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Environmental Significance Statement.  Land transformation is an inevitable outcome of the energy 
transition and must be urgently addressed to reduce unintended outcomes. The ability for decision 
makers to address such outcomes is challenged because the amount of land transformed by different 
energy technologies remains disputed due to lacking systematic methods and data availability. Natural 
gas is set to act as a transition fuel and dominant technology in the grid decarbonization process in the 
United States until 2050.  Land use by natural gas impacts large tracts of land because production 
infrastructure is distributed across landscapes; however, the actual footprint tends to be relatively small. 
We developed a unique and much needed method that integrates machine learning, remote sensing, and 
geographic information systems to obtain spatially explicit land transformation of natural gas-fired 
electricity from a life cycle perspective. The approach shows high accuracy, efficiency, and replicability 
for quantifying land transformed for gas-fired electricity across extensive landscapes, demonstrated for 
the entire U.S. portion of the Western Interconnection. The results will enable high resolution 
environmental impact assessment of extensive energy infrastructure (e.g., climate vulnerabilities, natural 
disasters, and regionalized life cycle environmental impacts) and thus will provide new insights for 
energy systems planning and decarbonization.
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The Life Cycle Land Use of Natural Gas-Fired Electricity in the US 
Western Interconnection
Tao Daiab, Jeya M Josec, Vishal M Patelc, and Sarah M Jordaan*de

Land presents a critical yet often overlooked constraint to energy development. The transition to a lower carbon electricity 
system involves a higher supply of natural gas, incurring the associated environmental impacts. We quantified the land use 
by gas-fired electricity in the U.S. Western Interconnection (WECC) with a novel life cycle method that integrates machine 
learning, remote sensing, and geographic information systems. Our results show that the life cycle land transformation of 
gas-fired electricity is 0.203 0.004 m2/MWh with production and gathering comprising up to 97% depending on power ±

plant efficiency. Enabled by directional drilling, active gas production in non-agricultural regions in total uses ~6% less land 
compared to the peak year of 2011 and gas production sites constructed in 2018 have a land transformation an order of 
magnitude lower than those constructed in the early 2000s. Our study quantifies land-sparing opportunities from the 
multiple uses of land (i.e., agricultural production) and the co-location of wells within a single site. The findings convey the 
significance of temporal changes driven by the technological revolution in future life cycle assessment studies and energy 
systems planning studies.  

Introduction
Natural gas is often perceived to be among the clean 

sources of electricity and is projected to account for more than 
35% of electricity generation in the U.S. through 2050, just 
below the combination of all renewables.1–3 With more than 
600 billion cubic meters of production each year during the last 
decade, the U.S. domestic gas supply has provided economic 
benefits and supported the transition from a coal-dominated 
power system to one with lower carbon meanwhile maintained 
its security and independence.4 However, the potential 
environmental and ecological impacts associated with such an 
intensive natural gas production activity, including global 
warming potential from methane leakage, freshwater quality 
degradation, landscape fragmentation, and biodiversity and 
ecosystem services losses, are increasingly noted.5–7 Land use 
serves as a basis for localized environmental impact assessment 
and has thus been recognized as a constraint to energy 
development, including natural gas.8–10 Life cycle assessment 
(LCA)—an examination of the environmental burdens of a 
product from raw materials extraction through waste 
disposal—can provide important insights into the 
aforementioned impacts.11,12 While many LCAs have been 
conducted on gas-fired electricity, the quantification of land use 
remains limited with little research to confirm the directly 

impacted land.13,14 Determining the life cycle land 
transformation (i.e., the ratio of the extent of land use in m2 to 
the electricity generation in MWh15) of gas-fired electricity 
could provide a fundamental first-step toward more robust 
analyses and comparison of different energy sources on their 
land use extent and the associated environmental and 
ecological impact.16–18

The infrastructures through the life cycle of gas-fired 
electricity mainly include natural gas production sites 
(production pads and their access roads), natural gas 
transportation facilities (e.g., gathering and transmission 
pipelines), natural gas processing plants, and gas-fired power 
plants.19 Currently, only the locations of these land use 
elements are publicly available, and the coverage is also limited 
for specific elements (e.g., gathering pipelines).20 Mapping the 
land use and providing more detailed spatial information 
beyond the location of these infrastructures, including their 
shapes, distribution patterns, and land use magnitude, is in 
increasing demand for a more accurate and regionalized 
assessment of environmental impacts.21 Acquiring such land 
use maps, however, is time and effort intensive, mainly due to 
the infrastructure associated with the natural gas supply chain 
covering large areas and changing over time. For example, the 
production wells are only producing natural gas effectively 
within a limited area due to the non-renewable nature of fossil 
fuels. New pads, wells, and supporting infrastructure need to be 
built to sustain a profitable and stable natural gas supply while 
non-producing wells can either be temporarily shut-in, 
abandoned without reclamation, or plugged in and reclaimed. 

Mainly three types of approaches have been used to map 
the land use by natural gas production infrastructure, and all of 
them utilize a combination of geographic information systems 
and high-resolution imagery. The first is to manually delineate 
the land use perimeters of each or part of the land use 
elements. This manual visual interpretation is an accurate but 
labor-intensive approach, so it is usually conducted on a small 
scale.22,23 The efficiency of manual delineation would further 
decrease when higher resolution imageries are used since a 
relatively larger number of pixels must be delineated. The 
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second approach is to first manually delineate the boundaries 
of a sample of each infrastructure type, and then project the 
results to the overall population.24–29 This approach enables 
large-scale estimations but does not create an actual mapping 
of land use for spatially explicit environmental impact analysis. 
This approach may also underestimate the entire footprint by 
2-3 times, as pointed out by Walker et al.30 Last, automated or 
semi-automated approaches, termed “image segmentation”, 
can expedite the process for larger datasets.30–34 Image 
segmentation classifies each pixel in an image to a predefined 
class (e.g., a production pad or an access road). Existing 
automated approaches can be resource intensive, however. 
Germaine et al. tested three types of commercial automated 
tools and found that the time cost efficiency of these tools is 
comparable to manual delineation, due to the vast amount of 
time required for post-processing.32 We contribute an approach 
that utilizes machine learning to delineate infrastructure 
elements of natural gas production, enabling the quantification 
of the land use with high accuracy and efficiency.

Land transformation estimates from a comparative LCA 
study can provide important information for policymakers.35,36 
Currently, only a limited number of studies have examined land 
transformation of gas-fired electricity because data are limited 
for both the extent of land use and the amount of natural gas 
production. Early studies on the land transformation of natural 
gas production have mainly depended on coarse 
approximations of the number and the size of production pads, 
with little or no consideration of the spatial variations and the 
land use by associated infrastructure (e.g., access roads).14,35 
Jordaan et al. sampled and automatically delineated the land 
use of the Barnett Shale gas production infrastructure, 
estimated the amount of lifetime production of wells, and 
determined the life-cycle land transformation from a life cycle 
perspective.19 While valuable, the study was limited in terms of 
sample size and is representative of the year 2009. Overall, 
existing data has been regarded as outdated and lack of 
transparency, resulting in land use data being a main 
uncertainty source to energy systems planning studies.37,38

In this study, we first developed a deep learning-based 
mapping approach based on imagery segmentation to 
determine the land transformed by natural gas production and 
gathering. Deep learning is one of the most effective and 
efficient computer vision algorithms and has been widely 
applied in a variety of areas such as item recognition, medical 
image segmentation, and recently, solar energy land use.39–43 
We applied the deep learning model and mapped the results for 
the U.S. portion of the Western Interconnection (WECC). We 
obtained and examined the temporal- and spatial-resolved land 
transformation in the study area from a life cycle perspective. 
The WECC is one of the four major electric system networks in 
North America, covering both historical and modern gas 
production areas.44 The region covers nine of the EPA Level II 
ecoregions so the study area is representative in scale, 
production method, and land cover types. Our results show that 
deep learning is an accurate and efficient land use mapping 
approach and is feasible for large-scale studies with high-
resolution imageries. Our spatially explicit land use and land 

transformation results can provide a fundamental data source 
for broader studies on ecology, energy systems, and 
regionalized life cycle environmental impact assessment.

Experimental
This study aims to map the land use, quantify the land use 

extent and land transformation, and identify the temporal and 
geospatial patterns of land use for natural gas-fired electricity 
in the US part of the Western Interconnection through a life 
cycle perspective. We included five life cycle stages in our study 
scope, which are natural gas production from wells (production 
stage), natural gas transportation via gathering pipelines 
(gathering stage), natural gas processing in processing plants 
(processing stage), natural gas transportation via transmission 
pipelines (transmission stage), and natural gas use in gas-fired 
power plants (use stage). We neglected the land use by 
gathering sites,transmission sites, and the surface land use of 
natural gas storage since gathering and transmission sites are 
usually co-located with the other land use elements, and the 
land transformation of natural gas storage has been estimated 
as 2 orders less than the other life cycle stages.19 Table S1 shows 
the description of each life cycle stage, the corresponding land 
use quantification approach, and data sources. Choices of land 
use quantification approach were based on the quantity of 
existing facilities and data availability. For obtaining the land use 
by the large number (>100,000) of natural gas production wells, 
we develop a deep learning-based imagery processing approach 
and mapped the land use using imageries from the National 
Agricultural Imagery Program (NAIP).45 We then estimated the 
land use of gathering pipelines by creating a proxy gathering 
pipeline network based on the results of the production stage. 
Since the number of facilities for the processing stage and the 
use stage is relatively small, we manually delineated the 
imagery and quantified the land use. For the transmission stage, 
we obtained land transformation based on the length and mass 
of transmission data from publicly available data from the 
Energy Information Administration (EIA).46 By sampling the land 
transformation from each stage using Monte Carlo simulation, 
we obtained life cycle land transformation of gas-fired 
electricity and its confidence interval.

Quantify Land Use by Natural Gas Production and Gathering Using 
Deep Learning

The natural gas production wells in our study were 
distributed across nine EPA Level II climate regions, and since 
each region has its typical landscape, our deep learning model 
needs to be able to capture the characteristics of human-
induced disturbances and the various background land use 
types. We used a density-based sampling approach and created 
land use samples by manual annotation (Figure 1a). The 
processes start with the surface locations of natural gas wells. 
The wells are clustered by the self-adjusting density-based 
clustering approach with a minimum number of wells  per 𝑃𝑚

cluster.  is determined by balancing of the required manual 𝑃𝑚

annotation effort and the model representativeness: a small  𝑃𝑚
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divides the wells into a larger number of groups so a larger 
sample size will be created, which requires more effort for 
manual annotation. For each cluster of wells, we created a 
convex hull representing the minimum bounding geometry. We 
identified the well that is closest to the convex hull’s centroid 
and used this well to represent the appearance of the entire 
cluster. We exported images at a pixel-based resolution of 1024 
pixels by 1024 pixels with the selected well located at the center 
of each image. We manually annotated the sampled images in 
ArcGIS Pro by creating a multiple-feature layer, which includes 
three land use classes (i.e., facilities, actively-used, and 
regenerating as shown in Figure 1a). Facilities are manufactured 
products including wellheads and surface pipes and account for 
a relatively small area. Actively-used includes access road and a 
portion of the natural gas production pad, which are usually 
impervious surfaces and can be identified as bright and smooth 
pixels in imageries. The regenerating class includes clearings 
near or attached to a production pad and an access road, 
showing dimness and roughness in the imageries. The multiple-
feature layer was then split and converted to annotated images 
using the spatial information of the exported NAIP images.  

We trained image segmentation models based on Dense U-
NET, which is a convolutional network that has been 
successfully applied for image segmentation in areas such as 
biomedical images.41 We developed the code in PyTorch47 and 
used an NVIDIA RTX 8000 GPU to train the models. The Dense 
U-Net configuration has a 5-layer deep encoder and a 5-layer 
deep decoder. Each block is made of dense connections, which 

are a set of five convolutional layers having a residual 
connection with the subsequent convolutional layers. There are 
also max-pooling layers after each subsequent encoder block 
and upsampling layers after each subsequent decoder block. 
For upsampling, a simple bilinear interpolation operation is 
employed. All the convolutional layers in the network have a 
kernel size of 3x3, a stride of 1, and a padding of 1. The max-
pooling and upsampling operations are done by a factor of 2. 
ReLU is used as the activation function after every block. The 
output segmentation mask is trained by supervising it with a 
cross-entropy loss over the ground truth. The network, with 
52.36 million trainable parameters, is trained for 1000 epochs 
using Adam optimizer and a learning rate of 0.0005. The 
computational complexity of the model is 60.80 Giga FLOPs, 
which corresponds to the total number of additions and 
multiplicative operations. The inference speed of the model is 
358 milliseconds while benchmarked on an Intel Xeon Gold 
6140 CPU operating at 2.30 GHz. 

The trained deep learning model is then tested with images 
of all the wells, which are exported based on the surface 
location of the wells. We checked model performance using the 
F1 score, which is the harmonic mean of the precision and 
recalls of a classifier and is defined as:

F1 = 2TP ⋅ (2TP +  FN +  FP) ―1 
where , , and  correspond to the number of true 𝑇𝑃 𝐹𝑁 𝐹𝑃
positives, false negatives, and false positives in the output 
prediction, respectively. We repeated the model training 
process, starting with increasing  (from 2 to 5, and then to 8), 𝑃𝑚

Figure 1. (a) The workflow of machine learning model training (b) The workflow of machine learning modeling application at both a cluster-level process 
and an image-level process
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which classified the wells into fewer clusters. Then we 
annotated more images in areas where the model has worse 
performance, and then improved the model. Finally, we 
obtained a deep learning model trained with ~6,000 manually 
delineated images. The training and validation curves (Figure 
S1) of the final model were stable, which indicates adequate 
training strategies.

Each NAIP imagery covers the land of an entire county so 
directly apply the trained deep learning model to such county-
level imageries for land use mapping will be of a low efficiency 
as a natural production area occupies only a portion of a county. 
We combined cluster-level processes with image level 
processes to improve the efficiency (Figure 1b). The cluster-
level processes determined the areas of interest and enabled 
consistent post-processing. The image-level processes mainly 
include image segmentation and geo-referencing (i.e., assigning 
the spatial information of the original images to the segmented 
images).  

First, we grouped the >100,000 wells into 1316 clusters on a 
density basis, in which any two or more wells that are located 
within 3 kilometers formed a cluster. Wells without a valid 
cluster ID were then excluded from further analysis. . Cluster-
level areas of interest were determined by creating a buffer 
area around each well with a buffer distance of 3 kilometers to 
include possible land use near the boundary, which thus 
reduces the truncation error. 

The corresponding original county-level NAIP imageries 
within each cluster were then split into patches of images with 
a resolution of 1024 pixels by 1024 pixels, which were then 
segmented using the deep learning model and georeferenced. 

The segmented images were merged back to a cluster level 
and further converted into geospatial files (.shp files) to remove 
pixels in the segmentation results. These removed pixels 
include rivers and existing roads in an agricultural area as well 
as disconnected pixels that are away from the identified roads 
and pads. Typically, the rivers and roads in an agricultural area 
are determined by the cultivated layer from the USDA National 
Agricultural Statistics Service48 and the NLCD.49 The 
disconnecting pixels are determined using the actively-used 
pixels in the results, which connect to each well in the cluster. 

We allocated the cluster-level land use to each production 
site by interesting the land use map with a Thiessen polygon 
created based on the location of the production pad (Figure 1b). 
We determined if a production pad is a single-use pad or a 
multiple-use pad by conducting a distance-based density 
clustering with a radius of 50 meters. The wells that are 
clustered as isolated wells (Cluster ID equals -1) are then treated 
as located in a single pad whereas wells with the same Cluster 
ID are considered located within the same pad. 

We adjusted our results based on model performance. First, 
a performance matrix,  is obtained by compared to the 𝑷𝒊𝒋,
annotated images and their predicted images.  shows the 𝑷𝒊𝒋

ratio of the correctly segmented pixels (i.e., Class  segmented 𝑖
as Class ) and the incorrectly segmented pixels (i.e., Class  𝑖 𝑖
segmented as Class ). The model performance is categorized 𝑗
based on the land cover of the sample images, which is 

determined based on the NLCD. The area by each class was 
adjusted by the performance per land cover type with:

𝑨′𝒊 =  𝑷 ―𝟏
𝒊𝒋 𝑨𝒊

where  is the adjusted area for the land use class ,  is the 𝐴′𝑖 𝑖 𝑷 ―𝟏

inverse of the performance matrix , and  is the post-𝑷 𝑨𝑖

processed predicted area of each land use class . To simplify 𝑖
the adjustment, we used , when . Additionally, we 𝑝𝑖𝑗 = 0 𝑖 ≠ 𝑗
manually checked the quality of segmentation results for all 
clusters by observation of three output categories: road, pad, 
and mapping (Table S2). Segmentation results with either a “not 
usable” performance or an area of zero are removed from the 
final data analysis. The extent of adjustment is typically less 
than 15%. 

Obtain Amount of Natural Gas Production 

We obtain monthly production data for each well from the 
Enverus platform50 when data is available. The lifetime 
production of a subset of wells is obtained based on the wells’ 
production status, production history, and well type. A well with 
“abandoned” or “inactive” status or with more than 360 months 
of production history is regarded as having achieved its end of 
production life, and the cumulative amount of production was 
used as its lifetime production. For directional or horizontal 
wells with more than 18 months of production but less than 360 
months of production, we estimated the amount of ultimate 
recovery based on the shale gas production model developed 
by Patzek et al. (2015)51 by minimizing the objective function:

𝑚(𝑡) = 𝐾 𝑡
where  is the measured cumulative production data,  is 𝑚(𝑡) 𝑡
time, and  is a coefficient estimated by the Levenbert-𝐾
Marquardt algorithm.19 

Obtain land use by natural gas gathering
We first collected and examined available data from a 

variety of sources for gathering pipelines (e.g., Refs 46,50,52,53). 
However, it is hard to identify these gathering pipelines in the 
NAIP imageries, due to either low pipeline data resolution or the 
restoration of refilled land. We then obtained a proxy of 
pipeline length based on the access roads, which form a 
network that connects all the wells and follows the rules of 
pipeline design once the curves between wells are removed. We 
obtained the centrelines of the actively-used class, which 
represents mainly access roads and actively-used areas within 
the production pad. Then the part of a centreline that is 
overlapped with a pad (a 50 meters radius area around each 
well) is removed for avoiding double-counting of land use by the 
pad and for excluding the land use by potential flow lines. At 
last, the road network was further simplified by using only the 
starting point and ending point of each of the line sections, 
which makes straight lines between wells. The length of the 
gathering pipelines is also adjusted based on the model 
performance for the actively-used class identical to the 
adjustment of land use by production. 

The width of gathering pipelines is determined by the width 
of right-of-way (ROW) from literature, which is 10 meters for a 
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single-use site54  and 30 meters for a multiple-use site.23 The 
lifetime amount of gas gathered by the gathering pipelines is 
assumed to be the sum of lifetime production of the production 
wells in the same pad. The land use extent, land use efficiency, 
and land transformation are calculated at a pad level for both 
the production stage and the gathering stage. 

Life Cycle Land Transformation Quantification and Uncertainty 
Analysis

We sampled from the value of land transformation in each 
life cycle stage using Monte Carlo sampling (iteration = 100,000) 

to obtain the life cycle cumulative land transformation. Before 
sampling, we identified the spatial relationship among the 
production site, gathering, and processing plants based on their 
identity (for matching production sites and gathering pipelines) 
or distance (for matching gas sources and the processing plant) 
to ensure consistency among results. For the following stages 
(i.e., transmission and use), spatial generic data were used. The 
probability of sampling is determined by the amount of 
production for the production and gathering stage, the 
throughput for processing and transmission, and the amount of 
generation for the use stage. 

We used determinant values from literature or 
measurement for the parameters in the life cycle assessment. 
We conducted a sensitivity analysis to examine the significance 
of each parameter to each life cycle stage and the lifecycle 
results. We did not regard the parameter type uncertainties (as 
listed in Table S3) as empirical quantities and treated them as 
probabilistic distributions. We acknowledge that there is a large 
variation within each of these parameters, considering the large 
scale of our study. Checking the parameter values project-by-
project would be time and effort intensive and using a 
sensitivity assessment could help clarify our choices and help 

readers to understand the implication of the possible 
alternatives.

We examined the temporal and geographical variation in 
non-agricultural areas within the main natural gas production 
plays (i.e., Niobrara, Mancos, Piceance, Green River, Powder 
River, and Uinta) to provide insights regarding the pattern of 
historical land conversion from undeveloped land. There are 
more than 45,000 wells located in these areas, representing 
~45% of the total wells in the WECC and accounting for >80% of 
total land use and ~90% of total non-agricultural land use. Wells 
in these non-agricultural areas are also less impacted by other 
human activities after their retirement compared to those in 

agricultural areas, which increases the representativeness of 
the reference year remote sensing imageries. 

Results and discussion
Performance of Deep Learning Model

The deep learning and geographic information systems 
integrated approach is accurate and efficient for large-scale 
land use mapping. The model identified areas of no interest 
(i.e., background) for images in the test set with a median F1 
score of 98.8% (P5= 95.6%, P95 =99.9%) (P: Percentile). We 
obtain a higher performance in the identification of the actively-
used class, with a median F1 score of 75.6% (P5= 26.6%, P95= 
91.8%), and a lower performance in identifying the regenerating 
class, with a F1 score of 41.5% (P5= 14%, P95 = 89.4%). Figure S2 
shows an overview of how each land use class is identified 
within both the test set and the validation set, which indicates 
the main error is from identifying regenerating pixels as 
background pixels, followed by actively-used pixels being 
classified as background pixels. These errors are shown in 
resultant images as missing regenerating areas or discontinuity 
in the road network (Figure 2a). The general lower performance 

Figure 2 (a) Examples of predictions with different performance at an image level. F1 scores for the actively-used class, the 
regenerating class, and the facilities class are: 41.9%, 3.5%, and 22.6% for upper image, 81.0%, 40.5%, and 76.1% for middle 
image, and 69.2%, 2.4%, and 85.0% for the lower image, respectively. (b) The study scope, the clustering approach, and a 
comparison of cluster-level land use mapping results compared to the national land cover data (NLCD). The pink and red pixels 
in NLCD represent developed areas.

Page 6 of 12Environmental Science: Advances

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 4
/2

/2
02

3 
8:

08
:0

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D3VA00038A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3VA00038A


ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

of identifying the regenerating class is because of a higher 
similarity to the background, especially in areas with a 
reclamation process. Additionally, as the actively-used class 
dominates in land use (80.2 0.2%) and the regenerating class ±
is relatively small (17.4 0.2 %), a similar area of ±
misclassification could decrease the model performance by a 
larger fraction for the regenerating class. 

The model performance also varies over different land cover 
types, with barren land, evergreen forest, and shrub/scrub 
areas of a better performance, where the median F1 score is 
higher than 99.5%, 82,7%, and 70.0% for the background, the 
actively-used, and the regenerating, respectively. The higher 
model performance in these land cover types is because of the 
higher intensity of gas production activity. More than 75% of all 
wells are located in these areas so a larger number of sample 
images have been created. Furthermore, the level of diversity 
of human activities impacts the model performance. Areas 
without housing and agricultural production activities have 
higher performance because the circumstance is simpler for 
both annotation and prediction. 

In total, we processed ~420,000 images with each image 
representing from ~1.05 km2 (imagery resolution 1 m) to ~0.26 
km2 (imagery resolution 0.5 m). The image segmentation speed 
using an Nvidia V100 Graphical Process Unit is ~220 
images/minute, and the rest of the processes, including 
georeferencing, merging, converting to shapefiles, and 
postprocessing, used multiple processing and took ~95 hours in 
total, which is a significant improvement in efficiency compared 
to the speed benchmarked by Germaine et al., which is ~2 
hours/image.32 A cluster of wells can include up to 20,000 wells, 
requires processing ~50,000 images, and covers 19,000 square 
kilometers (Figure S3), which indicates that our approach is 
suitable for large-scale land use mapping for areas with a 
intense natural gas production activity (e.g., in the Eagle Ford 
shale play and the Marcellus shale play). Integrating our 
spatially explicitly mapping to the national land cover data 
(NLCD) (30-meter resolution),49 which was previously used as a 
proxy of large-scale mapping of natural gas production,55 could 
potentially provide both a more complete and accurate 
mapping for natural gas production infrastructure (Figure 2b) 
and a large dataset for future land conversion studies. 

Table 1. Land use throughout the life cycle of gas-fired electricity

Stage Unit Average 25th Percentile 50th Percentile 75th Percentile
Directional m2/site 9,346 3,032 7,055 12,819

Agricultural 
Vertical m2/site 2,100 2,096 4,301 8,336

Directional m2/site 18,170 10,104 16,049 24,812
Production

Non-Agricultural 
Vertical m2/site 14,090 7,159 12,042 18,808

Directional m/site 597 253 500 847
Length

Vertical m/site 818 346 613 1,044
Directional m2/site 20,157 8,349 17,226 28,944

Transportation 
by 

Gathering Area
Vertical m2/site 10,128 4,320 7,598 12,796

Processing** m2/(mmcf/day) 4,318 751 1,984 5,762
Transportation by Transmission*** m2/(mmcf/year) 62 0.225 1.127 5.567

Simple Cycle* m2/MW 656 272 616 912
Power Plant

Combined Cycle* m2/MW 497 182 341 689
*A site includes the production pad and its access road **Based on capacity ***Based on throughput

Land Transformation

The results of statistical analysis of land use throughout the 
life cycle stages of gas-fired electricity are summarized in Table 
1. For the production stage, we mapped the land use for 
100,009 wells located in 75,915 production pads, among which 
31,761 are co-located wells (median = 2 wells/pad, mean = 4 
wells/pad). The well co-location  occurs either from land reuse 
or from multiple-use pad using directional drilling. In non-
agricultural areas, the area of a production site (i.e., the total 
area of the production pad and its access road) is mainly 
dependent on the type of drilling: sites with vertical-drilled 
wells occupy ~4,000 m2/site less land than sites with horizontal-
/directional- drilled wells. Compared to the deep learning 
predicted land use, the annotated results only account for ~1/3 
of the total land use of a site, which indicates the necessity of 
considering the land use from access roads and reveals the 

benefits of using deep learning for land use mapping at a large 
scale (Figure S4). There are 6,915 sites located within 
agricultural areas, which occupy less than half of the land 
compared to those in non-agricultural areas. The real land use 
by natural gas production in agricultural areas could be even 
smaller when allocating part of the land use to agricultural 
production.

In the gathering stage, sites with directional-drilled wells on 
average require ~230 meters less pipeline in length than sites 
with a vertical-drilled wells,  whereas due to the requirement 
for larger width of right-of-way (RoW), the extend of land use is 
almost doubled for sites with directional-drilled wells. Land 
requirements for natural gas processing facilities and natural 
gas-fired power plants are found to be proportional to their 
designed capabilities (Figure S5 and Figure S6). The land 
requirement of these two life cycle stages is dominated by the 
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surface area for installing facilities, whereas supporting 
infrastructure, including access roads and clearings, can 
contribute greater than 60% of the land requirement and 
exhibit land variability across the plants (14.9 2.7% and 8.9± ±
3.5% for power plants and processing plants, respectively). Less 
supporting infrastructure was identified for facilities located in 
developed areas since the pre-existing infrastructure is utilized 
(e.g., access roads). 

Overall, the life cycle land transformation of natural gas-
fired electricity is 0.203 0.004 m2/MWh (median = 0.124) ±
based on the result of the Monte-Carlo simulation (Figure 3). 
Production and gathering stages dominate the life cycle land 
transformation of gas-fired electricity because of their relatively 

higher land transformation. Land transformation of production 
in an agricultural area is more than one order of magnitude 
lower than in non-agricultural due to the utilization of existing 
infrastructure (e.g., access roads) and the reuse of cleared land 
for agricultural production. 

Notably, technological advancements play a significant role 
in decreasing land transformation in the life cycle stages of 
production, gathering, and use. Directional drilling technology 
enables more than 20 wells to be drilled in a single pad, and 
each well could have a comparable amount of lifetime 
production (Figure S7). As a result, the total amount of 
production per site with directional-drilled wells can be an order 
of magnitude higher than the conventional sites with vertical-
drilled wells, which thus dramatically lowered the land 
transformation for production and gathering (Figure 3b). 
Improvement in the geological exploration to ensure the 
productivity of a site and avoiding abandoning production wells 

could thus also decrease the land transformation: Abandoned 
wells have a lower lifetime production (~0.5 Billion Cubic Feet) 
than wells with more than 36 months lifetime (~3 Billion Cubic 
Feet). 

In the power plant use stage, the land transformation has 
improved due to the adoption of combined-cycle generation 
technology. For the time between 2002 and 2018, the 
generation-weighted mean efficiency stayed more than 42.0% 
for combined-cycle plants (mean: 43.2%) but was lower than 
32.7% for simple-cycle plants (mean: 30.5%). The capacity of 
combined-cycle plants was comparable to the capacity of 
simple-cycle plants in the early 2000s but increased to ~3 times 
the capacity of simple-cycle plants. The capacity factor of 

simple-cycle power plants decreased quickly after 2010, which 
further decreased their efficiency. The higher efficiency brings 
less land use from background life cycle stages for combined 
cycle plants: Their life cycle land transformation of gas-fired 
electricity is 0.179 0.003 m2/MWh (median= 0.112), which is ±
only 60% of the land transformation of electricity from simple 
cycle plants (0.295 0.004 m2/MWh, median = 0.186). ±

The uncertainty sources of our results are identified as 
either scenario uncertainty or parameter uncertainty as 
summarized in Table S3. The scenario uncertainty is mainly from 
our model decisions (i.e., system boundary and proxy data 
usage), and parameter uncertainties are mainly from facility 
lifespan and pipeline width. Our sensitivity analysis shows that 
adjustment of the model performance could impact the land 
transformation stage by up to 40% and the life cycle 
transformation by up to 26.3%. The width of gathering pipelines 
for sites with vertical-drilled wells is also an impactful 

Figure 3 (a) Life cycle land transformation by stage (NA: Non-Agricultural area; A: Agricultural area; SC: Simple Cycle; 
CC: Combined Cycle; Numbers above boxes: number of observations or samples). (b) The temporal variation of land 
transformation by the production stage. Co-location before 2000 indicates that the previously disturbed area has 
been re-used. 
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parameter, varying which could lead to about 30% of our life 
cycle results. A detailed definition of the parameter range and 
their impact is listed in Table S4. 

Temporal and Geographical Changes in Land Use       

Horizontal drilling technology helps decrease both the land 
transformation of new constructed wells and the total land use 
by natural gas production in study area of the temporal and 
geographical variation analysis. First, as shown in Figure 3b, 
before 2000, the overall land transformation in the production 
stage had been increasing gradually and was almost identical to 
the land transformation of sites with a single well. The reason 
for the increase in land transformation during this period could 
be our method: We used images in the references year and the 
regenerating class of older production pads could be 
partially/fully recovered, which resulted in a smaller site area 
being identified in the imagery. After 2000, the overall land 
transformation started to decrease continuously and, for 
natural gas production sites constructed in the reference year, 
the overall land transformation reached more than an order of 
magnitude less than the peak value. The co-location of 
production wells enabled by horizontal drilling drove this 
decrease in land transformation: before 2000, a typical pad 
includes only a single well; after 2000, the co-location of wells 
started to increase as the wider application of horizontal 
drilling, which dramatically increase the amount of lifetime 
production per site as previously discussed. Second, the 
application of horizontal drilling helps phase-out sites with a 
single well. As a result, the total area occupied by active natural 
gas production sites started to decrease after 2011, although 
the total number of active production wells increased by 7.0% 
from 2010 to 2018 (Figure 4a). 5.7% of sites with a single well 
were abandoned from 2010 to 2018, which led to a decrease of 
5.6% of active land use by sites with a single well and 1% of total 
land use. 

Geographically, new natural gas production activities tend 
to be located near land that is already disturbed, which may 
decrease the overall land use impact. Figure 4b shows the 
distance of a new pad to the nearest existing pads. The median 
of such distances gradually decreases over time, from a median 
of >1000 meters before 1960 to a median of < 500 meters in the 
reference year. The unconventional gas plays for shale and tight 
gas production in the WECC tend to overlap the areas that are 
already producing conventional natural gas. On the other hand, 
when considering only the extent and land fragmentation, the 
application of horizontal drilling could introduce severer land 
impacts. Not only the pads are larger, the distance among wells 
also smaller for natural gas production areas with directional 
drilling, which thus leave a smaller patch of areas for other land 

use purposes and indicate that areas for unconventional natural 
gas production are more exclusive for the existence of other 
land cover types. 

Our work provides valuable experience to address three key 
aspects for future land use quantification studies that convert 
information from infrastructure location (a point dataset) to 
land use mapping (a polygon dataset) using image processing 
and machine learning. Point dataset has been the starting point 
for most land use-related studies due to their availability across 
a variety of energy infrastructure types (e.g., wind turbine 
locations56 and solar power plants57). The first aspect is the 
overall workflow. We showed that starting with image-level 
processes (i.e., training set preparation, machine learning 
model training, and image segmentation) and completing with 
cluster-level processes (e.g., large-scale land use mapping and 
post-processing) is efficient and versatile. Such a workflow 
enables a flexible selection of sample locations, areas of 
interest, and machine learning framework. Second, we provide 
~6,000 annotated images (>6 billion pixels in total) for future 
studies. Manual annotation is time and effort intensive so 
leveraging our dataset, which covers a heterogeneous 
ecoregion type, could facilitate the quantification of land use by 
not only natural gas production in other areas but also 
potentially other energy infrastructure types, as all types of the 
human disturbances are included in our annotation. Last, our 
framework has been developed typically suitable for large-scale 
applications. For example, we showed that the density-based 
clustering approach is efficient for creating a representative 
sample set for effective deep learning model training. Using 
grayscale images can improve the speed of processing and help 
reduce error occurrences in geospatial analysis with Python. 

This work is also subject to several limitations. First, the 
accuracy of the well-level analysis depends on the allocation 
method, which is based on the Thiessen polygons generated 
from well locations. The postprocessing approach also relies on 
the well position to determine if an area is of interest. Second, 
our estimation of the land use by the gathering life cycle stage 
is hurdled by the complexity of the gathering system and a lack 
of data availability. The gathering pipeline system is mixed with 
flow lines and gathering pipelines, restrained by designing 
regulations and depending on the location of existing 
gathering/transmission lines.58 We have not differentiated the 
potential smaller land use by flow lines and a general gathering 
pipeline. The proxy gathering pipeline network is based on the 
simplified road network, which may overestimate the land use. 
Third, we did not map the land use by transmission stage which 
may be improved in future studies. Mapping transmission 
pipelines is challenged by their interstate scale and a lack of 
public data for pipeline locations. Existing publicly accessible 

Figure 4. (a) Land use by pad types. Pads are categorized as main types: “occupied” and “abandoned”. Occupied 
pads are further sub-categorized as “single” and “multiple”. The single status can be temporal and can be 
reused or become co-located. (b) Distance of pads to their nearest existing pads.
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data are with lower resolution compared to the imageries so 
they cannot be directly used in this study. 

It is noteworthy that, for the production stage, we 
calculated the land transformation using the area of the directly 
impacted surface land. Such directly impacted land is 
comparable to the directly impacted land by wind energy 
projects, which includes a turbine pad area for the installing of 
wind turbines, access roads, substations, transmission lines, and 
others such as temporary loading zones.59 Both the gas 
production wells and wind turbines are distributed within an 
production area due to physical limitations (i.e., drainage 
capability for gas production and air kinetic energy utilization 
for wind energy). While wind energy is recognized for its low 
land use efficiency as the entire project area is usually 
considered, even though the turbines and access roads 
disturbed less than 5% of the total area,60 few studies have 
considered such “total impacted land” when quantifying land 
use by natural gas production. 

The land use map from our study could act as the first step 
to provide a new but essential basis for future regionalized and 
dynamic analysis in the environment and energy area. 
Previously, variations from geographical, temporal, and 
technological factors have been identified as the main 
uncertainty sources in the existing environmental assessment 
frameworks due to a lack of data.61 Geographically, first, land 
use mapping helps obtain regionalized inventory as spatially 
explicit or aggregated to political or natural boundaries. For 
example, the land transformation data can easily be converted 
to land use efficiency, i.e., the ratio of energy production in MJ 
to the land use in m2 at its current resolution or regionalizing to 
county/state level or natural gas plays level, as shown in Table 
S5 and Table S6. The transparency of the dataset, which is a 
preferred attribute for spatial inventory,62 is then guaranteed 
by the maps, although the spatial resolution for the resultant 
dataset that can not only minimize the internal variation but 
also facilitate data usage still needs to be carefully determined 
depending on the scenario of data usage. Second, the mapping 
of land use enables the integration of broader and regionalized 
environment impact categories into the current assessment 
frameworks. Spatially explicit data is often needed for 
regionalized impact analysis. As pointed out by Chaplin-Kramer 
et al.,63 when considering local environmental impacts (e.g., 
biodiversity and ecosystem services) in LCA, high-resolution 
spatial data and associated spatially-explicit quantitative tools 
(e.g., the InVEST64) are necessary but are also a main research 
gap. Existing studies have used a manual annotation approach 
and evaluated the ecosystem services losses either at a small 
scale65 or using a small sample for a large study area.66 How to 
use the large-scale, continuous land use mapping to deepen the 
integration of ecosystem services or other regional impacts into 
a lifecycle perspective analysis requires novel models.

Temporally, using static land transformation data, as in the 
existing LCA framework, for future land use scenario analysis 
could result in an overestimation. We identified how the land 
transformation changes over time due to the application of 
horizontal drilling and combined-cycle power plants. It can be 
estimated that, as the number of directional wells increases, the 

land transformation of gas-fired electricity will continuously 
decrease in the coming few decades when natural gas will keep 
its significant role in the global energy supply. How to properly 
quantify the effect of future technological advancement on the 
environment also needs investigations on the relationship 
between time and technology, especially when technological 
renovation happens. Existing frameworks often only consider 
the consistency between inventory and the technology being 
used or regard time as a proxy of technological improvement67 
while studies that consider technological improvement leading 
to a difference in the magnitude of an order or larger are rarely 
seen.

Conclusions
In this study, we developed a novel framework for obtaining 

the spatially explicit life cycle land use of gas-fired electricity at 
a large scale with high accuracy and efficiency. The resultant 
mapping enables analyses that provide new insights on both the 
land use extent and the life cycle land transformation of gas-
fired electricity. Our study reveals that, in the last decade, when 
natural gas gradually becomes the dominant source of 
electricity generation in the WECC, the co-location of 
production wells via directional drilling helps the land 
transformation of the new constructed production sites to 
decrease by an order of magnitude at the production and 
gathering stages. The total area used for actively natural gas 
production has also decreased while the total number of wells 
has been increasing. The wide application of combined-cycle 
plants also helps decrease the land transformation from gas-
fired electricity by using gas with higher efficiency. 
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