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ARTICLE

Ambipolar ferromagnetism by electrostatic doping
of a manganite
L.M. Zheng1, X. Renshaw Wang2, W.M. Lü1, C.J. Li3, T.R. Paudel4, Z.Q. Liu 5, Z. Huang6, S.W. Zeng6,

Kun Han6, Z.H. Chen7,8,9, X.P. Qiu 10, M.S. Li3, Shize Yang 11, B. Yang1, Matthew F. Chisholm11,

L.W. Martin 7,8, S.J. Pennycook3, E.Y. Tsymbal4, J.M.D. Coey 12,13 & W.W. Cao1,14

Complex-oxide materials exhibit physical properties that involve the interplay of charge

and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both

electron-doped and hole-doped ferromagnetism in the same material has proved elusive.

Here we report ambipolar ferromagnetism in LaMnO3, with electron–hole asymmetry of the

ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electro-

statically dope the material with electrons or holes according to the polarity of a voltage

applied across an ionic liquid gate. Magnetotransport characterization reveals that an

increase of either electron-doping or hole-doping induced ferromagnetic order in this

antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal

magnetoresistance showing electron–hole asymmetry. These findings are supported by

density functional theory calculations, showing that strengthening of the inter-plane

ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The

result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated

electron systems.
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Manipulating carriers of either sign and flipping the
orientation of ferromagnetically coupled spins are
operations that are basic to current information tech-

nology. An ambipolar ferromagnet that would allow the ordered
spins to coexist with either electrons or holes in a single material,
without modifying its crystal structure or chemical composition,
is an appealing prospect. It could lead to advances in fundamental
understanding of magnetic semiconductors and form a building
block for new electric-field controlled spintronics based on the
ability to create, control and detect the spin-polarized holes or
electrons. Operating locally and reversibly, the electric-field offers
notable advantages over magnetic field or hard chemical doping
in the fabrication and operation of spintronic devices. Recently,
there has been a lot of interest in ambipolar functionality, such as
ambipolar conductivity in graphene1, black phosphorus2, and
organic materials3. However, ferromagnetic semiconductors have
so far been based on either electron-doped or hole-doping, but
never both in the one material, precluding possible ambipolar
spintronic devices, such as a dual-channel field-effect spin-filter
or a field-effect spin valve.

Researchers are exploring various ways to create amipolar
functionality in materials. Electrostatic doping4,5 of the mixed-
valence manganites6 using an ionic liquid gate is a promising
approach to try to realize ambipolar ferromagnetism, in light of
the manganites’ rich magnetic phase diagrams and the possibility
of generating high carrier densities of up to ~1015 cm−2, using an
ionic liquid as gate dielectric. Ionic liquids have been used to

achieve various other effects, including ambipolar doping layered
materials2, superconductivity4,7–14, charge density waves15,
metal–insulator transitions,16,17 and large resistive responses in
mixed-valence manganites18–21. However, ambipolar ferro-
magnetism has proved difficult to achieve, owing to the challenge
of varying the carrier density over a wide range while controlling
the carrier–spin interactions. Nonetheless, from a material’s point
of view, as an end member of several mixed-valence manganite
solid solutions, LaMnO3 (LMO) is a good candidate for the
realization of ambipolar ferromagnetism. The manganese is tri-
valent (Mn3+; 3d4) in bulk LMO, which exhibits an A-type
antiferromagnetic ground state, but offers possibilities for hosting
ferromagnetism with both electron (Mn2+; 3d5) and hole (Mn4+;
3d3) doping22,23.

Here we have managed to achieve ambipolar ferromagnetism
by electrostatically gating atomically thin LMO films using an
ionic liquid as a gate dielectric.

Results
Basic characterization. Figure 1a shows the electric double-layer
transistor (EDLT) with a planar device configuration fabricated
on a three unit cell (uc) thick LMO film24 grown on SrTiO3 (001)
(STO) with an ionic liquid as the electrolyte (Methods section).
Figure 1b illustrates the atomically flat surface of LMO after the
gating measurements, revealed by an atomic force microscope.
The high quality surface after gating indicates that etching of the
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material due to ionic liquid gating is negligible. In addition, we
performed high-resolution cross-section scanning transmission
electron microscopy (STEM) and electron energy loss spectro-
scopy (EELS) on a 3 uc LMO sample with an overlayer of STO.
The STO overlayer was added in order to avoid damage during
the STEM sample preparation to correctly characterize the
interface between LMO and STO (see Supplementary Note 7).
Figure 1c shows a high-angle annular dark field (HAADF) image
of the sample along the [010] zone axis. Figure 1d shows the EELS
results of the region of green square in Fig. 1c, demonstrating that
the extent of intermixing at the LMO-STO interface is limited to
1 uc. The ultrathin layer thickness is a prerequisite for our study,
because the required modulation of the carrier density is very
large. In thick films, the induced carriers will be spread out,
resulting in little modulation of the density. Furthermore, the
surface and interface states in ultrathin films are more sensitive to
the external modulations, such as electrostatic doping25,26. Car-
rier doping was realized by applying a gate voltage (VG) to the
double-layer capacitor formed by the ionic liquid. The sheet
resistance (RS) of the LMO film at 300 K decreases linearly on
both sides of zero-voltage, as shown in Fig. 2a. This gating
response is typical of an ambipolar material. It is important to
note that no hysteresis is observed while sweeping VG, demon-
strating that diffusion of oxygen vacancies is negligible during the
gating experiments.

Electrostatic gating. In order to further investigate the carrier
behavior and the intrinsic magnetic properties of the material, the
Hall resistivity (ρxy) of the 3 uc LMO film was measured at

different temperatures for VG= ± 3 V. The Hall effect in a fer-
romagnet is a combination of the ordinary Hall effect (OHE) and
the anomalous Hall effect (AHE)27,28. In ferromagnetic mixed-
valence manganites, the OHE and AHE contributions to ρxy have
opposite trends, resulting in an anomalous ρxy behavior different
from that in ordinary ferromagnetic materials. The AHE starts to
dominate above ~100 K, increases sharply around the Curie
temperature (TC), peaking at a temperature roughly 30 K
above TC, and decreases slowly at higher temperatures29. Fig-
ure 2b, c shows ρxy of LMO at various temperatures in the
electron-doped and hole-doped regimes, exhibiting an AHE
which is in good agreement with studies on La1−xAxMnO3

(A= Ba, Ca, Pb, Ce, and Sr) single crystals23,30,31. Typically, the
AHE in hole-doped manganites, such as La1−xSrxMnO3 and La1
−xCaxMnO3, is prominent31 at temperatures close to the Curie
temperature, TC, namely in the higher temperature region of the
metallic phase, where dρxx/dT is positive and the lower tem-
perature region of the insulating phase, where dρxx/dT is negative.
When the temperature is well below or above the TC, the Hall
resistance becomes linear in magnetic field. These generic features
are consistent with our experimental observation. The maximum
magnitude of the AHE for La1−xSrxMnO3 and La1−xCaxMnO3

are ~0.65 and 1.3 µΩ cm, which is also consistent with the
magnitude of the AHE in our study. Since the AHE is due to
broken time-reversal symmetry, typically as a result of spin–orbit
coupling in a ferromagnetic phase28,32,33, the data demonstrate
the ferromagnetic nature of the films under both positive and
negative gating.

The carrier densities of the electrons and holes under different
gate voltages were calculated from the Hall measurement at 2 K,
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and are shown in Fig. 2d with n(p) representing the electron(hole)
content per Mn. At 2 K, ρxy exhibits a linear variation with
magnetic field (μ0H), and opposite signs of the slope are observed
according to the sign of VG, revealing electron and hole
characteristics of the LMO under positive and negative gate
voltages, respectively. However, the values of carrier density
deduced at 2 K are generally much larger than the nominal
doping concentration23,28,30,31, although the sign of the slope of
ρxy at low temperature is correct in our study, where the Hall
carrier density of doped LMO achieved at ±3 V corresponds to
roughly one electron or hole per Mn site. The abnormally large
Hall carrier density of manganites is well documented in the
existing literature23,28,30,31, but its mechanism remains unex-
plained. For instance, nominal chemically doped La1−xAxMnO3

thin films with ~0.1e per Mn always exhibit roughly one, or even
more, electrons or holes per Mn site in Hall measurements at ~ 2
K. Nevertheless, a linear modulation of carrier density per Mn is
confirmed. As shown in Fig. 2d, the Hall carrier density, which
was estimated based on the normal Hall resistance regime of ρxy,
shows that the gating effect on carriers is roughly symmetric on
both sides. Although the doping effect is often found to be
asymmetric due to the difference in the size of the positive and
negative ions in the liquid, the capacitance for electron-doped and
hole-doping can also be symmetric in some cases34,35.

Ambipolar ferromagnetism. The realization of ambipolar fer-
romagnetism is further confirmed by the variation of studies of
sheet resistance RS as a function of temperature for various gate
voltages. Figure 3a, b show the RS vs. temperature curves of the 3
uc LMO under positive or negative VG. By increasing the negative
VG (hole accumulation, Fig. 3a), the RS vs temperature curves

exhibit a metal–insulator transition (MIT) with a resistivity peak
at a temperature TP, accompanying the decrease of resistivity. The
same trend is observed when VG is positive (electron accumula-
tion, Fig. 3b). Below TP, electron-doped and hole-doped LMO
both exhibit metallic behavior. The sheet resistance of our sam-
ples are quantitatively consistent with the resistance quantum (h/
e2= 25.8 kΩ), and the well-documented MIT in manganite. In
the temperature regime above the MIT, the system is non-
magnetic and enters a semiconducting state. This is consistent
with all understood cases with a resistance greater than h/e2. In
the temperature regime near and below the MIT, the resistivity of
our sample is quantitatively consistent with the well-documented
resistivity of manganite materials. For example, the resistivity of
our samples at the peak temperature is ~10−1 to 10−2Ωcm,
showing the same value as the reported resistivity at the peak
temperature TP22,36. Furthermore, TP in both electron-doped and
hole-doped regimes increases upon applying a 9 Tesla magnetic
field (Fig. 3c, d), and colossal magnetoresistance (CMR) is
observed. The field-induced increase of TP resembles that of all
other chemically doped ferromagnetic manganites, proving that
the ferromagnetic metallic state induced by both positive and
negative gating lies within LMO films, rather than at the surface
of the STO substrate37.

Electron–hole asymmetry. Strikingly, the doping dependence of
TP for electron doping is less sensitive than that for hole doping.
Figure 4a presents a contour plot of normalized sheet resistance
(RS(T)/RTp) vs temperature and VG. The contour plot shows that
TP increases asymmetrically for positive and negative gating.
Figure 4b summarizes the data on TP as a function of VG,
demonstrating the electron–hole asymmetry of the CMR, and of
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the ferromagnetic ordering temperature. The electron–hole
asymmetry is further confirmed by the asymmetric magnitude
and characteristic temperature of the temperature-dependent
magnetoresistance (MR), defined as (R(H)−R(0))/R(0) (%), for
electron-doped and hole-doped LMO film (Fig. 4c).

Density functional theory calculations. First-principles density
function theory (DFT) calculations were employed to understand
the origin of the asymmetric ambipolar ferromagnetism (see
Supplementary Note 6 for details). The magnetism in LMO can
be described by an isotropic exchange Hamiltonian,
H ¼ �P

<ij>
JijSi:Sj, where Jij is the exchange interaction between

neighboring Mn ions with localized spin moments Si and Sj. The
intra-plane and inter-plane exchange interactions have different
values. The interplay of intra-plane Jab and inter-plane Jc deter-
mines overall magnetic ordering (Supplementary Note 6). In fully
relaxed bulk LMO, the intra-plane exchange Jab is ferromagnetic,
whereas the inter-plane exchange Jc is antiferromagnetic, which
leads to the A-type antiferromagnetic ordering38. In the biaxially
strained epitaxial films, we find that both exchange interactions
are ferromagnetic, which results in overall ferromagnetic order-
ing. In the mean-field approximation, the strength of ferro-
magnetism is determined by the sum of the exchange parameters,
J = Jc + Jab. We find that J increases with both electron and hole
doping (Fig. 4d), which is largely due to the increasing ferro-
magnetic inter-plane exchange Jc (see Supplementary Figure 6g).
The asymmetry between electron and hole doping is caused by
the intra-plane exchange Jab, which increases with hole doping
but decreases with electron doping (see Supplementary
Figure 6g). The results for the exchange coupling J (Fig. 4d)
indicate that the enhancement of ferromagnetism is more

sensitive to the hole doping than to the electron doping, which is
consistent with the experimental results for the ferromagnetic
ordering temperature (Fig. 4b).

The effect of doping on the exchange parameters can be traced
to the change in orbital overlap due to the Jahn–Teller
distortions39. The Jahn–Teller effect leads Mn3+ ions bonded to
oxygen to have one longer bond, bl, and one shorter bond, bs. The
ratio of bl/bs represents the extent of the distortion. As shown in
Fig. 4d, upon electron or hole doping, the distortion is reduced
compared the undoped system since Mn2+ and Mn4+ are not
Jahn–Teller ions, causing Mn–O bonds to become more
symmetric. This enhances ferromagnetism of LMO due to the
increased contribution from ferromagnetic exchange between
quarter-filled eg orbitals and the decreased contribution from
antiferromagnetic super-exchange between half-filled t2g orbi-
tals39. The enhancement of ferromagnetism with electron or hole
doping is consistent with experimental40,41 and theoretical42,43

results for the chemically doped LMO.

Discussion. Furthermore, it should be noted that the creation of
the electron-doped ferromagnetic manganite was not obvious,
being a challenging fundamental question full of controversy.
Generally, the chemically doped n-type manganite always showed
impurity phase and p-type behavior, and the conventional double
or superexchange in electron-gated systems does not lead to
ferromagnetism. Examples are La1−xCexMnO3

23,44,45, La1
−xSbxMnO3

46, and La1−xTexMnO3
47 etc, which always show

impurity phase and p-type behavior. In addition, the conventional
double-exchange/super-exchange in electron-gated systems does
not lead to ferromagnetism, we therefore believe that the ambi-
polar ferromagnetic in manganite is unexpected in a hard doping
situation. In addition, since there is no report on the AHE in
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electron-doped manganites yet, our observation completes the
electron-doped region of the phase diagram of manganite thin
film.

In conclusion, we have induced ambipolar ferromagnetism
with a Curie temperature greater than 100 K in ultrathin films of
LMO by bipolar gating. We found that the electrostatic doping of
this material with either electrons or holes strengthens the
ferromagnetic order in this compound, with a pronounced
electron–hole asymmetry seen in the insulator-to-metal transition
as well as the CMR effect. The ambipolar ferromagnet is a missing
link between spintronics and semiconductor physics. Electric
control of the charge of spin-polarized carriers offers an
opportunity for future bipolar magnetic technology in strongly
correlated electron systems.

Methods
Device fabrication. Three uc-thick LMO films were grown on TiO2-terminated
STO (001) at 750 °C using pulsed laser deposition in an oxygen pressure of 10−2

mbar. The LMO growth is layer-by-layer and was monitored by in situ reflection
high energy electron diffraction. After deposition, all samples were cooled down to
room temperature in oxygen at the deposition pressure. The laser pulse (248 nm)
energy density was 1.8 J cm−2 and the repetition rate was 1 Hz. Subsequently, the
film was patterned into a Hall bar using photolithography.

Electrical measurements. Carrier doping was realized by applying gate voltages
(VG) on the double-layer capacitor formed by the ionic liquid. The ionic liquid
used in the experiment was a small droplet of [N-diethyl-N-methyl-N-(2-meth-
oxyethyl) ammonium bis (trifluoromethyl sulphonyl) imide] covering both the
conducting channel and the gate electrode. The leakage current was less than 1 nA
at a gate bias of VG= ± 3 V. The electrical resistivity of the gated LMO films was
measured using a Quantum Design Physical Property Measurement System
(PPMS), a Keithley 2400 source measurement unit, and a Keithley 2182 nano-
voltmeter from 300 K to 2 K in a magnetic field of 9 Tesla. Gate voltages were
applied at 300 K between ionic liquid and LMO thin film to inject electrons or
holes in LMO films, and the desired gate voltage was maintained throughout the
whole transport measurement. Figure 4a is a re-plot of the data shown in Fig. 3a, b
in MatLab using three standard plotting functions, namely Delaunay, trisurf, and
shading. No manual averaging was done on the date and the horizontal stripes in
Fig. 4a are generated due to the noise in resistance values in the raw data.

STEM measurements. High-resolution cross-section STEM–HAADF imaging
and EELS were performed using the JEOL-ARM200F microscope equipped with
ASCOR aberration corrector and cold-field emission gun and operated at 200 kV.
The cross-section TEM sample was prepared by focused ion beam with 30 kV Ga
ions, followed by a 2 kV low voltage cleaning step. The HAADF images were
acquired with a probe-forming aperture of 30 mrad and collection angle of 68–280
mrad. All HAADF images were filtered by radial Wiener filters. EELS spectra were
recorded using a Gatan Quantum ER spectrometer with a 0.25 eV/channel energy
dispersion.

DFT calculations. Theoretical modeling of the orthorhombic Pbnm LMO was
performed using density functional theory, the projected augmented wave method,
and PBEsol pseudopotentials, as implemented in the Vienna ab initio simulation
package. Internal coordinates were fully relaxed, assuming an experimental lattice
constant of LMO and using the force convergence limit of 1 meV/atom. Correla-
tion effects beyond generalized gradient approximation (GGA) were treated at a
semi-empirical GGA+U level within a rotationally invariant formalism with U=
5 eV for the Mn 3d-orbitals.

Data availability. The authors declare that all other relevant data supporting the
findings of the study are available in this article and in its Supplementary Infor-
mation file. Access to our raw data can be obtained from the corresponding author
upon reasonable request.
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