
UCLA
UCLA Previously Published Works

Title
Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial 
Fibrillation

Permalink
https://escholarship.org/uc/item/0sd9d210

Journal
Circulation Genomic and Precision Medicine, 13(5)

ISSN
1942-325X

Authors
Weng, Lu-Chen
Hall, Amelia Weber
Choi, Seung Hoan
et al.

Publication Date
2020-10-01

DOI
10.1161/circgen.119.002874
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sd9d210
https://escholarship.org/uc/item/0sd9d210#author
https://escholarship.org
http://www.cdlib.org/


Genetic Determinants of Electrocardiographic P-wave Duration 
and Relation to Atrial Fibrillation

A full list of authors and affiliations appears at the end of the article.

Abstract

Background -—The P-wave duration (PWD) is an electrocardiographic (ECG) measurement 

that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with 

atrial fibrillation (AF). We used exome chip data to examine the associations between common 

and rare variants with PWD.

Methods -—Fifteen studies comprising 64,440 individuals (56,943 European, 5,681 African, 

1,186 Hispanic, 630 Asian), and ~230,000 variants were used to examine associations with 

maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for 

common variants; gene-based burden and SKAT tests examined low-frequency variant-PWD 

associations. Additionally, we examined the associations between PWD loci and AF using 

previous AF GWAS.

Results -—We identified 21 common and low-frequency genetic loci (14 novel) associated with 

maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, 

SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were 

associated with longer PWD and increased AF risk. However, top variants at other loci (e.g., 

PITX2 and SCN10A) were associated with longer PWD but lower AF risk.

Conclusions -—Our results highlight multiple novel genetic loci associated with PWD, and 

underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an 

endophenotype for several different genetic mechanisms of AF.
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electrocardiography; population genetics; ECG; atrial fibrillation; exome; Electrophysiology; 
Genetic; Association Studies; Atrial Fibrillation

P-wave duration (PWD) is an electrocardiographic measurement that reflects cardiac 

conduction through the atria. PWD variability may implicate intrinsic or acquired properties 

in the function and structure of atrial conductivity.1 Shortened and prolonged PWD have 

been repeatedly associated with atrial fibrillation (AF),2, 3 a common and heritable4 

arrhythmia that predisposes to stroke, heart failure, and increased mortality.5–7

Although PWD is heritable8, 9 only two genome-wide association studies (GWAS) have 

been conducted.10, 11 Given the relationship between PWD and AF, examining the genetic 
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determinants of PWD may provide insights into the pathophysiology of AF. Moreover, 

assessment of coding variation may facilitate identification of AF-specific genes. Therefore, 

we conducted an exome-chip based analysis focused on rare and common genetic 

determinants of PWD.

Methods

Each study was reviewed and approved by the local or institutional IRB, and each 

participant provided consent. Study-specific details are provided in Supplemental Material, 

under “Description of participating studies” and in Supplemental Table 1. In our primary 

analysis, we considered loci/genes significantly associated with PWD if a common variant 

(minor allele frequency [MAF] ≥ 5%) or a gene-based test, including burden or sequence 

kernel association test [SKAT]12 comprising low-frequency variants [MAF < 5% or MAF 

<1%]) exceeded exome-wide significance in meta-analyses, after Bonferroni correction. We 

reported low-frequency variants that exceeded exome-wide significance at significant loci 

identified in gene-based analyses. The full Methods section is available in the Supplemental 

Material (under “Methods”). Data supporting the findings of this study can be made 

available, following reasonable request to the corresponding author.

Results

A total of 64,440 individuals from 4 ethnic groups (56,943 European, 5,681 African, 630 

Asian, 1,186 Hispanic) and 15 studies were included in our meta-analysis. The per-study 

mean age ranged from 46.2–72.6 years; roughly 60% of participants were women (Table 1). 

For the multi-ethnic single variant analyses, we tested ~26,000 common variants (see 

Supplemental Table 3 for the exact number of variants included in each analysis). The 

Quantile-Quantile plots show a small degree of inflation for both PWD residuals (λ=1.10) 

and inverse normal transformed PWD residuals (λ=1.13; Supplemental Figures 1a-1b). We 

performed meta-analyses in ethnicity-specific groups (European: λ=1.10–1.13; African: 

λ=1.03; Supplemental Figures 1c-1f). LD score regression intercepts were 1 (multi-ethnic 

analyses) and 0.95 (European-specific analyses), suggesting the inflation was mainly due to 

polygenicity. Meta-analysis results from PWD residuals, and inverse normal transformed 

PWD residuals were highly correlated across analyses (Pearson’s rho≥0.99, P<2.2×10−16; 

Supplemental Figure 2).

Common variant analyses

We identified 41 exome-wide significant variants at 18 loci (P-value <1.9×10−6; 

Supplemental Figure 3) in our multi-ethnic meta-analysis of PWD residuals (Table 2). 

Eleven of the 18 PWD loci are novel, representing the following nearest genes: PKP1 
(rs1626370, P=2×10−6), TTN (rs2042995, P=4×10−7), PITX2 (rs17042171, P=8×10−11), 

ARHGAP10 (rs6845865, P=2×10−10), TCF21 (rs2327429, P=2×10−7), CDK6 (rs2282978, 

P=2×10−8), SYNPO2L (rs3812629, P=4×10−7), SOX5 (rs17287293, P=3×10−7), HMGA2 
(rs8756, P=7×10−7), GORS4 (rs17608766, P=9×10−15), and MC4R (rs12970134, 

P=1×10−6). Another novel locus was associated only with the inverse normal transformed 

PWD (JAZF1, P=1×10−6; Table 2; Supplemental Table 4). The PWD variance explained by 

each of the top variants ranged from 0.04% to 0.44%; the top variants in aggregate explained 
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~1.6% of the phenotypic variance. Associations for SCN10A and PITX2 regions were 

moderately heterogeneous across individual studies (I2 ≥45%; Table 2). Of these 19 multi-

ethnic significantly associated loci, 13 were significantly associated with PWD residuals in 

the European ancestry subset, and one (SCN10A) was observed in individuals of African 

ancestry (Supplemental Table 4). No additional loci were observed in analyses restricted to 

either European or African ancestry (Supplemental Figure 4 for Manhattan plots).

In conditional analyses, we identified additional signals from SCN5A and SCN10A 
(Supplemental Table 5). For inverse normal transformed PWD residuals, an additional signal 

(rs10033464, P-value=2×10−7) was observed in the PITX2 region. In addition to the 7 

previously known loci that exceeded exome-wide significance, we observed 2 nominally 

significant associations with PWD at SSBP3 and EPAS1 (P <0.001; Supplemental Table 6).
10

Gene-based analyses

We performed burden and SKAT tests for associations with PWD for 16,949 genes with a 

cumulative minor allele count (cMAC) ≥10, including 192,455 low-frequency and rare 

variants, in the multi-ethnic sample. We identified 4 genes associated with PWD using 

SKAT tests aggregating functional variants with MAF <5% (TTN, P=6×10−27; DLEC1, 

P=2×10−13; SCN10A, P=7×10−8; and RPL3L, P=9×10−7; Table 3). We identified an 

additional association (TTC21A, P=1×10−6) using inverse normal transformed PWD 

residuals in the European-specific analysis. Using burden tests, we identified TTN and 

MUC5B as PWD-associated genes in the multi-ethnic and European-specific analyses. We 

did not observe any significant associations for variants with MAF <1%, suggesting that 

identified associations were mainly driven by low-frequency, not rare, variants. Among these 

significant genes, we identified two additional low-frequency missense variants exceeding 

exome-wide significance for association (DLEC1, rs116202356, Glu264Lys, P=2×10−10; 

RPL3L, rs113956264, Val262Met, P=1×10−6; Table 2), which were not reported in our 

single variant tests.

eQTL analyses between genes at PWD loci and gene expression

We assessed eQTL associations for top variants and proxies (linkage disequilibrium (LD): 

r2>0.8; 1000 Genomes: phase 3 version 5, all individuals from LDlink13) in two heart tissues 

from GTEx version 7 (right atrial appendage (RAA) and left ventricle (LV); Supplemental 

Table 7).14 Six loci were associated with significant changes in gene expression, especially 

in the RAA, including 2 known PWD loci (HCN1, FADS1) and 4 novel loci (TTN, TCF21, 

JAZF1, SYNPO2L) (Supplemental Table 7). The alleles associated with longer PWD at 

HCN1 and SYNPO2L had lower expression of these genes in RAA tissues. In contrast, 

alleles at the JAZF1 and FADS1 loci were associated with higher gene expression in the 

RAA and LV, respectively. Gene expression directionality was consistent across RAA and 

LV tissues. Expression level changes of JAZF1 and MYOZ1 per allele in RAA tissue were 

significantly higher than in the LV. We observed more significant eQTLs in the RAA than 

the LV, as expected, because P-wave duration reflects atrial conduction.
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Relation of the PWD with ECG traits identifies 4 novel and 5 known loci

We examined associations between PWD loci and other ECG measurements from large-

scale association studies (Supplemental Table 8). We identified 8 novel (TTN, DLEC1, 

ARHGAP10, JAZF1, SYNPO2L, SOX5, HMGA2, GOSR2), and 5 known (SCN10A, 

CAV1, FADS1, TBX5, MYH6) PWD loci, all previously reported to be associated with PR 

interval, PR segment, QRS duration, QT interval, or RR interval. Variants at TCF21, 

SYNPO2L, and MYH6 were associated with PR interval in recent large-scale genetic 

association studies,15–17 but the top variants in our PWD analysis were in low to moderate 

linkage disequilibrium with top variants from these earlier analyses (LD: r2 <0.8; 1000 

Genomes: phase 3 version 5, all individuals) .

Overlap between PWD loci and AF

Fourteen PWD loci were associated with AF risk in a recent AF GWAS18 (P 
<0.0024=0.05/21 loci; Figure 1 and Supplemental Table 8). Two loci in well-known AF 

gene regions, PITX2 and TTN, were novel PWD loci. Among these 14 loci, 6 were 

associated with longer PWD and higher AF risk (TTN, TCF21, SOX5, GOSR2, MC4R, 

MYH6), whereas 8 were associated with longer PWD but lower AF risk (DLEC1, PITX2, 

CDK6, SYNPO2L, CAND2, SCN10A, CAV1, TBX5).

Discussion

In a multi-ancestry study comprising ~65,000 individuals, we identified 12 novel and 7 

previously reported loci related to PWD in a meta-analysis of common exome chip variants. 

After aggregating rare and low-frequency exonic variants, we identified 6 genes, including 2 

additional low-frequency variants potentially related to PWD, and loci with specific patterns 

of association for PWD and AF risk. These findings suggest that AF may result from 

multiple genetic mechanisms, and PWD may be an endophenotype for these mechanisms.

Our study extends the literature on the genetic components underlying atrial conduction, and 

the relationship between PWD and AF risk. In comparison to earlier genetic association 

studies of PWD,10, 11 we predominantly focused on genetic variants in coding regions (Table 

2). In total, we identified 21 common variant loci related to PWD. The top common variants 

explain ~1.6% of the phenotypic variance in PWD. Our gene-based analyses also highlight 

the importance of low-frequency variants contributing to PWD in genes such as TTN, 

SCN10A, and RPL3L.

Our findings have two major implications. First, associated loci span genes involved in the 

development and maintenance of adult cardiac tissue (PITX2, TCF21, HMGA2, NKX2-5, 

TBX5, CAND2, CDK6), muscle and sarcomere structure (TTN, SYNPO2L, SOX5, MYH6, 
RPL3L), ion channel function (HCN1, SCN10A), and cell-cell contact (PKP1, ARHGAP10, 

CAV1). We additionally noted several genes with a role in metabolism (JAZF1, CDK6, 

HMGA2, MC4R) though the connection to AF is less clear.19–22 The transcription factor 

PITX2 is the top susceptibility locus for AF. Decreased Pitx2 expression in the adult left 

atrium is associated with AF in humans,23 and abnormal cardiac conduction and low-voltage 

P-waves in knockout mice.24 PITX2 is activated by TBX5 to co-regulate a number of 
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membrane effector genes (such as SCN5A, GJA5 and RYR2). Reduction of Tbx5 expression 

in a mouse model decreased myocardial automaticity.25 TCF21 is a transcription factor 

required during embryogenesis for formation of heart tissue, and is involved in fibroblast 

generation after injury in adults.26 The nuclear scaffolding protein HMGA2 trans-activates 

the heart specific transcription factor NKX2-5.27 HMGA overexpression in mice mediates 

the response to pressure-overload induced cardiac remodeling.28 CAND2 suppresses 

myogenin degradation and directs cardiac progenitor cells towards a myocyte fate.29

Titin (TTN) is a major structural component of the sarcomere, required for contractile 

function in cardiomyocytes. Loss of function mutations in TTN are associated with early-

onset AF30 and dilated cardiomyopathy.31 Cytoskeletal Heart-enriched Actin-associated 

Protein (CHAP, aka SYNPO2L), is a Z-disc protein; zebrafish knockdown models display 

hypertrophy and delayed conduction,32 and the locus has been associated with AF in GWAS.
18 SOX5 is a master regulator of cell fate in embryonic development.33 In drosophila, SOX5 
knockdown results in decreased heart rate and increased cardiac wall thickness.34 MYH6, 

specifically expressed in the atria, forms the thick filament in cardiac smooth muscle; 

mutations are associated with cardiomyopathies,35 sinus node dysfunction,36 and congenital 

heart disease.37 Some identified genes are important for atrial conduction, including 

HCN138 and SCN10A39 which govern potassium, and late sodium channel currents, 

respectively. The proteins ARHGAP10,40 PKP1,41 and CAV1,42 are involved in cell-cell 

contact and are necessary for efficient signal conduction. The ribosomal protein RPL3L is 

specifically expressed in skeletal muscle and heart; coding variants in this gene are 

associated with AF.43

Second, our study implicates PWD as a powerful endophenotype for understanding the 

biological mechanisms of AF. Fifteen loci identified in our study were associated with AF 

risk in a recent AF GWAS,18 underscoring the genetic correlation between atrial conduction 

and AF risk. Epidemiological data indicate that PWD variability is associated with AF risk,
2, 3 AF recurrence after cardioversion44 and ablation,45 as well as ischemic stroke.46 

Generally, we observed that top variants at known sarcomere genes (e.g., TTN, MYH6) were 

associated with increased PWD and increased AF risk, implicating atrial myopathic 

pathways in AF susceptibility. We speculate that myopathic pathways predispose individuals 

to AF via delayed conduction velocity, increased propensity for reentry, and susceptibility to 

ectopic atrial activity. Similarly, TCF21 and SOX5 are two transcription factors associated 

with increased PWD and increased AF risk.

In contrast, top variants at SCN10A were associated with increased PWD but reduced AF 

risk. Other PWD-associated genes, such as PITX2, CAND2, TBX5, and CDK6, contained 

variants associated with longer PWD and reduced AF risk. The directionality of gene 

associations observed for PWD and AF risk underscore the complexity of AF susceptibility, 

while highlighting the potential to leverage PWD to elucidate AF-specific pathways (Figure 

2). Whether studying PWD can lead to insights relevant for therapeutic targeting remains 

unclear.

Our results should be interpreted within the context of our study design. First, the majority 

of our sample consisted of individuals of European ancestry and may have limited 
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generalizability to non-European ancestries. Studies with broader ethnic/racial diversity are 

warranted. Second, top variants identified in our study may not directly modulate PWD, a 

limitation of most genetic association studies. Biological characterization of loci is needed to 

conclusively link variants to function. Third, ascertainment of rare variation is limited using 

the exome-chip, and future analyses of sequence data are warranted. Fourth, despite a 

relatively large sample, our findings explained a small proportion of phenotypic variance. 

Because the additive SNP-based heritability of PWD has been estimated to be as high as 

19%,8 our results highlight the fact that much of the genetic susceptibility to PWD remains 

unexplained. Larger samples, genome-wide assessments, and examination of rare variation 

may be necessary to identify additional loci for PWD.

In conclusion, we identified 14 novel loci in common and low-frequency variant analyses 

and 6 gene regions in a low-frequency variant analysis for PWD. Our findings highlight the 

shared genetic components of atrial conduction and AF risk, and illustrate the diverse 

biological pathways affecting atrial conduction and mechanisms leading to AF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

AF atrial fibrillation

cMAC cumulative minor allele count

GWAS genome-wide association studies

LV left ventricle

MAF minor allele frequency

PWD P-wave duration

RAA right atrial appendage

SKAT sequence kernel association test
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Figure 1. 
P-wave duration loci and atrial fibrillation risk. The x-axis represents the association 

between the top P-wave duration (PWD) loci and PWD in -log10 scale. The y-axis represents 

the association P-value between the top PWD loci and atrial fibrillation (AF) risk (-log10 

scale). Variants above y=0 refer to loci associated with longer PWD and higher AF risk 

(colored in yellow). Variants below y=0 refer to loci associated with longer PWD but lower 

AF risk (colored in blue). Displayed results are from the multi-ethnic meta-analysis of PWD 

residuals. Associations with AF were derived from a recent AF GWAS.18 Dashed lines show 
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the significance threshold for the current exome-wide analysis (vertical; P-value<1.9×10−6) 

and for prior genome-wide analyses of AF (horizontal; P-value<5×10−8). The dotted line 

represents the significance cutoff after Bonferroni correction (horizontal; P-

value<2.4×10−3=0.05/21 PWD loci).
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Figure 2: 
Identified P-wave duration associated genes highlight multiple biological pathways for atrial 

fibrillation risk. Gene with increasing risk of AF coupled with prolonged PWD are listed at 

the right. Gene with decreasing risk of AF coupled with prolonged PWD are listed at the 

left. Each gene is accompanied by a diagram representing the biological function of the 

gene, indicating how the gene may affect PWD.
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