
UC Irvine
UC Irvine Previously Published Works

Title
Investigation of Methods to Extract Fetal Electrocardiogram from the Mother’s Abdominal 
Signal in Practical Scenarios

Permalink
https://escholarship.org/uc/item/0sk4s28v

Journal
Technologies, 8(2)

ISSN
2227-7080

Authors
Sarafan, Sadaf
Le, Tai
Naderi, Amir Mohammad
et al.

Publication Date
2020-06-01

DOI
10.3390/technologies8020033

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sk4s28v
https://escholarship.org/uc/item/0sk4s28v#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Investigation of Methods to Extract Fetal Electrocardiogram from 
the Mother’s Abdominal Signal in Practical Scenarios

Sadaf Sarafan1,†, Tai Le1,†, Amir Mohammad Naderi1,†, Quoc-Dinh Nguyen2,†, Brandon 
Tiang-Yu Kuo1, Tadesse Ghirmai3, Huy-Dung Han2, Michael P. H. Lau4, Hung Cao1,4,5,*

1Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 
92697, USA;

2Department of Electronics and Computer Engineering, Hanoi University of Science and 
Technology, Hanoi 10000, Vietnam;

3Division of Engineering and Mathematics, University of Washington, Bothell Campus, Bothell, 
WA 98011, USA;

4Sensoriis, Inc., Edmonds, WA 98026, USA;

5Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA

Abstract

Monitoring of fetal electrocardiogram (fECG) would provide useful information about fetal 

wellbeing as well as any abnormal development during pregnancy. Recent advances in flexible 

electronics and wearable technologies have enabled compact devices to acquire personal 

physiological signals in the home setting, including those of expectant mothers. However, the high 

noise level in the daily life renders long-entrenched challenges to extract fECG from the combined 

fetal/maternal ECG signal recorded in the abdominal area of the mother. Thus, an efficient fECG 

extraction scheme is a dire need. In this work, we intensively explored various extraction 

algorithms, including template subtraction (TS), independent component analysis (ICA), and 

extended Kalman filter (EKF) using the data from the PhysioNet 2013 Challenge. Furthermore, 

the modified data with Gaussian and motion noise added, mimicking a practical scenario, were 

utilized to examine the performance of algorithms. Finally, we combined different algorithms 

together, yielding promising results, with the best performance in the F1 score of 92.61% achieved 

by an algorithm combining ICA and TS. With the data modified by adding different types of noise, 

the combination of ICA-TS-ICA showed the highest F1 score of 85.4%. It should be noted that 

these combined approaches required higher computational complexity, including execution time 

and allocated memory compared with other methods. Owing to comprehensive examination 
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through various evaluation metrics in different extraction algorithms, this study provides insights 

into the implementation and operation of state-of-the-art fetal and maternal monitoring systems in 

the era of mobile health.

Keywords

Fetal ECG extraction; independent component analysis (ICA); extended Kalman filter (EKF); 
blind source separation (BSS); fetal home monitoring

1. Introduction

Telemedicine and mobile health (m-Health) have been mentioned for more than a decade. 

However, only recently, have the wearable technology, internet of things (IoTs), computation 

power as well as telecommunication (going to 5G and beyond) reached a point where these 

have become possible. Further, in special scenarios such as the current covid-19 pandemic, 

effective distanced care and monitoring are in need more than ever. However, a feasible 

approach to prenatal care to help limit exposure to the novel coronavirus is pivotal, even 

after the pandemic ends.

A recent national study reported by the Centers for Disease Control (CDC) showed that the 

U.S. fetal mortality rate remained unchanged from 2006 through 2012 at 6.05 per 1000 

births [1]. A key fetal monitoring parameter, which is fetal heart rate (fHR) via 

cardiotocography (CTG), despite being used in 85% of all labors in the U.S., and with 

comparable frequency during the antepartum period for monitoring, has not unequivocally 

shown that it can reduce perinatal mortality. The traditional CTG based non-stress test 

(NST) and contract stress test (CST) for fetal health assessment are all done in the clinic or 

hospital under the supervision of a healthcare professional. The current CTG uses the 

Doppler ultrasound method to measure fHR. Such measurement could be challenging at 

times due to the need for precise alignment with the fetal heart to detect the fHR, which 

could be difficult when there are excessive maternal or fetal movements, or in the case of 

maternal obesity [2].

To overcome the fHR measurement difficulties for CTG using the Doppler method, 

especially needed during a situation of possible fetal distress when fHR assessment is 

absolutely critical, obstetricians have resorted to measuring fHR by the more reliable 

method of using fECG, which currently can only be obtained through a scalp electrode 

directly attached to the fetal scalp [3]. However, this is an invasive procedure and can only 

be done after the rupture of the amniotic membrane, potentially causing some risks such as 

infection. Non-invasive fetal electrocardiography (NI-fECG) is among the most promising of 

the alternative methods for continuous fetal monitoring. It can be achieved by measuring 

fECG along with maternal electrocardiogram (mECG) using skin-contact electrodes placed 

on the mother’s abdomen. However, non-invasive acquisition of full-feature fECG from 

maternal abdominal recordings is not an easy task. The low signal-to-noise-ratio (SNR) of 

fECG and the appearance of other signals, namely mECG, baseline wander, and noise, bring 

challenges. A number of reports has been presented towards the development of new signal 

processing techniques to tackle such issues. Filtering techniques, including adaptive filtering 
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[4–8], Kalman filtering [9–11] and wavelet transform [12,13] are among the popular ones. 

Although filtering techniques are very effective for single-channel ECG denoising, there are 

two major limitations of fECG extraction: (1) it requires an additional reference signal for 

adaptive filtering while a precise QRS complex (the main spike observed in an ECG graph) 

of the mECG signal is needed for the Kalman filter method; (2) most adaptive filtering-

based methods are not robust and fail to extract fECG, particularly when the fECG and 

mECG signals are temporally overlapped [14]. Blind source separation (BSS) methods with 

well-known algorithms, including principle component analysis (PCA) and independent 

component analysis (ICA), have been used for fECG extraction [15–17]. The BSS methods 

assume that the abdominal electrocardiogram (aECG) is a mixture of independent signals, 

consisting of fECG, mECG and noise. While it shows promising performance in fECG 

extraction, the order of the separated independent component could not be determined, thus 

it is challenging to identify the fECG component for further process [18]. A number of 

parameters (e.g., t-test, correlation coefficient, heart rate) has been used for the automatic 

identification of the extracted component [19–21]. Template subtraction (TS) is another 

widely used approach. The method involves subtracting a synthetic mECG, which is 

generated by estimating the QRS complex waveform (mQRS) of mECG, from the abdomen 

signal [22–27]. The main challenge of this method involves mQRS detection [28], and it 

becomes more challenging if the fetal R waves overlap maternal R waves.

Those aforementioned approaches have been successfully applied to extract fECGs from 

aECGs, and the efficacy of these methods have been carried out by synthetic data in some 

studies. Nevertheless, working on real data is much more challenging, thus fECG monitoring 

in daily life cannot be done yet. To address this, various methods, such as Extended Kalman 

Filter (EKF), template subtraction (TS), independent component analysis (ICA) and their 

combinations, were rigorously investigated using a set of NI-fECG data in Cardiology 

Challenge 2013 [29]. Furthermore, we tested the efficacy of these methods with the data 

modified by adding different types of noise, mimicking practical scenarios that could be 

encountered in the home setting. A comprehensive performance metric, including F1 score, 

computational complexity (i.e., execution time and allocated memories), and noise 

robustness, was used to assess the performance.

2. Materials and Methods

The data were taken from the PhysioNet 2013 Challenge databank which consists of a 

collection of one-minute aECG recordings [30]. Each recording includes four noninvasive 

abdominal signals collected by electrodes placed on the mother’s abdomen, containing a 

mixture of both the fetal and maternal ECG signals. The data were obtained from multiple 

sources using a variety of instrumentation with differing frequency responses, resolution, 

and configuration. However, in all cases, the sampling rate was presented as 1000 samples/s. 

In each recording, in addition to four noninvasive abdominal signals, reference QRS 

complex annotations were manually marked by a team of experts. In this work, we used set 

A of the dataset, which contains 75 records, excluding a number of recordings (a33, a38, 

a47, a52, a54, a71, and a74) that had inaccurate reference annotations [31].
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2.1. Extended Kalman Filter

Bayesian filtering is a probabilistic technique that uses incoming measurements y and a 

mathematical process model to recurrently estimate the posterior distribution of a hidden 

state random variable X at each time k [32]. The conventional Kalman Filter (KF) assumes a 

linear model for the system dynamics and observation equations. In practice, however, most 

systems are nonlinear in nature. The EKF is an extension of the standard KF to nonlinear 

systems. A dynamic model of the system may be represented as follows

xk = Fk − 1xk − 1 + wk − 1
yk = Hkxk + vk

(1)

where Fk−1 is the state transition model applied to the previous state, xk−1, wk, and υk 

correspond to the process and observation noise, which are assumed to be white, zero-mean, 

uncorrelated E vkwk
T = 0  with associated covariance matric QX = E vkwk

T  and 

RX = E vkwk
T , respectively [22]. It is further assumed that the components of the noise 

processes are uncorrelated, i.e., QX and RX are diagonal. HX is the observation model that 

maps state space into the observed space. The KF estimates the state xk based on the 

knowledge of the system dynamics and the noisy measurements yk . When a rather precise 

measurement of the states of a system is valid, the diagonal entries of RX are small, and the 

KF gain is adapted so as to rely on that specific measurement. However, for the epochs 

where data are too noisy or there are no measurements available, the RX entries are large and 

the KF tends to follow its internal dynamics rather than tracking the observations.

McSharry et al. developed a dynamic model with a set of three differential equations to 

generate synthetic ECG signals in Cartesian coordinate system [33]. Further, Sameni et al. 

transformed the model to a polar coordinate system and provided a convenient discrete-time 

mathematical model [34]. The model represents an ECG signal by a sum of five Gaussian 

functions, each function corresponding to the five waves of an ECG signal, P, Q, R, S, T 

waves. The state vector of the dynamic model is defined by xk = [θk, zk]T, and the state 

equation is given by

θk + 1 = θk + ωδ mod2π

zk + 1 = − ∑
i ∈ P, Q, R, S, T

αiΔθiωδ
bi

2 exp − Δθi, k2

2bi
2 + zk + ηk

(2)

where Δθi,k = (θk – Ψi)mod(2π) is the phase increment, δ is the sampling period, ηk is the 

state noise, and αi, bi and ψi represent the amplitude, width, and center of the Gaussian 

functions of the five PQRST waves. The measurement vector is defined by yk+1 = [ϕk+1, 

sk+1]T, where ϕk+1 is the observed phase representing the linear time wrapping of the R-R 

time interval into [0, 2π], and sk+1 is the observed amplitude. The measurement equation is 

given by (uk+1 and vk+1 denote the measurement noises).

Sarafan et al. Page 4

Technologies (Basel). Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ϕk + 1 = θk + 1 + uk + 1
sk + 1 = zk + 1 + vk + 1

(3)

2.2. Template Subtraction (TS)

The main idea of TS is to regenerate mECG and then subtracting it from the aECG. Based 

on maternal QRS detection, we identify each mECG cycle m belonging to 0.25 s before and 

0.45 s after maternal R peak positions with respect to the duration of the whole cardiac 

cycle. The template maternal ECG t then was formed by taking the average of all mECG 

cycles, and the new mECG was obtained by replicating the t as shown in Figure 1. Another 

improved method based on the TS was utilized in this work, namely TSc. In this method, the 

template maternal ECG cycle t was scaled with a constant α. The scaling of t reduces the 

mismatch between the average and the actual mECG cycle m, which is caused by the time-

vary morphology of the mECG [35,36]. The scaling constant a was based on the search for 

the least-mean square (LMS) e2 error between m and t, as shown in the following formula:

e2 = min ta − m (4)

2.3. Independent Component Analysis (ICA)

ICA is a mathematical technique for recovering unobserved source signals (components) 

from observed signal mixtures. Let us denote a matrix X = [x1, x2, x3, … , xn] considered as 

observed signals which are assumed to be linear. Instantaneous mixtures of the source 

signals are denoted by a matrix S = [s1, s2, s3, … , sn]. We can present the relationship 

between X and S by the following equation:

X = AS (5)

where matrix A represents a n × n mixing matrix and contains the mixture coefficient. The 

goal of ICA is to find the unmixing matrix W (i.e., the inverse of A) that will give the matrix 

Y-the best possible approximation of S by:

Y = WX ≅ S (6)

For this purpose, a number of criteria can be considered on the basis of the maximization of 

non-gaussianity, maximum likelihood and minimization of mutual information, to name a 

few [18]. Typically, ICA algorithms can be broken into several steps, including centering, 

whitening and iterative algorithm. While the centering step is utilized to make the signal a 

zero-mean variable, whitening step is applied for transforming the observed signals so that 

the new processed observed signals are white (i.e., its components are uncorrelated and their 

variances equal to unity) [18]. The whitening step is necessary as it can significantly 

simplify the ICA problem. For iterative algorithm steps, there are number of formulations 

for this procedure. For instance, JADE algorithm was first developed as an application of 

blind identification in beamforming [37,38] which is iterative with a defined number of 

iterations. The FastICA algorithm [18] is considered to be the most popular method among 
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ICAs due to its simplicity, convergence speed and satisfactory results in numerous 

applications. This algorithm is often used in ‘real time’ applications because of the possible 

parallel implementation. It converges quickly as it seeks for the components one by one. 

FastICA uses simplified kurtosis for the independent component estimation, and the detail of 

this algorithm has been summarized in the Algorithm 1 chart. Another optimization 

algorithm is RobustICA. Compared with FastICA, RobustICA uses a general kurtosis 

contrast function to maximize the non-gaussianity, as shown in the following Algorithm 2 
chart. The process of this method is described in [39]. Overall, using RobustICA has some 

advantages over FastICA, such as (1) pre-processing is not required which allows one to 

deal with all signal types; and (2) RobustICA uses an adaptive step size, ensuring that the 

weights converge to the actual convergence point, thus avoiding getting trapped as the 

former algorithm does.

In this work, we explored three algorithms (i.e., JADE, FastICA and RobustICA) for fECG 

extraction to evaluate their efficacy in terms of accuracy, computational complexity and 

noise robustness. Furthermore, combining the TS method and ICA method can yield 

superior performance, as shown in a previous study [32]. Therefore, we attempted to use the 

combinations as: (1) TS-ICA in which the aECGs were first applied TS method to remove 

the mECG component, ICA method was then used to extract fECG. This method is useful as 

mECG’s amplitude is dominant in the aECG, the use of TS may help to retain the fECG 

component; (2) ICA-TS in which the aECGs were first applied by ICA method, and four 

new separated signals produced were then put through the TS method. Utilizing ICA at the 

beginning is for extracting fECG, mECG and other components; however, it does not 

completely remove mECG in the extracted fECG. Thus, applying the TS method could 

eliminate the remaining mECG component; and (3) ICA-TS-ICA in which the aECGs went 

through three steps; specifically, after removing mECG from the residual of (ICA-TS), ICA 
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could be used again. It may have better results because four sources in residual signals have 

not showed mECG, so with using ICA in the last step, there will be three noise channels and 

one fECG channel.

2.4. Fetal QRS Detection

2.4.1. Fetal QRS Detection with EKF—Based on this dynamic model, several 

algorithms employing EKF for the extraction of fECG from abdominal signals have been 

proposed. One such algorithm used sequential EKF algorithms. First, the baseline wander 

was removed by using a low pass filter, assuming the processed signal is a mixture of the 

mECG, fECG and noise. Next, EKF was employed to extract mECG. The fallowing step is 

removing the mECG signal by subtracting it out from the processed signal. The output of 

this step is fECG along with noise, which another EKF was used to extract the fECG from. 

Finally, fetal QRS complex (fQRS) was detected using the Pan-Tompkin algorithm, as 

shown in Figure 2 [34].

2.4.2. Fetal QRS Detection with TS, ICA and Their Combination—Figure 3 

illustrates the fQRS detection process with TS, ICA and their combinations. First, the aECG 

signals were preprocessed to remove the baseline wander, power line noise and high-

frequency noise. Specifically, a notch filter with the cutoff frequency of 50 Hz was utilized 

to remove the power line noise while a high pass filter and a low pass filter were deployed to 

eliminate the baseline wander and high-frequency noise with the cutoff frequency of 10 and 

99 Hz, respectively. Second, it should be noted that the mECG’s amplitude is usually larger 

than other components in aECG. Thus, the Pan-Tompkin algorithm [40] was implemented 

on four aECG signals, resulting in R peaks of mECG (mQRS detection), as shown in Figure 

4a. Third, the algorithms in the source separation block, which could be the TS method, ICA 

method or combined methods, have been used. In the case of TS, as described in Section 

2.2, after mQRS detection, a template mECG was produced (Figure 4b). Subsequently, we 

subtract the aECG with the template mECG, resulting in four residuals. Finally, the Pan-

Tompkin algorithm was used to detect fQRS (Figure 4c). With the available fQRS reference 

annotations, the channel having the highest F1 score would be chosen. In the case of ICA, 

three different ICA methods (i.e., JADE, FastICA and RobustICA) were utilized in source 

separation. After applying ICA, the output would be fECG, mECG and two other noise 

signals. The reference mQRS would be used to select the mECG channel in the output. The 

Pan-Tompkin algorithm was then utilized for other channels (i.e., fECG and two other noise 

signals). Finally, the fECG channel was chosen based on a smoothing indicator (SMI). 

Specifically, the SMI was defined as the number of occurrences, over each-minute segments, 

where the absolute value of the change in instantaneous heartrate is more than 29 beats per 

minute [16]. This threshold was empirically determined on the data and which channels had 

the lowest SMI, it was referred to fECG channel.

2.5. Experiments

2.5.1. Modified Signals with Gaussian Noise Added—The aECG acquired in the 

daily life would include various kinds of noise. According to the Central Limit Theorem, 

these tend toward a normal distribution. Therefore, Gaussian noise with different 

amplifications has been added to the data to mimic the real scenarios. Specifically, the 
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normally distributed random noise was generated by the random function in MATLAB with 

the lowest amplitude ranging from −4 to 4 μV, which is denoted as noise level 0. Then, 

different noise levels were achieved by multiplying with constants divisible by 3 (i.e., 3, 6, 9, 

12, 15, 18 and 21).

2.5.2. Modified Signals with Motional Artifacts Added—The dataset was obtained 

in the clinical setting, where motion noise was mostly avoided because the subjects were in 

resting position, so the movement artifacts should be added to the data for practical 

applications. We attempted to generate a realistic motion noise. First, the ECG data were 

recorded from a healthy subject during different types of activities such as walking. For the 

ECG recording, the OpenBCI Cyton board (OpenBCI, Brooklyn, NY, USA) was used with 

two of its default electrodes. The board communicates wirelessly with a computer. Since the 

amplitude of the noise is an important factor, normalization had been used for all of signals 

to reinsure aECG and the motion noise have realistic amplitudes. For extracting motion 

noise, the acquired data first should be normalized between −1 and 1 and then by using EKF, 

motion noise and filtered ECG data are achieved. In the second step, for adding the motion 

noise to aECG, the aECG data should be normalized with the same threshold. In the last 

step, the motion noise is added to the normalized aECG (Figure 5).

2.6. Comparison Schemes

2.6.1. F1 Score—A statistical analysis to assess the accuracy of detected positions of the 

fQRS extracted by the aforementioned algorithms was performed by comparing with the 

positions of the annotated fQRS. We computed F1 scores of the proposed algorithms as 

follows

F1 = 2 × TP
2 × TP + FN + FP (7)

where TP, FP and FN are true positive (correctly identified fQRS), false positive (wrongly 

detected fQRS) and false negative (missed fQRS) detections, respectively. Note that the 

error of for fQRS detection (FP) is evaluated using a window-based metric (i.e., the 

positions of detected fQRS were wrong if it did not belong to 50 ms before and 50 ms after 

the positions of the annotated fQRS).

2.6.2. Time Execution—This assessment aims to compare the complexity among 

methods, hereby providing suggestions to implement the algorithms to other platforms with 

different computational capacities. Here, a computer with the following configuration was 

used: Intel Core i5-8400 CPU @ 2.80 GHz 6 Cores; Window 10 Education x64bit; RAM 

16GB DDR4 and the software Matlab R2016. The execution time of each algorithm is 

calculated from the end of pre-processing to the end of R peak detection.

2.6.3. Allocated Memory—Memory requirement is not very important when algorithms 

are implemented on modern computers; however, it will be important when mobile 

platforms with limited computational power are used, especially in real time. For this 

calculation, the memory function in MATLAB is used. Results are dependent on the 

computer hardware and the load on the computer.
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3. Results

Table 1 presents results of the average F1 score in the 68 aECG records using different 

approaches. The combination of TS-FastICA yielded the highest F1 score with 92.61%, 

followed by JADE-TS-JADE and TS-JADE methods with 91.56% and 91.16%, respectively. 

The lowest F1 scores were found in EKF, JADE, FastICA and RobustICA, with 54.34%, 

61.27%, 60.08%, and 59.60%, respectively. It should be noted that using these algorithms 

alone was not as effective as when they were combined with other algorithms. Once motion 

noise was added, the F1 score was reduced significantly. More specifically, the highest F1 

score was below 90%, including TS-RobustICA, JADE-TS and JADE-TS-JADE. The lowest 

F1 was from EKF with 51.45 %.

In Table 2 the number of records that had a F1 score lower than 50% is illustrated, providing 

a comprehensive assessment about the reliability of each approach. Specifically, the use of a 

combination of different approaches resulted in the lowest number of records with an F1 

score below 50%, while using individual approach increased the number of records with an 

F1 score below 50%, especially in EKF, with 38 out of 68 records. This is important, since 

many of the previous works that used EKF for fECG extraction illustrated their work’s result 

using a limited number of records. However, we applied EKF on all 75 recordings and 

although some extremely high F1 scores have been achieved, for 38 records an F1 score 

lower than 50% was achieved. Similarly, the data with added motion noise showed a higher 

number of recordings with an F1 score below 50% which is reasonable as motion noise may 

dominate fECG, which has lower amplitudes.

The performance of studied approaches with noise-added data is described in Figure 6. It is 

obvious that, with higher noise levels, lower F1 was achieved. All approaches showed a 

linear curve for F1 score when increasing the noise level, except for EKF. The F1 score in 

EKF slightly increased in noise level 3, compared with that in noise level 0. It could be 

suggested that the noise added may superimpose the fECG signal, inadvertently easing the 

ability of this method to find peaks in fECG signal.

Table 3 shows the amount of memory used for each algorithm. The EKF method occupied 

the highest memory capacity with 2940 MB, while other algorithms showed memory below 

1300 MB. Although a combination of different methods could provide higher performance, 

i.e., higher F1 score, it took higher amount of memory than running them individually. For 

both high-performance and low memory occupied case, JADE-TS-JADE would satisfy that 

criteria. Figure 7 depicts the time execution ran multiple times for each algorithm. In 

general, the time execution did not change significantly during each running. The 

approaches with FastICA method including, e.g., FastICA-TS-FastICA, TS-FastICA, 

FastICA-TS, FastICA, showed the highest time execution with nearly 1 s. Other approaches 

fluctuated within 0.75 s in first few running and stayed at 0.3 s after that. TS and TSc 

methods took the lowest time to finishing the program.

In EKF, we used a beat-fitter module that calculates αi and bi (αi and bi represent the 

amplitude and width of the Gaussian functions of the five PQRST waves). In this module, a 

number of kernels should be placed in critical points of the ECG. Both automatic and 
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manual beat fitter modules were tested, but the manual module is more robust. However, for 

the manual one, calculating the computational time is impossible, since it ends when the 

user is done with choosing the kernels. On the other hand, in the automatic module based on 

the desired minimum error of the dynamic model, the computational time varies. The 

average computational time in automatic EKF is 21.7 s.

4. Discussion

We compare different fECG extraction algorithms via assessing five well-defined criteria: 

the raw data, the motion noise, the white noise, the execution time and the required memory. 

Using the original data, the F1 score widely varies, from 92.61% (TS-FastICA) to 54.34% 

(EKF). Algorithms with the same topology have relatively close F1 scores. The results of TS 

algorithms are fairly consistent, and the same thing happened to ICAs. TS algorithms give 

better results than pure ICA algorithms and when we combine them, we get a higher F1 

score. With motion noise added, algorithms such as EKF and ICA have an accuracy reduced 

by only 1% to 3%. However, for TS algorithms, F1-score was reduced by more than 11%. 

Overall, JADE-TS-JADE has the best performance and has the highest accuracy. However, 

RobustICA-TS shows the lowest accuracy reduction after adding motion noise. In other 

words, RobustICA-TS is more robust. According to the results presented in Table 2, JADE-

TS-JADE has the least number of records with F1 scores lower than 50% and EKF has the 

most F1 scores lower than 50% indicating the reliability and consistency of methods. 

Although the result of JADE-TS-JADE is the most reliable, the EKF algorithm only requires 

one channel for data acquisition and fECG extraction, while other methods need four 

channels of aECG. This indicates that, with EKF, the physical device would be smaller and 

more unobtrusive.

Figure 6 illustrates the performance of algorithms in the presence of white noise with 

different amplitudes. In high SNR (low white noise), TS-FastICA has the best performance 

while in low SNR (high white noise), TS-JADE works better. Note that in very low SNR, 

data were completely corrupted, and the performance of different methods was found 

similar. The next criterion is allocated memory for fECG extraction. Table 3 presents the 

required memory for these methods. The required memory for all methods was less than 

1300 MB, except EKF. EKF needs much more memory for fECG extraction. Since for 

home-based monitoring, algorithms run on microprocessors, the required memory could be 

important.

Figure 7 shows the computational time for these methods (excluding EKF). Execution time, 

which is the time it takes for the mentioned computer to process one of the 75 recordings (60 

s) from the dataset is vastly different. TS algorithms need the least time, 0.128 s, while that 

of FastICA-TS-FastICA is 1.5 s, which is the slowest running algorithm. We could see that 

four algorithms containing FastICA are very slow. The reason is that, in some cases, the 

FastICA algorithm did not converge, depending on several initial values, while other 

algorithms are quite stable. If we remove those cases, the execution time of these algorithms 

will be approximately that of the same topology algorithms.
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We noticed that the execution time of TS and TSc is shortest. The execution time of 

algorithms containing FastICA and RobustICA (such as FastICA-TS and RobustICA-TS; 

TS-FastICA and TS-RobustICA etc.) is nearly equal. Meanwhile, if we replace FastICA or 

RobustICA in those algorithms with JADE, it would take less time. In addition, we observed 

that JADE-TS runs slower than JADE-TS-JADE. The reason for this is that JADE-TS takes 

more time in the block fQRS detection and selection. The same thing happens with FastICA-

TS and FastICA-TS-FastICA pairs. However, the advent of high-speed processors has made 

this factor less important.

5. Conclusions

We have carried out a comprehensive study of different methods for fECG extraction. 

Accuracy, noise robustness and simplicity were utilized as criteria to compare, which holds 

promise to enable a home-based monitoring system for the unborn children as well as the 

expectant moms. In such scenarios, the signal most likely interfered with motion artifacts; 

therefore, the performance of an algorithm in data with motion is preferred. In this case, 

JADE-TS-JADE showed the best performance in terms of the aforementioned criteria. The 

EKF has the weakest performance, especially with noise added; however, it requires only 

one channel for fECG extraction, thus bringing compactness in manufacturing, and thus 

possibly being widely accepted by users. In future work, our team will focus on cloud-based 

analytics of fHR/fECG and mECG for promoting maternity care, as well as novel algorithms 

to reliably extract fECG with full features of P waves, QRS complexes and T waves for the 

early detection of congenital heart disease and critical events during pregnancy.
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Figure 1. 
Template subtraction (TS)’s illustration for abdominal electrocardiogram (aECG).
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Figure 2. 
Fetal QRS (fQRS) detection process: (1) Preprocessing step with low pass filter utilized; (2) 

extended Kalman filter (EKF) applied for maternal ECG (mECG) extraction; (3) mECG 

subtracted from filtered aECG signal and EKF used for fetal ECG (fECG) extraction; (4) 

The Pan-Tompkins algorithm applied for fQRS detection.
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Figure 3. 
fQRS detection process: (1) Preprocessing step with notch filter, high pass filter and low 

pass filter utilized; (2) The Pan-Tompkins algorithms applied for mQRS detection used to 

create a template mECG and for channel selection in independent component analysis (ICA) 

method; (3) Source separation includes different approaches (TS, ICA and its hybrid). For 

ICA and the hybrid method, the extracted signals contain 4 signals (i.e., fECG, mECG and 

two noise signals; (4) Using mQRS detection from (2) as a criterion for fECG selection; (5) 

The Pan-Tompkins algorithm applied for fQRS detection.
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Figure 4. 
fQRS detection illustrated by TS method: (a) the aECG signal is filtered baseline wander 

and power line and applied Pan-Tompkins for mQRS detection; (b) a template of mECG is 

constructed from filtered aECG and the R peaks of mECG; (c): the residual signal is derived 

by the subtraction between filtered aECG and template mECG and Pan-Tompkins is applied 

for fQRS detection. The fQRS annotation is also included (plus sign in green).
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Figure 5. 
Illustration of applying noise to record a01 with motion added: (a) Normalized a01 record; 

(b) Generated motion noise; (c) a01 with added motion noise artifact.
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Figure 6. 
F1 comparison with different Gaussian noise levels.
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Figure 7. 
Time execution comparisons.
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Table 1.

Average F1 score (%) with different methods for all records.

Method Without Motion Noise With Motion Noise

TS-FastICA 92.61 85.02

JADE-TS-JADE 91.56 85.43

TS-JADE 91.16 82.35

TS-RobustICA 90.71 80.63

JADE-TS 90.57 85.10

RobustlCA-TS-RobustICA 89.29 82.67

RobustlCA-TS 87.43 83.21

FastICA-TS-FastICA 87.07 82.47

TSc 83.12 70.64

FastICA-TS 82.96 77.94

TS 82.65 71.02

JADE 61.27 59.81

FastICA 60.08 59.38

RobustICA 59.60 58.74

EKF 54.34 51.45
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Table 2.

Number of records out of 68 datasets with F1 scores less than 50%.

Method Without Motion Noise With Motion Noise

EKF 38 40

RobustICA 28 28

FastICA 22 27

JADE 18 19

TSc 10 17

TS 10 17

FastICA-TS 6 9

FastICA-TS-FastICA 5 5

RobustICA-TS 5 5

RobustICA-TS-RobustICA 2 5

TS-RobustICA 2 8

TS-JADE 1 7

TS-FastICA 1 4

JADE-TS-JADE 1 1

JAD E-TS 0 3
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Table 3.

Required memory for different methods.

Method Required Memory (MB)

EKF 2940

JADE-TS 1222

TS 1220

TS-FastICA 1211

TS-RobustICA 1210

FastICA-TS 1206

TSc 1205

TS-JADE 1204

RobustICA-TS-RobustICA 1202

RobustICA-TS 1199

FastICA-TS-FastICA 1199

RobustICA 1199

JADE-TS-JADE 1192

FastICA 1183

JADE 1175
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