 4.6. For layers with VS greater
than 1000 m/sec, the damping was set to zero because the effect of damping in the rock is
already represented in the input motion by using a kappa value applicable to surface ground
motion on rock sites.

ρ = 1.742 + 0.2875VS (4.5)

Damp = 0.0396 e(−0.00103VS) (4.6)

To smooth the site amplification ratio, both the Seattle profile and the GMM profile
were randomized following the Toro (1995) method. The parameters for the randomization
are summarized in Table 4.1. Figure 4.5 shows an example of the randomized profiles for
VS30 = 400 m/sec.

The input ground motion, shown in Figure 4.6, was based on the point-source model for
a M 7.2 earthquake at a distance of 5 km and a kappa of 0.035 sec, typical for the western
U.S. (Campbell, 2003). The input motion was inserted at the half-space of the profiles. The
selection of the earthquake parameters for the input motion is not critical as the site response
analysis is linear and we are interested in the long-period response. That is, the amplification
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Table 4.1: Parameters for Randomization of Velocity Profiles

Parameter Ref. Profiles Target Profiles

σ 0.15 0.1
ρ0 0.97 0.97
ρ200 1.0 1.0
∆ 3.8 3.8
h0 0.0 0.0
b 0.293 0.293
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Figure 4.5: Randomized reference and target profile, the reference profiles correspond of
VS30 = 400 m/sec
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Figure 4.6: Fourier Amplitude spectrum of input motion

between the input motion and the surface motion will be similar if a different input motion
was used.

The site response was conducted for GMM profiles corresponding to VS30 values of 300 m/s,
400 m/s, and 560 m/s for California and to VS30 values of 300 m/s, 400 m/s, and 500 m/s for
Japan representative profiles. An example of the surface spectra for the suite of randomized
profiles is shown in Figure 4.7.

4.6 Seattle Profiles

The site response was also conducted for the three sets of VS(z) profiles for Seattle shown in
Figure 4.8. The first set is based on shallow VS(z) profiles from a project in the Seattle region
with an average V̄S30 = 420 m/s that were merged with Stephenson et al. (2017) regional
Seattle profile for the deep part; the depth to VS = 2500 m/sec in the deep part of the Seattle
basin is approximately 7 km. The embedment depth of the structure was assumed to be
50 m; thus the three depths for measuring the VS30 are 0 m, 25 m, and 50 m. The average
VS30 values at these three depths are listed in Table 4.2. For Set 1, the VS30 only increases
from 420 to 490 m/s from the surface to the 50 m embedment depth.

The second Seattle set is composed of a single profile which was developed to have a
larger difference between the VS30 measured from the surface and the VS30x measured from
the embedment depth than the difference for the profiles in Set 1 (Figure 4.8). Starting with
the average Vs(z) of the Seattle Set 1 profiles, the velocities in the top 20 m were reduced by a
constant shift to give a surface VS30 of 300 m/s. For a smooth transition in the VS(z) profile,
the VS in the next layer below 20 m (layer from 23 to 28 m depth) was reduced by half of the
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Figure 4.7: Example of the surface spectra from the profile randomization for the California
profile with VS30 = 400 m/sec

shift in the shallow layers. The VS30x at the embedment depth of 50 m is unchanged from the
average of Set 1. This profile represents a thin soil site which leads to much larger long-period
motion if the VS30 scaling in the GMM is used, but has little effect on the long-period ground
motion from the 1-D site response due to the small thickness of the softer soil relative to the
wavelengths of the long-period ground motion. The results for the second set will be more
sensitive to the selection of the depth for computing the VS30 than for the Set 1.

The VS(z) profile comprising the third set represents a thicker soil site, still with VS30 =
300 m/s (Figure 4.8). For this case, the VS in the shallow layers down to 40 m depth was
reduced by fixed amount so that the VS30 = 300 m/s. As with the profile of Set 2, the VS for
the next layer below 40m depth (layer from 52 m to 80 m depth) was reduced by one-half
of the shift in the shallower layers. In this case, the softer soils extend to depths below the
embedment depth, so the VS30x is changed for both one-half the embedment depth and the
full embedment depth. This will lead to larger differences between the amplification using
the GMM with the VS30x measured at either the full embedment depth or at one-half of the
embedment depth.

4.7 Results

For the site response analyses with the GMM profiles, the response spectra were computed at
the surface. For the site response analyses with the Seattle profiles, the response spectra were
computed as the outcropping motion at the embedment depth. The ratio of the outcropping
response spectra from the Seattle profile to surface response spectra for the GMM profile
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Figure 4.8: Three example velocity profile used for Seattle.

Table 4.2: Seattle Profiles Considered in this Analysis

Parameter Set 1 Set 2 Set 3

VS30 at surface 420m/s 300m/s 300m/s
VS30x at 25m 470m/s 470m/s 360m/s
VS30x at 50m 490m/s 490m/s 430m/s
Z2.5 7km 7km 7km

scaled by the basin factors (eq. 4.1 and eq. 4.2) were computed for the three alternative
approaches for the VS30x used in the GMMs. The ratio is computed for the three Seattle sets
using an embedment depth of 50 m.

4.7.1 Crustal GMM

For Set 1 (surface VS30 = 420 m/s), the ratios shown in Figure 4.9 are similar using the VS30

measured from the surface or measured at the embedment depth. This lack of sensitivity
occurs because the the VS does not increase rapidly in the top 50 m for this profile (Figure
4.8).

For Set 2 (thin soil with surface VS30 = 420 m/s), the ratios in Figure 4.10 show that
using the surface VS30 leads to ratios much greater than unity for T < 6 sec compared to
the using either the VS30x at the full embedment depth or one-half of the embedment depth.
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Figure 4.9: Comparison of spectra for the crustal GMM for the Seattle Profiles - Set 1
(VS30 = 420 m/sec)

This indicates that using the surface VS30 will overestimate the site effects for T < 6 sec in
the Seattle region. At periods greater than 6 seconds, using the VS30x measured at either
embedment depth underestimates the site amplification by 10 to 20%. For this profile, the
ratios for VS30x measured at one-half the embedment depth or the full embedment depth
are similar because the VS30x did not change much if measured from 25 m depth or from
50 m depth. Recall that for Set 2, the main change to the VS(z) was in the top 20 m which
is above the one-half embedment depth (Figure 4.8). Once the VS30 is measured below the
softer soil, there is not a large effect on the results.

For the third set, we also used VS30 = 300 m/s but with the main change in the Vs(z)
profile extended to 40 m depth. The resulting spectra and ratios for Set 3 are shown in
Figure 4.11. For this case, the VS30 measured from the full embedment depth is closer to
unity than for the VS30 measured from one-half the embedment depth, except at periods of 6
to 8 seconds.

4.7.2 Subduction GMM

The same analysis was conducted for the subduction GMM using the Japanese profiles for
the GMM. The subduction GMM results are similar to the crustal GMM results for Set
1. The ratios for Set 1 (Fig 4.12) are similar using the VS30 measured from the surface or
measured at the embedment depth.

For Set 2, the ratio using the surface VS30 is larger than unity for T < 4 sec (Figure 4.13).
Using either the VS30x at the full embedment depth or one-half of the embedment depth
works well for T < 4 sec. For T > 4 sec, using the surface VS30 in the subduction GMM give



CHAPTER 4. SELECTION OF VS30 FOR EMBEDDED STRUCTURES IN THE
SEATTLE REGION 76

(a)

100 1012 × 100 3 × 100 4 × 100 6 × 100

Period (sec)

10 1

100

5%
-D

am
pe

d,
 S

pe
c.

 A
cc

el
. (

g)

Target: Seattle-VS30=300m/s (d=50m)
Host: CA (VS30x=300m/s, d=0m)
Host: CA (VS30x=470m/s, d=25m)
Host: CA (VS30x=490m/s, d=50m)

(b)

1.0 2.0 3.0 4.0 6.0 10.0
Period (sec)

0.25

0.50

1.00

2.00

4.00

A.
F.

 (H
os

t/T
ar

ge
t S

ea
ttl

e-
V S

30
=3

00
m

/s
, t

op
 2

5m
)

Host: CA (VS30x=300m/s, d=0m)
Host: CA (VS30x=470m/s, d=25m)
Host: CA (VS30x=490m/s, d=50m)

Figure 4.10: Comparison of spectra for the crustal GMM for the Seattle Profile - Set 2
(VS30 = 300 m/sec, thin soil)
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Figure 4.11: Comparison of spectra for the crustal GMM for the Seattle Profile - Set 3
(VS30 = 300 m/sec, thicker soil)
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Figure 4.12: Comparison of spectra for the subduction GMM for the Seattle Profile - Set 1
(VS30 = 420 m/sec)

a ratio closer to unity.
For Set 3, with the thicker soil layer, the results are similar to Set 2. The spectra and

ratios for the three VS30 values used in the subduction GMM are shown in Figure 4.14.
For 4 < T < 8 sec, the ratio using the surface VS30 in the GMM overestimates the site
amplification whereas the ratio using the embedded VS30x gives a ratio near unity. For T > 4
sec, the ratio using the surface VS30 in the GMM leads to ratios closer to unity than using
the embedded VS30x in the subduction GMM.

4.8 Conclusions

The objective of this study was to provide a recommendation on the depth at which the
VS30 should be measured for embedded tall buildings in the Seattle region for use in building
code applications. The key issue is the empirical VS30 scaling models in both the crustal and
subduction GMMs used for Seattle are not applicable to the Seattle region. In particular, the
deep VS(z) profiles in Seattle have very different velocity gradients than in the representative
profiles for the GMMs (Figure 4.1).

From the examples shown in this paper, for spectral periods less than 4 sec, using the
VS30 measured at the full embedment depth as input to the GMM with the basin factors
shown in Figure 4.2 is a better approximation of the ground motion in the Seattle region than
using the VS30 measured at the surface or measured from the one-half embedment depth. For
spectral periods of 4 to 8 sec, using the VS30 measured at the surface gives an overall better
estimate of the site amplification than using the VS30x measured at either embedment depth.
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Figure 4.13: Comparison of spectra for the subduction GMM for the Seattle Profile - Set 2
(VS30 = 300 m/sec, thin soil)
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Figure 4.14: Comparison of spectra for the subduction GMM for the Seattle Profile - Set 3
(VS30 = 300 m/sec, thicker soil)
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Based on these site response calculations, the under-prediction of the site amplification for
4 < T < 8 sec using the VS30x measured at the embedment depth is not large (between 10
and 20%).

There is not a single depth for measuring VS30x that does a good job capturing the site
amplification for all periods from 1 to 10 sec. To keep the approach simple, one option would
be to use the VS30x measured at the full embedment depth, but increase the basin factors for
T > 4 sec by 10 to 20 %.

4.8.1 Limitations

There are two main limitations of these results. The first limitation is the small number of
profiles considered for the Seattle region. Using Set 1 as the base case, we assumed that
profiles with lower VS30 values would only differ from the base profile in the shallow depths
(< 50 m). If the deep part of a site-specific Seattle velocity profiles differs significantly from
the base profile used in this study at depths greater than 50 m, then the conclusions from
this study need to be reevaluated before being applied to such a site.

A second limitation is that the differences in the site amplification between the Seattle
region and the GMMs is based on differences in the amplification using 1-D wave propagation.
There are 3-D effects in both the Seattle region and in the empirical data used to develop
the GMM. By only accounting for the differences in the 1-D site amplification, there is an
implicit assumption that the 3-D effects in the Seattle region are similar to the 3-D effects in
the empirical GMMs. If there are much stronger 3-D effects in the Seattle region as compared
to California or Japan, then the conclusions from this study need to be reevaluated.

4.8.2 Alternative Simplified Approach

While we were asked to address selection of VS30 for embedded tall buildings, this is not
just an issue of embedment, but rather an issue of the very different deep VS(z) profiles in
the Seattle region as compared to the VS(z) profile that is implied by the VS30 scaling in
the GMMs. In support of this argument, Figure 4.15 presents the mean outcrop response
spectra extracted at 0, 25 and 50 m depths of the profiles in Seattle Set 1 which shows
that the response spectra are unaffected by the embedment depth for periods greater than
1 sec. The same comparison was repeated with the other two sets which lead to the same
conclusion but for the sake of space these results are not presented here. The difference
between the deep VS(z) profiles for Seattle and the deep VS(z) profiles implied for the GMMs
will affect both embedded and non-embedded structures. That is, for a structure that is
not embedded, using the VS30 measured from the surface will also not be appropriate for
the site conditions in Seattle. Two alternative simplified approaches that account for the
differences in VS(z) and are applicable to both embedded and non-embedded structures are:
i) measuring the VS30 at some fixed depth for all structures in the Seattle region ii) using a
fixed VS30 for structural periods greater than 1 sec. For the first approach, Figures 4.9 to
4.14 show that measuring the VS30 at a fixed depth of 25 m is a reasonable approach because
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Figure 4.15: Outcrop spectra for the Seattle Profile - Set 1 extracted at 0, 25 and 50m depth.

it gives amplification ratios closest to unity for periods greater than 1 sec. For the second
approach, Figures 4.16 to 4.21 compare the Seattle target outcrop spectra at the embedment
depth with the surface spectra of the crustal and subduction profiles for VS30 equal to 350,
450 and 550 m/s. These results suggest that using a fixed Vs30 of 450 m/sec is reasonable as
the corresponding amplification ratios are closest to unity regardless of the target Seattle
profiles and tectonic environment of the GMMs. In both simplified approaches the point is
that for shallow embedment depths (up to 50 m), the long-period ground motion will not
be very sensitive to the building-specific embedment depth, so a single depth or VS30 may
be a reasonable simplified approach to account for the differences in the deep part of VS(z)
profiles. The second option is more advantageous over the first one as it does not require the
estimation of the Vs30x at a depth of 25 to 55 m.
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Figure 4.16: Comparison of spectra for the crustal GMM for VS30 = 350, 450, and 550 m/sec
with spectrum for the Seattle Profile - Set 1 (VS30 = 420 m/sec)
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Figure 4.17: Comparison of spectra for the crustal GMM for VS30 = 350, 450, and 550 m/sec
with spectrum for the Seattle Profile - Set 2 (VS30 = 300 m/sec, thin soil)
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Figure 4.18: Comparison of spectra for the crustal GMM for VS30 = 350, 450, and 550 m/sec
with spectrum for the Seattle Profile - Set 3 (VS30 = 300m/sec, thicker soil)
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Figure 4.19: Comparison of spectra for the subduction GMM for VS30 = 350, 450, and
550 m/sec with spectrum for the Seattle Profile - Set 1 (VS30 = 420 m/sec)
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Figure 4.20: Comparison of spectra for the subduction GMM for VS30 = 350, 450, and
550 m/sec with spectrum for the Seattle Profile - Set 2 (VS30 = 300 m/sec, thin soil)
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Figure 4.21: Comparison of spectra for the subduction GMM for VS30 = 350, 450, and
550 m/sec with spectrum for the Seattle Profile - Set 3 (VS30 = 300 m/sec, thicker soil)
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Chapter 5

Generation of Surface Slip Profiles in
the Wavenumber Domain

The contents of this chapter are primarily from a journal article submitted to the Bulletin of
the Seismological Society of America by Lavrentiadis, G., and Abrahamson, N.A. entitled:
“Generation of Surface Slip Profiles in the Wavenumber Domain”, which has been published.

5.1 Introduction

Most seismic hazard studies evaluate the ground motion at a site through a deterministic or
probabilistic seismic hazard assessment (PSHA). For sites located closest to faults, in addition
to ground-motion hazard, there is also surface-rupture hazard. The common approach to
mitigate the surface-rupture hazard is relocation; however, for types of structures such
as lifelines, railroads and bridges, crossing an active fault may be unavoidable, and so the
estimation of rupture hazard necessary (ALA, 2005; CALTRANS, 2013). Over the last decade,
there has been much less effort toward improving models and methods for surface-rupture
hazard as compared to the efforts to improve models and methods for ground-motion hazard.
To address this disparity, an international workshop entitled ”Fault Displacement Hazard
Analysis Workshop” was held in December 2016 at the U.S. Geological Survey (USGS) in
Menlo Park, California. The workshop was sponsored by the California Geological Survey
(CGS), the Institut de Radioprotection et de Surete Nucleaire (IRSN), the Instituto National
di Geofisica e Vulcanologia (INGV), the Pacific Earthquake Engineering Research Center
(PEER), and the USGS. In addition to reviewing the available data sets, the current state of
fault rupture models, and the methodology used for probabilistic fault displacement hazard
analysis (PFDHA), the workshop started the planning of a coordinated multi-year project
that would significantly move the PFDHA practice forward, similar to the approaches used
for coordinated studies for ground-motion hazard (e.g. Bozorgnia et al. 2014).

Following the recommendations from the 2016 workshop, a PFDHA project was initiated
at the B. John Garrick Institute for the Risk Sciences located at UCLA. The UCLA PFDHA
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project includes five main tasks: (1) develop a framework for describing the spatial distribu-
tions of primary and secondary surface ruptures and folding for use in PFDHA; (2) develop
an updated peer-reviewed data base of tectonic ground deformation from past earthquakes
including primary and secondary surface ruptures and folding; (3) develop new methods to
characterize the along-strike variability of surface slip profiles; (4) apply these new statistical
methods to develop new probabilistic models of distributions of amplitudes and locations
of surface ruptures and tectonic surface deformation as a function of the rupture geometry,
style of faulting, and complexity of the fault, and (5) develop a new open-source PFDHA
computer program that incorporates these new models.

Parallel to the UCLA PFDHA project, IRSN is conducting the SURE project (Baize et al.,
2016) to develop a community-sourced, worldwide, unified database of surface-rupturing
earthquakes from a wide range of tectonic environments. The SURE project began in 2015
and parts of the this data set are being incorporated into the UCLA PFDHA project data
set.

In this paper, we address Task 3 in the UCLA PFDHA project and develop a model for
the along-strike variability of the slip profile that has an underlying physical basis related to
the shape of the wavenumber spectrum of surface slip profiles, rather than simple statistical
modeling of sparse empirical data used in the currently available models. We still need to
estimate the parameters of the wavenumber spectrum using empirical data, but we optimize
the approach for the non-uniform and potentially biased sampling of surface fault ruptures
that are typical of the available empirical data sets from past earthquakes.

5.2 PFDHA Methodology

In its simplest form, the PFDHA methodology (Youngs et al., 2003) is similar to the
traditional PSHA methodology used for ground-motion hazard (McGuire, 2004) with two
main differences: an additional term for the probability of surface rupture at the site is
included and the ground-motion model is replaced with the surface-displacement model:

P (D > z|x) = N(Mmin)

∫ Mmax

Mmin

fm(M)P (SR at site|M)P (D > z|SRat site,M, x)dM (5.1)

where N(Mmin) is the rate of earthquakes above Mmin on the controlling fault, fm(M) is the
probability density function for earthquake magnitudes on the fault, P (SR at site|M) is the
conditional probability of surface rupture (SR) occurring at the site given the earthquake
magnitude, P (D > z|SR at site,M, x) is the conditional probability of the surface fault
displacement, D, exceeding a test value z, given that there is surface rupture at the site from
a magnitude M earthquake, and x is the distance from the site to the end of the rupture.

The P (D > z|SR at site,M, x) term is typically separated into the distribution for the
average displacement over the full rupture length (AD) and the distribution for the normalized
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displacement along strike (Dnorm):

P (D > z|SRat site,M, x) =

∫
AD

∫
Dnorm

fAD (AD|M) fND(Dnorm|x)

P (D > z|AD,Dnorm) dDnorm dAD

(5.2)

where fAD is the probability density function of the average displacement, and fND is the
probability density function of the normalized surface displacement. These two terms are
described below.

The average displacement is typically estimated using empirical models that are a function
of earthquake magnitude and source type. For example, Wells and Coppersmith 1994 provide
empirical relations for the magnitude scaling of AD(M) for different styles of faulting. The
aleatory variability of AD is typically assumed to be lognormally distributed.

The normalized displacement is given by:

Dnorm(x/SRL) =
D(x)

AD × T (x/SRL)
(5.3)

where SRL is the surface rupture length, x is the distance from the end of the rupture,
D(x) is the displacement at location x along the rupture, and T (x/SRL) is a function that
describes how the mean slip is tapered toward the ends of the rupture.

Multiple studies have found that the mean slip profiles are reduced near the ends of the
rupture, but different models have been proposed for the shape of T (x/SRL). The models can
be categorized in terms of their assumptions about symmetry at the half rupture length and
their generic shape (e.g. elliptic or triangular). Hemphill-Haley and Weldon (1999) developed
a symmetrical elliptical model for mean shape of the slip profiles. Manighetti et al. (2005)
found that most slip profiles are in better agreement with asymmetric triangular distributions
than with symmetric elliptical models. Wesnousky (2008) found that asymmetric models
matched the slip profiles better than symmetric distributions. Petersen et al. (2011) proposed
a suite of alternative models for the along-strike taper using elliptical, piece-wise billinear,
and quadratic forms for T (x/SRL). These alternative models for the shape of T (x/SRL)
are based on analyses of empirical observations but without a underlying physical model to
constrain the extrapolation of the model to larger magnitude earthquakes.

An important issue is the use of the normalized distance along strike, x/SRL. To combine
the surface rupture data from earthquakes with different SRL into a single regression analysis,
previous studies have homogenized the surface slip profiles by normalizing the along-strike
distance by the surface-rupture length (x/SLR). This assumption implies that the shape of
the taper at the end of the rupture scales linearly with SRL, which may not be appropriate.
While using a normalized distance along strike is convenient, the physical basis for this
normalization has not been evaluated.

The proposed wavenumber spectrum model for the slip profile developed in this study
provides a model that is consistent with seismological modeling of slip on the rupture plane
both from slip inversions and from dynamic rupture models. As an example, using dynamic
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simulations, Dieterich and Smith (2009) and Dunham et al. (2011) found that the slip
variability on the fault plane is related to the fault roughness which translates to the slope of
the wavenumber spectrum at the high-wavenumbers. In addition, the proposed wavenumber
model does not use the normalized distance along strike and it does not require choosing a
form for the taper along strike. These two features lead to an improved model for the shape
of the mean slip along strike as compared to the purely empirical models currently used in
PFDHA practice.

5.2.1 Normalized Displacement Models

The along-strike variability of the surface slip profile about the mean slip is given by the
model used for fND(Dnorm|x). Alternative statistical distribution for fND(Dnorm|x) have
been proposed. McCalpin (1998) found that the Dnorm values followed a gamma distribution.
In contrast, Petersen et al. (2011) assumed that the Dnorm values followed a log-normal
distribution. Moss and Ross (2011) compared the goodness-of-fit of normal, log-normal,
gamma, and Weibull distributions to the Dnorm values and showed that the latter two
distributions are in better agreement with the observations.

The choice of the form of the probability distribution for fND(Dnorm|x) can have a
significant impact on the slope of a hazard curve. The lognormal distribution has much fatter
tails for large displacements which leads to much larger hazard at large return periods. The
sensitivity of hazard to the choice of the form of fND(Dnorm|x) is shown later in the example
application section (see Figure 5.15). The proposed wavenumber-spectrum method doesn’t
require assumptions about the distribution of Dnorm in the space domain. Therefore, it can
provide an independent evaluation of the distribution of Dnorm.

5.2.2 Spatial Correlation of Along Strike Variability

Typically, the effect of spatial correlation of the measurements of slip along strike has not
been formally considered in the normalized slip models, partly due to the widely separated
measurements that are common for data sets from older earthquakes. Modern technologies can
resolve fault displacement profiles at much higher spatial resolution and provide data that can
used to evaluate the spatial correlation of the along-strike variability of slip; examples of such
high-resolution surveys are: Oskin et al. (2012), Nissen et al. (2014) and Wedmore et al. (2019),
who used LIDAR to measure the co-seismic deformations of the 2010 El Mayor-Cucapah,
2008 Iwate-Miyagi, 2011 Fukushima-Hamadori and 2016 Norcia earthquakes; and Milliner
et al. (2016), who measured the total surface deformations of 1992 Landers and 1999 Hector
Mine earthquakes using subpixel image correlation. The study by Rockwell and Klinger
(2013) illustrates the differences in spatial correlation between field-based measurements and
slip estimates measured with hight-resolution techniques: using historic areal photography,
they augmented the number of slip measurements for the 1940 Imperial Valley, CA rupture
profile and observed that the new dense measurements suggested higher variability of slip
along strike than the original field measurements.
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This higher variability observed by these recent studies would be missed if simple linear
interpolation was used to estimate the slip between widely separated points along historic
ruptures. The proposed wavenumber spectrum model implicitly addresses the spatial correla-
tion length of the variability of Dnorm along strike. As will be shown later, the decay of the
amplitude of the wavenumber spectrum at high wavenumbers is related to the correlation
length.

5.3 Data Base

Because the UCLA PFDHA project rupture data base is still under development, we used
the existing fault-rupture data set of Wesnousky (2008) for this application of the proposed
method based on the wavenumber spectrum model. We will apply the new method to the
UCLA PFDHA project data base after the development and peer review of the data set is
completed.

From the Wesnousky (2008) data set, we selected a subset of 32 earthquakes with
magnitude M range from 6.1 to 7.9 (Table 5.1). We defined the amplitude of the surface slip
as the total amplitude of the vector sum of the horizontal and vertical slip at each location.
Earthquakes with any sense of slip are included in the selected subset: of the 32 earthquakes,
seven are normal, 20 are strike-slip and five are reverse.

The data set includes both single and multi-segment ruptures (Table 5.1). The definition
of segments is a controversial topic that is being addressed as part of the framework for
distributed fault rupture in the UCLA PFDHA project. For this study, we adopted the
segmentation as defined in Wesnousky (2008). As an example, Figure 5.1 illustrates the
classification as single or multi-segment ruptures. In the case of multi-segment ruptures,
each segment is analyzed separately, and the SRL is defined by the length of the individual
segments. The treatment of segments will be reevaluated once the framework for the UCLA
PFDHA project is complete.

5.4 Wavenumber Spectral Analysis

In this study, our focus is on the model for the fND(Dnorm|x) term in eq (5.2). The surface-
slip model is formulated in the wavenumber domain which accounts for the along-strike
correlation in the data, as well as avoiding the normalization of the distance along strike by
the SRL. The use of the wavenumber domain builds on the seismological approach to model
the two-dimensional slip distribution on the rupture plane at depth (Somerville et al., 1999).
Using the wavenumber spectrum provides a physical basis for extrapolating the model beyond
the empirical data used to develop the model that is missing from the purely statistical
models currently used. Because the wavenumber spectrum has not been commonly used for
fault rupture modeling, a brief description of the wavenumber spectrum is given below.
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Table 5.1: Analyzed Earthquakes (Wesnousky, 2008)

Date Location Type M Length Reported Reported Segment.
(mm/dd/yyyy) (km) A.D. (m) M.D. (m) Flag1

01/09/1857 Fort Tejon, CA SS 7.9 360 4.7 9.1 S
05/03/1887 Sonora, MX N 7.2 70 2.2 4.1 S
10/28/1891 Neo-Dani, Japan SS 7.3 80 3.1 7.9 S
8/31/1896 Rikuu, Japan R 7.2 37 2.5 6.5 M
10/2/1915 Pleasant Valley, CA N 7.3 61 1.8 5.8 M
11/2/1930 Kita-Izu, Japan SS 6.7 35 1.1 3.5 M
12/25/1939 Erzincan, Turkey SS 7.7 300 4.2 7.4 S
5/19/1940 Imperial, CA SS 6.9 60 1.6 3.3 S
12/20/1942 Erbaa-Niksar, Turkey SS 6.8 28 1.66 1.9 S
11/26/1943 Tosya, Turkey SS 7.6 275 2.5 4.4 S
9/10/1943 Tottori, Japan SS 6.3 10.5 0.6 1.5 M
2/1/1944 Gerede-Bolu, Turkey SS 7.35 155 2.1 3.5 S
1/31/1945 Mikawa, Japan R 6.2 4 1.3 2.1 S
12/16/1954 Fairview Peak, NV N 7 62 1.1 5.2 M
12/16/1954 Dixie Valley, NV N 6.8 47 0.8 3.1 M
8/18/1959 Hebgen Lake, MT N 7 25 2.5 5.4 M
7/22/1967 Mudurnu, Turkey SS 6.7 60 0.9 2 S
4/8/1968 Borrego Mtn, CA SS 6.1 31 0.13 0.4 M
2/9/1971 San Fernando, CA R 6.7 15 0.95 2.5 S
6/2/1979 Cadoux, Australia R 6.1 10 0.6 1.2 S
7/29/1981 Sirch, Iran SS 6.4 64 0.13 0.5 S
10/28/1983 Borah Peak, ID N 6.9 34 0.94 2.8 M
3/2/1987 Edgecumbe, NZ N 6.3 15.5 0.6 2.6 M

11/23/1987 Super. Hills, CA SS 6.2 25 0.45 0.8 M
7/16/1990 Luzon, Philippines SS 7.6 112 3.5 6.2 S
6/28/1992 Landers, CA SS 7.2 77 2.3 6.7 S
3/14/1998 Fandoqa, Iran SS 6.6 25 1.1 3.1 S
9/21/1999 Chi-Chi, Taiwan R 7.4 72 3.5 12.7 S
10/16/1999 Hector Mine, CA SS 6.9 44 1.56 5.2 S
11/12/1999 Duzce, Turkey SS 7 40 2.1 5 S
11/14/2001 Kunlun, China SS 7.8 424.5 2.4 8.3 S
11/3/2002 Denali, AK SS 7.7 302 3.6 8.9 S
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Figure 5.1: Examples of single and multi-segmented event classification, after Wesnousky
(2008) electronic supplement. (a) 1857 Fort Tejon, CA surface slip profile, classified as single
rupture event; (b) 1915 Pleasant Vallely, NV surface slip profile, classified as multi-segment
rupture event

The Fourier Transform (eq. 5.4) allows us to decompose a displacement profile into a series
of sinusoidal waveforms of different wavelengths. In eq (5.4), y(x) is the surface displacement
and Y (k) is the Fourier transform of y(x). Each sinusoidal function can be fully defined
by its wavelength, amplitude (A), and phase angle (φ). The wavelength defines how broad
the fluctuations of slip are over the surface rupture length, the amplitude is proportional to
the amplitude of the sinusoid, and the phase angle quantifies the offset of the peak of the
sinusoid from the origin. The amplitude and phase spectra are expressed as a functions of
the wavenumber, k, which is the reciprocal of the wavelength. The sampling interval along
the rupture, dx, defines the largest wavenumber that can be resolved (Nyquist wavenumber)
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and the SRL controls the wavenumber interval, dk.

Y (k) =

∫ SRL

0

y(x)e−i2πkxdx = A(k)eiφ(k) (5.4)

Similarly, the inverse Fourier Transform (eq. 5.5) can be used to compute the displacement
profile if the amplitude and phase spectra are known.

y(x) =
n∑

i=n/2

Y (ki)e
i2πxkidk =

n∑
i=n/2

A(ki)e
iφ(ki)ei2πxkidk (5.5)

A Fourier series defines a periodic function that repeats itself. Discontinuities at the ends of
the ruptures, that could create noise in the Fourier domain due to periodic assumptions, are
avoided by setting the first and last data point of the profiles to be equal to zero.

Developing empirical models for the amplitude spectrum is straight forward, but developing
empirical models for the phase is more difficult due to phase wrapping about 2π. Instead of
working directly with phase angles, previous studies have developed models for the phase-
difference distribution. For example, ground-motion studies (Matsukawa et al., 1987; Ohsaki,
1979; Yokoyama et al., 1988) have used phase-difference distributions and have shown that
the width of the phase-difference distribution is related to the envelope of the time series.
For surface rupture studies, the width of the phase-difference distribution is related to the
envelope of the displacement profile. In this study, we use phase derivatives rather than
phase differences because it allows the phase data from earthquakes with different SRL and
different dk to be combined in a single regression analysis for developing empirical phase
models.

The phase derivative (∂φ/∂k) describes the relative location of peaks along strike from
different wavenumbers. If the phase derivatives are from a narrow distribution, the peaks
from the different wavenumbers will constructively interfere over a portion of the rupture
and destructively interfere in other areas, leading to a more peaked slip profile along strike.
In contrast, if the phase derivatives are from a broad distribution, then the peaks of the
sinusoids will be randomly separated along strike, leading to a more uniform distribution of
slip along strike.

When computing the phase derivatives, phase unwrapping needs to be considered. Phase
wrapping is an numerical artifact when calculating the phase angles: if the phase exceeds π or
is less than −π, it is wrapped to stay in the [−π, π] range. Phase wrapping can create problems
when calculating the phase-derivative numerically with a finite-difference approximation for
the derivative: in the case in which there are two adjacent wavenumbers with one of them
having the phase wrapped by 2π, there will be a discontinuity in the phase derivative.

The phase derivatives can be computed analytically (eq. 5.6) without any assumptions
about phase unwrapping (Boore, 2003; Stoffa et al., 1974):

∂φ(k)

∂k
= 2π

<(Y (k))<(G(k))−=(Y (k))=(G(k)))

A(k)2
(5.6)
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In eq (5.6), G(k) is the Fourier transform of the product of the slip profile and the along
strike distance, x× y(x). The < and = functions are the operators for taking the real and
imaginary parts of a complex number.

As examples of the representation of a slip profile in the wavenumber domain, we use
the surface-slip profiles from the 1971 San Fernando and 1983 Borah Peak earthquakes
(Figure 5.2). The slip profiles for the two earthquakes, as compiled in Wesnousky (2008)
database, are shown in Figures 5.2a and 5.2b. These two rupture profiles have similar SRL,
so the comparison of amplitude spectra and phase-derivative distributions for these two
earthquakes are not influenced by differences in the SRL. The slip profile for 1971 San
Fernando earthquake has a wider peak compared to the 1983 Borah Peak earthquake, which
results in a wider phase-derivative distribution for 1971 San Fernando (Figure 5.2c) compared
to that for the 1983 Borah Peak earthquake (Figure 5.2d). The amplitude spectra for these
two earthquakes are compared in Figures 5.2e and 5.2f. By definition, the spectral ordinate
at the zero wavenumber is equal to AD × SRL. The AD values for the 1971 San Fernando
and 1893 Borah Peak earthquakes are 0.87 m and 0.28 m, respectively. This corresponds
to amplitudes in the wavenumber spectrum at k = 0 of 14500 m2 and 4500 m2 as shown
in Figures 5.2e and 5.2f. Additionally, the narrower peaks in the 1893 Borah Peak slip
profile, compared to those in the 1971 San Fernando slip profile, results in a smaller rate of
decay in the amplitude spectrum of the 1893 Borah Peak earthquake because there is greater
amplitude at the shorter wavelengths needed to create the narrower peaks.

5.4.1 Non-uniform Fourier Transform

A key challenge for using wavenumber spectra for surface displacement data is the estimation
of the Fourier amplitude and phase spectra of non-uniformly sampled slip measurements.
The standard discrete Fourier transform (DFT) algorithms are developed for signals that
are sampled at a constant interval. Due to constraints in the field, such as inaccessibility of
sites, vegetation, and limitations in the measuring techniques, many slip profiles have been
sampled at non-uniform intervals. Modern remote sensing techniques, such as pixel matching
(Milliner et al., 2016), Lidar (Gori et al., 2018) and structure for motion (Kayen et al., 2018),
make the uniform sampling of displacement profiles feasible; however, there is still a need for
a robust method that can be used for older data sets with uneven sampling.

The Fourier transform can be written in matrix notation:

~Y = F ~y (5.7)

For surface-slip data sets, the ratio of the largest sample interval (dxmax) to the smallest
sample interval (dxmin) is often large, leading to the Fourier Matrix (F ) in eq (5.7) being
ill-conditioned (i.e. the solution is highly sensitive to small perturbations in the slip profile).
The matrix F is given by

F = exp(−i2π~x ᵀ~k) dx (5.8)

where ~x is the vector of along strike distances, ~k is the vector of wavenumbers for which the
Fourier coefficients ~Y are estimated, and dx is the mean distance interval between samples.
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Figure 5.2: Representation of 1971, San Fernando, CA and 1983, Borah Peak, ID, second
segment, slip profiles in space and wavenumber domain. (a) 1971, San Fernando, CA
earthquake surface-slip profile; (b) 1983, Borah Peak, ID earthquake, second segment surface-
slip profile; (c) Phase-derivative distribution of the 1917, San Fernando, CA earthquake;
(d) Phase-derivative distribution of the 1983, Borah Peak, ID earthquake; (e) Amplitude
spectrum of the 1971, San Fernando, CA surface-slip profile; (f) Amplitude spectrum of the
1983, Borah Peak, ID surface-slip profile.



CHAPTER 5. GENERATION OF SURFACE SLIP PROFILES IN THE WAVENUMBER
DOMAIN 94

In many standard Fourier Transform computer programs, the dx is assumed to be unity
without dimensions. In eq ( 5.8), we included dx to have physical units for the amplitude
spectrum in the wavenumber domain, which in this case are m2. This allows us to relate the
amplitude at zero wavenumber to the physical parameter AD × SRL.

One approach to circumvent issue of the ill-conditioned F matrix is to linearly interpolate
the displacement profiles (~y) at a constant interval, and then perform a DFT; however,
linear interpolation will imply a smoother profile as it connects the locations with measured
displacements with line segments that will affect the Fourier spectra at high wavenumbers.
Our approach uses a regularized least-squares regression, hereafter, called the regularized
Fourier transform (RFT), given by:

~Y = (F ᵀ
invFinv + ΓᵀΓ)

−1
F ᵀ

inv~y (5.9)

where Finv is the inverse Fourier matrix given by

Finv = exp(i2π~k
ᵀ
~x) dk (5.10)

and Γ is the regularization matrix. This approach does not require any interpolation of a slip
profile prior to computing its Fourier spectra. We find ~Y that minimize the misfit between
the slip profile and the inverse Fourier transform (~yfwrd), with the additional constraint of

minimizing the magnitude of ~Y . This way, the solution fits the slip profile but also avoids
over-fitting at the high wavenumbers. Using the inverse transform, the computed profile,
~yfwrd is given by:

~yfwrd = Finv
~Y (5.11)

Based on validation tests presented later, it was found that the best results where achieved
by a diagonal regularization matrix (Γ), given by:

Γ = α diag(~k/dk)n dk (5.12)

The Γ matrix includes a proportionality factor, α, and is scaled by dk to have the proper
units in the wavenumber domain. The element in Γ that corresponds to the zero wavenumber
was set to α× dk to avoid dividing by zero. This wavenumber-dependent Γ matrix, which
applies a greater regularization to the high wavenumbers compared to the small ones, ensures
that the bulk of the slip profile is fitted by the small wavenumbers, and the high wavenumbers
are limited to fitting the narrow variations of slip.

The parameter α controls the relative weight between the size of residuals of ~y − ~yfwrd
and the magnitude of ~Y . If α is too large, Γ over-constrains the regression leading to an
overly smooth slip profile and ~yfwrd will not match the original profile ~y. Alternatively, if

α is too small, Γ doesn’t impose enough regularization and results in the same ~Y as the
ordinary least-squares solutions with the issues mentioned previously. An additional benefit
of this approach is that it allows for a straight-forward consideration of the measurement
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uncertainty in the slip estimates. Estimates of uncertainty were not considered in this study
because they were not available the current database, but this information will be part of the
UCLA PFDHA data base that is currently being developed.

The optimum values of α and n are determined through validation tests that evaluated the
ability of the proposed method to recover the wavenumber spectrum parameters of artificial
data sets with known parameter values. The validation tests are described in detail in a
subsequent section. In addition to the quantitative validation tests, using visual inspection,
we checked that the inverse slip profiles (~yfwrd) appear reasonable and are in agreement with
the observed ones for past earthquakes in the database.

To implement the validation tests, we had to assume a model for the wavenumber spectrum
to use as a test. Therefore, we used initial empirical models to set the wavenumber spectrum
parameters for testing, then, we developed new empirical models using the selected approach
and repeated the validation. Rather than stepping through this iterative process, we show
the modeling using the selected final model parameters and then show the validation using
the parameters from this final model.

5.5 Amplitude Model

We use the functional form of a scaled Butterworth filter (eq 5.13) to describe the shape of
the amplitude spectrum.

~Bamp =
B0√

1 +
(

~k
KC

)2Np
=

AD × SRL√
1 +

(
~k
KC

)2Np
(5.13)

Our selection of this form is based on the Somerville et al. (1999) study, who showed that a
2D Butterworth filter is a good approximation to the 2-D amplitude spectrum of the slip
variation on the fault plane at depth.

The Butterworth filter is defined with two parameters: the number of poles (Np) and the
corner wavenumber (KC). A schematic figure of the functional form for amplitude model is
shown in Figure 5.3. The KC is the wavenumber at which the amplitude of the Butterworth
filter is 1/

√
2 of B0. It is related to the SRL and the shape of the mean slip along strike.

A high KC corresponds to slip profiles in which the slip goes to zero over small distance
intervals along strike, while a low KC implies larger distances along strike between the zero
displacements. The Np parameter controls the rate at which the high wavenumbers decay. It
is related to the amount of variability along strike about the mean slip profile. A smaller
value of Np leads to greater variability along strike.

For our slip model, there is a a third parameter, B0, which is the amplitude at zero
wavenumber and it scales the Butterworth filter. As noted earlier, the value of B0 corresponds
to the product of AD × SRL.

The correlation length in the space domain is related to the amplitude parameters KC and
Np in the wavenumber domain. For a SRL of 100km and a triangular shape of T (x/SRL), a
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Figure 5.3: Schematic of the amplitude model. The functional form of the amplitude model
corresponds to equation 5.13. The scaling relationships that control the corner wavenumber
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correlation length of 2 km leads to mean values of KC = 0.0037/km and Np = 1.07; similarly
a correlation length of 10 km, leads to mean values of KC = 0.0044/km and Np = 1.27.
Additional information on the relation between the correlation length and the wavenumber
parameters is given in Figures B.1 and B.2 in Appendix B.

For each earthquake, we estimate the three parameters B0, KC, and Np. The B0

parameter is set equal to the computed amplitude spectrum at k=0. The KC and Np
parameters are estimated by fitting the amplitude spectra of the displacement profiles to eq
(5.14):

log10Bampi(kj) = log10(B0,i)−0.5

[
log10

(
1 +

kj
KC(SRLi) + ηKC,i

)2(Np+ηNp,i)
]

+εij (5.14)

where i is the index for the earthquake and j is the index for the wavenumber. The residuals
are assumed to be log-normally distributed. The regression analysis is performed in a
mixed-effects maximum-likelihood framework, following the Abrahamson and Youngs (1992)
methodology, with the KC and NP modelled as random effects.

The functional form of the model used for KC is given by:

log10(KC) = C1 + C2(log10(SRL)− C3) + ηKC , ηKC ∼ N(0, τKC) (5.15)

The KC is modeled as a function of the SRL (eq. 5.15) rather than earthquake magnitude
because KC is related to the shape of the mean displacement profile which depends directly
on SRL, but more weakely on M . Additionally, using SRL allows us to have the same scaling
relationship for both single and multi-segment ruptures, with KC as a function of the length
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of each segment. The C3 term is included in (eq. 5.15) to center the model on the weighted
average SRL. For this data set, it is set at C3 = 1.6. Preliminary analyses found Np to be
independent of SRL. Therefore, the mean Np is modeled as a constant, independent of the
SRL (eq. 5.16).

Np = C4 + ηNp, ηNp ∼ N(0, τ 2
Np) (5.16)

The likelihood function used to estimate the regression coefficients (θ) is given by:

ln (L(θ)) =
N

2
ln(2π)− 1

2
ln (|Σtot|)−

1

2

(
~famp − ~Bamp(θ)

)ᵀ
Σtot

−1
(
~famp − ~Bamp(θ)

)
(5.17)

where N is the number of data points, famp the vector of Fourier amplitudes at all wavenumbers
for all earthquakes, and Σtot is the covariance matrix described below. Because the functional
form of the Butterworth filter is non-linear (eq 5.13), the likelihood function is maximized
using the nonlinear maximum likelihood package, NLMER (Bates et al., 2015), given in the
statistical software R (R Core Team, 2018).

The covariance matrix (Σtot) is a block diagonal matrix with each block corresponding
to the covariance matrix for one earthquake. The block for the ith earthquake, Σtot,i, is a
square matrix with its size equal to the number of wavenumbers of the ith earthquake. Each
block consists of three terms: the intra-event covariance matrix Σint,i and the two inter-event
covariance matrices (ΣKC,i and ΣNp,i) for the random-effects terms. The covariance matrix
is given by

Σtot,i = Σint,i + ΣKC,i + ΣNp,i (5.18)

Weights are included in the intra-event covariance matrix to put less weight on the higher
wavenumbers. The weights account for two effects: (1) there are larger uncertainties in the
amplitude at high wavenumbers due to the uneven sampling, and (2) the evaluation of the
amplitude fit is on log scale, but the sampling of the wavenumbers is linear, leading denser
sampling of high wavenumbers for the same wavenumber interval in log space. We selected
weights that are inversely proportional to their wavenumbers normalized by wavenumber
interval (dki) of the ith earthquake:

Σint,i = φ2diag(~k/dk) (5.19)

To avoid dividing by zero, the weight corresponding to the zero wavenumber is set equal
to the weight of the smallest non-zero wavenumber. The validation tests, presented in a
subsequent section, confirmed that using the proposed weights for the Σint,i matrix performs
better than using equal weights.

The ΣKC,i and ΣNp,i covariance matrices were computed by linearizing the Butterworth
filter functional form with a first-order Taylor series expansion (Bevington and Robinson,
1993; Stafford, 2015; Abrahamson et al., 2016). With this approximation, the total residual
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(εtotal,ij) is expressed as a linear combination of the intra-event (εi,j) and inter-event (ηKC,i
and ηNp,i) residuals:

εtotal,ij =
√
dki/kj εi,j +

∂Bampi,j
∂ηKC

ηKC,i +
∂Bampi,j
∂ηNp

ηNp,i (5.20)

Assuming that ε, ηKC , and ηNp are uncorrelated, the total variance is equal to:

σ2 =
dk

k
φ2 +

(
∂Bamp

∂ ηKC

)2

τ 2
KC +

(
∂Bamp

∂ ηNp

)2

τ 2
Np, (5.21)

where φ2 is the intra-event variance and τ 2
KC and τ 2

Np are the inter-event variances for KC
and Np, respectively. The structure of ΣKC,i and ΣNp,i covariance matrices is shown in
below:

ΣKC,i = τ 2
KC

~(
∂Bampi
∂ηKC

) ~(
∂Bampi
∂ηKC

)ᵀ

(5.22)

ΣNp,i = τ 2
Np

~(
∂Bampi
∂ηNp

) ~(
∂Bampi
∂ηNp

)ᵀ

(5.23)

5.5.1 Regression Results for Amplitude Model

Before computing the RFT, the slip profiles were padded with zeros at the end of the rupture
equal to twenty times their rupture length to provide a more robust estimate of the phase
derivatives by reducing dk. The amplitude spectrum is modeled using eq (5.13), (5.15), and
(5.16) with the ηKC , ηNp, and ε being normally distributed variates. A maximum-likelihood
regression is conducted using the likelihood function given in eq ( 5.17) and the covariance
given in eq (5.18). Table 5.2 summarizes the estimates and standard errors of the coefficients
of the global (ergodic) amplitude model. A value of C2 = 1 corresponds to a self similar
scaling in terms of the SRL. From the regression, the estimate of the C2 coefficient was 1.009
with a standard error of 0.02. This is not significantly different from a self-similar model, so
we constrained C2 = 1 in the final model shown in Table 5.2.

The reported standard errors in Table 5.2 represent the epistemic uncertainty due to the
limited data set assuming the Butterworth filter is the correct functional form. To capture
the full epistemic uncertainty, alternative functional forms of the amplitude spectrum should
to be considered in addition to the statistical uncertainties.

Figures 5.4a and 5.4b compare the KC and Np of the individual earthquake regressions
with the global relationships, respectively. The random variates ηKC and ηNp are in general
agreement with the assumption that they are normally distributed (see Figure B.3b of
Appendix B).

From the regression analysis, Np = 1.24± 0.21. For the slip over the rupture plane at
depth, Somerville et al. (1999) found that a Butterworth filter with Np = 2 provided a good
fit to the wavenumber spectrum. A lower Np for the slip at the surface than the Np for the
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Figure 5.4: Scaling relationships of the parameters of the amplitude model versus surface
rupture length. (a) Scaling relationship of corner wavenumber (b) Scaling relationship of the
number of poles. The different markers represent the individual regressions grouped by fault
and segmentation type, the solid line corresponds to the global model.

slip at depth implied by source inversions may reflect greater along-strike variability at the
surface than at depth or it may simply reflect the effect of constraints imposed on slip-model
inversions that lead to smoothed slip distributions at depth. Milliner et al. (2015) found
that the power spectrum of the total surface displacement profile of the 1992 Landers, CA
earthquake was decaying with a rate of 1.87 at the high wavenumbers. This slope on the
power spectrum corresponds to Np of 0.93 for the amplitude spectrum, and is within the
±2σ range of the Np from our regression analysis.

The style of faulting is not included as a predictor variable because the estimated KC
and Np values do not show clear trends with the style of faulting. Although the sense of
faulting may have an impact in the average displacement (Wells and Coppersmith, 1994),
our analysis suggests that the distribution of the normalized displacements along strike is not
sensitive to the style of faulting, but it is based on a small sample size.

The dependence of the KC and Np scaling on the single and multi-segment rupture
classification was also evaluated. A preliminary regression that included an additional term for
the rupture classification showed that the single-rupture versus multiple-rupture classification
had insignificant effects on the scaling for the KC and the Np. Figures 5.4a and 5.4b compare
the estimates of the individual regressions with the mean global relationships for KC and Np.
In these figures, it can be seen that neither the style of faulting nor segmentation grouping
show systematic trends relative to the mean relationships.

Figure 5.5 presents the intra-event residuals and the binned mean residual versus the
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Table 5.2: Amplitude model coefficients

C1 C2 C3 C4 τKC τNp φ0

Estimate -2.031 -1.00 1.6 1.236 0.071 0.211 0.265
Std. Error 0.0145 - - 0.0317 - - -
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Figure 5.5: Distribution of intra-event residuals. Crosses represent the intra-event residuals.
Solid squares correspond to the mean of the residuals in each bin

wavenumber normalized by the event-specific KC. It shows that the mean of the amplitude
model is unbiased as the mean residuals of all bins are close to zero and also that the
variance of the intra-event residuals is approximately constant for k/KCi > 5 (the binned
standard deviation values are shown in Figure B.4 in Appendix B). Figure 5.5 shows a
reduction in variability for KC < 5. In test applications, both a constant value of φ0 and
a k/KC-dependent value of φ0 that reduces φ0 for small K/KC < 5 were evaluated. The
differences in the generated profiles for these two alternative models for φ0 were small, so a
constant φ0 model (eq. 5.24) was selected for simplicity.

var(ε) = φ2
0 (5.24)

5.6 Phase-Derivative Model

The phase derivatives are modeled using a logistic distribution rather than a normal distri-
bution because the latter implied fatter tails than observed. This has also been observed
for the phase-derivative distributions for ground motions (Baglio et al., 2017). The logis-
tic distribution is defined with two parameters: the location (µ) and the scale (s), which
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Figure 5.6: Schematic of the phase-derivative model. The scaling relationships that control
the center and with of the distribution are defined in eq. (5.25) and (5.26), respectively.

control the center and width of the distribution, respectively. A schematic figure of the
phase-derivative distribution model is shown in figure 5.6. A preliminary analysis showed
that both parameters are functions of the SRL and they are modeled by:

µi/SRLi = −π + εµi , εµ ∼ N(0, σ2
µ) (5.25)

log10(si) = D1 +D2(log10(SRLi)−D3) + εs, εs ∼ N(0, σ2
s) (5.26)

The starting edge of the rupture in the data file is arbitrary, so we included each event
twice in the phase-derivative regressions: once with the original order of surface slips and
once with reverse order. For the reverse order case, the slip profile is mirrored on its center
axis. The phase angles of the reversed profile are equal to:

~φrev = −~φorig − 2π SRLi ~k (5.27)

where ~φorig and ~φrev are the phase angles of the profile with the original and reversed polarity
respectively (see derivation in Section B.2 of Appendix B). Following from eq. (5.27), the
phase derivatives of the reversed profile are equal to:

∂~φrev
∂k

= −∂
~φorig
∂k

− 2π SRLi (5.28)

Thus, the mean of phase derivatives of the original and reversed profiles is −π SRL which
explains the functional form for µi eq. (5.25).

As an example, Figure 5.7 shows the phase-derivative distributions of the 1939 Erzincan,
Turkey earthquake with the original and reversed polarity. The displacement profiles of this
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Table 5.3: Phase-derivative model coefficients

D1 D2 D3 σµ σs

Estimate 1.493 1.0 1.6 0.917 0.159
Std. Error 0.0172 - - - -

earthquake for the original and reverse order cases are presented in Figure 5.7a. These two
slip profiles have identical amplitude spectra and their phase-derivative distributions are
mirrored (Figure 5.7b). For each earthquake, the mean value of µ passes though the point of
symmetry of the phase-derivative distributions between the original and reverse order cases.

The regressions for the global phase-derivative relationships are performed in two steps.
First, the µ and s parameters are estimated for the phase-derivative distribution of each
individual event, and second, the coefficients of the global relationships (eq. 5.25 and 5.26)
are estimated by fitting the event-specific µi and si using least-squares. The estimate of D2 is
0.996 with a standard error of 0.03. which is consistent with D2 = 1.0 for self-similar scaling.
Therefore, the D2 term is set to unity.

The estimate and standard error of the coefficients for the phase-derivative model are
listed in Table 5.3. The D3 term is the same parameter as C3 in the amplitude model and it
was used to center the SRL data to reduce the correlation between the intercept and slope
of the phase-derivative model. The scaling relationships for µ and s are compared with the
event-specific estimates in Figures 5.8a and 5.8b, respectively. Only µ is affected by the
polarity of the slip profiles. As found for the amplitude model, the style of faulting and the
segmentation of the slip profiles do not have noticeable effects on the distribution of the
phase derivatives.

5.7 Validation of the RFT Method with Synthetic

Data Sets

As described earlier, the data sets for surface rupture typically have uneven sampling that
makes it difficult to compute a Fourier transform. In addition, the locations at which the
geologists measured the slip may be biased to regions with larger slips that are easier to
measure or are of more interest. An objective of the method is to provide stable and accurate
estimation of the amplitude and phase spectrum of a displacement profile based on limited
number of unequally-spaced observations. To test that the proposed RFT method can be
successfully used to compute unbiased estimates of the wavenumber spectra of slip profiles
with typical (unevent and biased) sampling, we performed a series of validation tests. In these
tests, target profiles are generated with known amplitude and phase-derivative parameters and
then the profiles are down-sampled to approximate the limited number of slip measurements
typically available in field surveys. We then check if the method can successfully retrieve the
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Figure 5.7: Connection between the polarity of the 1939, Erzincan, Turkey slip profile (i.e.
location of the peaks) and the phase-derivative distribution in the wavenumber domain.
(a) Slip profiles with the two polarities. The solid line represent the slip profile in the
original order. The dashed line shows the profile in the reversed order. (b) Phase-derivative
distributions of the slip profiles in subfigure (a). The dark bars bars and solid line are
associated with the phase-derivative distribution and model of the profile in the original
order. The light bars and dashed lines are related to the phase-derivative distribution and
model of the profile in the reversed order

parameters that were used to create target profiles.
The first step in this process is to generate dense, uniformly sampled, target profiles

for given sets of amplitude parameters (AD, KC, Np) and phase-derivative distribution
parameters (µ and s) for a given SRL. The five sets of parameters used to generate the
target profiles are presented in Table 5.4.

For each group of parameters, the amplitude and phase-derivative models were sampled
to develop a pair amplitude and phase target spectra. Through an inverse Fourier Transform
(eq. 5.5), a candidate slip profile was generated from each pair of target spectra, then it was
checked to ensure that the slip goes to zero at the two edges and that the area under any
negative slip is less than 0.1% of the total area underneath the slip profile. If a candidate
profile didn’t satisfy these constraints, it was rejected, new target amplitude and phase
spectra were developed and a new candidate profile was created until 25 target profiles were
generated that satisfied these constrains. The space-domain sampling (dx) of these profiles
was equal to 0.005× SRL (i.e. 200 samples, equally spaced along the surface rupture).

The sample data sets are created by down-sampling the target profiles to represent the
types of sampling in the empirical data set. Two down-sampling schemes are used: random
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Figure 5.8: Scaling relationship between the phase derivative parameters and Surface Rupture
Length. (a) Scaling relationship of location of the logistic distribution (µ). The down-pointing
triangles represent the slip profiles in the original order, the up-pointing triangles correspond
to the slip profiles in the reversed order and the solid line are the global scaling relationships.
(b) scaling relationship of the scale of the logistic distribution (s). The different markers
represent the individual regressions grouped by fault and segmentation type, the solid line
corresponds to the global model.

sampling (scheme 1), and biased sampling towards peaks (scheme 2). In scheme 1, a down-
sampled profile is generated by randomly choosing, without replacement, a portion of the
along strike locations where the target profile is evaluated. The number of the sampled
locations is defined in terms of the down-sampling ratio of the number of points in the target
profiles to the number of points in the down-sampled profiles. In scheme 2, a target profile
is separated into eight equal size segments, and, for each segment, the locations with the
largest slip values is selected until the number of selected points correspond to the desired
down-sampling ratio. The second option represents typical surface rupture data sets in which
areas with high slip are more likely to be sampled.

Multiple down-sampling ratios were tested; however, for the sake of space, only the result
with 5% sampling of the points in the target profiles are presented here. This down-sampling
ratio is representative of the historical earthquakes in the database. Figure 5.9a illustrates
the two down-sampling procedures for one of the target profiles. The amplitude spectra of
these slip profiles are presented in Figure 5.9b.

For each of the 25 target slip profiles, 100 test profiles generated for each down-sampling
technique, resulting in 2500 random and 2500 biased down-sampled profiles. The spectral
parameters of the down-sampled profiles were estimated using the alternative methods for
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Figure 5.9: Comparison of random and biased down-sampling methods. (a) Space domain
representation, solid line corresponds to the target profile, triangles represent the randomly
sampled locations and squares the biased sampling locations towards the peaks of the target
profile. (b) Wavenumber domain representation, solid line corresponds to the amplitude
spectrum of the target profile realization. The dashed lines and dashed-dotted lines correspond
to the amplitude spectra of the randomly and biased sampled profiles shown in figure 5.9a.

computing the Fourier transform. The accuracy of the alternative approaches and alternative
model parameter values is evaluated by comparing the amplitude spectrum parameters (B0,
KC, and Np) estimated from the down-sampled sets with respect to parameters used to
generate the target profiles. The B0 and KC errors are computed as the difference between
the logarithms of the estimated values from the down-sampled sets and values for the target
profiles. The Np errors were calculated using the differences in the arithmetic values. If
the error of a test profile is equal to zero, it means that the approach used to estimate its
spectral parameters retrieved the true parameters that were used to create it. Large positive
or negative errors imply that the approach did not recover the true parameters for the test
profiles.

We evaluated the RFT method with the exponent n values of 0.2, 0.5 and 1.0. For
the DFT method, linear interpolation at 1 km intervals is used. The mean errors of these
methods for all the target realizations, for both the random and biased down-sampling
schemes, are presented in Tables 5.5 and 5.6, respectively. The range of the errors is shown
in Figure B.12 of Appendix B. Overall, the RFT approach with n = 0.5 outperformed the
alternative approaches considered for all five SRL values, both in terms of bias and efficiency.
In the n = 0.2 case, the slip profiles are over fitted by the high wavenumbers, resulting in a
negative bias in the estimated Np value. In the n = 1 case, the effect of the regularization
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Table 5.4: Validation tests amplitude and phase-derivative parameters

SRL (km) AD (m) KC (1/km) Np µ (rad/km) s (rad/km)

10 0.38 0.0375 1.24 -31.4 7.9
20 0.73 0.0186 1.24 -62.8 15.7
60 1.39 0.0062 1.24 -188.5 46.8
150 2.66 0.0024 1.24 -471.2 116.7
400 5.09 0.00091 1.24 -1256.6 310.0

on the spectrum at the high wavenumbers is too strong, leading to underestimation of the
high-wavenumber content and, subsequently, a positive bias in Np. Based on these tests, we
set n = 0.5

The DFT approach did not do well in these tests. Using the DFT approach, the Np values
are significantly biased to higher values for both down-sampling schemes. As a representative
example, Figure 5.10 compares the amplitude spectra computed by RFT with n = 0.5 and by
DFT with linear interpolation of the same randomly down-sampled profile. For reference, the
amplitude spectrum of the target profile from which the down-sampled profile was generated
is also presented on the same figure. It can be seen that the linear interpolation method
introduces artificial noise in the amplitude spectrum that affects the high-wavenumbers
content and results in biased estimates for Np. This happens because the linear interpolation
connects the sampled points with straight lines, implying a smoother profile than the target.
These tests show that the linear interpolation method is not suitable in approximating a slip
distribution when the sampling interval is highly variable.

A similar test was performed for alternative values of α between 0.01 and 0.2, with a
fixed value of n = 0.5. The results of these tests are presented in B.10 of Appendix B. It
was found that the computed Fourier spectra were not sensitive to α between 0.01 and 0.2.
Therefore, α = 0.1 was used.

The synthetic data-set can also be used to provide insights for the selection of the weights
for the covariance matrix. Table 5.7 compares the mean misfit of all target realizations of the
KC and Np estimates with a unweighted and 1/k weighted covariance matrix. The range of
the errors for the different SRL values is presented in B.11 of Appendix B. The B0 parameter
is not affected by the covariance matrix selection, so it is not presented. Both parameters
show greater variability and bias when an unweighted covariance matrix is used as it places
more weight in the high wavenumbers that are more sensitive to the uneven sampling. In this
example, the synthetic profiles were created by random down-sampling, but we found that
the biased down-sampling case gave similar results. These results justify our choice to use
the weighted covariance matrix, with the weights inversely proportional to the wavenumber.
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Table 5.5: Mean errors of regularized and discrete Fourier transforms, using random down
sampling

Mean Error RFT n=0.5 RFT n=0.2 RFT, n=1.0 DFT dx=1km

log10(AD) -0.071 -0.222 -0.023 -0.024
log10(KC) -0.014 -0.364 0.211 0.205
Np -0.015 -0.517 0.635 0.595

Table 5.6: Mean errors of regularized and discrete Fourier transforms, using biased down
sampling

Mean Error RFT n=0.5 RFT n=0.2 RFT, n=1.0 DFT dx=1km

log10(AD) 0.022 -0.145 0.076 0.075
log10(KC) -0.022 -0.316 0.187 0.170
Np 0.018 -0.507 0.748 0.692

Table 5.7: Mean errors of regressions with 1/k and constant weighted covariance

Mean Error 1/k weighted unweighted

log10(AD) -0.0706 -0.0706
log10(KC) -0.0143 -0.1946
Np -0.0147 -0.1664

5.8 Average Displacement

The estimated AD computed from the observed surface slips depends on the weighting applied
to the observations. The simplest approach is to compute the mean of the observed values
ignoring the uneven sampling. Another approach is to divide the rupture into intervals
of equal length and compute the average slip given equal weight to each interval. This
weighted approach typically uses linear interpolation between the slip observations along
strike. In contrast, using the wavenumber spectrum, the AD is given by B0/SRL. The effect
of correlation of the slip variability along strike is captured by the shape of the wavenumber
spectrum.

As a check, we compare the estimates of the AD for these three approaches. The ratio
of the AD from the wavenumber model to AD based on a simple average of the observed
surface slips ranges from 0.8 to 1.6 with a mean value of 1.03 and a standard deviation of
0.15. Similarly, the ratio of the AD from the wavenumber model to the AD based on equal
weight to each interval ranges from 0.8 to 1.3 with a mean value of 1.02 and a standard
deviation of 0.07. (See Figure B.12 of Appendix B for more details on the differences in the
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Figure 5.10: Comparison of amplitude spectra computed by RFT and by DFT with linear
interpolation. The thin solid line represents the amplitude spectrum of a target profile
realization. The thick solid line corresponds to the amplitude spectrum of a down-sampled
profile computed with RFT and the dashed line indicates the amplitude spectrum of the
same down-sampled profile computed with DFT.

AD estimates). These comparisons show that, on average, the AD from the wavenumber
model is consistent with the AD from current approaches based on averaging in the space
domain.

5.9 Along-Strike Variability

The sensitivity of the along-strike variability to the parameters in the wavenumber model is
not intuitive. To provide insights into how the along-strike variability of the rupture at short
separation distances depends on the wavenumber spectrum parameters, we show results of a
sensitivity study for the differences in slip between sites that are separated by 1 km. The
along-strike variability is mainly controlled by the Np parameter.

Table 5.8 summarizes the sensitivity of the slip variability to the Np for three rupture
scenarios with M6, M7, and M7.5. The SRL and AD of these scenarios were estimated
with Wells and Coppersmith (1994) empirical scaling relationships for all fault types. For
these three magnitudes, the SRL values are 8 km, 40 km, and 90 km and the AD values are
0.22 m, 1.07 m, and 2.37 m, respectively. The slip variability in Table 5.8 is defined as the
standard deviation, in linear space, of the slip difference between all combinations of along
strike locations separated by 1km. For example, for the M 7 earthquake with an average
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Table 5.8: Representative slip variability between sites at 1 km apart for M equal to 6.0, 7.0
and 7.5.

M 6 7 7.5
SRL (km) 8 40 90
AD (m) 0.22 1.07 2.37
Np ηNp Slip variability (m)

0.81 -2.0 0.24 0.81 1.41
1.02 -1.0 0.20 0.48 0.72
1.24 0.0 0.17 0.28 0.35
1.44 1.0 0.16 0.19 0.21
1.66 2.0 0.15 0.15 0.16

Np = 1.24, there is 68% probability that two slips 1km apart will be within ±0.28m of each
other. For smaller values of Np, there is larger variability between nearby sites.

Table 5.8 shows that for high values of Np, the slip variability becomes independent of
magnitude. This may seem counter-intuitive. The reason for this behavior is that, for high
value of Np, the amplitude of the high wavenumbers is small and the generated profiles start
approaching the median shape, (see Figure 5.11d for representative profiles with high and
small Np). Therefore, for high value of Np, the slip difference at 1 km interval is controlled
by the slope of the median shape. Because the magnitude scaling for SRL and AD is the
same in Wells and Coppersmith (1994), the slope of the median shapes is independent of
magnitude, so the slip variability over short distances is also magnitude independent.

5.9.1 Example profiles for sensitivity on model parameters

Figure 5.11 presents the results of the sensitivity analysis on different parameters of the
model. The profiles shown here are just for illustration purposes to show the effect of the
model parameters in the shape of individual profiles, they are not intended to be used in
any hazard calculations. In each sensitivity analysis, the parameter under investigation was
varied based on their fractile distributions while the remaining parameters were kept fixed
at their median values. The profiles were developed in the same fashion as those used to
examine the slip variability. The benchmark case corresponds to profiles with a SRL of 100
km and AD equal to 2 m.

Figure 5.11a shows displacement profiles for 16th, median and 84th percentile of µ. This
parameter controls the location of the peak of the profiles. For values of µ less than the
median, the generated profiles are skewed to right and for values of µ larger than the median,
the generated profiles are skewed to the left. Similarly, Figure 5.11b shows example slip
profiles for 16th and 84th percentile of s. The s parameter affects the width of the generated
profiles. As s increases, the profiles become broader. As s decreases, the profile becomes
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narrower and the slip at the center of the profiles has to increase to have the same AD.
Figure 5.11c shows representative slip profiles for AD equal to 2m and 4m. To generate the
slip profiles for these two cases, B0 was fixed to 2105 and 4105 m2, respectively. It can be
seen that as AD increases, the slip increases at all locations.

The amplitude parameters KC and Np do not control the distribution of displacements
at each location individually but they control the spatial correlation between them. Figure
5.11d shows two representative examples for the 16th and 84th percentile of Np. As the value
of Np decreases, the high-wavenumber content in the amplitude spectrum increases, which
leads to a reduction in the correlation length and the peaks and troughs become narrower.
The KC has the opposite effect on the correlation length, but because its variability in the
model is much smaller, it is not presented here.

5.10 Example Application

In this section, we show an example application of a PFDHA using the proposed wavenumber
spectrum method for computing the pdf of the fault displacement and compare the results
with the current models of McCalpin (1998) and Petersen et al. (2011) for the displacement
pdf. In addition, we show results using an empirical displacement pdf computed from the
Wesnousky (2008) data-base. For this example, we used a strike-slip fault with SRL = 100km
and a average displacement of 2.0m. For the wavenumber spectrum method, we create a
suite of 60,000 slip profiles by monte carlo sampling of the random terms in the amplitude
and phase-derivative models (ηKC , ηNp, ηµ, ηs, and ε).

To ensure that the generated profiles are reasonable at the ends of the ruptures, they
were constrained so that they go to zero at the edges and that the area under any negative
slip to be less than 0.5% of the total area underneath the slip profile. Generated profiles that
do not meet these constraints are rejected. A post-evaluation of accepted profiles showed
negligible changes in the statistical properties of amplitude and phase-derivative parameters
due to the imposed constrains.

The suite of accepted profiles were normalized by AD and SRL to have the same
normalization as the published models. Figure 5.12a presents as an example five representative
profiles generated for this comparison. Figure 5.12b shows the 16th, 50th, and 84th percentile
distributions of all the normalized profiles. These distributions were created by computing
and plotting the percentiles independently at every along-strike location. The distributions
are symmetric around x/SRL = 0.5 even though each individual displacement profile is not
symmetric, this happens because the distribution of µ around the global model (eq. 5.25) is
symmetric in linear-space which implies that there is equal probability in a generated profile
being skewed to the left or right. This figure shows that there is large variability in the
displacement profiles for the different realizations and that the shape of the median profile is
more similar to a triangular shape for T (x/SLR) as found by Manighetti et al. (2005) than
to an ellipical shape as proposed by Wesnousky (2008).
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Figure 5.11: Example applications of proposed model. (a) Representative profiles for the
15th, 50th and 84th fractile on mu; (b) Representative profiles for the 15th and 84th fractile on
s; (c) Representative profiles for AD equal to 2 and 4m; (d) Representative profiles for the
16th and 84th fractile on Np
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Figure 5.12: Generation of slip profiles by the proposed model. Subfigure (a) presents
representative normalized slip profiles generated by the wavenumber model. Subfigure (b)
shows the along-strike fractile distribution of all the profiles generated to evaluate the slip
variability of the proposed model.

The normalized slip distribution was further evaluated by partitioning the D/AD estimates
into different bins based on x/SLR and calculating the cumulative distribution of D/AD for
each of these bins. The slip distribution was assumed symmetric along the x-axis. Therefore,
the normalized along-strike distance, x/SRL, was folded at 0.5 to limit the range to 0.0-0.5.
The same procedure was implemented for the slip profiles in the Wesnousky (2008) data-base
to develop an empirical pdf for the normalized slip.

Figure 5.13 compares the distribution of D/AD of the model over the entire rupture with
the empirical distribution from the Wesnousky (2008) data-base over the same range and also
with the cumulative distribution of all the faults presented in Hemphill-Haley and Weldon
(1999). This figure shows that there is a good agreement between the wavenumber model and
the data. The maximum likelihood fit of a Log-normal, Gamma, and Weibull distribution is
also shown on the same figure; the difference of the log-likelihood (LL) between the Weibull
and Normal distributions (LW (θ|D/AD)− LlogN(θ|D/AD)) is 186 and the difference of the
LL between the Weibull and Gamma distributions (LW (θ|D/AD)−LΓ(θ|D/AD)) is 23. This
example illustrates that the choice of a log-normal distribution to describe the displacement
variability in the space domain may not be ideal because the fit is mainly controlled by
the small displacements and it overestimates the D/AD in the upper tail compared to the
empirical distributions from the Hemphill-Haley and Weldon (1999) and Wesnousky (2008)
data sets. The Gamma and Weibull distributions provide a good fit to the distributions from
the empirical data with the Weibull distribution being slightly better.
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Figure 5.13: Comparison of normalized displacement distribution over the entire fault. The
thick solid black lines depict the displacement distribution of the proposed model. The
thick dashed and dotted lines represent the distributions of the normalized displacements
in Hemphill-Haley and Weldon (1999) and Wesnousky (2008) respectively. Thin lines show
the log-normal gamma and Weibull distribution fits to the Wesnousky (2008) normalized
displacements.

Figure 5.14 compares the D/AD cumulative distribution based on the wavenumber
spectrum model with the models of McCalpin (1998) and Petersen et al. (2011), and with
the empirical data from Wesnousky (2008) for two bins of x/SRL: [0,0.1] and [0.45, 0.5]. At
the edge of the rupture (e.g. x/SLR = [0, 0.1]), the wavenumber spectrum model leads to
less variability than the empirical model, but it is in good agreement with the empirical pdf
at the center of the rupture (e.g. x/SLR = [0.4, 0.5]). The misfit near the edges could be
due to limitations of the data base: the end of the ruptures may not have been accurately
identified for all earthquakes and there may be small displacements at the ends that haven’t
been mapped. Alternatively, the phase-derivative distribution at the small wavenumbers may
differ from the single distribution that was assumed to be applicable to all wavenumbers in
the current model.

As a sensitivity test of the wavenumber spectrum method, we repeated the generation of
the slip profiles but with a looser constraint on the slip at the ends of the rupture. In this
case, we accepted slip profiles whose displacement at the two ends of the rupture are between
0 and 0.3 of AD. This change increases the median value of the D/AD in the 0 to 0.1 x/SRL
bin, but the overall shape of the cumulative distribution did not change significantly because
the slip at all locations increases by approximately the same amount. The distribution of
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Figure 5.14: Comparison of normalized displacement distribution at different x/SRL bins;
subfigure (a) presents the normalized displacements at x/SRL bin from 0 to 0.1 and subifigure
(b) the normalized displacements at 0.4 to 0.5 x/SRL bin. Thick dashed black lines depict
the displacement distribution of the proposed model and the thick solid black line represent
the displacement distribution of the actual slip profiles in Wesnousky (2008) database. Thin
lines correspond to displacement distributions of published models.

D/AD at bins away from the ends of the rupture wasn’t affected by the looser constraint.
Currently, we do not have a method to improve the model in terms of the underestimation of
the width of the distribution of slip near the ends of the rupture. This misfit will be revisited
in an updated version of the model with better characterized slip data sets, including the
sampling near the edges of the ruptures, that are being developed by the UCLA PFDHA
project.

5.10.1 Hazard Example

As an illustrative example of the influence of the D/AD distribution in the surface rupture
hazard, we perform a simplified PFDHA for the Hayward fault using a simplified source
characterization with a single M 7 earthquake with a mean recurrence interval of 120 years.
The average slip was estimated with Wells and Coppersmith (1994) relationship: mean slip =
2.3m and standard deviation of the mean slip of 0.36 log10 units. The along-strike variability
is estimated using four alternative models: Petersen et al. (2011) billinear and elliptic model,
McCalpin (1998) model, and the wavenumber spectrum model.

The hazard calculation is performed for two sites: one at the edge of the fault (x/SLR =
0.05) and the other at the center of the rupture (x/SLR = 0.5). The distribution of the
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Figure 5.15: Comparison of surface rupture hazard at x/SLR equal to 0.05 and 0.5, for a M
7 earthquake with 120-year recurrence interval. (a) PFDHA comparison at x/SRL = 0.05;
(b) PFDHA comparison at x/SRL = 0.5

wavenumber spectrum model was defined by piece-wise linear interpolation of the cumulative
distributions in the corresponding bins (Figures 5.14a and 5.14a). The total hazard curves
are computed using eq. 5.2 and are shown in (Figure 5.15). At the center of the rupture, the
hazard curves using the wavenumber spectrum and the McCalpin models are similar and
have much steeper slopes than the Petersen models. This is due to the use of a lognormal
distribution in the Petersen models. Near the end of the rupture, the hazard from the
McCalpin model is shifted to the right compared to the wavenumber model as the taper
function in McCalpin is not constrained to go to zero at the ends of the rupture. The median
normalized slip at the ends of the rupture in McCalpin is approximately equal to 0.5. The
hazard from the Petersen models have flatter slopes, again due to the use of a lognormal
distribution.

Using the loose constraint at the ends of the slip profiles leads to larger slips at the ends
of the rupture, shifting the hazard to the right. At long return periods, the hazard curves
for the strict and loose constraints are similar due to the slightly narrower distribution for
the losse constraint case. As the distribution of D/AD becomes wider, the hazard curve
becomes flatter, which significantly increases the estimate of displacement at long return
periods (Figure 5.15b).
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5.11 Conclusions - Discussion

The proposed approach to compute the Fourier spectra, using the regularized-least squares
method, is applicable to slip profiles with uneven and potentially biased sampling towards the
peaks. The regression results show that the distribution of the normalized displacements is not
sensitive to the style of faulting; however this observation needs to be confirmed with a larger
data-set. The displacement variability implied by the model is in good agreement with the
variability from empirical data in Wesnousky (2008) and Hemphill-Haley and Weldon (1999)
except at the ends of the rupture. Currently, the model underestimates the variability of the
D/AD distribution near the edges of the rupture. Before modifying the model parameters,
new data sets with improved sampling at the ends of the ruptures should be evaluated to
determine if this discrepancy is a results of incomplete data in the current data sets or if it is
the result of a deficiency in the model.

In the space domain, the results of forward modeling indicate that the D/AD distribution
is closer to a Gamma or Weibull distribution rather than log-normal. The D/AD distribution
has a large impact on the slope of a PFDHA hazard curve. In particular, use of a log-normal
distribution will lead to a much larger slip values for the large return periods compared to
the case where Gamma or Weibull distributions is used.

The proposed framework can accommodate a non-ergodic amplitude and phase-derivative
model which will be a key issue for PFDHA. Information from past earthquakes along the
same fault can be used to limit the range of displacement that is expected in future events
and, in combination the site-specific coefficient of variation of slip from Hecker et al. (2013),
can be used to reject realizations of slip that are inconsistent with the slip constraints from
past earthquakes. A non-ergodic model will further reduce the aleatory variability leading to
steeper hazard curves, but the full range of the epistemic uncertainty initial estimated slip
from past earthquakes must be considered in a non-ergodic approach.

Currently there is an on-going effort to augment the available surface displacement
database with recent events which have been surveyed with high quality techniques. More
densely sampled profiles will helps us to better evaluate the high wavenumbers which will affect
the extent of spatial correlation. Updated models for the amplitude and phase-derivative
scaling will be developed from these expanded data sets as they become available. An
additional benefit of this approach it that it allows a straight-forward consideration of the
effect of measurement uncertainty in the wavenumber domain. Estimates of uncertainty of
the measured slips are not available in the database used in this study, but this information
will be part of the UCLA PFDHA data base that is currently being developed.

The main limitations of the current model are that it is regressed on data complied with
traditional methodologies that are known to miss off-fault displacements (broad warping
and displacement on secondary traces), as shown by Milliner et al. (2016), and does not
consider important parameters such as soil conditions. Surface slip profiles that are measured
with new techniques (Gold et al., 2015; Milliner et al., 2015; Scott et al., 2018) are likely to
include the diffused off-fault displacements that could affect the slip variability and correlation
lengths. Furthermore, numerous numerical and laboratory experiments (Bray et al., 1994;
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Anastasopoulos et al., 2007; Oettle and Bray, 2017; Garcia and Bray, 2018), as well as field
studies (Rockwell et al., 2002; Milliner et al., 2016), have shown that soil effects play an
important role in the ratio of horizontal to vertical slip and in the ratio of principal to total
displacements at the surface. Future updates of the model will incorporate these effects to
better quantify the rupture hazard and develop recommendations on the implementation of a
non-ergodic PFDHA analysis.

5.12 Data and Resources

The data used in this study come from Wesnousky (2008) Electronic Supplement (http://www.
seismosoc.org/publications/BSSA_html/bssa_98-4/2007111-esupp/index.html, last ac-
cessed September 2018)

http://www.seismosoc.org/publications/BSSA_html/bssa_98-4/2007111-esupp/index.html
http://www.seismosoc.org/publications/BSSA_html/bssa_98-4/2007111-esupp/index.html
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Chapter 6

Conclusions

6.1 Summary

6.1.1 Non-ergodic ground-motion models

This research develops new non-ergodic EAS and PSa GMMs for the state of California. The
non-ergodic EAS GMM is based on Bayless and Abrahamson (2019b), BA18, ergodic EAS
GMM. The non-ergodic effects are modeled as a Bayesian hierarchical model: the source
and site non-ergodic terms are modeled as spatially varying coefficients that are functions of
the earthquake and site locations respectively, and the non-ergodic path effects are captured
by the cell-specific anelastic attenuation. The main benefits of using an ergodic GMM as a
backbone for deriving a non-ergodic GMM are: i) the local data may non be adequate to
estimate the scaling of complex terms, and ii) the adoption of the constraints built into the
ergodic GMM ensure the proper extrapolation of the ground-motion outside the range of
data. The non-ergodic EAS terms are modeled as magnitude independent, as the Fourier
transform is linear operator.

The non-ergodic EAS GMM has a 30 to 40% smaller total aleatory standard deviation
than BA18. Close to stations and past events, the mean values of the non-ergodic terms
deviate from zero to capture the systematic effects and their epistemic uncertainty is small.
In areas with sparse data, the epistemic uncertainty of the non-ergodic terms is large, as the
systematic effects cannot be determined. Furthermore, the cross-validation test shows that
the non-ergodic GMM performs better than BA18 in predicting the ground motion for events
that were not part of the regression dataset.

Two non-ergodic PSa GMM are developed: GMM1 uses the ASK14 (Abrahamson et al.,
2014) GMM for the average scaling and is applicable to periods T0 = 0.01−10sec, and GMM2

uses the CY14 (Chiou and Youngs, 2014) GMM for the average scaling and is applicable to
periods T0 = 0.01− 5sec In both non-ergodic GMMs, the non-ergodic effects are expressed
as non-ergodic ratios, that is the difference between log of PSa estimated with RVT and
the non-ergodic EAS and the log of PSa estimated with RVT and the ergodic EAS. The
magnitude dependence of the non-ergodic PSa ratios is introduced in the RV T step. The
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RVT calculations are performed with the V75 PF , the median estimate of Da5−85 from
AS96 for the ground-motion duration, and the BT15 for the oscillator duration. The RVT
components were chosen based on a thorough evaluation of alternative models for the peak
factors, ground-motion duration and oscillator duration.

The aleatory variability of the two non-ergodic PSa GMMs is approximately 30 to 35%
smaller than the aleatory variability of the corresponding ergodic PSa GMMs. In remote
areas with no data, the reduction in aleatory variability is accompanied by an increase of
epistemic uncertainty. The smaller aleatory variability has a significant impact on hazard
calculations, especially at large return periods.

6.1.2 Embedment factors for the Seattle Region

An approach to adjust a ground-motion model for the site conditions in Pacific North West
presented in Chapter 4. The key issue is that the empirical VS30 scaling in both shallow crustal
and subduction GMMs is not applicable to the Seattle region, that is because, the velocity
gradient at the deep part of the Seattle VS(z) profiles is different to the velocity gradient
of representative VS(z) profiles from both tectonic environments. The site adjustments are
expressed in terms of GMM-to-site scale factors; that is the amplification ratios between the
host and target profiles. The host profiles are representative of the site conditions in CA
and JP, while the target profiles are representative of the site conditions in Seattle. 1D site
response was used to estimate the amplification of each of the profiles.

6.1.3 Wavenumber fault displacement model

A new methodology to model surface slip profiles and generate potential displacement profiles
for use in probabilistic fault rupture hazard analysis is developed in Chapter 5. In this
approach, the fault displacement model is formulated in the wavenumber domain. The
benefits of creating a model in the wavenumber domain are that it captures the along-strike
slip correlation and that it avoids the surface-rupture-length normalization. A regularized
Fourier Transform (RFT) is used to compute the Fourier spectra of the displacement profiles.
Validation tests showed that RFT successfully estimates the Fourier spectra of profiles with
uneven and potentially biased sampling towards the peaks.

The displacement variability implied by the model is, overall, in agreement with with the
variability of the empirical data in Wesnousky (2008) and Hemphill-Haley and Weldon (1999).
Currently, the model underestimates the D/AD variability near the edges of the rupture.

Due to the along strike slip correlation, the proposed methodology can be used in non-
ergodic PFDHA studies. Information from past earthquakes along the same fault can be
used to limit the range of displacement that is expected in future events and, in combination
the site-specific coefficient of variation of slip from Hecker et al. (2013), can be used to reject
realizations of slip that are inconsistent with the slip constraints from past earthquakes.
A non-ergodic model will further reduce the aleatory variability leading to steeper hazard
curves, but with a shift in the median (either positive or negative). The full range of
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the epistemic uncertainty of median slip from past earthquakes must be considered in a
non-ergodic approach.

The main shortcomings of the current model are that it is regressed on data complied with
traditional methodologies that are known to miss off-fault displacements (broad warping and
displacement on secondary traces), as shown by Milliner et al. (2016), and does not consider
important parameters such as soil conditions. Surface slip profiles that are measured with new
techniques (Gold et al., 2015; Milliner et al., 2015; Scott et al., 2018) are likely to include the
diffused off-fault displacements that could affect the slip variability and correlation lengths.

6.2 Future Research

This research provides tools for the estimation of the seismic hazard such as, non-ergodic
ground-motion models, fault displacement models, and GMM-to-site adjustments. Some
limitation and research opportunities related to this work to have been identified, including:

• The non-ergodic GMMs of this study are based on the California subset of the NGAWest2
data-base. As more data become available, the proposed models should be evaluated
and potentially expanded with additional non-ergodic terms. Additional non-ergodic
terms, such as spatially varying geometrical spreading, are expected to further reduce
the epistemic uncertainty of the non-ergodic GMM and result in a more accurate
estimation of the ground motion.

• Augmenting the empirical dataset with ground-motion data from broadband earthquake
simulations has also the potential to further reduce the epistemic uncertainty, especially
in remote areas with sparse data. In addition, numerical simulations would be useful
for testing various GMM assumptions. For instance, the path for the cell-specific
anelastic attenuation connects the site with the closest point on the rupture. This
path was selected because its length is equal to Rrup, which is the distance metric used
in the anelastic attenuation of ergodic GMMs. However, with the aid of earthquake
simulations, other paths connecting a point on the rupture with the site can be tested
to find which one is th most appropriate for the cell-specific anelastic attenuation.

• At T0 = 1 − 4sec, the PSa values which were estimated with RVT and the records’
EAS exhibit a small positive bias compared to the records’ PSa. The origin of this
positive bias should be further examined and potential changes to the PF and duration
models should be proposed so that the RVT predictions are consistent with the records’
PSa.

• The GMM-to-site adjustment factors for the Seattle region have been estimated with a
limited number of velocity profiles and a site response analysis that assumed 1−D wave
propagation. If there are much stronger 3−D effects in the Seattle region as compared
to California or Japan, this study should be repeated with site response analyses that
capture these effects. Furthermore, similar GMM-to-site adjustment factors can be
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developed for other regions where the depositional environment is not consistent with
the VS30 scaling of the GMMs.

• The current fault displacement model is based on the Wesnousky (2008) dataset, which
is comprised of 32 events. As more surface rupture earthquakes, which are more densely
mapped, become available, the displacement model should be reexamined and updated.

• Additionally, the displacement model is developed for the aggregate fault displacements,
that is the sum of displacements from sub-parallel ruptures. A model to distribute
the aggregate displacements to the individual ruptures needs to developed if the
displacement hazard for a specific rupture is of interest.

• The current displacement model underestimates the slip variability near the ends of
the fault segments; however, at this point it is not clear if it is due to limitations of the
model or if the ends for the fault segments have not been accurately mapped. Because
the displacements tapper off at the ends of the segments, it is possible that conventional
mapping techniques may prematurely terminate the surface ruptures. Using surface
rupture profiles which have been mapped with techniques that are more likely to capture
small displacements, such as satellite imaging (Milliner et al., 2015, 2016), LiDAR
(Gori et al., 2018), etc., this discrepancy in slip variability should be reevaluated and if
deemed necessary the fault displacement model should be updated.

• Numerous laboratory experiments and numerical simulations have shown that the soil
conditions affect the magnitude and horizontal-to-vertical ratio of surface displacements.
The current model does not capture these effects because the regressed dataset did not
contain any description of the soil conditions, but soil effects should be incorporated in
future updates of the model to better quantify the rupture hazard.
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Appendix A

Supplemental Material for Chapter 2

A.1 Comparison of different significant duration

intervals for Dgm

Figures A.1 to A.5 show the residuals between the records’ PSa and the PSa estimated with
RVT. The RVT PSa were estimated with V 75 peak factors, records’ actual duration for Dgm,
and BT15 for Drms. Dgm is equal to: Da5−75 in Figure A.1, Da5−80 in Figure A.2, Da5−85 in
Figure A.3, Da5−90 in Figure A.4, and Da5−95 in Figure A.5.

(a) (b)

Figure A.1: Residuals between the records’ PSa and the RVT PSa. V75 PF , records’
Da0.05−0.75 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5
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(a) (b)

Figure A.2: Residuals between the records’ PSa and the RVT PSa. V75 PF , records’
Da0.05−0.80 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5

(a) (b)

Figure A.3: Residuals between the records’ PSa and the RVT PSa. V75 PF , records’
Da0.05−0.85 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5
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(a) (b)

Figure A.4: Residuals between the records’ PSa and the RVT PSa. V75 PF , records’
Da0.05−0.90 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5

(a) (b)

Figure A.5: Residuals between the records’ PSa and the RVT PSa. V75 PF , records’
Da0.05−0.95 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5
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A.2 Comparison of different duration models for Dgm

Figures A.6 to A.12 show the residuals between the records’ PSa and the PSa estimated
with RVT. The RVT PSa were estimated with V 75 peak factors, the Dgm estimated with a
duration GMM, and BT15 for Drms. Dgm is based on: KS06 Da5−75 in Figure A.6, KS06
Da5−95 in Figure A.7, KS06 Dv5−75 in Figure A.8, the KS06 Dv5−95 in Figure A.9, AS16
Da5−75 in Figure A.10, AS16 Da5−95 in Figure A.11, and AS16 2 Da20−80 in Figure A.12.

(a) (b)

Figure A.6: Residuals between the records’ PSa and the RVT PSa. V75 PF , Da0.05−0.75

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5
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(a) (b)

Figure A.7: Residuals between the records’ PSa and the RVT PSa. V75 PF , Da0.05−0.95

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5

(a) (b)

Figure A.8: Residuals between the records’ PSa and the RVT PSa. V75 PF , Dv0.05−0.75

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5
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(a) (b)

Figure A.9: Residuals between the records’ PSa and the RVT PSa. V75 PF , Dv0.05−0.95

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5

(a) (b)

Figure A.10: Residuals between the records’ PSa and the RVT PSa. V75 PF , Da0.05−0.75

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5
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(a) (b)

Figure A.11: Residuals between the records’ PSa and the RVT PSa. V75 PF , Da0.05−0.95

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5

(a) (b)

Figure A.12: Residuals between the records’ PSa and the RVT PSa. V75 PF , 2 Da0.20−0.95

from KS06 as Dgm, and BT15 Drms. (a) residuals for all M , (b) residuals for M > 5



140

Appendix B

Supplemental Material for Chapter 5

B.1 Impact of regularization parameters α and n in

computing the Fourier Spectra

The goal of this section is to support the discussion in the Non-uniform Fourier Transform
section regarding the selection of the parameters α and n for the Regularized Fourier transform.
The slip profiles of 1857 Fort Tejon, CA and 1954 Fairview Peak, NV (2nd Main Segment) are
used here as representative examples of a smooth profile and a profile with high variability.

As mentioned in the manuscript α controls the relative weight between the magnitude
of the Fourier spectra (~Y ) and the size of residuals between the original profile (~y) and the
profile implied by RFT (~yfwrd). Figure B.1 presents the amplitude spectra and the implied
slip profiles for the 1857 Fort Tejon for a range of values for α. Figure B.1a shows that for
small values of α the high wavenumbers are not well constrained, the penalty for minimizing
~Y is small, resulting in artificial oscillations in locations with sudden changes of slip. The
large content of high wavenumbers can also be seen in figure B.1b where for α = 0.02 the
amplitude spectrum starts increasing after k = 0.1 1/km. Selecting a large value for α has
the opposite effect in the implied slip profile and amplitude spectrum. It over-constrains the
problem, it puts a high penalty in minimizing ~Y and because of that the narrow variations of
slip cannot be fitted. This also shows in amplitude spectrum as it is bellow the spectra with
lower α

Figure B.2 makes a similar comparison for 2nd Segment of the 1954 Fairview Peak rupture
profile. Here the surveyed slip profile exhibits narrow variations of slip and because the data
points are spaced close enough, the high wavenumbers are well constrained even when α
is small. We can see that the ~yfwrd profiles and amplitude spectra for α equal to 0.02 and
0.10 are similar meaning that a value of α = 0.1 does not over-constrain the fit even for slip
profiles with high variability. For α = 0.5 the regularization over-constrains the fit and due
to that ~yfwrd cannot fit the original profile.

The parameter n controls the relative weight of the low and high wavenumbers, the larger
the value of n the more weight is applied at the high wavenumbers. Figures B.3 and B.4



APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 5 141

compare the impact of different values of n to the 1857 Fort Tejon, CA and 1954 Fairview
Peak, NV (2nd Main Segment) profiles. In both cases, when n is small the high wavenumbers
are under-constrained which leads to artificial oscillations in the space domain. When n is
large the high wavenumbers are over-constrained and so ~yfwrd cannot fit the narrow variations.
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Figure B.1: Implied slip profiles and Fourier amplitude spectra of the 1857 Fort Tejon, CA
rupture profile for varying values of the α parameter. (a) The thick black line corresponds to
the surveyed slip profile. The colored lines correspond to the profiles impled by the RFT
transform for α equal to 0.02, 0.1 and 1.0. (b) Amplitude spectra of the 1857 Fort Tejon, CA
rupture profile. The colored lines correspond to amplitude spectra with α equal to 0.02, 0.1
and 1.0
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Figure B.2: Implied slip profiles and Fourier amplitude spectra of the 1954 Fairview Peak,
NV (2nd Main Segment) rupture profile for varying values of the α parameter. (a) The thick
black line corresponds to the surveyed slip profile. The colored lines correspond to the profiles
implied by the RFT transform for α equal to 0.02, 0.1 and 1.0. (b) Amplitude spectra of the
1954 Fairview Peak, NV (2nd Main Segment) rupture profile. The colored lines correspond
to amplitude spectra with α equal to 0.02, 0.1 and 1.0
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Figure B.3: Implied slip profiles and Fourier amplitude spectra of the 1857 Fort Tejon, CA
rupture profile for varying values of the n parameter. (a) The thick black line corresponds to
the surveyed slip profile. The colored lines correspond to the profiles implied by the RFT
transform for n equal to 0.25, 0.5 and 1.0. (b) Amplitude spectra of the 1857 Fort Tejon, CA
rupture profile. The colored lines correspond to amplitude spectra with α equal to 0.25, 0.5
and 1.0
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Figure B.4: Implied slip profiles and Fourier amplitude spectra of the 1954 Fairview Peak,
NV (2nd Main Segment) rupture profile for varying values of the n parameter. (a) The thick
black line corresponds to the surveyed slip profile. The colored lines correspond to the profiles
implied by the RFT transform for n equal to 0.25, 0.5 and 1.0. (b) Amplitude spectra of the
1954 Fairview Peak, NV (2nd Main Segment) rupture profile. The colored lines correspond
to amplitude spectra with n equal to 0.25, 0.5 and 1.0

B.2 Derivation of phase angles of reversed polarity

profiles

The reversed polarity slip profile is defined as:

yr(x) = yo(SLR− x) (B.1)

where yo(x) is the slip profile in the original polarity and SLR is the surface rupture length.
The Fourier transform of yo(x) is defined as:

F [yo(x)] = Yo(k) =

∫ SLR

0

yo(x)e−i2πkxdx (B.2)

and Y (k) can be written in terms of the amplitude (A(k)) and phase angle (φ(k)) as:

Y (k) = Ao(k)eiφo(k) (B.3)

The Fourier transform of the reversed polarity profile is equal to:

F [yr(x)] = Yr(k) =

∫ SLR

0

yr(x)e−i2πkxdx (B.4)
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Combining equations (B.1) and (B.4) and changing variables to z = SLR− x gives:

Yr(k) =

∫ SLR

0

yo(z)e−i2π(−k)zdz e−i2πSLR k (B.5)

The integral in equation (B.5) is the complex conjugate of the Fourier transform of the
original profile and combining it with equation (B.3) gives:

Yr(k) = Ao(k)ei(−φo(k)−2πSLR k) (B.6)

Based on equation (B.6) the phase angles of the reversed polarity slip profile are equal to:

φr(k) = −φo(k)− 2πSLR k (B.7)

B.3 Supplementary figures
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Figure B.5: Comparison of slip profiles with different correlation lengths and mean displace-
ment profiles. Subfigure (a) shows the representative slip profiles in the space domain with
correlation length equal to 15km. Subfigure (b) presents with thin solid lines the amplitude
spectra of the profiles shown in subfigure (a) and with thick dashed lines the amplitude
models (eq: 14) fitted to the amplitude spectra.
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Figure B.6: Trend of KC and Np with correlation length. Subfigure (a) presents how KC
changes for multiple realizations of slip profiles for different correlation lengths and mean
displacement profiles. Subfigure (b) shows the change in Np for multiple slip realizations
with different correlation lengths and mean displacement profiles.
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Figure B.7: Q–Q plot of the normalized ηKC and ηNp. Open markers represent the individual
random terms, the line (slope 1:1) corresponds to the standard normal distribution
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Figure B.8: Idealized variance model for forward predictions. Dots indicate the variance of
each bin and the solid line represents the proposed variance model.
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Figure B.9: Misfit of the amplitude parameters with different Fourier transform methods.
The amplitude and phase derivative parameters of the different groups are summarized in
Table 5 of the manuscript. The open markers are the errors of the individual estimates of
the down-sampled profiles. The solid squares correspond to the mean error of each group
and the crosses indicate the 16th and 84th percentile of the group errors. (a) Misfit of B0

with random down-sampling (scheme 1); (b) Misfit of B0 with biased down-sampling (scheme
2); (c) Misfit of KC with random down-sampling (scheme 1); (d) Misfit of KC with biased
down-sampling (scheme 2); (e) Misfit of Np with random down-sampling (scheme 1); (f)
Misfit of Np with biased down-sampling (scheme 2)
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Figure B.10: Misfit of the amplitude parameters with Fourier transforms with different
proportionality factors (α) for the regularization weights. The amplitude and phase derivative
parameters of the different groups are summarized in Table 5 of the manuscript. The open
markers are the errors of the individual estimates of the down-sampled profiles. The solid
squares correspond to the mean error of each group and the crosses indicate the 16th and
84th percentile of the group errors. (a) Misfit of B0 with random down-sampling (scheme
1); (b) Misfit of B0 with biased down-sampling (scheme 2); (c) Misfit of KC with random
down-sampling (scheme 1); (d) Misfit of KC with biased down-sampling (scheme 2); (e) Misfit
of Np with random down-sampling (scheme 1); (f) Misfit of Np with biased down-sampling
(scheme 2)
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Figure B.11: Misfit of the amplitude parameters, with unweighted and 1/k weighted covari-
ance matrices. The amplitude and phase derivative parameters of the different groups are
summarized in Table 5 of the manuscript. The open markers are the errors of the individual
estimates of the down-sampled profiles. The solid squares correspond to the mean error of
each group and the crosses indicate the 16th and 84th percentile of the group errors. (a) KC
estimation error; (b) Np estimation error
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Figure B.12: Comparison of Dmean estimate with and without the assumption of correlated
slip measurements. Blue bars and line correspond to the ratio of Dmean computed as a
simple mean of the displacement points to Dmean RFT computed with the regularized Fourier
transform approach. Red bars and line correspond to the ratio of Dmean computed as the
mean of the interpolated points to DmeanRFT computed with the regularized Fourier transform
approach.
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Figure B.13: Representative profiles that lead to under and overestimation of Dmean when
the assumption of uncorrelated displacements is used. (a) slip profile of 1940, Imperial,
CA earthquake with Dsimple mean/Dmean RFT = 0.8 (b) slip profile of 1891, Neo-Dani, Japan
earthquake with Dsimple mean/Dmean RFT = 1.3
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B.4 Data and Resources

Future updates of the scripts can be found at: (https://github.com/glavrentiadis/
PFDHA_public, last accessed February 2019)

https://github.com/glavrentiadis/PFDHA_public
https://github.com/glavrentiadis/PFDHA_public

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Organization

	A Non-ergodic Effective Amplitude Ground-Motion Model for California
	Introduction
	Ground-Motion Data
	Non-ergodic Model Development
	Functional Form
	Formulation of spatially varying coefficient model
	Predictive distributions of coefficients at new locations
	Inter-frequency Correlation

	Results
	Hyperparameters
	Spatially varying coefficients and cell-specific anelastic attenuation
	Non-ergodic residuals
	Standard deviation
	Regional source term delta c0NS
	Inter-frequency correlation
	Examples

	Model Validation
	Conclusions and Discussion

	A Non-ergodic Spectral Acceleration Ground Motion Model for California Developed with RVT
	Introduction
	Ground-Motion Data
	Model development
	Random-Vibration Theory
	Non-ergodic PSa ratios
	Constant Swift and Aleatory Model

	Applications
	Effect of EAS inter-frequency correlation in rnergPSa
	Magnitude dependence rnergPSa

	Conclusions
	Software and Resources

	Selection of Vs30 for Embedded Structures in the Seattle Region
	Introduction
	Simplified Approach
	GMM-to-Site Scale Factors
	Vs profiles for GMMs
	Site Response Method
	Seattle Profiles
	Results
	Crustal GMM
	Subduction GMM

	Conclusions
	Limitations
	Alternative Simplified Approach


	Generation of Surface Slip Profiles in the Wavenumber Domain
	Introduction
	PFDHA Methodology
	Normalized Displacement Models
	Spatial Correlation of Along Strike Variability

	Data Base
	Wavenumber Spectral Analysis
	Non-uniform Fourier Transform

	Amplitude Model
	Regression Results for Amplitude Model 

	Phase-Derivative Model
	Validation of the RFT Method with Synthetic Data Sets
	Average Displacement
	Along-Strike Variability
	Example profiles for sensitivity on model parameters

	Example Application
	Hazard Example

	Conclusions - Discussion
	Data and Resources

	Conclusions
	Summary
	Non-ergodic ground-motion models
	Embedment factors for the Seattle Region
	Wavenumber fault displacement model

	Future Research

	Bibliography
	Supplemental Material for Chapter 2
	Comparison of different significant duration intervals for Dgm
	Comparison of different duration models for Dgm

	Supplemental Material for Chapter 5
	Impact of regularization parameters a and n in computing the Fourier Spectra
	Derivation of phase angles of reversed polarity profiles
	Supplementary figures
	Data and Resources




