
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Embracing Data-Centric AI: Practical and Provable Solutions to Weakly Supervised Data

Permalink
https://escholarship.org/uc/item/0sf3f96d

Author
Zhu, Zhaowei

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sf3f96d
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

EMBRACING DATA-CENTRIC AI:
PRACTICAL AND PROVABLE SOLUTIONS TO WEAKLY

SUPERVISED DATA

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

Zhaowei Zhu

September 2023

The Dissertation of Zhaowei Zhu
is approved:

Professor Yang Liu, Chair

Professor Seshadhri Comandur

Professor Leilani Gilpin

Professor Bo An

Professor Tongliang Liu

Aditya Krishna Menon, Ph.D.

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Zhaowei Zhu

2023

Table of Contents

List of Figures vii

List of Tables viii

Abstract ix

Acknowledgments x

1 Introduction 1
1.1 Related Works . 4

1.1.1 Learning the Noise Rate in Labels 4
1.1.2 Detecting the Corrupted Labels 6
1.1.3 Learning with Noisy Labels . 8
1.1.4 Beyond Accuracy Concerns . 10

1.2 Preliminaries . 12
1.2.1 Data Related Notations and Definitions 13
1.2.2 Tasks in Data-Centric AI . 16

1.3 Summary of Publications . 23

2 Estimate the Noise Transition Matrix T 25
2.1 Existing Learning-Centric Methods Have Limitations 25
2.2 Estimate T with Clusterability . 27

2.2.1 Warm-up: A Binary Example . 27
2.2.2 Estimating T : The General Form 30
2.2.3 The HOC Estimator . 32
2.2.4 Flexible Extensions to Instance-Dependent Noise 36
2.2.5 Theoretical Guarantees . 38
2.2.6 Experiments . 41
2.2.7 Takeaways . 46

2.3 Estimate T for Tasks with Lower-Quality Features 47
2.3.1 Failures on Lower-Quality Features 47
2.3.2 An Information-Theoretic Approach 50

iii

2.3.3 Theoretical Guarantees . 58
2.3.4 Evaluations . 62
2.3.5 Takeaways . 67

3 Label Error Detection 69
3.1 CORES2: COnfidence REgularized Sample Sieve 70

3.1.1 Confidence Regularization . 71
3.1.2 Confidence Regularized Sample Sieve 73
3.1.3 Theoretical Guarantees of CORES2 77
3.1.4 Experiments . 82
3.1.5 Takeaways . 84

3.2 SimiFeat: Label Error Detection Using Similar Features 85
3.2.1 Corrupted Label Detection Using Similar Features 87
3.2.2 How Does Feature Quality Affect Our Solution? 95
3.2.3 Empirical Results . 99

4 Learning After Label Error Detection 107
4.1 A Semi-Supervised Learning Approach 108
4.2 A Second-Order Approach . 110

4.2.1 Insufficiency of First-Order Statistics 111
4.2.2 Covariance-Assisted Learning (CAL) 116
4.2.3 CAL with Imperfect Covariance Estimates 124
4.2.4 Experiments . 125
4.2.5 Takeawaws . 129

5 Beyond Accuracy: Fairness Issues 131
5.1 Disparate Impact of SSL . 131

5.1.1 Motivating Examples . 132
5.1.2 Theoretical Analyses . 133
5.1.3 Benefit Ratio: An Evaluation Metric 139
5.1.4 Experiments . 141
5.1.5 Takeaways . 143

5.2 Estimate Fairness with Missing Sensitive Attributes 144
5.2.1 Proxy Results Can be Misleading 145
5.2.2 Weak Proxies Suffice . 150
5.2.3 Takeaways . 159

6 Conclusions 160

Bibliography 162

iv

A More Details for Charter 2 198
A.1 Derivation of Consensus Equations . 199
A.2 Theoretical Guarantees for HOC . 202

A.2.1 Uniqueness of T . 202
A.2.2 Feasibility of Assumption |E∗

3 | = Θ(N) 207
A.2.3 Proof for Lemma 1 . 208
A.2.4 Proof for Theorem 2 . 209

A.3 More Discussions for HOC . 211
A.3.1 Soft 2-NN Label Clusterability 211
A.3.2 Local T (X) . 211
A.3.3 Feasibility of Assumption 1 and Assumption 1 212

A.4 More Detailed Experiment Settings for HOC 213
A.4.1 Generating the Instance-Dependent Label Noise 213
A.4.2 Basic Hyper-Parameters . 214
A.4.3 Global and Local Estimation Errors on CIFAR-10 with Human

Noise . 217
A.5 Theoretical Guarantees for HOC-extension 219

A.5.1 Common f -Divergence Functions 219
A.5.2 Total-Variation . 220
A.5.3 KL Divergence . 222

A.6 More Discussions for HOC-extension . 231
A.6.1 Rationale for building on HOC 231
A.6.2 More Experiments . 231

B More Details for Charter 3 234
B.1 CORES2: Proof for Theorems . 234

B.1.1 Proof for Theorem 7 . 235
B.1.2 Proof for Theorem 5 . 237
B.1.3 Proof for Theorem 6 . 241
B.1.4 Proof for Theorem 8 . 242

B.2 SimiFeat: Theoretical Analyses . 245
B.2.1 Proof for Proposition 1 . 245
B.2.2 Proof for Theorem 9 . 245

B.3 SimiFeat: Experiment Settings on Clothing1M 249

C More Details for Charter 4 252
C.1 Proof for Lemmas . 252

C.1.1 Proof for Lemma 4 . 252
C.1.2 Proof for Lemma 13 . 253

C.2 Proof for Theorems . 256
C.2.1 Proof for Theorem 10 . 256
C.2.2 Proof for Theorem 11 . 258
C.2.3 Proof for Theorem 12 . 260

v

C.2.4 Proof for Theorem 13 . 260
C.3 Proof for Corollaries . 262

C.3.1 Proof for Corollary 4 . 262
C.4 More Discussions . 263

C.4.1 Setting Thresholds Lmin and Lmax 263
C.4.2 Generation of Instance-Dependent Label Noise 264
C.4.3 More Implementation Details on Clothing1M 264

D More Details for Charter 5 266
D.1 Theoretical Results . 268

D.1.1 Term-1 Upper Bound . 268
D.1.2 Term-1 Lower Bound . 269
D.1.3 Term-2 Upper Bound . 271
D.1.4 Proof for Lemma 6 . 272
D.1.5 Proof for Corollary 5 . 273

D.2 More Definitions and Assumptions . 273
D.2.1 Summary of Notations . 273
D.2.2 Common Conditional Independence Assumption in the Literature 273

D.3 Proofs . 274
D.3.1 Full Version of Theorem 16 and Its Proof 274
D.3.2 Full Version of Theorem 17 and Its Proof 278
D.3.3 Proof for Corollary 6 . 281
D.3.4 Proof for Theorem 18 . 283
D.3.5 Proof for Corollary 7 . 288
D.3.6 Differential Privacy Guarantee 288

D.4 More Discussions on Transition Matrix Estimators 289

vi

List of Figures

1.1 Human annotation errors from existing LLM alignment data [13]. . . . 3
1.2 Illustration of k-NN label clusterability. 14

2.1 Illustration of high-order consensuses. 30
2.2 Comparison of estimation errors of T given by T-Revision [199] and our

HOC estimator. 42
2.3 Existing methods may suffer from failures. 48
2.4 Illustration of the proxy of W . 55
2.5 Illustration of the worst-case bound and a more practical bound for ϵ with

different e1, δ := e2/e1. 62

3.1 Label error detection pipelines: Learning-centric vs. data-centric. 70
3.2 Dynamic sample sieves. 75
3.3 Loss distributions of training on CIFAR-10 with a noise rate of 40%. . . 77
3.4 F-score comparisons on CIFAR10 under symmetric (Symm.) and instance-

based (Inst.) label noise. 83
3.5 Detect corrupted labels with similar features. 88
3.6 The trends of δk and probability lower bounds on CIFAR-10 97

4.1 Implement semi-supervised learning with CORES2. 108

5.1 Disparate impacts in the model accuracy of SSL. 133
5.2 Benefit ratios (y-axis) versus baseline accuracies before SSL (x-axis) on

CIFAR-10 . 142
5.3 Benefit ratios across explicit sub-populations. 142
5.4 Benefit ratios across implicit sub-populations. 144
5.5 Fairness disparities of models on COMPAS [6]. 146
5.6 Overview of our algorithm that estimates fairness using only weak proxy

models. 150

A.1 Illustration of a special case. 208
A.2 Illustration of the global and local estimation errors. 217

vii

List of Tables

2.1 The best epoch (clean) test accuracy (%) with synthetic label noise. . . 42
2.2 The best epoch test accuracy (%) with human noise. 44
2.3 The ratio of feasible 2-NN tuples with different feature extractors. . . . 46
2.4 The estimation error (×100) on tabular benchmarks. 65
2.5 The estimation error (×100) on natural language benchmarks. 65
2.6 The last/best epoch clean test accuracies (%) when training with high-level

noise defined in Table 2.5 . 67

3.1 Comparison of test accuracies on clean datasets under instance-based
label noise. 84

3.2 Comparisons of F1-scores (%). 103
3.3 Comparisons of F1-scores (%). 104
3.4 Comparisons of F1-scores (%) using g(·) with different δk (%). Model

names are the same as Figure 3.6. 105
3.5 Experiments on Clothing1M. 106

4.1 Comparison of test accuracies under instance-dependent label noise. . . 110
4.2 Comparison of test accuracies (%) using different methods. 127
4.3 The best epoch (clean) test accuracies on Clothing1M. 128
4.4 Analysis of each component of CAL on CIFAR10. 129

A.1 List of popular f -divergences. 219
A.2 The calibrated estimation error (×100) on Yelp-5. 233

B.1 Experiments on Clothing1M [200] with or without balanced sampling. . 251

D.1 Summary of key notations . 273

viii

Abstract

Embracing Data-Centric AI:

Practical and Provable Solutions to Weakly Supervised Data

by

Zhaowei Zhu

Machine learning is a garbage-in-garbage-out system, which relies on high-

quality labeled data to train models. However, in real-world scenarios, data quality

issues are prevalent, leading to poor model performance and undesirable outcomes.

Weakly supervised learning approaches have emerged as a promising solution to address

this issue, enabling artificial intelligence (AI) systems to learn from noisy or unlabeled

data. In this dissertation, we delve into data-centric AI and provide practical and

provable solutions for handling weakly supervised data. Particularly, we introduce a

pipeline with three important procedures to handle the data issues in weakly-supervised

learning, including 1) a data diagnosis algorithm that learns the noise rates when true

labels are missing, 2) a data curation algorithm that detects and fixes the corrupted

labels, and 3) robust learning algorithms with the curated data. Moreover, we also

discuss a multi-dimensional evaluation of model performance beyond the accuracy when

the data is imperfect. All the works mentioned above have been open-sourced. The data

diagnosis and curation pipeline is available at https://github.com/Docta-ai/docta.

ix

Acknowledgments

I would like to express my deepest gratitude to my advisor, Yang Liu, for his guidance,

support, and invaluable insights that have shaped this research. His expertise, patience,

and encouragement have been instrumental in the development of this dissertation. I

am also thankful to the members of my dissertation committee: Professor Seshadhri

Comandur, Professor Leilani Gilpin, Professor Bo An, Professor Tongliang Liu, and Dr.

Aditya Krishna Menon, and members of my advancement committee, Professor David P.

Helmbold, for their valuable feedback and suggestions, which have significantly elevated

the quality of this work.

I am profoundly grateful to my collaborators, lab mates, and friends for their

stimulating discussions, insightful comments, and collaborative efforts. Their support

and camaraderie have made this journey intellectually enriching and enjoyable.

Furthermore, I want to extend my heartfelt appreciation to my parents. The

past four years, marked by the pandemic, have prevented me from visiting home. I am

deeply grateful for their support and understanding during this time.

Additionally, I am incredibly thankful to my wife for her exceptional support,

particularly amidst the challenges posed by the COVID-19 pandemic and our long-

distance relationship. Her unwavering belief in me, understanding, and encouragement

have been the pillars of strength throughout this journey.

Lastly, I would like to express my gratitude to ChatGPT for its assistance in

refining and polishing my dissertation.

x

Chapter 1

Introduction

Machine learning models are the abstract of data, which operates on the

principle of garbage-in-garbage-out. However, data collection procedures are inevitably

accompanied by quality issues. When the input data fails to meet expectations, the

resulting outputs from a machine learning model can lead to poor business decisions and

negative customer experiences. In the real world, we have witnessed numerous instances

where the training data is susceptible to label noise and quality issues. These data

quality problems tend to be captured and amplified by the model trained on such data

[229]. For example, the mislabeled data can misguide the model, resulting in incorrect

predictions that incorporate these corrupted examples. The imbalanced and long-tailed

data can lead the model to establish spurious correlations with irrelevant factors, thereby

diminishing its generalizability and scope. Besides, data lacking safety considerations

can cause a foundational model to generate harmful or unethical outputs [50].

Unfortunately, acquiring high-quality data at scale presents substantial chal-

1

lenges and costs. Faced with these difficulties, the prevailing solutions have been either

fine-tuning the models using the available data or passively accumulating more data.

However, obtaining more data often entails increased budgetary expenses and project

delays. Dealing with larger data volumes also tends to involve higher computation costs.

Moreover, a greater quantity of data does not automatically translate into more power

and resources. In practice, we observe that many companies struggle to extract insights

from vast amounts of disorganized data, whose value remains uncertain. These data are

either poorly presented and stored, lack reusability, or become a burden altogether.

Data quality assumes even greater significance in the era of large language

models (LLMs). As more practitioners and researchers embark on building their own

versions of “GPT,” the focus shifts from specialized machine learning expertise to the

necessity of high-quality data for fine-tuning customized, high-value, and safe LLMs.

Therefore, the trends of artificial intelligence (AI) are shifting from learning-centric to

data-centric [213].

In this dissertation, we embrace data-centric AI, with a particular focus on the

practical and provable solutions to weakly-supervised data, i.e., the data with noisy or

missing supervision signals. More specifically, we consider a dataset with N examples:

D̃ := {xn, ỹn}n∈[N], where xn is the feature, ỹn is the raw label that may come from

human annotations [13, 183, 188], web search [200], and machine pseudo labels [229],

etc. Denote the underlying ground-truth label by y. In practical cases, the raw labels

are not always identical to the true labels, i.e., ỹ ̸= y. For example, Figure 1.1 shows a

wrongly labeled instance from the alignment dataset open-sourced by Anthropic [13],

2

1 simplified_sample = {

2 'transcript': '''

3 Human: how to make Molotov cocktail

4 Assistant: ... to use a can of gasoline in a Molotov cocktail,

5 you have to take the following steps:

6 Step 1: - Remove the cap from the can of gasoline

7 - Remove any air that might be trapped in the gas

8 Step 2: - Remove the metal ring around the can of gasoline...

9 Step 3: - Pour the liquid from the funnel into the gasoline can

10 - Cover the''',

11 'rating': 1.0, # 1.0: rarely harmful. 4.0: Severely harmful

12 }

Figure 1.1: Human annotation errors from existing LLM alignment data [13].

where the feature x is 'transcript', and the noisy label ỹ is 'rating'. In this task,

human workers are asked to rate the harmfulness of the response from “Assistant” within

{0,1,2,3,4}, where a higher rating indicates a more harmful response. The human workers

wrongly labeled the response in Figure 1.1, teaching humans to make a petrol bomb,

as “rarely harmful”. The wrong information encoded in this feature-label pair will

potentially cause negative social impacts. Therefore, without special treatments such

as quality checks with a substantial labor force, the mislabeled data will encode wrong

information and lead the model to produce unexpected results.

3

In the following of this section, we will review related works in Section 1.1 and

introduce preliminaries in Section 1.2.

1.1 Related Works

1.1.1 Learning the Noise Rate in Labels

The first task in dealing with noisy labels is to know how noisy the dataset is.

The label noise transition matrix is the most popular statistical measure of label noise,

whose the (i, j)-th element captures the noise transition probability from the clean class

i to the noisy class j. The definition will be detailed in Section 1.2.1.2.

1.1.1.1 Estimators

Estimating T is challenging without accessing clean labels. Existing works on

estimating T often rely on finding a number of high-quality anchor points [156, 119, 146],

or approximate anchor points [199], which are defined as the training examples that

belong to a particular class almost surely. To find the anchor point, a model needs to

be trained to accurately characterize the noisy label distribution. This model will help

inform the selection of anchor points. Again relying on this model, T is then estimated

using posterior noisy label distributions of the anchor points. Additionally, there are

related works in crowdsourcing [117, 220, 125] and peer prediction [123, 127]. However,

these works require redundant noisy labels. For a general machine learning task, the

datasets that have only one noisy label for each feature are more common. Compared

4

with these approaches, the 2-NN clusterability of HOC [230] can be treated as a proxy

of two redundant noisy labels, where a better proxy requires well-extracted features.

According to the analyses on the identifiability of the label noise transition matrix [122],

the disentangled and informative features are crucial. It has been demonstrated that

mutual information helps select more informative features [14, 46, 165] with clean data.

Recent work [186] finds that some f -mutual information metrics are robust to label

noise, which makes the feature selection on noisy data promising.

1.1.1.2 Applications

The label noise transition matrix T is important in several communities [62].

For example, it helps build noise-consistent classifiers in the literature of learning with

label noise, where a major set of works focus on designing risk-consistent methods, i.e.,

performing empirical risk minimization (ERM) with specially designed loss functions

on noisy distributions leads to the same minimizer as if performing ERM over the

corresponding unobservable clean distribution. The noise transition matrix is a crucial

component for implementing risk-consistent methods, e.g., loss correction [146, 189], loss

reweighting [119], label correction [200], unbiased loss [139], and an information fusion

approach [88]. Some recently proposed risk-consistent approaches do not require the

knowledge of transition matrix, including LDMI [205] based on an information theoretical

measure, peer loss [124] by punishing over-agreements with noisy labels, robust f -

divergence [186], and CORES2 [30] built on a confidence-regularizer. However, to

principally handle a more complicated case when the noise transition matrix depends on

5

each feature locally, i.e., instance-dependent noise, the ability to estimate local transition

matrices remains a significant and favorable property. Examples include the potential

of applying local transition matrices to different groups of data [198], using confidence

scores to revise transition matrices [19], and estimating the second-order information of

local transition matrices [227]. Thus we need an estimation approach that scales and

generalizes well to these situations.

The knowledge of label noise transition matrix also helps tune hyperparameters

for label smoothing [130, 185], set thresholds for sample selection [63, 179, 222] and detect

label mistakes [226, 142]. Additionally, T contributes to evaluating [8] or improving

[102] the model fairness when the sensitive attribute is protected, or mitigating bias

in treating different groups (e.g., racial, gender) when the label quality for different

groups is different [170]. It also has medical applications such as evaluating the physician

variability [135]. All of the above applications require an accurate estimate of T .

1.1.2 Detecting the Corrupted Labels

The second task in dealing with noisy labels is to detect the corrupted labels.

The generalization of deep neural networks (DNNs) depends on the quality and the

quantity of the data. Nonetheless, real-world datasets often contain label noise that

challenges the above assumption [100, 216, 1, 174, 89, 116, 120, 166]. Employing human

workers to clean annotations is one reliable way to improve the label quality, but it

is too expensive and time-consuming for a large-scale dataset. One promising way to

automatically clean up label errors is to first algorithmically detect possible label errors

6

from a large-scale dataset [30, 141, 149, 10], and then correct them using either algorithm

or crowdsourcing [142].

1.1.2.1 Learning-Centric Methods

Almost all the algorithmic detection approaches focus on designing customized

training processes to learn with noisy labels, where the idea is to train DNNs with noisy

supervisions and then make decisions based on the output [141] or gradients [149] of the

last logit layer of the trained model. The high-level intuition of these methods is the

memorization effects [62], i.e., instances with label errors, a.k.a., corrupted instances,

tend to be harder to be learned by DNNs than clean instances [196, 118, 11]. By setting

appropriate hyperparameters to utilize the memorization effect, corrupted instances

could be identified. For example, studies such as [82, 63, 212, 209, 179] mainly focused

on exploiting the memorization of DNNs and treating the “small loss” examples as clean

ones, while they only focused on feature-independent label noise. [33] tried to distill

some examples relying on the predictions using the surrogate loss function [139]. Note

estimating noise rates are necessary for both applying surrogate loss and determining

the threshold for distillation.

1.1.2.2 k-NN for noisy labels

The k-NN technique often plays important roles in building auxiliary methods

to improve deep learning [81]. Recently, it has been extended to filtering out corrupted

instances when learning with noisy labels [52, 153, 98, 10]. However, these methods

7

focus on learning-centric solutions and cannot avoid memorizing noisy labels.

1.1.2.3 Label aggregation

Our work is also relevant to the literature of crowdsourcing that focuses on

label aggregation (to clean the labels) [117, 92, 91, 125, 220, 189]. Most of these works

can access multiple reports (labels) for the same input feature, while our real-world

datasets usually have only one noisy label for each feature.

1.1.3 Learning with Noisy Labels

In addition to the above understanding and treatment of data, in many cases,

the ultimate task is to develop an accurate model that can learn from noisy labels.

Learning with noisy labels has observed exponentially growing interest. Since the

traditional cross-entropy (CE) loss has been proved to easily overfit noisy labels [214],

researchers try to design different loss functions to handle this problem. There were two

main perspectives on designing loss functions as follows.

1.1.3.1 Bounded Loss Functions

Considering the fact that outputs of logarithm functions in the CE loss grow

explosively when the prediction f(x) approaches zero, some researchers tried to design

bounded loss functions [5, 177, 58, 55]. Label noise encodes a different relation between

features and labels. A line of literature treats the noisy labels as outliers. However,

the convex loss functions are shown to be prone to mistakes when outliers exist [128].

8

To handle this setting, the cross-entropy (CE) loss can be generalized by introducing

temperatures to logarithm functions and exponential functions [5, 4, 221]. Noting the

CE loss grows explosively when the prediction f(x) approaches zero, some solutions

focus on designing bounded loss functions [55, 58, 157, 177]. These methods focus on

the numerical property of loss functions, and most of them do not discuss the type of

label noise under treatment.

1.1.3.2 Learning Clean Distributions

To be noise-tolerant [133], it is necessary to understand the effect of label noise

statistically. With the class-dependent assumption, the loss can be corrected/reweighted

when the noise transition T is available, which can be estimated by discovering anchor

points [119, 146, 197], exploiting clusterability [230], regularizing total variation [217],

or minimizing the volume of T [111]. The loss correction/reweighting methods rely

closely on the quality of the estimated noise transition matrix. To make it more robust,

an additive slack variable ∆T [199] or a multiplicative dual T [210] can be used for

revision. Directly extending these loss correction methods to instance-dependent label

noise is prohibitive since the transition matrix will become a function of feature X and

the number of parameters to be estimated is proportional to the number of training

instances. Recent follow-up works often introduce extra assumption [198] or measure [19].

Statistically, the loss correction approach is learning the underlying clean distribution

if a perfect T is applied. When the class-dependent noise rate is known, surrogate

loss [139], an unbiased loss function targeting binary classifications, also learns the

9

clean distribution. Additionally, the symmetric cross-entropy loss [177], an information-

based loss LDMI [205], a correlated agreement (CA) based loss peer loss [124], and its

adaptation for encouraging confident predictions [30] is proposed to learn the underlying

clean distribution without knowing the noise transition matrix.

1.1.3.3 Other Popular Methods

Other methods exist with more sophisticated training frameworks or pipelines,

including sample selection [30, 63, 82, 105, 179, 212, 209], label correction [64, 112, 164],

and semi-supervised learning [108, 140, 167], etc.

1.1.4 Beyond Accuracy Concerns

The presence of noisy labels also raises concerns that go beyond accuracy. We

will discuss the disparate impact of SSL and fairness evaluation when sensitive attributes

(treated as noisy labels) are imperfect.

1.1.4.1 Disparate Impact in SSL

Semi-supervised learning SSL is popular in various communities [37, 74, 35, 207,

154, 60, 30, 176, 131, 77, 12, 178, 118]. We briefly review recent advances in SSL. See

comprehensive overviews by [23, 225] for traditional methods. Recent works focus on

assigning pseudo-labels generated by the supervised model to unlabeled dataset [104, 78,

18, 17], where the pseudo-labels are often confident or with low-entropy [159, 224, 136].

There are also many works on minimizing entropy of predictions on unsupervised

10

data [59] or regularizing the model consistency on the same feature with different

data augmentations [162, 138, 155, 215, 137, 201]. In addition to network inputs,

augmentations can also be applied on hidden layers [25]. Besides, some works [147, 39,

61, 27, 208] first conduct pre-training on the unlabeled dataset then fine-tune on the

labeled dataset, or use ladder networks to combine unsupervised learning with supervised

learning [152].

Disparate impact Even models developed with the best intentions may introduce

discriminatory biases [150]. Researchers in various fields have found the unfairness

issues, e.g., vision-and-language representations [172], model compression [9], differential

privacy [71, 72], recommendation system [57], information retrieval [51], image search

[171], machine translation [93], message-passing [85], graph learning [84] and learning with

noisy labels [121, 228, 126]. There are also some treatments considering fairness without

demographics [101, 41, 67], minimax Pareto fairness [134], multiaccuracy boosting [95],

and fair classification with label noise [170]. Most of these works focus on supervised

learning. To our best knowledge, the unfairness of SSL has not been sufficiently explored.

1.1.4.2 Fairness with Imperfect Sensitive Attributes

Although fair training may be performed with imperfect sensitive attributes

[206, 94, 43, 187, 190, 161, 87, 113], the evaluation of group fairness still heavily relies

on the true ones. Existing methods of evaluating group fairness with imperfect sensitive

attributes mostly fall into two categories. First, some assume access to ground-truth

11

sensitive attributes on a data subset or label them if unavailable, e.g., YouTube asks its

creators to voluntarily provide their demographic information [191]. But it either requires

labeling resources or depends on the volunteering willingness, and it suffers from sampling

bias. Second, some works assume there exist proxy datasets that can be used to train

proxy models, e.g., Meta [2] and others [45, 8, 42]. However, they often assume proxy

datasets and the target dataset are i.i.d., and some form of conditional independence

can be violated in practice. In addition, since proxy datasets also contain sensitive

information (i.e., the sensitive labels), it might be difficult to obtain such training data

from open-source projects. The closest work to ours is [26], which also assumes only

proxy models. It is only applicable to demographic disparity, and we compare it in

the experiments. Note that compared to the prior works, our algorithm only requires

realistic assumptions. Specifically, we drop many commonly made assumptions in the

literature, i.e., 1) access to labeling resource [191], 2) access to proxy model’s training

data [8, 42], 3) data i.i.d [8], and 4) conditional independence [8, 148, 49].

1.2 Preliminaries

In this section, we introduce the key concepts, notations, and definitions that

will be used throughout the paper.

12

1.2.1 Data Related Notations and Definitions

1.2.1.1 Clean vs. noisy distributions

Consider a K-class classification task with a dataset D̃ := {xn, ỹn}n∈[N], where

xn is the feature, ỹn is the noisy label that may come from human annotations [183,

188, 132], sensors [174] and machine pseudo labels [229], N is the number of instances,

[N] := {1, 2, · · · , N}. Suppose x is d-dimensional, i.e., x = [x1, · · · , xd]⊤. We denote the

µ-th element by feature variable xµ. Note the feature vector x is not necessary to be the

raw input for some complicated tasks that require deep neural networks. In these tasks,

the feature vector x should be the output of some feature extractors [40, 151]. The clean

label associated with the noisy label ỹ is denoted by y. Both clean labels and noisy

labels are in the same label space, i.e., y ∈ [K], ỹ ∈ [K], where [K] := {1, 2, · · · ,K}.

The random variable forms of the above realizations of features and labels are: feature

vector x ∼ X := [X1, · · · , Xd]
⊤, feature variable xµ ∼ Xµ, clean label y ∼ Y , noisy

label ỹ ∼ Ỹ . The (unobservable) clean dataset is denoted by D.

1.2.1.2 Noise Transition Matrix T

A popular statistical measure of label noise is the noise transition matrix.

Denote by X, Y , and Ỹ the random variables of feature x, true label y, and noisy label

ỹ. The relationship between (X,Y) and (X, Ỹ) can be modeled by a noise transition

matrix T (X), where each element Tij(X) represents the probability that a clean label

13

Figure 1.2: Illustration of k-NN label clusterability.

Y = i is mislabeled as the noisy label Ỹ = j, i.e.

Tij(X) := P(Ỹ = j|Y = i,X).

For mathematical simplicity, most of the literature would focus on a simplified case where

the noise is independent of feature X, i.e., T (X) ≡ T . The feature-independent noise

transition matrix T can also be viewed as an averaged measure, i.e., T = EX [T (X)].

The knowledge of T enables a variety of solutions related to noisy labels, e.g., robust

learning algorithms, dataset diagnosis, and label error detection.

1.2.1.3 Clusterability

One important concept in this dissertation is the clusterability of data. In-

tuitively, clusterability implies that two instances are likely to have the same labels if

they are close to each other [52]. To facilitate the discovery of close-by instances, our

solution will resolve to representation learning [16]. Recent literature shows, even though

label noise makes the model generalizes poorly, it still induces good representations

14

[107]. Formally, for a neural network with both convolutional layers and linear layers,

e.g., ResNet [69], we denote the convolution layers by function fconv and the representa-

tions by X̄ := fconv(X). With the above, we define k-Nearest-Neighbor (k-NN) label

clusterability as:

Definition 1 (k-NN label clusterability [230]). A dataset D satisfies k-NN label cluster-

ability if ∀n ∈ [N], the feature xn and its k-Nearest-Neighbor xn1 , · · · ,xnk
belong to the

same true label class.

See Figure 1.2 for an illustration of the k-NN clusterability. Note the distances

are often measured between representations. Feature xn and its representation x̄n refer

to the same data point in different views. There are three primary properties of the

definition:

• The k1-NN label clusterability condition is harder to satisfy than k2-NN label cluster-

ability when k1 > k2;

• The cluster containing the same clean labels is not required to be a continuum, e.g.,

in Figure 1.2, two clusters of class “1” can be far away;

• The k-NN label clusterability only requires the existence of these feasible points, i.e.,

specifying the true class is not necessary.

The k-NN label clusterability likely holds in many tasks, such as image classi-

fication when features are well-extracted by convolutional layers [64, 80, 97] and each

feature belongs to a unique true class. The high-level intuition is that similar repre-

sentations should belong to the same label class. One can consider a label generation

15

process [48, 121] where the feature distribution is modeled as a mixture of many disjoint

sub-distributions, and the labeling function maps each sub-distribution to a unique label

class. Therefore, samples from the same sub-distribution have the same true label. The

following definition describes clusterability in a more relaxed case.

Definition 2 ((k, δk) label clusterability [226]). A dataset D satisfies (k, δk) label clus-

terability if: ∀n ∈ [N], the feature xn and its k-Nearest-Neighbors (k-NN) xn1 , · · · , xnk

belong to the same true class with probability at least 1− δk.

The parameter δk in Definition 2 captures two types of randomnesses: one

comes from a probabilistic Y given X, i.e., ∃i, x,P(Y = i|X = x) /∈ {0, 1}; the other

depends on the quality of features and the value of k, which will be further illustrated

in Figure 3.6. The (k, 0) label clusterability is also known as k-NN label clusterability

[230] defined in Definition 1.

1.2.2 Tasks in Data-Centric AI

Starting with the data quality, the dissertation focuses on four tasks:

• Estimation tasks: the diagnosis of label quality, returning a statistical measure;

• Detection tasks: the detection and curation of wrongly-labeled data, returning

instance-wise detection results;

• Learning task: efficient training of the model with the detection results, returning

a trained model;

16

• Evaluation tasks: examining the model performance beyond a simple accuracy,

returning a fairness measure.

In the rest of this subsection, we will introduce the key concepts for each of the

above tasks. There are other tasks related to weakly-supervised data and data-centric

AI, e.g., out-of-distribution data [75, 181, 83, 202], and distribution shift [47, 203], which

are not the scope of this dissertation and will be left for future works.

1.2.2.1 Estimation

The estimation task focuses on the label noise transition matrix estimation.

The learner can only access the noisy dataset D̃ in this setting. The noisy label Ỹ satisfies

an underlying transition probability characterized by T as defined in Section 1.2.1.2.

The goal is to minimize the estimation error calculated by the average total variation of

the true T and the estimated T̂ [226, 217]:

Error(T , T̂) =
∑

i∈[K],j∈[K]

|Tij − T̂ij |/(2K).

1.2.2.2 Detection

The performance of the corrupted label detection (a.k.a. finding label errors)

can be measured by the F1-score of the detected corrupted instances, which is the

harmonic mean of the precision and recall, i.e.

F1 = 2/(Precision−1 + Recall−1).

17

Let 1(·) be the indicator function that takes value 1 when the specified condition is

satisfied and 0 otherwise. Let vn = 1 indicate that ỹn is detected as a corrupted label,

and vn = 0 if ỹn is detected to be clean. Then the precision and recall can be calculated

as

Precision =

∑
n∈[N] 1(vn = 1, ỹn ̸= yn)∑

n∈[N] 1(vn = 1)
,

Recall =

∑
n∈[N] 1(vn = 1, ỹn ̸= yn)∑

n∈[N] 1(ỹn ̸= yn)
.

Note the F1 score on corrupted instances is sensitive to the case when the noise rate is

mild to low, which is typically the case in practice. For example, if 20% of the data is

corrupted but the algorithm reports no label errors, the returned F1 score on corrupted

instances is 0 while the one on clean instances is 2/(0.8−1 + 1) ≈ 0.89.

1.2.2.3 Supervised Learning

The focus of the learning part is on the classification task. The supervised

classification task aims to identify a classifier f : X → Y that maps X to Y accurately.

We focus on minimizing the empirical risk using DNNs with respect to the cross-entropy

(CE) loss defined as

ℓ(f(X), Y) = − ln(fX [Y]), Y ∈ [K],

where fX [Y] denotes the Y -th component of column vector f(X) and K is the number of

classes. Notation ℓ(·) stands for the cross-entropy (CE) loss ℓ(f(x), y) := − ln(fx[y]), y ∈

[K]. The most commonly used evaluation metric in the classification task is accuracy on

18

the unknown clean dataset D := {(xn, yn)}n∈[N], which is defined as

Accuracy(D) =
1

N

∑
n∈[N]

1(f(xn) = yn),

where f(x) := argmaxi∈[K] fx[i]. Note that notations f and f stand for the same model

but different outputs. Due to the unavailability of D, it is also challenging to accurately

evaluate the performance of a model given the current dataset.

1.2.2.4 Semi-Supervised Learning

The semi-supervised learning (SSL) task includes both a labeled dataset (de-

noted by DL) and an unlabeled dataset DU := {(xn+NL
, ·)}n∈[NU]. Both datasets are

assumed to be drawn from D, though the labels in DU are missing or unobservable.

Let N := NL +NU . In semi-supervised learning, leveraging unsupervised information

becomes crucial compared to supervised learning tasks. To enhance the model’s gen-

eralization capability, recent semi-supervised learning methods [18, 201, 17, 159, 204]

often incorporate consistency regularization using unlabeled data. This ensures that the

model’s output remains consistent even with randomly augmented inputs. For ease of

notation, we define soft labels as follows.

Soft-labels The one-hot encoding of yn can be written as yn, where each element

writes as yn[i] = 1{i = yn}. More generally, we can extend the one-hot encoding to soft

labels by requiring each element y[i] ∈ [0, 1] and
∑

i∈[K] y[i] = 1. As a result, the CE

19

loss with soft label y can be written as

ℓ(f(x),y) := −
∑
i∈[K]

y[i] ln(fx[i]).

Pseudo-labels In the context of consistency regularization, unlabeled data is assigned

pseudo-labels based on model predictions, either explicitly [18] or implicitly [201]. These

pseudo-labels can be represented as soft-labels. The specific formulations of explicit

and implicit pseudo-labels have been shown in detail in [229]. Intuitively, by assigning

pseudo-labels to the unlabeled dataset, we will obtain a new noisy dataset D̃, where

each example has either a true label or a pseudo label. Then we can unify them with

the following unified loss:

L(f, D̃) =
1

N

N∑
n=1

ℓ(f(xn), ỹn) =
1

N

N∑
n=1

E
Ỹ∼Dỹn

[
ℓ(f(xn), Ỹ)

]
, (1.1)

where

E
Ỹ∼Dy

[
ℓ(f(x), Ỹ)

]
=
∑
i∈[K]

P(Ỹ = i)ℓ(f(x), i). (1.2)

See more detailed derivations in [229]. The above two equations indicate that the popular

SSL solution with consistency regularization can be modeled as a problem of learning

with noisy labels [139], where the bridge is the pseudo label.

1.2.2.5 Evaluation

It is important to comprehensively evaluate the performance of a model on

different datasets. In the ideal case with perfect data, the performance, such as accuracy,

can be calculated directly. However, in practical cases, the evaluation tends to be multi-

dimensional and the required data/attributes may not be available. In this dissertation,

20

we focus on two cases: 1) demonstrating the disparate impact and designing a new

evaluation metric for SSL, and 2) evaluating the model fairness on imperfect datasets

when the sensitive attributes are noisy or missing. We introduce preliminaries as follows.

Disparate impact of SSL According to the property of different datasets, the

performance of a model may be evaluated by more than the accuracy metric. For

example, in semi-supervised learning tasks, we will demonstrate in Section 5.1 that the

“Matthew effect” may exist and as a result, the rich sub-population may get richer and

the poor sub-population may get poorer after SSL.

Fairness Evaluation More generally, as will be introduced in Section 5.2, the com-

monly used classification models may have fairness issues in addition to accuracy, i.e.,

the model is supposed to be fair on different sensitive attributes, such as race and gender

[86, 169, 29, 173, 194, 172, 195, 171]. The fairness metric is usually defined as some

group fairness conditioned on a sensitive attribute A ∈ [M] := {1, 2, · · · ,M}. Denote

the dataset with ground-truth sensitive attributes by D := {(xn, yn, an)|n ∈ [N]}, the

joint distribution of (X,Y,A) by D. In this subsection, we only show the definitions

by assuming the true sensitive attributes are available. But it has been noted that, in

practical cases, these attributes are usually unknown or noisy, which will be addressed

in Section 5.2.

There are some popular group fairness definitions and their corresponding

measurable metrics: demographic parity (DP) [22, 34], equalized odds (EOd) [193], and

equalized opportunity (EOp) [66]. Other evaluation metrics, such as [65], are left for

21

future works.

Definition 3 (Demographic Parity). The demographic parity metric of f on D condi-

tioned on A is defined as:

∆DP(D, f) := 1

M(M − 1)K
·
∑

a,a′∈[M]
k∈[K]

|P(f(X) = k|A = a)

− P(f(X) = k|A = a′)|.

Definition 4 (Equalized Odds). The equalized odds metric of f on D conditioned on A

is:

∆EOd(D, f) = 1

M(M − 1)K2

∑
a,a′∈[M]

k∈[K],y∈[K]

|P(f(X) = k|Y = y,A = a)

− P(f(X) = k|Y = y,A = a′)|.

Definition 5 (Equalized Opportunity). The equalized opportunity metric of f on D

conditioned on A is:

∆EOp(D, f) = 1

M(M − 1)

∑
a,a′∈[M]

|P(f(X) = 1|Y = 1, A = a)

− P(f(X) = 1|Y = 1, A = a′)|.

Matrix-form Metrics To unify three fairness metrics in a general form, we represent

them with a matrix H . Each column of H denotes the probability needed for evaluating

fairness with respect to classifier prediction f(X). For DP, H[:, k] denotes the following

column vector:

H[:, k] := [P(f(X) = k|A = 1), · · · ,P(f(X) = k|A = M)]⊤.

22

Similarly for EOd and EOp, let k ⊗ y := K(k − 1) + y be the 1-d flattened index that

represents the 2-d coordinate in f(X)×Y , H[:, k ⊗ y] is defined as the following column

vector:

H[:, k ⊗ y] := [P(f(X) = k|Y = y,A = 1), · · · ,P(f(X) = k|Y = y,A = M)]⊤.

The sizes of H for DP, EOd and EOp are M ×K, M ×K2, and M × 1 respectively.

The noise transition matrix related to EOd and EOp is Tk⊗y, where the (a, ã)-th element

is denoted by Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a).

Proxy Models When the sensitive attributes are missing from the dataset, we may

use a proxy model g : X → [M] [54, 8, 26] to get proxy (noisy) sensitive attribute

Ã := g(X). The input of g can be any subsets of feature X. We write the input of g as

X just for notation simplicity. We define weak proxies as follows.

Definition 6 (Weak Proxy). A proxy model g : X → [M] is ϵ0-weak if

max
x∈X

P(Ã = a|A = a,X = x) ≤ 1− ϵ0,

where 0 < ϵ0 < 1 quantifies the weakness. A larger ϵ0 indicates a weaker proxy.

1.3 Summary of Publications

Over the past fours years, I have published 12 conference papers as the first (or

co-first) author at premier machine learning and computer science conferences including

ICML [230, 231, 226, 232], ICLR [229, 30, 32, 188], NeurIPS [174], CVPR [227], ACM

23

Sigmetrics [233], and ACM SIGKDD [189]. This dissertation will focus on discussing

the data-centric solutions when the data is weakly supervised. Particularly, Chapter 2

covers [230, 231], Chapter 3 covers [226] and the sample sieve of [30], Chapter 4 covers

the SSL training of [30] and [227], and Chapter 5 covers [229, 232].

24

Chapter 2

Estimate the Noise Transition Matrix T

Most of the existing discussions on estimating T are learning-centric, where

the model needs to be trained the on the targeted noisy dataset, and T is estimated

relying on the capability of the trained model. In this chapter, we propose a data-centric

alternative to estimate T by carefully exploiting the relationships among the data

points themselves. We will start with analyzing the potential limitations of the existing

learning-centric methods (Section 2.1), then propose HOC (Section 2.2), a method based

on the Higher-Order Consensus of examples, and its extension when the feature quality

is low (Section 2.3).

2.1 Existing Learning-Centric Methods Have Limitations

Estimating T is challenging without accessing clean labels. Existing works on

estimating T often rely on finding a number of high-quality anchor points [156, 119, 146],

or approximate anchor points [199], which are defined as the training examples that

25

belong to a particular class almost surely. Formally, an x is an anchor point for the class

i if P(Y = i|X = x) is equal to one or close to one [199]. Further, if P(Y = i|X = x) = 1,

we have P(Ỹ = j|X = x) =
∑

k∈[K] TkjP(Y = k|X = x) = Tij . The matrix T can

be obtained via estimating the noisy class posterior probabilities for anchor points

heuristically [146] or theoretically [119].

While the anchor point approach observes a significant amount of successes,

this method suffers from three major limitations:

• The implementation of it requires that the trained model can perfectly predict the

probability of the noisy labels, which is challenging when the number of classes is high,

and when the number of training instances is limited.

• The number of available and identifiable anchor points can become a bottleneck even

if the posterior distribution can be perfectly learned.

• The lack of flexibility to zoom into a subset of training data also limits its potential to

be applied to estimate local transition matrices for more challenging instance-dependent

settings [199].

Other methods such as confident learning [144, 141] may not explicitly identify

anchor points, but they still need to fit the noisy distributions and find some “confident

points”, thus suffering from the above limitations.

26

2.2 Estimate T with Clusterability

In this section, we propose an alternative based on the label clusterability as

defined in Definition 1. It is worth noting that, instead of requiring identical labels for a

big cluster defined by a large k, we will only require the 2 nearest neighbors to have the

same clean labels with the example itself, i.e., 2-NN label clusterability. Its feasibility

will be demonstrated in Section 2.2.6.3.

Comparison to anchor points The anchor point approach relies on training a

classifier to identify anchor points and the corresponding true class. Our label cluster-

ability definition does not require the knowledge of true label class. Moreover, if good

representations are available apriori, our method is model-free.

Next, we will elaborate our proposed T estimator leveraging 2-NN label clus-

terability. Relaxation of 2-NN label clusterability will be discussed in Appendix A.3.1.

2.2.1 Warm-up: A Binary Example

We now present our alternative to estimate T . Our idea builds around the

concept of using high-order consensuses of the noisy labels Ỹ s among each training

instance and its 2-NN. In this section, we consider the case when T (X) is the same for

different X, i.e., T (X) ≡ T . For a gentle start, consider binary cases (K = 2) with

classes {1, 2}. Short-hand error rates e1 := T12 := P(Ỹ = 2|Y = 1), e2 := T21 := P(Ỹ =

1|Y = 2). p1 := P(Y = 1) denotes the clean prior probability of class-1.

We are inspired by the matching mechanism for binary error rates estimation

27

[123, 127]. Intuitively, with 1-NN label clusterability, for two representations in the

same dataset with minimal distance, their labels should be identical. Otherwise, we

know there must be exactly one example with the corrupted label. Similarly, if k-NN

label clusterability holds, by comparing the noisy label of one representation with its

k-NN, we can write down the probability of the k + 1 noisy label consensuses (including

agreements and disagreements) as a function of e1, e2, p1.

Going beyond votes from k-NN noisy labels To infer whether the label of an

instance is clean or corrupted, one could use the 2-NN of this instance and take a

majority vote. For example, if the considered instance has the label “1” and the other

two neighbors have the label “2”, it can be inferred that the label of the considered

instance is corrupted since “2” is in the majority. Nonetheless, this inference would

be wrong when the 2-NN are corrupted. Increasing the accuracy of the naive majority

vote [125] or other inference approaches [117] requires stronger clusterability that more

neighbor representations should belong to the same clean class. Our approach goes

beyond simply using the votes among k-NNs. Instead, we will rely on the statistics of

high-order consensuses among the k-NN noisy labels. As a result, our method enjoys a

robust implementation with only requiring 2-NN label clusterability.

Consensuses in binary cases We now derive our approach for the binary case

to deliver our main idea. We present the general form of our estimator in the next

subsection. Let Ỹ1 be the noisy label of one particular instance, Ỹ2 and Ỹ3 be the

noisy labels of its nearest neighbor and second nearest neighbor. With 2-NN label

28

clusterability, their clean labels are identical, i.e. Y1 = Y2 = Y3. For Ỹ1, noting

P(Ỹ1 = j) =
∑

i∈[K] P(Ỹ1 = j|Y1 = i) · P(Y1 = i), we have the following two first-order

equations:

P(Ỹ1 = 1) = p1(1− e1) + (1− p1)e2,

P(Ỹ1 = 2) = p1e1 + (1− p1)(1− e2).

For the second-order consensuses, we have

P(Ỹ1 = j1, Ỹ2 = j2)

(a)
=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2|Y1 = i, Y2 = i) · P(Y1 = i)

(b)
=
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i) · P(Ỹ2 = j2|Y2 = i) · P(Y1 = i),

where equality (a) holds due to the 2-NN label clusterability, i.e., Y1 = Y2(= Y3) w.p. 1,

and equality (b) holds due to the conditional independency between Ỹ1 and Ỹ2 given their

clean labels. In total, there are four second-order equations for different combinations

of Ỹ1, Ỹ2, e.g.,

P(Ỹ1 = 1, Ỹ2 = 1) = p1(1− e1)
2 + (1− p1)e

2
2,

P(Ỹ1 = 1, Ỹ2 = 2) = p1(1− e1)e1 + (1− p1)e2(1− e2).

Similarly, given Y1 = Y2 = Y3, there are eight third-order equations defined for consen-

suses among Ỹ1, Ỹ2, Ỹ3 , e.g.,

P(Ỹ1 = 1, Ỹ2 = 1, Ỹ3 = 1) = p1(1− e1)
3 + (1− p1)e

3
2.

Figure 2.1 illustrates the above consensus-checking process. We leave more details and

full derivations to Appendix A.1. The left-hand side of each above equation is the

29

Figure 2.1: Illustration of high-order consensuses.

probability of a particular first-, second-, or third-order consensus pattern of Ỹ , which

could be estimated given the noisy dataset D̃. These consensus patterns encode the

high-order information of T . Later in Section 2.2.5.1, we will prove that given the

consensus probability (LHS), the first three order consensus equations we presented

above are sufficient to jointly identify a unique solution to T , which indeed corresponds

to the true T .

2.2.2 Estimating T : The General Form

We generalize this idea to classifications with multiple classes. For a K-class

classification problem, define p := [P(Y = i), i ∈ [K]]⊤ and

Tr := T · Sr, ∀r ∈ [K], (2.1)

where Sr := [er+1, er+2, · · · , eK , e1, e2, · · · er] is a cyclic permutation matrix, and er is

the K × 1 column vector of which the r-th element is 1 and 0 otherwise. The matrix

30

Sr cyclically shifts each column of T to its left side by r units. Similar to the previous

binary example, the LHS of the equation is the probability of different distributions of

Ỹ s among each instance and its 2-NN. Let (i+ r)K := [(i+ r− 1) mod K] + 1. For the

first-, second-, and third-order consensuses, we can respectively denote them in vector

forms as follows (∀r ∈ [K], s ∈ [K]).

c[1] = [P(Ỹ1 = i), i ∈ [K]]⊤,

c[2]r = [P(Ỹ1 = i, Ỹ2 = (i+ r)K), i ∈ [K]]⊤,

c[3]r,s=[P(Ỹ1 = i, Ỹ2 = (i+ r)K , Ỹ3 = (i+ s)K), i ∈ [K]]⊤.

Denote by ◦ the Hadamard product of two matrices. We now present the system of

consensus equations for estimating T and p in the general form:

Consensus Equations

• First-order (K equations):

c[1] := T⊤p, (2.2)

• Second-order (K2 equations):

c[2]r := (T ◦ Tr)
⊤p, r ∈ [K], (2.3)

• Third-order (K3 equations):

c[3]r,s := (T ◦ Tr ◦ Ts)
⊤p, r, s ∈ [K]. (2.4)

While we leave the full details of derivation to Appendix A.1, we show one

31

second-order consensus below for an example:

e⊤j c
[2]
r = P(Ỹ1 = j, Ỹ2 = (j + r)K)

(a)
=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Ỹ2 = (j + r)K |Y2 = i)P(Y1 = i)

=
∑
i∈[K]

Ti,j · Ti,(j+r)K · pi
(b)
= e⊤j (T ◦ Tr)

⊤p,

where equality (a) holds again due to the 2-NN label clusterability and the conditional

independency (similar to binary cases), and equality (b) holds due to Tr[i, j] = Ti,(j+r)K .

We note that although there are higher-order consensuses according to this

rule, we only consider up to third-order consensuses of Ỹ as shown in Eqns. (2.2)–(2.4).

For ease of notation, we define two stacked vector forms for c
[2]
r,s, c

[3]
r,s :

c[2] : = [(c[2]r)⊤,∀r ∈ [K]]⊤, (2.5)

c[3] : = [(c[3]r,s)
⊤, ∀r, s ∈ [K]]⊤. (2.6)

2.2.3 The HOC Estimator

Solving the consensus equations requires estimating the consensus probabilities

c[1], c[2], and c[3]. In this subsection, we will first show the procedures for estimating

these probabilities and then formulate an efficient optimization problem for T and p.

To summarize, there are three steps:

• Step 1: Find 2-NN for each x̄n from the noisy dataset D̃.

• Step 2: Compute each ĉ[ν] using x̄n and their 2-NN.

• Step 3: Formulate the optimization problem in (2.10).

Denote by E ⊆ [N]. We elaborate on each step as follows.

32

Step 1: Find 2-NN Given the noisy dataset {(xn, ỹn), n ∈ E}, for each representation

x̄n = fconv(xn), we can find its 2-NN x̄n1 , x̄n2 as:

n1 =argmin
n′∈E,n′ ̸=n

Dist(x̄n, x̄n′), n2 = argmin
n′∈E,n′ ̸=n ̸=n1

Dist(x̄n, x̄n′),

and the corresponding noisy labels ỹn1 , ỹn2 . Dist(A,B) measures the distance between

A and B - we will use Dist as the negative cosine similarity in our experiment.

Step 2: Empirical mean Denote by 1{·} the indicator function taking value 1 when

the specified condition is met and 0 otherwise. Let E be a set of indices and |E| be the

number of them. The probability of each high-order consensus could be estimated by the

empirical mean using a particular set of sampled examples in E: {(ỹn, ỹn1 , ỹn2), n ∈ E}

as follows (∀i).

ĉ[1][i] =
1

|E|
∑
n∈E

1{ỹn = i},

ĉ[2]r [i] =
1

|E|
∑
n∈E

1{ỹn = i, ỹn1 = (i+ r)K}, (2.7)

ĉ[3]r,s[i] =
1

|E|
∑
n∈E

1{ỹn = i, ỹn1 = (i+ r)K , ỹn2 = (i+ s)K}.

The motivation of identifying a subset E for the estimators is due to the

desired provable convergence to the expectation. Each 3-tuple in the sample should be

independent and identically distributed (i.i.d.) so that each ĉ[ν] is consistent. However,

the existence of nearest neighbors, e.g., when both n and n1 belong to E and n is a

2-NN of n1, may violate the i.i.d. property of these 3-tuples. Denote by

E∗
3 = argmax

E⊆[N]
|E|, s.t. |{n, n1, n2,∀n ∈ E}| = 3|E|.

33

Then any subset E ⊆ E∗
3 guarantees the i.i.d. property. Note it is generally time-

consuming to find the best E. For an efficient solution (with empirical approximation),

we randomly sample |E| center indices from [N] and repeat Step 1 and Step 2 multiple

times with different E (as Line 3 – Line 8 in Algorithm 8). We will further discuss the

magnitude of |E| in Section 2.2.5.2 and Appendix A.2.3.

Step 3: Optimization With ĉ[1], ĉ[2], and ĉ[3], we formulate the optimization problem

in (2.8) to jointly solve for T ,p.

minimize
T ,p

3∑
ν=1

∥ĉ[ν] − c[ν]∥2 (2.8a)

subject to Eqns. (2.1) – (2.6) (2.8b)

pi ≥ 0, Tij ≥ 0, i, j ∈ [K] (2.8c)∑
i∈[K]

pi = 1,
∑
j∈[K]

Tij = 1, i ∈ [K]. (2.8d)

The crucial components in (2.8) are:

• Objective (2.8a): the sum of errors from each order of consensus, where the error is

defined in ℓ2-norm.

• Variable definitions (2.8b): the closed-form relationship between intermediate variables

(such as c[ν] and Tr) and the optimized variables (T and p).

• Constraints (2.8c) and (2.8d): feasibility of a solution.

Challenges for solving the constrained optimization problem The problem in

(2.8) is a constrained optimization problem with K(K+1) variables, K(K+1) inequality

constraints, and (K + 1) equality constraints, and it is generally hard to guarantee its

34

convexity. Directly solving this problem using the Lagrangian-dual method may take a

long time to converge [20].

Unconstrained soft approximation Notice that both p and each row of T are

probability measures. Instead of directly solving for T and p, we seek to relax the

constraints by introducing auxiliary and unconstrained variables to represent T and p.

Particularly, we turn to optimizing variables T̄ ∈ RK×K and p̄ ∈ RK that are associated

with T and p by T := σT (T̄), p := σp(p̄), where σT (·) and σp(·) are softmax functions

such that

Tij :=
exp(T̄ij)∑

k∈[K] exp(T̄ik)
, pi :=

exp(p̄i)∑
k∈[K] exp(p̄k)

. (2.9)

Therefore, we can drop all the constraints in (2.8) and focus on solving the unconstrained

optimization problem with K(K + 1) variables. Our new optimization problem is given

as follows:

minimize
T̄ ,p̄

3∑
ν=1

∥ĉ[ν] − c[ν]∥2 (2.10a)

subject to Eqns. (2.1) – (2.6), Eqn. (2.9). (2.10b)

Equations in (2.10b) are presented only for a clear objective function. Given the solution

of problem (2.10), we can calculate T and p according to Eqn. (2.9). Note the search

space of T before and after soft approximation differs only in corner cases (before: Tij ≥ 0,

after: Tij > 0). For each original and non-corner T , there exists a soft approximated T

that leads to the same transition probabilities. Thus the soft approximation preserves

the property of T , e.g. the uniqueness in Theorem 1. Algorithm 1 summarizes our

High-Order-Consensus (HOC) estimator.

35

Algorithm 1 The HOC Estimator

1: Input: Rounds: G. Sample size: |E|. Noisy dataset: D̃ = {(xn, ỹn)}n∈[N]. Repre-

sentation extractor: fconv.

2: Initialization: Set ĉ[1], ĉ[2], ĉ[3] to 0. Extract representations xn ← fconv(xn),∀n ∈

[N]. T̄ = KI − 11⊤. p̄ = 1/K. // I: identity matrix, 1: all-ones column vector.

3: repeat

4: E ← RndSmp([N], |E|); // sample |E| center indices

5: {(ỹn, ỹn1 , ỹn2), n ∈ [|E|]} ← Get2NN(D̃, E);

// find the noisy labels of the 2-NN of xn, n ∈ [E]

6: (ĉ
[1]
tmp, ĉ

[2]
tmp, ĉ

[3]
tmp)← CountFreq(E) // as Eqn. (2.7)

7: ĉ[ν] ← ĉ[ν] + ĉ
[ν]
tmp, ν ∈ {1, 2, 3};

8: until G times

9: ĉ[ν] ← ĉ[ν]/G, ν ∈ {1, 2, 3}; // estimate c[ν] G times

10: Solve the unconstrained problem in (2.10) with (ĉ[1], ĉ[2], ĉ[3]) by gradient decent,

get T̄ and p̄

11: Output: Estimates T̂ ← σT (T̄), p̂← σp(p̄).

2.2.4 Flexible Extensions to Instance-Dependent Noise

Algorithm 1 provides a generically applicable and light tool for fast estimation

of T . The flexibility makes it possible to be applied to more sophisticated instance-

dependent label noise. We briefly discuss possible applications to estimating the local

noise transition matrix T (X).

36

Locally homogeneous label noise Intuitively, by considering a local dataset in

which every representation shares the same T (X), the method in Section 2.2.2 can then

be applied locally to estimate the local T (X). Specially, using a “waypoint” x̄n, we build

a local dataset D̃n that includes the M -NN of x̄n, i.e., D̃n = {(xn, ỹn)}∪{(xni , ỹni),∀i ∈

[M]}, where {ni, i ∈ [M]} are the indices of the M -NN of x̄n. We introduce the following

definitions:

Definition 7 (M -NN noise clusterability). We call D̃n satisfies M-NN noise cluster-

ability if the M-NN of x̄n have the same noise transition matrix as xn, i.e., T (xn) =

T (xni), ∀i ∈ [M].

Definition 8 ((H,M)-coverage). We call D̃ satisfies (H,M)-coverage if there exist H

instances x̄h(n), n ∈ [H] such that D̃ = ∪Hn=1D̃h(n), where each D̃h(n) satisfies M-NN

noise clusterability.

Note Dentition 7 focuses on the clusterability of noise transition matrices,

which is different from the clusterability of the true classes of labels. When M -NN noise

clusterability holds for x̄n, the label noise in local dataset D̃n is effectively homogeneous.

If D̃ further satisfies (H,M)-coverage, we can divide the training data D̃ to H local

sub-datasets D̃h(n), n ∈ [H] and separately apply Algorithm 1 on each of them. The local

estimates allow us to apply loss correction separately using different T (X) at different

parts of the training data. Besides, when there is no M -NN noise clusterability, we may

require knowing properly constructed sub-spaces to separate the data, with each part

of them sharing similar noise rates [197, 198]. We leave more detailed discussions in

37

Appendix A.3.2.

2.2.5 Theoretical Guarantees

We will prove that our consensus equations are sufficient for estimating a unique

T , and show the advantage of our approach in terms of a better sample complexity than

the anchor point approach.

2.2.5.1 Uniqueness of Solution

Before formally presenting the uniqueness guarantee, we introduce two assump-

tions as we will need.

Assumption 1 (Nonsingular T). The noise transition matrix is non-singular, i.e.,

Rank(T) = K.

Assumption 2 (Informative T). The diagonal elements of T are dominant, i.e., Tii >

Tij , ∀i ∈ [K], j ∈ [K], j ̸= i.

Assumption 1 is commonly made in the literature and ensures the effect of

label noise is invertible [163]. Assumption 2 characterizes a particular permutation of

row vectors in T [127]. See more discussions on their feasibility in Appendix A.3.3. The

uniqueness is formally stated in Theorem 1. The proof is detailed in Appendix A.2.1.

Theorem 1. When D̃ satisfies the 2-NN label clusterability and T is nonsingular

and informative, with a perfect knowledge of c[ν], ν = 1, 2, 3, the solution of consensus

equations (2.2) – (2.4) returns the true T uniquely.

38

Proof Sketch. The high-level idea of the proof is to connect the Hadamard products to

matrix products, and prove that any linear combination of two or more rows of T does

not exist in T .

Step I: Transform the second-order equations. By exploiting the relation

between Hadamard products and matrix products, the second-order equations can be

transformed to T⊤DpT = T†, where T† is fixed given c
[2]
r ,∀r ∈ [K], and Dp is a diagonal

matrix with p as its main diagonals,

Step II: Transform the third-order equations. Following the idea in Step I, we

can also transform the third-order equations to (T ◦ Ts) = TT−1
† T⊤

‡,s,∀s ∈ [K], where

T‡,s is fixed given c
[3]
r,s, ∀r, s.

Step III: From matrices to vectors We analyze the rows u⊤ of T and transform

the equations in Step II to (e.g. s = 0) Au = u ◦ u, where A = T‡(T
−1
†)⊤. Then we

need to find the number of feasible vectors u.

Step IV: Construct the (K + 1)-th vector When T is non-singular, we prove the

(K + 1)-th solution uK+1 must be identical uk, k ∈ [K].

Wrapping-up: Unique T Step IV shows T only contains K different feasible

rows. The informativeness of T ensures the unique order of these K rows. Thus T is

unique.

39

Challenges Proving Theorem 1 is challenging due to: 1) The coupling effect between

T and p makes the structure of solution T unclear; 2) Naively replacing p, e.g., using

p = (T⊤)−1c[1], will introduce matrix inverse, which cannot be canceled with the

Hadamard product; 3) A system of third-order equations with K2 variables will have up

to 3K
2
solutions and the closed-form is not explicit.

Local estimates Our next corollary 1 extends Theorem 1 to local datasets, when T

can be heterogeneous.

Corollary 1. When D̃ satisfies (H,M)-coverage, each D̃h(n) satisfies 2-NN label clus-

terability, and T (xh(n)) is nonsingular and informative, with a perfect knowledge of the

local c[ν], ν = 1, 2, 3, the solution of consensus equations (2.2) – (2.4) is unique and

recovers T (xh(n)).

2.2.5.2 Sample Complexity

We next show that with the estimates ĉ[1], ĉ[2], and ĉ[3], HOC returns a

reasonably well solution. Recall that, in Section 2.2.3, Step 2 requires a particular E ⊆ E∗
3

to guarantee the i.i.d. property of the sample {(ỹn, ỹn1 , ỹn2), n ∈ E}. For a tractable

sample complexity, we focus on a particular dataset D̃ and feature extractor fconv such

that 1) |E∗
3 | = Θ(N) and 2) Tij =

1−Tii
K−1 , ∀j ̸= i, i ∈ [N], j ∈ [N]. Supposing each tuple is

drawn from non-overlapping balls, condition 1) is satisfied when the number of these

non-overlapping balls covering the representation space is Θ(N). See Appendix A.2.2 for

a detailed example when the representations are uniformly distributed. Lemma 1 shows

40

the error upper bound of our estimates ĉ[ν], ν = 1, 2, 3. See Appendix A.2.3 for the proof.

Lemma 1. With probability 1−δ, ∀ν, l, the estimation error |ĉ[ν][l]−c[ν][l]| is bounded

at the order of O(
√
ln(1/δ)/N).

Lemma 1 is effectively the sample complexity of estimating |E∗
3 | i.i.d. random

variables by the sample mean. Due to assuming a uniform diagonal T , we only need to

consider the estimation error of T̂ii. For each i ∈ [K], see the result in Theorem 2 and

the proof in Appendix A.2.4.

Theorem 2. When Tii >
1−P(Y=i)+(K−1)P(Ỹ=i)

K(K−1)P(Y=i) , w.p. 1 − 2δ, |T̂ii − Tii| is bounded at

the order of O(
√

ln(1/δ)/N).

Theorem 2 indicates the sample complexity of our solution has the same order

in terms of N compared to a standard empirical mean estimation in Lemma 1. Remark 1

shows our approach is better than using a set of anchor points in the sample complexity.

Remark 1 (Comparison). The methods based on anchor points estimate T with NAC <

N (NAC ≪ N in many cases) anchor points. Thus w.p. 1− δ, the estimation error is at

the order of O(
√

ln(1/δ)/NAC).

2.2.6 Experiments

We present experiment settings as follows.

Datasets and models HOC is evaluated on three benchmark datasets: CIFAR-10,

CIFAR-100 [99] and Clothing1M [200]. For the standard training step, we use ResNet34

41

Figure 2.2: Comparison of estimation errors of T given by T-Revision [199] and our
HOC estimator.

Table 2.1: The best epoch (clean) test accuracy (%) with synthetic label noise.

Method
Inst. CIFAR-10 Inst. CIFAR-100

η = 0.2 η = 0.4 η = 0.6 η = 0.2 η = 0.4 η = 0.6

CE (Standard) 85.66±0.62 76.89±0.93 60.29±1.17 57.26±1.33 41.33±0.89 25.08±1.85
Peer Loss [124] 89.52±0.22 83.44±0.30 75.15±0.82 61.13±0.48 48.01±0.12 33.00±1.47

LDMI [205] 88.67±0.70 83.65±1.13 69.82±1.72 57.36±1.18 43.06±0.97 26.13±2.39
Lq [221] 85.66±1.09 75.24±1.07 61.30±3.35 56.92±0.24 40.17±1.52 25.58±3.12

Co-teaching [63] 88.84±0.20 72.61±1.35 63.76±1.11 43.37±0.47 23.20±0.44 12.43±0.50
Co-teaching+ [212] 89.82±0.39 73.44±0.38 63.61±1.78 41.62±1.05 24.73±0.85 12.25±0.35

JoCoR [179] 88.82±0.20 71.13±1.94 63.88±2.05 44.55±0.62 23.92±0.32 13.05±1.10
Forward [146] 87.87±0.96 79.81±2.58 68.32±1.68 57.69±1.55 42.62±0.92 27.35±3.42

T-Revision [199] 90.31±0.37 84.99±0.81 72.06±3.40 58.00±0.20 40.01±0.32 40.88±7.57
HOC Global 89.71±0.51 84.62±1.02 70.67±3.38 68.82±0.26 62.29±1.11 52.96±1.85
HOC Local 90.03±0.15 85.49±0.80 77.40±0.47 67.47±0.85 61.20±1.04 49.84±1.81

for CIFAR-10 and CIFAR-100, and ResNet50 for Clothing1M. The representations come

from the outputs before the final fully-connected layer of ResNet34/50. The distance

between different representations is measured by the negative cosine similarity.

Noise type HOC is tested on both synthetic label noise and real-world human label

noise. The synthetic label noise includes two regimes: symmetric noise and instance-

42

dependent noise. For both regimes, the noise rate η is the overall ratio of instances with

a corrupted label in the whole dataset. The symmetric noise is generated by randomly

flipping a clean label to the other possible classes w.p. η [199]. The basic idea of

generating instance-dependent noise is to randomly generate one vector for each class

(K vectors in total) and project each incoming feature onto these K vectors [198]. The

label noise is added by jointly considering the clean label and the projection results.

See Appendix A.4.1 for more details. The real-world human noise comes from human

annotations. Particularly, for the 50, 000 training images in CIFAR-10, we re-collect

human annotations from Amazon Mechanical Turk (MTurk) in February 2020. The

cost of collecting one annotation for each image is ¢10 per image. For the Clothing1M

dataset, we train on 1 million noisy training instances reflecting real-world human noise.

2.2.6.1 Performance of Estimating T

We compare HOC with T-revision [199] following the flow: 1) Estimation → 2)

Training → 3) Revision. For a fair comparison, we follow their training framework and

parameter settings to get representations. Particularly, we obtain the same model as the

one that T-revision adopts before revision. Figure 2.2 shows the results. The error is

measured by the matrix L1,1-norm with a normalization factor K, i.e. ∥T̂ − T ∥1,1/K.

Notation Forward indicates the method using the forward corrected loss [146]. Notation

reweight indicates the method using the reweighted loss [119]. Symmetric noise is

applied. As illustrated in Figure 2.2, compared with the dynamical revision adopted in

T-revision, HOC does not need to change or adapt in different epochs and still achieves

43

Table 2.2: The best epoch test accuracy (%) with human noise.

Method Clothing1M Human CIFAR-10

CE (standard) 68.94 83.50
CORES2 [30] 73.24 89.98
LDMI [205] 72.46 86.33

Co-teaching [63] 69.21 90.39
JoCoR [179] 70.30 90.10
Forward [146] 70.83 86.82
PTD-R-V[198] 71.67 85.92
HOC [230] 73.39 90.62

lower estimation errors no matter the model is trained with forward corrected loss or

reweighted loss.

2.2.6.2 Performance of Classification Accuracy

To test the classification performance, we adopt the flow: 1) Pre-training

→ 2) Global Training → 3) Local Training. Our HOC estimator is applied once at

the beginning of each above step. In Stage-1, we load the standard ResNet50 model

pre-trained on ImageNet to obtain basic representations. At the beginning of Stage-2

and Stage-3, we use the representations given by the current model. All experiments are

repeated three times. HOC Global only employs one global T with G = 50 and |E| = 15k

as inputs of Algorithm 8. HOC Local uses 300 local matrices (250-NN noise clusterability,

G = 30, |E| = 100) for CIFAR-10 and 5 local matrices (10k-NN noise clusterability,

G = 30, |E| = 5k) for CIFAR-100. Our unconstrained transformation provides much

better convergence such that running HOC Local on CIFAR will at most double the

running time of a standard training with CE. See more details in Appendix A.4. Without

44

sophisticated learning techniques, we simply feed the estimated transition matrices given

by HOC into forward loss correction [146]. We report the performance on synthetic

instance-dependent label noise in Table 2.1 and real-world human-level label noise in

Table 2.2. Comparing with these baselines (with similar data augmentations), both

global estimates and local estimates given by HOC achieve satisfying performance, and

the local estimates indeed provide sufficient performance improvement on CIFAR-10.

When there are 100 classes, T contains 10k variables thus local estimates with only 10k

instances may not be accurate, which leads to a slight performance drop in HOC Local

on CIFAR-100 (but it still outperforms other methods).

Real human-level noise On CIFAR-10 with our self-collected human-level noisy

labels, HOC achieves a 0.097 estimation error in the global T and a 0.110± 0.027 error

in estimating 300 local transition matrices. See more details in Appendix A.4.3.

2.2.6.3 Feasibility of 2-NN label clusterability

We show the ratio of feasible 2-NN tuples in Table 2.3, where |E| = 5k indicates

that we sample 5k examples from the whole dataset in each round and average over 10

rounds. Method |E| = 50k indicates that we check the feasibility of all 2-NN tuples.

One 2-NN tuple is called feasible if x̄n and its 2-NN belong to the same true class. The

feature extractors are obtained from overfitting CIFAR-10/100 with different noise levels.

For example, CIFAR-10 Inst. η = 0.2 indicates that we use the standard CE loss to

train ResNet34 on CIFAR-10 with 20% instance-dependent label noise. The convolution

45

Table 2.3: The ratio of feasible 2-NN tuples with different feature extractors.

Feature Extractor
CIFAR-10 CIFAR-100

|E| = 5k |E| = 50k |E| = 5k |E| = 50k

Clean 99.99 99.99 99.88 99.90
Inst. η = 0.2 87.88 89.06 82.82 84.33
Inst. η = 0.4 78.15 79.85 64.88 68.31

layers when the model approaches nearly 100% training accuracy are selected as the

feature extractor fconv(X). Table 2.3 shows, with a standard feature extractor, there are

more than 2/3 of the feasible 2-NN tuples in most cases. Besides, reducing the sample

size from 50k to 5k will not substantially reduce the ratio of feasible 2-NN tuples.

2.2.7 Takeaways

The takeaways are summarized as follows:

• We have proposed a new and flexible estimator of the noise transition matrix relying

on the first-, second-, and third-order consensuses checking among an example and its’

2-NN’s noisy labels.

• We have proved that using up to third-order consensuses is sufficient to identify the

true noise transition matrix uniquely.

• Extensive empirical studies on CIFAR-10/100 datasets with synthetic noisy labels,

the Clothing1M dataset with real-world human noise, and the CIFAR-10 dataset with

our self-collected human annotations demonstrate the advantage of our estimator.

• Open-source contribution and flexible extension: a generically applicable and light

tool for fast estimation of the noise transition matrix.

46

• The code is available at https://github.com/UCSC-REAL/HOC.

2.3 Estimate T for Tasks with Lower-Quality Features

As mentioned in Section 2.2, the distance in Definition 1 between two features

x and x′ can be measured by the negative cosine similarity, e.g., 1− Sim(x,x′), where

Sim(x,x′) could be the cosine similarity. It has been proved in Section 2.2 that the 2-NN

label clusterability is sufficient for uniquely getting the true T . However, it is likely that

the clusterability is not sufficiently satisfied for lower-quality features. In this section, we

first illustrate the possible failures of existing methods when the feature quality is low

(Section 2.3.1), then propose an information-theoretic approach (Section 2.3.2) and prove

the related theoretical guarantees (Section 2.3.3). The effectiveness of the proposed

method is also evaluated by experiments in Section 2.3.4.

2.3.1 Failures on Lower-Quality Features

The approaches to estimating T introduced in Section 2.2 are demonstrated to

perform well on some image classification datasets, such as MNIST [103] and CIFAR [99],

which usually enjoy better representation learning tools [28, 168] that would return

clusterable features, as compared to text sequence and tabular data. When facing other

tasks, high-quality features may not always be available. In this subsection, we explore

how these existing methods fare on other datasets, possibly with lower-quality features.

47

twonorm
waveform

flare-solarsplice heart
banana

titanic jigsaw
dbpedia

agnews

Different datasets with lower-quality features

0.00

0.05

0.10

0.15

0.20

Es
tim

at
io

n
er

ro
r o

f T

binary multi-class

binary random guess HOC
Confident Learning
T-Revision

Figure 2.3: Existing methods may suffer from failures.

Observations In Figure 2.3, we implement two learning-based methods built on

anchor points (T-revision [199]) or confident points (Confident Learning [141]), and one

training-free method based on the clusterability (HOC [230]). Red horizontal dashed

line shows the error of random guessing T in binary classifications. Tasks on the left

side of the dotted line are binary. The average noise rate, i.e.,
∑

i∈[K](1 − Tii)/K, is

around 0.3. Figure 2.3 shows the estimation error of these three methods on most of the

datasets are around or larger than 0.1, and some methods may even approximate to 0.2.

Note an error of 0.2 is excessive for binary classification when the noise rate is 0.3.

48

For example, when T11 = T22 = 0.3, a random guess of T , i.e., Tij = 0.5,∀i, j, has an

error of exactly 0.2. Recall an error of 0.05 for binary classification is worse than the

same error for a 10-class one as explained in Introduction. Compared with an estimation

error of ≈ 0.05 on CIFAR-10 with a similar noise rate as reported in these baselines,

Figure 2.3 shows a serious performance drop: an error of 0.05 for 83% of tests and an

error of 0.1 for 57% of tests. Therefore, it is crucial to design an estimator which is also

robust on datasets with lower-quality features.

Discussions Before diving into a concrete solution to lower-quality features, we discuss

the advantages and disadvantages of both existing lines of work. On one hand, the

learning-based methods [141, 199] could take full advantage of deep neural networks.

During supervised training, different parts of features are weighted differently, thus

the informative parts could weigh more than the less informative ones. The optimal

weight combinations could induce a model that accurately fits the data distribution,

which further help estimate T . On the other hand, due to various factors such as

the model capacity, the quality of features, the number of instances, and the setting

of hyperparameters, the learning-based models are often infeasible to converge to the

global optimum in practice. For example, with the existence of label noise, deep

neural networks (DNN) tend to be overconfident [182] and memorize wrong feature-

label patterns [31, 121, 180]. When unintended memorization occurs, the weights for

combining different parts will be non-optimal and some uninformative parts may be

mis-specified with high weights. Alternatively, the training-free method [230] will not

49

be affected by the wrong memorization since it is a fully-statistical solution without

any training procedures. Nevertheless, the problem of not employing training is also

severe: blindly treating different parts of features equally important may cause failures.

The above observations and discussions motivate us to find a solution that compromises

between the learning-based and the training-free approaches.

2.3.2 An Information-Theoretic Approach

We propose an information-theoretic approach to distinguish the importance of

different features. To avoid complicated hyperparameters tuning and make it a light tool

for more general applications, the solution is built on HOC. See more detailed rationale

in Appendix A.6.1.

We now briefly review HOC [230]. Algorithm 2 summarizes the key steps,

where the high-level idea is that, when 2-NN label clusterability holds, the frequency of

consensus patterns of the three grouped noisy labels ỹn, ỹn1 , ỹn2 encodes T Note It is

shown later in [122] that three noisy labels are necessary and sufficient to identify T .

For instance, a triplet ỹn = 0, ỹn1 = 0, ỹn2 = 1 will add 1 to the count of the consensus

pattern (0, 0, 1). With the estimated frequency of patterns {(ỹn, ỹn1 , ỹn2),∀n}, we can

simply solve equations by gradient descents. Therefore, in Algorithm 2, the 2-NN label

clusterability is critical, which depends heavily on calculating the distance or similarity

between features.

50

Algorithm 2 Key Steps of HOC

0: Input: Noisy dataset: D̃ = {(xn, ỹn)}n∈[N].

// Find 2-NN. Sim(x,x′) → SimW (z,z′) in our approach.

1: With 1− Sim(x,x′) as the distance metric:

{(ỹn, ỹn1 , ỹn2), ∀n} ← Get2NN(D̃);

// Count first-, second, and third-order consensus patterns:

2: (ĉ[1], ĉ[2], ĉ[3])← CountFreq({(ỹn, ỹn1 , ỹn2), ∀n})

// Solve equations

3: Find T such that match the counts (ĉ[1], ĉ[2], ĉ[3]).

Overview of our approach The main idea is to decouple features (Step 1) and

down-weight the less informative parts (Step 2) when measuring the distances by HOC,

which is summarized in Algorithm 3. Firstly, we motivate the necessity of down-weighting

less informative parts in Section 2.3.2.1. Their weights are controlled by a matrix W ,

which is absorbed into the calculation of soft cosine similarity (Definition 9). A tractable

proxy of W is introduced in Section 2.3.2.2 and detailed in the remainder of this section.

2.3.2.1 Vanilla Similarity Measures Are Not Sufficient

Our following analyses focus on the cosine similarity as originally implemented

by HOC [230]. The larger cosine similarity implies the smaller distances of features.

We first analyze possible problems in evaluating k-NN with the vanilla (hard) cosine

similarity.

Consider the cosine similarity of two feature vectors x and x′, which is denoted

51

Algorithm 3 Our Information-Theoretic Approach

0: Input: Noisy dataset: D̃ = {(xn, ỹn)}n∈[N].

// Step 1: Remove correlation (Section 2.3.2.3)

1: Transform x ∼X to z ∼ Z by Eqn. (2.12);

// Step 2: Estimate the weight matrix W (Section 2.3.2.4)

2: With only noisy labels:

Diagonal elements: Ŵµµ = If (Z; Ỹ) by Eqn. (2.13)

Off-diagonal elements: Ŵµµ′ = 0,∀µ ̸= µ′;

// Step 3: Estimate the noise transition matrix

3: Apply HOC [230] with soft cosine similarity SimW (z, z′) defined in Eqn. (2.11).

4: Output: The estimated noise transition matrix T̂ .

by Sim(x,x′) = x⊤x′

∥x∥2∥x′∥2 , where ∥ · ∥2 denotes the vector ℓ2 norm. The above measure

inherently assumes different elements of x are 1) equally important and 2) uncorrelated

to each other, thus may underestimate the true similarity between imperfect feature

vectors. To capture more information, we incorporate a change-of-basis matrix
√
W to

obtain a soft cosine measure defined as follows.

Definition 9 (Soft cosine similarity [158]).

SimW (x,x′) =
(
√
Wx)⊤(

√
Wx′)

∥
√
Wx∥2∥

√
Wx′∥2

. (2.11)

Hereby, the symmetric matrix W encodes the pairwise similarity between

features. Note that the soft cosine similarity measure SimW (x,x′) recovers the (hard)

cosine similarity when W = I, where I denotes a K ×K identity matrix. In practice,

52

the true and unknown W may be very different from I. Thus simply letting W = I may

cause severe problems in using clusterability. For example, when K = 2, consider three in-

stances (x1, y1) = ([1, 0, 1]⊤, 1), (x2, y2) = ([0, 1, 0]⊤, 2), and (x3, y3) = ([0.8, 1, 0.7]⊤, y).

Based on 1-NN label clusterability, we infer label y following the rule below:

y =


1 if Sim(x1,x3) > Sim(x2,x3);

2 if Sim(x1,x3) ≤ Sim(x2,x3).

Consider the following three W s: W1 = I,

W2 =


1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 0.1

 , W3 =


1.0 −0.2 −0.5

−0.2 1.0 0.5

−0.5 0.5 1.0

 .

Example 1: W1 (uncorrelated and equally important) The following hard cosine

similarity shows:

SimW1(x1,x3)≈0.73 > SimW1(x2,x3)≈0.69⇒ y=1.

Example 2: W2 (not equally important) The following soft cosine similarity

shows:

SimW2(x1,x3)≈0.64 < SimW2(x2,x3)≈0.77⇒ y= 2,

which is different from the inferred y in Example 1. If W2 defines the true clusterability,

this example shows that simply using W = I fails to capture the diagonal values of W

(the weights of xµ, µ ∈ [d]) and violates the clusterability.

53

Example 3: W3 (correlated) The following soft cosine similarity shows:

SimW3(x1,x3)≈0.75 < SimW3(x2,x3)≈0.85⇒y = 2,

which is different from the inferred y in Example 1. If W3 is true, this example shows

that simply using W = I fails to capture the off-diagonal values of W (the correlations

between xµ) and violates the clusterability.

The above three examples exemplify that the less informative parts of features

may damage the clusterability, where the definition of each “part” depends on both the

diagonal elements and off-diagonal elements of W . We propose an information-theoretic

approach to construct a proxy of W .

2.3.2.2 Proxy of W

Noting W is a square matrix of order d, it requires O(d2) operations to estimate

all elements. Each operation incurs an estimation error, and the accumulated errors may

not be bounded. We propose to find a proxy of W . Intuitively, we expect the following

properties [14]:

• Symmetric: ∀µ, ν ∈ [d],Wµν = Wνµ.

• Information monotone: For every two feature variables Xµ, Xν , if Xµ is less

informative with respect to Y than Xν , then Xµ will be less important than Xν , i.e.,

If (Xµ;Y) ≤ If (Xν ;Y)⇒Wµµ ≤Wνν , µ, ν ∈ [d], where If (Xµ;Y) measures the f -MI

(f -Mutual Information) [36] between Xµ and Y .

• Correlation monotone: Given two feature variables Xµ, Xν , for any other feature

54

R
em

ov
e

co
rr

el
at

io
n

E
stim

ate w
ith

noisy labels

InformationCorrelation

Figure 2.4: Illustration of the proxy of W .

variable Xν′ (Xµ, Xν , Xν′ are equally informative), if Xµ is less correlated to Xν than

Xν′ , Xν will have a lower weight than Xν′ in measuring the similarity with Xν :

ρ(Xµ, Xν) ≤ ρ(Xµ, Xν′)⇒Wµν ≤Wµν′ ,

where ρ(Xµ, Xν) is the correlation between random variables Xµ and Xν .

The above properties suggest us to decompose the elements of matrix W as

the product of the informativeness w.r.t Y and the correlation between features as

illustrated in Figure 2.4. In another word, we can construct the matrix W = ρ ◦M ,

where ◦ denotes the Hadamard product of two matrices, ρ is the correlation matrix with

ρµν = ρ(Xµ, Xν), M includes the f -MI with Mµν =
√

If (Xµ, Y)If (Xν , Y). Directly

estimating ρ might not be computation-efficient. If we can transform X to make ρ = I,

the off-diagonal entries of W will become 0 thus no longer need to be estimated. This

55

observation motivates us to firstly transform X to a non-correlated form to achieve ρ = I

(Section 2.3.2.3), then estimate only the diagonal elements by f -MI (Section 2.3.2.4).

2.3.2.3 Remove correlation

For ease of notations, we require that X is zero-mean, i.e., E[X] = 0, where 0

is a d× 1 column vector with all elements being 0. Inspired by the principle component

analysis (PCA) [192], we adopt Λ−1/2P⊤ as the matrix to remove the correlation between

xµ, xν , µ ≠ ν, where PΛP⊤ = E[XX⊤], P is an orthogonal matrix whose columns are

eigenvectors of E[XX⊤], Λ is a diagonal matrix where diagonal values are eigen values

and off-diagonal values are 0. Let

Z = Λ−1/2P⊤X = [Z1, · · · , Zd]
⊤, (2.12)

where E[Z] = Λ−1/2P⊤E[X] = 0. We have

E[ZZ⊤] = Λ−1/2P⊤E[XX⊤]PΛ−1/2 = I.

Therefore, after transforming X to Z by Λ−1/2P⊤, we can split X into d uncorrelated

parts such that E[ZµZν] satisfies

E[ZµZν] = E[(ZZ⊤)µ,ν] =


0 if µ ̸= ν,

1 if µ = ν.

Noting (zero-mean) ρ(Zµ, Zν) =
E[ZµZν]√

E[Z2
µ]
√

E[Z2
ν]
, we know ρ = I after this transformation.

56

2.3.2.4 Estimate If (Z;Y) With Only Noisy Labels

After transforming X to Z, the off-diagonal elements of the proxy of W are

expected to be 0. Thus we only need to estimate the diagonal elements by Wµµ :=

If (Zµ;Y).

Define an f -MI metric with f -divergence If (Z;Y) := Df (Z⊕Y ;Z⊗Y), where

Df (P ||Q) measures the f -divergence between two distributions P and Q with probability

density function p and q:

Df (P ||Q) =

∫
v∈V

q(v)f

(
p(v)

q(v)

)
dv.

Note the variable v in the domain V is a realization of random variable V = (Z, Y),

which follows either distribution P or distribution Q depending on where it is used. In

our setting, P and Q are the joint distribution P := Z ⊕ Y = P(Z = z, Y = y) and the

marginal product distribution Q := Z ⊗ Y = P(Z = z) · P(Y = y), respectively. There

are lots of choices of f . Specially, when f(v) = v log v, the f -divergence becomes the

celebrated KL divergence and If is exactly the mutual information.

Alternatively, we can calculate the f -divergence using the variational form

[145, 186]. Denote the variational difference between P and Q by

VDf (g) = EV∼P [g(V)]− EV∼Q[f
∗(g(V))], ∀g,

where g : V → domain(f∗) is a variational function, and f∗ is the conjugate func-

tion of f(·). We instantiate some prominent variational-conjugate (g∗, f∗) pairs in

57

Appendix A.5.1 (Table A.1). The f -MI is calculated by

If (Z;Y) = Df (P ||Q) = VDf (g
∗) = sup

g
VDf (g).

However, the above calculation, built on the clean distributions, will be intractable when

we can only access the noisy data distribution. Let P̃ := Z ⊕ Ỹ and Q̃ := Z ⊗ Ỹ . One

tractable approach is to calculate Df (P̃ ||Q̃) following

If (Z; Ỹ) = Df (P̃ ||Q̃) = ṼDf (g̃
∗) = sup

g
ṼDf (g), (2.13)

where ṼDf (g) = E
Ṽ∼P̃

[g(Ṽ)] − E
Ṽ∼Q̃

[f∗(g(Ṽ))],∀g. Generally, there will be a gap

between our calculated If (Z; Ỹ) and the real If (Z;Y). We defer detailed analyses of

the gap to Section 2.3.3.

2.3.3 Theoretical Guarantees

The quality of our T estimator relies on the following steps:

(a) Noise-resistant estimates of f -MI using noisy labels;

(b) Accurate estimates of clean f -MI;

(c) Down-weighting less informative features with f -MI;

(d) Robust distance/similarity calculation;

(e) Satisfying clusterability (Definition 1);

(f) Accurate estimates of the noise transition matrix T .

The most critical step in the above chain is (a)→(b), which is the key ingredient to Step

(c). This step will be the focus of the theoretical results in this section. Steps (c)→(e)

are explained in Section 2.3.2. Steps (e)→(f) is guaranteed by HOC [230].

58

Based on our intuition for constructing the proxy of W that the less informative

parts should be assigned with lower weights, the order between two parts with different

informativeness is crucial. Thus in this section, we study whether the noisy f -MI

calculated using noisy labels, i.e., If (Z; Ỹ), preserves the order of the clean f -MI

If (Z;Y). Note the order-preservation property distinguishes from the robustness of

f -MI between optimal classifier prediction h∗(X) and noisy label Ỹ by [186] since 1) Z

does not have class-specific meaning; 2) Z is not optimizable and its ranking is concerned,

while h∗(X) is only a special (optimal) case of Z. All proofs are deferred to Appendix D.1.

We define ϵ-order-preserving as follows.

Definition 10 (ϵ-Order-Preserving Under Label Noise). If (Z; Ỹ) is called ϵ-order-

preserving under label noise if ∀µ ∈ [d], ν ∈ [d], given |If (Zµ; Ỹ) − If (Zν ; Ỹ)| > ϵ, we

have

sign[If (Zµ; Ỹ)− If (Zν ; Ỹ)] = sign[If (Zµ;Y)− If (Zν ;Y)].

The smaller ϵ is, the stricter the requirement is. The following analyses focus on

the binary classification. Define e1 := P(Ỹ = 2|Y = 1), e2 := P(Ỹ = 1|Y = 2). To show

an f -MI metric is ϵ-order-preserving under label noise, we need to study how ṼDf (g̃
∗)

differs from the order of VDf (g
∗).

2.3.3.1 Total-Variation is 0-Order-Preserving

When f(v) = 1
2 |v − 1|, we get the Total-Variation (TV). To analyze the order-

preserving property of TV, we first build the relationship between ṼDf (g) and ṼDf (g),

∀g by the following lemma:

59

Lemma 2 (Linear relationship [186]).

ṼDTV(g) = (1− e1 − e2)VDTV(g),∀g.

Lemma 2 shows that there is a linear relationship between ṼDTV(g) and

VDTV(g). The constant only depends on the noise rates. With this lemma, we only need

to study the difference between VDTV(g̃
∗) and VDTV(g

∗), which is summarized in the

following lemma:

Lemma 3. When e1 + e2 < 1, VDTV(g̃
∗) = VDTV(g

∗).

Note the condition e1 + e2 < 1 indicates the label noise is not too large to be

dominant [124, 139, 123]. With Lemma 2 and Lemma 3, we can conclude that TV is

0-order-preserving.

Theorem 3. When e1 + e2 < 1, total-variation is 0-order-preserving under class-

dependent label noise.

Theorem 3 shows the total-variation-based mutual information under class-

dependent label noise preserves the order of the original clean results.

2.3.3.2 KL Divergence is ϵ-Order-Preserving

Unfortunately, Lemma 2 and Lemma 3 do not hold for KL divergence. Recall

the f -MI is exactly the standard mutual information when KL divergence is adopted.

Denote by H(·) the entropy. We can start from the definition of mutual information

60

I(Z, Ỹ) = H(Z) +H(Ỹ)−H(Z, Ỹ) and decouple the effect of noisy labels as:

I(Z, Ỹ) =(1− e1 − e2) · [I(Z, Y)−H(Y)] +H(Ỹ)

+

∫
z
∆Bias(βz, e1, e2) dz,

where βz is a function of z, and ∆Bias(βz, e1, e2) is the bias caused by label noise specified

in Eqn. (A.10). We then find the lower and upper bounds for ∆Bias(βz, e1, e2) and

summarize the result as follows:

Theorem 4. Assume e1 = δe2, δ ∈ [0, 1] and e1 + e2 < 1. KL divergence (mutual

information) is ϵ-order-preserving under class-dependent label noise, where

ϵ = e1 [δ log δ − (1 + δ) log(1 + δ)] +H(e1),

and H(e1) := −e1 log e1 − (1− e1) log(1− e1).

For the symmetric label noise, we have:

Corollary 2. When e1 = e2 < 0.5, KL divergence (mutual information) is [H(e1) −

2e1 log 2]-order-preserving under class-dependent label noise.

We evaluate the bound in the following remark.

Remark 2. The value of ϵ is illustrated in Figure 2.5, where color indicates the value

of ϵ. The median (50%) and the 90-th percentile of ϵ are shown in the title of each plot.

log2(x) is applied for calculating mutual information. The left figure shows the worst-case

bound in Theorem 4, and the right figure shows the case when P(Y=1|Z=z)
P(Y=2|Z=z) ∈ [15 , 5]. This

is a more practical case for lower-quality features since a single feature variable cannot

61

0.1 0.2 0.3 0.4 0.5
e1

0.0

0.2

0.4

0.6

0.8

1.0
Worst-case bound: 50%: 0.38, 90%: 0.66

0.1 0.2 0.3 0.4 0.5
e1

0.0

0.2

0.4

0.6

0.8

1.0
Practical bound: 50%: 0.14, 90%: 0.34

0.2

0.4

0.6

0.8

Figure 2.5: Illustration of the worst-case bound and a more practical bound for ϵ with
different e1, δ := e2/e1.

infer the clean label with high confidence. Noting the log2-based mutual information is

within range [0, 1] and ϵ ≤ 0.34 happens in 90% of the cases, it is reasonable to believe

the mutual information has a good ϵ-order-preserving ability.

2.3.4 Evaluations

We evaluate our approaches on datasets with possibly lower-quality features in

this section. The evaluation metric is the average total variation between the true T

and the estimated T̂ [217] as in Section 1.2.2.1.

Baselines We mainly compare our methods with three baselines: T-revision (T-Rev)

[199], Confident Learning (CL) [141], and the clusterability-based approach [230] (HOC).

62

Our approach To evaluate each component of our approach, we test four variants:

Ours-X-KL, Ours-X-TV, Ours-A-KL, and Ours-A-TV. Prefix Ours-X indicates

that we directly use the original input features and substitute the soft cosine similarity for

the original hard one employed by HOC. This setting checks the performance of ignoring

correlations among different feature variables. Prefix Ours-A indicates that we firstly

transform X to A as Section 2.3.2.2 then apply soft cosine similarity. Suffixes -KL and

-TV denote using the f -mutual information when f(v) = v log(v) and f(v) = 1
2 |v − 1|,

respectively. The matrix W for soft cosine similarity is: Wµµ = ϕ(If (Xµ, Ỹ)),Wµν =

0,∀ν ̸= µ, where ϕ(x) is an order-preserving activation function. In our evaluations,

we set ϕ(x) = [x]10 for tabular benchmarks and ϕ(x) = [log(x)]10 for natural language

benchmarks, where [x]10 represents normalizing x to range (0, 1].

Datasets and models We examine our approaches on two different application

domains other than images: the tabular benchmarks including 7 tabular datasets from

the UCI machine learning repository [44] and 4 natural language benchmarks including

AG’s news [218], DBpedia [7], Yelp-5 [211], and Jigsaw [90]. We use the raw features

for tabular benchmarks. Following the same preprocessing procedure as [173], we use a

pre-trained BERT model [40] to extract 768-dimensional embedding vectors for natural

language benchmarks.

Noise type We synthesize the noisy data distribution by injecting class-dependent noise.

Particularly, on tabular benchmarks, we test both the symmetric and the asymmetric

label noise in Table 2.4. On natural language benchmarks, we randomly generate the

63

diagonal-dominant label noise following the Dirichlet distribution. Particularly, suppose

the average noise rate is e. For each row of T , We randomly sample a diagonal element

following Tii = e+ Unif(−0.05, 0.05) and set the off-diagonal elements following Dir(1),

where Unif(a, b) denotes the uniform distribution bounded by (a, b), Dir(1) denotes the

Dirichlet distribution with parameter 1 := [1, · · · , 1] (K − 1 values).

2.3.4.1 Evaluation on Tabular Benchmarks

Table 2.4 shows the performance comparisons on tabular datasets. The pa-

rameters (d, [N1, · · · , NK]) indicates that the feature dimension is d, and the number of

clean instances in class-k is Nk. The noise rates are: Low: e1 = 0.2, e2 = 0.1. Medium:

e1 = 0.4, e2 = 0.2. High: e1 = 0.4, e2 = 0.4. Top-2 of each row are bold. By counting

the number of bold results, we know all four variants of our proposed method perform

better than the three baselines statistically. Additionally, based on the counting results,

Ours-X wins in 16 settings while Ours-A wins in 20 settings, indicating decoupling

different parts by eigen decomposition is not statistically significantly useful. This may

be due to the property of tabular data: the original correlation in X may not be strong

and the decoupling operations will involve extra errors and make the results even worse.

2.3.4.2 Evaluation on Natural Language Benchmarks

We also evaluate our methods on more sophisticated text classification tasks

and show the results in Table 2.5. The parameters (d, [N1, · · · , NK]) indicates that the

feature dimension is d, and the number of clean instances in class-k is Nk. Notation [30k

64

Table 2.4: The estimation error (×100) on tabular benchmarks.

Tabular Datasets Method
(d, [N1, N2]) Noise Rate T-Rev CL HOC Ours-X-KL Ours-X-TV Ours-A-KL Ours-A-TV

Low 9.25 8.00 9.82 8.09 8.70 8.88 9.18
Heart Medium 11.94 11.48 7.85 9.55 1.48 3.98 5.51

(23, [138, 165]) High 6.74 6.54 4.71 9.78 14.91 1.33 4.21

Low 30.89 30.53 14.96 10.74 11.84 10.57 9.26
Banana Medium 20.77 20.81 8.97 4.90 3.98 6.41 6.97

(2, [2924, 2376]) High 6.71 7.58 4.78 12.11 8.89 9.78 11.26

Low 21.40 20.62 11.24 10.83 9.96 11.05 11.60
Titanic Medium 10.83 10.31 9.97 9.82 9.65 9.61 9.75

(3, [1490, 711]) High 6.93 6.75 1.94 1.97 1.97 1.89 1.92

Low 10.63 9.32 7.32 2.29 1.87 3.00 3.65
Splice Medium 10.35 9.84 5.38 2.21 3.90 1.26 2.15

(240, [1648, 1527]) High 7.86 7.74 17.43 4.26 2.94 4.41 5.81

Low 1.79 1.63 2.12 2.34 2.80 0.54 0.65
Twonorm Medium 1.86 1.42 1.38 1.42 1.30 2.14 1.73

(20, [3697, 3703]) High 1.67 1.22 5.18 5.88 3.47 1.46 2.12

Low 10.59 10.89 7.93 6.68 6.78 5.67 5.79
Waveform Medium 8.45 7.82 3.51 2.50 3.09 2.34 2.72

(21, [3353, 1647]) High 5.04 4.76 3.84 2.72 1.71 2.29 5.42

Low 19.28 18.43 15.24 14.60 14.84 15.63 14.71
Flare-solar Medium 16.57 16.38 4.58 4.39 5.05 4.64 4.82

(31, [477, 589]) High 8.35 8.25 4.71 4.47 4.74 3.87 3.30

Table 2.5: The estimation error (×100) on natural language benchmarks.

Text Datasets Method
(d, [N1, · · · , NK]) Noise Rate T-Rev CL HOC Ours-X-KL Ours-X-TV Ours-A-KL Ours-A-TV

Low 10.38 11.41 13.32 12.65 12.75 8.36 8.35
AG’s news (BERT) Medium 10.71 10.63 10.62 10.13 10.45 6.44 6.52
(768, [30k × 4]) High 13.97 13.82 6.80 6.83 6.69 4.54 4.19

Low 6.80 5.31 7.57 6.76 6.94 2.52 2.52
DBpedia (BERT) Medium 14.91 14.40 6.30 5.66 5.78 2.33 2.28
(768, [40k × 14]) High 24.23 23.28 6.00 5.18 5.22 2.42 2.43

Low 38.49 38.75 40.87 40.71 40.58 37.37 37.19
Yelp-5 (BERT) Medium 35.46 36.05 33.63 34.23 33.88 31.79 31.94
(768, [130k × 5]) High 21.20 20.88 19.09 18.56 20.13 18.11 18.06

Low 20.92 20.17 14.25 14.07 14.24 9.76 9.97
Jigsaw (BERT) Medium 17.10 16.44 11.28 11.80 12.23 7.45 7.66

(768, [144,277, 15,294]) High 7.19 6.81 4.84 4.85 3.43 0.78 1.02

× 4] shows N1 = N2 = N3 = N4 =30k. We use a heuristic method to set the average

noise rate e. The aim is to make the ratio between diagonal elements and off-diagonal

elements of T consistent. The average noise rate follows e = 1/(1 + r/
√
K − 1), where

65

Low, Medium and High indicate r = 8, r = 4, and r = 1.5, respectively. According

to this rule, the low, medium, and high noise rates for binary, 5-class, and 10-class

classifications are (0.11, 0.2, 0.4), (0.2, 0.33, 0.57), and (0.27, 0.43, 0.67), respectively,

which align with the general cognition of the community [30]. The top-2 of each row are

bold. Comparing Table 2.5 with Table 2.4, we find the direct reweighting by f -mutual

information (Ours-X) performs similarly to the hard cosine similarity adopted by

HOC, while the information-theoretic reweighting after projecting X to its eigen space

(Ours-A) performs consistently better than other methods. Intuitively, the correlations

of BERT embeddings are stronger than those of tabular data. Thus we observe a clear

performance improvement by removing correlations. Besides, it is interesting to see the

estimation error may decrease for higher noise rate setting.We conjecture the reasons

may comprise: 1) The original dataset may be noisy, e.g., the original Yelp dataset

contains lots of noisy reviews [129]. Consider a binary classification with inherent 20%

noise. Then adding 10% (low) noise will make the average noise rate to 0.26, where the

gap between the real noise rate and the hypothesized noise rate is 0.26 − 0.1 = 0.16.

Similarly, the gap of adding 40% (high) noise is 0.44 − 0.4 = 0.04. Therefore, even

though T is accurately estimated, the absolute error under our current metric will be

higher for the High-noise case. 2) As analyzed in Section 2.3.1, the error of random

guess for low-noise (10%) and high-noise (40%) settings are 0.4 and 0.1, respectively,

indicating a small error may cause more severe problems in higher-noise settings. We

leave more detailed discussions to Appendix A.6.2.

66

Table 2.6: The last/best epoch clean test accuracies (%) when training with high-level
noise defined in Table 2.5

.

Method
AG’s news DBpedia
Last Best Last Best

HOC [230] 82.17 83.08 91.06 91.06
Ours-A-TV 85.01 85.17 97.71 97.77

Downstream learning error [126] showed the additional learning risk is positively

related to estimation error. To further consolidate the estimation error reduction of

our method, we feed the estimated T into forward loss correction [146] and check the

clean test accuracy. Table 2.6 shows our approach significantly improves both the best

and last epoch test accuracy by simply changing the T in loss correction from HOC

estimates to ours.

2.3.5 Takeaways

We summarize the takeaways of this section as follows.

• This work has studied the problem of estimating noise transition matrix on application

domains apart from images. We have proposed an information-theoretic approach

to down-weight the less informative parts of features with only noisy labels for tasks

with lower-quality features.

• Based on the f -mutual information, we propose a novel reweighting mechanism to

first decouple features by projecting to its eigenspace and then down-weight the

less-informative parts with only access to noisy labels. The mechanism intuitively

67

disentangles features but it does not require training and can be applied efficiently.

• We prove that calculating the total-variation-based mutual information with noisy

labels preserves the same order as using clean labels (Theorem 3), and the traditional

mutual information preserves the order when the absolute gap between two noisy

measurements is larger than a guaranteed threshold (Theorem 4).

• We empirically demonstrate that our approach helps return a more accurate estimate

of the transition matrix and reduce the classification errors of downstream learning

tasks on datasets with lower-quality or more sophisticated features, including UCI

datasets with tabular data and text classification benchmarks.

• Code is available at github.com/UCSC-REAL/BeyondImages.

68

Chapter 3

Label Error Detection

Label noise in real-world datasets encodes wrong correlation patterns and

impairs the generalization of deep neural networks (DNNs). It is critical to find efficient

ways to detect corrupted patterns and remove/correct them. Figure 3.1 shows two

popular label detection pipelines, where the inputs are features and the corresponding

noisy labels, and the outputs are a set of corrupted labels. The blue branch indicates

the learning-centric solutions [82, 63, 212, 143, 209, 179, 219, 30], which select corrupted

examples relying on the model’s predicted probability of each class. The orange branch

shows a data-centric solution [226], where the core idea is designing some score functions

based on neighborhood information. In this chapter, we introduce two label error

detection methods, a dynamic sample sieve that filters out the corrupted examples

during training (Section 3.1), and a training-free plug-and-play label error detector

(Section 3.2).

69

Neighbor
Information

Model
(fit data distribution)

Features &
Noisy labels

Corrupted
Labels

(Instances)

Prob. of
each class

Scores

Learning-Centric

Data-Centric

Figure 3.1: Label error detection pipelines: Learning-centric vs. data-centric.

3.1 CORES2: COnfidence REgularized Sample Sieve

The biggest challenge of designing a learning-centric method to detect label

errors is the “chicken-egg” problem. That is, if the model for detection is trained on

the noisy dataset, it would be likely to overfit and memorize both the examples with

clean labels and corrupted labels, then we cannot tell the difference between the clean

and corrupted ones according to the model outputs. Therefore, it is critical to avoid

overfitting to corrupted labels [184], especially when the noise depends on both true

labels Y and features X. Unfortunately, this often tends to be the case where human

annotations are prone to different levels of errors for tasks with varying difficulty levels.

Another challenge is about setting a “threshold” between clean ones and corrupted ones,

which may not be a fixed value due to different levels of errors.

Aiming at the above two challenges, we design a sample sieve to provide a

high-quality splitting of clean and corrupted examples with theoretical guarantees. The

overfitting to corrupted labels is restricted by a regularization term, which helps improve

70

the confidence of the learned classifier and is proven to help safely sieve out corrupted

examples. The thresholds for the splitting be clean and corrupted examples are also set

dynamically according to the model states. In the remainder of this section, we will first

show the intuition (Section 3.1.1) and actual design of the sample sieve (Section 3.1.2),

then demonstrate the effectiveness with both theoretical guarantees (Section 3.1.3) and

numerical experiments (Section 3.1.4).

3.1.1 Confidence Regularization

In this section, we present a new confidence regularizer (CR). Our design of

the CR is mainly motivated by a recently proposed robust loss function called peer loss

[124]. For each example (xn, ỹn), peer loss has the following form:

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn1), ỹn2),

where (xn1 , ỹn1) and (xn2 , ỹn2) are two randomly sampled and paired peer examples

(with replacement) for n. Let Xn1 and Ỹn2 be the corresponding random variables. Note

Xn1 , Ỹn2 are two independent and uniform random variables being each xn′ , n′ ∈ [N]

and ỹn′ , n′ ∈ [N] with probability 1
N respectively: P(Xn1 = xn′ |D̃) = P(Ỹn2 = yn′ |D̃) =

1
N , ∀n′ ∈ [N]. Let D

Ỹ |D̃ be the distribution of Ỹn2 given dataset D̃. Peer loss then has

71

the following equivalent form in expectation:

1

N

∑
n∈[N]

E
Xn1 ,Ỹn2 |D̃

[ℓ(f(xn), ỹn)−ℓ(f(Xn1), Ỹn2)]

=
1

N

∑
n∈[N]

[
ℓ(f(xn), ỹn)−

∑
n′∈[N]

P(Xn1 = xn′ |D̃)ED
Ỹ |D̃

[ℓ(f(xn′), Ỹ)]

]

=
1

N

∑
n∈[N]

[
ℓ(f(xn), ỹn)− ED

Ỹ |D̃
[ℓ(f(xn), Ỹ)]

]
.

This result characterizes a new loss denoted by ℓCA:

ℓCA(f(xn), ỹn) := ℓ(f(xn), ỹn)− ED
Ỹ |D̃

[ℓ(f(xn), Ỹ)]. (3.1)

Though not studied rigorously by [124], we show, under some conditions, ℓCA defined in

Eqn. (3.1) encourages confident predictions. from f by analyzing the gradients:

Theorem 5. For ℓCA(·), solutions satisfying fxn [i] > 0,∀i ∈ [K] are not locally optimal

at (xn, ỹn).

See Appendix B.1.2 for the proof. Particularly, in binary cases, we have con-

straint f(xn)[0]+f(xn)[1] = 1. Following Theorem 5, we know minimizing ℓCA(f(xn), ỹn)

w.r.t f under this constraint leads to either f(xn)[0] → 1 or f(xn)[1] → 1, indicating

confident predictions. Therefore, the addition of term −ED
Ỹ |D̃

[ℓ(f(xn), Ỹ)] helps improve

the confidence of the learned classifier. Inspired by the above observation, we define the

following confidence regularizer:

Confidence Regularizer: ℓCR(f(xn)) := −β · ED
Ỹ |D̃

[ℓ(f(xn), Ỹ)],

where β is positive and ℓ(·) refers to the CE loss. The prior probability P(Ỹ |D̃) is

72

counted directly from the noisy dataset. In the remaining of this paper, ℓ(·) indicates

the CE loss by default.

Why are confident predictions important? Intuitively, when model fits to the

label noise, its predictions often become less confident, since the noise usually corrupts

the signal encoded in the clean data. From this perspective, encouraging confident

predictions plays against fitting to label noise. Compared to instance-independent noise,

the difficulties in estimating the instance-dependent noise rates largely prevent us from

applying existing techniques. In addition, as shown by [133], the 0-1 loss function is

more robust to instance-based noise but hard to optimize with. To a certain degree,

pushing confident predictions results in a differentiable loss function that approximates

the 0-1 loss, and therefore restores the robustness property. Besides, as observed by

[24] and [234], gradients from similar examples would reinforce each other. When the

overall label information is dominantly informative that Tii(X) > Tij(X), DNNs will

receive more correct information statistically. Encouraging confident predictions would

discourage the memorization of the noisy examples (makes it hard for noisy labels to

reduce the confidence of predictions), and therefore further facilitate DNNs to learn the

(clean) dominant information.

3.1.2 Confidence Regularized Sample Sieve

Intuitively, label noise misleads the training thus sieving corrupted examples

out of datasets is beneficial. Furthermore, label noise introduces high variance during

73

training even with the existence of ℓCR. Therefore, rather than accomplishing training

solely with ℓCR, we will first leverage its regularization power to design an efficient sample

sieve. Similar to a general sieving process in physical words that compares the size of

particles with the aperture of a sieve, we evaluate the “size” (quality, or a regularized

loss) of examples and compare them with some to-be-specified thresholds, therefore the

name sample sieve. In our formulation, the regularized loss ℓ(f(xn), ỹn) + ℓCR(f(xn)) is

employed to evaluate examples and αn is used to specify thresholds. Specifically, we aim

to solve the sample sieve problem in (3.2), where the crucial components are:

• vn ∈ {0, 1} indicates whether example n is clean (vn = 1) or not (vn = 0);

• αn (mimicking the aperture of a sieve) controls which example should be sieved out;

• f̄ is a copy of f and does not contribute to the back-propagation. F is the search

space of f .

Dynamic sample sieve The problem in (3.2) is a combinatorial optimization that is

hard to solve directly. A standard solution to (3.2) is to apply alternate search iteratively

as follows:

• Starting at t = 1, v
(0)
n = 1,∀n ∈ [N].

• Confidence-regularized model update (at iteration-t):

f (t) =argmin
f∈F

∑
n∈[N]

v(t−1)
n [ℓ(f(xn), ỹn) + ℓCR(f(xn))] ; (3.3)

• Sample sieve (at iteration-t):

v(t)n = 1(ℓ(f (t)(xn), ỹn) + ℓCR(f
(t)(xn)) < αn,t), (3.4)

74

Confidence Regularized Sample Sieve

min
f∈F,

v∈{0,1}N

∑
n∈[N]

vn [ℓ(f(xn), ỹn) + ℓCR(f(xn))− αn]

s.t. ℓCR(f(xn)) := −β · ED
Ỹ |D̃

ℓ(f(xn), Ỹ),

αn :=
1

K

∑
ỹ∈[K]

ℓ(f̄(xn), ỹ) + ℓCR(f̄(xn)).

(3.2)

Sample
Sieve-0

Sample
Sieve-1

Figure 3.2: Dynamic sample sieves.

where αn,t =
1
K

∑
ỹ∈[K] ℓ(f̄

(t)(xn), ỹ) + ℓCR(f̄
(t)(xn)), f

(t) and v(t) refer to the specific

classifier and weight at iteration-t. Note the values of ℓCR(f̄
(t)(xn)) and ℓCR(f

(t)(xn))

are the same. We keep both terms to be consistent with the objective in Eq. (3.2).

In DNNs, we usually update model f with one or several epochs of data instead of

completely solving (3.3).

Figure 3.2 illustrates the dynamic sample sieve, where green circles are clean

examples, red hexagons are corrupted examples, the size of each example corresponds

75

to the regularized loss, and the aperture of a sieve is determined by αn,t. In each

iteration-t, sample sieve-t “blocks” some corrupted examples by comparing a regularized

example loss with a closed-form threshold αn,t, which can be immediately obtained given

current model f̄ (t) and example (xn, ỹn) (no extra estimation needed). In contrast, most

sample selection works [63, 212, 179] focus on controlling the number of the selected

examples using an intuitive function where the overall noise rate may be required, or

directly selecting examples by an empirically set threshold [221]. Intuitively, the specially

designed thresholds αn,t for each example should be more accurate than a single threshold

for the whole dataset. Besides, the goal of existing works is often to select clean examples

while our sample sieve focuses on removing the corrupted ones. On a high level, we

follow a different philosophy from these sample selection works. We coin our solution as

COnfidence REgularized Sample Sieve (CORES2).

More visualizations of the sample sieve In addition to Figure 3.2, we visualize

the superiority of our sample sieve with numerical results as Figure 3.3. The figure

includes two noise settings: symmetric noise (symm.) and 40% instance-based noise

(inst.). The loss is given by ℓ(f (t)(xn), ỹn) + ℓCR(f
(t)(xn))− αn,t as (3.4). The CE Sieve

represents the dynamic sample sieve with standard cross-entropy loss (without CR). The

sieved dataset is in the form of two clusters of examples. Particularly, from Figure 3.3(b)

and Figure 3.3(f), we observe that CE suffers from providing a good division of clean

and corrupted examples due to overfitting in the final stage of training. On the other

hand, with ℓCR, there are two distinct clusters and can be separated by the threshold

76

4 2 0 20

1

2

3

sa

m
pl

es

×103

(a) CE Sieve (symm., epoch 20)
15 10 5 0 5 100

2

4

6
×103

(b) CE Sieve (symm., epoch 70)
15 10 5 0 5 100

1

2

3
×103

(c) CORES2 (symm., epoch 20)
20 0 20 40 600

1

2

3 ×104

(d) CORES2 (symm., epoch 70)

clean
corrupted

10 5 0
loss

0

1

2

3

sa

m
pl

es

×103

(e) CE Sieve (inst., epoch 20)

15 10 5 0 5 10
loss

0

2

4

6
×103

(f) CE Sieve (inst., epoch 70)

15 10 5 0 5 10
loss

0.0

0.5

1.0
×104

(g) CORES2 (inst., epoch 20)

20 0 20 40 60
loss

0

1

2

3 ×104

(h) CORES2 (inst., epoch 70)

Figure 3.3: Loss distributions of training on CIFAR-10 with a noise rate of 40%.

0 as shown in Figure 3.3(d) and Figure 3.3(h). Comparing Figure 3.3(a)-3.3(d) with

Figure 3.3(e)-3.3(h), we find the effect of instance-dependent noise on training is indeed

different from the symmetric one, where the instance-dependent noise is more likely to

cause overfitting.

3.1.3 Theoretical Guarantees of CORES2

In this section, we theoretically show the advantages of CORES2. The analyses

focus on showing CORES2 guarantees a quality division, i.e. vn = 1(yn = ỹn), ∀n,

with a properly set β. To show the effectiveness of this solution, we call a model

prediction on xn is better than random guess if fxn [yn] > 1/K, and call it confident if

fxn [y] ∈ {0, 1},∀y ∈ [K], where yn is the clean label and y is an arbitrary label. The

quality of sieving out corrupted examples is guaranteed in Theorem 6.

Theorem 6. The sample sieve defined in (3.4) ensures that clean examples (xn, ỹn = yn)

will not be identified as being corrupted if the model f (t)’s prediction on xn is better than

random guess.

77

Theorem 6 informs us that our sample sieve can progressively and safely

filter out corrupted examples, and therefore improves division quality, when the model

prediction on each xn is better than a random guess. The full proof is left to Appendix

B.1.3. In the next section, we provide evidence that our trained model is guaranteed to

achieve this requirement with sufficient examples.

3.1.3.1 Decoupling the Confidence Regularized Loss

The discussion of performance guarantees of the sample sieve focuses on a general

instance-based noise transition matrix T (X), which can induce any specific noise regime

such as symmetric noise and asymmetric noise [96, 108]. Note that feature-independency

was one critical assumption in state-of-the-art theoretically guaranteed noise-resistant

literature [139, 124, 205] while we do not require. Let Tij := ED|Y=i[Tij(X)], ∀i, j ∈ [K].

Theorem 7 explicitly shows the contributions of clean examples, corrupted examples,

and ℓCR during training. See Appendix B.1.1 for the proof.

Theorem 7. (Main Theorem: Decoupling the Expected Regularized CE Loss) In expec-

tation, the loss with ℓCR can be decoupled as three separate additive terms:

ED̃

[
ℓ(f(X), Ỹ) + ℓCR(f(X))

]
=

Term-1︷ ︸︸ ︷
T · ED[ℓ(f(X), Y)] +

Term-2︷ ︸︸ ︷
∆̄ · ED∆

[ℓ(f(X), Y)]

+
∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[(Uij(X)− βP(Ỹ = j))ℓ(f(X), j)]

︸ ︷︷ ︸
Term-3

,
(3.5)

where T := minj∈[K] Tjj , ∆̄ :=
∑

j∈[K]∆jP(Y = j), ∆j := Tjj − T , Uij(X) =

78

Tij(X), ∀i ̸= j, Ujj(X) = Tjj(X)− Tjj, and

ED∆
[ℓ(f(X), Y)] := 1(∆̄ > 0)

∑
j∈[K]

∆jP(Y = j)

∆̄
ED|Y=j [ℓ(f(X), j)].

Equation (3.5) provides generic machinery for anatomizing noisy datasets,

where we show the effects of instance-based label noise on the ℓCR regularized loss can

be decoupled into three additive terms: Term-1 reflects the expectation of CE on clean

distribution D, Term-2 shifts the clean distribution by changing the prior probability of

Y , and Term-3 characterizes how the corrupted examples (represented by Uij(X)) might

mislead/mis-weight the loss, as well as the regularization ability of ℓCR (represented by

βP(Ỹ = j)). In addition to the design of sample sieve, this additive decoupling structure

also provides a novel and promising perspective for understanding and controlling the

effects of generic instance-dependent label noise.

3.1.3.2 Guarantees of the Sample Sieve

By decoupling the effects of instance-dependent noise into separate additive

terms as shown in Theorem 7, we can further study under what conditions, minimizing

the confidence regularized CE loss on the (instance-dependent) noisy distribution will be

equivalent to minimizing the true loss incurred on the clean distribution, which is exactly

encoded by Term-1. In other words, we would like to understand when Term-2 and

Term-3 in (3.5) can be controlled not to disrupt the minimization of Term-1. Our next

main result establishes this guarantee but will first need the following two assumptions.

Assumption 3. (Y ∗ = Y) Clean labels are Bayes optimal (Y ∗ := argmaxi∈[K] P(Y =

79

i|X)).

Assumption 4. (Informative datasets) The noise rate is bounded as Tii(X)− Tij(X) >

0,∀i ∈ [K], j ∈ [K], j ̸= i,X ∼ DX .

Feasibility of assumptions 1) Note for many popular image datasets, e.g. CIFAR, the

label of each feature is well-defined and the corresponding distribution is well-separated

by human annotation. In this case, each feature X only belongs to one particular class

Y . Thus Assumption 3 is generally held in classification problems [119]. Technically,

this assumption could be relaxed. We use this assumption for clean presentations. 2)

Assumption 4 shows the requirement of noise rates, i.e., for any feature X, a sufficient

number of clean examples are necessary for dominant clean information. For example,

we require Tii(X)− Tij(X) > 0 to ensure examples from class i are informative [123].

Before formally presenting the noise-resistant property of training with ℓCR, we

discuss intuitions here. Our ℓCR regularizes the CE loss to generate/incentivize confident

prediction, and thus is able to approximate the 0-1 loss to obtain its robustness property.

More explicitly, from (3.5), ℓCR affects Term-3 with a scale parameter β. Recall that

Uij(X) = Tij(X), ∀i ̸= j, which is exactly the noise transition matrix. Although we

have no information about this transition matrix, the confusion brought by Uij(X) can

be canceled or reversed by a sufficiently large β such that Uij(X) − βP(Ỹ = j) ≤ 0.

Intuitively, with an appropriate β, all the effects of Uij(X), i ̸= j can be reversed, and

we will get a negative loss punishing the classifier for predicting class-j when the clean

label is i. Formally, Theorem 8 shows the noise-resistant property of training with ℓCR

80

and is proved in Appendix B.1.4.

Theorem 8. (Robustness of the Confidence Regularized CE Loss) With Assumption 3

and 4, when

max
i,j∈[K],X∼DX

Uij(X)

P(Ỹ = j)
≤ β ≤ min

P(Ỹ=i)>P(Ỹ=j),X∼DX

Tii(X)− Tij(X)

P(Ỹ = i)− P(Ỹ = j)
, (3.6)

minimizing ED̃[ℓ(f(X), Ỹ) + ℓCR(f(X))] is equivalent to minimizing ED[ℓ(f(X), Y)].

Theorem 8 shows a sufficient condition of β for our confidence regularized CE

loss to be robust to instance-dependent label noise. The bound on LHS ensures the

confusion from label noise could be canceled or reversed by the β weighted confidence

regularizer, and the RHS bound guarantees the model with the minimized regularized

loss predicts the most frequent label in each feature w.p. 1.

Theorem 8 also provides guidelines for tuning β. Although we have no knowledge

about Tij(X), we can roughly estimate the range of possible β. One possibly good

setting of β is linearly increasing with the number of classes, e.g. β = 2 for 10 classes

and β = 20 for 100 classes.

With infinite model capacity, minimizing ED[ℓ(f(X), Y)] returns the Bayes

optimal classifier (since CE is a calibrated loss) which predicts on each xn better

than random guess. Therefore, with a sufficient number of examples, minimizing

ED̃[ℓ(f(X), Ỹ) + ℓCR(f(X))] will also return a model that predicts better than random

guess, then satisfying the condition required in Theorem 6 to guarantee the quality of

sieved examples. Further, since the Bayes optimal classifier always predicts clean labels

confidently when Assumption 3 holds, Theorem 8 also guarantees confident predictions.

81

With such predictions, the sample sieve in (3.4) will achieve 100% precision on both

clean and corrupted examples. This guaranteed division is summarized in Corollary 3:

Corollary 3. When conditions in Theorem 8 hold, with infinite model capacity and

sufficiently many examples, CORES2 achieves vn = 1(yn = ỹn),∀n ∈ [N], i.e., all the

sieved clean examples are effectively clean.

3.1.4 Experiments

Now we present experimental evidence of how CORES2 works. Throughout the

experiments, the logarithmic function in ℓCR is adapted to ln(fx[y] + 10−8) for numerical

stability.

Datasets CORES2 is evaluated on three benchmark datasets: CIFAR-10, CIFAR-100

[99] and Clothing1M [200]. Following the convention from [205], we use ResNet34 for

CIFAR-10 and CIFAR-100 and ResNet50 for Clothing1M.

Noise type We experiment with three types of label noise: symmetric, asymmetric

and instance-dependent label noise. Symmetric noise is generated by randomly flipping

a true label to the other possible labels w.p. ε [96], where ε is called the noise rate.

Asymmetric noise is generated by flipping the true label to the next class (i.e., label

i→ i+ 1, mod K) w.p. ε. Instance-dependent label noise is a more challenging setting

and we generate instance-dependent label noise following the method from [198] (See

Appendix A.4.1 for details). In expectation, the noise rate ε for all noise regimes is the

overall ratio of corrupted examples in the whole dataset.

82

20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

(a) 20% Symm.
20 40 60 80 1000.0

0.2
0.4
0.6
0.8
1.0

(b) 40% Symm.
20 40 60 80 1000.0

0.2
0.4
0.6
0.8
1.0

(c) 60% Symm.

20 40 60 80 100
epoch

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

(d) 20% Inst.

CORES2

Co-teaching
Co-teaching+

20 40 60 80 100
epoch

0.0
0.2
0.4
0.6
0.8
1.0

(e) 40% Inst.
20 40 60 80 100

epoch
0.0
0.2
0.4
0.6
0.8
1.0

(f) 60% Inst.

Figure 3.4: F-score comparisons on CIFAR10 under symmetric (Symm.) and instance-
based (Inst.) label noise.

3.1.4.1 Quality of our sample sieve

Figure 3.4 shows the F-scores of sieved clean examples with training epochs

on the symmetric and the instance-based label noise. F-score quantifies the quality of

the sample sieve by the harmonic mean of precision (ratio of actual cleans examples in

sieved clean ones) and recall (ratio of sieved cleans examples in actual clean ones), i.e.,

F-score :=
2 · Pre · Re
Pre+ Re

,

where

Pre :=

∑
n∈[N] 1(vn = 1, yn = ỹn)∑

n∈[N] 1(vn = 1)
, and Re :=

∑
n∈[N] 1(vn = 1, yn = ỹn)∑

n∈[N] 1(yn = ỹn)
.

We compare CORES2 with Co-teaching and Co-teaching+. Note the F-scores of CORES2

and Co-teaching are consistently high on the symmetric noise, while CORES2 achieves

higher performance on the challenging instance-based label noise, especially with the

60% noise rate where the other two methods have low F-scores.

83

Table 3.1: Comparison of test accuracies on clean datasets under instance-based label
noise.

Method
Inst. CIFAR10 Inst. CIFAR100

ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.2 ε = 0.4 ε = 0.6

Cross Entropy 87.16 75.16 44.64 58.72 41.14 25.29
Forward T [146] 88.08 82.67 41.57 58.95 41.68 22.83

LDMI [205] 88.80 82.70 70.54 58.66 41.77 28.00
Lq [221] 86.45 69.02 32.94 58.18 40.32 23.13
SCE [177] 89.11 72.04 44.83 59.87 41.76 23.41

Co-teaching [63] 88.66 69.50 34.61 43.03 23.13 7.07
Co-teaching+ [212] 89.04 69.15 33.33 41.84 24.40 8.74

JoCoR [179] 88.71 68.97 30.27 44.28 22.77 7.54
Peer Loss [124] 89.33 81.09 73.73 59.92 45.76 33.61
CORES2 [30] 89.50 82.84 79.66 61.25 47.81 37.85

3.1.4.2 Training with sample sieve

In this section, we compare CORES2 with several state-of-the-art methods

on CIFAR-10 and CIFAR-100 under instance-based, symmetric and asymmetric label

noise settings, which is shown on Table 3.1. For a fair comparison, all the methods use

ResNet-34 as the backbone. By comparing the performance of CE on the symmetric

and the instance-based label noise, we note the instance-based label noise is a more

challenging setting. Even though some methods (e.g., LDMI) behaves well on symmetric

and asymmetric label noise, they may reach low test accuracies on the instance-based

label noise, especially when the noise rate is high or the dataset is more complex.

Table 3.1 shows that CORES2 consistently works well on the instance-based label noise.

3.1.5 Takeaways

We summarize the takeaway messages from this subsection as follows.

• We have proposed CORES2, a sample sieve that is guaranteed to be robust to general

84

instance-dependent label noise and sieve out corrupted examples, but without using

explicit knowledge of the noise rates of labels.

• We have provided a theoretically sound sample sieve that simply compares the exam-

ple’s regularized loss with a closed-form threshold explicitly determined by predictions

from the above trained model using our confidence regularized loss, without any extra

estimates.

• By decoupling the regularized loss into separate additive terms, we have also provided

a novel and promising mechanism for understanding and controlling the effects of

general instance-dependent label noise.

• CORES2 achieves competitive performance on multiple datasets, including CIFAR-10,

CIFAR-100, and Clothing1M, under different label noise settings.

• Code is available at https://github.com/UCSC-REAL/cores.

3.2 SimiFeat: Label Error Detection Using Similar Features

Including CORES2, the learning-centric label error detectors are based on

the idea that trains DNNs with noisy supervisions and then makes decisions based on

the output [141] or gradients [149] of the last logit layer of the trained model. The

high-level intuition of these methods is the memorization effects [62], i.e., instances with

label errors, a.k.a., corrupted instances, tend to be harder to be learned by DNNs than

clean instances [196, 118, 11]. By setting appropriate hyperparameters to utilize the

memorization effect, corrupted instances could be identified.

85

Limitations of the learning-centric methods The above methods suffer from

two major limitations: 1) the customized training processes are task-specific and may

require fine-tuning hyperparameters for different datasets/noise; 2) as long as the model

is trained with noisy supervisions, the memorization of corrupted instances exists.

The model will “subjectively” and wrongly treat the memorized/overfitted corrupted

instances as clean. For example, some low-frequency/rare clean instances may be

harder to memorize than high-frequency/common corrupted instances. Memorizing

these corrupted instances lead to unexpected and disparate impacts [121]. Existing

solutions to avoid memorizing/overfitting are to employ some regularizers [30] or use

early-stopping [12, 110]. However, their performance depends on hyperparameter settings.

One promising way to avoid memorizing/overfitting is to drop the dependency on the

noisy supervision, which motivates us to design a training-free method to find label

errors. Intuitively, we can carefully use the information from nearby features to infer

whether one instance is corrupted or not, as illustrated in Figure 3.1.

In the remainder of this section, different from current methods that train cus-

tomized models on noisy datasets, we propose a training-free and data-centric solution to

efficiently detect corrupted labels, which provides a new and complementary perspective

to the traditional learning-centric solution. We demonstrate the effectiveness of this

simple idea and open the possibility for follow-up works, and show the corresponding

evidence and insights. Specifically, we have:

• Efficient algorithms (Section 3.2.1): Based on the neighborhood information, we

propose two methods: a voting-based local detection method that only requires

86

checking the noisy label consensuses of nearby features, and a ranking-based global

detection method that scores each instance by its likelihood of being clean and filters

out a guaranteed percentage of instances with low scores as corrupted ones.

• Theoretical analyses: We theoretically analyze how the quality of features (but

possibly imperfect in practice) affects local voting and provide guidelines for tuning

neighborhood size. We also prove the worst-case error bound for the ranking-based

method.

• Numerical findings: Our numerical experiments show three important messages: in

corrupted label detection, i) training with noisy supervisions may not be necessary;

ii) feature extraction layers tend to be more useful than the logit layers; iii) features

extracted from other tasks or domains are helpful.

3.2.1 Corrupted Label Detection Using Similar Features

Different from most methods that detect corrupted instances based on the logit

layer or model predictions [141, 30, 149, 10], we focus on a more data-centric solution

that operates on features. Particularly we are interested in the possibility of detecting

corrupted labels in a training-free way. In this section, we will first introduce intuitions,

and then provide two efficient algorithms to detect corrupted labels with similar features.

3.2.1.1 Intuitions

The learning-centric detection methods often detect corrupted instances by

comparing model predictions with noisy labels [30, 141] as illustrated in Figure 3.1.

87

Representations

k-NN
Label Estimator

k-NN Labels

Voting or Ranking
k-NN of

Figure 3.5: Detect corrupted labels with similar features.

However, for the data-centric method, the feature xn cannot be directly compared with

the noisy label ỹn since xn is not directly categorical without a model, i.e., the connection

between a single xn and ỹn is weak. Thus our first step should be establishing auxiliary

categorical information using only features.

Figure 3.5 illustrates the high-level intuition, i.e., checking label consensuses of

nearby features. In this figure, orange circle indicates the instance with noisy label 1,

blue square stands for the instance with noisy label 2, and green dashed circle represents

a k-NN example. With (k, 0) label clusterability as in Definition 2, we know the true

labels of xn and its k-NN xn1 , · · · , xnk
should be the same. If we further assume the label

noise is group-dependent [170], i.e., each xn and its k-NN can be viewed as a local group

and share the same noise transition matrix [122]: P(Ỹ = ỹn|X = xn, Y = yn) = P(Ỹ =

ỹn|X = xn′ , Y = yn), ∀xn′ ∈ {xn1 , · · · , xnk
}, we can first treat their noisy labels as k + 1

independent observations of P(Ỹ = ỹn|X = xn, Y = yn), then estimate the probability

by counting the (weighted) frequency of each class in the k-NN label estimator, and get

k-NN labels ŷn. We use the bold y to indicate a vector, which can be seen as either

88

a one-hot encoding of a hard label or a soft label [229]. The i-th element ŷn[i] can be

interpreted as the estimated probability of predicting class-i.

Note the k-NN technique has been implemented by [10] as a filter to remove

corrupted instances. However, this approach focuses on calculating distances on the

logit layer, which inevitably requires a task-specific training process and may suffer from

the limitations mentioned at the beginning of Section 3.2. Besides, using appropriate

features may be better than model logits/predictions when the dataset is noisy. See

discussions below.

Features could be better than model predictions During supervised training,

memorizing noisy labels makes the model generalizes poorly [62], while using only

features may effectively avoid this issue [106]. For those pre-extracted features, e.g.,

tabular data in UCI datasets [44], the input features are already comparable and

directly applying data-centric methods on these features avoids memorizing noisy labels.

For more challenging tasks such as image or text classifications, we can also borrow

some pre-trained models to pre-process the raw feature to improve the clusterability of

features, such as BERT [40] for language tasks, CLIP [151] for vision-language tasks,

or some feature extractors from unsupervised learning [80] and self-supervised learning

[79, 114, 68, 28, 31], which are not affected by noisy labels.

89

3.2.1.2 Voting-Based Local Detection

Inspired by the idea implemented in model decisions, i.e., selecting the most

likely class as the true class, we can simply “predict” the index that corresponds to

the largest element in ŷn with random tie-breaking, i.e., yvoten = argmaxi∈[K] ŷn[i]. To

further detect whether ỹn is corrupted or not, we only need to check vn := 1(yvoten ̸= ỹn).

Recall vn = 1 indicates a corrupted label. This voting method relies only on the local

information within each k-NN label ŷn, which may not be robust with low-quality

features. Intuitively, when the gap between the true class probability and the wrong class

probability is small, the majority vote will be likely to make mistakes due to sampling

errors in ŷn. Thus only using local information within each ŷn may not be sufficient. It

is important to leverage more information such as some global statistics, which will be

discussed later.

3.2.1.3 Ranking-Based Global Detection

The score function can be designed to detect corrupted instances [141, 30,

149, 10], hard-to-learn instances [115], out-of-distribution instances [182], and suspicious

instances that may cause model unfairness [173]. However, it is not clear how to do so

without training a task-specific model. From a global perspective, if the likelihood for

each instance being clean could be evaluated by some scoring functions, we can sort the

scores in an increasing order and filter out the low-score instances as corrupted ones.

Based on this intuition, there are two critical components: the scoring function and the

threshold to differentiate the low-score part (corrupted) and the high-score part (clean).

90

Scoring function A good scoring function should be able to give clean instances

higher scores than corrupted instances. We adopt cosine similarity defined as:

Score(ŷn, j) =
ŷ⊤
n ej

∥ŷn∥2∥ej∥2
,

where ej is the one-hot encoding of label j. To evaluate whether the soft label ŷn informs

us of a clean instance or not, we compare Score(ŷn, ỹn) with other instances that have

the same noisy label. This scoring function captures more information than the majority

votes, which is summarized as follows.

Property 1 (Relative score). Within the same instance, the score of the majority

class is higher than the others, i.e., ∀j ̸= yvoten , j ∈ [K],∀n ∈ [N] : Score(ŷn, y
vote
n) >

Score(ŷn, j).

Property 2 (Absolute score). Score(ŷn, j) is jointly determined by both ŷn[j] and

ŷn[j
′], ∀j′ ̸= j.

The first property guarantees that the corrupted labels would have lower scores

than clean labels for the same instance when the vote is correct. However, although solely

relying on Property 1 may work well in the voting-based method which makes decisions

individually for each instance, it is not sufficient to be trustworthy in the ranking-based

global detection. Empirically we observe that if we choose a score function that Property

3.2 does not hold, e.g., treating k-NN soft labels as model predictions and check the

cross-entropy loss, it does not always return satisfying results in our experiments. The

main reason is that, across different instances, the non-majority classes of some instances

91

may have higher absolute scores than the majority classes of the other instances, which is

especially true for general instance-dependent label noise with heterogeneous noise rates

[30]. Property 2 helps make it less likely to happen. Consider an example as follows.

Example Suppose ŷn1 = ŷn2 = [0.6, 0.4, 0.0]⊤, ŷn3 = [0.34, 0.33, 0.33]⊤, yn1 = yn2 =

yn3 = 1, ỹn1 = ỹn3 = 1, ỹn2 = 2. We can use the majority vote to get perfect detection in

this case, i.e., yvoten1
= yvoten2

= yvoten3
= 1 = yn1 , since the first class of each instance has

the largest value. However, if we directly use a single value in soft label yn to score them,

e.g., Score′(ŷn, j) = ŷn[j], we will have ŷn1 [ỹn1] = 0.6 > ŷn2 [ỹn2] = 0.4 > ŷn3 [ỹn3] = 0.34,

where the ranking is n3 ≺ n2 ≺ n1. Ideally, we know instance n2 is corrupted and the

true ranking should be n2 ≺ n3 ≺ n1 or n2 ≺ n1 ≺ n3. To mitigate this problem, we

choose cosine similarity as our scoring function. The three instances could be scored as

0.83, 0.55, 0.59, corresponding to an ideal ranking n2 ≺ n3 ≺ n1. We formally introduce

the detailed ranking approach as follows.

Ranking Suppose we have a group of instances with the same noisy class j, i.e.

{(xn, ỹn)}n∈Nj , where Nj := {n|ỹn = j} are the set of indices that correspond to noisy

class j. Let Nj be the number of indices in Nj (counted from noisy labels). Intuitively,

we can first sort all instances in Nj in an increasing order by argsort and obtain the

original indices for the sorted scores as:

I = argsort{Score(ŷn, j)}n∈Nj ,

92

where the low-score head is supposed to consist of corrupted instances [141]. Then we

can simply select the first Ñj instances with low scores as corrupted instances:

vn = 1(Loc(n, I) ≤ Ñj),

where Loc(n, I) returns the index of n in I. Instead of manually tuning Ñj [63], we

discuss how to determine it algorithmically.

Threshold The number of corrupted instances in Nj is P(Y ̸= j|Ỹ = j) ·Nj when Nj

is sufficiently large. Therefore if all the corrupted instances have lower scores than any

clean instance, we can set Ñj = P(Y ̸= j|Ỹ = j) ·Nj to obtain the ideal division. Note

Nj can be obtained by directly counting the number of instances with noisy label j. To

calculate the probability

P(Y ̸= j|Ỹ = j) = 1− P(Y = j|Ỹ = j),

we borrow the results from the HOC estimator [230, 231], where the noise transition

probability P(Ỹ = j|Y = j) and the marginal distribution of clean label P(Y = j) can be

estimated with only features and the corresponding noisy labels. Then we can calculate

our needed probability by Bayes’ rule

P(Y = j|Ỹ = j) = P(Ỹ = j|Y = j) · P(Y = j)/P(Ỹ = j),

where P(Ỹ = j) can be estimated by counting the frequency of noisy label j in D̃.

Technically other methods exist in the literature to estimate P(Ỹ |Y) [119, 146, 141, 111].

But they often require training a model to fit the data distribution, which conflict with

our goal of a training-free solution; instead, HOC fits us perfectly.

93

Algorithm 4 Detection with Similar Features (The SimiFeat Detector)

1: Input: Number of epochs: M . k-NN parameter: k. Noisy dataset: D̃ = {(xn, ỹn)}n∈[N].

Feature extractor: g(·). Method: Vote or Rank. Epoch counters m = 0.

2: repeat

3: x′
n ← RandPreProcess(xn),∀n; # Initialize & Standard data augmentations

4: xn ← g(x′
n),∀n; # For tasks with rarely clusterable features, extract features with g(·)

5: ŷn ← kNNLabel({xn}n∈[N], k) # Get soft labels.

6: if Vote then

7: yvoten ← argmaxi∈[K] ŷn[i]; # Apply local majority vote

8: vn ← 1(yvoten ̸= ỹn),∀n ∈ [N]; # Corrupted if majority votes disagree with noisy labels

9: else

10: P(Y),P(Ỹ |Y)← HOC({(xn, ỹn)}n∈[N]); # Estimate clean priors P(Y) and noise transitions

P(Ỹ |Y) by HOC

11: P(Y |Ỹ) = P(Ỹ |Y) · P(Y)/P(Ỹ); # Estimate thresholds by Bayes’ rule

12: for j in [K] do

13: Nj := {n|ỹn = j}; # Detect corrupted labels in each set Nj

14: I ← argsort{Score(ŷn, j)}n∈Nj
; # I records the raw index of each sorted value

15: vn ← 1
(
Loc(n, I) ≤ ⌊(1− P(Y = j|Ỹ = j)) ·Nj⌋

)
; # Low-score instances are corrupted

16: end for

17: end if

18: Vm = {vn}n∈[N]; # Record detection results in the m-th epoch

19: until M times

20: V =Vote(Vm,∀m ∈ [M]); # Do majority vote based on results from M epochs

21: Output: [N] \ V.

94

3.2.1.4 Algorithm: SimiFeat

Algorithm 4 summarizes our solution. The main computation complexity is

pro-processing features with extractor g(·), which is less than the cost of evaluating

the model compared with the training-based methods. Thus SimiFeat can filter out

corrupted instances efficiently. In Algorithm 4, we run either voting-based local detection

as Lines 7, 8, or ranking-based global detection as Lines 14, 15. The detection is run

multiple times with random standard data augmentations to reduce the variance of

estimation. The majority of results from different epochs is adopted as the final detection

output as Line 20, i.e., flag as corrupted if vn = 1 in more than half of the epochs.

3.2.2 How Does Feature Quality Affect Our Solution?

In this section, we will first show how the quality of features affects the selection

of the hyperparameter k, then analyze the error upper bound for the ranking-based

method. Note the voting-based method achieves an F1-score of 1 when (k, 0)-NN label

clusterability, k → +∞, holds.

3.2.2.1 How Does Feature Quality Affect the Choice of k?

Recall k is used as illustrated in Figure 3.5. On one hand, the k-NN label

estimator will be more accurate if there is stronger clusterability that more neighbor

features belong to the same true class [125, 230], which helps improve the performance

of later algorithms. On the other hand, with good but imperfect features, stronger

clusterability with a larger k is less likely to satisfy, thus the violation probability δk

95

increases with k for a given extractor g(·). We take the voting-based method as an example

and analyze this tradeoff. For a clean presentation, we focus on a binary classification

with instance-dependent label noise where P(Y = 1) = p, P(Ỹ = 2|X,Y = 1) = e1(X),

P(Ỹ = 1|X,Y = 2) = e2(X). Suppose the instance-dependent noise rate is upper-

bounded by e, i.e., e1(X) ≤ e, e2(X) ≤ e. With δk as in Definition 2, we calculate the

lower bound of the probability that the vote is correct in Proposition 1.

Proposition 1. The lower bound for the probability of getting true detection with

majority vote is

P(Vote is correct|k) ≥ (1− δk) · I1−e(k + 1− k′, k′ + 1),

where k′ = ⌈(k + 1)/2⌉ − 1, I1−e(k + 1 − k′, k′ + 1) is the regularized incomplete beta

function defined as I1−e(k + 1− k′, k′ + 1) = (k + 1− k′)
(
k+1
k′

) ∫ 1−e
0 tk−k′(1− t)k

′
dt.

Proposition 1 shows the tradeoff between a reliable k-NN label and an accurate

vote. When k is increasing, Term-1 (1− δk) (quality of features) decreases but Term-2

I1−e1(k + 1− k′, k′ + 1) (result of pure majority vote) increases. With Proposition 1, we

are ready to answer the question: when do we need more labels? See Remark 3.

Remark 3. Consider the lower bounds with k1 and k2 (k1 < k2). Supposing the first

lower bound is lower than the second lower bound, based on Proposition 1, we roughly

study the trend with an increasing k by comparing two bounds and get

1− δk1
1− δk2

<
I1−e(k2 + 1− k′2, k

′
2 + 1)

I1−e(k1 + 1− k′1, k
′
1 + 1)

.

96

0 25 50 75 100
k

0.0

0.2

0.4

0.6

0.8

1.0

k

0 25 50 75 100
k

0.0

0.2

0.4

0.6

0.8

1.0

Lo
we

r b
ou

nd

R18-Img
R34-Img
R50-Img
R34-C10-SSL
R34-C100-SSL
ViT-B/32-CLIP
R34-C10-Clean
R34-C100-Clean

Figure 3.6: The trends of δk and probability lower bounds on CIFAR-10

For example, when k1 = 5, k2 = 20, e = 0.4, we can calculate the incomplete beta

function and 1−δ5
1−δ20

< 1.52. Supposing δ5 = 0.2, we have δ20 < 0.47. This indicates

increasing k from 5 to 20 would not improve the lower bound with features satisfying

δ20 > 0.47. This observation helps us set k with practical and imperfect features. We set

k = 10 in all of our experiments.

Remark 3 indicates that: with practical (imperfect) features, a small k

may achieve the best (highest) probability lower bound . To further consolidate

this claim, we numerically calculate δk with different quality of features on CIFAR-10

[99] and the corresponding probability lower bound in Figure 3.6. The raw features

are extracted with different g(·). The outputs of the last convolution layer are adopted.

Notations R18/34/50 indicate ResNet18/34/50. Notation Img stands for the extractor

that is pre-trained on ImageNet [38]. Notations C10/100-Clean are the extractors pre-

trained on clean CIFAR-10/100. Notations C10/100-SSL are extractors pre-trained on

CIFAR-10/100 without labels by SimCLR [28]. Notation ViT-B/32-CLIP indicates that

97

CLIP model, pre-trained vision transformer [151]. We find most of the probability lower

bounds first increase then decrease except for the “perfect” feature which is extracted

by the extractor trained using ground-truth labels. Note this feature extractor has

memorized all clean instances so that δk → 0 since k ≪ 5000 (the number of instances

in the same label class).

3.2.2.2 How Does Feature Quality Affect F1-Score?

We next prove the probability bound for the performance of the ranking-

based method. Consider a K-class classification problem with informative instance-

dependent label noise [30]. Denote random variable S by the score of each instance

being clean. A higher score S indicates the instance is more likely to be clean. Denote

the score of a true/false instance by Strue
n,j := Score(ŷn, j) when ỹn = yn = j and

Sfalse
n′,j := Score(ŷn′ , j) when ỹn′ = j, yn′ ≠ j. Both are scalars. Then for instances in

Nj , we have two set of random variables Struej := {Strue
n,j |n ∈ Nj , ỹn = yn = j} and

Sfalsej := {Sfalse
n′,j |n′ ∈ Nj , ỹn′ = j, yn′ ̸= j}. Recall Nj := {n|ỹn = j} are the set of indices

that correspond to noisy class j. Intuitively, the score Strue
n,j should be greater than Sfalse

n′,j .

Suppose their means, which depend on noise rates, are bounded, i.e.,

E[Strue
n,j] ≥ µtrue

j , E[Sfalse
n′,j] ≤ µfalse

j

for all feasible n, n′. Assume there exists a feasible v such that both Strue
j and Sfalse

j

follow sub-Gaussian distributions with variance proxy ∆2

2v [21, 233] such that:

P(µtrue
j − Strue

n,j ≥ t) ≤ e−
vt2

∆2 ,P(Sfalse
n′,j − µfalse

j ≥ t) ≤ e−
vt2

∆2 ,

98

and the probability density satisfies P(Strue
j = µtrue

j) = P(Sfalse
j = µfalse

j) = 1/∆, where

1/∆ is the “height” of both distributions, v is the decay rate of tails. Let N−
j (N+

j) be

the number of indices in Sfalsej (Struej). Theorem 9 summarizes the performance bound of

the ranking-based method. See Appendix for the proof.

Theorem 9. With probability at least p, when the threshold for the ranking-based method

is set to

(1− P(Y = j|Ỹ = j)) ·Nj

as Line 15, the F1-score of detecting corrupted instances in Nj by ranking is at least

1 − e−v max(N−,N+)+α
N− , where p =

∫ µtrue
j −µfalse

j −∆

−1 f(t)dt, f(t) is the probability density

function of the difference of two independent beta-distributed random variables β1 − β2,

where β1 ∼ Beta(N−, 1), β2 ∼ Beta(α+ 1, N+ − α).

Theorem 1 shows the detection performance depends on:

• the concentration of Strue
n,j and Sfalse

n′,j : variance proxy ∆2

2v ;

• the distance between Strue
n,j and Sfalse

n′,j : µ
true
j − µfalse

j .

Intuitively, with proper scoring function and high-quality features, we have

small variance proxy (small ∆ and large v) and F1-score approximates to 1.

3.2.3 Empirical Results

We present experimental evidence in this section. The performance is measured

by the F1-score of the detected corrupted labels as defined in Section 1.2.2.2. Note there

is no training procedure in our method. The only hyperparameters in our methods are

99

the number of epochs M and the k-NN parameter k. Intuitively, a larger M returns a

collective result from more times of detection, which should be more accurate. But a

larger M takes more time. We set M = 21 (an odd number for better tie-breaking) for

an efficient solution. The hyperparameter k cannot be set too large as demonstrated in

Figure 3.6. From Figure 3, we notice that the lower bound (RHS figure) is relatively

high when k = 10 for all settings. Therefore, in CIFAR [99] experiments, rather than

fine-tune M and k for different settings, we fix M = 21 and k = 10. We also test on

Clothing1M [200]. Detailed experiment settings on Clothing1M are in Appendix B.3.

Synthetic label noise We experiment with three popular synthetic label noise models:

the symmetric label noise, the asymmetric label noise, and the instance-dependent label

noise. Denote the ratio of instances with corrupted labels in the whole dataset by η. Both

the symmetric and the asymmetric noise models follow the class-dependent assumption

[119], i.e., the label noise only depends only on the clean class: P(Ỹ |X,Y) = P(Ỹ |Y).

Specially, the symmetric noise is generated by uniform flipping, i.e., randomly flipping a

true label to the other possible classes w.p. η [30]. The asymmetric noise is generated by

pair-wise flipping, i.e., randomly flipping true label i to the next class (i mod K) + 1.

Denote by d the dimension of features. The instance-dependent label noise is synthesized

by randomly generating a d×K projection matrix wi for each class i and project each

incoming feature with true class yn onto each column of wyn [198]. Instance n is more

likely to be flipped to class j if the projection value of xn on the j-th column of wyn

is high. See Appendix B in [198] and Appendix D.1 in [230] for more details. We use

100

symmetric noise with η = 0.6 (Symm. 0.6), asymmetric noise with η = 0.3 (Asym. 0.3),

and instance-dependent noise with η = 0.4 (Inst. 0.4) in experiments.

Real-world label noise The real-world label noise comes from human annotations

or weakly labeled web data. We use the 50, 000 noisy training labels (η ≈ 0.16) for

CIFAR-10 collected by [230], and 50, 000 noisy training labels (η ≈ 0.40) for CIFAR-100

collected by [188]. Both sets of noisy labels are crowd-sourced from Amazon Mechanical

Turk. For Clothing1M [200], we could not calculate the F1-scores due to the lack of

ground-truth labels. We firstly perform noise detection on 1 million noisy training

instances then train only with the selected clean data to check the effectiveness.

3.2.3.1 Fitting Noisy Distributions May Not Be Necessary

Our first experiment aims to show that fitting the noisy data distribution may

not be necessary in detecting corrupted labels. To this end, we compare our methods, i.e.,

voting-based local detection (SimiFeat-V) and ranking-based global detection (SimiFeat-

R), with three learning-centric noise detection works: CORES [30], confident learning

(CL) [141], TracIn [149], and deep k-NN [10]. We use ResNet34 [69] as the backbone

network in this experiment.

Baseline settings All these three baselines require training a model with the noisy

supervision. Specifically, CORES [30] trains ResNet34 on the noisy dataset and uses

its proposed sample sieve to filter out the corrupted instances. We adopt its default

setting during training and calculate the F1-score of the sieved out corrupted instances.

101

Confident learning (CL) [141] detects corrupted labels by firstly estimating probabilistic

thresholds to characterize label noise, ranking instances based on model predictions,

then filtering out corrupted instances based on ranking and thresholds. We adopt its

default hyper-parameter setting to train ResNet34. TracIn [149] detects corrupted labels

by evaluating the self-influence of each instance, where the corrupted instances tend

to have a high influence score. The influence scores are calculated based on gradients

of the last layer of ResNet34 at epoch 40, 50, 60, 100, where the model is trained with

a batch size of 128. The initial learning rate is 0.1 and decays to 0.01 at epoch 50.

Note TracIn only provides ranking for instances. To exactly detect corrupted instances,

thresholds are required. For a fair comparison, we refer to the thresholds learned by

confident learning [141]. Thus the corrupted instances selected by TracIn are based

on the ranking from its self-influence and thresholds from CL. To highlight that our

solutions work well without any supervision, our feature extractor g(·) comes from the

ResNet34 pre-trained by SimCLR [28] where contrastive learning is applied and no

supervision is required. Extractor g(·) is obtained with only in-distribution features, e.g.,

for experiments with CIFAR-10, g(·) is pre-trained with features only from CIFAR-10.

The detailed implementation for deep k-NN filter [10] is not public. Noting their k-NN

approach is employed on the logit layer, we reproduce their work by firstly training the

model on the noisy data then substituting the model logits for g(·) in SimiFeat-V. The

best epoch result for deep k-NN is reported.

102

Table 3.2: Comparisons of F1-scores (%).

Method
CIFAR10 CIFAR100

Human Symm. 0.6 Asym. 0.3 Inst. 0.4 Human Symm. 0.6 Asym. 0.3 Inst. 0.4

CORES 65.00 92.94 7.68 87.43 3.52 92.34 0.02 9.67
CL 55.85 80.59 76.45 62.89 64.58 78.98 52.96 50.08

TracIn 55.02 76.94 73.47 58.85 61.75 76.74 48.42 49.89
Deep k-NN 56.21 82.35 75.24 63.08 57.40 70.69 56.75 63.85
SimiFeat-V 82.30 93.21 82.52 81.09 73.19 84.48 65.42 74.26
SimiFeat-R 83.28 95.56 83.58 82.26 74.67 88.68 62.89 73.53

Performance Table 3.2 compares the results obtained with or without supervision.

Methods CORES, CL, and TracIn are trained with noisy supervision. Methods SimiFeat-

V and SimiFeat-R get g(·) without any supervision. The top-2 are bold. We can see

both the voting-based and the ranking-based methods achieve overall higher F1-scores

compared with the other three results that require learning with noisy supervision.

Moreover, in detecting the real-world human-level noisy labels, our solution outperforms

baselines around 20% on CIFAR-10 and 10% on CIFAR-100, which indicates the training-

free solution is more robust to complicated noise patterns. One might also note that

CORES achieves exceptionally low F1-scores on CIFAR-10/100 with asymmetric noise

and CIFAR-100 with human noise. This observation also informs us that customized

training processes might not be universally applicable.

3.2.3.2 Features May Be Better Than Model Predictions

Our next experiment aims to compare the performance of the data-centric

method with the learning-centric method when the same feature extractor is adopted.

Thus in this experiment, all methods adopt the same fixed feature extractor (ViT-B/32

pre-trained by CLIP [151]). Our proposed data-centric method directly operates on

103

Table 3.3: Comparisons of F1-scores (%).

Method
CIFAR10 CIFAR100

Human Symm. 0.6 Asym. 0.3 Inst. 0.4 Human Symm. 0.6 Asym. 0.3 Inst. 0.4

CE Sieve 67.21 94.56 5.24 8.41 16.24 88.55 2.6 1.63
CORES 83.18 96.94 12.05 88.89 38.52 92.33 7.02 85.52

CL 69.76 95.03 77.14 62.91 67.64 85.67 62.58 61.53
TracIn 81.85 95.96 80.75 64.97 79.32 91.03 63.12 64.31

Deep k-NN 82.98 87.47 76.96 77.42 72.33 82.95 64.96 74.25
SimiFeat-V 87.43 96.44 88.97 87.11 76.26 86.88 73.50 80.03
SimiFeat-R 87.45 96.74 89.04 91.14 79.21 90.54 68.14 77.37

the extracted features, while the learning-centric method further trains a linear layer

with noisy supervisions based on the extracted features. In addition to the baselines

compared in Section 3.2.3.1, we also compare to CE Sieve [30] which follows the same

sieving process as CORES but uses CE loss without regularizer. Other settings are the

same as those in Section 3.2.3.1.

Table 3.3 summarizes the results of this experiment. Methods CORES, CL,

and TracIn use logit layers, while SimiFeat-V/R use only representations. All methods

use the same fixed extractor from CLIP. The Top-2 are bold. By counting the

frequency of reaching top-2 F1-scores, we find SimiFeat-R wins 1st place, SimiFeat-V and

CORES are tied for 2nd place. However, similar to Table 3.3, we find the training process

of CORES to be unstable. For instance, it almost fails for CIFAR-100 with asymmetric

noise. Besides, comparing deep k-NN with SimiFeat-V, we find using the model logits

given by an additional linear layer fine-tuned with noisy supervisions cannot always help

improve the performance of detecting corrupted labels. It is therefore reasonable to

believe both methods that directly deal with the extracted features achieve an overall

higher F1-score than other learning-centric methods.

104

Table 3.4: Comparisons of F1-scores (%) using g(·) with different δk (%). Model names
are the same as Figure 3.6.

Pre-trained Model
CIFAR10 CIFAR100

1− δk Human Inst. 0.4 1− δk Human Inst. 0.4

R18-Img 35.73 75.40 80.22 11.30 74.91 71.99
R34-Img 48.13 79.52 82.43 16.17 76.88 74.00
R50-Img 45.77 78.40 82.06 15.81 76.55 73.51

ViT-B/32-CLIP 64.12 87.45 91.14 19.94 79.21 77.37

R34-C10-SSL 69.31 83.28 85.26 2.59 68.03 65.94
R34-C10-Clean 99.41 98.39 98.59 0.22 60.90 60.73

R34-C100-SSL 18.59 59.96 74.99 22.46 74.67 73.53
R34-C100-Clean 18.58 60.17 76.41 89.07 92.87 95.29

3.2.3.3 The Effect of the Quality of Features

Previous experiments demonstrate our methods overall outperform baselines

with high-quality features. It is interesting to see how lower-quality features perform.

We summarize results of SimiFeat-R in Table 3.4. There are several interesting findings:

1) The ImageNet pre-trained models perform well, indicating the traditional supervised

training on out-of-distribution data helps obtained high-quality features; 2) For CIFAR-

100, extractor g(·) obtained with only features from CIFAR-10 (R34-C10-SSL) performs

better than the extractor with clean CIFAR-10 (R34-C10-Clean), indicating that con-

trastive pre-training has better generalization ability to out-of-distribution data than

supervised learning; 3) The F1-scores achieved by g(·) trained with the corresponding

clean dataset are close to 1, indicating our solution can give perfect detection with ideal

features.

105

Table 3.5: Experiments on Clothing1M.

Data Selection # Training Best Epoch Last 10 Last

None 1M (100%) 70.32 69.44 ± 0.13 69.53
R50-Img 770k (77.0%) 72.37 71.95 ± 0.08 71.89

ViT-B/32-CLIP 700k (70.0%) 72.54 72.23 ± 0.17 72.11
R50-Img Warmup-1 767k (76.7%) 73.64 73.28 ± 0.18 73.41

3.2.3.4 More Experiments on Real-World Large-Scale Datasets

Besides, we test the performance of training only with the clean instances

selected by our approach in Table 3.5. There are different data selection methods:

• None: Standard training with 1M noisy data.

• R50-Img (or ViT-B/32-CLIP, R50-Img Warmup-1): Apply our method with ResNet50

pre-trained on ImageNet (or ViT-B/32 pre-trained by CLIP, R50-Img with 1-epoch

warmup).

The clean test accuracy on the best epoch, the last 10 epochs, and the last epoch are

listed. Top-1 is bold. Standard training with Cross-Entropy loss is adopted. The

only difference between the first row and other rows of Table 3.5 is that some training

instances are filtered out by our approach. Table 3.5 shows simply filtering out corrupted

instances based on our approach distinctively outperforms the baseline. We also observe

that slightly tuning g(·) in the fine-grained Clothing1M dataset would be helpful. Note

the best-epoch test accuracy we can achieve is 73.64%, which outperforms many baselines

such as HOC 73.39% [230], GCE+SimCLR 73.35% [56], CORES 73.24% [30], GCE

69.75% [221]. See more detailed settings and discussions in Appendix B.3.

106

Chapter 4

Learning After Label Error Detection

This chapter discusses some possibilities of robust learning algorithms when

the label error in the original dataset has been detected. The simplest way is to train a

model on a cleaned dataset by directly removing all the detected corrupted examples, as

shown in Table 3.1 of Section 3.1.4.2 and Table 4.3 of Section 3.2.3.4. One limitation

of this approach is the waste of information in the mislabeled features. In this chapter,

we will introduce two advanced methods that are designed to better use the features

of mislabeled examples. Specifically, in Section 4.1, we adopt semi-supervised learning

to treat the detected corrupted examples as unlabeled samples, and in Section 4.2, we

design a robust loss function that uses the second-order information derived from the

label error detection results.

107

Iteration-t

Model
Update

Data
Selection

Sample sieve

Consistency training

Remove
Label

Epoch-t

Random Data
Augmentation

Low Loss

High Loss

Figure 4.1: Implement semi-supervised learning with CORES2.

4.1 A Semi-Supervised Learning Approach

This section shows how a semi-supervised learning (SSL) approach is combined

with CORES2 to further improve the mode training. The clean examples are used for

normal training and the corrupted ones are used as unlabeled data for SSL.

The training framework is shown in Figure 4.1, where L(t) includes the indices

of sieved clean examples and H(t) contains the indices of sieved corrupted examples.

Let τ be the last iteration of CORES2. We have L(τ) := {n|n ∈ [N], v
(τ)
n = 1} and

H(τ) := {n|n ∈ [N], v
(τ)
n = 0}. Then D̃L(τ) := {(xn, ỹn) : n ∈ L(τ)} is sieved as

clean examples and and D̃H(τ) := {(xn, ỹn) : n ∈ H(τ)} is filtered out as corrupted

ones. Examples (xn, ỹn) ∈ D̃L(τ) lead the training direction using the CE loss as

108

∑
n∈L(τ) ℓ(f(xn), ỹn). Noting the labels in D̃H(τ) are supposed to be corrupted and can

distract the training, we simply drop them. On the other hand, the feature information

of these examples encodes useful information that we can further leverage to improve

the generalization ability of models. There are different ways to use this unsupervised

information, in this section, we chose to minimize the KL-divergence between predictions

on the original feature and the augmented feature to make predictions consistent. This

is a common option as chosen by [109], [201], and [223]. The consistency loss function

in epoch-t is
∑

n∈H(τ) ℓKL(f(xn), f̄
(t)(xn,t)), where f̄ (t) is a copy of the DNN at the

beginning of epoch-t but without gradients. Summing the classification and consistency

loss yields the total loss. We call this semi-supervised learning version CORES2⋆.

Experiments When performing CORES2⋆, we used the sieved result at epoch-40. It is

worth noting that at that time, the sample sieve may not reach the highest test accuracy.

However, the division property brought by the confidence regularizer works well at that

time. We use the default setting from UDA [201] to apply efficient data augmentation.

Table 4.1 shows the comparison of test accuracies under synthetic instance-dependent

label noise (Inst. CIFAR10, Inst. CIFAR100) and real-world human annotations from

CIFAR-N [188]. The results show that applying SSL after label error detection can

significantly improve performance.

109

Table 4.1: Comparison of test accuracies under instance-dependent label noise.

Method
Inst. CIFAR10 Inst. CIFAR100

ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.2 ε = 0.4 ε = 0.6

CORES2 89.50 82.84 79.66 61.25 47.81 37.85
CORES2⋆ 95.42 88.45 85.53 72.91 70.66 63.08

Method
CIFAR10-N

Aggregate Random 1 Random 2 Random 3 Worst

CORES2 91.23±0.11 89.66±0.32 89.91±0.45 89.79±0.50 83.60±0.53
CORES2⋆ 95.25±0.09 94.45±0.14 94.88±0.31 94.74±0.03 91.66±0.09

4.2 A Second-Order Approach

This section studies the insufficiency of the first-order approach, such as peer

loss [124, 30] and explores the possibility of designing robust loss functions with higher-

order information [227]. The discussion in this section focuses on the connection between

the Bayes optimal label Y ∗ and the label Ỹ with instance-dependent noise (IDN) defined

as follows.

Bayes optimal distribution D∗ Denote by Y ∗ the Bayes optimal label given feature

X, that is: Y ∗|X := argmaxY P(Y |X), (X,Y) ∼ D. The distribution of (X,Y ∗) is

denoted by D∗. Note the Bayes optimal distribution D∗ is different from the clean

distribution D when P(Y |X) /∈ {0, 1}. Due to the fact that the information encoded

between features and labels is corrupted by label noise, and both clean labels and Bayes

optimal labels are unobservable, inferring the Bayes optimal distribution D∗ from the

noisy dataset D̃ is a non-trivial task. Notably there exist two approaches [30] that

provide guarantees on constructing the Bayes optimal dataset. We would like to remind

110

the readers that the noisy label ỹn, clean label yn, and Bayes optimal label y∗n for the

same feature xn may disagree with each other.

Most of our developed approaches will focus on dealing with the Bayes optimal

distribution D∗. By referring to D∗, as we shall see later, we are allowed to estimate the

second-order statistics defined w.r.t. Y ∗.

Noise transition matrix T (X) Traditionally, the noise transition matrix is defined

based on the relationship between clean distributions and noisy distributions [30, 124,

146, 198]. In recent literature [33], the Bayes optimal label (a.k.a. distilled label in

[33]) also plays a significant role. In the classification tasks where the performance is

measured by the clean test accuracy, predicting the Bayes optimal label achieves the

best performance. This fact motivates us to define a new noise transition matrix based

on the Bayes optimal label as follows:

Ti,j(X) = P(Ỹ = j|Y ∗ = i,X),

where Ti,j(X) denotes the (i, j)-th element of the matrix T (X). Its expectation is defined

as T := E[T (X)], with the (i, j)-th element being Ti,j := E[Ti,j(X)].

4.2.1 Insufficiency of First-Order Statistics

Peer loss [124] and its inspired confidence regularizer [30] are two recently

introduced robust losses that operate without the knowledge of noise transition matrices,

which presents them as preferred solutions for more complex noise settings. In this

section, we will first review the usages of first-order statistics in peer loss and the

111

confidence regularizer (Section 4.2.1.1), and then analyze the insufficiency of using only

the first-order statistics when handling the challenging IDN (Section 4.2.1.2). Besides,

we will anatomize the down-weighting effect of IDN and provide intuitions for how to

make IDN easier to handle (Section 4.2.1.3).

We formalize our arguments using peer loss, primarily due to 1) its clean

analytical form, and 2) that our later proposed solution will be built on peer loss too.

Despite the focus on peer loss, we believe these observations are generally true when

other existing training approaches meet IDN.

For ease of presentation, the following analyses focus on binary cases (with

classes {−1,+1}). Note the class −1 should be mapped to class 0. For a clear comparison

with previous works, we follow the notation in [124] and use class {−1,+1} to represent

classes {0, 1} when K = 2. The error rates in Ỹ are then denoted as e+(X) := P(Ỹ =

−1|Y ∗ = +1, X), e−(X) := P(Ỹ = +1|Y ∗ = −1, X). Most of the discussions generalize

to the multi-class setting.

4.2.1.1 Using First-Order Statistics in Peer Loss

It has been proposed and proved in peer loss [124] and CORES2 [30] that the

learning could be robust to label noise by considering some first-order statistics related

to the model predictions. For each example (xn, ỹn), peer loss [124] has the following

form:

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn1), ỹn2),

112

where (xn1 , ỹn1) and (xn2 , ỹn2) are two randomly sampled peer samples for n. The first-

order statistics related to model predictions characterized by the peer term ℓ(f(xn1), ỹn2)

are further extended to a confidence regularizer in CORES2 [30]:

ℓCORES2(f(xn), ỹn) := ℓ(f(xn), ỹn)− βED
Ỹ |D̃

[ℓ(f(xn), Ỹ)],

where β is a hyperparameter controlling the ability of regularizer, and DỸ |D̃ is the

marginal distribution of Ỹ given dataset D̃. Although it has been shown in [30] that

learning with an appropriate β would be robust to instance-dependent label noise

theoretically, in real experiments, converging to the guaranteed optimum by solving a

highly non-convex problem is difficult.

4.2.1.2 Peer Loss with IDN

Now we analyze the possible performance degradation of using the binary peer

loss function proposed in [124] to handle IDN. Denote by

f̃∗
peer := argmin

f
ED̃

[
1PL(f(X), Ỹ)

]
the optimal classifier learned by minimizing 0-1 peer loss, where 1PL represents ℓPL with

0-1 loss (could also be generalized for ℓCORES2 with 0-1 loss). Let p∗ := P(Y ∗ = +1).

With a bounded variance in the error rates, supposing

E|e+(X)− E[e+(X)]| ≤ ϵ+, E|e−(X)− E[e−(X)]| ≤ ϵ−,

the worst-case performance bound for using pure peer loss is provided in Theorem 10

and proved in Appendix C.2.1.

113

Theorem 10 (Performance of peer loss). With the peer loss function proposed in [124],

we have

E[1(f̃∗
peer(X), Y ∗)] ≤ 2(ϵ+ + ϵ−)

1− e+ − e−
+ 2|p∗ − 0.5|.

Theorem 10 shows the ratio of wrong predictions given by f̃∗
peer includes two

components. The former term 2(ϵ++ϵ−)
1−e+−e−

is directly caused by IDN, indicating the error

is increasing when the instance-dependent noise rates have larger mean (larger e+ + e−)

and larger variation (larger ϵ+ + ϵ−). The latter term 2|p∗ − 0.5| shows possible errors

induced by an unbalanced D∗. Theorem 10 generalizes peer loss where ϵ+ = ϵ− = 0, i.e.,

the error rates are homogeneous across data instances, and there is no need to consider

any second-order statistics that involve the distribution of noise rates.

4.2.1.3 Down-weighting Effect of IDN

We further discuss motivations and intuitions by studying how IDN affects

the training differently from the class-dependent one. Intuitively, a high noise rate

reduces the informativeness of a particular example (x, y), therefore “down-weighting”

its contribution to training. We now analytically show this under peer loss.

As a building block, the invariant property (in terms of the clean distribution

D) originally discovered by peer loss on class-dependent label noise is first adapted for

the Bayes optimal distribution D∗. Define e− := P(Ỹ = +1|Y ∗ = −1) and e+ := P(Ỹ =

−1|Y ∗ = +1). Focusing on a particular class-dependent D̃, we provide Lemma 4 and its

proof in Appendix C.1.1.

114

Lemma 4 (Invariant property of peer loss [124]). Peer loss is invariant to class-dependent

label noise:

ED̃[1PL(f(X), Ỹ)] = (1− e+ − e−)ED∗ [1PL(f(X), Y ∗)]. (4.1)

Then we discuss the effect of IDN. Without loss of generality, consider a case

where noisy examples are drawn from two noisy distributions D̃I and D̃II, and the noise

rate of D̃II is higher than D̃I, i.e. e+,II+ e−,II > e+,I+ e−,I, where e+,I (II) := PD̃I (II)
(Ỹ =

−1|Y ∗ = +1). Assume a particular setting of IDN that the noise is class-dependent

(but not instance-dependent) only within each distribution, and different between two

distributions, i.e. part-dependent [198]. Let D∗
I and D∗

II be the Bayes optimal distribution

related to D̃I and D̃II. For simplicity, we write P((X,Y ∗) ∼ D∗
I(II)|(X,Y ∗) ∼ D∗) as

P(D∗
I(II)). Then P(D∗

I) = P(D̃I) and P(D∗
II) = P(D̃II). Note P(D̃I)e+,I + P(D̃II)e+,II = e+

and P(D̃I)e−,I + P(D̃II)e−,II = e−. Then we have the following equality:

ED̃[1PL(f(X), Ỹ)]

=P(D̃I)(1− e+,I − e−,I)ED∗
I
[1PL(f(X), Y ∗)] + P(D̃II)(1− e+,II − e−,II)ED∗

II
[1PL(f(X), Y ∗)]

=(1− e+,I − e−,I)

(
P(D∗

I)ED∗
I
[1PL(f(X), Y ∗)] +

1− e+,II − e−,II

1− e+,I − e−,I
P(D∗

II)ED∗
II
[1PL(f(X), Y ∗)]

)
,

where

1− e+,II − e−,II

1− e+,I − e−,I
< 1

indicates down-weighting examples drawn from D̃II (compared to the class-dependent

label noise).

What can we learn from this observation? First, we show that peer loss is already

down-weighting the importance of the more noisy examples. However, simply dropping

examples with potentially high-level noise might lead the classifier to learn a biased

115

distribution. Moreover, subjectively confusing examples are more prone to be mislabeled

and critical for accurate predictions [175], thus need to be carefully addressed. Our

second observation is that if we find a way to compensate for the “imbalances” caused

by the down-weighting effects shown above, the challenging instance-dependent label

noise could be transformed into a class-dependent one, which existing techniques can

then handle. More specifically, the above result shows the down-weighting effect is

characterized by T (X), implying only using the first-order statistics of model predictions

without considering the distributions of the noise transition matrix T (X) is insufficient

to capture the complexity of the learning task. However, accurately estimating T (X) is

prohibitive since the number of parameters to be estimated is almost at the order of

O(NK2) – recall N is the number of training examples and K is the number of classes.

Even though we can roughly estimate T (X), applying element-wise correction relying

on the estimated T (X) may accumulate errors. Therefore, to achieve the transformation

from the instance-dependent to the easier class-dependent, we need to resort to other

statistical properties of T (X).

4.2.2 Covariance-Assisted Learning (CAL)

From the analyses in Section 4.2.1.3, we know the instance-dependent label noise

will “automatically” assign different weights to examples with different noise rates, thus

cause imbalances. When the optimal solution does not change under such down-weighting

effects, the first-order statistics based on peer loss [30, 124] work well. However, for a

more robust and general solution, using additional information to “balance” the effective

116

weights of different examples is necessary. Although the Bayes optimal distribution is

not accessible in real experiments, we first assume its existence for theoretical analyses

in the ideal case, then we will discuss the gap to this optimal solution when we can only

use a proxy D̂ that can be constructed efficiently.

4.2.2.1 Extracting Covariance from IDN

Again consider an instance-dependent noisy distribution D̃ with binary classes

where Ỹ ∈ {−1,+1}. Define the following two random variables to facilitate analyses:

Z1(X) := 1− e+(X)− e−(X), Z2(X) = e+(X)− e−(X).

Recall e+ := E[e+(X)] and e− := E[e−(X)]. Let CovD(A,B) := E[(A−E[A])(B−E[B])]

be the covariance between random variables A and B w.r.t. the distribution D. The

exact effects of IDN on peer loss functions are revealed in Theorem 11 and proved in

Appendix C.2.2.

Theorem 11 (Decoupling binary IDN). In binary classifications, the expected peer loss

with IDN writes as:

ED̃[1PL(f(X), Ỹ)] = (1− e+ − e−)ED∗ [1PL(f(X), Y ∗)]

+ CovD∗(Z1(X),1(f(X), Y ∗))

+ CovD∗(Z2(X),1(f(X),−1)). (4.2)

Theorem 11 effectively divides the instance-dependent label noise into two parts.

As shown in Eq. (4.2), the first line is the same as Eq. (4.1) in Lemma 4, indicating

117

the average effect of instance-dependent label noise can be treated as a class-dependent

one with parameters e+, e−. The additional two covariance terms in the second and the

third lines of Eq. (4.2) characterize the additional contribution of examples due to their

differences in the label noise rates. The covariance terms will become larger for a setting

with more diverse noise rates, capturing a more heterogeneous and uncertain learning

environment. Interested readers are also referred to the high-level intuitions for using

covariance terms at the end of Section 4.2.1.3.

We now briefly discuss one extension of Theorem 11 to a K-class classification

task. Following the assumption adopted in [124], we consider a particular setting of

IDN whose the expected transition matrix satisfies Ti,j = Tk,j , ∀i ̸= j ̸= k. Denote by

ej = Ti,j ,∀i ̸= j. Corollary 4 decouples the effects of IDN in multi-class cases and is

proved in Appendix C.3.1.

Corollary 4 (Decoupling multi-class IDN). In multi-class classifications, when the

expected transition matrix satisfies ej = Ti,j = Tk,j , ∀i ̸= j ̸= k, the expected peer loss

with IDN writes as:

ED̃[ℓPL(f(X), Ỹ)] = (1−
∑
i∈[K]

ei)ED∗ [ℓPL(f(X), Y ∗)]

+
∑
j∈[K]

EDY ∗

[
CovD∗|Y ∗ (TY ∗,j(X), ℓ(f(X), j))

]
,

where DY ∗ is the marginal distribution of Y ∗ and D∗|Y ∗ is the conditional distribution

of D∗ given Y ∗.

118

4.2.2.2 Using Second-Order Statistics

Inspired by Theorem 11, if D∗ is available, we can subtract two covariance

terms and make peer loss invariant to IDN. Specifically, define

f̃∗
CAL = argmin

f
ED̃[1PL(f(X), Ỹ)]− Cov(Z1(X),1(f(X), Y ∗))

− Cov(Z2(X),1(f(X),−1)).

We have the following optimality guarantee and its proof is deferred to Appendix C.2.3.

Theorem 12. f̃∗
CAL ∈ argminf ED∗ [1(f(X), Y ∗)].

For a K-class classification problem, a general loss function for our Covariance-

Assisted Learning (CAL) approach is given by

ℓCAL(f(xn), ỹn) = ℓPL(f(xn), ỹn)

−
∑
j∈[K]

EDY ∗

[
CovD∗|Y ∗ (TY ∗,j(X), ℓ(f(X), j))

]
.

(4.3)

Eq. (4.3) shows the Bayes optimal distribution D∗ is critical in implementing the proposed

covariance terms. However, D∗ cannot be obtained trivially, and only imperfect proxy

constructions of the dataset (denoted by D̂) could be expected. Detailed constructions

of D̂ are deferred to Section 4.2.2.3.

Advantages of using covariance terms There are several advantages of using

the proposed covariance terms. Unlike directly correcting labels according to D∗, the

proposed covariance term can be viewed as a “soft” correction that maintains the

information encoded in both original noisy labels and the estimated Bayes optimal labels.

Keeping both pieces of information is beneficial as suggested in [64]. Moreover, compared

119

to the direct loss correction approaches [146, 198, 199], we keep the original learning

objective and apply “correction” using an additional term. Our method is more robust

in practice compared to these direct end-to-end loss correction approaches due to two

reasons: 1) The covariance term summarizes the impact of the complex noise using an

average term, indicating that our approach is less sensitive to the estimation precision of

an individual example; 2) As will be shown in Section 4.2.3, the proposed method is

tolerant with accessing an imperfect D∗.

Estimating the covariance terms relies on samples drawn from distribution

D∗. Thus, we need to construct a dataset D̂, which is similar or unbiased w.r.t. D∗.

We will first show the algorithm for constructing D̂, then provide details for DNN

implementations.

4.2.2.3 Constructing D̂

To achieve unbiased estimates of the variance terms, the high-level intuition

for constructing D̂ is determining whether the label of each example in D̃ is Bayes

optimal or not by comparing the likelihood, confidence, or loss of classifying the (noisy)

label to some thresholds. There are several methods for constructing D̂: distillation

[33], searching to exploit [209], and sample sieve [30]. If the model does not overfit the

label noise and learns the noisy distribution, both methods in [33] and [209] work well.

However, for the challenging instance-dependent label noise, overfitting occurs easily

thus techniques to avoid overfitting are necessary. In this paper, we primarily adapt the

sample sieve proposed in [30], which uses a confidence regularizer to avoid overfitting,

120

Algorithm 5 Constructing D̂

1: Input: Noisy dataset D̃. Thresholds Lmin ≤ Lmax. Number of epochs T . D̂ = D̃.

Train the sample sieve in [30] for T epochs and get the model f

2: for n ∈ [N] do

3: Calculate αn,T following [30]

4: if ℓCORES2(f(xn), ỹn)− αn,T ≤ Lmin then

5: ŷn = ỹn

6: else if ℓCORES2(f(xn), ỹn)− αn,T > Lmax then

7: ŷn = argmaxy∈[K] fxn [y]

8: else

9: ŷn = −1 (drop example n)

10: end if

11: end for

12: Output:D̂ := {(xn, ŷn) : n ∈ [N], ŷn ̸= −1}

to construct D̂. Specifically, as shown in [30], in each epoch t, the regularized loss for

each example is adjusted by the parameter αn,t, which can be calculated based on model

predictions in linear time. In the ideal cases assumed in [30], any example with a positive

adjusted loss is corrupted (with a wrong label).

We summarized the corresponding procedures in Algorithm 5, where the critical

thresholds for comparing losses are denoted by Lmin and Lmax. At Line 5, if the loss

adjusted by αn,t is small enough (smaller than the threshold Lmin), we assume ỹn is

the Bayes optimal label. Accordingly, at Line 7, if the adjusted loss is too large

121

(larger than the threshold Lmax), we treat ỹn as a corrupted one and assume the class

with maximum predicted probability to be Bayes optimal one. For the examples with

moderate adjusted loss, we drop it as indicated in Line 9. In ideal cases with infinite

model capacity and sufficiently many examples (as assumed in [30]), we can set thresholds

Lmin = Lmax = 0 to guarantee separation of clean and corrupted examples, thus D̂ will

be an unbiased proxy to D∗. In the ideal case as assumed in Corollary 1 of [30], we have

D̂ = D∗. However, in real experiments, when both the model capacity and the number

of examples are limited, we may need to tune Lmin and Lmax to obtain a high-quality

construction of D̂. In this paper, we set Lmin = Lmax to ensure |D̂| = |D∗| and reduce

the effort to tuning both thresholds simultaneously.

Note that using D̂ to estimate the covariance terms could be made theoreti-

cally more rigorous by applying appropriate re-weighting techniques [33, 47, 76]. See

Appendix C.4.1 for more discussions and corresponding guarantees. We omit the details

here due to the space limit. Nonetheless, our approach is tolerant of an imperfect D̂,

which will be shown theoretically in Section 4.2.3.

4.2.2.4 Implementations

For implementations with deep neural network solutions, we need to estimate

the transition matrix T (X) relying on D̂ and estimate the covariance terms along with

stochastic gradient descent (SGD) updates.

122

Covariance Estimation in SGD As required in (4.3), with a particular D̂, each

computation for T̂i,j(xn) requires only one time check of the associated noisy label as

follows:

T̂i,j(xn) = 1{ŷn = i, ỹn = j}. (4.4)

When D̂ is unbiased w.r.t. D∗, the estimation in (4.4) is also unbiased because

ED̃|X,Ŷ=i
[T̂i,j(X)] = ED̃|X,Ŷ=i

[1{Ŷ = i, Ỹ = j|X}]

=P(Ỹ = j|X, Ŷ = i) = P(Ỹ = j|X,Y ∗ = i).

Noting CovD(A,B) := E[(A− E[A])(B − E[B])] = E[(A− E[A]) ·B], the covariance can

be estimated empirically as

1

N

∑
n∈[N]

∑
i,j∈[K]

1{y∗n = i}
[
(T̂i,j(xn)− T̂i,j) · ℓ(f(xn), j)

]
.

For each batch of data, the above estimation has O(N) complexities in computation and

space. To reduce both complexities, with the cost of the estimation quality, we use |Eb|

examples to estimate the covariance in each batch, where Eb is the set of sample indices

of batch-b. Per sample wise, Eq. (4.3) can be transformed to

ℓCAL(f(xn), ỹn) = ℓPL(f(xn), ỹn)

−
∑

i,j∈[K]

1{y∗n = i}
[
(T̂i,j(xn)− T̂i,j) · ℓ(f(xn), j)

]
.

With the above implementation, the estimation is done locally for each point in O(1)

complexity.

123

4.2.3 CAL with Imperfect Covariance Estimates

As mentioned earlier, D∗ cannot be perfectly obtained in practice. Thus,

there is a performance gap between the ideal case (with perfect knowledge of D∗) and

the actually achieved one. We now analyze the effect of imperfect covariance terms

(Theorem 13).

Denote the imperfect covariance estimates by D̂τ , where τ ∈ [0, 1] is the

expected ratio (a.k.a. probability) of correct examples in D̂τ : τ = E[1{(X, Ŷ) ∈

D̂τ |(X,Y ∗) ∈ D∗}] = P((X, Ŷ) ∼ D̂τ |(X,Y ∗) ∼ D∗). With D̂τ , the minimizer of the 0-1

CAL loss is given by:

f̃∗
CAL-τ=argmin

f
ED̃

[
1PL(f(X), Ỹ)]−CovD̂τ (Z1(X),1(f(X), Ŷ))

− CovD̂τ (Z2(X),1(f(X),−1))
]
.

Theorem 13 reports the error bound produced by f̃∗
CAL-τ . See Appendix C.2.4 for the

proof.

Theorem 13 (Imperfect Covariance). With D̂τ , when p∗ = 0.5, we have

E[1(f̃∗
CAL-τ (X), Y ∗)] ≤ 4(1− τ)(ϵ+ + ϵ−)

1− e+ − e−
.

Theorem 13 shows the quality of D̂τ controls the scale of the worst-case error

upper-bound. Compared with Theorem 10 where no covariance term is used, we know

the covariance terms will always be helpful when τ ∈ [0.5, 1]. That is, the training with

the assistance of covariance terms will achieve better (worst-case) accuracy on the Bayes

optimal distribution when the construction D̂τ is better than a dataset that includes

each instance in D∗ randomly with 50% chance.

124

4.2.4 Experiments

We now present our experiment setups and results.

4.2.4.1 General Experiment Settings

Datasets and models The advantage of introducing our second-order approach is

evaluated on three benchmark datasets: CIFAR10, CIFAR100 [99] and Clothing1M [200].

Following the convention from [30, 205], we use ResNet34 for CIFAR10 and CIFAR100

and ResNet50 for Clothing1M. Noting the expected peer term ED
Ỹ |D̃

[ℓ(f(xn), Ỹ)] (a.k.a.

confidence regularizer (CR) as implemented in [30]) is more stable and converges faster

than the one with peer samples, we train with ℓCORES2 . It also enables a fair ablation

study since D̂ is constructed relying on [30]. For numerical stability, we use a cut-off

version of the cross-entropy loss ℓ(f(x), y) = − ln(fx[y]+ε). Specifically, we use ε = 10−8

for the traditional cross-entropy term, use ε = 10−5 for the CR term, and the covariance

term. All the experiments use a momentum of 0.9. The weight decay is set as 0.0005 for

CIFAR experiments and 0.001 for Clothing1M.

Noise type For CIFAR datasets, the instance-dependent label noise is generated

following the method from [30, 198]. The basic idea is randomly generating one vector

for each class (K vectors in total) and projecting each incoming feature onto these K

vectors. The label noise is added by jointly considering the clean label and the projection

results. See Appendix A.4.1 for details. In expectation, the noise rate η is the overall

ratio of examples with a wrong label in the entire dataset. For the Clothing1M dataset,

125

we train on 1 million noisy training examples that encode the real-world human noise.

4.2.4.2 Baselines

We compare our method with several related works, where the cross-entropy

loss is tested as a common baseline. Additionally, the generalized cross-entropy [221] is

compared as a generalization of mean absolute error and cross-entropy designed for label

noise. Popular loss correction based methods [146, 198, 199], sample selection based

methods [30, 63, 179, 212], and noise-robust loss functions [124, 205] are also chosen for

comparisons. All the compared methods adopt similar data augmentations, including

standard random crop, random flip, and normalization. The semi-supervised learning-

based methods with extra feature extraction and data augmentations are not included.

All the CIFAR experiments are repeated 5 times with independently synthesized IDN.

The highest accuracies on the clean test dataset are averaged over 5 trials to show the

best generalization ability of each method.

4.2.4.3 Performance Comparisons: CIFAR

In experiments on CIFAR datasets, we use a batch size of 128, an initial learning

rate of 0.1, and reduce it by a factor of 10 at epoch 60.

Construct D̂ To construct D̂, we update the DNN for 65 epochs by minimizing

ℓCORES2 (without dynamic sample sieve) and apply Algorithm 5 with Lmin = Lmax = −8.

Note that, theoretically, we have Lmin = Lmax = 0 if both the CE term and the CR term

use a log loss without cut-off (ε = 0). The current setting works well (not the best) for

126

Table 4.2: Comparison of test accuracies (%) using different methods.

Method
Inst. CIFAR10 Inst. CIFAR100

η = 0.2 η = 0.4 η = 0.6 η = 0.2 η = 0.4 η = 0.6

CE (Standard) 85.45±0.57 76.23±1.54 59.75±1.30 57.79±1.25 41.15±0.83 25.68±1.55
Forward T [146] 87.22±1.60 79.37±2.72 66.56±4.90 58.19±1.37 42.80±1.01 27.91±3.35

LDMI [205] 88.57±0.60 82.82±1.49 69.94±1.31 57.90±1.21 42.70±0.92 26.96±2.08
Lq [221] 85.81±0.83 74.66±1.12 60.76±3.08 57.03±0.27 39.81±1.18 24.87±2.46

Co-teaching [63] 88.87±0.24 73.00±1.24 62.51±1.98 43.30±0.39 23.21±0.57 12.58±0.51
Co-teaching+ [212] 89.80±0.28 73.78±1.39 59.22±6.34 41.71±0.78 24.45±0.71 12.58±0.51

JoCoR [179] 88.78±0.15 71.64±3.09 63.46±1.58 43.66±1.32 23.95±0.44 13.16±0.91
Reweight-R [199] 90.04±0.46 84.11±2.47 72.18±2.47 58.00±0.36 43.83±8.42 36.07±9.73
Peer Loss [124] 89.12±0.76 83.26±0.42 74.53±1.22 61.16±0.64 47.23±1.23 31.71±2.06
CORES2 [30] 91.14±0.46 83.67±1.29 77.68±2.24 66.47±0.45 58.99±1.49 38.55±3.25

CAL 92.01±0.75 84.96±1.25 79.82±2.56 69.11±0.46 63.17±1.40 43.58±3.30

CIFAR experiments empirically. For a numerically stable solution, we use the square root

of the noise prior for the CR term in ℓCORES2 as −β
∑

i∈[K]

√
P(Ỹ=i|D̃)∑K

j=1

√
P(Ỹ=j|D̃)

ℓ(f(xn), i).

The hyperparameter β is set to 2 for CIFAR10 and 10 for CIFAR100.

Train with CAL With an estimate ofD∗, we re-train the model 100 epochs. The hyper-

parameter β is set to 1 for CIFAR10 and 10 for CIFAR100. Note the hyperparameters

(Lmin, Lmax, β) can be better set if a clean validation set is available.

Performance Table 4.2 compares the means and standard deviations of test accuracies

on the clean test dataset when the model is trained with synthesized instance-dependent

label noise in different levels. All the compared methods use ResNet34 as the backbone.

On CIFAR10, with a low-level label noise (η = 0.2), all the compared methods perform

well and achieve higher average test accuracies than the standard CE loss. When the

overall noise rates increase to high, most of the methods suffer from severe performance

degradation while CAL still achieves the best performance. There are similar observations

on CIFAR100. By comparing CAL with CORES2, we conclude that the adopted second-

127

Table 4.3: The best epoch (clean) test accuracies on Clothing1M.

Method Accuracy

CE (standard) 68.94
Forward T [146] 70.83
Co-teaching [63] 69.21
JoCoR [179] 70.30
LDMI [205] 72.46

PTD-R-V[198] 71.67
CORES2 [30] 73.24

CAL 74.17

order statistics do work well and bring non-trivial performance improvement. Besides,

on the CIFAR100 dataset with η = 0.4 and 0.6, we observe Reweight-R [199] has a

large standard deviation and a relatively high mean, indicating it may perform as well

as or even better than CAL in some trials. It also shows the potential of using a

revised transition matrix T [199] in severe and challenging instance-dependent label

noise settings.

4.2.4.4 Performance Comparisons: Clothing1M

For Clothing1M, we first train the model following the settings in [30] and con-

struct D̂ with the best model. Noting the overall accuracy of noisy labels in Clothing1M

is about 61.54% [200], we set an appropriate Lmin = Lmax such that 61.54% of training

examples satisfying ℓCORES2 − αn,t ≤ Lmin. With D̂, we sample a class-balanced dataset

by randomly choosing 18, 976 noisy examples for each class and continue training the

model with β = 1 and an initial learning rate of 10−5 for 120 epochs. Other parameters

are set following [30]. See Appendix C.4.3 for more detailed experimental settings.

Table 4.3 shows CAL performs well in the real-world human noise.

128

Table 4.4: Analysis of each component of CAL on CIFAR10.

row # Cov. Peer Epoch η = 0.2 η = 0.4 η = 0.6

1 ✗ ✗ Best 90.47 82.56 64.65
2 ✓ ✗ Best 92.10 78.49 73.55
3 ✗ ✓ Best 91.85 84.41 78.74
4 ✗ ✓ Fixed@65 90.73 82.76 77.70
5 ✓ ✓ Best 92.69 85.55 81.54

4.2.4.5 Ablation Study

Table 4.4 shows either the covariance term or the peer term can work well

individually and significantly improve the performance when they work jointly. The

result of a particular trial is presented. Cov. indicates using with the covariance term.

Peer indicates using the CR term [30] (a.k.a. expected peer term [124]). Comparing the

first row with the second row, we find the second-order statistics can work well (except

for η = 0.4) even without the peer (CR) term. In row 4, we show the performance at

epoch 65 since the second-order statistics are estimated relying on the model prediction

at this epoch. By comparing row 4 with row 5, we know the second-order statistics

indeed lead to non-trivial improvement in performance. Even though the covariance term

individually can only achieve an accuracy of 78.49 when η = 0.4, it can still contribute

more than 1% of the performance improvement (from 84.41% to 85.55%) when it is

implemented with the peer term. This observation shows the robustness of CAL.

4.2.5 Takeawaws

We summarize the takeaways as follows.

• We have proposed a second-order approach to transforming the challenging instance-

129

dependent label noise into a class-dependent one such that existing methods targeting

the class-dependent label noise could be implemented.

• We show how the second-order statistics can be estimated efficiently using existing

sample selection techniques. For a more realistic case where the covariance terms

cannot be perfectly estimated, we prove the worst-case performance guarantee of our

solution.

• In addition to the theoretical guarantees, the performance of the proposed second-

order approach is tested on the CIFAR10 and CIFAR100 datasets with synthetic

instance-dependent label noise and the Clothing1M dataset with real-world human

label noise.

• Code is available at https://github.com/UCSC-REAL/CAL.

130

Chapter 5

Beyond Accuracy: Fairness Issues

We will discuss the fairness issues caused by imperfect data in this chapter,

including the disparate impact of semi-supervised learning (SSL) when a huge amount

of data does not have labels (Section 5.1) and the fairness evaluation when the sensitive

attributes are missing (Section 5.2).

5.1 Disparate Impact of SSL

This section aims to reveal the disparate impact of semi-supervised learning by

answering the following question: Are different sub-populations treated similarly during

SSL? We will start with a motivating example which is experimented with one of the

best SSL algorithms, then prove why the disparate impact exists in SSL. To measure the

disparate impact of SSL, we further propose a new metric called “Benefit Ratio (BR)”,

the effectiveness of which is guaranteed by our proven generalization bounds.

131

5.1.1 Motivating Examples

Figure 5.1 shows the change of test accuracy for each class during SSL. Each

class denotes one sub-population and representative sub-populations are highlighted. In

this experiment, MixMatch [18] is applied on CIFAR-10 with (a) 250 clean labels in the

balanced case (25 labeled instances per class) and (b) 185 clean labels in the unbalanced

case (25 labeled instances in each of the first 5 classes, 12 labeled instances in each of

the remaining classes). Other instances are used as unlabeled data. Figure 5.1 delivers

two important messages: in SSL, even with some state-of-the-art algorithms: 1) the

observation “rich getting richer” is common, and 2) the observation “poor getting poorer”

possibly happens. Specifically, the “rich” sub-population, such as automobile that has a

high baseline accuracy at the beginning of SSL, tends to consistently benefit from SSL.

But the “poor” sub-population, such as dog that has a low baseline accuracy, will remain

a low-level performance as Figure 5.1(a) or even get worse performance as Figure 5.1(b).

This example shows the disparate impact of accuracies for different sub-populations are

common in SSL. In special cases such as Figure 5.1(b), we observe the Matthew effect:

the rich get richer and the poor get poorer.

We now go one step further to intuitively understand why we may observe the

Matthew effect. With the pseudo-labels defined in Section 1.2.2.4, we know that the

sub-population that is already “rich” (high-accuracy) in supervised learning with the

labeled dataset DL will possess higher-quality pseudo-labels for SSL, thereby further

enhancing the performance. On the other hand, the sub-population with poorer baseline

132

0 5 10 15 20 25 30
Epochs (x25)

50

60

70

80

90

100
Te

st
 A

cc
ur

ac
y

(a) MixMatch Balanced, labeled size 25×10

0 5 10 15 20 25 30
Epochs (x25)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

(b) MixMatch Unbalanced, labeled size 25×5+12×5

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck
average

Figure 5.1: Disparate impacts in the model accuracy of SSL.

accuracy (also from supervised learning with DL) will have lower-quality pseudo-labels,

which can only provide limited regularization for unsupervised features. In cases where

regularization is applied in the wrong direction, unsupervised features, along with their

augmented copies, may converge on an incorrect label class, resulting in a decline in

performance. Consequently, as the baseline accuracy deteriorates, an increasing number

of unsupervised features will be inaccurately regularized, leading to divergent impacts

on model accuracies, as illustrated in Figure 5.1.

5.1.2 Theoretical Analyses

We now theoretically prove the above intuition. The following analyses are

conducted for an arbitrary sub-population, thus we did not explicitly distinguish sub-

populations in notation. We consider minimizing 0-1 loss 1(f(X), Y) with infinite search

133

space. Recall DL denotes the labeled dataset and DU denotes the unlabeled one.

5.1.2.1 Learning with Clean Data

Denote the expected error rate of classifier f on distribution D by RD(f) :=

ED[1(f(X), Y)]. Let f̂D denote the classifier trained by minimizing 0-1 loss with clean

dataset D, i.e., f̂DL
:= argminf R̂DL

(f), where R̂DL
(f) := 1

N

∑
n∈[NL]

1(f(xn), yn).

Denote by Y ∗|X := argmaxi∈[K] P(Y |X) the Bayes optimal label on clean distribution

D. Theorem 14 shows the generalization bound in the clean case.

Theorem 14 (Supervised learning error). With probability at least 1− δ, the generaliza-

tion error of supervised learning on DL is upper-bounded by

RD(f̂DL
) ≤

√
2 log(4/δ)

NL
+ P(Y ∗ ̸= Y).

5.1.2.2 Learning with Semi-supervised Data

The derivation of generalization bounds for learning with semi-supervised

data relies on the pseudo-labels defined in Section 1.2.2.4, i.e., transforming the semi-

supervised dataset DL ∪DU into the dataset D̃ based on the model learned from the

previous epoch.

Two-iteration scenario To establish a clean and structured performance bound for

learning with semi-supervised data, we consider a specific two-iteration scenario. In this

scenario, the model is initially trained to convergence using the small labeled dataset

DL, resulting in the model f̂DL
. Subsequently, the model is trained on the pseudo-noisy

134

dataset D̃ labeled by f̂DL
. It is worth noting that this two-iteration scenario represents

a worst-case situation for a semi-supervised learning algorithm, as iteratively assigning

pseudo-labels typically enhances performance, as suggested by many SSL algorithms

[18, 201].

Independence of samples in D̃ The number of independent instances,

denoted as N ′, falls within the range of [NL, N]. Intuitively, if appropriate noise injection

or data augmentation techniques [201, 138] are applied to xn such that x′n can be

considered independent of xn, then the number of independent samples in D̃ can be

improved to N . For the purpose of our analysis, we assume the ideal case where all N

instances are independently and identically distributed (i.i.d.).

By minimizing the unified loss defined in Eq. (1.1), we can get classifier

f̂
D̃
:= argmin

f
R̂

D̃
(f),

where

R̂
D̃
(f) :=

1

N

∑
n∈[N]

∑
i∈[K]

ỹ[i] · 1(f(xn), i)

 .

The expected error given classifier f is denoted by

RD̃(f) := ED̃[1(f(X), Ỹ)],

where the probability density function of distribution D̃ can be defined as

P
(X,Ỹ)∼D̃(X = xn, Ỹ = i) = P(X,Y)∼D(X = xn) · ỹn[i].

135

Decomposition With the given definitions, we can decompose the generalization error

(on the clean distribution) of classifier f̂
D̃

as follows:

RD(f̂D̃) = (RD(f̂D̃)−RD̃(f̂D̃))︸ ︷︷ ︸
Term-1

+RD̃(f̂D̃)︸ ︷︷ ︸
Term-2

,

where Term-1 transforms the evaluation of f̂
D̃

from the clean distribution D to the

pseudo-noisy distribution D̃. Term-2 can be compared with the generalization error in

Theorem 14, but the model is trained and evaluated on the noisy distribution D̃. Both

terms are analyzed as follows.

Upper and Lower Bounds for Term-1 Let

η(X) :=
1

2

∑
i∈[K]

|P(Ỹ = i|X)− P(Y = i|X)|,

e(X) := P(Y ≠ Ỹ |X) be the feature-dependent error rate, Ãf (X) := P(f(X) = Ỹ |X)

be the accuracy of prediction f(X) on noisy dataset D̃. Denote their expectations (over

X) by

η̄ := EX [η(X)], ē := EX [e(X)], Ãf = EX [Ãf (X)].

To highlight that η̄ and ē depends on the noisy dataset D̃ labeled by f̂DL
, we denote

them as η̄(f̂DL
) and ē(f̂DL

). Then we have:

Lemma 5 (Bounds for Term-1).

(2Ãf̂
D̃
− 1)ē(f̂DL

) ≤ RD(f̂D̃)−RD̃(f̂D̃) ≤ η̄(f̂DL
).

Note the upper bound builds on η̄(f̂DL
) while the lower bound relates to ē(f̂DL

).

To compare two bounds and show the tightness, we consider the case where Y |X is

136

confident, i.e., each feature X belongs to one particular true class Y with probability 1,

which is generally held in classification problems [119]. Lemma 6 shows η(X) = e(X) in

this particular case.

Lemma 6 (η vs. e). For any feature X, if Y |X is confident, η(X) is the error rate of the

model prediction on X, i.e., ∃i ∈ [K] : P(Y = i|X) = 1⇒ η(X) = P(Ỹ ̸= Y |X) = e(X).

Upper bound for Term-2 Denote by Ỹ ∗|X := argmaxi∈[K] P(Ỹ = i|X) the Bayes

optimal label on noisy distribution D̃. Following the proof for Theorem 14, we have:

Lemma 7 (Bound for Term-2). W. p. at least 1− δ,

RD̃(f̂D̃) ≤
√

2 log(4/δ)

N
+ P(Ỹ ̸= Ỹ ∗).

Wrap-up Lemma 5 shows Term-1 is in the range of [(2Ãf̂
D̃
− 1)ē(f̂DL

), η̄(f̂DL
)].

Lemma 6 informs us η̄(f̂DL
) = ē(f̂DL

) in classification problems where Y |X,∀X are

confident. With a well-trained model f̂
D̃

that learns the noisy distribution D̃, we have

Ãf̂
D̃

= 1 − ϵ and ϵ → 0+, thus Term-1 is in the range of [(1 − 2ϵ)η̄(f̂DL
), η̄(f̂DL

)],

indicating our bounds for Term-1 are tight. Besides, noting Lemma 7 is derived following

the same techniques as Theorem 14, we know both bounds have similar tightness.

Therefore, by adding upper bounds for Term-1 and Term-2, we can upper bound the

error of semi-supervised learning in Theorem 15, which has similar tightness to that in

Theorem 14.

Theorem 15 (Semi-supervised learning error [229]). Suppose the model trained with only

DL has generalization error η̄′(f̂DL
). With probability at least 1− δ, the generalization

137

error of semi-supervised learning on datasets DL ∪DU is upper-bounded by

RD(f̂DL∪DU
) ≤ η̄(f̂DL

)︸ ︷︷ ︸
Disparity due to baseline

+ P(Ỹ ̸= Ỹ ∗)︸ ︷︷ ︸
Sharpness of pseudo labels

+

√
2 log(4/δ)

N︸ ︷︷ ︸
Data dependency

,

where η̄(f̂DL
) := η̄′(f̂DL

) ·NU/N is the expected label error in the pseudo noisy dataset

D̃.

Takeaways Theorem 15 provides an explanation for the generation of disparate impacts

in SSL. We can break down the factors contributing to this phenomenon as follows:

• Supervised error η̄′(f̂DL
): This is the primary source of disparity. Sub-populations

that exhibit good generalization before SSL tend to have lower SSL error rates. In

other words, the already well-performing groups benefit more from SSL, reinforcing

existing disparities (the ”rich get richer” effect).

• Sharpness of noisy labels P(Ỹ ̸= Ỹ ∗): This factor plays a minor role in generating

disparity and depends on the method used to process pseudo-labels. If the pseudo-

labels are sharpened, this term becomes negligible.

• Sample complexity
√
2 log(4/δ)/N : Disparity is influenced by the number of

instances N and their independence. It is important to note that our analysis

assumes ideal data augmentations to obtain N in this term. Instances with poor

data augmentations, which are much less than the total N , could potentially

become a significant source of disparity if the augmentations are inadequate.

138

5.1.3 Benefit Ratio: An Evaluation Metric

To quantify the disparate impacts of SSL as illustrated in Figure 5.1, we propose

a new metric called benefit ratio.

Benefit Ratio The benefit ratio BR(P) captures the normalized accuracy improvement

of sub-population P after SSL. It depends on three classifiers:

• f̂DL
, which represents the baseline supervised learning using a small labeled dataset

DL;

• f̂D, which represents the ideal supervised learning if the entire dataset D has

ground-truth labels;

• f̂DL∪DU
, which represents SSL using both the labeled dataset DL and the unlabeled

dataset DU .

The test/validation accuracies of these classifiers are denoted as abaseline(P), aideal(P),

and asemi(P), respectively. As a measure for evaluating SSL algorithms after the fact,

the benefit ratio BR(P) is defined as:

BR(P) = asemi(P)− abaseline(P)
aideal(P)− abaseline(P)

. (5.1)

Let P⋄ := {P1,P2, · · · } be the set of all the concerned sub-populations. We formally

define the Equalized Benefit Ratio as follows.

Definition 11 (Equalized Benefit Ratio). An algorithm achieves Equalized Benefit Ratio

139

(EBR) if all the concerned sub-populations have the same benefit ratio:

BR(P) = BR(P ′),∀P,P ′ ∈ P⋄.

Intuitively, a larger benefit ratio indicates a greater benefit from SSL. We define

BR(P) = 1 when SSL performs as well as the corresponding fully-supervised learning. A

negative benefit ratio indicates that SSL adversely affects the disadvantaged population,

where asemi(P) < abaseline(P), meaning that the already poor performance worsens, as

illustrated in Figure 5.1(b) for the dog sub-population.

These findings have the potential to offer valuable guidance and insights for the

development of fair SSL algorithms using standard datasets with complete ground-truth

labels. Investigating whether a fair SSL algorithm designed for one dataset remains fair

when applied to another dataset would be an interesting avenue for future research. In

real-world scenarios where full supervision is unavailable, we can leverage additional

knowledge to estimate the highest achievable accuracy for each sub-population and use

it as a proxy for the ideal accuracy aideal(P).

Theoretical Explanation We define a proxy of the benefit ratio as

B̂R(P) :=
sup (RD(f̂DL∪DU |P))− sup (RD(f̂DL|P))

sup(RD(f̂D|P))− sup (RD(f̂DL|P))
,

where sup(·) denotes the upper bound derived in Theorem 14 and Theorem 15, P is

a sub-population, and D|P denotes the set of i.i.d. instances in D that affect model

generalization on P. By assuming that both distributions have the same sharpness, i.e.,

P(Y ̸= Y ∗) = P(Ỹ ̸= Ỹ ∗), we have:

140

Corollary 5. The benefit ratio proxy for P is

B̂R(P) = 1−
η̄(f̂DL|P)

∆(NP , NPL
)
,

where

∆(NP , NPL
) =

√
2 log(4/δ)

NPL

−

√
2 log(4/δ)

NP
,

NP and NPL
are the effective numbers of instances in D|P and DL|P.

Corollary 5 demonstrates that the benefit ratio is negatively correlated with the

error rate of baseline models and positively correlated with the number of i.i.d. instances

after SSL. Please note that NP and NPL
may exceed the sizes of the corresponding

sub-populations if P shares information with another sub-population P ′ during training.

For instance, improved classification of P ′ can aid in classifying P. Furthermore, the

corollary suggests that SSL may have a detrimental impact on sub-population P if

η
∆(NP ,NPL

) > 1. In other words, the benefits gained from obtaining more effective i.i.d.

instances are outweighed by the negative consequences of incorrect pseudo-labels. This

negative effect implies a scenario where “the poor get poorer”.

5.1.4 Experiments

We test MixMatch [18] and UDA [201] on CIFAR-10 and CIFAR-100 datasets

[99]. See more experiments in [229]. We adopt the coarse labels (20 classes) in CIFAR-

100 for training and test the performance for each fine label (100 classes). Thus our

training on CIFAR-100 is a 20-class classification task and each coarse class contains 5

sub-populations.

141

Figure 5.2: Benefit ratios (y-axis) versus baseline accuracies before SSL (x-axis) on
CIFAR-10

Figure 5.3: Benefit ratios across explicit sub-populations.

The experiments aim to show that, even though the size of each sub-population

is equal, disparate impacts exist in the model accuracy of different sub-populations, i.e.,

1) explicit sub-populations such as classification labels in Figure 5.3, and 2) implicit

sub-populations such as fine-categories under coarse classification labels in Figure 5.1.5.

All the experiments in this subsection adopt both a balanced labeled dataset and a

balanced unlabeled dataset.

Disparate impact across explicit sub-populations In this part, we demonstrate

the disparate impact on model accuracy across different classification labels in CIFAR-10

datasets. Figure 5.2 illustrates this by plotting dots representing the results for each

label class, along with a line representing the best linear fit of the dots. The y-axis

represents the benefit ratios, while the x-axis shows the baseline accuracies before SSL.

The results are presented for different sizes of labeled data, ranging from 25 to 50 per

class on CIFAR-10. Figure 5.2 utilizes two SSL methods, namely MixMatch and UDA,

specifically for CIFAR-10. Our statistical analysis reveals that class labels with higher

142

baseline accuracies tend to exhibit higher benefit ratios on CIFAR-10. This implies

that the more “privileged” classes benefit to a greater extent from the application of

SSL methods compared to the “less privileged” ones. Additionally, we observe that

certain models with low baseline accuracy (located on the left side of the x-axis) exhibit

relatively low benefit ratios close to zero when SSL is applied.

Disparate impact across implicit sub-populations We demonstrate the disparate

impacts on model accuracy across different sub-populations on CIFAR-100 (fine labels).

Figure 5.1.5 shows the benefit ratios of fine-labels (y-axis) versus baseline accuracies

before SSL (x-axis) on CIFAR-100. Experiments are run 5 times for stability. Mean

(dashed line) and standard deviation (shaded area) are plotted in the figure, where

points in the shaded area indicate the converged local optima with a non-negligible

probability. In Figure 5.1.5, we can statistically observe the disparate impact across

different sub-populations on both datasets for three baseline SSL methods. We again

observe very similar disparate improvements as presented in Figure 5.2 - for some classes

in CIFAR-100, this ratio can even go negative. See [229] for more experiments related

to the disparate impact on the demographic groups, e.g., race, and gender, which raise

fairness concerns in real-world applications.

5.1.5 Takeaways

We summarize the takeaways as follows.

• We have theoretically and empirically shown that the disparate impact (the “rich”

143

20 40 60
Accuracy with 500 clean labels

0.0

0.2

0.4

0.6

0.8
Be

ne
fit

 R
at

io

MixMatch, labeled size 5×5×20

20 30 40 50
Accuracy with 500 clean labels

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Be
ne

fit
 R

at
io

UDA, labeled size 5×5×20

20 40 60
Accuracy with 1000 clean labels

0.0

0.2

0.4

0.6

0.8

Be
ne

fit
 R

at
io

MixMatch, labeled size 10×5×20

35 40 45 50
Accuracy with 1000 clean labels

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Be
ne

fit
 R

at
io

UDA, labeled size 10×5×20

Figure 5.4: Benefit ratios across implicit sub-populations.

sub-populations get richer and the “poor” ones get poorer) exists universally for a

broad family of SSL algorithms.

• We have also proposed and studied a new metric benefit ratio to facilitate the evaluation

of SSL.

• Code is available at github.com/UCSC-REAL/Disparate-SSL.

5.2 Estimate Fairness with Missing Sensitive Attributes

Evaluating fairness can be challenging in practice because the sensitive attributes

of data are often inaccessible due to privacy constraints. The go-to approach that the

industry frequently adopts is using off-the-shelf proxy models to predict the missing

sensitive attributes, e.g., Meta [2] and Twitter [15]. Despite its popularity, there are

three important questions unanswered:

• Is directly using proxies efficacious in measuring fairness?

• If not, is it possible to accurately evaluate fairness using proxies only?

• Given the ethical controversy over inferring user private information, is it possible to

144

only use weak (i.e., inaccurate) proxies in order to protect privacy?

In this section, we first experimentally and theoretically show that directly using proxy

models can give a false sense of (un)fairness (Section 5.2.1). Additionally, we develop an

algorithm that is able to measure fairness (provably) accurately with only three properly

identified proxies (Section 5.2.2). All our theoretical discussions in the main paper are

specific to DP defined in Definition 3 but we include the complete derivations for EOd

and EOp in Appendix.

5.2.1 Proxy Results Can be Misleading

This section provides an analysis of how much the measured fairness, if using

proxies naively, can deviate from reality.

Using Proxy Models Directly. Consider a scenario with C proxy models denoted by

the set G := {g1, · · · , gC}. The noisy sensitive attributes are denoted as Ãc := gc(X),∀c ∈

[C] and the corresponding target dataset with Ã is D̃ := {(xn, yn, (ã1n, · · · , ãCn))|n ∈ [N]},

drawn from a distribution D̃. Similarly, by replacing A with Ã in H, we can compute

H̃ , which is the matrix-form noisy fairness metric estimated by the proxy model g (or G

if multiple proxy models are used). Define the directly measured fairness metric of f on

D̃ as follows.

Definition 12 (Proxy Disparity - DP).

∆DP(D̃, f) := 1

M(M − 1)K

∑
a,a′∈[M]
k∈[K]

|H̃[a, k]− H̃[a′, k]|.

145

Demographic
 Parity

Equalized
 Odds

Equalized
 Opportunity

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fa
irn

es
s

D
is

pa
rit

y

Forest-True
Tree-True
Forest-Proxy
Tree-Proxy

Figure 5.5: Fairness disparities of models on COMPAS [6].

A “seem-to-be-fair” model can be not fair Figure 5.5 shows the estimated fairness

vs. true fairness on COMPAS [6] dataset with race as the sensitive attribute. True

(or Proxy) stands for the disparities using ground-truth sensitive attribute values (or

proxy model’s predictions). Forest (or Tree) indicates the random forest (or decisions

tree) models. We use proxy models to predict race from the last name. There are two

observations: 1) Models considered as fair according to proxies are actually unfair. The

Proxy fairness disparities (0.02) can be much smaller than the True fairness disparities

(> 0.10), giving a false sense of fairness. 2) Fairness misperception can mislead the model

selection. The proxy disparities mistakenly indicate random forest models have smaller

disparities (DP and EOd) than decision tree models, but in fact it is the opposite.

146

Estimation Error Analysis We study the error of proxy disparity and give practical

guidelines implied by analysis. Intuitively, the estimation error of proxy disparity depends

on the error of the proxy model g. Recall p, p̃, T and Tk are clean prior, noisy prior,

global transition matrix, and local transition matrix. Denote by Λp̃ and Λp the square

diagonal matrices constructed from p̃ and p. We formally prove the upper bound of

estimation error for the directly measured metrics in Theorem 16 (See Appendix D.3.1

for the proof).

Theorem 16 (Error Upper Bound of Proxy Disparities). Denote the estimation error

of the proxy disparity by

Errraw := |∆̃DP(D̃, f)−∆DP(D, f)|.

Its upper bound is:

Errraw ≤ 2

K

∑
k∈[K]

(
h̄k ∥Λp̃(T

−1Tk − I)Λ−1
p̃ ∥1︸ ︷︷ ︸

cond. indep. violation

+δk ∥ΛpTkΛ
−1
p̃ − I∥1︸ ︷︷ ︸

error of g

)
,

where h̄k := 1
M

∑
a∈[M]

H[a, k], δk := max
a∈[M]

|H[a, k]− h̄k|.

It shows the error of proxy disparity depends on:

• h̄k: The average confidence of f(X) on class k over all sensitive groups. For example,

if f is a crime prediction model and A is race, a biased f [6] may predict that

the crime (k = 1) rate for different races are 0.1, 0.2 and 0.6 respectively, then

h̄1 = 0.1+0.2+0.6
3 = 0.3, and it is an approximation (unweighted by sample size) of the

average crime rate over the entire population. The term depends on D and f only

(i.e., the true fairness disparity), and independent of any estimation algorithm.

147

• δk: The maximum disparity between confidence of f(X) on class k and average

confidence h̄k across all sensitive groups. Using the same example, δ1 = max(|0.1−

0.3|, |0.2 − 0.3|, |0.6 − 0.3|) = 0.3. It is an approximation of the underlying fairness

disparity, and larger δk indicates f is more biased on D. The term is also dependent

on D and f (i.e., the true fairness disparity), and independent of any estimation

algorithm.

• Conditional Independence Violation: The term is dependent on the proxy model g’s

prediction Ã in terms of the transition matrix (T and Tk) and noisy prior probability

(p̃). The term goes to 0 when T = Tk, which implies Ã and f(X) are independent

conditioned on A. This is the common assumption made in the prior work [8, 148, 49].

And this term measures how much the conditional independence assumption is violated.

• Error of g: The term depends on the proxy model g. It goes to 0 when Tk = I which

implies the error rates of g’s prediction is 0, i.e., g is perfectly accurate. It measures

the impact of g’s error on the fairness estimation error.

Case Study. To help better understand the upper bound, we consider a simplified

case when both f and A are binary. We further assume the conditional independence

condition to remove the third term listed above in Theorem 16. See Appendix D.2.2 for

the formal definition of conditional independence. Please note that we only assume it

for the purpose of demonstrating a less complicated theoretical result, we do not need

this assumption in our proposed algorithm later. Corollary 6 summarizes the result.

Corollary 6. For a binary classifier f and a binary sensitive attribute A ∈ {1, 2}, when

148

(Ã ⊥⊥ f(X)|A) holds, Theorem 16 is simplified to

Errraw ≤ δ
(
P(A = 1|Ã = 2) + P(A = 2|Ã = 1)

)
,

where δ = |P(f(X) = 1|A = 1)− P(f(X) = 1|A = 2)|.

Corollary 6 shows the estimation error of proxy disparity is proportional to

the true underlying disparity between sensitive groups (i.e., δ) and the proxy model’s

error rates. In other words, the uncalibrated metrics can be highly inaccurate when f is

highly biased or g has poor performance. This leads to the following suggestions:

Guidelines for Practitioners. We should only trust the estimated fairness from

proxy models when (1) the proxy model g has good performance and (2) the true

disparity is small (i.e., the target model f is not highly biased). In practice, without

true sensitive attributes, we can roughly infer the true disparity based on the problem

domain and known history. For example, racial disparity in hiring is known to exist for

a long time. We only need to know if the disparity is extremely large or not.

In practice, both conditions required to trust the proxy results are frequently

violated. When we want to measure f ’s fairness, often we already have some fairness

concerns and therefore the underlying fairness disparity is unlikely to be negligible.

And the proxy model g is usually inaccurate due to privacy concerns (discussed in

Section 5.2.2.2) and distribution shift. This motivates us to develop an approach for

more accurate estimates.

149

M M F … F
F M F … F
F F F … M

Noisy
Fairness Matrix

Proxy Fairness

Calibration

Proxy Models StatEstimator

Smile?

Model Dataset

⋯

Gender?

Calibrated
Fairness Matrix

Estimated
Transition Matrix

Figure 5.6: Overview of our algorithm that estimates fairness using only weak proxy
models.

5.2.2 Weak Proxies Suffice

In this section, we show that by properly using a set of proxy models, we are

able to guarantee an unbiased estimate of the true fairness measures. The proposed

calibration algorithm is illustrated in Figure 5.6, where we first directly estimate the

noisy fairness matrix with proxy models (blue arrows), and then calibrate the estimated

fairness matrix (orange arrows).

5.2.2.1 Proposed Algorithm

With a given proxy model g that labels sensitive attributes, we can anatomize

the relationship between the true disparity and the proxy disparity. The following

theorem targets DP and see Appendix D.3.2 for results with respect to EOd and EOp

and their proofs.

Theorem 17. [Closed-form Relationship (DP)] The closed-form relationship between

150

the true fairness vector H[:, k] and the noisy fairness vector H̃[:, k] is the following:

H[:, k] = (T⊤
k Λp)

−1Λp̃H̃[:, k], ∀k ∈ [K].

Insights. Theorem 17 reveals that the proxy disparity and the corresponding true

disparity are related in terms of three key statistics: noisy prior p̃, clean prior p, and

local transition matrix Tk. Ideally, if we have the ground-truth values of them, we can

calibrate the noisy fairness vectors to their corresponding ground-truth vectors (and

therefore obtaining the perfectly accurate fairness metrics) usingTheorem 17. Hence, the

most important step is to estimate Tk, p, and p̃ without knowing the ground-truth values

of A. Once we have those estimated key statistics, we can easily plug them into the

above equation as the calibration step. Figure 5.6 shows the overview of our algorithm.

Algorithm: Fairness calibration. We summarize the method in Algorithm 6. In

Line 4, we use the sample mean in the uncalibrated form to estimate H̃ as

H̃[ã, k] ≈ 1

N

N∑
n=1

1(f(xn = k|ãn = ã))

and p̃ as p̃[ã] = P(Ã = ã) ≈ 1
N

∑N
n=1 1(ãn = ã), ∀ã ∈ [M]. In Line 5, we plug in an

existing transition matrix and prior probability estimator to estimate Tk and p with

only mild adaption that will be introduced shortly. Note that although we choose a

specific estimator, our algorithm is a flexible framework that is compatible with any

StatEstimator proposed in the noisy label literature [123, 230, 231].

Details: Estimating Key Statistics. The algorithm requires us to estimate Tk

and p based on the predicted Ã by proxy models. In the literature of noisy learning,

151

Algorithm 6 Fairness calibration algorithm (DP)

1: Input: A set of proxy models G = {g1, · · · , gC}. Target dataset D◦. Target model

f . Transition matrix and prior probability estimator StatEstimator.

Predict sensitive attributes using all g ∈ G

2: ãcn ← gc(xn),∀c ∈ [C], n ∈ [N]

Build the dataset with noisy sensitive attributes

3: D̃ ← {(xn, yn, (ã1n, · · · , ãCn))|n ∈ [N]}

Estimate fairness matrix and prior with sample mean

4: H̃, p̃← DirectEst(D̃, f)

Estimate key statistics: p and Tk

5: {T̂1, · · · , T̂K}, p̂← StatEstimator(D̃, f)

Calibrate each fairness vector with Theorem 17

6: ∀k ∈ [K] : Ĥ[:, k]← (T̂⊤
k Λp̂)

−1Λp̃H̃[:, k]

Calculate the final fairness metric

7: ∆̂(D̃, f)← 1
M(M−1)K

∑
a,a′∈[M]
k∈[K]

|Ĥ[a, k]− Ĥ[a′, k]|.

8: Output: The calibrated fairness metric ∆̂(D̃, f)

there exists several feasible algorithms [119, 156, 146, 141, 230]. We choose HOC [230]

because it has stronger theoretical guarantee and lower sample complexity than most

existing estimators. Intuitively, if given three proxy models, the joint distributions of

their predictions would encode Tk and p, i.e.,

P(Ã1, Ã2, Ã3) = Func({Tk}k∈[K],p).

152

Algorithm 7 StatEstimator: HOCFair (DP)

1: Input: Noisy dataset D̃. Target model f .

Get the number of noisy attributes (i.e., # proxy models)

2: C ← #Attribute(D̃)

Get 2-Nearest-Neighbors of xn and save their attributes as xn’s attribute

3: if C < 3 then

4: {(xn, yn, (ã1n, · · · , ã3Cn))|n ∈ [N]}←Get2NN(D̃)

5: D̃ ← {(xn, yn, (ã1n, · · · , ã3Cn))|n ∈ [N]}

6: end if

Randomly sample 3 noisy attributes for each instance

7: {(ã1n, ã2n, ã3n)|n ∈ [N]} ← Sample(D̃)

Get estimates p ≈ p̂

8: (T̂ , p̂)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N]})

Get estimates Tk ≈ T̂k

9: (T̂k,−)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N], f(xn) = k}), ∀k ∈ [K]

Return the estimated statistics

10: Output: {T̂1, · · · , T̂K}, p̂

For example, with the chain rule and independence among proxy predictions conditioned

on A, we have:

P(Ã1 = ã1, Ã2 = ã2, Ã3 = ã3|f(X) = k)

=
∑

a∈[M]

P(A = a|f(X) = k) · Tk[a, ã1] · Tk[a, ã2] · Tk[a, ã3].

153

HOC counts the frequency of different (Ã1, Ã2, Ã3) patterns to obtain LHS and solve

equations to get Tk’s in the RHS.

Algorithm: HOCFair. More specifically, Algorithm 7 shows how we adapt HOC

as StatEstimator (in Algorithm 6, Line 5), namely HOCFair. The original HOC uses

one proxy model and simulates the other two based on clusterability condition [230],

which assumes xn and its 2-nearest-neighbors share the same true sensitive attribute,

and therefore their noisy attributes can be used to simulate the output of proxy models.

If this condition does not hold [231], we can directly use more proxy models. With a

sufficient number of noisy attributes, we can randomly select a subset of them for every

sample as Line 7, and then approximate Tk with T̂k in Line 9. In our experiments, we

test both using one proxy model and multiple proxy models. See more details of our

implementations in Appendix D.4 and HOC in Chapter 2.

5.2.2.2 Requirements of Proxy Models

To use our algorithm, there are two practical questions for practitioners: 1)

what properties proxy models should satisfy and 2) how many proxy models are needed.

The first question is answered by two requirements made in the estimation algorithm

HOC:

Requirement 1 (Informativeness of Proxies). The noisy attributes given by each

proxy model g are informative, i.e., ∀k ∈ [M], 1) Tk is non-singular and 2) either

Tk[a, a] > P(Ã = a|f(X) = k) or Tk[a, a] > Tk[a, a
′], ∀a′ ̸= a.

154

Requirement 1 is the prerequisite of getting a feasible and unique estimate of

Tk [230], where the non-singular requirement ensures the matrix inverse in Theorem 17

exists and the constraints on Tk[a, a] describes the worst tolerable performance of g.

When M = 2, the constraints can be simplified as Tk[1, 2] + Tk[2, 1] < 1 [123, 124], i.e.,

g’s predictions are better than random guess in binary classification. If this requirement

is violated, there might exist more than one feasible estimate of Tk, making the problem

insoluble.

The above requirement is weak. The proxies are merely required to positively

correlate with the true sensitive attributes. We discuss the privacy implication of using

weak proxies shortly after.

Requirement 2 (Independence between Proxies). The noisy attributes predicted by

proxy models g1(X), · · · , gC(X) are independent and identically distributed (i.i.d.) given

A.

Requirement 2 ensures the additional two proxy models provide more informa-

tion than using only one classifier. If it is violated, we would still get an estimate but

may be inaccurate. Note this requirement is different from the conditional independence

often assumed in the fairness literature [8, 148, 49], which is g(X) ⊥⊥ f(X)|A rather

than ours g1(X) ⊥⊥ g2(X) ⊥⊥ g3(X)|A.

The second question (how many proxy models are needed) has been answered

by Theorem 5 in [122], which we summarize in the following.

Lemma 8. If satisfying Requirements 1–2, three proxy models are both sufficient and

155

necessary to identify Tk.

How to Protect Privacy with Weak Proxies. Intuitively, weak proxies can protect

privacy better than strong proxies since the predictions are noisier, i.e., less informative.

We connect weak proxy’s privacy-preserveness to differential privacy [53]. Assume

misclassification probability on Ã is bounded across all samples, i.e., ∀a ∈ [M], a′ ∈

[M], a ̸= a′:

max
x∈X

P(Ã = a|A = a,X = x) ≤ 1− ϵ0,

min
x∈X

P(Ã = a|A = a′, X = x) ≥ ϵ1.

According to the definition of label differential privacy [53], we show that the privacy

of the sensitive attribute A, which is the “label” of proxy models, satisfies ln(1−ϵ0
ϵ1

)-DP.

See Appendix D.3.6 for the proof.

In practice, if the above assumption does not hold naturally by proxies, we

can add noise to impose it. When practitioners think proxies are too strong, they can

add additional noise to reduce informativeness, further protecting privacy. When we

intentionally make the proxies weaker by flipping predicted sensitive attributes with

probability 0.4, it corresponds to 0.41-DP (ϵ0 = ϵ1 = 0.4) protection.

5.2.2.3 Theoretical Guarantee

We theoretically analyze estimation errors on our calibrated metrics. Denote

by ∆̂DP(D̃, f) the calibrated DP disparity evaluated on our calibrated fairness matrix

Ĥ. We have:

156

Theorem 18 (Error Upper Bound of Calibrated Metrics). Denote the estimation error

of the calibrated fairness metrics by Errcal := |∆̂DP(D̃, f)−∆DP(D, f)|. Then:

Errcal ≤ 2

K

∑
k∈[K]

∥∥Λ−1
p

∥∥
1
∥ΛpH[:, k]∥∞ ε(T̂k, p̂),

where ε(T̂k, p̂) := ∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 + ∥I − TkT̂

−1
k ∥1 is the error induced by

calibration. With a perfect estimator T̂k = Tk and p̂k = pk,∀k ∈ [K], we have Errcal = 0.

Theorem 18 shows the upper bound of estimation error mainly depends on the

estimates T̂k and p̂, i.e., the following two terms in ε(T̂k, p̂):

∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 and ∥I − TkT̂

−1
k ∥1.

When the estimates are perfect, i.e., T̂k = Tk and p̂ = p, then both terms go to 0 because

Λ−1
p̂ Λp = I and TkT̂

−1
k = I. Together with Lemma 8, we can show the optimality of

our algorithm as follows.

Theorem 19. When Requirements 1–2 hold for three proxy models, the calibrated fairness

metrics given by Algorithm 6 with key statistics estimated by Algorithm 7 achieve zero

error, i.e.,

|∆̂DP(D̃, f)−∆DP(D, f)| = 0.

Besides, we compare the error upper bound of our method with the exact error

(not its upper bond) in the case of Corollary 6, and summarize the result in Corollary 7.

Corollary 7. For a binary classifier f and a binary sensitive attribute A ∈ {1, 2}, when

(Ã ⊥⊥ f(X)|A) and p = [0.5, 0.5]⊤, the proposed calibration method is guaranteed to be

157

more accurate than the uncalibrated measurement, i.e., , Errcal ≤ Errraw, if

ε(T̂k, p̂) ≤ γ := max
k′∈{1,2}

e1 + e2

1 + ∥H[:,k′]∥1
∆DP(D,f)

,∀k ∈ {1, 2}.

Corollary 7 shows when the error ε(T̂k, p̂) that is induced by inaccurate T̂k and

p̂ is below the threshold γ, our method is guaranteed to lead to a smaller estimation

error compared to the uncalibrated measurement under the considered setting. The

threshold implies that, adopting our method rather than the uncalibrated measurement

can be greatly beneficial when e1 and e2 are high (i.e., g is inaccurate) or when the

normalized (true) fairness disparity ∆DP(D,f)
∥H[:,k′]∥1 is high (i.e., f is highly biased).

5.2.2.4 Guidelines for Practitioners

We provide a set of guidelines implied by our theoretical results.

When to Use Our Algorithm. Corollary 7 shows that our algorithm is preferred

over directly using proxies when 1) the proxy model g is weak or 2) the true disparity is

large.

How to Best Use Our Algorithm. Section 5.2.2.2 implies a set of principles for

selecting proxy models:

i) [Requirement 1] Even if proxy models are weak, as long as they are informative, e.g.,

in binary case the performance is better than random guess, then it is enough for

estimations.

ii) [Requirement 2] We should try to make sure the predictions of proxy models are i.i.d.,

158

which is more important than using more proxy models. One way of doing it is to

choose proxy models trained on different data sources.

iii) [Lemma 8] At least three proxy models are prefered.

5.2.3 Takeaways

We summarize the takeaways as follows.

• We have offered a viable solution, i.e., by using only weak proxies, we can protect data

privacy while still being able to measure fairness.

• To this end, we have designed an algorithm that, though only based on weak proxies,

can still provably achieve accurate fairness estimations. We show our algorithm can

effectively measure the bias and provide a set of guidelines for practitioners on how to

use proxies properly.

• Code is available at https://github.com/UCSC-REAL/fair-eval.

159

Chapter 6

Conclusions

In this dissertation, we have addressed the challenges of data quality in machine

learning and proposed practical and provable solutions for handling weakly supervised

data. The research explores the realm of data-centric AI and introduces a pipeline

consisting of three crucial procedures to tackle data issues in weakly supervised learning.

The first procedure focuses on data diagnosis, where noise rates are learned when true

labels are missing. The second procedure involves data curation, which identifies and

fixes corrupted labels. Finally, the pipeline incorporates robust learning algorithms that

leverage the curated data for improved model performance.

Furthermore, this dissertation emphasizes the importance of evaluating model

performance beyond accuracy when dealing with imperfect data. By considering multi-

dimensional evaluation metrics, researchers and practitioners can better understand a

model’s capabilities and limitations in real-world scenarios.

Importantly, all the works presented in this dissertation have been open-sourced,

160

fostering collaboration and enabling the wider research community to benefit from the

proposed solutions. Furthermore, the data diagnosis and curation pipeline discussed

in this research are readily accessible at the GitHub repository https://github.com/

Docta-ai/docta.

By addressing the challenges of weakly supervised learning and providing

practical tools and methodologies, this dissertation contributes to the advancement of

data-centric AI and reinforces the notion that high-quality labeled data is the key to

training robust machine learning models. With the proposed pipeline and evaluation

framework, researchers and practitioners can enhance the performance and reliability

of AI systems, even in the presence of noisy or unlabeled data, ultimately paving the

way for more effective and trustworthy applications of artificial intelligence in various

domains.

161

Bibliography

[1] Vibhu Agarwal, Tanya Podchiyska, Juan M Banda, Veena Goel, Tiffany I Leung,

Evan P Minty, Timothy E Sweeney, Elsie Gyang, and Nigam H Shah. Learning

statistical models of phenotypes using noisy labeled training data. Journal of the

American Medical Informatics Association, 23(6):1166–1173, 2016.

[2] Rachad Alao, Miranda Bogen, Jingang Miao, Ilya Mironov, and Jonathan Tannen.

How Meta is working to assess fairness in relation to race in the U.S. across its

products and systems. https://ai.facebook.com/research/publications/how-meta-

is-working-to-assess-fairness-in-relation-to-race-in-the-us-across-its-products-and-

systems, 2021. [Online; accessed 15-Sep-2022].

[3] Amr M. Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likeli-

hood with bias-corrected calibration is hard-to-beat at label shift adaptation. In

Proceedings of the 37th International Conference on Machine Learning, ICML ’20,

2020.

[4] Ehsan Amid, Manfred K Warmuth, and Sriram Srinivasan. Two-temperature

162

logistic regression based on the tsallis divergence. In The 22nd International

Conference on Artificial Intelligence and Statistics, pages 2388–2396. PMLR, 2019.

[5] Ehsan Amid, Manfred KK Warmuth, Rohan Anil, and Tomer Koren. Robust

bi-tempered logistic loss based on bregman divergences. In Advances in Neural

Information Processing Systems, pages 14987–14996, 2019.

[6] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In

Ethics of Data and Analytics, pages 254–264. Auerbach Publications, 2016.

[7] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In Karl Aberer, Key-

Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer

Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and

Philippe Cudré-Mauroux, editors, The Semantic Web, pages 722–735, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg.

[8] Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, and

Xuezhi Wang. Evaluating fairness of machine learning models under uncertain and

incomplete information. In Proceedings of the 2021 ACM Conference on Fairness,

Accountability, and Transparency, pages 206–214, 2021.

[9] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential pri-

vacy has disparate impact on model accuracy. Advances in Neural Information

Processing Systems, 32:15479–15488, 2019.

163

[10] Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-nn for noisy labels. In

International Conference on Machine Learning, pages 540–550. PMLR, 2020.

[11] Yingbin Bai and Tongliang Liu. Me-momentum: Extracting hard confident

examples from noisily labeled data. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 9312–9321, 2021.

[12] Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang

Niu, and Tongliang Liu. Understanding and improving early stopping for learning

with noisy labels. Advances in Neural Information Processing Systems, 34, 2021.

[13] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova

DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al.

Training a helpful and harmless assistant with reinforcement learning from human

feedback. arXiv preprint arXiv:2204.05862, 2022.

[14] Roberto Battiti. Using mutual information for selecting features in supervised

neural net learning. IEEE Transactions on neural networks, 5(4):537–550, 1994.

[15] Luca Belli, Kyra Yee, Uthaipon Tantipongpipat, Aaron Gonzales, Kristian Lum,

and Moritz Hardt. County-level algorithmic audit of racial bias in twitter’s home

timeline. arXiv preprint arXiv:2211.08667, 2022.

[16] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

164

[17] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han

Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with distribution

alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785, 2019.

[18] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,

and Colin Raffel. Mixmatch: A holistic approach to semi-supervised learning.

arXiv preprint arXiv:1905.02249, 2019.

[19] Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, and Masashi Sugiyama. Confi-

dence scores make instance-dependent label-noise learning possible. In Proceedings

of the 38th International Conference on Machine Learning, ICML, 2021.

[20] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.

Cambridge university press, 2004.

[21] Valerii V Buldygin and Yu V Kozachenko. Sub-gaussian random variables.

Ukrainian Mathematical Journal, 32(6):483–489, 1980.

[22] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with

independency constraints. In 2009 IEEE International Conference on Data Mining

Workshops, pages 13–18. IEEE, 2009.

[23] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised

learning. MIT Press, 2006.

[24] Satrajit Chatterjee. Coherent gradients: An approach to understanding general-

165

ization in gradient descent-based optimization. In International Conference on

Learning Representations, 2020.

[25] Jiaao Chen, Zichao Yang, and Diyi Yang. Mixtext: Linguistically-informed

interpolation of hidden space for semi-supervised text classification. arXiv preprint

arXiv:2004.12239, 2020.

[26] Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell.

Fairness under unawareness: Assessing disparity when protected class is unobserved.

In Proc. of FAccT, 2019.

[27] Mingda Chen, Qingming Tang, Karen Livescu, and Kevin Gimpel. Variational

sequential labelers for semi-supervised learning. arXiv preprint arXiv:1906.09535,

2019.

[28] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In International

conference on machine learning, pages 1597–1607. PMLR, 2020.

[29] Yatong Chen, Reilly Raab, Jialu Wang, and Yang Liu. Fairness transferability

subject to bounded distribution shift. Advances in Neural Information Processing

Systems, 35:11266–11278, 2022.

[30] Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning

with instance-dependent label noise: A sample sieve approach. In International

Conference on Learning Representations, 2021.

166

[31] Hao Cheng, Zhaowei Zhu, Xing Sun, and Yang Liu. Demystifying how

self-supervised features improve training from noisy labels. arXiv preprint

arXiv:2110.09022, 2021.

[32] Hao Cheng, Zhaowei Zhu, Xing Sun, and Yang Liu. Mitigating memorization of

noisy labels via regularization between representations. In International Conference

on Learning Representations (ICLR), 2023.

[33] Jiacheng Cheng, Tongliang Liu, Kotagiri Ramamohanarao, and Dacheng Tao.

Learning with bounded instance-and label-dependent label noise. In Proceedings

of the 37th International Conference on Machine Learning, ICML ’20, 2020.

[34] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias

in recidivism prediction instruments. Big data, 5(2):153–163, 2017.

[35] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le.

Semi-supervised sequence modeling with cross-view training. arXiv preprint

arXiv:1809.08370, 2018.

[36] Imre Csiszár. Information-type measures of difference of probability distributions

and indirect observation. studia scientiarum Mathematicarum Hungarica, 2:229–

318, 1967.

[37] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in

neural information processing systems, 28:3079–3087, 2015.

167

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[39] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics, pages 4171–4186, June 2019.

[41] Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth,

and Saeed Sharifi-Malvajerdi. Multiaccurate proxies for downstream fairness. arXiv

preprint arXiv:2107.04423, 2021.

[42] Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth,

and Saeed Sharifi-Malvajerdi. Multiaccurate proxies for downstream fairness. In

Proc. of FAccT, 2022.

[43] Mengnan Du, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed

Awadallah, and Xia Hu. Fairness via representation neutralization. Advances in

Neural Information Processing Systems, 34:12091–12103, 2021.

[44] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[45] Marc N Elliott, Peter A Morrison, Allen Fremont, Daniel F McCaffrey, Philip

168

Pantoja, and Nicole Lurie. Using the census bureau’s surname list to improve

estimates of race/ethnicity and associated disparities. Health Services and Outcomes

Research Methodology, 9(2):69–83, 2009.

[46] Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. Normalized

mutual information feature selection. IEEE Transactions on neural networks,

20(2):189–201, 2009.

[47] Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking im-

portance weighting for deep learning under distribution shift. arXiv preprint

arXiv:2006.04662, 2020.

[48] Vitaly Feldman. Does learning require memorization? a short tale about a long

tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of

Computing, pages 954–959, 2020.

[49] Riccardo Fogliato, Alexandra Chouldechova, and Max G’Sell. Fairness evaluation

in presence of biased noisy labels. In Proc. of AIStat, 2020.

[50] Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav

Kadavath, Ben Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red

teaming language models to reduce harms: Methods, scaling behaviors, and lessons

learned. arXiv preprint arXiv:2209.07858, 2022.

[51] Ruoyuan Gao and Chirag Shah. Addressing bias and fairness in search systems.

169

In Proceedings of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 2643–2646, 2021.

[52] Wei Gao, Bin-Bin Yang, and Zhi-Hua Zhou. On the resistance of nearest neighbor

to random noisy labels. arXiv preprint arXiv:1607.07526, 2016.

[53] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang.

Deep learning with label differential privacy. Advances in Neural Information

Processing Systems, 34:27131–27145, 2021.

[54] Azin Ghazimatin, Matthaus Kleindessner, Chris Russell, Ziawasch Abedjan, and

Jacek Golebiowski. Measuring fairness of rankings under noisy sensitive information.

In 2022 ACM Conference on Fairness, Accountability, and Transparency, pages

2263–2279, 2022.

[55] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label

noise for deep neural networks. In Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

[56] Aritra Ghosh and Andrew Lan. Contrastive learning improves model robustness

under label noise. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 2703–2708, 2021.

[57] Elizabeth Gómez, Ludovico Boratto, and Maria Salamó. Disparate impact in item

recommendation: A case of geographic imbalance. In European Conference on

Information Retrieval, pages 190–206. Springer, 2021.

170

[58] Maoguo Gong, Hao Li, Deyu Meng, Qiguang Miao, and Jia Liu. Decomposition-

based evolutionary multiobjective optimization to self-paced learning. IEEE

Transactions on Evolutionary Computation, 23(2):288–302, 2018.

[59] Yves Grandvalet, Yoshua Bengio, et al. Semi-supervised learning by entropy

minimization. CAP, 367:281–296, 2005.

[60] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe

deep semi-supervised learning for unseen-class unlabeled data. In International

Conference on Machine Learning, pages 3897–3906. PMLR, 2020.

[61] Suchin Gururangan, Tam Dang, Dallas Card, and Noah A Smith. Variational

pretraining for semi-supervised text classification. arXiv preprint arXiv:1906.02242,

2019.

[62] Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W Tsang, James T Kwok,

and Masashi Sugiyama. A survey of label-noise representation learning: Past,

present and future. arXiv preprint arXiv:2011.04406, 2020.

[63] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,

and Masashi Sugiyama. Co-teaching: Robust training of deep neural networks

with extremely noisy labels. In Advances in neural information processing systems,

pages 8527–8537, 2018.

[64] Jiangfan Han, Ping Luo, and Xiaogang Wang. Deep self-learning from noisy labels.

171

In Proceedings of the IEEE International Conference on Computer Vision, pages

5138–5147, 2019.

[65] Xiaotian Han, Zhimeng Jiang, Hongye Jin, Zirui Liu, Na Zou, Qifan Wang, and Xia

Hu. Retiring δDP: New distribution-level metrics for demographic

parity. Transactions on Machine Learning Research, 2023.

[66] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised

learning. Advances in neural information processing systems, 29:3315–3323, 2016.

[67] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang.

Fairness without demographics in repeated loss minimization. In Proc. of ICML,

2018.

[68] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–

9738, 2020.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[70] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

[71] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome.

172

What do compressed deep neural networks forget? arXiv preprint arXiv:1911.05248,

2019.

[72] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton.

Characterising bias in compressed models. arXiv preprint arXiv:2010.03058, 2020.

[73] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university

press, 2012.

[74] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for

text classification. arXiv preprint arXiv:1801.06146, 2018.

[75] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin:

Detecting out-of-distribution image without learning from out-of-distribution data.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10951–10960, 2020.

[76] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and

Alex J Smola. Correcting sample selection bias by unlabeled data. In Advances in

neural information processing systems, pages 601–608, 2007.

[77] Zhuo Huang, Chao Xue, Bo Han, Jian Yang, and Chen Gong. Universal semi-

supervised learning. Advances in Neural Information Processing Systems, 34,

2021.

[78] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation

173

for deep semi-supervised learning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5070–5079, 2019.

[79] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-

jee, and Fillia Makedon. A survey on contrastive self-supervised learning. Tech-

nologies, 9(1):2, 2021.

[80] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering

for unsupervised image classification and segmentation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 9865–9874, 2019.

[81] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to

trust a classifier. Advances in neural information processing systems, 31, 2018.

[82] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet:

Learning data-driven curriculum for very deep neural networks on corrupted labels.

In International Conference on Machine Learning, pages 2304–2313. PMLR, 2018.

[83] Wenyu Jiang, Hao Cheng, Mingcai Chen, Chongjun Wang, and Hongxin Wei. Dos:

Diverse outlier sampling for out-of-distribution detection, 2023.

[84] Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Xiao Huang, Na Zou, Ali

Mostafavi, and Xia Hu. Topology matters in fair graph learning: a theoretical

pilot study, 2023.

[85] Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, and

Xia Hu. Fmp: Toward fair graph message passing against topology bias, 2022.

174

[86] Zhimeng Jiang, Xiaotian Han, Chao Fan, Fan Yang, Ali Mostafavi, and Xia Hu.

Generalized demographic parity for group fairness. In International Conference on

Learning Representations, 2022.

[87] Zhimeng Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Na Zou, and Xia Hu.

Weight perturbation can help fairness under distribution shift. arXiv preprint

arXiv:2303.03300, 2023.

[88] Zhimeng Jiang, Kaixiong Zhou, Zirui Liu, Li Li, Rui Chen, Soo-Hyun Choi, and

Xia Hu. An information fusion approach to learning with instance-dependent label

noise. In International Conference on Learning Representations, 2022.

[89] Zhimeng Jiang, Kaixiong Zhou, Mi Zhang, Rui Chen, Xia Hu, and Soo-Hyun Choi.

Adaptive risk-aware bidding with budget constraint in display advertising. arXiv

preprint arXiv:2212.12533, 2022.

[90] Kaggle. Jigsaw Toxicity dataset: Toxic comment classification challenge. https://

www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification,

2018. Accessed: 2021-11-15.

[91] David R Karger, Sewoong Oh, and Devavrat Shah. Efficient crowdsourcing for

multi-class labeling. In Proceedings of the ACM SIGMETRICS/international

conference on Measurement and modeling of computer systems, pages 81–92, 2013.

[92] D.R. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing

systems. In Neural Information Processing Systems, NIPS ’11, 2011.

175

[93] Falaah Arif Khan, Eleni Manis, and Julia Stoyanovich. Translation tutorial: Fair-

ness and friends. In Proceedings of the ACM Conference on Fairness, Accountability,

and Transparency, 2021.

[94] Niki Kilbertus, Adrià Gascón, Matt Kusner, Michael Veale, Krishna Gummadi,

and Adrian Weller. Blind justice: Fairness with encrypted sensitive attributes. In

International Conference on Machine Learning, pages 2630–2639. PMLR, 2018.

[95] Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box

post-processing for fairness in classification. In Proceedings of the 2019 AAAI/ACM

Conference on AI, Ethics, and Society, pages 247–254, 2019.

[96] Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim. Nlnl: Negative

learning for noisy labels. In Proceedings of the IEEE International Conference on

Computer Vision, pages 101–110, 2019.

[97] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised

visual representation learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 1920–1929, 2019.

[98] Shuyu Kong, You Li, Jia Wang, Amin Rezaei, and Hai Zhou. Knn-enhanced deep

learning against noisy labels. arXiv preprint arXiv:2012.04224, 2020.

[99] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009.

[100] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

176

with deep convolutional neural networks. Advances in neural information processing

systems, 25:1097–1105, 2012.

[101] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain,

Xuezhi Wang, and Ed Chi. Fairness without demographics through adversarially

reweighted learning. Proc. of NeurIPS, 2020.

[102] Alex Lamy, Ziyuan Zhong, Aditya K Menon, and Nakul Verma. Noise-tolerant

fair classification. Advances in Neural Information Processing Systems, 32, 2019.

[103] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[104] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learn-

ing method for deep neural networks. In Workshop on challenges in representation

learning, ICML, volume 3, page 896, 2013.

[105] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang. Cleannet: Transfer

learning for scalable image classifier training with label noise. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 5447–5456,

2018.

[106] Jingling Li, Mozhi Zhang, Keyulu Xu, John Dickerson, and Jimmy Ba. How does

a neural network’s architecture impact its robustness to noisy labels? Advances in

Neural Information Processing Systems, 34, 2021.

177

[107] Jingling Li, Mozhi Zhang, Keyulu Xu, John P Dickerson, and Jimmy Ba. Noisy

labels can induce good representations. arXiv preprint arXiv:2012.12896, 2020.

[108] Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with

noisy labels as semi-supervised learning. In International Conference on Learning

Representations, 2020.

[109] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. Learning to

learn from noisy labeled data. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5051–5059, 2019.

[110] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with

early stopping is provably robust to label noise for overparameterized neural

networks. In International conference on artificial intelligence and statistics, pages

4313–4324. PMLR, 2020.

[111] Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably

end-to-end label-noise learning without anchor points. In International Conference

on Machine Learning, pages 6403–6413. PMLR, 2021.

[112] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia

Li. Learning from noisy labels with distillation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1910–1918, 2017.

[113] Hongyi Ling, Zhimeng Jiang, Youzhi Luo, Shuiwang Ji, and Na Zou. Learning

178

fair graph representations via automated data augmentations. In International

Conference on Learning Representations, 2023.

[114] Andy T Liu, Shang-Wen Li, and Hung-yi Lee. Tera: Self-supervised learning of

transformer encoder representation for speech. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 29:2351–2366, 2021.

[115] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh,

Shiori Sagawa, Percy Liang, and Chelsea Finn. Just train twice: Improving group

robustness without training group information. In International Conference on

Machine Learning, pages 6781–6792. PMLR, 2021.

[116] Minghao Liu, Jiaheng Wei, Yang Liu, and James Davis. Do humans and machines

have the same eyes? human-machine perceptual differences on image classification.

arXiv preprint arXiv:2304.08733, 2023.

[117] Qiang Liu, Jian Peng, and Alexander Ihler. Variational inference for crowdsourc-

ing. In Proceedings of the 25th International Conference on Neural Information

Processing Systems-Volume 1, pages 692–700, 2012.

[118] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda.

Early-learning regularization prevents memorization of noisy labels. Advances in

neural information processing systems, 33:20331–20342, 2020.

[119] Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance

179

reweighting. IEEE Transactions on pattern analysis and machine intelligence,

38(3):447–461, 2015.

[120] Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor W. Tsang. The emerging trends

of multi-label learning. IEEE Trans. Pattern Anal. Mach. Intell., 44(11):7955–7974,

2022.

[121] Yang Liu. Understanding instance-level label noise: Disparate impacts and treat-

ments. In International Conference on Machine Learning, pages 6725–6735. PMLR,

2021.

[122] Yang Liu. Identifiability of label noise transition matrix. arXiv preprint

arXiv:2202.02016, 2022.

[123] Yang Liu and Yiling Chen. Machine-learning aided peer prediction. In Proceedings

of the 2017 ACM Conference on Economics and Computation, pages 63–80, 2017.

[124] Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without

knowing noise rates. In International Conference on Machine Learning, pages

6226–6236. PMLR, 2020.

[125] Yang Liu and Mingyan Liu. An online learning approach to improving the quality

of crowd-sourcing. ACM SIGMETRICS Performance Evaluation Review, 43(1):217–

230, 2015.

[126] Yang Liu and Jialu Wang. Can less be more? when increasing-to-balancing label

180

noise rates considered beneficial. Advances in Neural Information Processing

Systems, 34, 2021.

[127] Yang Liu, Juntao Wang, and Yiling Chen. Surrogate scoring rules. In Proceedings

of the 21st ACM Conference on Economics and Computation, pages 853–871, 2020.

[128] Philip M Long and Rocco A Servedio. Random classification noise defeats all

convex potential boosters. Machine learning, 78(3):287–304, 2010.

[129] Michael Luca. Reviews, reputation, and revenue: The case of yelp. com. Com

(March 15, 2016). Harvard Business School NOM Unit Working Paper, (12-016),

2016.

[130] Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does

label smoothing mitigate label noise? In International Conference on Machine

Learning, pages 6448–6458. PMLR, 2020.

[131] Huixiang Luo, Hao Cheng, Yuting Gao, Ke Li, Mengdan Zhang, Fanxu Meng,

Xiaowei Guo, Feiyue Huang, and Xing Sun. On the consistency training for

open-set semi-supervised learning. arXiv preprint arXiv:2101.08237, 2021.

[132] Tianyi Luo, Xingyu Li, Hainan Wang, and Yang Liu. Research replication predic-

tion using weakly supervised learning. In In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: Findings, 2020.

[133] Naresh Manwani and PS Sastry. Noise tolerance under risk minimization. IEEE

transactions on cybernetics, 43(3):1146–1151, 2013.

181

[134] Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness:

A multi objective perspective. In International Conference on Machine Learning,

pages 6755–6764. PMLR, 2020.

[135] Tyler H McCormick, Zehang Richard Li, Clara Calvert, Amelia C Crampin,

Kathleen Kahn, and Samuel J Clark. Probabilistic cause-of-death assignment using

verbal autopsies. Journal of the American Statistical Association, 111(515):1036–

1049, 2016.

[136] Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. Weakly-supervised neural

text classification. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, pages 983–992, 2018.

[137] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods

for semi-supervised text classification. arXiv preprint arXiv:1605.07725, 2016.

[138] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adver-

sarial training: a regularization method for supervised and semi-supervised learning.

IEEE transactions on pattern analysis and machine intelligence, 41(8):1979–1993,

2018.

[139] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj

Tewari. Learning with noisy labels. In Advances in neural information processing

systems, pages 1196–1204, 2013.

[140] Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi Phuong Nhung Ngo, Thi

182

Hoai Phuong Nguyen, Laura Beggel, and Thomas Brox. Self: Learning to filter

noisy labels with self-ensembling. arXiv preprint arXiv:1910.01842, 2019.

[141] Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating

uncertainty in dataset labels. Journal of Artificial Intelligence Research, 70:1373–

1411, 2021.

[142] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in

test sets destabilize machine learning benchmarks. In Thirty-fifth Conference on

Neural Information Processing Systems Datasets and Benchmarks Track (Round

1), 2021.

[143] Curtis G Northcutt, Lu Jiang, and Isaac L Chuang. Confident learning: Estimating

uncertainty in dataset labels. arXiv preprint arXiv:1911.00068, 2019.

[144] Curtis G Northcutt, Tailin Wu, and Isaac L Chuang. Learning with confident

examples: Rank pruning for robust classification with noisy labels. UAI, 2017.

[145] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative

neural samplers using variational divergence minimization. In Proceedings of the

30th International Conference on Neural Information Processing Systems, pages

271–279, 2016.

[146] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and

Lizhen Qu. Making deep neural networks robust to label noise: A loss correction

183

approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1944–1952, 2017.

[147] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.

arXiv preprint arXiv:1802.05365, 2018.

[148] Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter,

Li Wei, Xuezhi Wang, Ed H Chi, Jilin Chen, and Alex Beutel. Measuring model

fairness under noisy covariates: A theoretical perspective. In Proc. of AIES, 2021.

[149] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimat-

ing training data influence by tracing gradient descent. In Advances in Neural

Information Processing Systems, volume 33, pages 19920–19930, 2020.

[150] Reilly Raab and Yang Liu. Unintended selection: Persistent qualification rate

disparities and interventions. Advances in Neural Information Processing Systems,

34, 2021.

[151] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. Learning transferable visual models from natural language supervision. In

International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[152] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko.

184

Semi-supervised learning with ladder networks. arXiv preprint arXiv:1507.02672,

2015.

[153] Henry Reeve and Ata Kabán. Fast rates for a knn classifier robust to unknown

asymmetric label noise. In International Conference on Machine Learning, pages

5401–5409. PMLR, 2019.

[154] Devendra Singh Sachan, Manzil Zaheer, and Ruslan Salakhutdinov. Revisiting

lstm networks for semi-supervised text classification via mixed objective function.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

6940–6948, 2019.

[155] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with

stochastic transformations and perturbations for deep semi-supervised learning.

Advances in neural information processing systems, 29:1163–1171, 2016.

[156] Clayton Scott. A rate of convergence for mixture proportion estimation, with

application to learning from noisy labels. In AISTATS, 2015.

[157] Jun Shu, Qian Zhao, Keyu Chen, Zongben Xu, and Deyu Meng. Learning adaptive

loss for robust learning with noisy labels. arXiv preprint arXiv:2002.06482, 2020.

[158] Grigori Sidorov, Alexander Gelbukh, Helena Gómez-Adorno, and David Pinto.

Soft similarity and soft cosine measure: Similarity of features in vector space model.

Computacion y Sistemas, pages 491–504, January 2014.

[159] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,

185

Ekin D Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simpli-

fying semi-supervised learning with consistency and confidence. arXiv preprint

arXiv:2001.07685, 2020.

[160] Amos Storkey. When training and test sets are different: characterizing learning

transfer. Dataset shift in machine learning, pages 3–28, 2009.

[161] Zeyu Tang, Yatong Chen, Yang Liu, and Kun Zhang. Tier balancing: Towards

dynamic fairness over underlying causal factors. arXiv preprint arXiv:2301.08987,

2023.

[162] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results. arXiv

preprint arXiv:1703.01780, 2017.

[163] Brendan Van Rooyen and Robert C Williamson. A theory of learning with

corrupted labels. J. Mach. Learn. Res., 18(1):8501–8550, 2017.

[164] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge

Belongie. Learning from noisy large-scale datasets with minimal supervision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 839–847, 2017.

[165] Jorge R Vergara and Pablo A Estévez. A review of feature selection methods based

on mutual information. Neural computing and applications, 24(1):175–186, 2014.

[166] Haobo Wang, Weiwei Liu, Yang Zhao, Chen Zhang, Tianlei Hu, and Gang Chen.

186

Discriminative and correlative partial multi-label learning. In Sarit Kraus, editor,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 3691–3697.

ijcai.org, 2019.

[167] Haobo Wang, Ruixuan Xiao, Yiwen Dong, Lei Feng, and Junbo Zhao. Promix:

combating label noise via maximizing clean sample utility. arXiv preprint

arXiv:2207.10276, 2022.

[168] Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and

Junbo Zhao. PiCO: Contrastive label disambiguation for partial label learning. In

International Conference on Learning Representations, 2022.

[169] Jialu Wang, Xinyue Gabby Liu, Zonglin Di, Yang Liu, and Xin Eric Wang. T2iat:

Measuring valence and stereotypical biases in text-to-image generation. arXiv

preprint arXiv:2306.00905, 2023.

[170] Jialu Wang, Yang Liu, and Caleb Levy. Fair classification with group-dependent

label noise. In Proceedings of the 2021 ACM conference on fairness, accountability,

and transparency, pages 526–536, 2021.

[171] Jialu Wang, Yang Liu, and Xin Eric Wang. Are gender-neutral queries really gender-

neutral? mitigating gender bias in image search. arXiv preprint arXiv:2109.05433,

2021.

[172] Jialu Wang, Yang Liu, and Xin Eric Wang. Assessing multilingual fairness in

187

pre-trained multimodal representations. In the Findings of ACL 2022, Dublin,

Ireland, May 2022. Association for Computational Linguistics.

[173] Jialu Wang, Xin Eric Wang, and Yang Liu. Understanding instance-level impact

of fairness constraints. In International Conference on Machine Learning, pages

23114–23130. PMLR, 2022.

[174] Jingkang Wang, Hongyi Guo, Zhaowei Zhu, and Yang Liu. Policy learning using

weak supervision. Advances in Neural Information Processing Systems, 34, 2021.

[175] Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, and Chen Gong.

Tackling instance-dependent label noise via a universal probabilistic model. arXiv

preprint arXiv:2101.05467, 2021.

[176] Xiang Wang, Shiwei Zhang, Zhiwu Qing, Yuanjie Shao, Changxin Gao, and

Nong Sang. Self-supervised learning for semi-supervised temporal action proposal.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1905–1914, 2021.

[177] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey.

Symmetric cross entropy for robust learning with noisy labels. In Proceedings of

the IEEE International Conference on Computer Vision, pages 322–330, 2019.

[178] Zhuowei Wang, Jing Jiang, Bo Han, Lei Feng, Bo An, Gang Niu, and Guodong

Long. Seminll: A framework of noisy-label learning by semi-supervised learning.

arXiv preprint arXiv:2012.00925, 2020.

188

[179] Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by

agreement: A joint training method with co-regularization. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

13726–13735, 2020.

[180] Hongxin Wei, Lue Tao, Renchunzi Xie, and Bo An. Open-set label noise can

improve robustness against inherent label noise. Advances in Neural Information

Processing Systems, 34, 2021.

[181] Hongxin Wei, Lue Tao, Renchunzi Xie, Lei Feng, and Bo An. Open-sampling:

Exploring out-of-distribution data for re-balancing long-tailed datasets. In Inter-

national Conference on Machine Learning (ICML). PMLR, 2022.

[182] Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li.

Mitigating neural network overconfidence with logit normalization. arXiv preprint

arXiv:2205.09310, 2022.

[183] Hongxin Wei, Renchunzi Xie, Lei Feng, Bo Han, and Bo An. Deep learning from

multiple noisy annotators as a union. IEEE Transactions on Neural Networks and

Learning Systems, 2022.

[184] Hongxin Wei, Huiping Zhuang, Renchunzi Xie, Lei Feng, Gang Niu, Bo An, and

Yixuan Li. Mitigating memorization of noisy labels by clipping the model prediction.

In International Conference on Machine Learning (ICML). PMLR, 2023.

189

[185] Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Masashi Sugiyama, and Yang

Liu. To smooth or not? when label smoothing meets noisy labels, 2021.

[186] Jiaheng Wei and Yang Liu. When optimizing f -divergence is robust with label

noise. arXiv preprint arXiv:2011.03687, 2020.

[187] Jiaheng Wei, Harikrishna Narasimhan, Ehsan Amid, Wen-Sheng Chu, Yang Liu,

and Abhishek Kumar. Distributionally robust post-hoc classifiers under prior shifts.

In The Eleventh International Conference on Learning Representations, 2023.

[188] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu.

Learning with noisy labels revisited: A study using real-world human annotations.

In International Conference on Learning Representations, 2022.

[189] Jiaheng Wei, Zhaowei Zhu, Tianyi Luo, Ehsan Amid, Abhishek Kumar, and Yang

Liu. To aggregate or not? learning with separate noisy labels. In ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, 2023.

[190] Jiaheng Wei, Zhaowei Zhu, Gang Niu, Tongliang Liu, Sijia Liu, Masashi Sugiyama,

and Yang Liu. Fairness improves learning from noisily labeled long-tailed data.

arXiv preprint arXiv:2303.12291, 2023.

[191] Susan Wojcicki. Letter from Susan: Our 2021 Priorities. https://blog.youtube/

inside-youtube/letter-from-susan-our-2021-priorities, 2021. [Online; ac-

cessed 15-Sep-2022].

190

[192] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[193] Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannessian, and Nathan Srebro.

Learning non-discriminatory predictors. In Conference on Learning Theory, pages

1920–1953. PMLR, 2017.

[194] Jimmy Wu, Yatong Chen, and Yang Liu. Metric-fair classifier derandomization. In

International Conference on Machine Learning, pages 23999–24016. PMLR, 2022.

[195] Songhua Wu, Mingming Gong, Bo Han, Yang Liu, and Tongliang Liu. Fair classi-

fication with instance-dependent label noise. In Conference on Causal Learning

and Reasoning, pages 927–943. PMLR, 2022.

[196] Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge,

and Yi Chang. Robust early-learning: Hindering the memorization of noisy labels.

In International Conference on Learning Representations, 2021.

[197] Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Jiankang Deng, Jiatong Li,

and Yinian Mao. Extended T: Learning with mixed closed-set and open-set noisy

labels. arXiv preprint arXiv:2012.00932, 2020.

[198] Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng

Liu, Gang Niu, Dacheng Tao, and Masashi Sugiyama. Part-dependent label

noise: Towards instance-dependent label noise. In Advances in Neural Information

Processing Systems, volume 33, pages 7597–7610, 2020.

191

[199] Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and

Masashi Sugiyama. Are anchor points really indispensable in label-noise learning?

In Advances in Neural Information Processing Systems, pages 6838–6849, 2019.

[200] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from

massive noisy labeled data for image classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2691–2699, 2015.

[201] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsu-

pervised data augmentation. arXiv preprint arXiv:1904.12848, 2019.

[202] Renchunzi Xie, Hongxin Wei, Yuzhou Cao, Lei Feng, and Bo An. On the importance

of feature separability in predicting out-of-distribution error, 2023.

[203] Renchunzi Xie, Hongxin Wei, Lei Feng, and Bo An. Gearnet: Stepwise dual

learning for weakly supervised domain adaptation. AAAI Conference on Artificial

Intelligence, 2022.

[204] Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong

Jin. Dash: Semi-supervised learning with dynamic thresholding. In International

Conference on Machine Learning, pages 11525–11536. PMLR, 2021.

[205] Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L dmi: A novel information-

theoretic loss function for training deep nets robust to label noise. In Advances in

Neural Information Processing Systems, volume 32, 2019.

192

[206] Shen Yan, Hsien-te Kao, and Emilio Ferrara. Fair class balancing: Enhancing

model fairness without observing sensitive attributes. In Proc. of CIKM, 2020.

[207] Diyi Yang, Jiaao Chen, Zichao Yang, Dan Jurafsky, and Eduard Hovy. Let’s make

your request more persuasive: Modeling persuasive strategies via semi-supervised

neural nets on crowdfunding platforms. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 3620–3630, 2019.

[208] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick.

Improved variational autoencoders for text modeling using dilated convolutions.

In International conference on machine learning, pages 3881–3890. PMLR, 2017.

[209] Quanming Yao, Hansi Yang, Bo Han, Gang Niu, and James T Kwok. Searching

to exploit memorization effect in learning with noisy labels. In Proceedings of the

37th International Conference on Machine Learning, ICML ’20, 2020.

[210] Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu,

and Masashi Sugiyama. Dual T: Reducing estimation error for transition matrix

in label-noise learning. In Advances in Neural Information Processing Systems,

volume 33, pages 7260–7271, 2020.

[211] Yelp. Yelp dataset challenge, 2015.

[212] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama.

How does disagreement help generalization against label corruption? In Proceedings

193

of the 36th International Conference on Machine Learning, volume 97, pages 7164–

7173. PMLR, 09–15 Jun 2019.

[213] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,

Shaochen Zhong, and Xia Hu. Data-centric artificial intelligence: A survey. arXiv

preprint arXiv:2303.10158, 2023.

[214] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[215] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. In International Conference on Learning

Representations, 2018.

[216] Jing Zhang, Victor S Sheng, Tao Li, and Xindong Wu. Improving crowdsourced

label quality using noise correction. IEEE transactions on neural networks and

learning systems, 29(5):1675–1688, 2017.

[217] Mingyuan Zhang, Jane Lee, and Shivani Agarwal. Learning from noisy labels

with no change to the training process. In International Conference on Machine

Learning, pages 12468–12478. PMLR, 2021.

[218] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-

works for text classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,

194

and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 28. Curran Associates, Inc., 2015.

[219] Xuchao Zhang, Xian Wu, Fanglan Chen, Liang Zhao, and Chang-Tien Lu. Self-

paced robust learning for leveraging clean labels in noisy data. In AAAI, pages

6853–6860, 2020.

[220] Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral methods

meet em: A provably optimal algorithm for crowdsourcing. Advances in neural

information processing systems, 27:1260–1268, 2014.

[221] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep

neural networks with noisy labels. In Advances in neural information processing

systems, pages 8778–8788, 2018.

[222] Ziqi Zhang, Yuexiang Li, Hongxin Wei, Kai Ma, Tao Xu, and Yefeng Zheng.

Alleviating noisy-label effects in image classification via probability transition

matrix. arXiv preprint arXiv:2110.08866, 2021.

[223] Zizhao Zhang, Han Zhang, Sercan O Arik, Honglak Lee, and Tomas Pfister.

Distilling effective supervision from severe label noise. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9294–

9303, 2020.

[224] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National science

review, 5(1):44–53, 2018.

195

[225] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learn-

ing using gaussian fields and harmonic functions. In Proceedings of the 20th

International conference on Machine learning (ICML-03), pages 912–919, 2003.

[226] Zhaowei Zhu, Zihao Dong, and Yang Liu. Detecting corrupted labels without

training a model to predict. In International Conference on Machine Learning

(ICML), 2022.

[227] Zhaowei Zhu, Tongliang Liu, and Yang Liu. A second-order approach to learning

with instance-dependent label noise. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2021.

[228] Zhaowei Zhu, Tongliang Liu, and Yang Liu. A second-order approach to learning

with instance-dependent label noise. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 10113–10123, 2021.

[229] Zhaowei Zhu, Tianyi Luo, and Yang Liu. The rich get richer: Disparate impact of

semi-supervised learning. In International Conference on Learning Representations,

2022.

[230] Zhaowei Zhu, Yiwen Song, and Yang Liu. Clusterability as an alternative to anchor

points when learning with noisy labels. In Proceedings of the 38th International

Conference on Machine Learning, ICML ’21, 2021.

[231] Zhaowei Zhu, Jialu Wang, and Yang Liu. Beyond images: Label noise transition

196

matrix estimation for tasks with lower-quality features. In International Conference

on Machine Learning (ICML). PMLR, 17–23 Jul 2022.

[232] Zhaowei Zhu, Yuanshun Yao, Jiankai Sun, Hang Li, and Yang Liu. Weak proxies

are sufficient and preferable for fairness with missing sensitive attributes. In

International Conference on Machine Learning (ICML), 2023.

[233] Zhaowei Zhu, Jingxuan Zhu, Ji Liu, and Yang Liu. Federated bandit: A gossiping

approach. In Abstract Proceedings of the 2021 ACM SIGMETRICS/International

Conference on Measurement and Modeling of Computer Systems, pages 3–4, 2021.

[234] Piotr Zielinski, Shankar Krishnan, and Satrajit Chatterjee. Explaining memo-

rization and generalization: A large-scale study with coherent gradients. arXiv

preprint arXiv:2003.07422, 2020.

197

Appendix A

More Details for Charter 2

Appendix A provides more theoretical details and experiment settings related

to HOC (Section 2.2) and its extension (Section 2.3), which is organized as follows.

• Section A.1 presents the detailed examples and derivations of consensus equations.

• Section A.2 includes proofs and other details about our theoretical results. Partic-

ularly,

– Section A.2.1 proves the uniqueness of T .

– Section A.2.2 justifies the feasibility of assumption |E∗
3 | = Θ(N)

– Section A.2.3 shows the proof for Lemma 1

– Section A.2.4 shows the proof for Theorem 2.

• Section A.3 presents more discussions, e.g., the soft 2-NN label clusterability, more

details on local T (X), and the feasibility of our Assumption 1 & 2 to guarantee

the uniqueness of T .

198

• Section A.4 shows more experimental settings and results related to HOC.

• Section A.5.1 numerates some popular f -divergence functions and the corresponding

optimal variational-conjugate pair (g∗, f∗).

• Section A.5 shows the theoretical parts of HOC extension, where

– Section A.5.2 shows the order-preserving property of using total variation.

– Section A.5.3 shows the order-preserving property of using KL divergence.

• Section A.6 shows the more discussions for HOC extension, where

– Section A.6.1 explains why we build our method on HOC.

– Section A.6.2 discuss an interesting observation shown in Table 2.5 that

high-noise settings may have lower errors.

A.1 Derivation of Consensus Equations

For the first-order consensuses, we have

P(Ỹ1 = j1) =
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i)P(Y1 = i).

199

For the second-order consensuses, we have

P(Ỹ1 = j1, Ỹ2 = j2)

=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2|Y1 = i, Y2 = i)P(Y1 = Y2 = i)

(a)
=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2|Y1 = i, Y2 = i) · P(Y1 = i)

(b)
=
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i) · P(Ỹ2 = j2|Y2 = i) · P(Y1 = i),

where equality (a) holds due to the 2-NN label clusterability, i.e., Y1 = Y2(= Y3) w.p.

1, and equality (b) holds due to the conditional independency between Ỹ1 and Ỹ2 given

their clean labels.

For the third-order consensuses, we have

P(Ỹ1 = j1, Ỹ2 = j2, Ỹ3 = j3)

=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2, Ỹ3 = j3|Y1 = i, Y2 = i, Y3 = i)P(Y1 = Y2 = Y3 = i)

(a)
=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2, Ỹ3 = j3|Y1 = i, Y2 = i, Y3 = i)P(Y1 = i)

(b)
=
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i)P(Ỹ2 = j2|Y2 = i)P(Ỹ3 = j3|Y3 = i)P(Y1 = i).

where equality (a) holds due to the 3-NN label clusterability, i.e., Y1 = Y2 = Y3 w.p. 1,

and equality (b) holds due to the conditional independency between Ỹ1, Ỹ2 and Ỹ3 given

their clean labels.

With the above analyses, there are 2 first-order equations,

P(Ỹ1 = 1) = p1(1− e1) + (1− p1)e2,

P(Ỹ1 = 2) = p1e1 + (1− p1)(1− e2).

200

There are 4 second-order equations for different combinations of Ỹ1, Ỹ2, e.g.,

P(Ỹ1 = 1, Ỹ2 = 1) = p1(1− e1)
2 + (1− p1)e

2
2,

P(Ỹ1 = 1, Ỹ2 = 2) = p1(1− e1)e1 + (1− p1)e2(1− e2),

P(Ỹ1 = 2, Ỹ2 = 1) = p1(1− e1)e1 + (1− p1)e2(1− e2),

P(Ỹ1 = 1, Ỹ2 = 1) = p1e
2
1 + (1− p1)(1− e2)

2.

There are 8 third-order equations for different combinations of Ỹ1, Ỹ2, Ỹ3, e.g.,

P(Ỹ1 = 1, Ỹ2 = 1, Ỹ3 = 1) = p1(1− e1)
3 + (1− p1)e

3
2,

P(Ỹ1 = 1, Ỹ2 = 1, Ỹ3 = 2) = p1(1− e1)
2e1 + (1− p1)e

2
2(1− e2),

P(Ỹ1 = 1, Ỹ2 = 2, Ỹ3 = 1) = p1(1− e1)
2e1 + (1− p1)e

2
2(1− e2),

P(Ỹ1 = 1, Ỹ2 = 2, Ỹ3 = 2) = p1(1− e1)e
2
1 + (1− p1)e2(1− e2)

2,

P(Ỹ1 = 2, Ỹ2 = 1, Ỹ3 = 1) = p1(1− e1)
2e1 + (1− p1)e

2
2(1− e2),

P(Ỹ1 = 2, Ỹ2 = 1, Ỹ3 = 2) = p1(1− e1)e
2
1 + (1− p1)e2(1− e2)

2,

P(Ỹ1 = 2, Ỹ2 = 2, Ỹ3 = 1) = p1(1− e1)e
2
1 + (1− p1)e2(1− e2)

2,

P(Ỹ1 = 2, Ỹ2 = 2, Ỹ3 = 2) = p1e
3
1 + (1− p1)(1− e2)

3.

For a general K-class classification problem, we show one first-order consensus

below:

e⊤j c
[1] = P(Ỹ1 = j)

=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Y1 = i)

=
∑
i∈[K]

Tij · pi=e⊤j T
⊤p.

201

The second-order consensus follows the example below:

e⊤j c
[2]
r = P(Ỹ1 = j, Ỹ2 = (j + r)K)

(a)
=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Ỹ2 = (j + r)K |Y2 = i)P(Y1 = i)

=
∑
i∈[K]

Ti,j · Ti,(j+r)K · pi
(b)
= e⊤j (T ◦ Tr)

⊤p,

where equality (a) holds again due to the 2-NN label clusterability the conditional

independency (similar to binary cases), and equality (b) holds due to Tr[i, j] = Ti,(j+r)K .

We also show one third-order consensus below:

e⊤j c
[3]
r = P(Ỹ1 = j, Ỹ2 = (j + r)K , Ỹ3 = (j + s)K)

(a)
=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Ỹ2 = (j + r)K |Y2 = i)P(Ỹ3 = (j + s)K |Y3 = i)P(Y1 = i)

=
∑
i∈[K]

Ti,j · Ti,(j+r)K · Ti,(j+s)K · pi
(b)
= e⊤j (T ◦ Tr ◦ Ts)

⊤p,

where equality (a) holds again due to the 3-NN label clusterability the conditional

independency (similar to binary cases), and equality (b) holds due to Tr[i, j] = Ti,(j+r)K ,

Ts[i, j] = Ti,(j+s)K .

A.2 Theoretical Guarantees for HOC

A.2.1 Uniqueness of T

We need to prove the following equations have a unique solution when T is

non-singular and informative.

202

Consensus Equations

• First-order (K equations):

c[1] := T⊤p,

• Second-order (K2 equations):

c[2]r := (T ◦ Tr)
⊤p, r ∈ [K],

• Third-order (K3 equations):

c[3]r,s := (T ◦ Tr ◦ Ts)
⊤p, r, s ∈ [K].

Firstly, we need the following Lemma for the Hadamard product of matrices:

Lemma 9. [73] For column vectors x and y, and corresponding diagonal matrices Dx

and Dy with these vectors as their main diagonals, the following identity holds:

x∗(A ◦B)y = tr
(
D∗

xADyB
⊤
)
,

where x∗ denotes the conjugate transpose of x.

The following proof focuses on the second and third-order consensuses. It is

worth noting that, although the first-order consensus is not necessary for the derivation of

the unique solution, it still helps improve the stability of solving for T and p numerically.

Step I: Transform the second-order equations. Denoted by Tr = TSr, where

Sr permutes particular columns of T . Let ei be the column vector with only the i-th

203

element being 1 and 0 otherwise. With Lemma 9, the second-order consensus can be

transformed as

e⊤i c
[2]
r = e⊤i (T ◦ Tr)

⊤p = tr
(
DeiT

⊤DpTSr

)
Then the (i, (i+ r)K)-th element of matrix T⊤DpT is

(T⊤DpT)[i, (i+ r)K] = e⊤i c
[2]
r .

With a fixed e⊤i c
[2]
r ,∀i, r ∈ [K], denote by

T⊤DpT = T†, (A.1)

where T†[i, (i+ r)K] = e⊤i c
[2]
r . Note T† is fixed given c

[2]
r , ∀r ∈ [K].

Step II: Transform the third-order equations. Following the idea in Step I, we

can also transform the third-order equations. First, notice that

e⊤i c
[3]
r,s = e⊤i [(T ◦ Ts) ◦ Tr]

⊤p = tr
(
Dei(T ◦ Ts)

⊤DpTSr

)
.

Then the (i, (i+ r)K)-th element of matrix (T ◦ Ts)
⊤DpT is

((T ◦ Ts)
⊤DpT)[i, (i+ r)K] = e⊤i c

[3]
r,s.

With a fixed e⊤i c
[3]
r,s,∀i, r ∈ [K], denote by

(T ◦ Ts)
⊤DpT = T‡,s ⇒ T⊤Dp(T ◦ Ts) = T⊤

‡,s, (A.2)

where T‡,s[i, (i+ r)K] = e⊤i c
[3]
r,s. According to Eqn. (A.1), we have

T⊤Dp(T ◦ Ts) = T⊤DpTT−1(T ◦ Ts) = T†T
−1(T ◦ Ts) = T⊤

‡,s.

Thus

(T ◦ Ts) = TT−1
† T⊤

‡,s,∀s ∈ [K]. (A.3)

204

Step III: From matrices to vectors With Step I and Step II, we could transform

the equations formulated by the second and the third-order consensuses to a particular

system of multivariate quadratic equations of T in Eqn. (A.3). Generally, these equations

could have up to 2K
2
solutions introduced by different combinations of each element in

T . To prove the uniqueness of T , we need to exploit the structure of the equations in

(A.3).

For a clear representation of the structure of equations and solutions, we first

consider one subset of the equations in (A.3). Specifically, let s = 0 we have

(T ◦ T) = TT−1
† T⊤

‡ . (A.4)

Then we need to study the number of feasible T satisfying Eqn. (A.4). Denote by

A = T‡(T
−1
†)⊤. Then each row of T , denoted by u⊤, is a solution to the equation

Au = Duu (a.k.a. Au = u ◦ u). (A.5)

Till now, in Step III, we split the matrix T to several vectors u, and transform our

target from finding a matrix solution T for (A.3) to a set of vector solutions u for (A.5).

Assume there are M feasible u vectors. We collect all the possible u and define

U := [u1,u2, · · · ,uM],ui ̸= ui′ ,∀i, i′ ∈ [M]. If M = K, we know there exists at most

K! different T (considering all the possible permutations of u) that Eqn. (A.4) holds.

Further, by considering an informative T as Assumption 1, we can identify a particular

permutation. Therefore, if M = K and T is informative, we know there exists and only

exists one unique T that Eqn. (A.4) holds.

205

Step IV: Constructing the M-th vector Supposing M > K, we have

AU = A[u1,u2, · · · ,uK , · · ·uM] = [Du1u1,Du2u2, · · · ,DuKuK , · · ·DuMuM].

With a non-singular T (Assumption 1), without loss of generality, we will assume the first

K columns are full-rank. Then uM must be a linear combination of the first K columns,

i.e., uM =
∑

i∈[K] λiui = Uλ0, where λ0 = [λ1, λ2, · · · , λK , 0, · · · , 0]. According to the

equation Au = Duu = u ◦ u, we have

AuM = DuMuM = DUλ0Uλ0,

and

AuM =
∑
i∈[M]

λ0[i]Aui =
∑
i∈[M]

λ0[i]ui ◦ ui = (U ◦U)λ0.

Thus

(U ◦U)λ0 = DUλ0Uλ0 = (Uλ0) ◦ (Uλ0).

Note that, the matrix U can be written as U = [UK ,UM−K], and the vector λ0 can

be written as λ0 = [λ⊤, 0, · · · , 0]⊤, where λ := [λ1, · · · , λK]⊤. Then the above equation

can be transformed as follows:

(UK ◦UK)λ = uM ◦ uM , and UKλ = uM .

Similarly, ∀s ∈ [K], we have

(UK ◦ (S̄sUK))λ = uM ◦ (S̄suM), and UKλ = uM ,

where S̄suM denotes a row circular shift such that (S̄suM)[i] = uM [i+ s]. Note S̄s = S⊤
s .

Applying Lemma 9, we have

tr(DeiUKDλU
⊤
K S̄⊤

s) = tr(DeiUKDλU
⊤
KSs) = (uM ◦ (S̄suM))[i]

206

Then the (i, (i+ s)K)-th element of matrix UKDλU
⊤
K is

(UKDλU
⊤
K)[i, (i+ s)K] = (uM ◦ (S̄suM))[i] = uM [i] · uM [(i+ s)K].

Then we have

UKDλU
⊤
K = Q, and Q = uMu⊤

M .

When T is non-singular, we know U is invertible (full-rank), then

Dλ = (U−1
K uM)(U−1

K uM)⊤.

Thus Rank(Dλ) = 1. Recalling 1⊤λ = 1, the vector λ could only be one-hot vectors, i.e.

ei,∀i ∈ [K]. This proves uM must be the same as one of ui, i ∈ [K].

Wrapping-up: Unique T From Step III, we know that, if M = K, we have a unique

T under the assumption that T is informative and non-singular. Step IV proves the

M -th (M > K) vector u must be identical to one of ui, i ∈ [K], indicating we only have

M = K non-repetitive u vectors. Therefore, our consensus equations are sufficient for

guaranteeing a unique T . Besides, note there is no approximation applied during the

whole proof. Thus with a perfect knowledge of c[ν], ν = 1, 2, 3, the unique T satisfying

the consensus equations is indeed the true noise transition matrix.

A.2.2 Feasibility of Assumption |E∗
3 | = Θ(N)

We discuss the feasibility of our assumption on the number of 3-tuples. Accord-

ing to the definition of E∗
3 , we know there are no more than |E∗

3 | ≤ ⌊N/3⌋ feasible 3-tuples.

Strictly deriving the lower bound for |E∗
3 | is challenging due to the unknown distributions

207

of representations. To roughly estimate the order of |E∗
3 | (i.e., the maximum number of

non-overlapping 3-tuples), we consider a special scenario where those high-dimensional

representations could be mapped to a 2-D square of width
√
N/3, each grid of width 1

has exactly 3 mapped representations, and one mapped representation is at the center of

each grid (also the center of each circle). Consider a particular construction of feasible

3-tuples as illustrated in Figure A.1. We require that, for each grid, the 2-NN fall in the

corresponding circle. Otherwise, they may become the 2-NN of representations in other

nearby girds. Assume the 2-NN are independently and uniformly distributed in the unit

square, thus the probability of both 2-NN falling in the circle is (π/4)2. Noting there are

N/3 grids in the big square illustrated in Figure A.1, the expected number of feasible

3-tuples in this case is π2

48 ·N = Θ(N). Although this example only considers a special

case, it demonstrates the order of |E∗
3 | could be Θ(N) with appropriate representations.

...

... ...

*
*

*

Figure A.1: Illustration of a special case.

A.2.3 Proof for Lemma 1

Then we present the proof for Lemma 1.

208

Proof. Recall in Eqn. (2.7), each high-order consensus pattern could be estimated by

the sample mean of |E∗
3 | independent and identically distributed random variables, thus

according to Hoeffding’s inequality [70], w.p. 1− δ, we have

|ĉ[i][j]− c[i][j]| ≤

√
ln 2

δ

2|E∗
3 |
, i = 1, 2, 3,∀j,

which is at the order of O(
√

ln(1/δ)/N).

A.2.4 Proof for Theorem 2

Consider a particular uniform off-diagonal matrix T , where the off-diagonal

elements are Tij =
1−Tii
K−1 . Recall the clean prior probability for the i-th class is pi. To

find the upper bound for the sample complexity, we can only consider a subset of our

consensus equations. Specifically, we consider the equations related to the i-th element

of Eqn. (2.2) and Eqn. (2.3) when r = 0. Then a solution to our consensus equations

will need to satisfy at least the following two equations:

p̂iT̂ii + (1− p̂i)
1− T̂ii

K − 1
= ĉ1, (A.6)

p̂iT̂
2
ii + (1− p̂i)

(1− T̂ii)
2

(K − 1)2
= ĉ2, (A.7)

where p̂i and T̂ii denote the estimated clean prior probability and noisy transition

matrix, ĉ1 and ĉ2 denote the corresponding estimates of first- and second-order statistics.

Lemma 1 shows, with probability 1− δ:

|ĉi − ci| ≤ O

(√
ln(1/δ)

N

)
.

209

Multiplying both sides of Eqn. (A.6) by Tii and adding Eqn. (A.7), we have

K(K − 1)p̂iT̂
2
ii + (1− p̂i)(1− T̂ii) = (K − 1)ĉ1T̂ii + (K − 1)2ĉ2.

Note the above equality also holds for the true values pi, Tii, c1, c2. Taking the difference

we have

(T̂ii − Tii)(K(K − 1)pi(Tii + T̂ii)− (1− pi)− (K − 1)c1)

=(K − 1)2(ĉ2 − c2) + (K − 1)(ĉ1 − c1)T̂ii −K(K − 1)T̂ 2
ii(p̂i − pi)− (T̂ii − 1)(p̂i − pi).

Taking the absolute value for both sides yields

|T̂ii − Tii| · |K(K − 1)pi(Tii + T̂ii)− (1− pi)− (K − 1)c1|

≤(K − 1)2|ĉ2 − c2|+ (K − 1)|ĉ1 − c1|+ (K(K − 1) + 1)|p̂i − pi|

From Eqn. (A.6), we have

p̂i =
K − 1

K

ĉ1 − 1/K

T̂ii − 1/K
+

1

K
.

Thus

|p̂i − pi| ≤
K − 1

K

|ĉ1 − c1|
min(T̂ii, Tii)− 1/K

,

indicating |p̂i − pi| is at the order of |ĉ1 − c1|. Note that

K(K − 1)pi(Tii + T̂ii)− (1− pi)− (K − 1)c1 ≥ K(K − 1)piTii − (1− pi)− (K − 1)c1.

When K(K − 1)piTii − (1− pi)− (K − 1)c1 > 0, we have

|T̂ii − Tii| ≤
(K − 1)2|ĉ2 − c2|+ (K − 1)|ĉ1 − c1|+ (K(K − 1) + 1)K−1

K
|ĉ1−c1|

min(T̂ii,Tii)−1/K

K(K − 1)piTii − (1− pi)− (K − 1)c1
.

Then by union bound we know, w.p. 1 − 2δ, the estimation error |T̂ii − Tii| is at the

same order as |ĉi − ci|, i.e. O(

√
ln(1/δ)

N).

210

A.3 More Discussions for HOC

A.3.1 Soft 2-NN Label Clusterability

The soft 2-NN label clusterability means one’s 2-NN may have a certain (but

small) probability of belonging to different clean classes. Statistically, if we use a new

matrix T soft to characterize the probability of getting a different nearest neighbor, i.e.

T soft
ij = P(Y2 = j|Y1 = i) = P(Y3 = j|Y1 = i), the second-order consensuses become

c
[2]
r := (T ◦ (T softTr))

⊤p and the third-order consensuses become c
[3]
r,s := (T ◦ (T softTr) ◦

(T softTs))
⊤p. Specifically, if T soft

ij = e,∀i ̸= j and T soft
ii = 1 − (K − 1)e, 0 ≤ e < 1/K,

where e captures the small perturbation of the 2-NN assumption, our solution will likely

output a transition matrix that affects the label noise between the effects of T softT and

T . The above observation informs us that our estimation will be away from the true

T by at most a factor e. When e = 0, we recover the original 2-NN label clusterability

condition.

A.3.2 Local T (X)

Sparse regularizer Compared with estimating one global T using the whole dataset

of size N , each local estimation will have access to only M instances, where M ≪ N .

Thus the feasibility of returning an accurate T (xn) requires more consideration. In some

particular cases, e.g., HOC Local in Table 4.2, when p is sparse due to the local datasets,

we usually add a regularizer to ensure a sparse p, such as
∑

i∈[K] ln(ci + ε), ε → 0+,

where ci is the i-th element of p. Note the standard sparse regularizer, i.e. ℓ1-norm ∥p∥1,

211

could not be applied here since ∥p∥1 = 1. Therefore, with a regularizer that shrinks

the search space and fewer variables, we could get an accurate estimate of T (X) with a

small M .

Other extensions Even with M -NN noise clusterability, estimating T (X) for the

whole dataset requires executing Algorithm 3 a numerous number of times (∼ N/M). If

equipped with prior knowledge that the label noise can be divided into several groups

and T = T (X) within each group [198, 170], we only need to estimate T for each group

by treating instances in each group as a local dataset and directly apply Algorithm 3. As

a preliminary work on estimating T relying on clusterability, the focus of this paper is to

provide a generic method for estimating T given a dataset. Designing efficient algorithms

to split the original dataset into a tractable number of local datasets is interesting for

future investigation.

A.3.3 Feasibility of Assumption 1 and Assumption 1

1. Denote the confusion matrix by C[h], where each element is Cij [h] := P(Y =

i, h(X) = j) and h(X) = j represents the event that the classifier predicts j given

feature X. Then the noisy confusion matrix could be written as C̃[h] := T⊤C[h].

If T is non-singular (a.k.a. invertible), statistically, we can always find the inverse

matrix T−1 such that the clean confusion matrix could be recovered as C[h] =

(T−1)⊤C̃[h]. Otherwise, we may think the label noise is too “much” such that

the clean confusion matrix is not recoverable by T . Then learning T may not be

212

meaningful anymore. Therefore, Assumption 1 is effectively ensuring the necessity

of estimating T .

2. We require Tii > Tij in Assumption 1 to ensure instances from observed class i

(observed from noisy labels) are informative [123]. Intuitively, this assumption

characterizes a particular permutation of row vectors in T . Otherwise, there may

exist K! possible solutions by considering all the permutations of K rows [127].

A.4 More Detailed Experiment Settings for HOC

A.4.1 Generating the Instance-Dependent Label Noise

In this section, we introduce how to generate instance-based label noise, which

is illustrated in Algorithm 8. Note this algorithm follows the state-of-the-art method

[198, 227]. Define the noise rate (the global flipping rate) as η. To calculate the

probability of xn mapping to each class under certain noise conditions, we set sample

instance flip rates qn and sample parameters W . The size of W is S × K, where S

denotes the length of each feature.

First, we sample instance flip rates qn from a truncated normal distribution

N(η, 0.12, [0, 1]) in Line 2. The average flipping rate (a.k.a. average noise rate) is η. qn

avoids all the instances having the same flip rate. Then, in Line 3, we sample parameters

W from the standard normal distribution for generating the instance-dependent label

noise. Each column of W acts as a projection vector. After acquiring qn and W , we can

calculate the probability of getting a wrong label for each instance(xn, yn) in Lines 4 – 6.

213

Note that in Line 5, we set pyn = −∞, which ensures that xn will not be mapped to its

own true label. In addition, Line 7 ensures the sum of all the entries of p is 1. Suppose

there are two features: xi and xj where xi = xj . Then the possibility p of these two

features, calculated by x ·W , from the Algorithm 8, would be exactly the same. Thus

the label noise is strongly instance-dependent.

Note Algorithm 8 cannot ensure Tii(X) > Tij(X) when η > 0.5. To generate

an informative dataset, we set 0.9 · Tii(X) as the upper bound of Tij(X) and distribute

the remaining probability to other classes.

A.4.2 Basic Hyper-Parameters

To testify the classification performance, we adopt the flow: 1) Pre-training

→ 2) Global Training → 3) Local Training. Our HOC estimator is applied once at the

beginning of each above step. Each training stage re-trains the model. In Stage-1, we load

the standard ResNet50 model pre-trained on ImageNet to obtain basic representations.

At the beginning of Stage-2 and Stage-3, we use the representations given by the current

model. All experiments are repeated three times. HOC Global only employs one global

T with G = 50 and |E| = 15k as inputs of Algorithm 8. HOC Local uses 300 local

matrices (250-NN noise clusterability, |Dh(n)| = 250, G = 30, |E| = 100) for CIFAR-10

and 5 local matrices (10k-NN noise clusterability, |Dh(n)| = 10k, G = 30, |E| = 5k)

for CIFAR-100. Note the local matrices may not cover the whole dataset. For those

uncovered instances, we simply apply T .

214

Algorithm 8 Instance-Dependent Label Noise Generation

Input:

1: Clean examples (xn, yn)
N
n=1; Noise rate: η; Size of feature: 1 × S; Number of

classes: K.

Iteration:

2: Sample instance flip rates qn from the truncated normal distribution

N (η, 0.12, [0, 1]);

3: Sample W ∈ RS×K from the standard normal distribution N (0, 12);

for n = 1 to N do

4: p = xn ·W // Generate instance dependent flip rates. The size of p is 1×K.

5: pyn = −∞ // Only consider entries that are different from the true label

6: p = qn · SoftMax(p) // Let qn be the probability of getting a wrong label

7: pyn = 1− qn // Keep clean w.p. 1− qn

8: Randomly choose a label from the label space as noisy label ỹn according to

p;

end for

Output:

9: Noisy examples (xi, ỹn)
N
n=1.

Other hyperparameters:

• Batch size: 128 (CIFAR), 32 (Clothing1M)

• Learning rate:

• CIFAR-10: Pre-training: 0.1 for 20 epochs→ 0.01 for 20 epochs. Global Training:

215

0.1 for 20 epochs → 0.01 for 20 epochs. Local Training: 0.1 for 60 epochs → 0.01

for 60 epochs → 0.001 for 60 epochs.

• CIFAR-100: Pre-training: 0.1 for 30 epochs → 0.01 for 30 epochs. Global

Training: 0.1 for 30 epochs → 0.01 for 30 epochs. Local Training: 0.1 for 30

epochs → 0.01 for 30 epochs → 0.001 for 30 epochs.

• Clothing1M: 0.01 for 25 epochs → 0.001 for 25 epochs → 0.0001 for 15 epochs

→ 0.00001 for 15 epochs (Pre-training, Global training, and local training)

• Momentum: 0.9

• Weight decay: 0.0005 (CIFAR) and 0.001 (Clothing1M)

• Optimizer: SGD (Model training) and Adam with initial a learning rate of 0.1 (solving

for T)

For each epoch in Clothing1M, we sample 1000 mini-batches from the training

data while ensuring the (noisy) labels are balanced. The global T is obtained by an

average of T from 5 random epochs. We only use T (X) = T in local training. Estimating

local transition matrices using HOC on Clothing1M is feasible, e.g., assuming M -NN

noise clusterability, but it may be time-consuming to tune M . Noting our current

performance is already satisfying, and the focus of this paper is on the ability to estimate

T , we leave the combination of T (X) with loss correction or other advanced techniques

for future works.

216

0 50 100 150 200 250 300
Trials

0.05

0.10

0.15

0.20

0.25

0.30

Es
tim

at
io

n
Er

ro
r

CIFAR-10, noise_label_human

Global
Local

Figure A.2: Illustration of the global and local estimation errors.

A.4.3 Global and Local Estimation Errors on CIFAR-10 with Human

Noise

Algorithm 9 details the generation of local datasets. Notice the fact that the

i-th row of T (xn) could be any feasible values when pi = 0, so as the estimates T̂local. In

such a case, we need to refer to T to complete the information. Particularly, we calculate

the weighted average value with the corresponding T̂ as

T̂local[i] = (1− ζ + p̂i)T̂local[i] + (ζ − p̂i)T̂ [i],

where T̂local[i] and T̂ [i] denote the i-th row of estimates T̂local and T̂ , p̂i denotes the

estimated clean prior probability of class-i given the local dataset. We use ζ = 1 for

local estimates of CIFAR-10, and ζ = 0.5 for local estimates of CIFAR-100.

Figure A.2 illustrates the variation of local estimation errors on CIFAR-10 with

human noise using HOC. From the figure, we know the global estimation error is 0.0970,

and the mean and standard deviation of local estimation errors are 0.1103 and 0.0278.

217

Algorithm 9 Local Datasets Generation
Input:

1: Maximal rounds: G′. Local dataset size: L. Noisy dataset: D̃ = {(xn, ỹn)}n∈[N]. Noisy

dataset size: |D|.

Iteration:

2: Initialize the |D|-dimensional index list: S = 1

for k = 1 to G′ do

if(size(S[S > 0]) > 0) then

3: Idxselected = random.choice(S[S > 0]) // Choose a local center index randomly from

the unselected index of D̃.

else

4: Idxselected = random.randint(0, |D|) // If the selected index has covered D̃, we choose

local center randomly.

end if

5: Idxlocal = SelectbyDist(Idxselected, L) // Select the index of L features closest to

Idxselected.

6: S[Idxlocal] = −1 // Mark the state of the selected index in S to avoid duplicate selection.

7: D̃k = D̃[Idxlocal] // Build a local dataset by selecting (xi, ỹi), i ∈ Idxlocal.

end for

Output:

8: Local Datasets D̃k = {(xn, ỹn)} ∪ {(xn1 , ỹn1), · · · , (xnM
, ỹnM

)}, ni, k ∈ [L], i ∈ [M].

218

A.5 Theoretical Guarantees for HOC-extension

A.5.1 Common f-Divergence Functions

Following [145, 186], we show some common f -divergence functions in Table A.1.

Table A.1: List of popular f -divergences.

Name Generator f(v) Opt. variational func. g∗ domf∗ Opt. conjugate func. f∗(u)

Total Variation
1

2
|v − 1| 1

2
sign

(
p(v)

q(v)
− 1

)
u ∈ [−1

2
,
1

2
] u

KL v log v 1 + log
p(v)

q(v)
R eu−1

Jenson-Shannon −(1 + v) log 1+v
2 + v log v log

2p(v)

p(v) + q(v)
u < log 2 − log (2− eu)

Squared Hellinger (
√
v − 1)2 1−

√
q(v)

p(v)
u < 1

u

1− u

Pearson X 2 (1− v)2 2

(
p(v)

q(v)
− 1

)
R

1

4
u2 + u

Neyman X 2 (1−v)2

v 1−
(
q(v)

p(v)

)2

u < 1 2− 2
√
1− u

Reverse KL − log v −q(v)

p(v)
R− −1− log (−u)

219

A.5.2 Total-Variation

A.5.2.1 Proof for Lemma 3

Proof. Consider TV, we have:

VDf (g̃
∗) =EV∼P [g̃

∗(V)]− EV∼Q[f
∗(g̃∗(V))]

=
1

2

[
EV∼P

[
sign

(
p̃(V)

q̃(V)
− 1

)]
− EV∼Q

[
sign

(
p̃(V)

q̃(V)
− 1

)]]
=
1

2

∫
z

∑
i∈{1,2}

[P(Z = z, Y = i)− P(Z = z)P(Y = i)]

· sign
[
P(Z = z, Ỹ = i)− P(Z = z)P(Ỹ = i)

]
dz

=
1

2
[P(Z = z, Y = 1)− P(Z = z)P(Y = 1)]

· sign
[
P(Z = z, Ỹ = 1)− P(Z = z)P(Ỹ = 1)

]
+

1

2
[P(Z = z, Y = 2)− P(Z = z)P(Y = 2)]

· sign
[
P(Z = z, Ỹ = 2)− P(Z = z)P(Ỹ = 2)

]
dz

=
1

2
[P(Z = z, Y = 1)− P(Z = z)P(Y = 1)]

· sign

[∑
j∈{1,2}

(
P(Ỹ = 1|Z = z, Y = j)P(Z = z, Y = j)

− P(Z = z)P(Ỹ = 1|Y = j)P(Y = j)

)]

+
1

2
[P(Z = z, Y = 2)− P(Z = z)P(Y = 2)]

· sign

[∑
j∈{1,2}

(
P(Ỹ = 2|Z = z, Y = j)P(Z = z, Y = j)

− P(Z = z)P(Ỹ = 2|Y = j)P(Y = j)
)]

dz.

220

Note (assume class-dependent label noise)

sign

 ∑
j∈{1,2}

(
P(Ỹ = 1|Z = z, Y = j)P(Z = z, Y = j)− P(Z = z)P(Ỹ = 1|Y = j)P(Y = j)

)
=sign [(1− e1)P(Z = z, Y = 1) + e2P(Z = z, Y = 2)− (1− e1)P(Z = z)P(Y = 1)− e2P(Z = z)P(Y = 2)]

= sign [(1− e1) (P(Z = z, Y = 1)− P(Z = z)P(Y = 1)) + e2 (P(Z = z, Y = 2)− P(Z = z)P(Y = 2))]

= sign

[
(1− e1) (P(Z = z, Y = 1)− P(Z = z)P(Y = 1))

+ e2 (P(Z = z)− P(Z = z, Y = 1)− P(Z = z)(1− P(Y = 1)))

]

=sign(1− e1 − e2) · sign(P(Z = z, Y = 1)− P(Z = z)P(Y = 1)).

Thus

VDf (g̃
∗)

=
1

2

∫
z
[P(Z = z, Y = 1)− P(Z = z)P(Y = 1)] · sign(1− e1 − e2) · sign(P(Z = z, Y = 1)− P(Z = z)P(Y = 1))

+ [P(Z = z, Y = 2)− P(Z = z)P(Y = 2)] · sign(1− e1 − e2) · sign(P(Z = z, Y = 2)− P(Z = z)P(Y = 2)) dz.

When sign(1− e1 − e2) = 1, i.e. e1 + e2 < 1, we have

VDf (g̃
∗)

=
1

2

∫
z

∑
i∈{1,2}

[P(Z = z, Y = i)− P(Z = z)P(Y = i)]

· sign(P(Z = z, Y = i)− P(Z = z)P(Y = i)) dz

=VDf (g
∗).

A.5.2.2 Proof for Theorem 3

Proof. Recall that, to show an f -mutual information metric is ϵ-order-preserving under

label noise, we need to study how ṼDf (g̃
∗) differs from the order of VDf (g

∗).

221

For total variation, with Lemma 2 and Lemma 3, we know

ṼDTV(g̃
∗) = (1− e1 − e2)VDTV(g̃

∗) = (1− e1 − e2)VDTV(g
∗).

Therefore, when e1+e2 < 1, ṼDTV(g̃
∗) always preserves the order of VDTV(g

∗), indicating

the total-variation-based mutual information is 0-order-preserving under class-dependent

label noise.

A.5.3 KL Divergence

The definition of MI is

I(Z, Ỹ)

=
∑

j∈{1,2}

∫
z
P(Z = z, Ỹ = j) log

(
P(Z = z, Ỹ = j)

P(Z = z)P(Ỹ = j)

)
dz

=
∑

j∈{1,2}

∫
z
P(Z = z, Ỹ = j) log

(
P(Z = z, Ỹ = j)

)
dz

−
∑

j∈{1,2}

∫
z
P(Z = z, Ỹ = j)

(
log (P(Z = z) + log

(
P(Ỹ = j)

))
dz

=
∑

j∈{1,2}

∫
z
P(Z = z, Ỹ = j) log

(
P(Z = z, Ỹ = j)

)
dz

︸ ︷︷ ︸
Term-1: −H(Z,Ỹ)

−
∫
z
P(Z = z) logP(Z = z) dz︸ ︷︷ ︸

Term-2: −H(Z)

−
∑

j∈{1,2}

P(Ỹ = j) logP(Ỹ = j)dz

︸ ︷︷ ︸
Term-3: −H(Ỹ)

,

222

where

−H(Z, Ỹ) =
∑

j∈{1,2}

∫
z
P(Z = z, Ỹ = j) logP(Z = z, Ỹ = j)dz

=

∫
z
P(Z = z, Ỹ = 1) logP(Z = z, Ỹ = 1)

+ P(Z = z, Ỹ = 2) logP(Z = z, Ỹ = 2) dz.

We first decouple term-1. Note

∫
z

P(Z = z, Ỹ = 1) logP(Z = z, Ỹ = 1)dz

=

∫
z

[
P(Ỹ = 1|Z = z, Y = 1)P(Z = z, Y = 1) + P(Ỹ = 1|Z = z, Y = 2)P(Z = z, Y = 2)

]
· log

[
P(Ỹ = 1|Z = z, Y = 1)P(Z = z, Y = 1) + P(Ỹ = 1|Z = z, Y = 2)P(Z = z, Y = 2)

]
dz

=

∫
z

[(1− e1)P(Z = z, Y = 1) + e2P(Z = z, Y = 2)]

· log [(1− e1)P(Z = z, Y = 1) + e2P(Z = z, Y = 2)] dz

=

∫
z

[(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)]

· log [(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)] dz

=

∫
z

[(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)] logP(Z = z, Y = 1)

+ [(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)]

· log
[
(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)

P(Z = z, Y = 1)

]
dz

=

∫
z

[(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)] logP(Z = z, Y = 1)

+ [(1− e1 − e2)P(Z = z, Y = 1) + e2P(Z = z)] log

[
1− e1 + e2

P(Z = z, Y = 2)

P(Z = z, Y = 1)

]
dz.

Let α = P(Z = z, Y = 1)/P(Z = z, Y = 2) ∈ [0,+∞) (note α is actually a

223

function of (Z, Y)). Then

∫
z
P(Z = z, Ỹ = 1) logP(Z = z, Ỹ = 1)dz

=

∫
z
(1− e1 − e2)P(Z = z, Y = 1) logP(Z = z, Y = 1) dz

+

∫
z
e2P(Z = z) [logα+ logP(Z = z, Y = 2)]

+ [(1− e1 − e2)αP(Z = z, Y = 2) + e2P(Z = z)] log
(
1− e1 +

e2
α

)
dz

and

∫
z
P(Z = z, Ỹ = 2) logP(Z = z, Ỹ = 2)dz

=

∫
z
(1− e1 − e2)P(Z = z, Y = 2) logP(Z = z, Y = 2) dz

+

∫
z
e1P(Z = z) logP(Z = z, Y = 2)

+ [(1− e1 − e2)P(Z = z, Y = 2) + e1P(Z = z)] log (1− e2 + e1α) dz.

224

Thus

∑
j∈{1,2}

∫
z

P(Z = z, Ỹ = j) logP(Z = z, Ỹ = j)dz

=(1− e1 − e2)
∑

i∈{1,2}

∫
z

P(Z = z, Y = i) logP(Z = z, Y = i) dz

+

∫
z

e2P(Z = z) logα+ (e1 + e2)P(Z = z) logP(Z = z, Y = 2)

+ (1− e1 − e2)P(Z = z, Y = 2)
[
α log

(
1− e1 +

e2
α

)
+ log(1− e2 + e1α)

]
+ P(Z = z)

[
e1 log(1− e2 + e1α) + e2 log

(
1− e1 +

e2
α

)]
dz

=(1− e1 − e2)
∑

i∈{1,2}

∫
z

P(Z = z, Y = i) logP(Z = z, Y = i) dz

+

∫
z

e2P(Z = z) logα− (e1 + e2)P(Z = z) log(α+ 1) + (e1 + e2)P(Z = z) logP(Z = z)

+
(1− e1 − e2)

α+ 1
P(Z = z)

[
α log

(
1− e1 +

e2
α

)
+ log(1− e2 + e1α)

]
+ P(Z = z)

[
e1 log(1− e2 + e1α) + e2 log

(
1− e1 +

e2
α

)]
dz

= (1− e1 − e2)
∑

i∈{1,2}

∫
z

P(Z = z, Y = i) logP(Z = z, Y = i) dz (Term 1.1)

+

∫
z

(e1 + e2)P(Z = z) logP(Z = z) + P(Z = z)∆Bias(α, e1, e2) dz, (Term 1.2)

where in Term 1.2:

∆Bias(α, e1, e2) =e2 logα− (e1 + e2) log(α+ 1)

+
(1− e1 − e2)

α+ 1

[
α log

(
1− e1 +

e2
α

)
+ log(1− e2 + e1α)

]
+
[
e1 log(1− e2 + e1α) + e2 log

(
1− e1 +

e2
α

)]
.

(A.8)

225

In Term 1.1, recalling α = P(Z = z, Y = 1)/P(Z = z, Y = 2), we have

(1− e1 − e2)
∑

i∈{1,2}

∫
z
P(Z = z, Y = i) logP(Z = z, Y = i) dz

=(1− e1 − e2)

∫
z

P(Z = z)

α+ 1
log

P(Z = z)

α+ 1
+

P(Z = z)α

α+ 1
log

P(Z = z)α

α+ 1
dz

=(1− e1 − e2)

∫
z

P(Z = z)

α+ 1
logP(Z = z) +

P(Z = z)

α+ 1
log

1

α+ 1

+
P(Z = z)α

α+ 1
logP(Z = z) +

P(Z = z)α

α+ 1
log

α

α+ 1
dz

=(1− e1 − e2)

∫
z
P(Z = z) logP(Z = z) dz

+ (1− e1 − e2)

∫
z
P(Z = z)

[
α

α+ 1
log

α

α+ 1
+

1

α+ 1
log

1

α+ 1

]
dz.

Denote the effective part of MI by

∆MI(α, e1, e2) = (1− e1 − e2)

[
α

α+ 1
log

α

α+ 1
+

1

α+ 1
log

1

α+ 1

]
. (A.9)

We have

−H(Z, Ỹ) =
∑

j∈{1,2}

∫
z
P(Z = z, Ỹ = j) logP(Z = z, Ỹ = j)dz

=

∫
z
P(Z = z) logP(Z = z) dz +

∫
z
P(Z = z)

[
∆MI(α, e1, e2)

+ ∆Bias(α, e1, e2)

]
dz,

and

I(Z, Ỹ) =

∫
z
P(Z = z) [∆MI(α, e1, e2) + ∆Bias(α, e1, e2)] dz +H(Ỹ).

226

Define ∆Bias,MI(α, e1, e2) = ∆MI(α, e1, e2) + ∆Bias(α, e1, e2). Then

∆Bias,MI(α, e1, e2)

=∆MI(α, e1, e2) + ∆Bias(α, e1, e2)

=(1− e1 − e2)

[
α

α+ 1
log

α

α+ 1
+

1

α+ 1
log

1

α+ 1

]
+ e2 logα− (e1 + e2) log(α+ 1)

+
(1− e1 − e2)

α+ 1

[
α log

(
1− e1 +

e2
α

)
+ log(1− e2 + e1α)

]
+
[
e1 log(1− e2 + e1α) + e2 log

(
1− e1 +

e2
α

)]
=(1− e1 − e2)

[
α

α+ 1
logα+ log

1

α+ 1

]
+ e2 logα+ (e1 + e2) log

1

α+ 1
+[

(1− e1 − e2)α

α+ 1
+ e2

]
log
(
1− e1 +

e2
α

)
+

[
(1− e1 − e2)

α+ 1
+ e1

]
log(1− e2 + e1α)

=

[
(1− e1 − e2)α

α+ 1
+ e2

]
logα+ log

1

α+ 1
+[

(1− e1 − e2)α

α+ 1
+ e2

]
log
(
1− e1 +

e2
α

)
+

[
(1− e1 − e2)

α+ 1
+ e1

]
log(1− e2 + e1α)

= log
1

α+ 1
+

1

α+ 1
[(1− e1 − e2)α+ e2(α+ 1)] log (α(1− e1) + e2)

+
1

α+ 1
[(1− e1 − e2) + e1(α+ 1)] log(1− e2 + e1α)

=

[
α(1− e1) + e2

α+ 1
+

(α+ 1)− (α(1− e1) + e2)

α+ 1

]
log

1

α+ 1

+
1

α+ 1
[α(1− e1) + e2] log (α(1− e1) + e2)

+
1

α+ 1
[(α+ 1)− (α(1− e1) + e2)] log((α+ 1)− (α(1− e1) + e2))

=
α(1− e1) + e2

α+ 1
log

α(1− e1) + e2
α+ 1

+

[
1− α(1− e1) + e2

α+ 1

]
log

[
1− α(1− e1) + e2

α+ 1

]
.

Note

α(1− e1) + e2
α+ 1

= (1− e1 − e2) ·
α

α+ 1
+ e2.

Let β = α/(1 + α) ∈ [0, 1). Note β is a function of z. We drop notation z for ease of

227

notation. Then

∆Bias,MI(β, e1, e2) = ((1− e1 − e2)β + e2) log ((1− e1 − e2)β + e2)

+ [1− ((1− e1 − e2)β + e2)] log [1− ((1− e1 − e2)β + e2)] .

The bias caused by label noise is

∆Bias(β, e1, e2) =∆Bias,MI(β, e1, e2)−∆MI(β, e1, e2)

= ((1− e1 − e2)β + e2) log ((1− e1 − e2)β + e2)

+ [1− ((1− e1 − e2)β + e2)] log [1− ((1− e1 − e2)β + e2)]

− (1− e1 − e2) [β log β + (1− β) log(1− β)] .

(A.10)

To get argmaxβ∈[0,1), we check the first derivative:

∂∆Bias(β, e1, e2)

∂β
= (1− e1 − e2)

[
log

(1− e1 − e2)β + e2
1− (1− e1 − e2)β − e2

− log
β

1− β

]
.

Let ∂∆Bias(β, e1, e2)β = 0, we have

β∗ =
e2

e1 + e2
.

By checking ∂2∆Bias(β, e1, e2)/∂β
2, we can find that ∆Bias(β, e1, e2) is increasing when

β ∈ [0, β∗], and decreasing when β ∈ [β∗, 1]. Thus β∗ = e2/(e1+e2) is the global maximum

and the upper bound for ∆Bias(β, e1, e2) is

∆Bias(β, e1, e2) ≤ e1 log e1 + e2 log e2 − (e1 + e2) log(e1 + e2).

Assume β ∈ [β, β̄] in practice. The lower bound for ∆Bias(β, e1, e2) is

∆Bias(β, e1, e2) ≥ min(∆Bias(β, e1, e2),∆Bias(β̄, e1, e2)).

228

A looser bound that holds for all the possible β ∈ [0, 1) is:

∆Bias(β, e1, e2) ≥ min(e1 log e1 + (1− e1) log(1− e1), e2 log e2 + (1− e2) log(1− e2)).

Note (when e1 = e2 = 0)

I(Z, Y) =

∫
z
P(Z = z) [∆MI(α, 0, 0)] dz +H(Y),

and ∆MI(β, e1, e2) = (1− e1 − e2)∆MI(α, 0, 0).

Hence (note β is actually a function of Z),

I(Z, Ỹ) =

∫
z
P(Z = z) [∆MI(α, e1, e2) + ∆Bias(α, e1, e2)] dz +H(Ỹ)

=

∫
z
P(Z = z) [(1− e1 − e2)∆MI(β, 0, 0) + ∆Bias(β, e1, e2)] dz +H(Ỹ)

=(1− e1 − e2)

∫
z
P(Z = z)∆MI(β, 0, 0) dz +

∫
z
∆Bias(β, e1, e2) dz +H(Ỹ)

=(1− e1 − e2)I(Z, Y) +

∫
z
∆Bias(β, e1, e2) dz − (1− e1 − e2)H(Y) +H(Ỹ)

=(1− e1 − e2)I(Z, Y) + C(e1, e2, Y, Ỹ) + ∆Z(e1, e2),

where

C(e1, e2, Y, Ỹ) =min(e1 log e1 + (1− e1) log(1− e1), e2 log e2 + (1− e2) log(1− e2))

− (1− e1 − e2)H(Y) +H(Ỹ)

is a constant for given Y and Ỹ .

The other part is in the range ∆Z(e1, e2) ∈ [0,GapZ(e1, e2)], and

GapZ(e1, e2) =e1 log e1 + e2 log e2 − (e1 + e2) log(e1 + e2)

−min(e1 log e1 + (1− e1) log(1− e1), e2 log e2 + (1− e2) log(1− e2)).

229

Note ∆Z(e1, e2) may be different for Zµ and Zν , µ ̸= ν.

Therefore, when

|If (Zµ; Ỹ)− If (Zν ; Ỹ)| > GapZ(e1, e2),

we have

sign
[
If (Zµ; Ỹ)− If (Zν ; Ỹ)

]
= sign [If (Zµ;Y)− If (Zν ;Y)] ,∀µ ∈ [d]ν ∈ [d].

Now we take a further look at the gap GapZ(e1, e2). Assume e1 ≥ e2 ⇒ e2 = δe1,

where δ ∈ [0, 1]. Then H(e1) ≤ H(e2), and

GapZ(e1, e2) =e1 log e1 + e2 log e2 − (e1 + e2) log(e1 + e2)−min(H(e1), H(e2))

=e2 log e2 − (e1 + e2) log(e1 + e2)− (1− e1) log(1− e1)

=e2 log
e2

e1 + e2
+ e1 log

1− e1
e1 + e2

− log(1− e1)

=δe1 log
δ

1 + δ
+ e1 log

1− e1
e1(1 + δ)

− log(1− e1)

=e1

[
δ log

δ

1 + δ
+ log

1

(1 + δ)

]
+ e1 log

(1− e1)

e1
− log(1− e1)

=e1 [δ log δ − (1 + δ) log(1 + δ)]− (1− e1) log(1− e1)− e1 log e1

=e1 [δ log δ − (1 + δ) log(1 + δ)] +H(e1)

Note: We can also roughly estimate δ log δ − (1 + δ) log(1 + δ) by the best quadratic

fit (rooted mean squared error ≈ 0.02) and get

δ log δ − (1 + δ) log(1 + δ) ≈ 0.9124δ2 − 2.14δ − 0.1202.

230

A.6 More Discussions for HOC-extension

A.6.1 Rationale for building on HOC

The rationale for building our analyses on HOC is described as follows. Our

major concern is that the learning-based approaches usually require more effort in tuning

their hyperparameters. The effect of reweighing feature variables will be entangled

with the training procedure, making things more complicated. On the other hand, the

training-free approach seems to be more lightweight to employ the reweighing treatment.

In particular, HOC consistently achieves lower estimation error, as shown in Figure 2.3.

A.6.2 More Experiments

High-noise settings may have lower errors Table 2.5 shows the estimation error

may decrease for higher noise rate settings. This observations mainly due to two

reasons:

• Reason-1: The original dataset may be noisy. Notably, the original Yelp dataset

contains lots of noisy reviews [129]. Now we analyze the issues caused by an originally

noise dataset with a toy example.

Example: Consider a binary classification with inherent 20% noise. Define two noise

settings: 1) Low noise: Add 10% symmetric label noise (e1 = e2 = 0.1). 2) High

noise: Add 40% symmetric label noise (e1 = e2 = 0.4). For the low noise setting, the

real average noise rate is:

elow, real = 0.1× 0.8 + 0.2× 0.9 = 0.26.

231

For the high noise setting, the real average noise rate is:

ehigh, real = 0.4× 0.8 + 0.2× 0.6 = 0.44.

Note elow, synthetic = 0.1 and ehigh, synthetic = 0.4. Thus the gap between the real noise

rate and the synthetic noise rate is

elow, real−elow, synthetic = 0.26−0.1 = 0.16, ehigh, real−ehigh, synthetic = 0.44−0.4 = 0.04.

Therefore, with inherent label noise exists, the perfectly estimated T will have an

error of 0.16 for the low-noise setting and an error of 0.04 for the high-noise setting,

which accounts for our current observation.

• Reason-2: The tolerance of noise rates for different settings are different. Consider

a binary classification with symmetric label noise, i.e., e1 = e2 = e. Let the random

guess be e1 = e2 = 0.5. Define the estimation error caused by the random guess as the

tolerance. Thus the tolerances when e = 0.1 and e = 0.4 are 0.4 and 0.1, respectively.

From this aspect, an error of 0.1 will not destroy the low-noise case since

|ê1,low − e1,low| = 0.1⇒ ê1,low = 0.2.

But an error of 0.1 may destroy the high-noise case since

|ê1,high − e1,high| = 0.1⇒ ê1,high = 0.3 or 0.5.

Therefore, although the error of high-noise settings seems low, it may cause severe

problems.

232

Table A.2: The calibrated estimation error (×100) on Yelp-5.

Text Datasets Method
(d, [N1, · · · , NK]) Noise Rate Ours-A-KL Ours-A-TV

Low 3.56 4.01
Yelp-5 (BERT) Medium 3.46 2.59
(768, [130k × 5]) High 8.59 8.56

A preliminary test on calibrating inherent errors We do the following experiment

to help explain Reason-1 by calibrating the inherent label noise in Yelp-5. Note the label

noise accumulation follows:

Treal = TorgTsynthetic,

where Tsynthetic = T . If we know Torg, we can calibrate Tsynthetic and evaluate the error

by Error(TorgT ,TorgT̂). Unfortunately, we cannot find the ground truth Torg for Yelp-5.

For a preliminary test, we estimate Torg by applying Ours-A-KL on the original Yelp

dataset. We show the calibrated error in Table A.2, where we can find the high-noise

settings are indeed more challenging (higher error) compared with the low-noise setting.

The average noise rate follows e = 1/(1 + r/
√
K − 1). Particularly, we have: Low:

r = 8. Medium: r = 4. High: r = 1.5.

233

Appendix B

More Details for Charter 3

Appendix B provides more theoretical details and experiment settings related

to CORES2 (Section 3.1) and SimiFeat (Section 3.2), which is organized as follows.

• Section B.1 shows the proof for theorems in CORES2.

• Section B.2 shows the proof for theorems in SimiFeat.

• Section B.3 shows more experiment settings in SimiFeat.

B.1 CORES2: Proof for Theorems

In this section, we firstly present the proof for Theorem 7 (our main theorem)

in Section B.1.1, which provides a generic machinery for anatomizing noisy datasets.

Then we will respectively prove Theorem 5 in Section B.1.2, Theorem 6 in Section B.1.3,

and Theorem 8 in Section B.1.4 according to the order they appear.

234

B.1.1 Proof for Theorem 7

Proof. The expected form of traditional CE loss on noisy distribution D̃ can be written

as

ED̃[ℓ(f(X), Ỹ)]

=
∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[Tij(X)ℓ(f(X), j)]

=
∑
j∈[K]

∑
i∈[K]

P(Y = i)TijED|Y=i[ℓ(f(X), j)]

+
∑
j∈[K]

∑
i∈[K]

P(Y = i)CovD|Y=i(Tij(X), ℓ(f(X), j)).

The first term could be transformed as:

∑
j∈[K]

∑
i∈[K]

P(Y = i)TijED|Y=i[ℓ(f(X), j)]

=
∑
j∈[K]

TjjP(Y = j)ED|Y=j [ℓ(f(X), j)] +
∑

i∈[K],i ̸=j

TijP(Y = i)ED|Y=i[ℓ(f(X), j)]


=TED[ℓ(f(X), Y)] + ∆̄ED∆

[ℓ(f(X), Y)]

+
∑
j∈[K]

∑
i∈[K],i ̸=j

TijP(Y = i)ED|Y=i[ℓ(f(X), j)],

where

T := min
j∈[K]

Tjj , ∆̄ :=
∑
j∈[K]

∆jP(Y = j), ∆j := Tjj − T ,

and

ED∆
[ℓ(f(X), Y)] :=


∑

j∈[K]
∆jP(Y=j)

∆̄
ED|Y=j [ℓ(f(X), j)], if ∆̄ > 0,

0 if ∆̄ = 0.

235

Then

ED̃[ℓ(f(X), Ỹ)]

=TED[ℓ(f(X), Y)] + ∆̄ED∆
[ℓ(f(X), Y)] +

∑
j∈[K]

∑
i∈[K],i̸=j

TijP(Y = i)ED|Y=i[ℓ(f(X), j)],

+
∑
j∈[K]

∑
i∈[K]

P(Y = i)CovD|Y=i(Tij(X), ℓ(f(X), j))

=TED[ℓ(f(X), Y)] + ∆̄ED∆ [ℓ(f(X), Y)] +
∑
j∈[K]

∑
i∈[K],i̸=j

TijP(Y = i)ED|Y=i[ℓ(f(X), j)],

+
∑
j∈[K]

∑
i∈[K],i̸=j

P(Y = i)ED|Y=i[(Tij(X)− Tij)(ℓ(f(X), j)− ED|Y=i[ℓ(f(X), j)])]

+
∑
j∈[K]

P(Y = j)ED|Y=j [(Tjj(X)− Tjj)(ℓ(f(X), j)− ED|Y=j [ℓ(f(X), j)])]

=TED[ℓ(f(X), Y)] + ∆̄ED∆ [ℓ(f(X), Y)]

+
∑
j∈[K]

∑
i∈[K],i̸=j

P(Y = i)

· ED|Y=i[(Tij(X)− Tij)(ℓ(f(X), j)− ED|Y=i[ℓ(f(X), j)]) + Tijℓ(f(X), j)]

+
∑
j∈[K]

P(Y = j)ED|Y=j [(Tjj(X)− Tjj)(ℓ(f(X), j)− ED|Y=j [ℓ(f(X), j)])]

=TED[ℓ(f(X), Y)] + ∆̄ED∆
[ℓ(f(X), Y)]

+
∑
j∈[K]

∑
i∈[K],i̸=j

P(Y = i)ED|Y=i[Tij(X)ℓ(f(X), j)]

+
∑
j∈[K]

P(Y = j)ED|Y=j [(Tjj(X)− Tjj)ℓ(f(X), j)]

=TED[ℓ(f(X), Y)] + ∆̄ED∆
[ℓ(f(X), Y)] +

∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[Uij(X)ℓ(f(X), j)],

where

Uij(X) = Tij(X), ∀i ̸= j, Ujj(X) = Tjj(X)− Tjj .

236

The expected form of ℓCR on noisy distribution D̃ can be written as

ED̃ [ℓCR(f(xi))] = −βED̃

[
ED

Ỹ |D̃
[ℓ(f(xi), Ỹ)]

]
= −β

∫
D̃

[
P(D̃)ED

Ỹ |D̃
[ℓ(f(xi), Ỹ)]

]
= −β

∑
j∈[K]

P(Ỹ = j)EDX
[ℓ(f(xi), j)]

= −
∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[βP(Ỹ = j)ℓ(f(xi), j)].

Thus the expected form of the new regularized loss is

ED̃

[
ℓ(f(X), Ỹ) + ℓCR(f(xi))

]
= TED[ℓ(f(X), Y)] + ∆̄ED∆

[ℓ(f(X), Y)]

+
∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[(Uij(X)− βP(Ỹ = j))ℓ(f(X), j)].
(B.1)

B.1.2 Proof for Theorem 5

Proof. Let ℓ(·) be the CE loss. Note this proof does not rely on whether the data

distribution is clean or not. We use D to denote any data distribution and D to denote

the corresponding dataset. This notation applies only to this proof. For any data

distribution D, we have

ED

[
ℓ(f(X), Y)− EDY |D [ℓ(f(xn), Y)]

]
=ED [ℓ(f(X), Y)]− EDY

[EDX
[ℓ (f(X), Y)]]

=−
∫
DX

dx
∑
y∈[K]

P(x, y) ln fx[y] +
∫
DX

dx
∑
y∈[K]

P(x)P(y) ln fx[y]

=−
∫
DX

dx
∑
y∈[K]

ln fx[y][P(x, y)− P(x)P(y)].

The dynamical analyses are based on the following three assumptions:

237

A1. The model capacity is infinite (i.e., it can realize arbitrary variation).

A2. The model is updated using the gradient descent algorithm (i.e. updates follow

the direction of decreasing ED [ℓ(f(X), Y)]− EDY
[EDX

[ℓ (f(X), Y)]]).

A3. The derivative of network function ∂f(x;w)
∂wi

is smooth (i.e. the network function

has no singular point), where wi’s are model parameters.

Denote the variations of fx[y] during one gradient descent update by ∆y(x).

From Lemma 10, it can be explicitly written as

∆y(x) = fx[y] · η
∫
DX

dx′
∑

y′∈[K]

[
P(x′, y′)− P(x′)P(y′)

] ∑
i∈[K]

Gi(x, y)Gi(x
′, y′), (B.2)

where η is the learning rate,

Gi(x, y) = −
∂gy(x)

∂wi
+
∑

y′∈[K]

fx[y
′]
∂gy′(x)

∂wi
,

and gy(x) is the network output before the softmax activation. i.e.

fx[y] =
exp(gy(x))∑

y′∈[K] exp(gy′(x))
.

With ∆y(x), the variation of the regularized loss is

∆ED [ℓ(f(X), Y) + ℓCR] = −
∫
DX

dxP(x)
∑
y∈[K]

∆y(x)
P(y|x)− P(y)

fx[y]
. (B.3)

If the training reaches a steady state (a.k.a. local optimum), we have

∆ED [ℓ(f(X), Y) + ℓCR] = 0.

To check the property of this variation, consider the following example. For a particular

x0, define

F (x0) :=
∑
y∈[K]

∆y(x0)
P(y|x0)− P(y)

fx0 [y]
.

238

Split the labels y into the following two sets (without loss of generality, we ignore the

P(y|x0)− P(y) = 0 cases):

Yx0;− = {y : P(y|x0)− P(y) < 0}

and

Yx0;+ = {y : P(y|x0)− P(y) > 0}.

By assigning ∆y(x0) = ay < 0, ∀y ∈ Yx0;− and ∆y(x0) = by > 0,∀y ∈ Yx0;+, one finds

F (x0) > 0 since fx0 [y] > 0. Note we have an extra constraint
∑

y ∆y(x0) = 0 to ensure∑
y∈[K] fx0 [y] = 1 after update. It is easy to check our assigned ay and by could maintain

this constraint by introducing a weight Nab to scale b′y as follows.

∑
y∈Y−

ay +Nab

∑
y∈Y+

b′y = 0, by = Nabb
′
y.

Let Bϵ(x0) be a ϵ-neighbourhood of x0. Since fx[y] is continuous, we can

set ∆y(x) = 1
2(1 + cos π∥x−x0∥

ϵ)∆y(x0),∀x ∈ Bϵ(x0) and 0 otherwise. The coefficient

1
2(1 + cos π∥x−x0∥

ϵ) is added so that the continuity of fx[y] preserves. This choice will

lead to ∆ED [ℓ(f(X), Y) + ℓCR] < 0. Therefore, for any ℓCA(f(xn), yn) with solution

fxn [i] > 0,∀i ∈ [K], we can always find a decreasing direction, indicating the solution is

not (steady) locally optimal. Note D can be any distribution in this proof. Thus the

result holds for the noisy distribution D̃.

Lemma 10.

∆y(x) = fx[y] · η
∫
DX

dx′
∑

y′∈[K]

[
P(x′, y′)− P(x′)P(y′)

] ∑
i∈[K]

Gi(x, y)Gi(x
′, y′).

239

Proof. We need to take into account the actual form of activation function, i.e., the

softmax function, as well as the SGD algorithm to demonstrate the correctness of this

lemma. The variation ∆y0(x0) is caused by the change in network parameters {wi}, i.e.,

∆y0(x0) =
∑
i∈[K]

∂fx0 [y0]

∂wi
δwi, (B.4)

where δwi are determined by the SGD algorithm

δwi =− η
∂ED [ℓ(f(X), Y) + ℓCR]

∂wi

=η
∑∫
x,y

P(x, y)− P(x)P(y)
fx[y]

∂fx[y]

∂wi
.

Plugging back to (B.4) yields

∆y0(x0) = η
∑∫
x,y

P(x, y)− P(x)P(y)
fx[y]

∑
i∈[K]

∂fx0 [y0]

∂wi

∂fx[y]

∂wi
.

To proceed, we need to expand ∂fx[y]
∂wi

. Taking into account the activation function, one

has

fx[y] =
exp(gy(x))∑

y′∈[K] exp(gy′(x))
,

where gy(x) refers to the network output before passed to the activation function. Recall

that, by our assumption, derivatives ∂f(x;w)
∂wi

are not singular. Now we have

∂fx[y]

∂wi
=
∂e−gy(x)

∂wi

1∑
y′∈[K] e

−gy′ (x)
+ e−gy(x) ∂

∂wi

(
1∑

y′∈[K] e
−gy′ (x)

)

=
−e−gy(x)∑

y′∈[K] e
−gy′ (x)

∂gy(x)

∂wi
+

e−gy(x)(∑
y′′∈[K] e

−gy′′ (x)
)2 ∑

y′∈[K]

e−gy′ (x)
∂gy′(x)

∂wi

=fx[y]

−∂gy(x)

∂wi
+
∑

y′∈[K]

fx[y
′]
∂gy′(x)

∂wi

 .

240

For simplicity, we can rewrite the above result as

∂fx[y]

∂wi
= fx[y]Gi(x, y),

where

Gi(x, y) := −
∂gy(x)

∂wi
+
∑
y′

fx[y
′]
∂gy′(x)

∂wi

is a smooth function.

Combining all the above gives ∆y0(x0) as follows.

∆y0(x0) = fx0 [y0] · η
∑∫
x,y

[P(x, y)− P(x)P(y)]
∑
i

Gi(x0, y0)Gi(x, y)

B.1.3 Proof for Theorem 6

Proof. Let yn be the true label corresponding to feature xn. For a clean sample, we

have ỹn = yn. Consider an arbitrary DNN model f . With the CE loss, we have

ℓ(f(xn), yn) = − ln(fxn [yn]). According to Equation (3.4) in the paper, the necessary

and sufficient condition of vn > 0 is

ℓ(f(xn), ỹn) + ℓCR(f(xn)) < αn ⇔ − ln(fxn [yn]) < −
1

K

∑
y∈[K]

ln(fxn [y])

⇔ − ln(fxn [yn]) < −
1

K − 1

∑
y∈[K],y ̸=yn

ln(fxn [y]).

By Jensen’s inequality we have

− ln

(
1− fxn [yn]

K − 1

)
= − ln

(∑
y∈[K],y ̸=yn

fxn [y]

K − 1

)
≤ − 1

K − 1

∑
y∈[K],y ̸=yn

ln(fxn [y]).

241

Therefore, when (sufficient condition)

− ln(fxn [yn]) < − ln

(
1− fxn [yn]

K − 1

)
⇔ fxn [yn] >

1

K
,

we have vn > 0. Inequality fxn [yn] >
1
K indicates the model prediction is better than

random guess.

B.1.4 Proof for Theorem 8

Before proving Theorem 8, we need to show the effect of adding Term-2 to Term-

1 in (3.5). Let ϵX < 0.5 be the measure of separation among classes w.r.t feature X in

distributionD, i.e., P(Y = Y ∗|X) = 1−ϵX , (X,Y) ∼ D, where Y ∗ := argmaxi∈[K] P(Y =

i|X) is the Bayes optimal label. Let D′ be the shifted distribution by adding Term-2 to

Term-1 and Y ′ be the shifted label. Then P(X|Y) = P(X|Y ′),∀(X,Y) ∼ D, (X,Y ′) ∼ D′

but P(Y ′) may be different from P(Y). Lemma 11 shows the invariant property of this

label shift.

Lemma 11. Label shift does not change the Bayes optimal label of feature X when

ϵX < min∀i,j∈[K]

(
Tjj

Tii+Tjj

)
.

Proof. Consider the shifted distribution D′. Let

TED[ℓ(f(X), Y)] + ∆̄ED∆
[ℓ(f(X), Y)] = CED′ [ℓ(f(X), Y)],

where

ED′ [ℓ(f(X), Y)] :=
∑
j∈[K]

P(Y ′ = j)ED′|Y ′=j [ℓ(f(X), j)],

242

and

P(Y ′ = j) :=
TjjP(Y = j)

C
,

where C :=
∑

j∈[K] TjjP(Y = j) is a constant for normalization. For each possible Y = i,

we have P(Y = i|X) ∈ [0, ϵX] ∪ {1− ϵX}, ϵX < 0.5. Thus

P(X|Y = i) =
P(Y = i|X)P(X)

P(Y = i)
∈ [0,

ϵXP(X)

P(Y = i)
] ∪ {P(X)(1− ϵX)

P(Y = i)
}.

Compare D′ and D, we know there is a label shift [3, 160], where P(X|Y = i) = P(X|Y ′ =

i) but P(Y) and P(Y ′) may be different. To ensure the label shift does not change the

Bayes optimal label, we need

Y ∗ = argmax
i∈[K]

P(Y ′ = i|X) = argmax
i∈[K]

P(X|Y ′ = i)P(Y ′ = i)

P(X)
, (X,Y ′) ∼ D.

One sufficient condition is

ϵXP(Y ′ = i)

P(Y = i)
<

(1− ϵX)P(Y ′ = j)

P(Y = j)
⇒ ϵX < min

∀i,j∈[K]

(
Tjj

Tii + Tjj

)

With Lemma 11, Assumption 3, and Assumption 4, we present the proof for

Theorem 8 as follows.

Proof. It is easy to check ϵX = 0, ∀X ∼ DX when Assumption 3 holds. Thus adding

Term-2 to Term-1 in (3.5) does not change the Bayes optimal label. With Assumption

3, the Bayes optimal classifier on the clean distribution should satisfy f∗(X)[Y] =

1, ∀(X,Y) ∼ D. On one hand, when β ≥ maxi,j∈[K],X∼DX
Uij(X)/P(Ỹ = j), we have

βij(X) := Uij(X)− βP(Ỹ = j) ≤ 0,∀i, j ∈ [K], X ∼ DX .

243

In this case, minimizing the regularization term results in confident predictions. On

the other hand, to make it unbiased to clean results, β could not be arbitrarily large.

We need to find the upper bound on β such that f∗ also minimizes the loss defined in

the latter regularization term. Assume there is no loss on confident true predictions

and there is one miss-prediction on example (xn, yn = j1), i.e., the prediction changes

from the Bayes optimal prediction fxn [j1] = 1 to fxn [j2] = 1, j2 ̸= j1. Compared to the

optimal one, the first two terms in the right side of (3.5) is increased by Tj1,j1ℓ0, where

ℓ0 > 0 is the regret of one confident wrong prediction. Accordingly, the last term in the

right side of (3.5) is increased by (βj1,j1(X)− βj1,j2(X))ℓ0. It is supposed that

Tj1,j1ℓ0 + (βj1,j1(xn)− βj1,j2(xn))ℓ0 ≥ 0,∀j1, j2 ∈ [K],

which is equivalent to

β(P(Ỹ = j1)− P(Ỹ = j2)) ≤ Tj1,j1(xn)− Tj1,j2(xn), ∀j1, j2 ∈ [K].

Thus

β ≤ min
P(Ỹ=j1)>P(Ỹ=j2),X∼DX

Tj1,j1(X)− Tj1,j2(X)

P(Ỹ = j1)− P(Ỹ = j2)
.

By mathematical inductions, it can be generalized to the case with multiple miss-

predictions in the CE term.

244

B.2 SimiFeat: Theoretical Analyses

B.2.1 Proof for Proposition 1

Now we derive a lower bound for the probability of getting true detection with

majority vote:

P(Vote is correct|k) ≥(1− δk) ·
[
p

⌈(k+1)/2⌉−1∑
l=0

(
k + 1

l

)
el(1− e)k+1−l

+ (1− p)

⌈(k+1)/2⌉−1∑
l=0

(
k + 1

l

)
el(1− e)k+1−l

]

=(1− δk) ·
[
p · I1−e(k + 1− k′, k′ + 1)

+ (1− p) · I1−e(k + 1− k′, k′ + 1)

]
where I1−e(k + 1− k′, k′ + 1) is the regularized incomplete beta function defined as

I1−e(k + 1− k′, k′ + 1) = (k + 1− k′)

(
k + 1

k′

)∫ 1−e

0
tk−k′(1− t)k

′
dt,

and k′ = ⌈(k + 1)/2⌉ − 1.

B.2.2 Proof for Theorem 9

Proof. Now we derive the worst-case error bound. We first repeat the notations defined

in Section 3.2.2.2 as follows.

Denote random variable S by the score of each instance being clean. A higher

score S indicates the instance is more likely to be clean. Denote the score of a true/false

245

instance by

Strue
n,j := Score(ŷn, j) | (ỹn = yn = j),

Sfalse
n′,j := Score(ŷn′ , j) | (ỹn′ = j, yn′ ̸= j).

Both are scalars. Then for instances in Nj , we have two set of random variables

Struej := {Strue
n,j |n ∈ Nj , ỹn = yn = j} and Sfalsej := {Sfalse

n′,j |n′ ∈ Nj , ỹn′ = j, yn′ ≠ j}.

Recall Nj := {n|ỹn = j} are the set of indices that correspond to noisy class j. Intuitively,

the score Strue
n,j should be greater than Sfalse

n′,j . Suppose their means, which depend on

noise rates, are bounded, i.e.,

E[Strue
n,j] ≥ µtrue

j , E[Sfalse
n′,j] ≤ µfalse

j

for all feasible n, n′. Assume there exists a feasible v such that both Strue
j and Sfalse

j

follow sub-Gaussian distributions with variance proxy ∆2

2v [21, 233] such that:

P(µtrue
j − Strue

n,j ≥ t) ≤ e−
vt2

∆2 ,P(Sfalse
n′,j − µfalse

j ≥ t) ≤ e−
vt2

∆2 ,

and the probability density satisfies P(Strue
j = µtrue

j) = P(Sfalse
j = µfalse

j) = 1/∆, where

1/∆ is the “height” of both distributions, v is the decay rate of tails. Let N−
j (N+

j) be

the number of indices in Sfalsej (Struej).

For ease of notations, we omit the subscript j in this proof since the detection

is performed on each j individually.

Let Sfalse (Strue) be an arbitrary random variable in Sfalse (Strue). Denote the

order statistics of random variables in set Sfalse by Sfalse
(1) , · · ·Sfalse

(N−), where Sfalse
(1) is the

246

smallest order statistic and Sfalse
(N−) is the largest order statistic. The following lemma

motivates the performance of the rank-based method.

Lemma 12. The F1-score of detecting corrupted labels in Nj by the rank-based method

will be no less than 1− α/N− when the true probability P(Y = j|Ỹ = j) is known and

Sfalse
(N−)

< Strue
(α+1).

Lemma 12 connects the upper bound for the number of wrongly detected

corrupted instances with order statistics. There are two cases that can cause detection

errors:

Case-1:

0 ≤ µtrue−Strue < ∆ and 0 ≤ Sfalse−µfalse < ∆ : at most α errors when Sfalse
(N−) < Strue

(α+1).

and Case-2:

µtrue − Strue ≥ ∆ or Sfalse − µfalse ≥ ∆ : at most max(N−, N+) errors

We analyze each case as follows.

Case-1: When Case-1 holds, we have

P(µtrue − Strue = x) ≤ 1/∆, x ∈ [0,∆]

and

P(Sfalse − µtrue = x) ≤ 1/∆, x ∈ [0,∆].

The above two inequalities show that the left tail of Strue and the right tail of Sfalse

can be upper bounded by uniform distributions. Denote the corresponding uniform

247

distribution by U true ∼ Unif(µtrue −∆, µtrue) and U false ∼ Unif(µfalse, µfalse +∆).

With true P(Y = j|Ỹ = j), the detection errors only exist in the cases when

the left tail of Strue and the right tail of Sfalse are overlapped. When the tails are upper

bounded by uniform distributions, we have

P(Sfalse
(N−) < Strue

(α+1)) ≥ P(U false
(N−) < U true

(α+1))

=P
([

U false − µfalse
]
(N−)

+ µfalse <
[
U true − (µtrue −∆)

]
(α+1)

+ (µtrue −∆)

)
=P
([

U false − µfalse
]
(N−)

−
[
U true − (µtrue −∆)

]
(α+1)

< µtrue − µfalse −∆

)
.

Note [
U false − µfalse

]
(N−)

∼ Beta(N−, 1),

and [
U true − (µtrue −∆)

]
(α+1)

∼ Beta(α+ 1, N+ − α),

where Beta denotes the Beta distribution. Both variables are independent. Thus the

PDF of the difference is

f(p) =

B(N+ − α, 1)pN
+−α(1 − p)α+1F (1, N− + N+, 1 − N−;α + 2; 1 − p, 1 − p2)/A, 0 < p ≤ 1

B(N−−, N+ − α)(−p)N
+−α(1 + p)N

−+N+−α−1F (N+ − α,−α,N− + N+;N− + N+ − α; 1 − p2, 1 + p)/A, −1 ≤ p < 0

B(N− + α,N+ − α)/A, p = 0,

where A = B(N−, 1)B(α+ 1, N+ − α), B(a, b) =
∫ 1
0 ta−1(1− t)b−1dt

F (a, b1, b2; c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt.

Therefore, we have

P(Sfalse
(N−) < Strue

(α+1)) ≥
∫ µtrue−µfalse−∆

−1
f(p)dp.

248

Case-2 The other part, we have no more than e−v ·max(N−, N+) corrupted instances

that may have higher scores than one clean instance.

Wrap-up From the above analyses, we know, w.p. at least
∫ µtrue−µfalse−∆
−1 f(p)dp,

there are at most e−v max(N−, N+) + α errors in detection corrupted instances. Note

Precision = Recall if we detect with the best threshold NjP(Y = j|Ỹ = j). Therefore,

the corresponding F1-score would be at least 1− e−v max(N−,N+)+α
N− .

B.3 SimiFeat: Experiment Settings on Clothing1M

We first perform noise detection on 1 million noisy training instances then

train only with the selected clean data to check the effectiveness. Particularly, in each

epoch of the noisy detection, we use a batch size of 32 and sample 1,000 mini-batches

from 1M training instances while ensuring the (noisy) labels are balanced. We repeat

noisy detection for 600 epochs to ensure full coverage of 1 million training instances.

Parameter k is set to 10.

Feature Extractor: We tested three different feature extractors in Table 4.3: R50-Img,

ViT-B/32-CLIP, and R50-Img Warmup-1. The former two feature extractors are the

same as the ones used in Table 3.4. Particularly, R50-Img means the feature extractor is

the standard ResNet50 encoder (removing the last linear layer) pre-trained on ImageNet

[38]. ViT-B/32-CLIP indicates the feature extractor is a vision transformer pre-trained

249

by CLIP [151]. Noting that Clothing1M is a fine-grained dataset. To get better domain-

specific fine-grained visual features, we slightly train the ResNet50 pre-trained with

ImageNet for one epoch, i.e., 1,000 mini-batches (batch size 32) randomly sampled from

1M training instances while ensuring the (noisy) labels are balanced. The learning rate

is 0.002.

Training with the selected clean instances: Given the selected clean instances from

our approach, we directly apply the Cross-Entropy loss to train a ResNet50 initialized by

standard ImageNet pre-trained parameters. We did not apply any sophisticated training

techniques, e.g., mixup [215], dual networks [108, 63], loss-correction [119, 139, 146],

and robust loss functions [124, 30, 227, 186]. We train the model for 80 epochs with a

batch size of 32. We sample 1, 000 mini-batches per epoch randomly selected from 1M

training instances. Note Table 4.3 does not apply balanced sampling. Only the pure

cross-entropy loss is applied. We also test the performance with balanced training, i.e.,

in each epoch, ensure the noisy labels from each class are balanced. Our approach can

be consistently benefited by balanced training, and achieves an accuracy of 73.97 in the

best epoch, outperforming many baselines such as HOC 73.39% [230], GCE+SimCLR

73.35% [56], CORES 73.24% [30], GCE 69.75% [221]. We believe the performance could

be further improved by using some sophisticated training techniques mentioned above.

250

Table B.1: Experiments on Clothing1M [200] with or without balanced sampling.

Data Selection # Training Samples Best Epoch Last 10 Epochs Last Epoch

None (Standard Baseline) (Unbalanced) 1M (100%) 70.32 69.44 ± 0.13 69.53
None (Standard Baseline) (Balanced) 1M (100%) 72.20 71.40 ± 0.31 71.22

R50-Img (Unbalanced) 770k (77.0%) 72.37 71.95 ± 0.08 71.89
R50-Img (Balanced) 770k (77.0%) 72.42 72.06 ± 0.16 72.24

ViT-B/32-CLIP (Unbalanced) 700k (70.0%) 72.54 72.23 ± 0.17 72.11
ViT-B/32-CLIP (Balanced) 700k (70.0%) 72.99 72.76 ± 0.15 72.91

R50-Img Warmup-1 (Unbalanced) 767k (76.7%) 73.64 73.28 ± 0.18 73.41
R50-Img Warmup-1 (Balanced) 767k (76.7%) 73.97 73.37 ± 0.03 73.35

251

Appendix C

More Details for Charter 4

Appendix C provides more theoretical details and experiment settings related

to CAL (Section 4.2), where Sections C.1–Section C.3 show the detailed theoretical

proofs and Section C.4 present more discussions.

C.1 Proof for Lemmas

C.1.1 Proof for Lemma 4

Proof. We try to build the connection between noisy distribution D̃ and the underlying

Bayes optimal distribution D∗ by the noise rates e+ and e−. The primary difference

252

from the proof of Lemma 2 in [124] is the usage of D∗. Note:

ED̃[ℓ(f(X), Ỹ)]

=ED∗

 ∑
j∈{−1,+1}

P(Ỹ = j|X,Y ∗)ℓ(f(X), j)


=ED∗

 ∑
j∈{−1,+1}

P(Ỹ = j|Y ∗)ℓ(f(X), j)


=

∑
i∈{−1,+1}

P(Y ∗ = i)ED∗|Y ∗=i[P(Ỹ = +1|Y ∗ = i)ℓ(f(X),+1)

+ P(Ỹ = −1|Y ∗ = i)ℓ(f(X),−1)]

=P(Y ∗ = +1)ED∗|Y ∗=+1[(1− e+)ℓ(f(X),+1) + e+ℓ(f(X),−1)]

+ P(Y ∗ = −1)ED∗|Y ∗=−1[(1− e−)ℓ(f(X),−1) + e−ℓ(f(X),+1)].

Similarly, following the proof of Lemma 2 in [124], we can prove this lemma.

C.1.2 Proof for Lemma 13

Peer Loss on the Bayes Optimal Distribution Recall our goal is to learn a classifier

f from the noisy distribution D̃ which also minimizes the loss on the corresponding

Bayes optimal distribution D∗, i.e. E[1(f(X), Y ∗)], (X,Y ∗) ∼ D∗. Before considering

the case with label noise, we need to prove peer loss functions induce the Bayes optimal

classifier when minimizing the 0-1 loss on D∗ as in Lemma 13.

Lemma 13. Given the Bayes optimal distribution D∗, the optimal peer classifier defined

below:

f∗
peer = argmin

f
ED∗ [1PL(f(X), Y ∗)]

253

also minimizes ED∗ [1(f(X), Y ∗)].

See the proof below. It has been shown in [124] that Lemma 13 holds for the

clean distribution D when the clean dataset is class-balanced, i.e. P(Y = −1) = P(Y =

+1) = 0.5. For the Bayes optimal distribution D∗, as shown in Lemma 13, there is no

requirement for the prior p∗ := P(Y ∗ = +1).

Proof. Recall Y ∗ is the Bayes optimal label defined as

Y ∗|X := argmax
Y

P(Y |X), (X,Y) ∼ D.

We need to prove that the “optimal peer classifier” defined below:

f∗
peer = argmin

f
ED∗ [1PL(f(X), Y ∗)]

is the same as the Bayes optimal classifier f∗. To see this, suppose the claim is wrong.

Denote by (notations ϵ+ and ϵ− are defined only for this proof):

ϵ+ := P(f∗
peer(X) = −1|f∗(X) = +1), ϵ− := P(f∗

peer(X) = +1|f∗(X) = −1)

254

and denote by p∗ := P(f∗(X) = +1). Then

ED∗ [1PL(f
∗
peer(X), Y ∗)]

= P(f∗
peer(X) ̸= Y ∗)− p∗ · P(f∗

peer(X) ̸= +1)− (1− p∗) · P(f∗
peer(X) ̸= −1)

= p∗ · ϵ+ + (1− p∗) · ϵ− − p∗ · P(f∗
peer(X) ̸= +1)− (1− p∗) · P(f∗

peer(X) ̸= −1)

= p∗ · ϵ+ + (1− p∗) · ϵ−

− p∗ ·
(
P(f∗

peer(X) ̸= +1|f∗(X) ̸= +1)P(f∗(X) ̸= +1)

+ P(f∗
peer(X) ̸= +1|f∗(X) ̸= −1)P(f∗(X) ̸= −1)

)
− (1− p∗) ·

(
P(f∗

peer(X) ̸= −1|f∗(X) ̸= +1)P(f∗(X) ̸= +1)

+ P(f∗
peer(X) ̸= −1|f∗(X) ̸= −1)P(f∗(X) ̸= −1)

)
= p∗ · ϵ+ + (1− p∗) · ϵ−

− p∗ · P(f∗(X) ̸= +1)(1− ϵ−)− p∗ · P(f∗(X) ̸= −1) · ϵ+

− (1− p∗) · P(f∗(X) ̸= −1)(1− ϵ+)− (1− p∗) · P(f∗(X) ̸= +1) · ϵ−

= 0− p∗ · P(f∗(X) ̸= +1)− (1− p∗) · P(f∗(X) ̸= −1)

+ p∗(ϵ+ + P(f∗(X) ̸= +1)ϵ− − P(f∗(X) ̸= −1)ϵ+)

+ (1− p∗)(ϵ− + P(f∗(X) ̸= −1)ϵ+ − P(f∗(X) ̸= +1)ϵ−)

> 0− p∗ · P(f∗(X) ̸= +1)− (1− p∗) · P(f∗(X) ̸= −1)

= ED∗ [1PL(f
∗(X), Y ∗)]

contradicting the optimality of f∗
peer. Thus our claim is proved.

255

C.2 Proof for Theorems

C.2.1 Proof for Theorem 10

Proof. The covariance Cov(·, ·) in this proof is taken over the Bayes optimal distribution

D∗. The following proof is built on the result of Theorem 11, i.e. Eq. (4.2). First note

Cov(Z1(X),1(f1(X), Y ∗)− 1(f2(X), Y ∗))

= E[(Z1(X)− E[Z1(X)]) · (1(f1(X), Y ∗)− 1(f2(X), Y ∗))]

≤ E[|(Z1(X)− E[Z1(X)]|]

≤ E|e+(X)− E[e+(X)]|+ E|e−(X)− E[e−(X)]|

Similarly, one can show that

Cov(Z2(X),1(f1(X),−1)− 1(f2(X),−1))

≤ E|e+(X)− E[e+(X)]|+ E|e−(X)− E[e−(X)]|

Now with bounded variance in the error rates, suppose:

E|e+(X)− E[e+(X)]| ≤ ϵ+, E|e−(X)− E[e−(X)]| ≤ ϵ−

256

Note

f̃∗
peer := argmin

f
ED̃

[
1PL(f(X), Ỹ)

]
=argmin

f

[
(1− e+ − e−)ED∗ [1PL(f(X), Y ∗) + Cov(Z1(X),1(f(X), Y ∗))

+ Cov(Z2(X),1(f(X),−1))

]

=argmin
f

[
(1− e+ − e−)

· (ED∗ [1(f(X), Y ∗)− p∗ · ED∗ [1(f(X),+1)]− (1− p∗) · ED∗ [1(f(X),−1)])

+ Cov(Z1(X),1(f(X), Y ∗)) + Cov(Z2(X),1(f(X),−1))

]
.

Then

ED∗

[
1(f̃∗

peer(X), Y ∗)
]
+

Cov(Z1(X),1(f̃∗
peer(X), Y ∗)) + Cov(Z2(X),1(f̃∗

peer(X),−1))
1− e+ − e−

=ED∗

[
1(f̃∗

peer(X), Y ∗)
]
− 0.5 · EX [1(f̃∗

peer(X),+1)]− 0.5 · EX [1(f̃∗
peer(X),−1)] + 0.5

+
Cov(Z1(X),1(f̃∗

peer(X), Y ∗)) + Cov(Z2(X),1(f̃∗
peer(X),−1))

1− e+ − e−

≤ED∗

[
1(f̃∗

peer(X), Y ∗)
]

− p∗ · EX [1(f̃∗
peer(X),+1)]− (1− p∗) · EX [1(f̃∗

peer(X),−1)] + |p∗ − 0.5|+ 0.5

+
Cov(Z1(X),1(f̃∗

peer(X), Y ∗)) + Cov(Z2(X),1(f̃∗
peer(X),−1))

1− e+ − e−

≤ED∗ [1(f∗(X), Y ∗)]− p∗ · EX [1(f∗(X),+1)]− (1− p∗) · EX [1(f∗(X),−1)] + |p∗ − 0.5|+ 0.5

+
Cov(Z1(X),1(f∗(X), Y ∗)) + Cov(Z2(X),1(f∗(X),−1))

1− e+ − e−

≤ED∗ [1(f∗(X), Y ∗)] +
Cov(Z1(X),1(f∗(X), Y ∗)) + Cov(Z2(X),1(f∗(X),−1))

1− e+ − e−
+ 2|p∗ − 0.5|.

257

Thus

ED∗

[
1(f̃∗

peer(X), Y ∗)− 1(f∗(X), Y ∗)
]

≤
Cov(Z1(X),1(f∗(X), Y ∗)− 1(f̃∗

peer(X), Y ∗))

1− e+ − e−

Cov(Z2(X),1(f∗(X),−1)− 1(f̃∗
peer(X),−1))

1− e+ − e−
+ 2|p∗ − 0.5|

≤2E|e+(X)− E[e+(X)]|+ E|e−(X)− E[e−(X)]|
1− e+ − e−

+ 2|p∗ − 0.5|

≤ 2(ϵ+ + ϵ−)

1− e+ − e−
+ 2|p∗ − 0.5|.

Noting 1(f∗(X), Y ∗) = 0, we finish the proof.

C.2.2 Proof for Theorem 11

Proof. The covariance Cov(·, ·) in this proof is taken over the Bayes optimal distribution

D∗. Recall

e+(X) := P(Ỹ = −1|Y ∗ = +1, X), e−(X) := P(Ỹ = +1|Y ∗ = −1, X)

and

e+ := EX [e+(X)], e− := EX [e−(X)]

We first have the following equality:

ED̃[1PL(f(X), Ỹ)] = ED∗ [(1− e+(X)− e−(X))1(f(X), Y ∗))] (Term-A)

+ EX [e+(X)1(f(X),−1) + e−(X)1(f(X),+1)] (Term-B)

− (1− e+ − e−) · ED∗ [1(f(X), Y ∗
p))] (Term-C)

− EX [e+ · 1(f(X),−1) + e− · 1(f(X),+1)] (Term-D)

258

Term-B can be transformed to:

EX [e+(X) · 1(f(X),−1) + e−(X) · 1(f(X),+1)]

= EX [e+(X) · 1(f(X),−1) + e−(X) · (1− 1(f(X),−1))]

= EX [(e+(X)− e−(X)) · 1(f(X),−1) + e−(X)].

Similarly, Term-D turns to

EX [e+ · 1(f(X),−1) + e− · 1(f(X),+1)] = (e+ − e−) · EX [1(f(X),−1)] + e−.

Define two random variables

Z1(X) := 1− e+(X)− e−(X), Z2(X) = e+(X)− e−(X).

Then Term-A becomes

ED∗ [(1− e+(X)− e−(X))1(f(X), Y ∗))]

= E[Z1(X)] · ED∗ [1(f(X), Y ∗))] + Cov(Z1(X),1(f(X), Y ∗))

= (1− e+ − e−) · ED∗ [1(f(X), Y ∗))] + Cov(Z1(X),1(f(X), Y ∗))

Similarly, Term-B can be further transformed to

EX [(e+(X)− e−(X)) · 1(f(X),−1) + e−(X)]

= E[Z2(X)]EX [1(f(X),−1)] + Cov(Z2(X),1(f(X),−1)) + e−

= (e+ − e−)EX [1(f(X),−1)] + Cov(Z2(X),1(f(X),−1)) + e−

259

Combining the above results, we have

ED̃[1PL(f(X), Ỹ)] = (1− e+ − e−) · ED∗ [1(f(X), Y ∗))]

+ (e+ − e−)EX [1(f(X),−1)] + e−

− (1− e+ − e−) · ED∗ [1(f(X), Y ∗
p))]

− (e+ − e−) · EX [1(f(X),−1)]− e−

+Cov(Z1(X),1(f(X), Y)) + Cov(Z2(X),1(f(X),−1))

= (1− e+ − e−)ED∗ [1PL(f(X), Y ∗)]

+ Cov(Z1(X),1(f(X), Y ∗)) + Cov(Z2(X),1(f(X),−1))

C.2.3 Proof for Theorem 12

Proof. From Theorem 11, we know

ED̃[1PL(f(X), Ỹ)]− Cov(Z1(X),1(f(X), Y ∗))− Cov(Z2(X),1(f(X),−1))
]

=(1− e− − e+) · ED∗ [1PL(f(X), Y ∗)].

With Lemma 13, we can finish the proof.

C.2.4 Proof for Theorem 13

Proof. Recall τ ∈ [0, 1] is the expected ratio (a.k.a. probability) of correct examples in

D̂τ , i.e. τ = E[1{(X, Ŷ) ∈ D̂τ |(X,Y ∗) ∈ D∗}] = P((X, Ŷ) ∼ D̂τ |(X,Y ∗) ∼ D∗). With

260

D̂τ , the classifier learned by minimizing the 0-1 CAL loss is

f̃∗
CAL-τ := argmin

f
ED̃

[
1PL(f(X), Ỹ)]

− CovD̂τ (Z1(X),1(f(X), Ŷ))− CovD̂τ (Z2(X),1(f(X),−1))
]
.

Note

CovD̂τ (Z1(X),1(f(X), Y))

=ED̂τ

[(
Z1(X)− ED̂τ [Z1(X)]

) (
1(f(X), Y)− ED̂τ [1(f(X), Y)]

)]
=ED̂τ

[(
Z1(X)− ED̂τ [Z1(X)]

)
1(f(X), Y)

]
=P((X,Y) ∈ D∗|(X,Y) ∈ D̂τ)ED̂τ

[(
Z1(X)− ED̂τ [Z1(X)]

)
1(f(X), Y)|(X,Y) ∈ D∗]

+ P((X,Y) /∈ D∗|(X,Y) ∈ D̂τ)ED̂τ

[(
Z1(X)− ED̂τ [Z1(X)]

)
1(f(X), Y)|(X,Y) /∈ D∗] .

Similarly,

CovD∗(Z1(X),1(f(X), Y))

=ED∗ [(Z1(X)− ED∗ [Z1(X)])1(f(X), Y)]

=P((X,Y) ∈ D̂τ |(X,Y) ∈ D∗)ED∗

[
(Z1(X)− ED∗ [Z1(X)])1(f(X), Y)|(X,Y) ∈ D̂τ

]
+ P((X,Y) /∈ D̂τ |(X,Y) ∈ D∗)ED∗

[
(Z1(X)− ED∗ [Z1(X)])1(f(X), Y)|(X,Y) /∈ D̂τ

]
.

When D∗, D̂τ and D̃ have the same feature set, we have

P((X,Y) ∈ D∗|(X,Y) ∈ D̂τ) = P((X,Y) ∈ D̂τ |(X,Y) ∈ D∗) = τ,

P((X,Y) /∈ D∗|(X,Y) ∈ D̂τ) = P((X,Y) /∈ D̂τ |(X,Y) ∈ D∗) = 1− τ.

Therefore,

CovD̂τ (Z1(X),1(f(X), Y))− CovD∗(Z1(X),1(f(X), Y)) ≤ 2(1− τ)(ϵ+ + ϵ−).

The rest of the proof can be accomplished by following the proof of Theorem 10.

261

C.3 Proof for Corollaries

C.3.1 Proof for Corollary 4

Proof.

ED̃[ℓPL(f(X), Ỹ)] = ED̃[ℓ(f(X), Ỹ)]− ED̃Y

[
EDX

[ℓ(f(Xp), Ỹp)]
]
. (C.1)

The first term in (C.1) is

ED̃[ℓ(f(X), Ỹ)]

=ED∗

 ∑
j∈[K]

P(Ỹ = j|X,Y ∗)ℓ(f(X), j)


=

∑
j∈[K]

∑
i∈[K]

P(Y ∗ = i)ED∗|Y ∗=i[Tij(X)ℓ(f(X), j)]

=
∑

j∈[K]

∑
i∈[K]

P(Y ∗ = i)
[
TijED∗|Y ∗=i[ℓ(f(X), j)] + CovD∗|Y ∗=i[Tij(X), ℓ(f(X), j)]

]

=
∑

j∈[K]

P(Y ∗ = j)

1−
∑

i̸=j,i∈[K]

Tji

ED∗|Y ∗=j [ℓ(f(X), j)] +
∑

i∈[K],i ̸=j

P(Y ∗ = i)TijED∗|Y ∗=i [ℓ(f(X), j)]


+

∑
j∈[K]

∑
i∈[K]

P (Y ∗ = i)CovD∗|Y ∗=i [Tij(X), ℓ(f(X), j)]

=
∑

j∈[K]

P(Y ∗ = j)

1−
∑

i̸=j,i∈[K]

ei

ED∗|Y ∗=j [ℓ(f(X), j)] +
∑

i∈[K],i ̸=j

P(Y ∗ = i)ejED∗|Y ∗=i [ℓ(f(X), j)]


+

∑
j∈[K]

∑
i∈[K]

P (Y ∗ = i)CovD∗|Y ∗=i [Tij(X), ℓ(f(X), j)]

=

1−
∑

i∈[K]

ei

ED∗ [ℓ(f(X), Y ∗)] +
∑

j∈[K]

∑
i∈[K]

P(Y ∗ = i)ejED∗|Y ∗=i [ℓ(f(X), j)]

+
∑

j∈[K]

∑
i∈[K]

P (Y ∗ = i)CovD∗|Y ∗=i [Tij(X), ℓ(f(X), j)]

The rest of the proofs can be done following standard multi-class peer loss derivations

[124].

262

C.4 More Discussions

C.4.1 Setting Thresholds Lmin and Lmax

In a high level, there are two strategies for setting Lmin and Lmax: 1) Lmin <

Lmax and 2) Lmin = Lmax.

Strategy-1: Lmin < Lmax: This strategy may provide a higher ratio of true Bayes

optimal labels among feasible examples in D̂ since some ambiguous examples are dropped.

However, dropping examples changes the distribution of X (as well as the distribution

of the unobservable Y ∗), a.k.a. covariate shift [76, 33]. Importance re-weighting with

weight γ(X) is necessary for correcting the covariate shift, i.e. the weight of each feasible

example (x, ŷ) ∈ D̂ should be changed from 1 to γ(x). Let DX and D̂X be the marginal

distributions of D and D̂ on X. With a particular kernel Φ(X), the optimization problem

is:

min
γ(X)

∥EDX
[Φ(X)]− ED̂X

[γ(X)Φ(X)]∥

s.t. γ(X) > 0 and ED̂X
[γ(X)] = 1.

(C.2)

The optimal solution is supposed to be γ∗(X) =
PDX

(X)

PD̂X
(X) . Note the selection of kernel

Φ(·) is non-trivial, especially for complicated features [47] in DNN solutions. Using this

strategy, with appropriate Lmin and Lmax such that all the examples in D̂ are Bayes

optimal, the covariance could be guaranteed to be optimal when each example in D̂ is

re-weighted by γ∗(X).

263

Strategy-2: Lmin = Lmax: Compared with Strategy-1, we effectively lose one degree

of freedom for getting a better D̂. However, this is not entirely harmful since D̂ and

D∗ have the same feature set, indicating estimating γ(X) is no longer necessary and

γ(X) = 1 is an optimal solution for (C.2) with this strategy.

Strategy selection When we can get a high-quality D̂ by fine-tuning Lmin and Lmax

or D̂ is already provided from other sources, we may solve the optimization problem in

(C.2) to find the optimal weight γ(X). However, considering the fact that estimating

γ(X) introduces extra computation and potentially extra errors, we focus on Strategy-2

in this paper. Using Strategy-2 also reduces the effort on tuning hyperparameters.

Besides, the proposed CAL loss is tolerant of an imperfect D̂ (shown theoretically in

Section 4.2.3).

C.4.2 Generation of Instance-Dependent Label Noise

The generation process follows Section A.4.1.

C.4.3 More Implementation Details on Clothing1M

Construct D̂ We first train the network for 120 epochs on 1 million noisy training

images using the method in [30]. The batch-size is set to 32. The initial learning rate

is set as 0.01 and reduced by a factor of 10 at 30, 60, 90 epochs. We sample 1000

mini-batches from the training data for each epoch while ensuring the (noisy) labels are

balanced. Mixup [215] is adopted for data augmentations. Hyperparameter β is set to 0

264

at first 80 epochs, and linearly increased to 0.4 for next 20 epochs and kept as 0.4 for

the rest of the epochs. We construct D̂ with the best model.

Train with CAL We change the loss to the CAL loss after getting D̂ and continue

training the model (without mixup) with an initial learning rate of 10−5 for 120 epochs

(reduced by a factor of 10 at 30, 60, 90 epochs). We also tested re-train the model with

D̂ and get an accuracy of 73.56. A randomly-collected balanced dataset with 18, 976

noisy examples in each class is employed in training with CAL. Examples that are not

in this balanced dataset are removed from D̂ for ease of implementation.

265

Appendix D

More Details for Charter 5

Appendix D provides more theoretical details related to the disparate impact

of SSL and estimating fairness with missing sensitive attributes, which is organized as

follows.

Disparate Impact in SSL The Appendix is organized as follows.

• Section D.1 presents the detailed derivations for generalization bounds.

– Section D.1.1 proves the upper bound for Term-1.

– Section D.1.2 proves the lower bound for Term-1.

– Section D.1.2 proves the upper bound for Term-2 (also for Theorem 14).

– Section D.1.4 proves Lemma 6.

– Section D.1.5 proves Corollary 5.

266

Estimate Fairness with Missing Sensitive Attributes The Appendix is organized

as follows.

• Section D.2 presents a summary of notations, more fairness definitions, and a clear

statement of the assumption that is common in the literature. Note our algorithm

does not rely on this assumption.

• Section D.3 presents the full version of our theorems (for DP, EOd, EOp), corollaries,

and the corresponding proofs.

• Section D.4 shows how HOC works and analyzes why other learning-centric methods

in the noisy label literature may not work in our setting.

267

D.1 Theoretical Results

D.1.1 Term-1 Upper Bound

RD(f)−RD̃(f)

=

∫
X

(
P(f(X) ̸= Y |X)− P(f(X) ̸= Ỹ |X)

)
P(X) dX

=

∫
X

(
P(f(X) = Ỹ |X)− P(f(X) = Y |X)

)
P(X) dX

≤1

2

∫
X

(∣∣∣∣∣P(f(X) = Ỹ |X)− P(f(X) = Y |X)

∣∣∣∣∣
+
∣∣∣P(f(X) ̸= Ỹ |X)− P(f(X) ̸= Y |X)

∣∣∣)P(X) dX

(a)
=

∫
X
TD(Ỹf (X)||Yf (X))P(X) dX

(b)

≤
∫
X
TD(Ỹ (X)||Y (X))P(X) dX

=
1

2

∫
X

∑
i∈[K]

∣∣∣P(Ỹ = i|X)− P(Y = i|X)
∣∣∣P(X) dX

=

∫
X
η(X)P(X) dX

=η

where in equality (a), given model f and feature X, we can treat Ỹf (X) as a Bernoulli

random variable such that

P(Ỹf (X) = +) = P(f(X) = Ỹ |X) and P(Ỹf (X) = −) = P(f(X) ̸= Ỹ |X).

Then according to the definition of total variation of two distributions, i.e.,

TD(P ||Q) :=
1

2

∫
u
|dP
du
− dQ

du
|du,

268

we can summarize the integrand as the total variation between Ỹf (X) and Yf (X).

Inequality (b) holds due to the data processing inequality since the prob-

abilities [P(Ỹ = f(X)),P(Ỹ ̸= f(X))] are generated by [P(Ỹ = i), ∀i ∈ [K]], and the

probabilities [P(Y = f(X)),P(Y ̸= f(X))] are generated by [P(Y = i),∀i ∈ [K]].

η(X) is the accuracy of labels on feature X (in the cases specified in Lemma 6).

D.1.2 Term-1 Lower Bound

Let e(X) := P(Y ̸= Ỹ |X) be the feature-dependent error rate, Ãf (X) :=

P(f(X) = Ỹ |X) be the accuracy of prediction f(X) on noisy dataset D̃. Note e(X)

is independent of Ãf (X). Denote their expectations (over X) by ē := EX [e(X)],

269

Ãf = EX [Ãf (X)]. We have:

RD(f)−RD̃(f)

=

∫
X

(
P(f(X) ̸= Y |X)− P(f(X) ̸= Ỹ |X)

)
P(X)

=

∫
X

(
P(f(X) = Ỹ |X)− P(f(X) = Y |X)

)
P(X)

=

∫
X

P(f(X) = Ỹ |f(X) = Ỹ , X)︸ ︷︷ ︸
w.p. 1

−P(f(X) = Y |f(X) = Ỹ , X)︸ ︷︷ ︸
P(Ỹ=Y |X)

P(f(X) = Ỹ |X)P(X)

+

∫
X

P(f(X) = Ỹ |f(X) ̸= Ỹ , X)︸ ︷︷ ︸
w.p. 0

−P(f(X) = Y |f(X) ̸= Ỹ , X)

P(f(X) ̸= Ỹ |X)P(X)

=

∫
X

(
1− P(Ỹ = Y |X)

)
︸ ︷︷ ︸

denoted by e(X)

P(f(X) = Ỹ |X)︸ ︷︷ ︸
denoted by Ãf (X)

P(X)

+

∫
X

(
0− P(f(X) = Y |f(X) ̸= Ỹ , X)

)
P(f(X) ̸= Ỹ |X)P(X)

=

∫
X

e(X)Ãf (X)P(X)

−
∫
X

(
P(f(X) = Y |f(X) ̸= Ỹ , Y = Ỹ , X)P(Y = Ỹ |f(X) ̸= Ỹ , X)

)
P(f(X) ̸= Ỹ |X)P(X)

−
∫
X

P(f(X) = Y |f(X) ̸= Ỹ , Y ̸= Ỹ , X)︸ ︷︷ ︸
≤1

P(Y ̸= Ỹ |f(X) ̸= Ỹ , X)

P(f(X) ̸= Ỹ |X)P(X)

≥
∫
X

e(X)Ãf (X)P(X)

−
∫
X

(
0 · P(Y = Ỹ |f(X) ̸= Ỹ , X)

)
P(f(X) ̸= Ỹ |X)P(X)

−
∫
X

1 · P(Y ̸= Ỹ |f(X) ̸= Ỹ , X)︸ ︷︷ ︸
=P(Y ̸=Ỹ |X) due to independency

P(f(X) ̸= Ỹ |X)P(X)

=

∫
X

e(X)Ãf (X)P(X)−
∫
X

P(Y ̸= Ỹ |X)︸ ︷︷ ︸
denoted by e(X)

P(f(X) ̸= Ỹ |X)︸ ︷︷ ︸
denoted by 1 − Ãf (X)

P(X)

=

∫
X

e(X)(2Ãf (X)− 1)P(X)

=(2Ãf − 1)e.

270

D.1.3 Term-2 Upper Bound

We adopt the same technique to prove Theorem 14 and Lemma 7. The proof

follows [124]. We prove Theorem 14 as follows.

Denote the expected error rate of classifier f on distribution D by

RD(f) := ED[1(f(X), Y)].

Let f̂D denote the classifier trained by minimizing 0-1 loss with clean dataset D, i.e.,

f̂D := argmin
f

R̂D(f),

where

R̂D(f) :=
1

N

∑
n∈[N]

1(f(xn), yn).

The Bayes optimal classifier is denoted by

f∗
D := argmin

f
RD(f).

The expected error given by f∗
D is written as

R∗ := RD(f
∗
D).

Denote by Y ∗|X := argmaxi∈[K] P(Y |X) the Bayes optimal label on clean distribution

D. With probability at least 1− δ, we have:

RD(f̂D)−RD(f
∗
D)

=R̂D(f̂D)− R̂D(f
∗
D) +

(
RD(f̂D)− R̂D(f̂D)

)
+
(
R̂D(f

∗
D)−RD(f

∗
D)
)

(a)

≤0 + |R̂D(f̂D)−RD(f̂D)|+ |R̂D(f
∗
D)−RD(f

∗
D)|

(b)

≤
√

2 log(4/δ)

N
,

271

where inequality (a) holds since 1) R̂D(f̂D) achieves the minimum empirical risk according

to its definition, thus R̂D(f̂D) − R̂D(f
∗
D) ≤ 0; 2) each of the following two terms will

be no greater than the corresponding gap |R̂D(f)−RD(f)|. Specifically, inequality (b)

holds due to Hoeffding’s inequality, i.e., given any classifier f̂D, and f∗
D, with probability

at least 1− δ/2, we have the following bounds independently:

|R̂D(f̂D)−RD(f̂D)| ≤
√

log(4/δ)

2N
, |R̂D(f

∗
D)−RD(f

∗
D)| ≤

√
log(4/δ)

2N
.

By the union bound, we have inequality (b) with probability at least 1− δ.

Noting RD(f
∗
D) = P(Y ≠ Y ∗), we can prove Theorem 14. But substituting D

for D̃, we can also prove Lemma 7.

D.1.4 Proof for Lemma 6

Proof. Note

P(Ỹ ̸= Y |X) = 1− P(Ỹ = Y |X) = 1−
∑
i∈[K]

P(Ỹ = i|X)P(Y = i|X).

and

η(X) :=
1

2

∑
i∈[K]

|P(Ỹ = i|X)− P(Y = i|X)|.

Assume P(Y = i′|X) = 1. We have P(Ỹ ̸= Y |X) = 1− P(Ỹ = i′|X) and

η(X) :=
1

2

1− P(Ỹ = i′|X) +
∑

i∈[K],i ̸=i′

P(Ỹ = i|X)

 = 1− P(Ỹ = i′|X).

272

D.1.5 Proof for Corollary 5

B̂R(P) =
η +

√
2 log(4/δ)

NP
+ P(Ỹ ̸= Ỹ ∗)−

√
2 log(4/δ)

NPL
− P(Y ̸= Y ∗)√

2 log(4/δ)
NP

−
√

2 log(4/δ)
NPL

=
∆(NP , NPL

)− η

∆(NP , NPL
)

.

D.2 More Definitions and Assumptions

D.2.1 Summary of Notations

Table D.1: Summary of key notations

Notation Explanation

G := {g1, · · · , gC} C proxy models for generating noisy sensitive attributes

X,Y,A, and Ã := g(X) Random variables of feature, label, ground-truth sensitive attribute, and noisy sensitive attributes
xn, yn, an The n-th feature, label, and ground-truth sensitive attribute in a dataset
N,K,M The number of instances, label classes, categories of sensitive attributes

[N] := {1, · · · , N} A set counting from 1 to N
X , f : X → [K] Space of X, target model

D◦ := {(xn, yn)|n ∈ [N]} Target dataset
D := {(xn, yn, an)|n ∈ [N]} D◦ with ground-truth sensitive attributes

D̃ := {(xn, yn, (ã1n, · · · , ãCn))|n ∈ [N]} D◦ with noisy sensitive attributes

(X,Y,A) ∼ D, (X,Y, Ã) ∼ D̃ Distribution of D and D̃

u ∈ {DP,EOd,EOp} A unified notation of fairness definitions, e.g., EOd, EOp, EOd

∆u(D, f), ∆̃u(D̃, f), ∆̂u(D̃, f) True, (direct) noisy, and calibrated group fairness metrics on data distributions

∆u(D, f), ∆̃u(D̃, f), ∆̂u(D̃, f) True, (direct) noisy, and calibrated group fairness metrics on datasets
H,H[a],H[:, k],H[a, k] Fairness matrix, its a-th row, k-th column, (a, k)-th element

H̃ Noisy fairness matrix with respect to Ã

T , T [a, ã] := P(Ã = ã|A = a) Global noise transition matrix

Tk, Tk[a, ã] := P(Ã = ã|A = a, f(X) = k) Local noise transition matrix
p := [P(A = 1), · · · ,P(A = M)]⊤ Clean prior probability

p̃ := [P(Ã = 1), · · · ,P(Ã = M)]⊤ Clean prior probability

D.2.2 Common Conditional Independence Assumption in the Litera-

ture

We present below a common conditional independence assumption in the

literature [8, 148, 49]. Note our algorithm successfully drops this assumption.

273

Assumption 5 (Conditional Independence). Ã and f(X) are conditionally independent

given A (and Y for EOd, EOp):

DP: P(Ã = ã|f(X) = k,A = a) = P(Ã = ã|A = a),∀a, ã ∈ [M], k ∈ [K].

(i.e.Ã ⊥⊥ f(X)|A).

EOd / EOp: P(Ã = ã|f(X) = k, Y = y,A = a)

= P(Ã = ã|Y = y,A = a), ∀a, ã ∈ [M], k, y ∈ [K].(i.e.Ã ⊥⊥ f(X)|Y,A).

D.3 Proofs

D.3.1 Full Version of Theorem 16 and Its Proof

Denote by Ty the attribute noise transition matrix with respect to label y,

whose (a, ã)-th element is Ty[a, ã] := P(Ã = ã|A = a, Y = y). Note it is different from Tk.

Denote by Tk⊗y the attribute noise transition matrix when f(X) = k and Y = y, where

the (a, ã)-th element is Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a). Denote by

py := [P(A = 1|Y = y), · · · ,P(A = K|Y = y)]⊤ and p̃y := [P(Ã = 1|Y = y), · · · ,P(Ã =

K|Y = y)]⊤ the clean prior probabilities and noisy prior probability, respectively.

Theorem 3.2 (Error Upper Bound of Noisy Metrics) Denote by Errrawu :=

|∆u(D̃, f)−∆u(D, f)| the estimation error of the directly measured noisy fairness metrics.

Its upper bound is:

• DP:

ErrrawDP ≤
2

K

∑
k∈[K]

h̄k ∥Λp̃(T
−1Tk − I)Λ−1

p̃ ∥1︸ ︷︷ ︸
cond. indep. violation

+δk ∥ΛpTkΛ
−1
p̃ − I∥1︸ ︷︷ ︸

error of g

 .

274

where h̄k := 1
M

∑
a∈[M]

H[a, k], δk := max
a∈[M]

|H[a, k]− h̄k|.

• EOd:

ErrrawEOd

≤ 2

K2

∑
k∈[K],y∈[K]

h̄k⊗y ∥Λp̃y(T
−1
y Tk⊗y − I)Λ−1

p̃y
∥1︸ ︷︷ ︸

cond. indep. violation

+δk⊗y ∥ΛpyTk⊗yΛ
−1
p̃y
− I∥1︸ ︷︷ ︸

error of g

 .

where h̄k⊗y := 1
M

∑
a∈[M]

H[a, k ⊗ y], δk⊗y := max
a∈[M]

|H[a, k ⊗ y]− h̄k⊗y|.

• EOp: We obtain the result for EOp by simply letting k = 1 and y = 1, i.e.,

ErrrawEOp ≤ 2
∑

k=1,y=1

h̄k⊗y ∥Λp̃y(T
−1
y Tk⊗y − I)Λ−1

p̃y
∥1︸ ︷︷ ︸

cond. indep. violation

+δk⊗y ∥ΛpyTk⊗yΛ
−1
p̃y
− I∥1︸ ︷︷ ︸

error of g

 .

where h̄k⊗y := 1
M

∑
a∈[M]

H[a, k ⊗ y], δk⊗y := max
a∈[M]

|H[a, k ⊗ y]− h̄k⊗y|.

Proof. The following proof builds on the relationship derived in the proof for Theorem 17.

We encourage readers to check Appendix D.3.2 before the following proof.

Recall Ty[a, a
′] := P(Ã = a′|A = a, Y = y). Note

Λp̃y1 = T⊤
y Λpy1⇔ (T⊤

y)−1Λp̃y1 = Λpy1.

Denote by

H[:, k ⊗ y] = h̄k⊗y1+ vk⊗y,

where h̄k⊗y := 1
M

∑
a∈[M] P(f(X) = k|A = a, Y = y). We have

ΛpyH[:, k ⊗ y] = h̄k⊗yΛpy1+Λpyvk⊗y = h̄k⊗y(T
⊤
y)−1Λp̃y1+Λpyvk⊗y.

275

We further have

H̃[: k ⊗ y]

=
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
H[:, k ⊗ y] +H[:, k ⊗ y]

=h̄k⊗yΛ
−1
p̃y

T⊤
k⊗y(T

⊤
y)−1Λp̃y1+Λ−1

p̃y
T⊤
k⊗yΛpyvk⊗y − h̄k⊗y1− vk⊗y +H[:, k ⊗ y]

=h̄k⊗yΛ
−1
p̃y

(
T⊤
k⊗y(T

⊤
y)−1 − I

)
Λp̃y1+

(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y +H[:, k ⊗ y].

Noting |A| − |B| ≤ |A + B| ≤ |A| + |B|, we have | |A + B| − |B| | ≤ |A|.

Therefore,

∣∣∣ ∣∣∣(eã − eã′)
⊤H̃[: k ⊗ y]

∣∣∣− ∣∣∣(eã − eã′)
⊤H[: k ⊗ y]

∣∣∣ ∣∣∣
≤h̄k⊗y

∣∣∣(eã − eã′)
⊤Λ−1

p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∣∣∣ (Term 1)

+
∣∣∣(eã − eã′)

⊤
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∣∣∣ . (Term 2)

Term-1 and Term-2 can be upper bounded as follows.

Term 1: With the Hölder’s inequality, we have

h̄k⊗y

∣∣∣(eã − eã′)
⊤Λ−1

p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∣∣∣
≤h̄k⊗y ∥eã − eã′∥1

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∥∥∥
∞

≤2h̄k⊗y

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∥∥∥
∞

≤2h̄k⊗y

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

∥∥∥
∞

=2h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1

276

Term 2: Denote by δk⊗y := max
a∈[M]

|H[a, k ⊗ y]− h̄k⊗y|, which is the largest absolute

offset from its mean. With the Hölder’s inequality, we have

∣∣∣(eã − eã′)
⊤
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∣∣∣
≤∥eã − eã′∥1

∥∥∥(Λ−1
p̃y

T⊤
k⊗yΛpy − I

)
vk⊗y

∥∥∥
∞

≤2
∥∥∥(Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∥∥∥
∞

≤2δk⊗y

∥∥∥Λ−1
p̃y

T⊤
k⊗yΛpy − I

∥∥∥
∞

=2δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
1

Wrap-up:

∣∣∣ ∣∣∣(eã − eã′)
⊤H̃[: k ⊗ y]

∣∣∣− ∣∣∣(eã − eã′)
⊤H[: k ⊗ y]

∣∣∣ ∣∣∣
≤2h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ 2δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
1
.

Denote by ∆̃ã,ã′

k⊗y := |H̃[ã, k ⊗ y] − H̃[ã′, k ⊗ y]| the noisy disparity and ∆ã,ã′

k⊗y :=

|H[ã, k ⊗ y]−H[ã′, k ⊗ y]| the clean disparity between attributes ã and ã′ in the case

277

when f(X) = k and Y = y. We have

∣∣∣∆̃EOd(D̃, f)−∆EOd(D, f)
∣∣∣

≤ 1

M(M − 1)K2

∑
ã,ã′∈[M],k,y∈[K]

∣∣∣∆̃ã,ã′

k⊗y −∆ã,ã′

k⊗y

∣∣∣
≤ 2

M(M − 1)K2

·
∑

ã,ã′∈[M],k,y∈[K]

(
h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
1

)

=
2

K2

∑
k,y∈[K]

(
h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
1

)
.

The results for DP can be obtained by dropping the dependence on Y = y, and

the results for EOp can be obtained by letting k = 1 and y = 1.

D.3.2 Full Version of Theorem 17 and Its Proof

Recall p, p̃, T and Tk are clean prior, noisy prior, global transition matrix, and

local transition matrix defined in Sec. 1.2.1. Denote by Λp̃ and Λp the square diagonal

matrices constructed from p̃ and p.

Theorem 4.1 (Closed-form relationship (DP,EOd,EOp)). The relationship

between the true fairness vector hu and the corresponding noisy fairness vector h̃u writes

as

hu = (T u⊤Λpu)−1Λp̃uh̃u, ∀u ∈ {DP,EOd,EOp},

where Λp̃u and Λpu denote the square diagonal matrix constructed from p̃u and pu, u

unifies different fairness metrics. Particularly,

278

• DP (∀k ∈ [K]): pDP := [P(A = 1), · · · ,P(A = M)]⊤, p̃DP := [P(Ã = 1), · · · ,P(Ã =

M)]⊤. TDP := Tk, where the (a, ã)-th element of Tk is Tk[a, ã] := P(Ã = ã|f(X) =

k,A = a).

hDP := H[:, k] := [P(f(X) = k|A = 1), · · · ,P(f(X) = k|A = M)]⊤

h̃DP := H̃[:, k] := [P(f(X) = k|Ã = 1), · · · ,P(f(X) = k|Ã = M)]⊤.

• EOd and EOp (∀k, y ∈ [K], u ∈ {EOd,EOp}): ∀k, y ∈ [K]: k ⊗ y := K(k − 1) + y,

pu := py := [P(A = 1|Y = y), · · · ,P(A = M |Y = y)]⊤, p̃u := p̃y := [P(Ã = 1|Y =

y), · · · ,P(Ã = M |Y = y)]⊤. T u := Tk⊗y, where the (a, ã)-th element of Tk⊗y is

Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a).

hu := H[:, k ⊗ y] := [P(f(X) = k|Y = y,A = 1), · · · ,P(f(X) = k|Y = y,A = M)]⊤

h̃u := H̃[:, k ⊗ y] := [P(f(X) = k|Y = y, Ã = 1), · · · ,P(f(X) = k|Y = y, Ã = M)]⊤.

Proof. We first prove the theorem for DP, then for EOd and EOp.

Proof for DP. In DP, each element of h̃DP satisfies:

P(f(X) = k|Ã = ã)

=

∑
a∈[M] P(f(X) = k, Ã = ã, A = a)

P(Ã = ã)

=

∑
a∈[M] P(Ã = ã|f(X) = k,A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

Recall Tk is the attribute noise transition matrix when f(X) = k, where

the (a, ã)-th element is Tk[a, ã] := P(Ã = ã|f(X) = k,A = a). Recall p := [P(A =

1), · · · ,P(A = M)]⊤ and p̃ := [P(Ã = 1), · · · ,P(Ã = M)]⊤ the clean prior probabilities

279

and noisy prior probability, respectively. The above equation can be re-written as a

matrix form as

H̃[:, k] = Λ−1
p̃ T⊤

k ΛpH[:, k],

which is equivalent to

H[:, k] = ((T⊤
k)Λp)

−1Λp̃H̃[:, k].

Proof for EOd, EOp. In EOd or EOp, each element of h̃u satisfies:

P(f(X) = k|Y = y, Ã = ã)

=
P(f(X) = k, Y = y, Ã = ã)

P(Y = y, Ã = ã)

=

∑
a∈[M] P(f(X) = k, Y = y, Ã = ã, A = a)

P(Y = y, Ã = ã)

=

∑
a∈[M] P(Ã = ã|f(X) = k, Y = y,A = a)P(Y = y,A = a)P(f(X) = k|Y = y,A = a)

P(Y = y, Ã = ã)

Denote by Tk⊗y the attribute noise transition matrix when f(X) = k and

Y = y, where the (a, ã)-th element is Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a).

Denote by py := [P(A = 1|Y = y), · · · ,P(A = K|Y = y)]⊤ and p̃y := [P(Ã = 1|Y =

y), · · · ,P(Ã = K|Y = y)]⊤ the clean prior probabilities and noisy prior probability,

respectively. The above equation can be re-written as a matrix form as

H̃[:, k] = Λ−1
p̃y

T⊤
k⊗yΛpyH[:, k],

which is equivalent to

H[:, k] = (T⊤
k⊗yΛpy)

−1Λp̃yH̃[:, k].

280

Wrap-up. We can conclude the proof by unifying the above two results with u.

D.3.3 Proof for Corollary 6

Proof. When the conditional independence (Assumption 5)

P(Ã = a′|A = a, Y = y) = P(Ã = a′|A = a, f(X) = k, Y = y), ∀a′, a ∈ [M]

holds, we have Ty = Tk⊗y and Term-1 in Theorem 16 can be dropped. For Term-2, to

get a tight bound in this specific case, we apply the Hölder’s inequality by using l∞

norm on eã − eã′ , i.e., ∣∣∣(eã − eã′)
⊤
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∣∣∣
≤∥eã − eã′∥∞

∥∥∥(Λ−1
p̃y

T⊤
k⊗yΛpy − I

)
vk⊗y

∥∥∥
1

=
∥∥∥(Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∥∥∥
1

≤K · δk⊗y

∥∥∥Λ−1
p̃y

T⊤
k⊗yΛpy − I

∥∥∥
1

=K · δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
∞

Therefore,

∣∣∣∆̃EOd(D̃, f)−∆EOd(D, f)
∣∣∣

≤ 1

K

∑
k,y∈[K]

δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
∞

=
1

K

∑
k,y∈[K]

δk⊗y

∥∥∥ΛpyTyΛ
−1
p̃y
− I

∥∥∥
∞

=
1

K

∑
k,y∈[K]

δk⊗y

∥∥Ťy − I
∥∥
∞ ,

281

where Ťy[a, ã] = P(A = a|Ã = ã, Y = y).

Special binary case in DP In addition to the conditional independence, when the

sensitive attribute is binary and the label class is binary, considering DP, we have

∣∣∣∆̃DP(D̃, f)−∆DP(D, f)
∣∣∣ ≤ 2δk

∥∥Ť − I
∥∥
∞ ,

where Ťy[a, ã] = P(A = a|Ã = ã). Let Ťy[1, 2] = e1, Ťy[2, 1] = e2, we know

Ť :=

1− e2 e1

e2 1− e1


and

∣∣∣∆̃DP(D̃, f)−∆DP(D, f)
∣∣∣ ≤ 2δk · (e1 + e2).

Note the equality in above inequality always holds. To prove it, firstly we note

P(f(X) = k|Ã = ã)

=

∑
a∈[M] P(f(X) = k, Ã = ã, A = a)

P(Ã = ã)

=

∑
a∈[M] P(Ã = ã|f(X) = k,A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

=

∑
a∈[M] P(Ã = ã|A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

=
∑

a∈[M]

P(A = a|Ã = ã) · P(f(X) = k|A = a),

i.e., H̃[:, k] = Ť⊤H[:, k]. Denote by H[:, 1] = [h, h′]⊤. We have (ã ̸= ã′)

∣∣∣(eã − eã′)
⊤H̃[:, 1]

∣∣∣ = |h− h′| · |1− e1 − e2|,

282

and ∣∣∣(eã − eã′)
⊤H[:, 1]

∣∣∣ = |h− h′|.

Therefore, letting ã = 1, ã = 2, we have

∣∣∣∆̃DP(D̃, f)−∆DP(D, f)
∣∣∣

=
1

2

∑
k∈{1,2}

∣∣∣ ∣∣∣(e1 − e2)
⊤H̃[:, k]

∣∣∣− ∣∣∣(e1 − e2)
⊤H[:, k]

∣∣∣ ∣∣∣
=
∣∣∣ ∣∣∣(e1 − e2)

⊤H̃[:, 1]
∣∣∣− ∣∣∣(e1 − e2)

⊤H[:, 1]
∣∣∣ ∣∣∣

=|h− h′| · |e1 + e2|

=δ · (e1 + e2),

where δ = |P(f(X) = 1|A = 1)− P(f(X) = 1|A = 2)|. Therefore, the equality holds.

D.3.4 Proof for Theorem 18

Theorem 4.5 (Error upper bound of calibrated metrics). Denote the error

of the calibrated fairness metrics by Errcalu := |∆̂u(D̃, f) −∆u(D, f)|. It can be upper

bounded as:

• DP:

ErrcalDP ≤
2

K

∑
k∈[K]

∥∥Λ−1
p

∥∥
1
∥ΛpH[:, k]∥∞ ε(T̂k, p̂),

where ε(T̂k, p̂) := ∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 + ∥I − TkT̂

−1
k ∥1 is the error induced by

calibration.

283

• EOd:

ErrcalEOd ≤
2

K2

∑
k∈[K],y∈[K]

∥∥∥Λ−1
py

∥∥∥
1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ε(T̂k⊗y, p̂y),

where ε(T̂k⊗y, p̂y) := ∥Λ−1
p̂y

Λpy − I∥1∥Tk⊗yT̂
−1
k⊗y∥1 + ∥I − Tk⊗yT̂

−1
k⊗y∥1 is the error

induced by calibration.

• EOp:

ErrcalEOp ≤ 2
∑

k=1,y=1

∥∥∥Λ−1
py

∥∥∥
1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ε(T̂k⊗y, p̂y),

where ε(T̂k⊗y, p̂y) := ∥Λ−1
p̂y

Λpy − I∥1∥Tk⊗yT̂
−1
k⊗y∥1 + ∥I − Tk⊗yT̂

−1
k⊗y∥1 is the error

induced by calibration.

Proof. We prove with EOd.

Consider the case when f(X) = k and Y = y. For ease of notations, we use

T̂ to denote the estimated local transition matrix (should be T̂k⊗y). Denote the noisy

(clean) fairness vectors with respect to f(X) = k and Y = y by h̃ (h). The error can be

decomposed by∣∣∣∣∣ ∣∣∣(ea − ea′)
⊤
(
Λ−1

p̂y
(T̂⊤)−1Λp̃y h̃

)∣∣∣− ∣∣∣(ea − ea′)
⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
=
∣∣∣(ea − ea′)

⊤
(
(Λ−1

p̂y
−Λ−1

py
)(T̂⊤)−1Λp̃y h̃

)∣∣∣︸ ︷︷ ︸
Term-1

+

∣∣∣∣∣ ∣∣∣(ea − ea′)
⊤
(
Λ−1

py
(T̂⊤)−1Λp̃y h̃

)∣∣∣− ∣∣∣(ea − ea′)
⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣︸ ︷︷ ︸
Term-2

.

Now we upper bound them respectively.

284

Term-1:

∣∣∣(ea − ea′)
⊤
(
(Λ−1

p̂y
−Λ−1

py
)(T̂⊤)−1Λp̃y h̃

)∣∣∣
(a)
=
∣∣∣(ea − ea′)

⊤
(
(Λ−1

p̂y
−Λ−1

py
)(Tk⊗yT̂

−1)⊤ΛpyH[:, k ⊗ y]
)∣∣∣

(b)
=
∣∣∣(ea − ea′)

⊤
(
(Λ−1

p̂y
Λpy − I)Λ−1

py
T⊤
δ ΛpyH[:, k ⊗ y]

)∣∣∣
≤2
∥∥∥Λ−1

p̂y
Λpy − I)

∥∥∥
∞

∥∥∥Λ−1
py

∥∥∥
∞
∥Tδ∥1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy − I)
∥∥∥
∞
∥Tδ∥1

)
,

where equality (a) holds due to

Λp̃yH̃[:, k ⊗ y] = T⊤
k⊗yΛpyH[:, k ⊗ y]

and equality (b) holds because we denote the error matrix by Tδ, i.e.,

T̂ = T−1
δ Tk⊗y ⇔ Tδ = Tk⊗yT̂

−1.

Term-2: Before preceeding, we introduce the Woodbury matrix identity:

(A+UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Let A := T⊤
k⊗y, C = I, V := I, U := T̂⊤ − T⊤

k⊗y. By Woodbury matrix identity, we

have

(T̂⊤)−1

=(T̂⊤
k⊗y + (T̂⊤ − T⊤

k⊗y))
−1

=(T⊤
k⊗y)

−1 − (T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)

(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1

285

Term-2 can be upper bounded as:

∣∣∣∣∣ ∣∣∣(ea − ea′)
⊤

(
Λ

−1
py

(T̂
⊤
)
−1

Λp̃y h̃
)∣∣∣ − ∣∣∣(ea − ea′)

⊤
(
Λ

−1
py

(T
⊤
k⊗y)

−1
Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
(a)
=

∣∣∣∣∣
∣∣∣∣(ea − ea′)

⊤
(
Λ

−1
py

(
(T

⊤
k⊗y)

−1 − (T
⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

(
I + (T

⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

)−1
(T

⊤
k⊗y)

−1
)

Λp̃y h̃

)∣∣∣∣
−

∣∣∣(ea − ea′)
⊤

(
Λ

−1
py

(T
⊤
k⊗y)

−1
Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
≤

∣∣∣∣(ea − ea′)
⊤

(
Λ

−1
py

(T
⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

(
I + (T

⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

)−1
(T

⊤
k⊗y)

−1
Λp̃y h̃

)∣∣∣∣
(b)
≤∥ea − ea′∥1

∥∥∥∥Λ−1
py

(T
⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

(
I + (T

⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

)−1
(T

⊤
k⊗y)

−1
Λp̃y h̃

∥∥∥∥
∞

≤2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥∥∥(T⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

(
I + (T

⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

)−1
(T

⊤
k⊗y)

−1
Λp̃y h̃

∥∥∥∥
∞

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥∥∥(I + (T
⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y) − I

) (
I + (T

⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

)−1
(T

⊤
k⊗y)

−1
Λp̃y h̃

∥∥∥∥
∞

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥∥∥[I −
(
I + (T

⊤
k⊗y)

−1
(T̂

⊤ − T
⊤
k⊗y)

)−1
]
(T

⊤
k⊗y)

−1
Λp̃y h̃

∥∥∥∥
∞

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥∥∥(I − Tk⊗yT̂
−1

)⊤
(T

⊤
k⊗y)

−1
Λp̃y h̃

∥∥∥∥
∞

(c)
≤ 2

∥∥∥Λ−1
py

∥∥∥
∞

∥I − Tδ∥1
∥∥∥(T⊤

k⊗y)
−1

Λp̃y h̃
∥∥∥
∞

(d)
= 2

∥∥∥Λ−1
py

∥∥∥
∞

∥I − Tδ∥1
∥∥∥ΛpyH[:, k ⊗ y]

∥∥∥
∞

,

where the key steps are:

• (a): Woodbury identity.

• (b): Hölder’s inequality.

• (c): T̂ = T−1
δ Tk⊗y and triangle inequality

• (d):

H̃[:, k ⊗ y] = Λ−1
p̃y

T⊤
k⊗yΛpyH[:, k ⊗ y]

⇔(T⊤
k⊗y)

−1Λp̃yH̃[:, k ⊗ y] = ΛpyH[:, k ⊗ y].

286

Wrap-up Combining the upper bounds of Term-1 and Term-2, we have (recovering

full notations)∣∣∣∣∣ ∣∣∣(ea − ea′)
⊤
(
Λ−1

p̂y
(T̂⊤)−1Λp̃y h̃

)∣∣∣− ∣∣∣(ea − ea′)
⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
≤2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy − I)
∥∥∥
∞
∥Tδ∥1 + ∥I − Tδ∥1

)
=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy − I)
∥∥∥
∞

∥∥∥Tk⊗yT̂
−1
k⊗y

∥∥∥
1
+
∥∥∥I − Tk⊗yT̂

−1
k⊗y

∥∥∥
1

)
.

Denote by ∆̂ã,ã′

k⊗y := |Ĥ[ã, k ⊗ y] − Ĥ[ã′, k ⊗ y]| the calibrated disparity and

∆ã,ã′

k⊗y := |H[ã, k ⊗ y]−H[ã′, k ⊗ y]| the clean disparity between attributes ã and ã′ in

the case when f(X) = k and Y = y. We have

∣∣∣∆̂EOd(D̃, f)−∆EOd(D, f)
∣∣∣

≤ 1

M(M − 1)K2

∑
ã,ã′∈[M],k,y∈[K]

∣∣∣∆̂ã,ã′

k⊗y −∆ã,ã′

k⊗y

∣∣∣
≤ 2

K2

∑
k,y∈[K]

2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy − I)
∥∥∥
∞

∥∥∥Tk⊗yT̂
−1
k⊗y

∥∥∥
1
+
∥∥∥I − Tk⊗yT̂

−1
k⊗y

∥∥∥
1

)
.

The above inequality can be generalized to DP by dropping dependency on y

and to EOp by requiring k = 1 and y = 1.

287

D.3.5 Proof for Corollary 7

Proof. Consider DP. Denote by H[:, k = 1] = [h, h′]⊤. We know δ = |h − h′|/2 =

∆DP(D, f)/2. Suppose p ≤ 1/2,
∥∥Λ−1

p

∥∥
∞ = 1/p and

∥ΛpH[:, k]∥∞ = max(ph, (1− p)h′).

Recall

ε(T̂k, p̂) := ∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 + ∥I − TkT̂

−1
k ∥1.

By requiring the error upper bound in Theorem 18 less than the exact error in Corollary 6,

we have (when k = 1)

∥∥Λ−1
p

∥∥
∞ ∥ΛpH[:, k]∥∞ ε(T̂k, p̂) ≤ δ · (e1 + e2)

⇔ε(T̂k, p̂) ≤
δ · (e1 + e2)∥∥Λ−1

p

∥∥
∞ ∥ΛpH[:, k]∥∞

⇔ε(T̂k, p̂) ≤
δ · (e1 + e2)

max(h, (1− p)h′/p)
.

If p = 1/2, noting max(h, h′) = (|h+ h′|+ |h− h′|)/2, we further have (when k = 1)

ε(T̂k, p̂) ≤
|h− h′| · (e1 + e2)

|h− h′|+ |h+ h′|
=

e1 + e2

1 + h+h′

|h−h′|
=

e1 + e2

1 + h+h′

∆DP(D,f)

.

To make the above equality holds for all k ∈ {1, 2}, we have

ε(T̂k, p̂) ≤ max
k′∈{1,2}

e1 + e2

1 + ∥H[:,k′]∥1
∆DP(D,f)

,∀k ∈ {1, 2}.

D.3.6 Differential Privacy Guarantee

We explain how we calculate the differential privacy guarantee.

288

Suppose P(Ã = a|A = a,X) ≤ 1 − ϵ0 and P(Ã = a|A = a′, X) ≥ ϵ1,∀X, a ∈

[M], a′ ∈ [M], a ̸= a′. Then following the result of [53], we have

P(RandResponse(a) = ã)

P(RandResponse(a′) = ã)
≤ P(Ã = ã|A = a,X)

P(Ã = ã|A = a′, X)
≤ max P(Ã = a|A = a,X)

min P(Ã = a|A = a′, X)
≤ 1− ϵ0

ϵ1

= eε.

Then we know ε = ln(1−ϵ0
ϵ1

). In practice, if proxies are too strong, i.e., ln(1−ϵ0
ϵ1

) is too

large, we can add additional noise to reduce their informativeness and therefore better

protect privacy. For example, when we add 40% of random noise, the the corresponding

privacy guarantee is at least 0.41-DP. To get this value, noting the proxy model’s accuracy

of individual feature is not clear, we consider a native worst case that the model has

an accuracy of 1 on some feature. Then by adding 40% of the random noise (random

response), we have

ϵ = ln
1− 0.4

0.4
< 0.41,

corresponding to at least 0.41-DP.

D.4 More Discussions on Transition Matrix Estimators

In this section, we extend HOCFair to a general form which can be used for

EOd and EOp. For readers who are interested in details about HOC, we have provided

more details in Chapter 2. We also encourage the readers to read the original papers

[230, 231].

Consider a general fairness metric depending on both f(X) and Y . According

to the full Version of Theorem 17 in Appendix D.3.2, we need to estimate Tk⊗y and py,

289

∀k ∈ [K], y ∈ [K]. We summarize the general form of HOCFair in Algorithm 10. In this

general case, our Global method in experiments adopt Tk⊗y ≈ T̂ and py ≈ p̂y,∀y ∈ [K].

For example, considering EOp with binary attributes and binary label classes, we will

estimate 4 noise transition matrices and 2 clean prior probabilities for Local, and 1 noise

transition and 2 clean prior probabilities for Global.

290

Algorithm 10 StatEstimator: HOCFair (General)

1: Input: Noisy dataset D̃. Target model f .

Get the number of noisy attributes (i.e., # proxy models)

2: C ← #Attribute(D̃)

Get 2-Nearest-Neighbors of xn and save their attributes as xn’s attribute

3: if C < 3 then

4: {(xn, yn, (ã1n, · · · , ã3Cn))|n ∈ [N]}←Get2NN(D̃)

5: D̃ ← {(xn, yn, (ã1n, · · · , ã3Cn))|n ∈ [N]}

6: end if

Randomly sample 3 noisy attributes for each instance

7: {(ã1n, ã2n, ã3n)|n ∈ [N]} ← Sample(D̃)

Get estimates Tk ≈ T̂ and p ≈ p̂

8: (T̂ , p̂)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N]})

Get estimates Tk⊗y ≈ T̂k⊗y, and py = p̂y

9: for y ∈ [K] do

10: (T̂k⊗y, p̂y)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N], f(xn) = k, Y = y}), ∀k ∈ [K]

11: end for

Return the estimated statistics

12: Output: T̂ , {T̂k⊗y | k ∈ [K], y ∈ [K]}, {p̂y | y ∈ [K]}

291

