UC San Diego

Technical Reports

Title
The Techniques Programmers use to Cope with Crosscutting using Arcum

Permalink
https://escholarship.org/uc/item/0sjOp4h6

Authors

Shonle, Macneil
Griswold, William G
Lerner, Sorin

Publication Date
2008-12-05

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0sj0p4h6
https://escholarship.org
http://www.cdlib.org/

The Techniques Programmers use to Cope with
Crosscutting using Arcum

Macneil Shonle

William G. Griswold Sorin Lerner

Computer Science & Engineering, UC San Diego
La Jolla, CA 92093-0404

{mshonle, wgg,

ABSTRACT

At their most essential, aspect languages, program analysis tools,
and refactoring tools attempt to give programmers mechanisms to
make it more cost effective to manage the crosscutting behavior
in their programs. Arcum is a tool to help manage crosscutting
that lets programmers define custom program checks and program
transformations, using a declarative language [22]. In this paper
we present a study aimed at investigating how programmers use
Arcum for managing the complexity of crosscutting. In particular,
we recorded and transcribed three pairs of programmers perform-
ing a variety of tasks using Arcum. By informally analyzing the
language in the transcript, we identify the metaphors that the par-
ticipants used to think about crosscutting design idioms, and the de-
velopment styles that they used to build solutions. Based on these
observations, we reflect on how the use of Arcum relates to tra-
ditional programming and AOP approaches, and propose improve-
ments to be made to the development environment to help program-
mers handle the challenges of crosscutting code. A key observation
was that the programmers actively and ingeniously sought ways to
force the tool to give early feedback, suggesting that AOP tools like
Arcum could do more to support early feedback.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces; D.2.6 [Software Engineering]: Program-
ming Environments—Integrated environments

General Terms

Design, Experimentation, Human Factors.

Keywords

Crosscutting, refactoring, user study.

1. INTRODUCTION

As a software project matures, it may require changes not an-
ticipated by the system’s designers nor the programming environ-
ment’s developers. Thus, performing such changes requires either

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

lerner}@cs.ucsd.edu

tedious and error-prone manual modifications or the ad hoc ap-
plication of existing tools, such as program analysis, refactoring,
and text searching tools. An alternative is to extend the program-
ming environment’s language capabilities, such that each change
can be described once and then automatically applied when re-
quired. Many aspect-oriented tools and meta-programming sys-
tems take this approach.

One instance of this approach is embodied in Arcum [22], a tool
for declaring crosscutting design idioms and their implementations.
By allowing programmers to seamlessly switch between different
implementations of the same crosscutting idiom, Arcum can mod-
ularize many crosscutting design idioms.

In this paper, we study how three pairs of experienced program-
mers performed a variety of tasks using Arcum. From our analysis
of both the words used by the participants and the different ap-
proaches taken to solve each problem, we present the metaphors
that the participants used to think about crosscutting code, and
the development styles that they used to address the difficulties of
crosscutting.

With this understanding of how experienced programmers use
Arcum, we make several observations:

e The Arcum process is a successful way for programmers
to reason about the set of entities comprising a crosscut in
isolation. We show how the participants, by using previ-
ously existing Arcum examples and feedback from the IDE,
were able to develop working Arcum code. We observed two
distinct styles by which programmers arrived at their work-
ing solutions, one based on copying existing examples and
another based on incrementally adding code to an always-
executable form. The two styles are not mutually exclusive
and we believe these styles were chosen in order to get feed-
back from the tool as soon as possible, assisting the forma-
tion of the mental model of the crosscutting design idiom.

e Not surprisingly, the process of writing programs that de-
scribe crosscutting carries with it not only some of the
challenges of regular programming, but further challenges
of its own. For example, programmers have to think about
not just the crosscutting design idiom’s implementation, but
also the description of the implementation, and the different
forms that alternative implementations may take. We show
how these challenges of meta-level programming manifested
themselves in our study, and how programmers used Arcum
to address them. A common mistake was to confuse types
and entities of those types.

e IDE support is essential for understanding crosscutting as
it appears in real programs because the scattering and tan-
gling inherently covers more code than comprehensible in

a glance. For example, we observed that participants re-
lied upon Arcum’s pattern matching visualizations, Arcum’s
transformation preview pane, and various error reporting ca-
pabilities in the Java compiler as well as the Arcum compiler.

e There are opportunities to improve the Arcum system and
related AOSD tools, based on the activities and areas of con-
fusion we observed the subjects use to cope with crosscut-
ting concepts. For example, we believe the IDE can make
definition/use relationships more explicit to the user. As an-
other example, we noticed a disconnect between certain key-
words in Arcum and the metaphors that the participants used
when coding with those keywords. This disconnect suggests
a metaphor-based approach to keyword naming, something
that we believe may help make Arcum a better language for
novices. Another improvement that could improve produc-
tivity is a means for the environment to assist the inference
of larger patterns in the code, such as by generating queries
(and showing their matches) when the focus is placed on one
particular code instance.

After describing Arcum (Section 2) and the study itself (Sec-
tion 3), we discuss how the test subjects approached crosscutting
(Section 4). We then discuss the metaphors and techniques used by
the subjects to help them understand instances of crosscutting de-
sign idioms, such as abstracting its essential features into a work-
able mental model (Section 5). In analyzing the subjects’ activities,
we observed two development styles that participants used to con-
struct their solutions, one based on copying existing solutions, and
one based on incrementally building a solution from scratch (Sec-
tion 6). We discuss the challenges and techniques used when writ-
ing custom checks or custom refactorings—which requires think-
ing about code not just in the concrete form in which it exists, but
also the form in which is may exist (Section 7). Finally, we con-
clude with some preliminary design decisions to help guide the de-
velopment of aspect-oriented tools (Section 9).

2. BACKGROUND: THE ARCUM
CONCEPT FRAMEWORK

Arcum is a framework for declaring and performing user-defined
program checks and transformations for Java programs, with the
goal of increasing automated refactoring opportunities for the
user [22, 23, 24].

By using Arcum, a programmer can view the implementation of
a crosscutting design idiom—such as a design pattern—as a form
of module. Arcum uses a declarative language to describe the id-
iom’s implementation, where descriptions are composed of Arcum
interface and Arcum option constructs. An option describes one
possible implementation of a crosscutting design idiom, and a set
of options are related to each other when they all implement the
same Arcum interface.

Given the declarative descriptions, Arcum can infer the transfor-
mation steps necessary to refactor from one option to a related op-
tion. Arcum options are parameterized so that they can be applied
multiple times in different contexts. When not used for refactor-
ing, Arcum options allow properties of the program to be checked:
Because the option describes one correct implementation of the id-
iom, deviations from this correct form are automatically identified.
Arcum allows the option writer to insert additional checks, with
custom error messages, to guide the user of the option to a correct
implementation.

Arcum’s declarative language uses a Java-like syntax for first-
order logic predicate statements, including a special pattern nota-

tion for expressing Java code. Like most declarative languages, Ar-
cum operates using a database of relations. Arcum’s database con-
tains relations associated with the program being analyzed, includ-
ing relations such as isA and hasField, and with special relations
to cover Java syntax, such as method invocations, field references,
and type declarations. These special relations are written in a pat-
tern matching style in the form of quoted Java program fragments.
Arcum variables can be used as placeholders in the quoted patterns
through an escape mechanism. Similar to Prolog and other logic
languages, new relations can be defined by the user. When these
relations are present in both the interface and its implementing op-
tions, they are called concepts, because each program fragment that
belongs to the relation represents an idea that exists at a high level.

Arcum is delivered as a plug-in for the Eclipse IDE and leverages
the Java Development Tool’s compilation and refactoring compo-
nents. Figure 1 shows the “Fragments View,” supplied by Arcum,
which allows programmers to view the program fragments that
match each concept of the crosscutting design idiom.

3. STUDY DESCRIPTION

We chose to perform a qualitative, exploratory study, because
there is little experience with programmers using Arcum, and
we wished to discover the basic phenomena and issues revolving
around Arcum’s use in modularizing crosscutting design idioms.
Our expectation was that programmers with experience writing
large programs could understand how to effectively use Arcum
(Section 3.3).

For the study, we recruited six subjects (Section 3.1), who
worked worked in pairs on tasks such as changing a program and
writing checks to verify properties of the program. We provided
to the subjects written instructions that described the sequence of
tasks to perform (see Section 3.2) together with short reference
materials for the Arcum language. The experimenter observed
these subjects over two sessions, which took place in a quiet office
environment.

We used pair programming in order to capture natural conversa-
tions, closer to what might occur outside of an experimental set-
ting [17]. Pair programming is common in many real-world set-
tings, especially on complex tasks like those that might be solved
with Arcum. An alternative would have been to use individual ses-
sions with each programmer, but that would have required either
the less natural “please think out loud” technique, or constant ques-
tioning from the experimenter, which could introduce bias through
tone of voice and other cues.

Each pair’s audio was captured along with the contents of their
computer screen and file system output. (TechSmith’s Camtasia
was used for the recording.) The audio component of the sessions
were transcribed and we then analyzed the subject’s use of lan-
guage, in order to see the kinds of metaphors the subjects used and
how they thought about the process. This analysis led to insights
based on their expectations and intuitions, together with what kind
of intellectual tools they use, such as abstraction, to cope with the
change tasks.

During the study, the subjects would occasionally ask the exper-
imenter a general question about Eclipse, Java, or Arcum, and an-
swers were given. Also, in the process of using Arcum, the subjects
would sometimes encounter known limitations with its type check-
ing of incorrect code. In these cases, we compensated by alerting
the subjects when errors were made, providing a message that a
complete (non-prototype) version of Arcum would have given.

3.1 Study Subjects

All six study subjects were graduate students in the computer sci-

Group Subject Experience Eclipse Languages Known

(months)
A Al 6 no Java, Lisp
A2 6 yes Java, Lisp, ML
B Bl 6 no Java, MLL
B2 0 yes Java, ML
C Cl1 12 yes Java, Lisp, Prolog
C2 6 no Java, ML

Table 1: Study subject’s industry experience, whether he or she
has used Eclipse before, and programming languages known.

ence department and experienced programmers. Table 1 shows the
backgrounds of the subjects. We chose experienced programmers
because part of the intention of Arcum is to enable experienced pro-
grammers to write transformation and checking libraries that could
be used by a wider audience.

3.2 Study Tasks

The study comprised two sessions for each pair of subjects. The
first session was a tutorial that covered Eclipse and the Arcum plug-
in, and included step-by-step guides for completing the tasks (Sec-
tion 3.2.1). The second session was held on the following day and
covered program transformation and checking tasks without any
step-by-step guides (Section 3.2.2). The subjects were given 90
minutes to complete the first session, and 60 minutes to complete
the second session.

3.2.1 Tutorial Session

The tutorial session used a small (83 line) Java project that has
three classes implementing a simple linked-list and associated util-
ity operations, including a main method that performed a unit test.

Manual Transformation Task. The first task required making
a simple conceptual change to the program without using Arcum:
Change the storage of a value associated with an object from an in-
ternal (field) representation into an external (sparse) representation.
What these two implementations have in common is that both are
ways to implement the common practice of associating attributes
with objects.

The subjects were free to use Eclipse as they saw fit to perform
the change. Even though the change was simple, we devised the
code so two bugs would occur if the changes were made carelessly:
a NullPointerException could occur if a corner case in the program
was not identified (discussed in Section 4.1) and a semantic change
was possible due a particular method call not being a perfect sub-
stitute for a Java operation (discussed in Section 7.1).

Arcum Training Task. The next task gave the subjects prac-
tice with executing Arcum code and provided the background for
writing code in the language itself. A complete code example was
provided that contained one interface representing the attribute id-
iom and two options representing the alternative implementations
(internal field versus external map). The attribute interface has two
concepts, attrGet and attrSet, which abstracts the attribute read and
write operations. Arcum allows a programmer to switch between
the two options, where one option, for example, represents an at-
tribute read as a field reference, while the alternative option repre-
sents an attribute read as a method call. This attribute example—
introduced in a previous paper [22]—automates the refactoring per-
formed for the Manual Transformation Task and also demonstrates
several features of the Arcum language while being a short exam-
ple.

The training was split into three sub-tasks: (1) Learn the con-
cepts of the Arcum language; (2) Run a sample transformation;
and (3) Follow a step-by-step guide to insert an additional check to
the provided Arcum code.

Custom Check Creation Task. After being given the step-by-
step guide for inserting extra checks, the subjects were asked to
insert another check. The purpose of this check was to automate
the detection of the bug discussed in Section 7.1.

Automate a Transformation Task. Finally, with the basics of Ar-
cum covered, the subjects were asked to create two Arcum options
that implement the same interface, thus allowing a transformation
to be made. This task had three sub-tasks: (1) Create an option
(with its required interface) that recognizes all references to Sys-
tem.err; (2) Write an alternative option to recognize references to
an error log accessing function; and (3) Perform a refactoring us-
ing Arcum to transform the uses of System.err into calls to the log
accessor method.

3.2.2 Advanced Session

The session using Arcum without step-by-step instructions used
the HTML renderer component of the Lobo project [32]. Lobo is a
complete web browser written in Java. Lobo was chosen because it
was the top desktop application project available from SourceForge
(arepository for open-source code) that was written entirely in Java
and compilable with Eclipse. Lobo is also well-written and rich
with crosscutting design idioms.

Review Code Examples Task. The first task of the second ses-
sion was to review example Arcum code and explore the results
of the provided Arcum queries. These queries were applied to the
Lobo project and provided many results and different cases to ex-
plore. The example code given only had one option, so no trans-
formations were possible. Instead, the purpose of the option was to
demonstrate several pattern syntaxes (and their matches).

Change StringBuffer to StringBuilder Task. Next, the subjects
were asked to migrate the Lobo codebase from using the always-
synchronized java.lang.StringBuffer class to the more efficient
java.lang.StringBuilder class (this is an instance of the class library
migration problem [1]). Although this change could easily have
been made with a global text-based find-and-replace (because the
two classes have the same API and neither of them require Java im-
port statements), we wanted to see how programmers would solve
such a transformation with Arcum. Accomplishing this task with
Arcum requires recognizing and replacing program fragments that
belong to different syntactic categories (namely, type declarations
and constructor call expressions).

Check Logging-1diom Task. Finally, the participants were asked
to consider the following code snippet:

public class DocumentBuilderImpl .. {
private static final Logger logger =
Logger.getLogger (
DocumentBuilderImpl.class.getName()) ;

}

Here, a logger instance is used by the class DocumentBuilderimpl,
to log activities related to the execution of the class. This pattern
repeated itself in the project, where the argument to the getLogger
call is the name of the class that defines the static field.

This special usage can be considered a crosscutting design id-
iom: Any changes to the policy (e.g., of how the log is acquired, or
which log is used) would require global changes. One simple prop-
erty of this crosscutting design idiom that can be checked is if the
argument given has, in fact, the correct name. (For example, a copy
and paste error would lead to the logs of one class to be written to

Time to Complete (minutes)

Task Group A GroupB Group C
Manual Transformation 11 15 11
Arcum Training 22 18 19
Custom Check Creation 10 19 6
Automate Transformation 35 21 21
Total for Tutorial Session 78 73 57
Review Code Examples 6 5 4
Change StringBuffer 30 *29 24
Check Logging-Idiom +16 +16 +30
Total for Advanced Session 52 50 58

Table 2: How each group performed the tasks over the two ses-
sions. A ‘+’ indicates when the subjects ran out of time and
could not fully complete the task. The ‘*’ indicates that the
task was completed with minor assistance.

the log of the copied class.) The instructions for this task required
the subjects write Arcum code that could check for this property.

After the second session, the subjects also participated in a sep-
arate post-study interview.

3.3 Performance of the Tasks

All three groups successfully completed the tutorial session in
the time alloted, but no group fully completed the advanced session.
Table 2 shows the time it took for each group to complete each task.
All groups finished the tutorial session early but used all of the time
alloted for the advanced session. Times for the advanced session do
not add up to a full 60 minutes due to group start up delays.

During the Change StringBuffer Task, Group B planned a solu-
tion that would have required a significant amount of code to fully
complete. In the process, the group was blocked by a bug in Ar-
cum’s evaluator, which halted their progress. It’s conceivable that
Group B could have made this alternative technique work, but the
blocking bug could not be immediately resolved. Instead, the ex-
perimenter hinted that the solution to the task could be simpler and
reminded the group to look at the task instructions again.

Group C made the most progress on the Check Logging-Idiom
Task. Perhaps it was not co-incident that Group C spent the most
time on the task compared to the other two groups: Group C had
almost twice the time, at 30 minutes versus 16 minutes, because
they completed the previous two tasks relatively quickly and the
session started on time. The specific challenges of this task are
discussed in Section 7.2.

3.4 Threats to Validity

As with any user study, there are some threats to the validity of
our experiment. We identify here the main threats.

Graduate student participants. The participants in our study
were computer science graduate students from two areas: pro-
gramming languages and architecture. Graduate students in
general have more experience in seeing new ideas and exploring
non-conventional ways of solving problems. As such, they may
be better equipped to quickly understand and use a new tool like
Arcum. Furthermore, programming languages graduate students
have even more experience with adapting to new programming
models, and many of them would already be comfortable with the
idea of programs processing other programs.

Fair programming. Our use of pair programming was instru-
mental in identifying what the participants were thinking about

while they were performing tasks. However, it also brings up the
question of whether or not our observations generalize to individual
programming.

Instructions causing bias. The study instructions given to the
participants contained explanations of how Arcum works, and as a
result contained language that may bias the choice of words used
by participants in the study.

4. REASONING ABOUT CROSSCUTTING

In the strictest sense of the term, no module could utilize an-
other module without some form of crosscutting, because the mod-
ule’s interface must be known by all modules that need to use
it [2, 29]. But not all forms of crosscutting are equal: By their
nature, well-written interfaces are stable [19], so when elements
of the API (such as method names) crosscut the program, they do
not become liabilities when that module’s implementation needs to
change. This section focuses on the kinds of crosscutting that do
not naturally fit into stable interfaces and thus require reasoning
over several different modules.

We discuss the strategies that the subjects used to cope with this
crosscutting, the pitfalls the subjects encountered, and we suggest
possible improvements to methodology or the environment to as-
sist non-modular reasoning. Examples of such reasoning include
identifying all references made to a single program element, such
as a method or a field. Even though the Eclipse IDE, Aspect], and
Arcum are all well-equipped for finding such references, we found
their use involved several pitfalls.

In the case of searching, we identified instances where the sub-
jects misunderstood the information provided by the environment,
and other cases where the subjects searched with the wrong query.
In addition, we observed pitfalls in how programmers reason about
documentation and other artifacts written in English.

4.1 Using Build Errors as a Guide

To successfully complete the Manual Transformation Task, in
which Arcum was not used, all three groups first deleted (or com-
mented out) the field to be stored externally (the field was named
next) and replaced it with a static java.util.Map declaration (also
named next). The following discussion is representative of the dis-
cussions or actions of all three pairs:

A2: So everything should be broken.

Al: Yeah it’s broken now we have to go through and
find all the instances where the next is accessed.

Al: Okay so let’s just search for all instances of next
right?

A2: Well I think that all of these little red things will
help us out.

Here, the “little red things” are Eclipse’s error markers associated
with problems like syntax or type errors. With the next field now
being stored externally, all reads from and writes to that field must
instead pass through the static Map as get (lookup) or put (store)
calls. The common mistake made was believing that all of the
code locations flagged by the compiler were all of the locations
that needed to be changed to either get or put calls.

However, the errors introduced from the change were type errors
and did not have a perfect correspondence to references: The ac-
cesses to the next field had different types now that the List class’s
next field changed its type from List to Map. Yet, expressions with

2. Problems & Console| @) Error Log |2 Fragments &3 =5

Focus on map entry: IntemalSte ~ | [Refresh| Transform to: [Extemalst. - | | Transform

Concept Program Fragment Resource Path Line
attGet nnext Listjava /PartTwo/src/edu/ucsd/stu.. 38
atGet listnext ListPrintingjava__/PartTwo/src/edu/ucsd/stu.. 14

Ustrigtingjava | fPartlwo/siedufucsaisu 115 | &
attrGet nnext ListUtfSava [PartTwosrc/edu/ucsd/stu... 7

o atrset 3 fragments matched

Figure 1: Arcum’s Fragments View: Shown are four different
matches in the program that represent instances of the attrGet
(attribute access) operation.

values of these two types can exist in the same code context. For
example, the following loop was in the sample program:

while (list.next != null) {
list = list.next;

Here, with the next field externalized, both accesses of list.next
should be changed to List.next.get(list). The second instance is a
type error, because it would be assigning a Map to a List, but the
first instance is not a type error, because instances of Map can be
compared to null. (Note that because next is a static member, the
notation list.next is still valid, but generates a warning in Eclipse for
a non-static reference to a static member.)

Thus, the compiler errors issued could not be used reliably as
a guide for all references to next. All subjects identified the while
loop conditional as needing to be changed, perhaps because of its
proximity to another line of code explicitly marked as an error, or
because the Eclipse Java editor highlighted it with yellow (to rep-
resent the warning). Had the change not been caught, eventually a
NullPointerException would have been detected during testing.

One way to improve the compiler as a guide would be for the IDE
to identify trends among the error messages it creates. In particular,
when several errors have a single declaration in common, the IDE
can include links to that declaration, and then backward links to all
references to the declaration, flagging the ones that have the errors
to let the programmer notice patterns and consider other cases that
need to be addressed.

4.2 Making Direct Queries with Arcum

During the advanced session, the subjects were asked to reason
about several instances of crosscutting, such as the scattered use of
the StringBuilder class, or the scattered instances of the logging id-
iom. Figure 1 shows Arcum’s Fragments View, which was utilized
by the subjects in many of these instances to visualize the matches.

In the post-study interviews, one subject compared Arcum to a
“semantic grep,” a comparison that holds in several regards: The
Fragments View provides programmers with a compressed view of
one aspect of the crosscutting design idiom, much like the output
of grep. Such compressed views can help programmers focus on
areas of interest without having to read unrelated code [8]. Fur-
ther, much like the grep command, Arcum can be used for pattern
matching. However, Arcum’s pattern matching is based on desug-
ared AST nodes (instead of characters in a text file) and can take
into account type information. The desugaring of Arcum’s matcher
was noticeable during the Review Code Examples Task:

Al: fieldAccess [..] take a look, pick one... OK, pick
another one. Are they all “this.document”?

A2: I bet we can find out by looking at the Arcum
file... “target.document”, so in this case [..] target
must always be “this”?

Al: Let’s scroll through the [Fragments View] —
“document” and “this.document”

A2: Oh I see, so “target” could be like the null
expression

When considering the Change StringBuffer Task, Group A real-
ized there was a corner case with replacing uses of the StringBuffer
class with the StringBuilder class: If an external library returned a
StringBuffer then the library itself could not be changed, so some
conversion operation would be necessary. The group considered
making a query to determine if such calls were present:

Al: Maybe it’s not something we can actually fix with
this because it’s not our code, it’s a bad library
dependence.

A2: Well what we can do is detect where it happens.

One possible pitfall with this approach is what happens when the
query declaration does not match the programmer’s intentions: If
there is an error in the query’s construction, it can create false con-
fidence about the properties of the program. A defensive program-
ming approach might ensure that the queries were tested a bit by
injecting known matches into the code, but such tests would not be
complete.

The flip side to this problem is that sometimes the query is com-
plete and correct, but the user looks at the search results from a
different query, also leading to false impressions of the code:

A2: Oh, those are, oh we were looking at the wrong
thing. Cool. But now we know there are ones we're
not getting too, right, because...

Al: [..] it can take various sorts of arguments
A2: Right.

In this case, it took the subjects a longer time to understand the
crosscutting nature of the code: Not only did the subjects have to
reason about the program itself, but they also had to reason about
the correctness of the queries. This difficultly is partially addressed
by Arcum through its pattern syntax: When programmers are rea-
soning about the Arcum code, it becomes a model of their under-
standing of the crosscutting code, and even looks like the crosscut-
ting code. Aspect]’s pointcut language takes an approach different
than Arcum’s by focusing on semantic joinpoints instead of desug-
ared syntactic patterns. Arcum’s approach of having the patterns
look like the code being searched for can be intuitive for reading
and understanding the patterns; however, the desugaring adds an
extra level of abstraction which can be deceptive when the seman-
tics of the desugaring are not fully understood.

4.3 Confusing Definition with Reference

In Arcum, the Java program fragments that are computed on are
typed according to their syntactic category. For example, an Expr
(expression) fragment is something that could be found in a State-
ment fragment, just like the corresponding Java grammar rules.
However, we observed instances where Arcum’s types became a
source of confusion:

B2: So what are we looking for an expression?
Actually that’s not even an expression. Right now
we’re just looking for a type.

Bl: Iwonder if we can just hit ‘type.” Sure, let’s try it,
see what happens.

B2: Do you think that will give us occurrences of the
name of that class or it’ll just give us definitions of
that class?

Here, the subjects are unclear what the Arcum type Type means.
The reference sheet given to the subjects defined a Type as: “A Java
class, enum, or interface,” and it remained unclear to the subjects
if this meant the unique definition for the type (the correct answer),
or the many references to the type. When subjects initially pattern
matched for the Type java.lang.StringBuffer they were surprised to
see only one result listed (one without an accessible source line, be-
cause it is in a compiled binary). The same subjects clearly desired
for a more direct relationship:

B2: Yeah, is there like a kind of predicate that is
“isUses” ...

The above confusion about what Type would match is in fact a
meta-programming problem: Arcum types refer to syntactic cate-
gories of Java expressions, and thinking at this meta-level requires
additional care and attention from the programmer.

This meta-level confusion suggests two possibilities to explore:
(1) Arcum’s type system could become richer, having -Use and -
Definition suffixes for each type, to make the desired choice explicit.
For example, a FieldDefinition type would refer to the syntactic field
declaration that appears inside its defining type, while a FieldUse
type would refer to an expression. Or, (2) Arcum could have a re-
laxed type system, where the type of the program fragment named
depends upon how it is used. Alternatively, the definition/reference
confusion could merely be a part of Arcum’s learning curve, mak-
ing language guides and tutorials the areas to improve.

As suggested in Section 4.1, the definition/reference relationship
can be given more importance in the environment through added
hyperlinks between the two. Such two-way links are already part
of the Aspect] Development Tools support for viewing the relation-
ship between join-points and advice. These guides could be taken
a step further by creating a tool in the environment that suggests
code (e.g., patterns) that will match the Java code currently high-
lighted by the user, and also include a link back to the full results of
each proposed pattern. In the case of Aspect], a user would select
a method call in the program, and a separate view would generate
code for the different pointcuts possible to match that join-point.
The generated code could then be copied, or explored for the other
matches it creates.

4.4 Using Reference Materials

Reference material is another source of information that par-
ticipants used to help them reason about crosscutting idioms. In
particular, we observed subjects using API documentation (Sec-
tion 4.4.1) and forming models based on the texts discovered in the
program (Section 4.4.2).

4.4.1 Using the Documentation

When working on the Manual Transformation Task the subjects
needed to know what was returned by the Map’s put method.
Eclipse displays Javadoc documentation when the mouse hovers
over a method:

A2: There’s some way that it will give you the type.
There you go. You do need to mouseover it.

Al: It’s “value.”

A2: So it gives you the value. So in this case we can
use it. Just like this one. So we can just put this guy.

During the above discussion, the participants placed their mouse
over a call to the put method, and the signature for the method was
displayed as:

V put (K key, V value)

Noticing that the return type was the same as the type of the value
argument, the subjects assumed that put would return the same
value it was given. This was a natural assumption to make given
its similarity with the Java assignment operator, yet what the put
method actually returns is the previous value that was stored in the
table. This type/value confusion is another example of a meta-level
complexity: the participants above mistakenly thought that value
equality could be deduced from the meta-level type equality.

The subjects discovered their error after executing the program
and seeing how its output had changed. The subjects returned to
the API documentation and scrolled down to reveal the explanation
for the return value. Thus, one pitfall of thinking about operations
on a higher-level, where multiple correct implementations for the
operation are possible, is that details known about one specific im-
plementation might lead to incorrect generalizations over all imple-
mentations.

4.4.2 Using Error Message Texts

The sample Java and Arcum programs from the tutorial session
contained error handling code with associated error messages. The
Java program checked to see if the args array given to main was
null, and the Arcum program checked to see if a function call was
used as intended.

We found error messages printed by these checks to be an essen-
tial part of how the subjects worked to understand the program. By
virtue of being visible by the user, such messages relay information
at the program requirements level. For example, the Java program
had a line in main that printed the following error message under
some conditions: “panic! no args given,” which lead to
the following discussion:

Al: Okay, so we have to take in some kind of
arguments. Can we see where arguments are actually
being given in the? Where it’s being run? Cause
that’s like [...|] Commandline args?

A2: Yeah, so since it didn’t say “panic no args
given”. There’s.

Al: Yeah, so it must be. It must be getting some sort
of args.

The participants in the above discussion saw that the message was
not printed at runtime, and so they assumed that some arguments
must be passed to main. In reality, however, this conclusion is in-
correct, because the condition under which the error message is
printed tests for args being null, and so it’s possible that the error
message is not printed, and still there are no args (if args is the
empty list). The subjects in the end realized this:

Al: Or uh, no. Hold on. Can you close that? That’s
checking that they’re null, not that they’re an empty.
And it’s probably an empty string.

Thus, care must be taken when writing the contents of error mes-
sages, because programmers can sometimes interpret them seman-
tically. In the above example, a more accurate error message would
be “args is null”.

We also observed that a properly written error message aided
the reasoning of the program. For example, the following check in
Arcum was provided to the subjects:

require "The value of ‘getExpr must be used":
!isExpressionStatement (getExpr) ;

Here, the value returned by the read operation on an attribute must
be used, otherwise it is flagged as an error. Such a check is useful
because it is likely an error if an attribute is read but not used. The
subjects were asked in the Custom Check Creation Task to write
a similar check, but this time to check that the value of a write to
an attribute is not used. The purpose of this check is to prevent
the case discussed in Section 4.4.1—where the put method returns
the previous value in the table—by restricting all code forms to the
lowest common denominator. Thinking at this high level made it
easy for the subjects to produce the correct solution:

Al: Well so we can just probably use
“isExpressionStatement” right? Cause here it’s “this
must be used.” And here it’s “it can’t be used.”

S. ABSTRACTIONS OF CROSSCUTTING

Through the process of reasoning about the crosscutting of an
idiom, a mental model of the crosscutting is formed in the pro-
grammer’s mind. Because Arcum’s interface and option constructs
are modeled after the concepts of modularity, we hypothesized that
these constructs would provide a natural form for expressing the
crosscutting. Arcum’s notion of creating an interface for crosscut-
ting code was partially inspired by our group’s previous work on
XPIs in Aspect] [9, 28]. We found some support for our hypothe-
sis, but we also identified cases where bad habits in the context of
modular design (such as poor naming choices) remained difficulties
in the context of Arcum.

5.1 A Decompositional Model

Arcum enables a refactoring operation to be decomposed into
two options with a common interface. As a result, the complete
transformation can be broken down first by thinking about the op-
tion that describes the current implementation as a search:

Al: First let’s see if we can just find them, and then if
we can replace them

We found that this divide-and-conquer strategy accomplishes the
task, but does not encourage the creation of an effective abstraction.
For example, Group A had given their concept the name ‘search,’
which described what they wanted to write the concept for, but did
not describe what the program fragments captured by the concept
represented. The interface associated with the option was named
FindSyskErr, after the first task the subjects were given, and the op-
tion itself was named the abbreviation FSE. Similar problems occur
in OOP, for example, when classes are named after verbs instead of
nouns. In the case of Arcum, with its meta perspective, the effect
is more misleading. When it came time to write the second option,
the subjects noticed the trouble with the names picked:

Al: Realize search. Our naming has gotten fairly
horrible because we’re doing replace with search.

The issue of giving Arcum options and interfaces meaningful
names is related to the meta-level aspects of Arcum: The entities

being named are not in Java, but rather one level up from the
Java code. As a result, these naming difficulties could in part
be attributed to the intellectual difficulties of understanding and
conceptualizing meta-level constructs.

However, at other times, the different levels of abstraction and
the elements of meta-programming required were very natural for
the subjects:

C2: Know what we should do? We should write
another Arcum file that transforms this Arcum file to
the file we want.

C1: But it’s gonna be adding things so we can’t really
do that, it’s not a refactoring it’s an adding, so...

The fact the participants are entertaining the idea of applying Ar-
cum to itself shows that they have gotten comfortable with the idea
of developing code that manipulates other code.

5.2 An Overloading Model

We observed an alternate metaphor for reasoning about Arcum
interfaces based on overloading. In overloading, a group of meth-
ods that are “the same” in some sense can have the same name,
even though they are applied to objects of different types.

Al: So the options I think are, basically, it’s sort of an
overloading.

A2: Implementing the field or whatever it is.

The comment by A2 follows the metaphor further: Although the
interface is about attributes in an abstract form, a field is one valid
implementation of that attribute idiom. The idea of a field is over-
loaded, because it can be thought of as a field, even when it’s an
external lookup table instead.

5.3 Patterns as Abstractions

Abstraction, in the general sense of the term, is what makes Ar-
cum’s Java pattern syntax intuitive and useful. A necessary part
of this usefulness is to gloss over subtle differences between other-
wise similar fragments of code. For example, subjects would write
patterns for the Java elements they were searching for, writing them
in their most familiar forms. Arcum would then desugar both the
pattern and its internal representation of the program to perform the
matching. This desugaring process led to actions unexpected by the
subjects. For example, when Arcum performs a transformation, it
adds import statements as required:

Al: So we’re going to import this...

A2: Import it into what? Import it into Arcum? Oh
yeah, I guess so.

BI: There’s the imports, ah they didn’t even import
star, they imported only what they needed to.

Thus, through its desugaring abstraction, Arcum freed the subjects
from thinking about details of the transformation that they did not
(initially) consider. However, Arcum’s desugaring was not com-
pletely seamless, as reflected by their surprise.

6. DEVELOPMENT STYLES

As indicated by Table 1, the participants of our study have di-
verse backgrounds in terms of their previous programming expe-
rience, their previous knowledge of Eclipse, and their familiarity

with Java. Despite this diversity in background, we noticed a com-
mon theme in their approach to dealing with crosscutting idioms:
They all focused heavily on getting feedback early.

When starting on a new task, each group would invariably strive
to quickly get to a point where the Arcum tool could give them
feedback on their approach. Although getting early feedback is
a common approach for mitigating the cost of mistakes in regu-
lar programming (for example with the use of type-checking), our
study confirms that getting early feedback is also important (and
possibly more so) when developers are dealing with crosscutting.

Even though all groups had the same goal of getting feedback
early, we observed two different development styles for attaining
this goal: (1) A copy-paste-modify approach that makes heavy
use of previously written Arcum interface and options; and (2) A
bottom-up approach guided by trial-and-error. We describe each of
these two development styles in turn.

6.1 Reuse of Uses

The first development style we observed involved inspecting,
copying and then modifying previous Arcum code in order to
quickly get a solution that could be tried out immediately, with the
possibility of later refinements. This idea of using already exist-
ing examples to guide the development of code with unfamiliar
constructs has is known as reuse of uses [21].

As a concrete example, when group A started the tutorial task of
changing the error-log stream from System.err to a custom stream,
they had to write a new option for finding all references to Sys-
tem.err. In order to do this, group A looked at the previously pro-
vided options for storing attributes, chose one of them to copy-and-
paste, and subsequently went on to edit the copied option:

A2: I wonder if we can like copy and paste.

Al: Well we can certainly start with that.

Using previously written Arcum code to guide the development
of new Arcum code was also prevalent when writing pattern ex-
pressions:

B2: How we wanna wrap in function call... so let’s
look at the ExternalStorage implementation. Where is
that, farther down?

B1l: Oh, it’s down here, yeah.

B2: Right? It’s almost like analogous to...
B1: Yeah.

B2: Internal/external thing.

Here again, the participants are referring back to the previously
provided attribute storage example in order to write a new option.

Figure 2 shows Group B in the process of editing a copied ver-
sion of an option. One can see how the participants have split the
window vertically, with the original code on the left (which they
also wrote in this case), and the edited copy on the right.

We observed yet another example of the reuse-of-uses approach,
although in slightly different context: to build patterns, some of the
participants copied Java code in a pattern, and then added Arcum
variables to it by adding backticks and revising the expression.

The reuse-of-uses development style, with its copy-paste-modify
model, allowed participants to quickly build a solution that they
could immediately get feedback on. However, in the case where the
copied Arcum code is large (say if it includes both the interface and
the options), this approach requires the participants to customize
many places in the copied code before getting something that is
testable, thus delaying the time to feedback.

Figure 2: A direct example of reuse of uses by Group B.

6.2 Incremental Exploration

The other approach that participants used to get early feedback
was to construct a solution bottom up, using incremental trial-and-
error exploration to guide the construction. Instead of copying a
complete solutions and modifying it, in this case the participants
would start with an empty file and incrementally populate it with
constructs that they could easily test along the way. For example,
in the following excerpt, group A clearly uses language that evokes
a bottom-up metaphor:

Al: Let’s start the null case and see if we can build up
from there.

A2: Sure I think that sounds reasonable.

Al: Okay so we’ll have an option that realizes
nothing. At least give us an interesting error message
probably.

Later in the discussion, group A uses language that is indicative
of the trial-and-error metaphor, in particular when discussing how
to identify constructors with zero or one arguments:

A2: But the other thing is, if we do something wrong...
here’s another thing... here’s a way to know. So let’s
Jjust do it for the zero case and the one case, we’ll just
have two rules, which is ugly but it’ll work and then
[..] if we miss something the compiler will complain
because we’ll be trying to put a string buffer into a
string builder. So let’s do it for the zero and the one
case, and then ...

The participants here are proposing to only identify constructor
calls with zero or one arguments, and see what happens. As it turns
out, this is enough for the given task, since StringBuilder doesn’t
have constructors with more than one arguments.

The groups that used incremental exploration also used the
“undo” metaphor in their language. This indicates that, not sur-
prisingly, Arcum’s undo feature (which undoes all the refactoring
changes made in one step) gave programmers the confidence to
even entertain the idea of trial-and-error. For example, here is a
discussion in which group A realizes that undo allows them the
freedom to experiment:

A2: Eleven of one, I guess we can add the two rule
now [..] and see if any match the two [..] or we could
do the transformation and if it doesn’t compile we can
undo it

Al: Yep! ... Let’s take a look at what it actually turns
them into.

Another feature of the Arcum plug-in that helped subjects per-
form experiments was the transformation preview window, which
displays the transformations Arcum would make before they are
committed. We observed the subjects using this preview pane as an
exploration mechanism, often looking at the results and then can-
celing the transformations to further change their Arcum code.

The above examples of using a bottom-up incremental approach
points to an important way in which participants managed the in-
tellectual complexity of reasoning about crosscutting concerns: the
bottom-up approach allowed participants to build custom solutions
that were specific to their needs. These custom solutions were eas-
ier to develop and to reason about than generally reusable solutions.
Furthermore, the fact that new users to Arcum were able to build
these kinds of custom case-by-case solutions is a good indicator
that Arcum supports incremental adoption: beginner users can start
by creating custom solutions as they did in our study, and as they
become more comfortable with Arcum, they can make their solu-
tions more general and re-usable.

The specialized nature of the solutions developed by the partici-
pants also highlights one of the key advantages of Arcum over gen-
eral and reusable solutions as embodied in IDE refactoring tools. In
particular, because IDE refactoring tools are intended to be broadly
applicable, they cater to the common case, and as a result may not
work for special circumstances. In contrast, Arcum allows the de-
veloper to build customized application-specific solutions.

When compared to the reuse-of-uses approach, the bottom-up
incremental approach allows programmers to test each pattern in-
dividually, which means that they can test the first pattern without
having to write all of them down. In contrast, the reuse-of-uses
approach uses a more monolithic “change all patterns and test”
paradigm. One may, as a result, be tempted to conclude that the
bottom-up approach gives feedback earlier. However, this is not
necessarily the case, since the bottom-up approach requires build-
ing a lot of Arcum boiler plate code to test the first pattern, and that
boiler plate can take time for a novice user to develop.

Furthermore, much like using the compiler warnings discussed
in Section 4.1, a trial-and-error approach may not capture all prob-
lems. For example, if some important case is forgotten, but this
case is decoupled from a type checking point of view from the other
cases, then the Java type checker will not find the refactoring omis-
sion. Knowing what is important to refactor or not is similar to the
challenges of modularity and knowing what is stable or not [19].

6.3 Improving Arcum Development Style

Our observations about the above two development styles, and
the lengths to which the participants went to get immediate feed-
back, points to a variety of possible improvements to the Arcum
tool. These improvements to the tool would in turn give the pro-
grammers more flexibility in their development styles.

Fattern Tester. To give the developer early feedback on whether
or not patterns work correctly, a pattern-testing tool would be use-
ful. Such a testing tool could allow the developer to try patterns in
the IDE and browse through the matches without having to build
all the surrounding Arcum code. This tool would improve both
development styles: in the reuse-of-uses style, it would allow the
developer to test the patterns before putting them into the copied

version of the Arcum code; in the incremental development style,
it would allow the developer to try patterns out before having to
write the boiler plate Arcum code.

Patterns from Java Code. Another improvement that would help
users develop patterns is a pattern generator. Such a tool would
allow the user to select a set of expressions in a Java program,
and from this set would automatically generate a pattern that cap-
tures the structure of the selected expressions. Once the pattern
is generated, the user would be able to observe the pattern’s other
matches too (beyond the selected expressions), and refine the pat-
tern as needed. Such a pattern generator and tester would be useful
in other AOSD environments.

Better Undo. Our observations about the incremental develop-
ment style show that experimentation is a useful form of feedback
for refactoring tasks that involve crosscutting idioms. Furthermore,
it is the ability to undo that gave programmers the chance to make
changes they weren’t certain about. Expanding the capabilities of
undo could further lower the cost of experimentation. For exam-
ple, the undo system could be extended into a light-weight, local
revision control similar to repository systems. Such a system could
also include the ability to create tags and save the undo history in
the form of a tree (rather than a simple list).

7. REASONING ABOUT SEVERAL
POSSIBILITIES

One of the mental challenges of reasoning about refactoring lies
in the need to conceptualize different versions of the same program,
for example the one before the refactoring, and the one after. In the
context of refactoring crosscutting idioms, the intellectual burden
of tracking multiple possibilities is compounded even further by
the need to mentally account for the various crosscutting aspects of
the program being refactored.

In our study, participants had to think about several versions of
a program in two contexts: (1) they had to think about the program
before and after the refactoring and (2) when performing checks,
they had to think about both the correct program, and various pos-
sible incorrect versions of the program. We describe each in turn.

7.1 Thinking of Before and After

The most straightforward case where a developer has to con-
ceptualize multiple versions of a program stems directly from the
refactoring metaphor: an original program is transformed to a
refactored program, and the developer must mentally model both
of these programs when designing the refactoring.

While performing the refactoring manually, participants often
kept the original code as comments in order to help them think
about the before and after state of the program:

B2: I should have been commenting out the other

stuff.

B2: [typing] list.next.put(n, result)... and now we can
put list.get, right? I'm just gonna comment this out.

BI: OK, yeah.
B2: Cause I don’t know if I've gotten this right.

When using Arcum, however, this kind of commenting was not
necessary, since Arcum provides its own tools for the before-and-
after metaphor, namely the option construct. There is ample ev-
idence in the vocabulary used by the participants to indicate that
they identified the option construct with the refactoring metaphor
of before-and-after, for example:

realize checkInit (Type owner, Field f, Expr init) {

f == [private static final Logger logger = ‘init]
&& init == [Logger.getLogger (‘owner.class.getName ())]
&& hasField(owner, f);
' @A)
realize checkInit (Type owner, Field f, Expr init) {
f == [private static final Logger logger = ‘init]

&& hasField(owner, f);

require "The log file must use the class’s name":
init == [Logger.getLogger (‘owner.class.getName())];

! (B)
Figure 3: (A) The closest code written by any of the groups to
check proper log initialization; and (B) The change necessary
to make it correct: moving the conjunct into a require.

A2: So nice. OK, and then we need |[..]
Al: Two options

A2: Yeah one that will actually map what we have,
and one that will map, match what we want.

Another Arcum tool that allowed subjects to reason about their
code in the before-and-after metaphor was Arcum’s transforma-
tion preview pane, which showed the two different versions of the
program side by side. The subjects inspected the differences to
get better confidence in their transformations. However, when the
changes to be performed affected many files, sometimes the par-
ticipants would only inspect a sampling of the files to see at least
one example for each pattern. This suggests an opportunity to im-
prove Arcum by adding to the preview window a summary of the
transformations based on pattern coverage.

Despite the prevalence of the before-and-after metaphor, the goal
of Arcum is not merely to be a refactoring tool. Whereas refac-
toring tools are often unidirectional, Arcum is meant to allow for
switching between options seamlessly, regardless of the direction.
Therefore, the notion of “before vs. after” becomes “one option
vs. another option,” where the options are not ordered in any way.
Here again, the words used by the participants indicate that they
understood the bi-directionality of Arcum, for example:

Al: Because certainly at this point we can just
transform it back. Actually why don’t we try
transforming it back. Make sure it reverts properly. It
should.

7.2 Thinking of Correct and Incorrect

Participants also had to think about multiple versions of the same
program when they were writing checks using the Arcum require
clause. These clauses, which are continuously checked, capture
the invariants necessary to ensure that all the options of a given
interface are applicable all of the time.

Our study shows strong evidence that writing proper require
clauses that detect incorrect code is difficult. None of the three
groups were able to complete the task of writing the check in the
study, even though all the groups got close. For example, Group A
was in the process of devising one solution that would have caught
only a subset of the possible errors. Had they finished the solution
it would have given them the false confidence that the check was
being fully performed, when in fact it would only apply to a subset
of the intended cases. A similar problem can occur in Aspect]: A
declare warning applied to a pointcut that is improperly constructed
creates the impression that a given property is fully checked, when
instead only a subset of the cases are checked. These observations
confirm that checks themselves need to be tested and debugged

thoroughly, particularly because programmers rely on them to
reason about the crosscutting in their programs.

Figure 3(A) shows the code of Group C, which got the closest
to the correct implementation, and Figure 3(B) shows the correct
one. The only difference is the location of the predicate starting
with init ==. If the predicate is placed in the realize clause, then it
becomes an additional pattern matching constraint, which narrows
the set of matches that are found (without ever generating an error
message), whereas if it is placed in the require clause, it becomes a
checked constraint, which gets checked after the pattern matching
has been performed (and leads to an error message if violated). The
participants did not make this distinction.

One possible way of characterizing the problem is that pattern
matching is more about the “before and after” metaphor, whereas
the require clause is more about the “various incorrect versions”
metaphor. The question then becomes: did the participants simply
not distinguish between these two metaphors? or did they distin-
guish between the metaphors, but were not able to figure out how
to express the distinction in Arcum?

Looking at the word choices of the three groups, we conclude
that the groups did in fact make the distinction, as shown in the
following excerpt:

B1I: It matched it but it didn’t tell us anything. So we
need to do something that detects the error. So we
have to capture this in a variable and check that it’s
of that form. Or something like that. Or maybe not.

Excerpts such as the one above lead us to conclude that the prob-
lem in fact lies with the participants not being able to express the
distinction in Arcum, rather than not seeing the distinction. The
root of this confusion may very well lie in the participants’ lack
of experience with previous checking examples. However, another
contributing factor may be the choice of keywords in the Arcum
language: the words realize and require, unfortunately, do not re-
flect the metaphors that the participants were using when reason-
ing about realize and require. In particular, the metaphors used
by participants were the “pattern matching” metaphor and the “er-
ror reporting”” metaphor. Consequently, we conjecture that a better
choice for the realize keyword would be match, and a better choice
for require would be something like check match, which, in addi-
tion to bringing the error metaphor into the keyword, also makes
the temporal ordering of matching and error checking clear.

A more general lesson could be drawn from our study about the
choice of keywords in a language. Over the last two years, we have
many times debated what the best choice of keywords would be
in Arcum, but we did not seriously look at the keywords from the
point of view of the metaphors or models that a novice program-
mer might have in mind when thinking about the constructs. This
metaphor-based approach to keyword selection provides a useful
way of choosing keywords that could make languages more ap-
proachable to novices and experts alike.

8. RELATED WORK

Arcum is related to a host of IDE tools and user studies evaluat-
ing the affordances provided by such tools.

8.1 User Studies

Sillito et al. studied programming in Eclipse focused on the ques-
tions programmers ask when modifying programs [25]. Part of the
study used pair programming in order record conversations to be
later analyzed. This analysis gave insights into how programmers
understand a system and what they need to know in order to make

modifications. Their study had a wide focus, intended to help guide
the creation of software tools and tutorials, while our study was fo-
cused specifically as an evaluation of Arcum.

Robillard et al. investigated the process programmers use to un-
derstand code before they make changes to it and found that pro-
grammers who invested more time in making the most accurate
model of the program were the most successful [20]. For exam-
ple, the more lines of code a programmer examined (rather than
skimmed) the higher the rate of success. Their study did not record
the audio portion of programmer activities, and thus is was natu-
ral to use individual programmers instead of pairs of programmers.
The focus of our study was the metaphors programmers use instead
of a comparison of successful and unsuccessful programmers.

Ko et al. studied software changes performed in Eclipse and they
found that much of the effort of reasoning about a maintenance task
was navigating between scattered code dependencies and inspect-
ing tangled code unrelated to the change [12]. The kinds of pro-
gram changes examined were either bug fixes or adding additional
features to the program, so the nature of the changes are separate
from Arcum’s focus on crosscutting design idioms. Storey et al.
recognized in a large programmer study the different approaches
programmers use to understand programs based on the different
affordances available to them, and concluded that inspecting code
dependencies was the most useful to programmers [27].

Murphy et al. argue for the structure of crosscutting tasks to have
a concrete representation in the IDE to guide further changes [18].
Arcum’s approach for creating structure is through the definition of
options when the software system itself either does not or cannot
modularize a design decision.

8.2 Languages

Arcum’s general philosophy is common to many other works:
“Improve programming by letting programmers better express their
intentions to the environment.” Examples include Explicit Pro-
gramming [6], Presentation Extension [7], Metaprogramming [31],
and Intentional Programming [26]. Arcum takes a departure from
these works because it does not extend the programming language
itself. Instead, Arcum only applies checks to existing code, keep-
ing exactly the same Java semantics, while in one form extend-
ing Java’s type system through additional error messages the user
can enable. The flexibility of the Arcum approach relies upon the
expressiveness of refactoring transformations rather than upon the
expressiveness of a new programming language.

AOP languages like Aspect] can manifest many crosscutting de-
sign idioms, including many design patterns, as modular abstrac-
tions [10]. However, when dealing with existing tangled code,
this requires refactoring the existing code to modularize the tangled
code into an aspect. Arcum can specify and check implementations
without having to modify the code in any way.

DRIVEL is a program enhancement system using generative
techniques on top of an aspect-oriented language [30]. DRIVEL
offers a way to change the programming language such that code
written using it is closer to what is intended. This technique is
particularly well suited for design patterns, because the code that
needs to be generated can be inferred from the context.

8.3 Tools

The iXj program transformation system for Java allows for pat-
tern matching similar to Arcum’s concept construct [5, 4]. The iX]j
system could assist the writing of Arcum concepts through its inter-
active features, while Arcum could complement iXj by providing
a mean of expressing infrastructure related to concepts and by pro-
viding continuous checking of implementations.

Some of the programming tasks given to the subjects are in-
stances of the class library migration problem, which is encoun-
tered when code needs to be ported to use a different library [1].

Arcum is a departure from the role-based refactoring work of
Hannemann et al. [11], which permits programmers to build macro-
refactorings from micro-refactorings. Marin et al. take a similar
approach, although they assemble macro-refactorings from micro-
concerns rather than roles [16].

Feature Oriented Refactoring (FOR) recognizes the crosscutting
and non-modular nature of the implementation of software features,
which are often crosscutting [15]. The REFINE system uses pro-
gram templates, which can be used for both pattern matching and
code transformation [13]. As a departure from REFINE, Koza-
czynski et al. [14] employ semantic pattern matching to recognize
concepts as part of a code transformation system for software main-
tenance. A more recent work in this area is the DMS system, which
is similar to Kozaczynski et al. but has a much wider scope [3].

9. CONCLUSION

Our user study shows that the Arcum approach to developing
checks and refactorings for the crosscutting idioms in a program
was natural to the programmers and they could leverage their exist-
ing knowledge of modularity. However, the meta nature of Arcum
code development carries difficulties. By observing the metaphors
that the developers used while addressing these challenges we ob-
tained a better understanding of the Arcum development processes.
In doing so, we identify a few preliminary design recommendations
to improve AOSD tools.

First, adding better undo functionality to current environments is
a promising way to lower the costs of experimenting with design
alternatives. For example, a tree-based undo history would allow
developers to make multiple changes while allowing easy compar-
ison, back and forth, among a set of options.

Second, keywords in programming languages should be made
to match as closely as possible the metaphors that programmers
will use in the development process. Choosing keywords in this
way descreases the gap between the developer’s mental model of
programming idioms and how he or she expresses those idioms in
the programming language.

Finally, environments for aspect-oriented software development
should include tools for pattern testing, visualization and genera-
tion. These tools would help programmers by providing them with
immediate feedback about their crosscutting queries.

10. REFERENCES

[1] 1. Balaban, F. Tip, and R. Fuhrer. Refactoring support for
class library migration. In OOPSLA ’05: Proceedings of the
20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages
265-279, New York, NY, USA, 2005. ACM Press.
C. Y. Baldwin and K. B. Clark. Design Rules: The Power of
Modularity Volume 1. MIT Press, Cambridge, MA, USA,
1999.
I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms: Program
transformations for practical scalable software evolution. In
ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 625-634, Washington, DC,
USA, 2004. IEEE Computer Society.
[4] M. Boshernitsan. Program manipulation via interactive
transformations. PhD thesis, University of California at
Berkeley, Berkeley, CA, USA, 2006.

[2

—

3

[t

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

M. Boshernitsan and S. L. Graham. ixj: interactive
source-to-source transformations for java. In OOPSLA "04:
Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and
applications, pages 212-213, New York, NY, USA, 2004.
ACM.

A. Bryant, A. Catton, K. D. Volder, and G. C. Murphy.
Explicit programming. In AOSD ’02: Proceedings of the 1st
international conference on Aspect-oriented software
development, pages 10-18, New York, NY, USA, 2002.

A. D. Eisenberg and G. Kiczales. Expressive programs
through presentation extension. In AOSD ’07: Proceedings
of the 6th international conference on Aspect-oriented
software development, pages 73—84, New York, NY, USA,
2007. ACM Press.

W. G. Griswold. Coping with crosscutting software changes
using information transparency. In REFLECTION 01 :
Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting
Concerns, pages 250-265, London, UK, 2001.
Springer-Verlag.

W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Modular software design with
crosscutting interfaces. IEEE Software, 23(1):51-60, 2006.
J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 161-173, New York, NY, USA, 2002.
ACM Press.

J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns. In AOSD ’"05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 135-146, New
York, NY, USA, 2005. ACM Press.

A.J. Ko, H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented ides: a detailed study
of corrective and perfective maintenance tasks. In /CSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 126—135, New York, NY, USA,
2005. ACM.

G. Kotik and L. Markosian. Automating software analysis
and testing using a program transformation system. In TAV3:
Proceedings of the ACM SIGSOFT 89 third symposium on
Software testing, analysis, and verification, pages 75-84,
New York, NY, USA, 1989. ACM Press.

W. Kozaczynski, J. Ning, and A. Engberts. Program concept
recognition and transformation. I[EEE Trans. Softw. Eng.,
18(12):1065-1075, 1992.

J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In ICSE '06: Proceeding
of the 28th international conference on Software engineering,
pages 112—121, New York, NY, USA, 2006. ACM Press.

M. Marin, L. Moonen, and A. van Deursen. An approach to
aspect refactoring based on crosscutting concern types. In
MACS ’05: Proceedings of the 2005 workshop on Modeling
and analysis of concerns in software, pages 1-5, New York,
NY, USA, 2005. ACM Press.

N. Miyake. Constructive interaction and the iterative process
of understanding. Cognitive Science, 10(2):151-177, 1986.
G. C. Murphy, M. Kersten, M. P. Robillard, and D. Cubranic.
The emergent structure of development tasks. In ECOOP,

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

volume 3586 of Lecture Notes in Computer Science, pages
33-48. Springer, 2005.

D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053-1058,
1972.

M. P. Robillard and W. Coelho. How effective developers
investigate source code: An exploratory study. /EEE Trans.
Softw. Eng., 30(12):889-903, 2004.

M. B. Rosson and J. M. Carroll. The reuse of uses in
smalltalk programming. ACM Trans. Comput.-Hum.
Interact., 3(3):219-253, 1996.

M. Shonle, W. G. Griswold, and S. Lerner. Beyond
refactoring: a framework for modular maintenance of
crosscutting design idioms. In ESEC-FSE ’07: Proceedings
of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pages 175-184,
New York, NY, USA, 2007. ACM.

M. Shonle, W. G. Griswold, and S. Lerner. Addressing
common crosscutting problems with arcum. In 8th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, November 2008.

M. Shonle, W. G. Griswold, and S. Lerner. When refactoring
acts like modularity: Keeping options open with persistent
condition checking. In Second Workshop on Refactoring
Tools, October 2008.

J. Sillito, G. C. Murphy, and K. D. Volder. Questions
programmers ask during software evolution tasks. In
SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 23-34, New York, NY, USA,
2006. ACM.

C. Simonyi. The death of computer languages, the birth of
intentional programming, 1995.

M.-A. D. Storey, K. Wong, and H. A. Miiller. How do
program understanding tools affect how programmers
understand programs? Sci. Comput. Program.,
36(2-3):183-207, 2000.

K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan. Information hiding interfaces for
aspect-oriented design. In ESEC/FSE-13: Proceedings of the
10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 166—175, New
York, NY, USA, 2005.

K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The
structure and value of modularity in software design. In
ESEC/FSE-9: Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 99—108, New York, NY, USA, 2001.
ACM.

E. Tilevich and G. Back. “Program, enhance thyself!” —
demand-driven pattern-oriented program enhancement,". In
AOSD ’08: Proceedings of the 7th international conference
on Aspect-oriented software development, April 2008.

D. von Dincklage. Making patterns explicit with
metaprogramming. In GPCE ’03: Proceedings of the 2nd
international conference on Generative programming and
component engineering, pages 287-306, New York, NY,
USA, 2003. Springer-Verlag New York, Inc.

Lobo, 2008. http://lobobrowser.org/.

