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Abstract

We study two reservation deposit policies for a service firm to increase its revenue through higher
capacity utilization. First, under the “no deposit” policy, the firm requires no reservation deposit and
imposes no “no show” penalty. Anticipating potential “no shows,” a firm may overbook; hence, there is
no guarantee that the reserved service will be provided under the no deposit policy. On the contrary,
under the “guarantee deposit” policy, a guarantee deposit is required for each customer to make a
non-cancelable reservation. To honor the reserved service under the guarantee deposit policy, the firm
will not overbook. We analyze each deposit policy as a Stackelberg game in which the firm acts as the
leader who selects the booking capacity under the no deposit policy (or the required deposit under the
guarantee deposit policy), and each customer acts as the follower who decides whether to reserve or not.
Our model incorporates rational customer behavior so that each customer will take other customers’
behavior into consideration. Using the firm’s optimal booking capacity (optimal required deposit) in
equilibrium under the no deposit policy (the guarantee deposit policy), we compare the firm’s expected
profits under these two policies in a monopolistic environment. Our results suggest that the firm should
charge a higher optimal retail price under the no deposit policy, and adopt the no deposit policy when
the demand rate is below a certain threshold. By analyzing a game of duopolistic competition between
two firms, we develop the conditions under which the firms will adopt a particular pair of deposit
policies in equilibrium, and we show this game can lead to a Prisoner’s Dilemma. Moreover, when
both firms charge the same retail price, we show the existence of an equilibrium in which both firms
adopt the no deposit policy.

Keywords: Reservations, Deposit Policies, Revenue Management, Rational Customer Behavior,

Retail Competition.



1 Introduction

An important aspect of revenue management is to develop mechanisms that would enable service firms
with limited capacity to improve their revenues. With limited capacity, capacity utilization is a key
performance measure of a service firm. That is why hotels measure occupancy rates and car rental
companies track the number of idle cars in their parking lots. In view of limited capacity, customers
often reserve in advance but they may not show up for their reserved service due to a variety of reasons
which include change of plans. “No shows” can be a significant problem in the service industry: 10-15% of
passengers do not show up to claim their reserved seats in the airline industry, and 25% of guests do not
show up for their reserved rooms in the hotel industry (Rothstein (1974), Rothstein (1985) , and USA
Today (1998)). When competition is fierce and profit margins are slim, “no-shows” can have detrimental

effects on a service firm’s survival.

In this paper we examine the use of two different reservation deposit policies that are intended to reduce
the risk of unused capacity and improve the revenue of a service firm. Two basic deposit policies observed
in practice are the “no deposit” policy NV , and the “guarantee deposit” policy D. Under the no deposit
policy N, there is no required reservation deposit, and there is no penalty for customers not showing up
for the reserved service. Anticipating potential “no shows,” a firm may “overbook” by accepting more
reservations than his capacity; hence, there is no guarantee that the reserved service will be provided.
However, if a customer shows up and discovers that her reserved service is denied due to overbooking,
then she will receive a compensation for the inconvenience that the firm has caused. For example, in
the airline industry, the US Department of Transportation (DOT) issues guidelines on the compensation
schemes for passengers who are denied boarding involuntarily due to overbooking. The reader is referred

to http://airconsumer.ost.dot.gov/reports/index.htm for details. Also, in the hotel industry, the US law

courts have ruled that hotels are obligated to compensate guests who are denied service involuntarily due
to overbooking (Rothstein (1974)). Under the guarantee deposit policy D, a guarantee deposit is required
for a customer to make a non-cancelable reservation.! To honor the reserved service under the guarantee

deposit policy, the firm will not overbook.

In the United States, the guarantee deposit policy is becoming more common in the hotel industry even
though some hotels do not require deposits. However, the no deposit policy is commonly observed in
car rental companies and restaurants.? While both policies are commonly observed, it is unclear which
reservation policy (N or D) is more effective for a firm to improve his revenue. To select an effective
reservation policy, a firm needs to examine the following tradeoffs: customers are eager to reserve under
policy N, but their commitment to show up can be low because there is no penalty for not showing up

for the reserved service. On the other hand, customers are more reluctant to reserve when non-refundable

'Without dealing with the issue of service guarantee, Xie and Gerstner (2007) argue that a firm can obtain a higher
expected profit by offering cancelable reservations with refund. Their argument is based on the assumption that cancelable
reservations encourage more customers to reserve.

2Some highly acclaimed restaurants in the US such as Chez Panisse in California (www.chezpanisse.com) and Rainbow
Room in New York (www.rainbowroom.com) require customers to pay non-refundable deposits to guarantee their reserva-
tions.




deposits are required under policy D; however, the non-refundable deposits provide strong incentives for

customers to show up for their reserve service.

Even though both reservation polices N and D are common in practice, there are no formal analytical
models for analyzing the case when: (1) customer demand is uncertain; (2) customers are rational in the
sense that they take other customers’ behavior into consideration when deciding whether to reserve; and
(3) market competition is present. As an initial attempt, we first examine the monopolistic case in which
a single firm with a fixed capacity m(> 1) who needs to decide on his deposit policy (N or D). We
then extend our model by analyzing a game of duopolistic competition between two identical firms. Our
model captures the key tradeoffs associated with each deposit policy. We consider the case in which an
uncertain number of customers, with valuation v and show up probability ¢ (private information), who
need to decide whether to make a reservation. First, suppose the firm adopts policy N and charges a
retail price ry (a decision variable).> Then each rational customer will take the “deny probability” (1 — 3)
into consideration when deciding on whether to reserve or not, where this deny probability depends on
the rational behavior of other customers in the system. Anticipating customers’ reservation behavior, the
firm can estimate the number of customers who would attempt to reserve under policy N. However, due
to potential “no shows,” the firm needs to decide on the booking capacity n (n > m); i.e., the maximum
number of reservations to accept. When a customer shows up, she is obligated to pay ry for her reserved
service. However, in the event when the firm overbooks and denies a customer who shows up for her
reserved service, the firm will offer her a compensation c¢ for the inconvenience. The tradeoff under policy
N is captured by the booking capacity n: (a) when n is too large, the risk of compensating too many

denied customers increases; and (b) when n is too small, then the risk of unused capacity increases.

Next, suppose the firm opts for policy D and charges a retail price rp (a decision variable). Then
the firm needs to decide on the non-refundable deposit d > 6 > 0 (where # is the minimum deposit)
that each customer is required to pay upfront to ensure her reservation is guaranteed. In this case, the
customer is obligated to pay the remaining amount (rp — d) when she shows up to redeem her reserved
service. However, for any given deposit d, each rational customer will take her show up probability
into consideration when deciding on whether to reserve or not. The customer reservation behavior will
enable the firm to determine the number of customers who would attempt to reserve under policy D.
Anticipating customers’ reservation behavior, the firm can determine the number of customers who would
attempt to reserve under policy D. Effectively, the required deposit d captures a key trade-off: (a) when
d is too small, customers have a lower incentive to show up and the risk of unused capacity increases; and

(b) when d is large, customers are reluctant to reserve and the risk of unused capacity increases.

To analyze the tradeoffs associated with each deposit policy, we model the dynamics between the firm
and its customers as a Stackelberg game in which the firm acts as the leader who selects the booking
capacity under the no deposit policy N (or the required deposit under the guarantee deposit policy D),

and each rational customer acts as the follower who decides whether to reserve or not. To deal with the

3To enable us to focus on the issue of reservation policies in the presence of rational customers and competition, we shall
treat the retail price as given first and then determine the optimal retail price numerically in Section 3.5.2.



issue of market competition, we extend our model to capture duopolistic competition between two firms
by analyzing a non-cooperative game between two firms on top of the aforementioned Stackelberg game

between each firm and the customers. Our analysis enables us to answer the following questions:

e For any given retail price, what is the customer’s optimal reservation decision under each deposit

policy?

e For any given retail price, what is the firm’s optimal booking capacity n* under policy N7 What
is the firm’s optimal guarantee deposit d* under policy D7 Also, what is the firm’s optimal retail

price under each policy?
e What conditions render deposit policy N more profitable for the firm?
e In a duopolistic environment, which deposit policy will each firm adopt in equilibrium?

In a monopolistic environment, we show that the no deposit policy N dominates the guarantee deposit
policy D when the demand rate is below a certain threshold or when the customer valuation is below
a certain threshold. Hence, market condition is a key driver when choosing a deposit policy. Also, our
results suggest that the firm should always charge a higher optimal retail price under the no deposit policy
N. This result is consistent with a common practice in the hotel industry: the daily rate of a room with

guarantee deposit requirement tends to be lower.

When we examine the issue of market competition, we analyze a game of duopolistic competition between
two firms. We develop the conditions under which the firms will adopt a particular pair of deposit policies
in equilibrium, and we show this game can lead to a Prisoner’s Dilemma. In addition, we show that the
results obtained in the monopolistic case do not necessarily carry over to the duopolistic case. Moreover,
when both firms charge the same retail price, we show that there exists an equilibrium in which both
firms adopt policy N without overbooking. Finally, we show the existence of an asymmetric equilibrium

in which one firm adopts policy N and the other adopts policy D.

The primary contributions of this paper are four-fold. First, our paper is the first to examine the trade-off
between the no deposit policy N and the guarantee deposit policy D in the presence of rational customers
and market competition. Second, by exploring the underlying mathematical structure, we obtain insights
regarding the optimal booking capacity n* under policy N, the optimal guarantee deposit d* under policy
D, and the optimal retail price a firm should charge under each policy. Third, we derive conditions under
which one reservation policy dominates the other. Fourth, we extend our analysis to the case in which two
competing firms need to determine their reservation policies in equilibrium. We determine the equilibrium

of each subgame analytically and the meta-game equilibrium numerically.

This paper is organized as follows. Section 2 provides a brief review of related literature. Section 3
presents the base model in a monopolistic setting. We determine the optimal booking capacity under
policy N and the optimal deposit under policy D. In section 4, we extend our analysis to the duopolistic

case in which the industry is comprised of two competing firms. Here, we examine the deposit policy that



each firm will adopt in equilibrium. We conclude in Section 5 with a brief summary of our results, and a
discussion of the limitations of our model and potential future research topics. In order to streamline our

presentation, all proofs are given in Appendix 1.

2 Literature Review

Recognizing the fact that unused capacity has no salvage value in the service industry, we witness an
increasing research interest in revenue management recently. Many researchers have examined different
pricing mechanisms to segment the market so that a firm can extract the surplus from different customer
segments (Talluri and Van Ryzin (2004)). Besides pricing mechanisms, various operations management
researchers have explored other mechanisms that involve opaque selling (Jerath et. al. (2009)), strategic
stockout (Liu and Van Ryzin (2008)), partial inventory information (Yin et. al. (2009)), and reservations
(Alexandrov and Lariviere (2006), Elmaghraby et. al. (2009) and Png (1989)). The reader is referred
toBitran and Caldentey (2003), Netessine and Tang (2009), Philips (2005), Talluri and Van Ryzin (2004),

and Weatherford and Bodily (1992) for different comprehensive reviews on this important research area.

Our paper is related to a research stream in revenue management that deals with the issues of reservations
and overbooking. In the reservation literature, Png (1989) is one of the first papers that examines a
monopolistic airline which, in order to increase capacity utilization, takes customer reservations. While
customers with reservations are not obligated to claim their reserved seats, customers with high valuation
will exercise the purchase option (reserve and show up). He shows that overbooking is an effective strategy
to reduce the risk of unused capacity. By consider the duopoly case, Lim (2009) is the first paper to analyze
the effect of overbooking in a competitive environment. She shows that overbooking is a dominant strategy
for both firms in equilibrium. Recently, Alexandrov and Lariviere (2006) study the role of reservations
in the context of restaurants. They show that a restaurant should never offer reservations when there
is no demand uncertainty and when customers have identical valuation. However, when competition
is present, it is beneficial for restaurants to take reservations especially when the number of interested
customers or the number of restaurants in the market is sufficiently large. Instead of examining the value
of reservations and the value of overbooking, we analyze two reservation deposit policies N and D. By
comparing the firm’s expected revenues under these two policies, we establish the conditions under which
one policy dominates the other in a monopolistic environment. Also, we extend our model to deal with

market competition in a duopolistic environment.

Because there is no penalty for “no shows”, it is beneficial for a firm to overbook (Png (1989) and
Alexandrov and Lariviere (2006)). Instead of imposing penalty for “no shows”, Biyalogorsky et. al.
(1999) examine a situation in which the market is comprised of two types of customers with low and
high valuations. To reduce the risk of unused capacity, a firm accepts customer reservations by offering
a lower price to the low valuation customers (leisure travelers) who arrive in the first period. However,
the firm reserves the rights to recall (i.e., cancel) these reservations so that it can sell the recalled units
at a higher price to the high valuation customers (business travelers) in the second period. They show

how “callable” reservations can enable the firm to reduce the risk of unused capacity and to obtain a



higher expected revenue. By considering more general assumptions, Gallego et. al. (2008) study the
issue of callable products and obtain similar results. In addition, they determine the optimal number of
callable reservations to be allocated for sales in the first period. Instead of restricting the case that only
callable units are available for sale in the first period and non-callable units are available for sale in the
second period, Elmaghraby et. al. (2009) examine a situation in which the firm offers both callable and
non-callable units at different prices at any point in time. By considering the case when customers with
different valuations arrive at the firm according to a Poisson process, they show that a firm can obtain
an even higher profit by offering customers both options. Their result is due to the fact that, when both
options are available at any point in time, rational customers would feel the competitive pressure among
customers to purchase the non-callable units at a higher price. Our model differs from these models in
the following manner. First, instead of focusing on a particular policy, we are interested in comparing
the performance of two common deposit policies (N and D) observed in practice. Second, in addition to
the monopolistic setting, we examine the impact of retail competition on these two reservation policies.
Third, while the customer valuation is assumed to follow a two-point distribution in the aforementioned
models, we assume that the customer valuation follows a uniform distribution. With the exception of
Elmaghraby et. al. (2009), these models assume that low valuation customers will only arrive early and
high valuation customers will only arrive late. Instead, we allow customers with different valuations to be

present in the system simultaneously.

While overbooking has been shown to be an effective strategy for a firm to reduce the risk of unused
capacity, it can cause customer disloyalty due to customer dissatisfaction. To mitigate the negative effect
of overbooking, some firms may offer guaranteed service to their loyal customers at a higher retail price.
For example, Continental Airlines offer their loyal customers with Gold or Platinum status guaranteed
seats for their reservations if they purchase their tickets at a higher price (e.g. the unrestricted Y class
ticket) at least 48 hours before departure. To guarantee these loyal customers’ reservations, the airlines
would need to either reduce its booking capacity or to increase its compensation to customers for being
denied (Biyalogorsky et. al. (2000)). Instead of charging a higher price to ensure that a reservation will
be honored, we consider the case when the firin charges an upfront guarantee deposit d under policy D.
We show that the firm should always offer a lower retail price under the guarantee deposit reservation
policy D. Hence, instead of charging a higher price to guarantee a reservation (Biyalogorsky et. al.
(2000)), a lower retail price is more likely to be welcome by most customers even when a non-refundable

deposit is required.

3 Base Model: The Monopolistic Case

Consider a firm with a fixed capacity of m > 1 units who needs to specify his reservation policy (N or D)
before customers are present in the system. Let us describe the firm’s decision under each deposit policy.
If he chooses the no deposit policy N, then he needs to decide on his retail price rn and his booking
capacity n (two decision variables), where n > m, so that he will accept no more than n reservations.
Once the firm accepts a reservation from a customer without a deposit, there are three possible outcomes:

(a) the customer does not show up for her reserved service; (b) the customer shows up and the service is



available; and (c) the customer shows up and the service is not available (due to overbooking). The firm
earns nothing when outcome (a) occurs, earns ry when (b) occurs, and pays a penalty ¢ to the customer

whose reserved service is being denied.

If the firm chooses the guarantee deposit policy D, then he needs to determine his retail price rp and his
guarantee deposit d > € > 0, where ry, d are decision variables and 6 is an exogenously given minimum
deposit. (Because the firm will not overbook under policy D, it is reasonable to expect the firm to charge
a minimum deposit to 6 to defray some operating cost.) To guarantee that each reserved service will
be honored, the firm will not overbook so that no more than m reservations will be accepted. Once the
firm accepts a reservation from a customer who pays an upfront non-refundable deposit d, there are two
possible outcomes: (a) the customer does not show up for her reserved deposit; and (b) the customer
shows up for the reserved service. In the former case, the customer’s deposit d is forfeited, and the firm
earns d. In the latter case, the customer pays the remaining portion (rp — d), and the firm earns the

entire retail price rp in total.

To model market uncertainty, let A be the number of “potential” customers who are present in the system
after the firm announces the booking capacity n if policy N is chosen (or the required guarantee deposit
d if policy D is selected), where A is assumed to be a Poisson random variable with rate A\.* For each
of these A potential customers, her “net valuation” of the service is equal to ¥ - v, where v is her gross
valuation and v is her “show up” probability for the reserved service. To capture market heterogeneity
and obtain tractable results, we assume that the gross valuation v is fixed, and 1 is uniformly distributed
over [0, 1]. Thus, the net valuation of the service ¢ - v ~ U [0,v]. To eliminate trivial cases, let us assume
that zp £ v — rp > 0 so that every customer is a potential customer when the firm chooses policy
D. Similarly, to eliminate potential arbitrage opportunities, we assume that 2y = v — ry > c¢. This
assumption is reasonable when reservations are non-transferable or when the number of “speculators” in
the market is negligible. Here, the term speculators is referred to those “phantom” customers who do
not care for the service but they have a strong desire to get the compensation ¢ for being denied service.
The reader is referred to Su (2008) for an interesting study that shows speculators can increase a firm’s

expected profits.

In this paper, we assume that the firm and all customers are endowed with the following knowledge:
the market size is a Poisson random variable with rate A; the customer’s gross valuation is v; and the
customer’s show up probability ¢ is uniformly distributed over [0, 1]. In this case, the sequence of events
can be described as follows. The firm first decides and announces his retail price ry and his booking
capacity n if policy N is chosen (or retail price rp and guarantee deposit d if policy D is selected). Then
the number of customers in the system is realized. Each customer needs to decide whether to reserve with
the firm, and the firm can only accept reservations up to his booking capacity (i.e., n under policy N, or

m under policy D). After that, each customer with a reservation decides to show up or not according to

*Besides the fact that the Poisson assumption enables us to obtain tractable results, Lariviere and Van Mieghem (2004)
argue that Poisson demand is an acceptable assumption for modeling the number of rational customers in a sufficiently large
market.



her private show up probability 1, and the firm determines his revenue based on the number of accepted

reservations and the number of customers who show up for their reserved service.

3.1 Customer Surplus and Reservations

We now examine customers’ rational behavior under policies N and D. We first conduct our analysis for

any given retail price. Then we determine the optimal retail price numerically in Section 3.5.2.

3.1.1 No Deposit Policy N

Consider a customer who makes a reservation with the firm who adopts policy N. Given her private show
up probability v, she will obtain an expected surplus ¢ - 8 - xn if her reserved service is honored when
she shows up, and she will obtain an expected surplus ¥-(1 — ) - ¢ if her reserved service is denied when
she shows up, where (1 — /) is the “deny” probability that her reserved service will be not be honored due
to overbooking. Because each customer will take this deny probability (1 — 3) into consideration when
deciding whether to reserve or not, the deny probability (1 — 3) needs to be determined endogenously.’
Because (1 — ) > 0 and ¢ > 0, it is rational for each customer to reserve because her expected surplus

wn> 0, where

=9 [f-an+(1-0)- . (1)

Knowing that all customers are rational and hence they will attempt to reserve, the firm can estimate the
number of customers who would attempt to reserve under policy N is a random variable Ay ~ Poi(ynA),
where vy = 1 is the probability that a customer in the system will attempt to reserve with the firm who

adopts policy N.6

Recognizing the fact that vy = 1 is a common knowledge, we now discuss how customers can infer
correctly. Suppose the firm announces his booking capacity n. Then each customer knows that the firm
will accept Ry reservations, where Ry = min {n, Ax}. For any number of accepted reservations Ry = j
and for any show up probability ¢, the number of customers who show up for their reserved service can
be denoted by Sy, where (Sy | Ry, ¢) is a binomial random variable so that Pr{Sy = k| Ry = j, ¥} =
(i)wk (1-— w)j_k. Because 1 ~ U [0, 1], the conditional probability of Sy = k given Ry = j satisfies

1 .
Pr{k|j}EPr{SN:k|RN:j}:/O (2)%(1—@&)%’“@:‘;1, for 0 <k < j. (2)

®To obtain tractable results, some researchers assume that this kind of information is given exogenously (e.g. Liu and Van
Ryzin (2008) and Cachon and Swinney (2009)). In some cases, the deny probability (1 — ) can be deduced from historical
data. For example, in the airline industry, the likelihood of being denied for service is published in the public domain. The
US department of transportation provides detailed statistics about the deny probability of different airlines on a bi-monthly
basis. See: http://airconsumer.ost.dot.gov/reports/index.htm. In this paper, we show that the deny probability can be
determined endogenously with some efforts.

5Tt is important for a firm to take this rational customer behavior into consideration when selecting its booking capacity.
Otherwise, the firm will not be able to set the right booking capacity, which will result in lower expected revenue. In a
different context, Yin et. al. (2009) show that a firm’s expected revenue can suffer significantly from making decisions
without taking rational customer behavior into consideration.




Therefore, when a firm with capacity m announces a booking capacity n, each customer can use the

probability distributions of Ry and Sy to infer 8 (m, n) correctly, where

B(m, n) = Ery Esyry [min {1, g’v}] . (3)

By noting that (Sy|Rn) is stochastically increasing in any realization of Ry, which is stochastically
increasing in vy, it is easy to check from (3), that 3 (m, n) is stochastically decreasing in 5. This

property will enable us to determine the deny probability for the duopolistic case.

3.1.2 Guarantee Deposit Policy D

Consider the case when the firm chooses the guarantee deposit policy D. Because the firm will not
overbook, the “deny” probability 1 — =1 (i.e. = 1). Also because the guarantee deposit d will be
forfeited for not showing up with probability (1 — 1), each customer will obtain an expected surplus 7p,

where

m=(1=¢)(=d)+¢ (v-rp)=—d+¢(zp+d) (4)
Hence, a customer will attempt to reserve if m1p > 0 or equivalently, if ¥ > #‘id. By noting that
1 ~ U [0,1], the probability that a customer will attempt to reserve, denoted by ~yp, satisfies
d Tp
=P > = i 5]
D r{w_l‘p-i-d} xp +d Q

To guarantee that each reserved service will be honored, the firm will not overbook. Consequently, the
firm will accept Rp reservations, where Rp = min{m, Ap}, Ap ~ Poi(ypA), and 7p is given in (5). For
any number of accepted reservations Rp = j and for any show up probability ¢, the number of customers
who show up for their reserved service can be denoted by Sp, where (Sp | Rp, ©) is a binomial random
variable so that Pr{Sp = k|Rp = j, ¥} = (i)ibk (1- w)j_k. By using the fact the show up probability
of each customer who reserves is ) ~ U ﬁ‘id,
3.1.1 to determine the conditional probability of Sp = k conditional on Rp = j, where

1|, we can use the same approach as presented in Section

D

Pr{k|j} = /1 (‘;)wk (1-pp*. T2l gy, (6)

3.2 Optimal Booking Capacity n*under Policy N

We now determine the optimal booking capacity n* for a firm with capacity m who adopts policy V.
Recall from Section 3.1.1 that Sy customers will show up for the reserved service after accepting Ry =
min{A,, n} reservations. Specifically, for any realization Sy = k > 1, the firm’s revenue can be expressed
as: Iy (m;nlk) = z(k,m) = ry - min{k, m} — ¢ max{k —m, 0}. By considering the probability
distributions of Ry and (Sy|Rn) as discussed in Section 3.1.1, one can show that the firm’s expected



revenue under policy N satisfies:

n—1 jJ
Iy (m,n) = Ery {Esyry {IIn (m,n| Sy = k)}} = Zzz (k,m)Pr {k\J}PerZ (k,m) Pr{k|j} pj>n|a
j=1k=1 k=1

(7)
where Pr{k|j} is given in (2), and pj>, ) = (1 — Z;l;ll ij) .7 Using (2), the expected revenue function

for firm N can be simplified further as:

n—1
Djix . Pj>n|a
Fjznlx  ~
L+1 ’m)}—i—{n—i—l ("’m)]’ ®)
Jj=1
J(+1) .
, j N ™5 . JSm
where Z (j,m) 2> _. z(k,m) = lm ) (i if
() = 2oz 2 (R ) {m-[ D) ()] — ¢ Ut o

By examining the marginal gain as we increase the booking capacity from n to n + 1, we obtain the

following result:

Proposition 1. Under policy N, it is optimal for a firm with capacity m to set his booking capacity to
n*(m) that satisfies

n* (m) = %N+1)m(m+1)—1J if f({\/("TN+1)m(m+1)—1J)>f(H) o)
WEsmmrn -1 i ([ )memrn-1]) <7D

where f (n) =m (™ +1) (W) —n is a concave function in n and |e] and [e] are the “round-down”

and “round-up” functions, respectively.

Observe from (9) that the optimal booking capacity n* (m) is an increasing function in 2. This result
is intuitive because the firm can afford to increase his booking capacity when the retail price ry is high
or when the penalty for overbooking c is low. Also, it is easy to see that it is optimal for the firm to

overbook so that n* (m) > m when ry > c.

Notice that the firm’s optimal booking capacity n* (m) is the “ideal” booking capacity that is based on its
capacity m and the tradeoff between rx and ¢, but it is independent of the actual number of customers
Apn who attempt to reserve; i.e., it is independent of the demand rate A and the reserve probability vy . To
elaborate, consider the case when the firm sets a different booking capacity n, where n < n* (m). Suppose
the number of customers who would like to reserve is Ay < n. Then the firm will accept the same number
of reservations and obtain the same expected revenue regardless whether the booking capacity is equal to
n or n* (m). Next, suppose n < Ay < n*(m). Then the firm will accept a larger number of reservations

for the case when the booking capacity is n* (m). Because the firm’s expected revenue Iy (m,n) given in

"For notational convenience, let pj¢ = Pr{X = j|£} for any random variable X~ Poi (€). For example, when the firm
offers policy N, the number of customers who would attempt to reserve is a Poisson random variable Ay ~ Poi(yn ).
N (ynA)

J! ’

Hence, pjj,yx = Pr{Anx = j} =

10



(8) is concave in n, the firm will earn a higher expected revenue for the case when the booking capacity
is n*(m). Finally, suppose Ay > n* (m) > n. Then we can use the same argument to show that the firm
will earn a higher expected revenue for the case when the booking capacity is n* (m). Hence, the firm is
worse off by setting his booking capacity n < n* (m). We can use the same approach to argue that the
firm will be worse off if he sets a different booking capacity n > n* (m). This explains why the optimal

booking capacity n* (m) is independent of the demand rate A.

We now examine the impact of the capacity m and the ratio “2* on the optimal booking capacity n* (m)
given in (9). Observe from (9) that n* (m) is increasing and concave in m so that it exhibits the “pooling”
effect of having multiple units of capacity. To examine the pooling effect further, we compare the optimal
booking capacity for a single firm with capacity of m units (i.e. n*(m)) and the total optimal booking
capacity for m “independent” firms, each of which has 1 unit of capacity (i.e., m-n* (1) ). By considering

(9), we establish the following lemma.
Corollary 2. Under policy N, n* (m) > m -n* (1) if and only if

m < ! (10)

¥4 2424/2(™ +1)

Moreover, this threshold is decreasing in the ratio =2

The above Corollary suggests that the pooling effect is more prominent (i.e., n* (m) > m - n* (1)) when
capacity m is below a certain threshold and that threshold is decreasing in the ratio “2*. This result is
intuitive, because when the ratio 2 is sufficiently small, each of those m independent firms with single
unit capacity will have to be more cautious when setting their booking capacity in order to avoid the risk
of having to compensate too many customers, whereas when the ratio “¥ is large, then they can be more

aggressive when setting their booking capacity.

Next, let us examine the impact of the demand rate A on the firm’s optimal expected profit Il (m, n* (m)).
In view of the expressions given in (8), the expression for Iy (m, n* (m)) is complex. However, we are

able to obtain the following result:

Corollary 3. For any given demand rate A\ > 0, the firm’s optimal expected revenue Il (m, n* (m))

AN In addition, limy, e Iy (m, n* (m)) = )\ZN_

2

under policy N is bounded above by

The result stated in Corollary 3 is intuitive for the following reasons. For a firm with capacity m, the
firm cannot earn more than he would have earned under the “best case scenario” in which he accepts all
reservations without paying any penalty to those denied customers. By noting that the firm will earn

ry-E(A)-E () = )‘ZN in the best case scenario, we obtain an upper bound on IIy (m, n* (m)) . Also,

Corollary 3 asserts that this bound is tight when the firm’s capacity m — oo.

Because the expression for Il (m, n* (m)) is complex, analytical comparison between the firm’s optimal
revenue under policy N and under policy D is intractable. For this reason, we shall focus our comparison
for the case when m = 1 in Section 3.4. In preparation, we establish the following Corollary that is

intended to examine the property of the optimal booking capacity n* (1) for the case when m = 1.
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Corollary 4. When m = 1, the optimal booking capacity n* (1) for different ranges of the ratio ™ can

be described in the following table:
’ T \ (0,2] \ 2, 5] \ [5,9] \ [9,14] \ [14, 20] \

o= v [2[3] 4] 5 |

Corollary 4 suggests that when m = 1, the firm should set his optimal booking capacity n* (1) at a lower
level so as to avoid paying too much penalty. This observation motivates us to compare the firm’s expected
revenue under policy N (for the case when the capacity m = 1 and the booking capacity n is small) and
the firm’s expected revenue under policy D (for any guarantee deposit d) in Section 3.4. This analytical

comparison will enable us to establish a conjecture to verify numerically in Section 3.5.

3.3 Optimal Deposit d* under Policy D

We now determine the optimal deposit d* that maximizes the firm’s expected revenue under policy D.
Recall from Section 3.1.2 that the firm will not overbook; hence, the firm will accept Rp reservations under
policy D, where Rp = min{m, Ap}, Ap ~ Poi(ypA), and the reserve probability vp is given in (5).
For any number of accepted reservations Rp, the number of customers who show up is denoted by Sp. By
noting that the firm receives d for accepting a reservation and receives (rp — d) for honoring each customer
who shows up for her reserved service, the firm’s revenue satisfies Ilp (m,d) =d- Rp + (rp — d) - Sp for
any realization of Sp and Rp. Also, due to the fact that ¢ ~ U [w T },

Sp = k given Rp = j is given by (6). These two observations enable us to determine the firm’s expected

the conditional probability of

revenue for any deposit d, where

m—1

IIp (ma d) =d Z jpj|)\’yD + MP>m| \vp +
j=1
m—1

J m
(rp - kar {k17}Pippap + MPj>mirp ZkPr {kli| (11)
Jj=1 k=1 k=1

By noting the fact that

ZkPr{km Zk/ (o a-wpt —tmap =g 2t

’I‘D+d - rp+d $D+d

I1p (m,d) can be simplified as:

-1
rprp +d(rp +v) .
Mp (m, d) = [ 2 (zp +d) ; J - Pilxyp T M Dizmiaap (12)

By differentiating (12) with respect to d and by considering the first-order condition, we establish the
following result for the case when § = 0. When 6 > 0, we can impose this bound via truncation as

illustrated in Proposition 7.

Proposition 5. Under policy D, it is optimal for a firm with capacity m to charge a guarantee deposit

12



d* (m) that satisfies:

[(rp+d)(zp +d)+ (rp —d)d] [(zp + d) P, — (A +m) zp + md) P, + AepmP|
=wvxp (xp +d) (m+ P —mPy), (13)

A xm—l Lk
where Py = > 1500 5% - Pjjaqp-

Although there is no explicit closed form expression for the optimal guarantee deposit d* (m) and the
corresponding optimal revenue IIp (m, d* (m)), we can develop the following characteristics. First, by
using the implicit function theorem, one can show that d* (m) is decreasing in m. Also, it can be seen
from (12) that the firm’s expected profit is increasing in its capacity m. In addition, when the capacity
m is sufficiently large, we obtain the following result:

(v—rp)?
v+rp >
0. Also, the firm’s optimal expected revenue Ilp (m, d* (m)) is bounded above so that Ilp (m, d* (m)) <
A(v+rp)?
8v

Proposition 6. Under policy D, the optimal deposit d*(m) is bounded below so that d* (m) >

. Moreover, these bounds are tight when m — oo so that

A 2
>0 and ILHI HD (m,d*(m» — M (14)

. * (U_TD)2
lim d* (m) = L _"2) .
v

m—o0 v+71r D
The above Proposition asserts that, regardless of the value of the minimum deposit 6, the firm should

always charge a positive amount of deposit d* (m) > 0 under policy D.

Although we show that the optimal deposit d* (m) satisfies (13) in Proposition 5, we were unable to show
its uniqueness. To investigate this matter further, let us consider the special case when m = 1. It follows
from (12) that IIp (1, d) takes the following simplified form when m = 1, where

o (L, d) = erD—i—d(rD—i—v)] [ MD}

1—e #ptd 15
2(xp +d) (15)
By considering the first-order condition associated with (15), we establish the following result:

Proposition 7. Under policy D, it is optimal for a firm with capacity m = 1 to charge a guarantee deposit
d* (1) > 0 that maximizes the firm’s expected profit Ilp (1,d) , where d* (1) = max {0, min {’I“D d (1)}}
and d (1) is the unique solution to the following equation:

Az . . Az
N I A ek (TD“)}:(MJZD&)U (16)
zp+d

Also, d* (1) is increasing in the rate X\ and d* (1) — rp as X — co. Moreover, it is optimal for the firm to
_D)

charge a “partial” deposit (i.e. d* (1) <rp ) if and only if 1 + 2\ (%’) > M-

Proposition 7 can be interpreted as follows. First, when the demand rate A is small, the firm needs

to charge a small deposit d to increase the reserve probability vp given in (5) so that the number of
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reservations Rp = min {1, Ap} is sufficient. On the contrary, when the demand rate X is large, the firm
can afford to charge a higher deposit d by taking reservations from those customers with high show up
probability v that is uniformly distributed over [ﬁ‘id, 1] This explains why d*(1) is increasing in the
rate A and d* (1,d) — rp as A — oo.

Next, observe that 1 4 2\ (TTD) is a strictly increasing function in (TTD), that 2= is a decreasing
function in (“2), that 142X (%2) < *(1=7) when (*2) =0, and that 142X (*2) > A=) when
L= 1, we can conclude that 1 + 2\ (TTD) > A=) when (TTD) is sufficiently close to 1 so that
d* (1) < rp. Intuitively speaking, When(TTD) is sufficiently close to 1, customers are more likely to show
up for their service because their show up probability ¢ under policy D is uniformly distributed over
[ﬁ, 1} = [m, 1}. Hence, the firm can afford to offer partial deposit d* (1) < rp without the
fear of losing the the remaining portion of the revenue (rp — d* (1)) due to no-shows. On the contrary,
when the the price rp is relatively low in comparison to the customer valuation v, the customer may not
show up for her reserved service. As a way to reduce the potential loss of the remaining portion of the

revenue (rp — d* (1)) due to no shows, the firm should request full deposit so that d* (1) = rp.

3.4 Choosing the Reservation Policy: N versus D.

Because analytical comparison of Iy (m, n* (m)) and IIp (m, d* (m)) is intractable, we first examine the
case when the capacity m is very large (as m — oo) and then study the case when m is small, say, m = 1.
The results associated with these two special cases will enable us to develop a conjecture for any general
value of m > 1, which we will examine numerically in Section 3.5. To begin, let us consider the case when

m is very large. By using the results stated in Lemmas 3 and 6, we obtain the following result:

Corollary 8. When the capacity m is sufficiently large, say, m — oo, policy N dominates policy D if

and only if:
(v— TD)2
TN >Tp+ ——.
4u
This corollary suggests that, when capacity is abundant, say m — oo, policy N is preferred if and only if

the firm can charge a higher retail price 5 under policy N.

Next, let us consider the case when m = 1. We now compare Iy (1,n), the firm’s expected revenue for
any given booking capacity n under policy N, and IIp (1,d), the firm’s expected profit for any guarantee
deposit d under policy D. Because IIy (1,7n) given in (8) is a complex function, we shall compare these
two profit functions for small values of n analytically. (We shall compare the optimal expected revenues
Iy (m, n* (m)) and IIp (m, d* (m)) numerically in Section 3.5.) In view of Corollary 4, it is reasonable to
focus on small values of n because the optimal booking capacity n* is likely to be small. In preparation,
apply (7) and (2) to show that:

Ty (1,1) = ra - Pr{1|1}- (1 = pop) = %N (1 - e*A) , and (17)
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Iy (1,2) =7y - Pr{1[1} - pys + [rx - Pr{112} + (ry — ¢) - Pr{2|2}] - (1 — po» — p1}n)
_I'N

2N —
= Ae™ 4 % (1 —e N - )\e_A) . (18)

By considering IIp (1,d) given in (15), we establish the following result:

Proposition 9. For any given d > 0, there exist unique thresholds 11, 7o > 0 such that IIy (1,1) >
IIp (1,d) and 1IN (1,2) > IIp (1,d) if and only if the demand rate A\ < 7 and A < T, respectively.

. . . . d 3 | rp(v—rp)+d(rp+v
Moreover, 11 = oo and 179 = oo if and only if ry > rp + WZM and 2ry > 5 [ ( U*2D+(d )} +c,

respectively.

Proposition 9 can be interpreted as follows. When the retail price ry is sufficiently large in relation to rp,
the firm can obtain a higher expected revenue under policy N for any demand rate A. However, when ry
is below a certain threshold, policy N dominates policy D if and only if the demand rate A is sufficiently
low. This is because, when the number of customers in the system is low, the firm can use the no deposit
policy N to entice more customers to reserve so as to obtain a higher expected revenue. However, due to
the required deposit d under policy D, the firm is unable to receive enough reservations from customers
who are willing to pay the upfront deposit d and the remaining amount (rp — d) later. Therefore, deposit

policy NV dominates the guarantee deposit policy D when the demand rate A is small.

By considering the conditions as stated in Corollary 8 (for the case when m — oo) and Proposition 9 (for
the case when m = 1) , we develop the following conjecture that speculates the conditions under which
deposit policy N dominates the guarantee deposit policy D for any general value of m > 1. We shall

examine this conjecture numerically in the next section.

Conjecture 1. For any capacity m, policy N dominates policy D (i.e., I (m, n*) > IIp (m, d*) when
(a) the demand rate \ is sufficiently low; (b) the retail price ry is sufficiently large in relation to rp; (c)

the penalty c is sufficiently low; and (d) the customer valuation v is sufficiently low.
3.5 Numerical Analysis

In this section, we first develop numerical experiments to test Conjecture 1 established in the last section.

Then we examine the characteristics of the optimal retail prices rj and r7,.

3.5.1 The Dominance of Policy N for any capacity m > 1

We examine the conditions under which policy N dominates policy D for any general capacity m > 1,
we construct our numerical experiments as follows. In each of the experiments, we set m = 5, rp = 80,
and we vary the demand rate A from 0.1 to 20. First, we investigate the effect of the price ry on the
dominance of policy N. To do so, we vary ry from 80 to 130, but we fix the value of v and ¢ so that
v = 150 and ¢ = 20. Figure 1(a) (below) reports the region in which policy N dominates policy D so
that Iy (1, n*) > IIp (1, d*). Specifically, when 7y is high in relation to rp, policy N dominates policy
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D regardless of the demand rate A. This result is consistent with the first statement of Proposition 9.
Also, when rpy is in the medium range, policy N dominates policy D if and only if the demand rate A is
below a certain threshold. The result is consistent with the second statement of Proposition 9. Overall,

our results support statements (a) and (b) of Conjecture 1.

20 20 20
Policy D Policy D Policy D
A A A
mi .
m
my
Policy N . Policy N
0.1 01 Policy N 01
80 130 0.5 50 125
ry c v
Figure 1 (a) Figure 1 (b) Figure 1 (c)

Figure 1. The dominance of Policy N

Second, to examine the effect of the penalty ¢ on the dominance of policy N, we vary ¢ from 0.5 to 50, but
we fix the value of rn and v so that rny = 80, and v = 150. Figure 1b reports the region in which policy
N dominates policy D so that IIy (1, n*) > IIp (1, d*). Observe from Figure 1 (b) that, for any penalty
¢, policy N dominates policy D when the demand rate A is below a certain threshold, and this threshold
increases as ¢ decreases. This result is intuitive because, as the penalty c¢ decreases, the firm can afford
to overbook more. This observation is based on the fact that the optimal booking capacity n* (m) given
in Proposition 1 is decreasing in c. Hence, as the penalty ¢ decreases, policy N becomes more attractive.

Therefore our numerical result supports statement (c) of Conjecture 1.

Next, to investigate the effect of the valuation v on the dominance of policy N, we vary v from 125 to
175, but we fix the value of ry and ¢ so that ry = 80, and ¢ = 20. Figure 1(c) reports the region in
which policy N dominates policy D so that Iy (1, n*) > IIp (1, d*). As shown in Figure 1 (c), for any
demand rate A, policy N dominates policy D if and only if the valuation v is sufficiently low. This result
can be explained as follows. When the valuation v is sufficiently high, customers are more willing to pay
a guarantee deposit (even if d* is high) and more likely to show up for the reserved service under policy
D. Because the firm can obtain a higher expected revenue under policy D, policy D dominates when

customer valuation v is sufficiently high. This result supports statement (d) of Conjecture 1.

Finally, to investigate the impact of capacity m on the dominant policy, we conduct the same set of
experiments as described above by varying m from 1 to 10, and we obtain similar results as before except
that the threshold curve decreases as m decreases. The pattern of this effect is indicated by the arrow
associated with m |(decreasing in m) as shown in Figures 1 (a), 1 (b) and 1 (¢) (To reduce repetition, the
detailed figures are omitted). Hence, Conjecture 1 continues to hold for different values of m. In addition,
as capacity m decreases, policy N becomes less desirable. This result is intuitive because, as capacity m

decreases, the “effective” demand rate per unit of capacity \' = (%) increases. Hence, as the “effective”
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demand rate increases, statement (a) of Conjecture 1 hinted that policy D will become more desirable
because there will be more customers with high show up probability 1) who are willing to pay a guarantee
deposit and show up for the reserved service under policy D. Hence, policy D becomes more desirable as

capacity m decreases.

3.5.2 Optimal Retail Price

We have conducted our analysis for the case when the retail prices ry and rp are given. We now determine
the optimal retail price under each deposit policy. First, let us analyze the optimal retail price rj, that
maximizes the firm’s expected revenue under policy N. Recall from Section 3.1.1 that all customers will
attempt to reserve as long as the retail price ry < v. Therefore, it is always optimal for the firm to set
his optimal retail price r3 = v under policy N so that the firm can extract the entire surplus from the

customers.

We now analyze the optimal retail price r7, that maximizes the firm’s expected revenue under policy D.
As one can observe from Propositions 5 and 7, it is extremely difficult to analyze r}, analytically. For this
reason, we shall compute the optimal price r}), the optimal deposit d*, and the firm’s optimal revenue
I1p (m, d*) numerically. To examine the effect of capacity, demand, and minimum deposit, we determine
rh, d*, and IlIp (m, d*) for different combinations of m, A and # in a succinct manner. By considering
the case when customer valuation v = 150, we obtain our numerical results as summarized in Table 1
below. Observe from Table 1 that, in all cases, the optimal retail price r}, < 150 = v = r%,. This result
suggests that, relative to policy NNV, a firm should charge a lower retail price 77, under policy D. This
result is consistent with common practice: most hotels offer rooms with non-refundable deposits at lower

daily rates.

m=1 m=>5

A=2 A=38 A=2 A=38

ry = 142.75 147.6 135.2 142.2

=5 d*=5 5 8.62 15.88
IT;, = 70.76 115.18 128.9 408.26

ry = 137.55 145.35 128.1 136.35

f =10 d* =10 10 13.34 28.12
IT;, = 68.48 114.09 119.91 393.65

Table 1. Optimal retail price, optimal deposit, and optimal expected revenue under policy D.

Let us examine the results reported in Table 1. First, by comparing the results reported in columns
1 and 2 (and columns 3 and 4), we can examine the impact of demand rate A\ for any given capacity
m and minimum deposit 6. Observe that the optimal price r},, the optimal deposit d*, and the firm’s
optimal expected revenue are non-decreasing in the demand rate A. This result is intuitive because, as
more customers are present in the system, the firm can afford to charge a higher retail price and a higher

deposit without the fear of not getting enough reservations.
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Next, by comparing the results reported in columns 1 and 3 (and columns 2 and 4), we can evaluate
the effect of capacity m. Clearly, the firm can always obtain a higher expected revenue as the capacity
increases. However, the impact of capacity m on the optimal price r7, and the optimal deposit d* is
unclear. Our comparisons suggest that, as capacity m increases, it is optimal for the firm to reduce his

optimal price 77, and to increase his optimal deposit d*. Intuitively speaking, when the firm has more

capacity, he is more concerned about the reserve probability vp given in (5), where yp = di;ifD . By
noting that yp is decreasing in the deposit d and the retail price rp, the firm can increase the reserve
probability vp by reducing the deposit and/or the retail price. However, to mitigate the potential loss of
revenue due to “no shows,” our numerical examples suggest that it is advantageous for the firm to reduce
the retail price and to increase the deposit as capacity becomes more abundant. This result is consistent
with the way policy D is implemented in practice: during the low season (i.e., when the capacity is large
in relation to customer demand), most firms tend to reduce the retail price but they often command a

guarantee deposit.

Finally, by comparing the results reported in rows 1 and 2, we can examine the impact of the minimum
deposit requirement #. In this case, it is quite clear that the optimal deposit d* is increasing in 6.
However, to ensure that the reserve probability vp given in (5) does not decrease too much, the firm

needs to compensate this increase in the minimum deposit by offering a lower retail price.

In summary, our numerical results support Conjecture 1 established in Section 3.4 that policy N dominates
policy D (i.e., Iy (m, n*) > IIp (m, d*)) when (a) the “effective” demand rate % is sufficiently low; (b)
the retail price ry is sufficiently large in relation to rp; (c) the customer valuation v is sufficiently low; and
(d) the penalty c¢ is sufficiently low. Also, our numerical analysis enables us to gain a better understanding
about how capacity m, customer demand rate A, and the minimum deposit 6 affect the optimal retail
price 7, and optimal deposit d* under policy D. Specifically, our numerical analysis suggests that it is
optimal for the firm to set a higher price under policy N so that r3, > r7,. In view of this result, we shall

examine the duopolistic case in the next section by focusing our attention on the case when ry >rp.

4 Duopolistic Case

We now extend our analysis for the monopolistic case presented in Section 3 to the duopolistic case in
which 2 identical firms compete in the same market with customer demand A ~ Poi (\). We consider the
case when the customer will behave in the following manner: (a) each customer will attempt to reserve
with the firm that yields the higher expected surplus that is non-negative; (b) each customer will leave
the system if the higher expected surplus is negative; and (c) each customer will leave the system if her
attempt to reserve with the chosen firm is unsuccessful. The sequence of events is the same as described
in the monopolistic case. Specifically, prior to the presence of customers in the system, both firms will
announce their deposit policies simultaneously; i.e., a firm will announce his booking capacity n if policy
N is chosen and the required deposit d if policy D is selected. Then, for each customer who is present

in the system, she would infer the deny probability (1 — ) when she evaluates the expected surplus for
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reserving with a firm who adopts policy N. Figure 2 depicts the sequence of events, where d = 0 when a

firm adopts policy NV and 8 = 1 when a firm adopts policy D.

-S>
<
< |- €
No-Sh ow 0

D d
Wi
<
<
| -

Figure 2. The sequence of events.

This section is organized as follows. In Sections 4.1-4.3 we examine the equilibria associated with the
following three subgames: (1) (N,N): both firms adopt the no deposit policy N; (2) (D,D): both
firms adopt the guarantee deposit policy D; and (3) (N, D): one firm adopts policy N, while the other
adopts policy D. By using the firm’s expected revenue obtained in equilibrium for different subgames, we
characterize the Nash equilibrium of the meta-game in Section 4.4. To identify the conditions under which
a particular pair of deposit policies (N, N), (D, D), (N, D) or (D, N) will constitute an equilibrium in the
meta-game, we report our extensive numerical analysis in Section 4.5. We show that, in most cases, both
firms will choose the same deposit policy in equilibrium (i.e., either (N, N) or (D, D) in equilibrium). In
addition, we show the Prisoner’s Dilemma can occur in this meta-game. Also, when both firms charge
the same retail price, we show the existence of an equilibrium in which both firms adopt the no deposit
policy. Because each subgame involves the analysis of a competitive game between two firms within
which a separate Stackelberg game is played between each firm and the customers, the analysis of each
subgame is non-trivial and the analysis of the meta-game is highly complex. To obtain tractable results,
we shall limit our analysis to the case when the capacity of each firm m = 1 and when the retail price is

policy-dependent (but firm-independent) so that ry >7p.
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4.1 Subgame 1: Both Firms Adopt Policy N

Consider the case when both firms adopt policy N and charge the same retail price ry. If a customer makes
a reservation with firm 4, ¢ = 1,2, then we can apply (1) to show that her expected surplus is equal to:
N = ¢ [Bixn + (1 — Bi) c], where i = 1,2. We now establish the subgame equilibrium. In preparation,
let us make the following observations: (1) the expected surplus 7 y; is increasing in f3; because of our “no
arbitrage” assumption xy = v —ry > ¢; (2) all customers will attempt to reserve with the firm that has
a lower deny probability (1 — f3;); and (3) each firm ¢ can always guarantee that the reserved service will
be honored (i.e. 5 = 1) by setting his booking capacity to n; = 1. By using these three observations, it is
easy to check that there exists a Nash equilibrium in which neither firm will overbook (i.e. (n1,n2) = (1,1)

is an equilibrium). To identify other equilibria, let us establish the following Lemma:

Lemma 10. Consider the case when both firms adopt policy N. Then the service probability of firm 1
will be equal to the service probability of firm 2 (i.e. 1 = f2) and each firm will have the same reserve

probability yn1 = Yn2 = % in equilibrium.

Because Lemma 10 suggests that the subgame (N, N) may have multiple equilibria, which are symmetric,
let us consider the case when n; = ny = n. By using the fact that the show up probability ¢ ~ U [0, 1],

we can apply (8) to show that each firm’s expected revenue can be expressed as®:
= Dy (7 —1) Dj> A n(n—1)
HN,N(”;”):ZM[j’TN—”'C]-i-mm[n‘m\f—-C. (19)

The following result establishes the Nash equilibria for this subgame and the conditions under which one

equilibrium dominates the other:

Proposition 11. Suppose both firms adopt policy N. Then (i) there exists an equilibrium in which both
firms will set their booking capacity to ny n =1 and (ii) if Il (n*; %) > (1 — e"\), then there exists
a payoff-dominant equilibrium in which both firms set their booking capacity to ny n = n*, where n* and

Iy () are given by (9) and (8), respectively.

The result stated in Proposition 11 complements the result presented in Lim (2009). Specifically, when
low valued customers only arrive early and high valuation customers only arrive late, Lim (2009) shows
that it is a dominant equilibrium policy for both firms to overbook so that nyy > 1. Our results
differs from her’s slightly, because allows customers with different valuations to be present in the system
simultaneously. Therefore, Proposition 11 identifies the condition (i.e., ITy (n*; %) > (1 — e_/\)) under
which both firms should overbook in equilibrium.

8In the duopolistic case, we use the notation Ix,y,(z, y) to denote a firm’s expected revenue when he adopts policy X
with decision x given that his competitor adopts policy Y with decision y. For example, IIp ~(d, n) represents a firm’s
expected revenue when he adopts policy D with a required deposit d given that the other firm adopts policy N with a
booking capacity n.
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To investigate the condition under which one equilibrium dominates the other, let us consider the case
when n* = 2. This case is interesting because it captures the case when 2 < " < 5 as reported in

Corollary 4 in Section 3.2.

Corollary 12. Suppose 2 < TTN < 5 so that n* = 2. Then there exists a threshold \..; so that the

equilibrium (n*,n*) = (2,2) dominates the equilibrium (1,1) when demand rate X > A¢pj;.

In view of Corollary 12, we establish the following Conjecture, which we shall examine numerically in
Section 4.6.

Conjecture 2. When both firms adopt policy N, the equilibrium (n*, n*) dominates (1,1) if and only if
the demand rate A is sufficiently large.

4.2 Subgame 2: Both Firms Adopt Policy D

We now consider the subgame in which both firms adopt policy D so that firm ¢ requires a non-refundable
deposit d; > 0 for i = 1,2. Without loss of generality, consider the case when dy > dy. For any customer
with show-up probability 1, it is easy to check from (4) that 7p (d1) = —d1 + ¢ - (xp +dy) > —da + 9 -

(xp +d2) = mp (d2). Combine this observation with the requirement that mp (di1) > 0, we can conclude

dy
rp+dy

P < de}r o will leave the system because her expected surplus is negative. Hence, to compete for customer

that every customer with ¢ > will attempt to reserve with firm 1. Also, every customer with

reservations under policy D, both firms will undercut each other’s required deposit. Consequently, in
equilibrium, both firms will set their deposits at the minimum value d; = do = 6, because no firm can
obtain a higher expected revenue by setting his deposit above 6. Moreover, it is easy to check that this

equilibrium is unique. This proves the following Proposition:

Proposition 13. When both firms adopt the guarantee deposit policy D, both firms will require the same
deposit df, p = 0 in equilibrium.

Because both firms require deposit 6 in equilibrium and because both firms are identical, customers will

attempt to reserve with each firm with the same probability vp, where

1 1 0 Tp
- _.P NH>0l==-.P > = 20
0= Primo® 2 0) = 5 Pr{vz Lo (20)
Observe that the reserve probability vp < % for any 6 > 0. Because the show up probability ¢ of each
customer who reserves with either firm satisfies ¢ ~ U <ﬁ, 1), one can apply (12) to show that each
firm’s expected revenue is equal to:
rprp + 6 (rp+v) [ —_A%p ]
I 9, 0) = |1 —e 20=pto) 21
p.p (0, 0) 2(xp+6) 1)
By using the fact that IIp p (6, ) — 0 as A — 0, that IIp p (6, 0) is strictly increasing A, and that

pp(6,0) — % when A\ — oo, the expected profit of each firm in equilibrium IIp p (6, 6)
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is bounded above by %; (ie. p,p (6, 0) < %m) and this bound is tight when the

demand rate A\ — oo.

4.3 Subgame 3: One firm adopts Policy N, while the other firm adopts Policy D.

We now examine the subgame in which one firm adopts policy N, while the other adopts policy D. (For
ease of exposition, we shall refer to the firm who adopts policy NV as firm N and the other firm as firm
D.) In this case, each customer has to decide whether to reserve and which firm to reserve with. First,
recall from (1) that each customer can obtain an expected surplus 7y =9 - [f-any + (1 — ) -¢] > 0 by
reserve with firm N. As a result, we can infer that all customers will always attempt to reserve with firm
N unless they can obtain a higher surplus by reserving with firm D. Also, recall from (15) that each
customer can obtain an expected surplus 7p = —d + ¢ - (xp + d) by reserving with firm D. Hence, we
can conclude that each customer will attempt to reserve with firm D if 7p > wy > 0 and reserve with

firm N, otherwise. By comparing mp with my, it is easy to check that a customer will attempt to reserve

with firm D if her show-up probability ¢ > 7 = and will attempt to reserve with firm

d
rn—rp)+(zN—c)(1-P)
N, otherwise. Because the show-up probability ¢ ~ U [0, 1], the probability that a customer attempts to

reserve with firm D is yp (d) , where

d } (TN—TD)—{—(:L‘N—C)-(l—B) >0 (22)

VD(d):Pr{¢>d+(rN—rD)+(mN—c)-(1—B) T d+(rn—rp) + (ax—c) - (1-B)

Conversely, the probability that a customer will attempt to reserve with firm N is equal to a = vy =

1 —~p (d), where

d d
a:Pr{w<d—i—(rN—rD)—i-(mN—c)-(l—B)}:d—l—(rN—rD)—l—(xN—c)-(l—ﬁ) >0 (23)

In this case, we can interpret the probability a and ~vp (d) as the “market share” of firm N and firm D,
respectively. Thus, the number of customers who will attempt to reserve with firm N and firm D are

Poisson random variables with rates Aa and A\yp (d), respectively.

Observe from (23) that the reserve probability « = vy = 1 — vp (d) depends on the probability 8 given
in (3), where 8 depends on the following elements: (i) the booking capacity n selected by firm N; and
(ii) « = 1 — vp (d), which depends on the the deposit d that chosen by firm D. Therefore, we need to
use these circular relationships to estimate o = 1 —~p (d) in equilibrium. In preparation, we first analyze

firm D’s expected revenue for any given 5. Then we analyze firm N’s expected revenue for any given a.

First, let us consider the firm that adopts policy D. We now determine IIp y (d, n|3), the expected
revenue for firm D who imposes a deposit d given any S (when firm N sets his booking capacity to

n). Recall from (22) that each customer will attempt to reserve with firm D if her show-up probability

d

Y > IV N B SN sy W Therefore, the “effective” show-up probability of those who reserve with firm
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D is uniformly distributed over [(
that:

$N—C)‘(1_B)d+(7”N_TD)+d7 1}. Because m = 1, one can apply (15) to show

(ry=rp)t(zy—c)-(1-F)

IIp.n (d,n|B) = [1 _ ¢ VT (rn—rp)+HEn—0)G-5)

[C” (” d+<rN—rD>+C<la:N—c>'<1—5>> ' TD;d}
(24)

By considering the first-order condition associated with the expected revenue Ilp n (d,n| 3) given in (24),

we establish the following result:

Lemma 14. For any given § < 1, there exists an optimal deposit dp n () that maximizes IIp n (d,n| ),
where dp v (8) = max {9 , min {d’ 8), rD}} and d (8) satisfies:

A\ (TN—TD)Jr(zN*C)(l*B)
e d+(ry—rp)+(zy—c)(1-8) _ 1 [TN + (IN - C) (]‘ - 6)] =

d
d+ (ry —rp) + (zy —c) - (1 _6)> (rp —d)] (25)

A [Qd + <1 +
Furthermore, dp n (/) is a decreasing, continuous function of /3.

Next, let us consider the firm that adopts policy N. We now determine Il p (n,d| ); i.e. the expected
revenue for firm N for any given reserve probability vny = «. Recall from (23) that each customer will
attempt to reserve with firm N if her show-up probability v < a. Therefore, the “effective” show up
probability of those who reserve with firm N is uniformly distributed over [0, a]. When one firm adopts

policy N and the other firm adopts policy D, one can use (7) and (2) to show that IIy p (n,d| «) satisfies

n—1 . j .
B 41 —a)ytt cja n+(1—a)"tt cna
ot =5 [ (=) 0 oy (20l e,

(26)

By using the same approach as in Proposition 1, we can obtain the following result:

Lemma 15. For any given reserve probability o € [0, 1], there exists a unique booking capacity ny p for

firm N that maximizes Iy p (n,d|«), where ny p (o) satisfies:

ny,p (o) = arg maxf (n; ), (27)
neN
~ n+1
where f (nja) = ("2 +1) - % — ¥ is a quasi-concave function of n.

Using the results stated in Lemmas 14 and 15, we can compute the optimal booking capacity ny,p(c)

and the optimal deposit dy,p (5) for any given values of 5 and a. It remains to show how to compute S
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and a. To do so, let us review the aforementioned circular relationships among these quantities. First,
recall from (3) that f§ is a function of yx = a and ny, p, where ny p can be expressed as a function of «
by using Lemma 15. Given S (o, nn,p), we can express dp n (f) as a function of o and ny,p by applying

Lemma 14. Tt follows immediately from (23) that the reserve probability o must satisfy:

o — dp,n (B (o, nn,p (@)
dpn (B(a,nnp () + (ry —7rp) + (x5 —¢) [1 = B (a,nn,p ()]

Hence, by solving the fixed point (i.e. the reserve probability o* € (0,1]) that satisfies (28), we can

(28)

retrieve other quantities as follows: we first compute the booking capacity ny , = nn,p (a*) for firm

N by using Lemma 15, then compute 8* = 3 (a*,n"]‘v?D> using (3), and finally compute the guarantee
deposit d}, y = dp,n (8%) for firm D by using Lemma 14.

The following proposition establishes existence of a Nash equilibrium in this subgame:

Proposition 16. There exists a Nash equilibrium in this subgame where firm N sets his booking capacity

tonyy p and firm D requires deposit d}, v, where (n*N’D , dB,N> and the associated (a* , 5*) satisfy (28).

4.4 Analysis of Equilibria in the Meta-Game

By using the equilibrium outcomes (i.e. the booking capacity selected by firm N and the guarantee deposit
chosen by firm D) as stated in Propositions 11, 13, and 16, associated with subgames (N, N), (D, D)
and (N, D); respectively, we can determine the payoff of each firm in each of the three subgames. Table
2 provides a summary of the payoff function associated with each subgame, which constitutes the payoff

function in the meta-game.

| H H FIRv 2 |
’ H H Poricy N H Povicy D ‘
Firm 1 | Poricy N || (Iyy (nyn,nyN) > Oy (nv N, nyN)) (HN,D (n}k\w) , p N (d}‘v,D»
PoLicy D (HD,N (d}(\[,D) s HN,D (n}kV,D)) (HD,D (9,0) s HDJ) (9, 9))

Table 2. Payoff Function in the Meta-Game.

By examining the payoffs associated with the different subgames, we can establish the necessary and
sufficient conditions for a particular pair of policy (i.e. {N, N}, {D, D} or {N, D}) to be the equilibrium
policy that the firms will adopt in the meta-game.

4.4.1 Equilibrium Policy {N, N} in the Meta-Game

We now establish the necessary and sufficient condition for {N, N} to be the equilibrium policy in the
meta-game. First, let us examine the subgame {N, N} in which both firms will set their equilibrium
booking capacity in accord to ny n stated in Proposition 11. By applying (19), we can compute each
firm’s expected revenue Iy y (ny N, ). Thus, policy {N, N} will be the equilibrium policy in the

meta-game if and only if neither firm can improve his expected revenue from a unilateral move by deviating
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from the adopted policy N with booking capacity ny n. By symmetry, it suffices to analyze this condition
associated with one firm who makes a unilateral move (while the other firm’s policy is fixed at policy N
with booking capacity ny n). First, observing that ny y is the equilibrium booking capacity in subgame
{N, N}, it is clear that this firm cannot improve his expected revenue if he makes a unilateral move by
changing his booking capacity. Second, suppose this firm changes his policy from N to D. Then we can
utilize the same approach as presented in Section 4.3 for the subgame {N, D} to determine this firm’s
“best response” under policy D (denoted by guarantee deposit CZ), given that the other firm’s policy is fixed
at policy N with booking capacity ny n. By making this unilateral move, this firm’s expected revenue

is equal to Ilp N (a~l i N, N). Hence, we can conclude that this firm cannot improve his expected revenue

via a unilateral move if and only if Iy n (ny, v, nnN) > IIp N (az, nN,N>. More formally, we have:

Proposition 17. Suppose both firms adopt policy N and set the same booking capacity ny . Then
{N, N} will be an equilibrium policy in the meta-game if and only if Iy n (ny N, nN.N) > IIp N (J; nN7N),
where d = dp n (8 (&)) and & is the solution to (28).

4.4.2 Equilibrium Policy {D, D} in the Meta-Game

We now establish the necessary and sufficient condition for {D, D} to be the equilibrium policy in the
meta-game. First, let us examine the subgame {D, D} in which both firms will set their equilibrium
deposit to 0 as stated in Proposition 13 so that each firm’s expected revenue is equal to IIp p (0, 0) as
given in (21). Thus, policy {D, D} will be the equilibrium policy in the meta-game if and only if neither
firm can improve his expected revenue from a unilateral move by deviating from the adopted policy D
with a required deposit 8. By symmetry, it suffices to analyze this condition associated with one firm
who makes a unilateral move (while the other firm’s policy is fixed at policy D with a required deposit
0). First, observing that € is the equilibrium deposit in subgame {D, D}, it is clear that this firm cannot
improve his expected revenue if he makes a unilateral move from changing his required deposit. Second,
suppose this firm changes his policy from D to N. Then we can utilize the same approach as presented
in Section 4.3 for the subgame {N, D} to determine this firm’s “best response” under policy N (denoted
by booking capacity 7), given that the other firm’s policy is fixed at policy D with a required deposit
6. By making this unilateral move, this firm’s expected revenue is equal to Iy p (72; 6). Hence, we
can conclude that this firm cannot improve his expected revenue via a unilateral move if and only if
IIp p(6,0) >IN p (7; #). More formally, we have:

Proposition 18. Suppose both firms adopt policy D and charge the same guarantee deposit 6. Then
{D, D} will be an equilibrium policy in the meta-game if and only if Ilp p (0,0) > Iy p (7; ), where

. =nn,p (&) and & is the solution to (28).

4.4.3 Equilibrium Policy {N, D} in the Meta-Game

We now establish the necessary and sufficient conditions for {/NV, D} to be the equilibrium policy in the
meta-game. First, let us examine the subgame (N, D) in which firm N will set his booking capacity to

niy p and firm D requires deposit djy ;, as stated in Proposition 16. By applying (26) and (24), one can

determine firm N’s expected revenue is equal to Ily p (n}k\, D> Ay D) and firm D’s expected revenue is
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equal to IIp N (d}‘\,’D, nj‘V7D) . Thus, policy {N, D} will be the equilibrium policy in the meta-game
if and only if the following conditions hold: (1) firm N cannot improve his expected revenue from a
unilateral move by deviating from his booking capacity at njy p; and (2) firm D cannot improve his
expected revenue from a unilateral move by deviating from his require deposit dyy; . By using the same

approach as presented above, we can establish these two conditions formally in the following Proposition:

Proposition 19. Suppose the two firms adopt different policies. Then {N, D} will be an equilibrium
policy in the meta-game if and only if (i) Iy p (”*N,D7 d?\/,D) > pey,p ; and (1) IIp n (d*N,D> n}kv7D> >
pev,n , where:

~

Mp (d; A) if dyp >0
IIp a?; %) otherwise

Oy (s A) if n}‘V’DZQ and n=1

29
Iy (ﬁ; %) otherwise. (29)

HDeU,D = and HDeU,N = {

- min{ad*, —}i &i > 0 o, > 2
And the term d = { np €y if dyp and 7=14 "N if n.N,D =
0 otherwise 1 otherwise

where € > 0 is an infinitesimally small number. Also, the functions Il () and Ilp (e) are given in (8)
and (15); and d* ,nN,N,d*DW and n}‘\ﬂD are stated in Propositions 7, 11, 16 and 16, respectively.

By using the results stated in Propositions 17, 18, and 19, we develop Table 3 that summarizes the
necessary and sufficient condition(s) for a particular pair of policies (i.e. {N, N} ,{D, D} or {N, D}) to
be the equilibrium policy that the firms will adopt in the meta-game.

’ H H FIrRM 2 ‘
’ H H PoLricy N H Poricy D ‘

- np (nN.p) 2 Upev,D
FirMm 1 Poricy N Iy N (nNyN,nN,N) >1lp N <d|nN,N)
p N (dp ) 2 Upeo,n

Un.p (nyp) 2 pev,p

Poricy D IIp p (6,0) > Iy p (7, 0)

Up,~ (dp ) 2 pev,n

Table 3. Necessary and Sufficient Condition(s) for a pair of policy to be an equilibrium in the meta-game.

4.5 A Special Case: Policy-Independent Retail Price ry = rp

We now examine a special case in which both firms charge the same retail price regardless of the deposit
policy so that ry = rp. By using the fact that a firm who adopts policy N can set his service probability
B =1 by setting his booking capacity to n = 1 (i.e. no overbooking), (1) asserts that all customers will
attempt to reserve with this firm unless the other firm follows suit and also adopts policy N and sets his

booking capacity to n = 1. This observation enables us to establish the following proposition:
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Proposition 20. Suppose the retail price is both policy- and firm-independent so that ry = rp = r. Then
there exists an equilibrium in the meta-game in which both firms adopt policy N and set their booking

capacity ny y = 1.

Although Proposition 20 suggests that there exists an equilibrium in the meta-game in which both firms
adopt policy N and set their booking capacity n = 1, we learn from Propositions 11 and 17 that it is
possible for another, payoff-dominant equilibrium to exist. This observation motivates us to develop the

following conjecture.

Conjecture 3. A Prisoner’s Dilemma can occur when the retail prices are policy-independent; i.e. when

N =TD.
4.6 Numerical Examples

To determine the equilibrium deposit policies associated with the meta-game that captures duopolistic
competition and to examine Conjectures 2 and 3 as established in Section 4.4 and 4.5, we conduct numerical
experiments by fixing the value rp = 80, § = 10 and v = 150. In each experiment, we vary the demand
rate A from 0.1 to 20 and vary the retail price ry from 80 to 130. Figures 3 (a), 3 (b) and 3 (c) report
the regions in which {N, N} or {D, D} is the unique pure-strategy equilibrium and the regions in which
both {N, N} are {D, D} are pure-strategy equilibria when ¢ = 5, ¢ = 10 and ¢ = 20, respectively.’
(The region highlighted in bold corresponds to the region in which { N, N} is the equilibrium when both
firms set their booking capacity to ny x = 1. By noting the fact that this occurs when ry = rp = 80,
we verify Proposition 20. Also, the region with the “no equilibrium” label represents the region in which
no pure-strategy equilibrium exists). As shown in Figures 3 (a), 3(b) and 3 (c), {D, D} appears to be
the common equilibrium policies that both firms will adopt, followed by the equilibrium policies {N, N}.
With this set of parameter values, we noticed that policy {N, D} is never an equilibrium. However, we
discover, in some rare instances, that policy {N, D} is a Nash equilibrium. For ease of exposition, we

shall discuss these rare instances in Appendix 2.

{0, D}:[\ N N NE / ©,0:N\N\\\\X  (N.N:F///777/) 0, 0:N\N\\\\\ N, N:Y///777/)
No Equilibrium No Equilibrium 20
A
Equilibria s —
{N,N}and {D, D} Equilibria Equilibria
0.1 01 {N,N}and{D, D} 0.1 {N,N}and{D, D}
80 (c=5) rN 130 80 (c=10) rN 130 80 (c=20) rN 130
Figure 3 (a) Figure 3 (b) Figure 3 (¢)

Figure 3. Equilibrium Deposit Policies for the Meta-Game.

9We have also conducted numerical experiments to examine the effect of the minimum deposit # on the equilibrium
policies when 6 = 1, 6 = 10 and 6 = 20, respectively. By setting the penalty ¢ = 10, we obtain similar results as reported in
Figures 3 (a), 3 (b) and 3 (c). To reduce repetition, we omit the details.
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Although we have shown analytically in Section 3.4 and numerically in Section 3.5 (Figure 1(a)) that
policy N dominates policy D when the retail price ry is sufficiently larger than rp in the monopoly
case, when the firms enter a duopolistic competition using the same set of parameter values, we observe
in Figure 3 that, when ry > rp, this results holds only when the penalty ¢ and the demand rate A
are sufficiently small. However, in contrast to the monopolistic case, we find that {N, N} is the unique
equilibrium policy only when the retail price ry is sufficiently close to rp (and when the demand rate A is
sufficiently low). To understand why the equilibrium policy in the duopoly case differs from the monopoly
case in this occasion, let us examine the case when 7y is much larger than rp. In this case, Proposition
9 and Figure 1 (a) suggest that policy N dominates policy D in the monopolistic environment. However,
in the duopolistic environment, we need to account for the interplays between the firms. To examine the
dynamics of each firm, let us suppose first that both firms adopt policy N and set their booking capacity
to ny N as given in Proposition 11. Because ry > rp, one can observe from (22) that: (1) a firm can
obtain a high market share of customers by switching to policy D unilaterally; and (2) overbooking is less
beneficial when the compensation ¢ is large. Hence, policy D is more attractive. As one firm switches
to policy D and obtains a high market share, the other firm may have to follow suit to ensure sufficient
market share (if the penalty ¢ or the demand rate A are relatively large). Therefore, even when ry > rp,
both firms may adopt policy D in the meta-game as shown in Figure 3. These firms dynamics explain
why the results obtained in the duopoly case can be opposite from the results obtained in the monopoly

case.

Next, let us examine the case when no pure-strategy equilibrium exists as shown in the “no equilibrium”
region in Figure 3 (b). Let us consider a specific instance in which rp = 80, ry = 90, v = 150, ¢ = 10,
f# = 10 and demand rate A = 20. First, suppose both firms adopt policy N in equilibrium. Then one
can apply Proposition 11 to show that each firm will set his booking capacity ny y = 4 and enjoy an
expected revenue Iy n (4,4) = 59.98. Because the demand rate is large and the retail price 7y is not
much larger than rp, one can check from (24) that a firm can obtain a higher expected revenue (i.e.
IIp n(d=80,n=4) >y (4,4)) if he unilaterally switches from policy N to policy D and charges a
deposit d = 80 = rp. Consequently, {N , N} is not a Nash equilibrium. Second, suppose both firms adopt
policy D in equilibrium. Then one can apply Proposition 13 and (21) to show that both firms will require
the same deposit d}, , = 6 = 10 and enjoy an expected revenue Ilp p (10,10) = 49.37. In this case, one
can check from (26) that one of the firms can switch unilaterally from policy D to policy N by setting
his booking capacity to 7 = 12 and enjoy a higher expected revenue (i.e. Iy p (2 =12, d = 10) = 49.47
> 49.37 = IIp p (10,10). Therefore, policy {D, D} is not a Nash equilibrium either. It remains to
check to see if policy {N, D} is a Nash equilibrium. By applying (26) and (24), we can determine the
expected revenues for firms N and D as Iy p (n}‘vp =5, d*]‘\,’D = 80) and IIp N (d}‘V,D = 80, ”}k\aD = 5),
respectively. In this case, one can also check that policy {N, D} cannot be an equilibrium, because firm
N can make a unilateral switch to policy D and obtain a higher expected revenue by undercutting the
other firm D’s required deposit. Based on this argument, we can conclude that there are instances in

which no pure-strategy equilibrium policy exists.

Finally, let us examine Conjectures 2 and 3 as established in Sections 4.2 and 4.5, respectively. Specifically,
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we consider the following instance: ry = rp = 100, ¢ = 20, v = 150 and 6 = 10. First, our numerical
analysis shows that in the subgame (N, N), both firms will set their booking capacity to ny x > 1 if and
only if the demand rate A > 3. Therefore, our result supports Conjecture 2. Also, our numerical result
suggests that in this instance, there exists a unique Nash equilibrium in the meta-game in which both
firms adopt policy N and set up their booking capacity to ny y = 1 when the demand rate A < 3. This

result verifies Proposition 20.

We now examine Conjecture 3 that speculates the existence of a Prisoner’s Dilemma situation when
ry = rp. Consider the following instance: ry = rp = 100, ¢ = 20, v = 150, § = 10, and A = 3. For
this particular instance, it can be shown that the set Pareto efficient actions is for each firm to adopt
policy D, require deposit d* = 29.79, and enjoy expected revenue Ilp p (d*,d*) = 47.53. Because of the
undercutting dynamics between both firms as exhibited in the subgame (D, D), Proposition 13 states
that both firms will set their required deposits at § = 10 and enjoy expected revenue IIp p (6,0) = 44.59.
However, a firm can increase his expected revenue by making a unilateral switch from policy D to policy N.
By setting his booking capacity to 7 = 4, this firm can obtain a higher expected revenue: Il p (2, 0) =
45.19 > 44.59 =1Ip p (0, 60). As one firm switches to policy N, the other firm would follow suit. As both
firms adopt policy N, one can check from Proposition 11 that both firms will set their booking capacity
to ny, N = 1 in equilibrium and both firms will obtain an expected revenue equal to Iy v (1,1) = 38.84.
It is interesting to note that, had each firm sets its booking capacity to n* = 3, they would have obtained
a higher expected revenue equal to IIy n (n*,n*) = 43.26 > 38.84 = IIx n (1,1). Thus, we can conclude
that a Prisoner’s Dilemma occurs in this instance, which supports Conjecture 3 as established in Section
4.5.

5 Discussion

We have examined how two common deposit policies (i.e. the no deposit policy N and the guarantee
deposit policy D) affect a rational customer’s reservation decision and a firm’s optimal expected revenue.
In a monopolistic environment, we have analyzed each deposit policy as a Stackelberg game in which
the firm acts as the leader who selects the booking capacity n under the no deposit policy N (or the
required deposit d under the guarantee deposit policy D) and each customer acts as the follower who
decides whether to reserve or not. By solving these two Stackelberg games, we have determined the
optimal booking capacity n* under the no deposit policy N and the optimal guarantee deposit d* under
the guarantee deposit policy D. In addition, we have shown that policy N dominates policy D when
when (a) the “effective” demand rate % is sufficiently low; (b) the retail price ry is sufficiently large in
relation to rp; (c¢) the customer valuation v is sufficiently low; and (d) the penalty c is sufficiently low.
Also, our numerical analysis enabled us to gain additional insights about the impact of the capacity m,
the customer demand rate A, and the minimum deposit 6 on the optimal retail price r7,, and optimal
deposit d* under policy D. More importantly, our numerical analysis suggested that it is optimal for the
firm to charge a higher retail price under policy NV so that r3, >r}. This result may have helped us to
explain formally why it is commonly observed in practice that firms tend to charge lower retail prices

when guarantee deposits are required.
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To understand how market competition affects the way a firm selects his deposit policy, we have analyzed
a game of duopolistic competition between two firms. For any given pair of policies adopted by the
firms (i.e. (N, N), (D, D), (N, D) and(D, N) ), we have examined each subgame between two firms by
incorporating the underlying Stackelberg game that is played between each firm and its customers. By
analyzing a non-cooperative game with an embedded Stackelberg game, we have highlighted the interplays
between the two firms and developed the subgame equilibrium that specifies each firm’s decision for any
given pair of policies. By comparing the payoffs associated with different pairs of policies, we have
developed conditions under which a particular pair of policies constitutes the equilibrium policy to be
adopted by both firms in the meta-game. Our numerical analysis enabled us to obtain the following
insights: (1) policy {D, D} is the most common equilibrium policy that both firms will adopt in the
meta-game; (2) policy {N, N} is a unique equilibrium policy for the meta-game when the demand rate
A and the retail price ry is sufficiently small; (3) policy {N, D} can be the equilibrium policy in rare
occasions; (4) equilibrium policy are not necessarily unique; (5) a pure-strategy equilibrium may not exist
in some cases; and (6) the Prisoner’s Dilemma can certainly occur in the meta-game. Finally, when both
firms charge the same retail price, we have shown that there exists an equilibrium in which both firms

adopt the no deposit policy N.

There are various research opportunities for addressing the limitations of the model presented in this
paper. First, it would be of interest to examine other deposit policies including cancelable reservations
with partial refunds. Second, we have assumed that all customers are present simultaneously in the system.
It would be of interest to analyze the case when customers arrive dynamically over time according to a
certain stochastic process and when the firm can adjust its retail price dynamically over time. Third, our
model assumes that all parties are risk-neutral. It would be of interest to examine the case when firm
and customers are risk-averse. Fourth, our model assumes that each customer will leave the system if
her attempt to reserve with a firm fails. It would be of interest to extend our model to the case when
each customer would consider reserving with the other firm after a failed attempt before she leaves the
system. Fifth, our model does not incorporate the existence of speculators in the system who do not care
for the service but they have a strong desire to get the compensation c¢ for being denied. For instance,
in the airline industry, there are passengers who are eager to give up their seats voluntarily in order to
receive compensations. Sixth, our model assumes common knowledge. It would be of interest to examine
a situation in which customers do not know the firm’s booking capacity under policy N. Finally, another
potentially interesting extension could be the extension of the duopolistic model to a K-firm oligopolistic

model.
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APPENDIX 1: Proofs

Proposition 1:

Proof. Let A (n) 2 (Ily (m,n + 1) — Iy (m,n)) be the marginal gain for increasing the booking capacity
from n to (n+1). By using (7) and by rearranging various terms, one can show that A (n) can be
re-expressed as: A (n) = (Iy (m,n+1) —Ily (m,n)) = [f (n+1) — f(n)] § - P>nq1)r , where

n

F(n) =2 (%N v 1) S kPr {kn} + 2m (%N n 1) S° Prikln} -2 kPr{kln} (30)
k=1

k=1 k=m+1

By using the fact that p>,,41» = Pr{4 >n + 1} > 0, we can conclude that the optimal n* that maximizes
the firm’s expected revenue Iy (n) is equal to the optimal n* that maximizes the function f(n) given in
(30). Hence, it remains to determine the optimal n* that maximizes the function f(n). By using (2), the

function f(n) can be simplified as: f (n) =m (™ + 1) (m) —n. Since the function f(n) is concave

n+1
in n, we can use the difference equation defined by Af (n) £ f(n+1) — f (n) = (% + 1) % —1,
to show that n* € {L\/(TTN +1)m(m+1)— lJ ;o] } This completes our proof. O

Corollary 2:

Proof. Let £ £ ™ + 1. Observe from (9) that n* (m) > m - n*(1) if and only if \/ém(m+1) >
(\/25 — 1) m + 1. Squaring both sides, re-arranging terms, this condition can be simplified as: m <

——L__ Our result follows immediately by using the fact that & = S+ L O

(6-2v28+1)
Corollary 3:

Proof. Observe from (8) that IIy (m, n* (m)) is increasing in the capacity m. To establish an upper
bound on Iy (m, n* (m)) , it suffices to examine the case when m — co. As m — oo, (9) suggests that
n*(m) — oo. This implies that the firm has enough capacity to accept and to serve all customers who
attempt to reserve so that the firm will not deny service to any customer. Hence, (7) suggests that the
firm’s expected revenue can be re-written as: limy, o0 Iy (m, n* (m)) = 372, S kryPr{k [y pjp =
Z;’;l %pjlh Zi:l k= /\TQ’N. This completes the proof. O]

Corollary 4:

Proof. Observe that the difference equation Af (n) £ f(n+1) — f(n) = (£ +1) (m(miﬂ)) — 1, where

n+1)(n+2
the function f(n) is given in Proposition 1. When m = 1, the difference equation reduces to Af (n) =
(" +1) erfw — 1. Since f(n) is concave, it follows that n* = k if and only if Af (k—1) > 0 and
Af (k) <0. The result follows immediately by substituting k = 1,...,5 into Af (k). O

Proposition 5:

Proof. First differentiate (12) with respect to d and solve for %HD (m,d) = 0. By re-arranging the terms,
defining P, £ Z;.”:_Ol jkpj‘MD, it is easy to show that the first order condition satisfies (13). O
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Proposition 6:

Proof. Because d* (m) is decreasing in m and IIp (m,d* (m)) is increasing in m, it suffices to ana-
lyze the case when m — oo. Using the results in corollary 5, observe that as m — oo, Py — 1,
P, — 22D and P, — 2D ( AZp 1). Substituting into (13) the first order condition reduces to

$D+d ID+d :ED-‘rd
2 (e} 2
)‘ITD %} = 0, which implies that d* (m) = CBDi%TD as m — oo. Noting that (11) can be re-
written as Ilp (m,d) = {(TDM)(;@;?XZ(TD_@} (m + Py — mPy), substituting d* (m) = J/‘D:j-igr[) we obtain
2
limy, 00 Ip (m, d* (m)) = %. Finally, substituting v = xp +rp we obtain the desired result. [

Proposition 7:

_Xaxp
Proof. First, we differentiate (15) with respect to d, getting 21 (1, d) :—%ﬁe eptd. [%ﬁzﬂ-v)} +

7 Az p -
i <1 —e ””D+d> (iz’f‘;)g. Then solving for %HD (1,d) = 0 we obtain the first-order condition in (16). By

_A=2p .
noting that % {e zD”} > 0 and % %% > 0, we can conclude that the LHS of (16) is strictly

increasing in d the the RHS is strictly decreasing in d. By observing that A-e ™ -r < (1 — e*)‘) v, it is easy
to check from (16) that the LHS is strictly less than the RHS when d = 0. Combine this observation with
the fact that the LHS is strictly increasing and the RHS is strictly decreasing in d, we can conclude that
the first-order condition has a unique solution d (1) > 0. Because Ip (1,d) is concave in d, the optimal
deposit satisfies d* (1) = max {0, min {rD, d (1)}} Next, by considering %HD(L d) given above, one

. Az
can check that %HD (1,d) la=rp < 0 if and only if 1 + 2X (*2) > e o . Hence, we can conclude that

d* < rp if and only if 1 4+ 2\ (%’) > M=) T complete the proof, differentiate (16) with respect to

A, apply the implicit function theorem to show that 8%\1) > 0 and it follows by monotonicity that d* (1)

is increasing in A. 0

Corollary 8:

Proof. The result follows immediately from comparing the firm’s expected revenue reported in Lemma, 3

and from Lemma 6. We omit the details. O

Proposition 9:

Proof. First, let us examine the case when n = 1. Define hy (A\) = 2[IIp (1,d) — Iy (1,1)] = [%‘W :

_Aep
(1 —e zD”) —ry (1—e). Tt is easy to check that hy (0) = 0 and hy (A) — rp + #:er —ry as

Ad
A — oo. Differentiating h; we obtain %hl ()\) — e w%p .e*ptd — TN:| . First note that

(p+d)?
e > 0 VA and the term inside the bracket is increasing in A. Then for any given d, it is easy to check
from -4 hy (\) that there exists some threshold « such that the function hy (\) first decreases and then

increases if and only if A > k. It is easy to check that there exists a threshold 7 such that h; (A) < 0

dv
v—rg+d

can conclude that such that Iy (1,1) < IIp (1,d) if and only if A < 7;. This proves the statement for the

if and only if A < 71. Moreover, one can show that 7 = oo if and only if rp + < ry. Thus, we
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case when n = 1. By using the same approach, we can complete the proof for the case when n = 2. We
omit the details. O

Lemma 10:

Proof. We have already established the equilibrium n; = ng = 1 in which case 81 = $2 = 1 holds. This
implies that w1 = 7o and therefore customers are indifferent as to which firm to reserve with. Therefore,
each firm enjoys the same reserve probability vy = 1 in equilibrium. Since n; = ng = 1 is an equilibrium,
it suffices to check (51, By for ny, no > 2. We aim for a contradiction. Without loss of generality, suppose
that 81 > (2. Then our observation (2) asserts that all customers will attempt to reserve with firm 1,
while no customer will attempt to reserve with firm 2. Consequently, 51 < 1 = (9, contradicting the
assumption. Hence we must have 51 = (2 in equilibrium. Combining this observation with the fact that
the customer’s expected surplus wn; = ¢ [Bizn + (1 — 5;) ¢] > 0, we can conclude that all customers will
attempt to reserve and all customers are indifferent about these two firms. Consequently, both firms have

the same reserve probability so that yy1 = yv2 = % O

Proposition 11:

Proof. First, we have already shown that ny y = 1 is a Nash equilibrium. Next, it follows from Lemma
10 that yy1 = ynve = % and from Proposition 1 that the optimal booking capacity n* given in (19) is
independent of its demand rate, so we can conclude that n* is the same as the optimal booking capacity
given in (9). To proceed, consider the case when both firms set n; = ng = n* > 2 (the case when
n* = 1 is trivial), so that each firm has the same reserve probability. Observe that a firm cannot increase
his reserve probability (and thus his expected revenue) unless he unilaterally sets n; = 1. By noting
that the expected revenue is equal to Iy (1;A) = " (1 — ™), (n*, n*) is an equilibrium if and only if

1IN (n*; %) > o (1 — e‘A). Noting that each firm will have the same reserve probability in equilibrium, it
follows from Proposition 1 that Iy (n*; 2) > Ty (1; ) VA > 0 and as a result if (n*, n*) is an equilibrium,

then it payoff-dominates the equilibrium (1, 1). This completes our proof. O

Corollary 12:

Proof. First note that Iy (1;A) = 2 (1 — e™*) and " > 2. Next define h (X2, ) £
It is easy to check from (18) that: h (™, \) = (4% —2) (1 —e %) - (= - )%e_% — 35

. . . OR(PEN) ATy N -2 A (rn

and differentiating with respect to A we obtain —z5— =€ 2 ( + 1) 3em2 4 4 ( !z 2) To
proceed, note that ¢=2 > 0 and let us define h (Tév,)\) = %(%(aiA)\) = (TTN + 1) — BTTNe_% —1—2 (TTN - 2).
Noting that (i) h (TN A=0)=-(2"2-1) <0, (i) h (", X — o0) > 0, (iii) h (™, \) is increasing in
Aand (iv) h (2, X — 00) = X — 2 > 0, we can conclude by the mean-value theorem that there exists
some A such that ITy ( %) > (1 — e‘A) YA > Agrie. This completes the proof. O
Proposition 13:

Proof. Omitted. O
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Lemma 14:

Proof. Showing that equation (25) satisfies the first order conditions for IIp y (d; 8) involves a simple
differentiation of (24) with respect to d and the proof is omitted. To simplify the analysis, we define
y(d,B) & LHS — RHS of (25). Letting d = 0, it is easy to check that for fixed 3, y(d =0,3) =
(e*=1)[ry+ (zny —c) (1 = B)] — Arp > 0 as long as ry — rp > 0. Letting d — oo, it is easy to check
that y (d — o0, 8) = —oo. Moreover, y (d, ) is strictly decreasing and continuous in d. We can therefore
conclude by the mean value theorem that given fixed 3, there exists some unique d (8) that maximizes
IIp.n (d; B). Because Ilp n (d; B) is concave in §3, it follows that dp n (8) = max {(9, min {dl B, TD}}
maximizes IIp n (d; ) on [0, rp).

Now we “unfix” 3. It is easy to check that for any fixed d, y (d, 3) is strictly decreasing in (3, since the
LHS is strictly decreasing in 3, while the RH .S is strictly increasing in 5. Therefore V31 > (32 it follows
that for any fixed d > 0, y (d, 51) < y (d, B2)-

We can thus conclude that 3d; , dy that satisfy y (di,81) = y(de2,f2) = 0 and d; < dz. Therefore d (8)
is strictly decreasing in . Since y (d, ) is continuously differentiable in both d, 3, we can also conclude
that d (8) is continuous in 3.

By monotonicity it follows that dp y (5) is a decreasing, continuous function of 8 and this completes the

proof. O

Lemma 15:

Proof. Let Ay p(n) = Iy p(n+1;a) — Iy p (n;a) be the marginal gain for increasing the booking
capacity from n to (n+1). By using (26) and rearranging various terms, one can show that Ay p (n)
can be re-expressed as: Ay p(n) = [f n+La)— f(m Q)|+ € Pj>n+ijra, Where f(n, a) = (TTN + 1) .

nJr(lfa)""'1
a(n+1) A~
firm N’s expected revenue Il p (n;«) is equal to the n* that maximizes f (n; a).

— 5. By noting that p;>n41jaa > 0, we can conclude that the optimal n}k\aD that maximizes

As a result, it suffices to show that f(n, a) is a quasi-concave function of n. Observe that a% (_m) =

2
e K n+(1—a)"+1 . 1+[ln(1—a)"+1_1](1_a)n+1
—5 < 0 and 8n< a(n+1) ) = a2 i) > 0.

that it suffices to show that: 1 + [ln(l — )"t — 1] (1 —a)"™ > 0. Rearranging the terms in the
above inequality, it is easy to check that it reduces to: (1 —a)"™'In(1—a)"™ > 1 —a)"™t -1 .

By properties of the natural logarithm, the above inequality holds for all (1 — oz)”Jrl > 0. Furthermore:

To prove the last inequality, observe

_\n+1 ~ _\n+1

lim,,—s o0 % (%) = 0 and lim,,_,o f (n; ) = —oo. This implies that % is increasing with
a slope that diminishes to 0 as n grows large, while —*3* is decreasing with a constant slope. Therefore
f(n; «) is a quasi-concave function of n and this completes our proof. O

Proposition 16:

Proof. For fixed n € N define the function ¢ (a;,) = I~ lan n));Ef]’\]Nf(f,go)?(Z)])vfc)[kﬁ(an - Note that

B (o, n) is a continuous function conditional on n being fixed and by lemma 14, dp n () is also a

continuous function, so ¢ (a,) is a continuous function. Noting that ¢ : [0,1] — [0, 1], where [0,1] is a
compact set, it follows by Brouwer’s fixed point theorem that for every n € N, the exists some «,, € [0, 1]

that satisfies a;, = ¢ (). So far, we have established that Vn € N, there exists some «,, that satisfies
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q(an) = ap. Since by assumption there exists some upper bound N € N, the sequence {O‘n}ne{l N}

. . . N . . ) )
is finite and as a result, there exists some nN.p that satisfies nN,p = AGMAX, £y N} f (n; ay), where

A~

f(n;an) was given in (27). Finally, note that such ny, ,, trivially satisfies ny, p = ny,p (Oén}*\, D) and this
completes the proof. O

Proposition 17:

Proof. Recall from Lemma 14 that, in the subgame (N, D), it is optimal for firm D to charge a deposit
dp,n (B) in equilibrium. Also, recall from 3.1.1 that 8 can be expressed as a function of the reserve
probability vy = « and the booking capacity n. Therefore, firm D’s best response is to set his guarantee

deposit d = dp n (8 (&)), where & satisfies (28) for the case when firm N sets his booking capacity to
d

d+(rn—rp)+(@n—c)(1-B(a@nNn))

the first part of the proof of Proposition 16 and is omitted here. Therefore, policy {N, N} will be an

ny N, getting & = . Similarly to above, existence of such & follows from

equilibrium when a unilateral move is undesirable; i.e., when IIp x (d; nN’N) <Inn (nNn,nNN). This
completes the proof. O

Proposition 18:

Proof. Recall from Lemma 15 that, in the subgame (N, D), it is optimal for firm N to set his booking
capacity ny,p («) in equilibrium. Also, recall from 3.1.1, 3 can be expressed as a function of the reserve

probability 74 = « and the booking capacity n. Therefore, firm N’s best response is to set its booking

capacity to ny,p (&), where & satisfies the reserve probability & = 5y as given in

9+(7”N71“D)+(x?vfc)(1f,8(&,ﬁ
(28) for the case when d = 6. Existence of such & and 7 follows by the same arguments as in the proof
for Proposition 16 and are therefore omitted here. Trivially, the associated expected revenue for the firm
deviating to policy N will be equal to Il p (72; 6). Therefore {D, D} is an equilibrium policy if and
only if such optimal deviation is not desirable ; i.e. when Ilp p (0,0) > IIy,p (72; €). This completes the

proof. O

Proposition 19:

Proof. First, let us examine the optimal deviation strategy for firm N. It follows from Proposition 16
that a firm cannot increase his expected revenue by requiring a deposit different than df, . As a result,
it suffices to check only strategies in which the firm switches to policy D. By the same argument used for
Proposition 13, the firm cannot capture any market share if he requires deposit d> dE, - To proceed,

* : _ Tp . 7 %
first suppose that dp N > 0. Then the firm can enjoy market share yp = 2 (en i ) by setting d = d,

or Yyp = mziid by setting d < dp . Noting that there exists some d* > 6 that maximizes the firm’s
b ;
expected revenue when it operates in a monopoly, it is easy to check that the firm’s optimal strategy is

0

to set d = min {d*, dp N — e}, where € > 0 is an infinitesimally small number '°. Now suppose that

0Technically, if d* > dy,p then a best response does not exist, because any response that yields a positive expected
revenue must lie in interval [d;‘v?D — €, d?V,D) and this interval is not compact. As a result, for every response, a better
response exists and at the limit d— dy,p, which is clearly not a best response. This issue can be resolved easily by letting
the deposit d only take values on a discrete grid (i.e. d € {0,0 +¢,...,rp —€,7p}, where ¢ > 0 is fixed). Because this
technicality has negligible effect for e sufficiently small, we choose to omit it for tractability.
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dp y = ¢ and noting that the firm cannot capture any market share by requiring deposit d> dp n» we
can conclude that the optimal strategy is to set d= dpn=10.

Now let us examine the optimal deviation strategy for firm D. As before, it follows by Proposition 16 that
a firm cannot increase his expected revenue by setting his booking capacity to any value other than n}‘v D
As a result, it suffices to check only strategies in which the firm switches to policy N. First, suppose that
niy p = 2. Then it follows by lemma 10 that the firm can capture % of the market share if it sets its
booking capacity to n > 2 or the entire market share if it sets his booking capacity to n = 1. It follows by
Proposition 11 that the optimal strategy is to set n = ny n, where ny vy = n* if Iy (n*; %) > % (1 — e_)‘)
and ny,n = 1 otherwise. Now suppose that nj , = 1 and note that the associated service probability
8 =1 as aresult. Because the firm cannot capture any market share unless it also sets n = 1, we conclude
that the optimal strategy is to set his booking capacity to n = 1.

Finally, using (8) and (15) it is easy to check that the expected revenue associated with the optimal

deviation strategies satisfy (29). This completes our proof. O

Proposition 20:

Proof. Suppose both firms adopt policy N and set their booking capacity to ny x = 1. It follows from
4.1 that (1,1) is an equilibrium for the subgame (N ,N). Using (23) it follows from (i) the fact that
nynN =1= =1 and (ii) the assumption that rx = rp, that the reservation probability for firm N and
for firm D is vy = 1 and yp = 0 Vd > 0, respectively. As a result a firm cannot capture any market share
by deviating to policy D and we can thus conclude that there exists an equilibrium in the meta-game in

which both firms adopt policy IV and set their booking capacity to ny y = 1. O

APPENDIX 2: The Existence of Asymmetric Equilibrium Policy {N, D}

As reported in Section 4.6, {D, D} appears to be the most common equilibrium policies that both firms
will adopt, followed by the equilibrium policies {N, N}. Because both firms are identical, one would
expect all equilibria for the meta-game to be symmetric. As it turns out, there are rare instances in which
policy {N, D} is the unique Nash equilibrium for the meta-game. In this appendix, we first establish
the existence of this asymmetric equilibrium policy {INV, D} using a specific numerical example. Then we

provide some basic intuition to explain why such an asymmetric equilibrium exists.

Consider the case when ry = rp = 100, v = 150, ¢ = 5, § = 20, and A = 3.5. First, in the subgame
(N, N), one can check from Proposition 11 that both firms will set their booking capacity to ny y = 6
in equilibrium so that each firm can obtain an expected revenue Ily (nN.N, ny,N) = 51.05. In this case,
one can check from Proposition 17 that IIy n (ny v, ny,N) = 51.05 < 52.86 = IIp n (J =0 = 20; nN7N),
where d is the best response in the event when one of the firms makes a unilateral move to adopt policy D.
As the condition for {N, N} to be an equilibrium policy in the meta-game as stated in Proposition 17 is

violated, we can conclude that {N, N} is not an equilibrium for the meta-game in this specific instance.
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Next, us examine the (D, D) subgame. Proposition 13 claims that both firms will require deposit d}, , =
6 = 20 in the subgame equilibrium, and each firm can obtain an expected revenue IIp p (6,6) = 50.96.
It follows from Proposition 18 that IIp p (6,0) = 50.96 < 53.89 = Il p (7 = 8; #), where n is the best
response in the event when one of the firms makes a unilateral move to adopt policy N. As the condition
for {D, D} to be an equilibrium policy in the meta-game as stated in Proposition 18 is violated, we can

conclude that {D, D} is not an equilibrium for the meta-game in this specific instance.

It remains to examine the (N, D) subgame as discussed in Section 4.3. One can check from Proposition

16 that, in the subgame equilibrium, firm N will set n}y , = 8 and firm D will require deposit dp, = 20.

As a result, firm N and D will obtain an expected revenue Il p <n*j\,D =8,dp N = 20) = 53.89 and

IIp N (d*D N =20,n}p = 8,) = 52.95, respectively. To check if {N, D} is an equilibrium policy in the
meta-game, it suffices to check if there exists a profitable unilateral move for each firm. In this case,
we can apply Proposition 19 to show that both conditions (i) and (ii) hold; hence we can conclude that

{N, D} is the unique Nash equilibrium in the meta-game in this instance.

After establishing the existence of an asymmetric equilibrium policy{ N, D} as the unique Nash equilib-
rium in the meta-game, we now provide the basic intuition to explain why such an symmetric equilibrium
policy{ N, D} exists. When both firms adopt the same policy (i.e. under (N, N) or (D, D)), they com-
pete for customers in the same segment (with the same show up probability distribution) by undercutting
each other’s booking capacity under policy(N, N) (or each other’s required deposit under policy (D, D)).
Consequently, one can check from the equilibrium outcomes from Propositions 11 and 13 that a Prisoner’s
Dilemma situation can occur under policy (N, N) or (D, D). On the contrary, under policy (N, D), one

can observe from (21) and (22) that firm NV and firm D compete in different customer segments: firm N

focuses on customers whose show up probability ¢ < - T ee— +‘fo_C). =0k firm D focuses on customers

whose show up probability ¢ > 4= and both firms capture the entire market. Hence,

(TN*TDHCE"L“N*C)'(PB) ’
policy (N, D) appears to be more efficient in terms of market segmentation. However, our numerical
experiments reveal that policy (N, D) serves as the unique Nash equilibrium in the meta-game on rare
occasions, which tend to occur when the demand rate is medium because policy (N, N) (policy (D, D))
tends to be the Nash equilibrium when the demand rate A is low (high) as observed in Figure 3 and

speculated in Conjecture 1.
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