
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A new scalable algorithm for computational optimal control under uncertainty

Permalink
https://escholarship.org/uc/item/0sc2g1t7

Authors
Lambrianides, Panos
Gong, Qi
Venturi, Daniele

Publication Date
2020-11-01

DOI
10.1016/j.jcp.2020.109710
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sc2g1t7
https://escholarship.org
http://www.cdlib.org/


A new scalable algorithm for computational optimal control under uncertainty

Panos Lambrianidesa, Qi Gonga, Daniele Venturia,∗

aDepartment of Applied Mathematics
University of California Santa Cruz

Santa Cruz, CA 95064

Abstract

We address the design of optimal control strategies for high-dimensional stochastic dynamical systems.
Such systems may be deterministic nonlinear systems evolving from random initial states, or systems driven
by random parameters or random noise. The objective is to provide a validated new computational capabil-
ity for optimal control which will be achieved more efficiently than current state-of-the-art methods. The
new framework utilizes direct single or multi-shooting discretization, and is based on efficient vectorized
gradient computation with adaptable memory management. The algorithm is demonstrated to be scalable
to high-dimensional nonlinear control systems with random initial condition and unknown parameters. Nu-
merical applications are presented and discussed for stochastic path planning problems involving models of
unmanned aerial and ground vehicles, and for distributed control of a nonlinear advection-reaction-diffusion
equation.

1. Introduction

Designing optimal control strategies for high-dimensional stochastic dynamical systems is critical in
many engineering applications, such as search of unknown targets with autonomous vehicles, path planning
of heterogeneous agents, and quantum control [8, 15, 34, 14, 36]. Such systems may be modeled as nonlinear
control systems of the form

ẋ = f(x,u), x(0) = x0, t ∈ [0, tf ], (1)

where x(t) ∈ Rn is the system’s state (random process), u(t) ∈ Rm is the (deterministic) control, and
x0 ∈ Rn is a random initial state with prescribed probability density function p0(x). As is well known,
uncertain parameters in f can always be transferred to the initial condition [30, 29, 27, 4, 5]. The solution
to the Cauchy problem (1) is a function of x0 and a functional of the control u(t) [21, 26]. The functional
dependence will be denoted by square brackets, i.e., x(t) = x(t,x0, [u(t)]). We aim at designing u(t) by
solving the optimal control problem

min
u(t)

J([x(t)], [u(t)])

subject to:
ẋ = f(x,u), x(0) = x0 (x0 random)
g(u(t)) ≤ 0, (constraints on the control)
h (E{x(t)}) ≤ 0, (ensemble path constraints)

(2)
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Figure 1: Sketch of the data-driven optimal control architecture. The new control algorithm is based on interior point optimiza-
tion methods, common sub-expression elimination, and exact gradient information obtained with automatic differentiation and
computational graphs.

where J([x(t)], [u(t)]) is a cost functional that involves an expectation E{·} over the probability distribution
of the initial state x0. For example, J could be of the form

J([x(t)], [u(t)]) = E{F (x(tf ))}+

∫ tf

0
r(u(τ))dτ, (3)

where F (x) and r(u) are smooth functions. Other examples of J involve the probability of detecting
an unknown target [15], measures of risk [22], or indicator functions of disease propagation in a network
of interacting individuals [13]. The optimal control problem (2) is, in general, a high-dimensional (large-
scale) non-convex optimization problem. State-of-the-art algorithms to solve such problem are largely based
on sampling the random initial state x0, e.g., using Gauss quadrature [15, 20] or Monte Carlo methods
[6, 17, 28], and then computing a large ensemble of paths corresponding to a particular control u(t). With
such ensemble of paths available, one can then evaluate the performance metric J by approximating the
expectation operator with an appropriate cubature rule [15, 17, 33, 35], and close the optimal control loop
with a suitable optimizer (see Figure 1). The formulation of optimal control strategies based on sample
trajectories is straightforward, and it yields an optimal control problem which can be solved by classical
algorithms, e.g., pseudospectral methods [7, 9, 10]. However, such algorithms are computationally intensive,
and they are not effective even in a moderate number of state variables for the following reasons: First, the set
of sample trajectories can propagate in phase space in a very complicated manner. This implies that a large
number of paths is usually required to evaluate the performance metric. Secondly, as the number of sample
paths increases, the dimension of the discretized optimal control problem rapidly becomes intractable. In
particular, for a dynamical system with n state variables and M sample paths, the nonlinear control problem
has dimension nM (M copies of the n-dimensional dynamical system at each iteration of the optimizer).
This is one of the main bottlenecks that limits the applicability of probabilistic collocation methods to
systems with low dimensional random input vectors. For systems with large number of random variables,
the memory requirements and computational cost becomes unacceptably large.

In this paper, we aim at overcoming these limitations by developing a new algorithm for computational
optimal control under uncertainty that is applicable to high-dimensional stochastic dynamical systems, and
engineering control applications requiring online (real-time) implementations. The new algorithm is based
on interior point optimization methods [31, 3], common sub-expression elimination, and exact gradients
obtained via automatic differentiation and computational graphs [1, 2]. They key features of the proposed
algorithm are:

1. Multi-shooting optimal control schemes: Multi-shooting is known for its numerical stability in solving
deterministic optimal control problems. Based on piece-wise constant (in time) control approxima-
tion, we modified the deterministic algorithm and made it effective for uncertain optimal control
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problems. This includes imposing particle-independent continuity conditions across adjacent time
segments.

2. Accurate gradient computations: The optimization solver we developed combines an interior point
method [31, 3, 37] which converges most efficiently using accurate gradient calculations over the
controlled ensemble. In this work we compare a number of established techniques for gradient com-
putation, namely traditional operator overloading algorithmic differentiation (ADOLC) [32], more
modern graph based methods for gradient calculation (TensorFlow) [1] and the most commonly used
finite differences approach. We demonstrate that graph based methods offer precision with consid-
erable speed improvement over more traditional algorithms, albeit at the expense of considerable
memory utilization, and slowness in initialization.

3. Efficient memory utilization: The algorithm has extremely low memory requirements, which means
that it allows us to process a massive number of sample trajectories (in parallel) and determine the
performance metric and associated optimal controls in a very efficient way. To achieve these results
we developed a common sub-expression elimination (CSE) technique that can substantially reduce
memory consumption during computations. As we shall see in section 3.2, CSE considerably reduces
the growth of memory requirements with respect to the increase of the time discretization points in
multi-shooting. This feature is essential for solving high dimensional problems and problems with
long time horizon. It also reduces the discretization error in the control approximation, since smaller
time steps can be afforded. Most importantly it does so at little to no loss to the performance of the
gradient computation, and without any upfront initialization costs compared to graph based methods.

This paper is organized as follows. In section 2 we formulate the optimal control problem (2) in a
fully-discrete setting by using multi-shooting methods. This yields a non-convex optimization problem with
nonlinear constraints which can be solved using interior point methods. To this end, it is extremely useful to
have available fast and accurate gradient information, which we address in section 3 using dataflow graphs,
automatic differentiation, and common sub-expression elimination. In section 4 we develop a new criterion
for verification and validation of the computed optimal controls using Pontryagin’s minimum principles.
In section 5 we demonstrate the accuracy and computational efficiency of the proposed control algorithms
in applications to stochastic path-planning problems involving Unmanned Ground Vehicles (UGVs), Un-
manned Aerial Vehicles (UAVs), and nonlinear PDEs. The main findings are summarized in section 6.

2. Multi-shooting schemes for ensemble optimal control

Multi-shooting optimal control algorithms have been used extensively in control of deterministic sys-
tems because of their numerical stability and straightforward implementation. In this section we describe
an extension of multi-shooting to ensemble optimal control, i.e., control of ensembles of paths generated by
the random dynamical system (1). The first step when discretizing (2) with a multi-shooting scheme is to
divide control time horizon [0, tf ] into S sub-intervals, which we will call shooting intervals,

[tk, tk+1], k = 1, . . . , S,

with t1 = 0 and tS+1 = tf . Within each shooting interval we introduce an evenly-spaced grid of points

tk,j = tk + (j − 1)∆tk, j = 1, 2, . . . , Nk, k = 1, . . . , S,

where ∆tk denotes the time step size used in the kth shooting interval [tk, tk+1]. Note that different shooting
intervals can have different step size ∆tk, depending on the size of the temporal grid, i.e., Nk. The total
number of time discretization points is

N =

S∑
k=1

Nk. (4)
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Figure 2: Sketch of the multi-shooting setting for the optimal control of one-dimensional deterministic problem. Shown are the
piece-wise constant approximation of the control u(t), and the piece-wise differentiable approximation of the state x(t).

Within each shooting interval [tk, tk+1], the control u(t) is approximated by a piecewise constant function
over the grid {tk,1, . . . , tk,Nk}. At this point, it is convenient to introduce the following notation:

x
(i)
k,j = x(i)(tk,j) uk,j = u(tk,j) (5)

for the discretized trajectory of the state vector and control, where i = 1, . . . ,M labels a specific real-
ization of state process (M sample paths total), k = 1, . . . , S, labels the shooting interval [tk, tk+1], and
j = 1, . . . , Nk labels the time instant within the kth shooting interval. In Figure 2, we summarize the no-
tation we used for the approximation/discretization of the state vector x(t) and the control u(t). Note that
piece-wise constant controls yield continuous sample paths x(i)(t) with cusps at tk,j . With the piece-wise
constant control approximation available, a sample of the state vector at any time instant can be computed
by numerical integration as

x
(i)
k,j+1 ' x

(i)
k,j +

∫ tk,j+1

tk,j

f(x(i)(τ),uk,j)dτ, i = 1, . . . ,M (6)

M being the total number of sample paths. To ensure the continuity of each path across different shooting
intervals, one can impose the continuity constraints

x
(i)
k+1,1 = x

(i)
k,Nk

, i = 1, . . . ,M. (7)

However, this formulation introduces a very large number of optimization constraints (one for each sample
path), making the discrete optimization problem very hard to solve. In fact, a large number constraints
usually increases the computational cost, and the size of unfeasible regions. Therefore, instead of adding
one continuity constraint for each sample path, we introduce a single constraint for each dimension and each
partition, but across all sample paths.

1

M

M∑
l=1

(
x

(l)
k,Nk
− x(l)

k+1,1

)2
= 0 (8)

which still guarantees continuity of sample trajectories across different shooting intervals, but in a way that
is agnostic about the trajectory labels. In other words, across different shooting intervals the constraint (8)
allows for a reshuffling of the trajectories labels. As is well know, this does not affect the computation of
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Figure 3: Continuity of sample paths across shooting intervals. The continuity constraint (8) allows us to re-label sample paths
at the boundary of each shooting segment. This does not affect ensemble statistical properties at all, but it massively reduces the
number of path continuity constraints (equality constraints in the optimizer) from N to essentially one.

ensemble statistical properties (see Figure 3). Approximating the integral in (6), e.g., with an explicit s-stage
Adams-Bashforth [12] method yields

x
(i)
k,j+1 = x

(i)
k,j + ∆tk

s−1∑
q=0

bjf
(
x

(i)
k,j−s,uk,j−s

)
. (9)

At this point it is convenient to denote the ith sample of the fully discrete state process in [0, tf ] as

X(i) =
{
x

(i)
1,1, . . .x

(i)
1,N1

,x
(i)
2,1, . . . ,x

(i)
2,N2

, . . . ,x
(i)
S,1, . . . ,x

(i)
S,NS

}
, i = 1, ...,M.

It is also convenient to define a vector collecting the sample values the process x(t) at the boundaries of the
shooting intervals, i.e.,

X
(i)
b =

{
x

(i)
1,1,x

(i)
1,N1

,x
(i)
2,1,x

(i)
2,N2

, . . . ,x
(i)
S,1,x

(i)
S,NS

}
,

and the full vectors of states and boundary values

X =
{
X(1), . . . ,X(M)

}
, Xb =

{
X

(1)
b , . . . ,X

(M)
b

}
. (10)

Similarly, we denote the discrete control vector as

U = {u1,1, . . .u1,N1−1,u2,1, . . . ,u2,N2−1, . . . ,uS,1, . . . ,uS,NS−1} . (11)

With this notation, we can write the fully discrete form of the optimal control problem (2) as

min
U ,Xb

J(U ,Xb)

subject to:
S∑
k=1

M∑
i=1

∥∥∥x(i)
k,Nk
− x(i)

k+1,1

∥∥∥2

2
= 0 (path continuity constraint)

g(U) ≤ 0 (constraints on the control)
h(E{X}) ≤ 0 (ensemble path constraints)

(12)

where the intra-interval dynamics defined by equation (9) is used to compute boundary valuesXb.

5



Remark 2.1. Equation (9) allows us to compute the discrete dynamics corresponding to each initial con-
dition sample under the control vector (11). The solution samples can be vectorized and pushed forward in
time simultaneously, in a massively parallel way.

3. Fast gradient computations

The large-scale constrained optimization problem (12) can be solved by using optimization algorithms
based on gradient information. To this end, it is very important to be able to compute the gradient of
the discretized cost function J(U ,Xb) with respect to the decision variables (U ,Xb), with accuracy and
efficiency. In this section we provide technical details on how we implemented such gradient computation
using automatic differentiation functions available in graph-based methods such as TensorFlow [1], and
backward propagation. Our algorithm leverages the fact that forward time integration can be framed as a
recurrent neural network, hence providing exact gradients at a negligible computational cost. Indeed, as we
will see, all operations can be performed very efficiently on computational graphs.

3.1. Data-flow graphs

Modern machine learning techniques use decentralized data graphs to map computations in different
nodes of a computer cluster [1]. Edges and nodes of such graph usually represent flows of data and input-
output maps (operations), respectively. The dataflow graph is pre-compiled, optimized and stored as meta-
data in memory for the duration of the calculation. Using reverse automatic differentiation (backpropa-
gation), the computational graph of the gradients with respect to a given cost function is simultaneously
constructed and similarly stored. Using these two graphs one can integrate the system in time for a given
control and compute gradients of the state trajectories with respect to the controls. The calculations are per-
formed using a data event driven mechanism allowing for nearly simultaneous calculations of gradients as
the dynamical system is being integrated. To illustrate the main idea, consider the follow dynamical system
modeling the wheel-driving Unmanned Ground Vehicle (UGV) shown in Fig.4(a).

ẋ1 = Ru1(t) cos(x3)

ẋ2 = Ru1(t) sin(x3)

ẋ3 = Ru2(t)

. (13)

Here, (x1(t), x2(t)) denotes the position of the vehicle on the Cartesian plane while x3(t) is the heading
angle. The controls are u1(t) (velocity) and u2(t) (steering angle). For illustration purposes, we discretize
(13) with the Euler forward scheme (one-step Adams Bashforth (9)). This yields,

x1(tk+1) = x1(tk) + ∆tRu1(tk) cos(x3(tk))

x2(tk+1) = x2(tk) + ∆tRu1(tk) sin(x3(tk))

x3(tk+1) = x3(tk) + ∆tRu2(tk)

. (14)

This system of equations defines explicitly an input-output map of the form1

xk+1 = Q(xk,uk). (15)

Such map takes in xk = [x1(tk), x2(tk), x3(tk)] and uk = [u1(tk), u2(tk)] (which we assumed constant
within the time interval ∆t), and sends them to x(tk+1). Such nonlinear map can be conveniently repre-
sented as a “black box” with inputs x(tk) and u(tk), and output x(tk+1) as illustrated in Figure 5. It is clear

1Explicit Runge-Kutta and linear multistep methods can always be written in the form (15) (see [19, 12, 18]).
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(a) UGV modeled by the system (13). (b) UGV modeled by the system (18).

Figure 4: Sketches of two different Unmanned Ground Vehicles (UGVs). Shown are the state space variables {xi(t)}i=1,2,3, and
the controls u1(t) and u2(t).

at this point that the process of integrating the state vector x(t0) forward in time from t0 to tN = tf for any
given piece-wise constant (in time) control

U = [u(t0), · · ·u(tN−1)]

can be seen as a composition of the same nonlinear map (14). This essentially defines a recurrent network
that allows for an extremely low memory footprint and fast gradient computation. Moreover, as clearly seen
from the computational graph sketched in Figure 5, portions of the calculations for the forward trajectory
propagation as well as the backward gradient calculation are shared. Using reactive programming such
shared portions of the graphs are computed only once, while memoization realizes additional substantial
computational savings. The exact amount of savings depends on the efficiency of the graph compiler as well
as the particular dynamics. Once the compiler creates and compiles the data graph in memory for a single
trajectory, adding a dimension for sampling does not involve any changes to the graph or gradient calcula-
tions. By choosing a non-adaptive integration scheme, we ensure that the operations can be performed in
lock step mode across all samples, and can utilize hardware with wide SIMD capabilities such as GPU, TPU
or ASIC cards.

3.2. Memory reduction and accelerated computations via Common Sub-expression Elimination (CSE)

Graph based methods for gradient calculations utilized by Deep Neural Net frameworks are scalable and
are implemented in a computationally efficient way. However because they are designed to operate on large
system for prolonged periods of time, ranging from hours to months, they have the following disadvantages:

1. They consume an inordinate amount of memory of the order of tens of gigabytes, especially for
systems that have many constraints.

2. They use lazy initialization which makes the initial ramp up time very slow, often lasting hours for
high dimensional systems with long time horizons. This is acceptable for deep neural net architec-
tures, but hampers the response time for solving high dimensional optimal control problem.

3. Because of the hefty memory and time initialization requirements, they are unsuitable for online (real-
time) applications, in particular those targeting autonomous vehicles.

The main idea around common sub-expression elimination is the observation that during the construction of
the computational graph in systems like Tensorflow, the memory increases linearly with the number of steps.
However since the computations are identical from one time step to the next, this motivates the objective
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Figure 5: Portion of the data graph for the UGV model discretized with Euler forward time integration and graph the compute the
kth component of the gradient of the cost functional. Note that there are sub-graphs that are shared among the computations (boxed
graphs). Using reactive programming, all operations within such boxes are computed only once, and then shared across the graph.

of eliminating the common repeated calculations for each trajectory in order to save memory while not
sacrificing computational speed, hence the name common sub-expression elimination.

To illustrate the basic idea of CSE in a simple way, let us consider (1) and write the time-discrete form
as a symbolic nonlinear one-step recursion of the form (15). Suppose we are interested in minimizing a cost
function of the form

J(U) =
1

M

M∑
i=1

F (x(i)(tf )), (16)

where F is smooth. The gradient of (16) with respect to u(tk) can be computed using the chain rule as

∂J(U)

∂u(tk)
=

1

M

M∑
i=1

∂F (x
(i)
N )

∂x

∂Q(x
(i)
N−1,uN−1)

∂x
· · ·

∂Q(x
(i)
k+1,uk+1)

∂x

∂Q(x
(i)
k ,uk)

∂u
. (17)

This is the well-know backward propagation formula in recurrent neural networks. Indeed, the gradient of J
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is obtained by iteratively applying the Jacobian maps ∂x(tj)/∂x(tj−1) from j = N to j = k+ 1. Contrary
to commonly used patterns in graph methods, here we need to store in memory only one gradient and two
Jacobian functions, i.e.,

∂F

∂x
,

∂Q(x,u)

∂x
, and

∂Q(x,u)

∂u
,

where Q is defined in (15). Even though other memory efficient schemes exist where the Jacobians are not
stored explicitly, but rather the Jacobian vector product is done explicitly at each forward step, our numerical
experiments indicate that storing the Jacobian explicitly strikes the best balance between computational
efficiency and memory consumption. Moreover, the Jacobians for dynamical systems are of much smaller
size than the Jacobians for neural nets, especially when the number of hidden layers in the latter is large,
which explains why Jacobians are not stored explicitly in neural net frameworks. Taking advantage of the
linear nature of the contribution of each trajectory of the ensemble to the end objective, we can leverage this
linearity to customize the memory utilization through the mechanism of batching the samples. Specifically,
a hundred-dimensional dynamical system over one thousand time steps requires a mere 100MB of memory
per sample which is insignificant by today’s standards. On a modest embedded system or a GPU with 10GB
or more in memory, this allows for the simultaneous propagation of one hundred trajectories per batch using
SIMD instructions. For smaller systems, much larger batches of samples can be propagated simultaneously.
The specific number of optimal samples that can be propagated in a single batch needs to be determined
by experimentation on the particular hardware architecture in question. The overall number of samples
propagated can therefore be as large as required by the problem in question, without increase in memory
footprint.

3.2.1. Common Sub-expression Elimination: An example
It is difficult to quantify theoretically the memory and speed of graph-based methods to compute gra-

dients such as (17) . Hence, in this section we illustrate the memory savings and computational speedup
we obtained through a series of numerical experiments. To this end, we consider the following model of
wheel-driving UGV

ẋ1 = u1 cos(x3), ẋ2 = u1 sin(x3), ẋ3 =
u1

L
tan(u2), (18)

where (x1(t), x2(t)) is the position of the vehicle, x3(t) is the heading angle, u1(t) is the forward velocity,
and u2(t) is the steering angle (controls) – see Figure 4(b). We set the following box constraints on the
controls

−1 ≤ u1(t) ≤ 1, −1 ≤ u2(t) ≤ 1 ∀t ∈ [0, tf ].

We integrate (18) in time from t0 = 0 to tf = 100 using an explicit Runge Kutta 4th order method with
step size ∆t = 0.1 (i.e., a total of N = 1000 steps) and with a fixed, randomly generated, controls u1 and
u2. Recall that in the multi-shooting setting we consider here, the controls are assumed to be constant over
each given time interval [ti, ti+1] (see Figure 2). To compute the gradient (17), hereafter we consider four
different approaches, i.e.,

1. Second-order centerd finite differences (FD)
2. Operator overloading algorithmic differentiation (ADOLC [32])
3. Graph-based algorithmic differentiation implemented in TensorFlow [1] (TF)
4. Common Sub-expression Elimination (CSE)

and compare them in terms of memory consumption, speed and accuracy. While it is possible to compute
the gradient (17) analytically, for example using the formulas in [11] for Runge-Kutta schemes, here we
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Figure 6: Absolute error of ∂J/∂u1(t) with respect to the benchmark gradient computed with ADOLC for CSE, second-order
centered finite differences (FD) and TensorFlow (TF). It is seen that tensor flow and CSE are numerically exact.

take a direct numerical approach where we use ADOLC [32], a mature algorithmic differentiation package,
to provide the benchmark gradient. In this example we consider an objective that is the simple average of
the UGV squared distance to the origin, namely

J(U) =
1

M

M∑
i=1

[
x

(i)
1 (tf )

]2
+
[
x

(i)
2 (tf )

]2
, (19)

where M is the number of sample paths. In Figure 6 we compare the absolute error in computing the
gradient ∂J/∂u(tj) for each tj in [0, 100]. It is seen that CSE and tensor flow are numerically exact, while
second order (centered) finite-differences have accuracy of order 10−7, corresponds to the threshold we
set. Lower precision in gradient calculations typically results in more iterations during optimization when
utilizing interior point methods. Next, we compare ADOLC, second-order finite-differences, tensorflow and
CSE in terms of speed and memory consumption. This is done in Figure 7 and Figure 8, respectively. All
numerical experiments were conducted on dual Xeon E5-2651 v2 processors operating at 1.80GHz with
145 GB of memory. For equivalency no GPUs were used. ADOLC appears to scale best for very large
samples, but it is slower for samples below M = 105 because of its lack of vectorization capabilities. The
numerical experiments we present in this section suggest that CSE and ADOLC are both suitable algorithms
for ensemble gradient calculations. CSE is faster and more memory efficient and can be vectorized on GPU
devices, wheres ADOLC is currently restricted to run on CPUs. Tensorflow is extremely fast and suitable
for solving only smaller problems because of its memory consumption and very long initialization times.

4. Verification and validation of optimal controls

In this section we present two criteria to verify and validate the numerical solution to the optimal control
problem (2). The first one is based on the stochastic Pontryagin’s minimum principle [20, 15]. To describe
the method, consider the optimal control problem (2) and set

J([x(t)], [u(t)]) = E {F (x(tf ))}+

∫ tf

0
r(u(τ))dτ, (20)

where r and F are given real-valued (smooth) functions. The second term at the right hand side is usually
referred to as “control energy”, and it can provide regularization of the optimization problem. Let us define

10



0 2500 5000 7500 10000 12500
Runtime (seconds)

TF

CSE

ADOLC

FD
Graph construction

Initialization

0 20 40
Runtime (seconds)

TF

CSE

ADOLC

FD

M=100

1050 1060 1070

0 20 40
Runtime (seconds)

TF

CSE

ADOLC

FD

M=1000

1060 1080 0 20 40
Runtime (seconds)

TF

CSE

ADOLC

FD

M=10000

5140 5160

Figure 7: Execution times in seconds for different gradient methods. Here TF stands for tensorflow, and FD represents second-order
finite differences. The CSE algorithm uses batch sizes of 100 samples for each thread, whereas ADOLC is parallelized one sample
at a time. Tensorflow automatically optimizes its configuration for the target hardware architecture. Note the clear disadvantage in
runtime that finite difference methods exhibit. All numerical experiments were conducted on a dual Xeon E5-2651 v2 processor
workstation operating at 1.80GHz with 145 GB of memory.

the Hamilton’s function
H(u,x,λ) = r(u) + λ · f(x,u). (21)

From this we obtain the Hamilton’s equations
ẋ =

∂H

∂λ
= f(x,u),

λ̇ = −∂H
∂x

= −∂f
∂x
· λ.

(22)

As shown in [20], the system (22) is supplemented with a (random) initial condition for x(t), and a final
condition for λ(t)

x(0) = x0, λ(tf ) =
∂F (x(tf ))

∂x
. (23)

In other words, (22)-(23) is a two-point boundary value problem. Given any control û(t), we can solve
(22)-(23) using forward-backward propagation as illustrated in Figure 9. How can we check whether û(t)
is optimal, i.e., it solves (2) and (20)? A necessary condition is that the control satisfies the following
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Figure 8: Memory consumption for different gradient calculation methods. Note that Tensorflow (TF) has the highest memory
footprint, which grows substantially with sample size. On the other hand, CSE, ADOLC and finite-differences (FD) have fairly
constant memory footprints. All numerical experiments were conducted on a dual Xeon E5-2651 v2 processor workstation operat-
ing at 1.80GHz with 145 GB of memory.

minimization principle (extended Pontryagin’s principle)

u∗(t) = argmin
u(t)

E{H(u(t),x(t),λ(t)} ∀t ∈ [0, tf ], (24)

subject to the Hamilton’s equations (22)-(23), and the constraints g(u(t)) ≤ 0 on the control u(t). Note
that both x(t) and λ(t) in (24) are functionals of u(t). The Pontryagin’s principle (24) offers us a simple
way to verify the optimality of a given . To this end, suppose we have available a solution of (2), say û(t),
computed using an optimizer, and we want to verify whether such solution is indeed optimal. A possible
way to perform this calculation is to sample a large number of initial states x0 and propagate them through
the forward/backward problem (22)-(23). This allows us to obtain many realizations of x(i)(t) and λ(i)(t)
for the given candidate control û(t). With such realizations available, we can approximate the expectation
in (24) using, e.g., Monte Carlo and compute

u∗(t) = argmin
u(t)

1

M

M∑
i=1

H
(
u,x(i)(t),λ(i)(t)

)
. (25)
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Figure 9: Schematic of the forward-backward integration process for verification and validation of optimal controls.

At this point we can compare u∗(t) with û(t) and verify whether the two controls are close to each other2.
An alternative criterion for verification and validation of optimal controls was recently proposed in [17]

(see also [16]). The criterion is based on the asymptotic behavior of approximate optimal controls relative
to the number of sample paths, and it has advantages over the stochastic Pontryagin’s principle (24) in terms
of ease of implementation, especially for high-dimensional problems. To describe the method, consider the
optimal control problem (2), where the performance metric (20) is replaced by the following sample average
approximation

JMk
([x(t)], [u(t)]) =

1

Mk

Mk∑
k=1

F
(
x(i)(tf )

)
+

∫ tf

0
r(u(τ))dτ. (26)

Let u(k)(t) be the control minimizing (26) for a given number of sample pathsMk. It was shown in [17] that
the sequence {u(k)(t)} epi-converges to a minimizer of (20) as Mk goes to infinity. Based on this result, it
is straightforward to generate a Cauchy sequence of optimal controls corresponding to an increasing number
of sample paths. The convergence properties of such sequence can be used for verification and validation
of optimal controls. For example, one could set a threshold for the distance (in some norm) between two
consecutive controls, i.e., u(k+1)(t) and u(k)(t), corresponding to an increasing number of sample paths.

5. Numerical applications

In this section we demonstrate the proposed optimal control algorithms in applications to stochastic path
planning problems involving models of an unmanned ground vehicles (UGVs) and a fixed-wing unmanned
aerial vehicles (UAVs).

5.1. UGV stochastic path planning problem
Consider the systems of equations (13), describing the dynamics of a simple two-wheeled UGV with

differential drive. We would like to control the velocity u1(t) and the steering angle u2(t) of the UGV in in
a way that the vehicle hits a target located at (x1, x2) = (3, 3) at time tf = 10. To this end, we first assume
that the initial state of the system is deterministic, i.e.,

x1(0) = 0, x2(0) = 0, x3(0) = 0, R = 1.25. (27)

Moreover, we assume that the controls u1(t) and u2(t) are subject to the following constraints

−1 ≤ u1(t) ≤ 1, −1 ≤ u2(t) ≤ 1. (28)

2We emphasize that the solution of (25) is not, in general, optimal since the expected value of the Hamiltonian is estimated
using forward-backward propagation with fixed û(t). However, if ‖û(t)− u∗(t)‖ is small then û(t) approximately satisfies the
first-order necessary conditions for optimality.
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We determined the optimal control for this deterministic problem by minimizing the objective functional

J([u1(t), u2(t)]) =
1

2

{
(x1(tf )− 3)2 + (x2(tf )− 3)2

}
+
q

2

∫ tf

0

[
u1(t)2 + u2(t)2

]
dt. (29)

with respect to u1(t) and u2(t). Note that x1(tf ) and x2(tf ) are both functionals of u1(t) and u2(t). We
will refer to the controls minimizing (29) subject to the dynamics (13), the initial condition (27) and the
constraints (28) as the nominal controls. This nominal control is used as the initial guess for the stochastic
version of the problem, which can be formulated as follows: find controls {u1(t), u2(t)} maximizing the
expectation that the UGV hits a target3 located at (x1, x2) = (3, 3) at time tf = 10 under uncertain initial
conditions and uncertain wheel radius R. We model such uncertainty as uniformly distributed independent
random variables

x1(0) ∼ U(−0.05, 0.05), x2(0) ∼ U(−0.05, 0.05), x3(0) ∼ U(−0.05, 0.05), R ∼ U(1, 1.5). (30)

The stochastic version of the functional (29) can be written as

J([u1(t), u2(t)]) =
1

2
E
{

(x1(tf )− 3)2 + (x2(tf )− 3)2
}

+
q

2

∫ tf

0

[
u1(t)2 + u2(t)2

]
dt, (31)

where E{·} denotes an expectation over the (jointly uniform) PDF of x1(0), x2(0), x3(0), and R. The
optimal control problem reads as follows: minimize (31) subject the dynamics (28), initial conditions (30),
and control constraints (28). The integral in both (29) and (31) represents the energy of the control, and it
provides a regularization of the control profiles, even for very small values of q. To compute the nominal and
the optimal controls we utilized the multi-shooting algorithm we described in Section 2, with S = 2 shooting
intervals, explicit RK4 time integration (∆t = 0.05), and CSE (section 3.2) to calculate the ensemble
gradient of the cost functional (see Eq. (17)). The number of sample paths to approximate the expectation
in (31) with a Monte Carlo cubature were set to M = 10000. This yields a fully discrete optimal control
problem of the form (12) (with no path constraints), which we solved using IPOPT [31, 3, 37] linked with
CSE and verified using Tensorflow (see Section 3). The results of our simulations are summarized in Figure
10. We see that, as expected, the final position of the UGV under nominal and optimal controls is clustered
around the target located at (x1, x2) = (3, 3). However, in the optimal control case, to reduce the variance
of the set of trajectories at final time, the UGV does not head directly towards the target, but it initially
heads rights and then takes a steep left turn. On the other hand, in the nominal control case, the UGV heads
directly towards the target, but the set of trajectories at final time is more spread out around the target than
in the optimal control case.

For verification and validation of the optimal controls, we analytically derive the Hamiltonian function
for the system (13)

H(u,x,λ) =
q

2

(
u2

1 + u2
2

)
+ λ1Ru1 cos(x3) + λ2Ru1 sin(x3) + λ3Ru2. (32)

3By Markov’s inequality, the probability of the event ‖x(tf )− x∗‖ ≥ ε, where x∗ is the location of target, can be bounded as

Pr (‖x(tf )− x∗‖ ≥ ε) ≤ 1

ε2
E
{
‖x(tf )− x∗‖2

}
.

Hence, if we define Pr (‖x(tf )− x∗‖ ≥ ε) as the probability of missing the target located at x∗ (at time tf ), then minimizing the
functional (31) is equivalent to minimize an upper bound on the probability of missing the target. This is not equivalent to minimize
the overall probability of missing the target, as there may be different values of Pr (‖x(tf )− x∗‖ ≥ ε) that are bounded by the
same quantity minE

{
‖x(tf )− x∗‖2

}
/ε2.
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Figure 10: UGV stochastic path planning problem. Stochastic dynamics under optimal and nominal controls. It is seen that in both
cases the endpoints of the UGV trajectories are clustered around the target located at (x1, x2) = (3, 3). However, in the optimal
control case, to reduce the variance of the set of trajectories at final time, the UGV does not head directly towards the target, but
it initially heads rights and then takes a steep left turn. On the other hand, in the nominal control case, the UGV heads directly
towards the target, but the set of trajectories at final time is more spread out around the target than in the optimal control case.

Figure 11: UGV stochastic path planning problem. Verification and Validation of the optimal control using the extended Pontrya-
gin’s minimum principle presented in Section 4.

The adjoint system is given by
λ̇1 = 0,

λ̇2 = 0,

λ̇3 = λ1Ru1(t) sin(x3)− λ2Ru1(t) cos(x3).

(33)
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Figure 12: Sketch of the fixed wing Unmanned Aerial Vehicle (UAV). Shown are some of the phase variables appearing in the
model (34). The controls act on the trust T , the angle of attack α, and the bank angle µ.

We follow the process described in section 4 to measure the optimality of the computed solution. This is
done in Figure 11, where we compare the control u∗(t) = {u∗1(t), u∗2(t)} we obtained by solving (25) with
optimal control û that minimizes (31). It is seen that the two controls are very close to each other, which
means that û is a good approximation to the optimal control.

5.2. UAV stochastic path planning problem

In this section we consider a more challenging problem, namely stochastic path planning for a fixed-
wing unmanned aerial vehicle (UAV) model under uncertain initial state such as position, heading angle,
angle of attach and aerodynamic forces. The nonlinear dynamical system modeling the UAV is [23, 24]:

ẋ = v cos γ cosσ

ẏ = v cos γ sinσ

ż = v sin γ

v̇ =
1

m
(−D + T cosα)− g sin γ

γ̇ =
1

mv
(L cosµ+ T cosµ sinα)− g

v
cos γ

σ̇ =
1

mv cos γ
(L sinµ+ T sinµ sinα)

Ṫ = uT

α̇ = uα

µ̇ = uµ

(34)

where (x(t), y(t), z(t)) is the position of the UAV in a Cartesian reference frame, v(t) is the velocity,
(γ(t), σ(t)) are elevation and heading angles, T (t) is the thrust, α(t) is the angle of attack, and µ(t) is the
bank angle (see Figure 12). The UAV model (34) is valid only in the region of the phase space defined by
the following constraints

13 ≤ v(t) ≤ 42, −π
6
≤ γ(t) ≤ π

6
, −π ≤ σ(t) ≤ π, 3.0 ≤ T (t) ≤ 35.0, −π

8
≤ α(t) ≤ π

8
. (35)

These are effectively linear state space constraints that need to be added to the optimal control problem (see
Eqs. (2) and (12)). The other parameters appearing in (34) are the UAV mass m = 2 kg, the acceleration of
gravity g = 9.8 m/s2, and the aerodynamic lift and drag forces given by

L =
1

2
ρv2SCL, D =

1

2
ρv2SCD. (36)
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In these expressions ρ(z) = 1.21e−z/8000 kg/m3 is the mass density of air, S = 0.982 m2 is the wing surface
area, and CL and CD are the lift and drag coefficients defined as

CL = (Cx0 + Cxaα) sinα− (Cz0 + Czaα) cosα, (37)

CD = −(Cx0 + Cxaα) cosα− (Cz0 + Czaα) sinα. (38)

Note that CL and CD depend on the parameters Cx0, Cxa, Cz0, and Cza which are usually unknown and
must be estimated from data. In our simulation we model such coefficients as independent random variables
with given probability distributions.

We aim at computing optimal controls for the angle of attach uα(t), the bank angle uµ(t) and trust uT (t)
so that the UAV hits the target located at (x, y, z) = (500, 500, 500) under uncertain aerodynamic forces,
uncertain initial position/angles, and uncertain initial velocity. The controls are subject to the following box
constraints.

uT ∈ [−1.0, 1.0], uα ∈ [−0.05, 0.05], uµ ∈ [−0.05, 0.05]. (39)

Following the same steps as in the UGV example we studied in section 5.1, we first calculate the nominal
control where we minimize the functional

J ([uT (t)], [uα(t)], uµ(t)]) =(x(tf )− 500)2 + (y(tf )− 500)2 + (z(tf )− 500)2+

1

200

∫ tf

0

[
u2
T (t) + u2

α(t) + u2
µ(t)

]
dt (40)

subject to (34), (35), (39) and the deterministic initial states

x(0) = 0, y(0) = 0, z(0) = 0, v(0) = 27.5, γ(0) = 0, σ(0) = π, T (0) = 16.1,

α(0) = −0.0088, µ(0) = 0, Cx0 = −0.03554, Cxa = 0.00292, Cz0 = −0.055, Cza = −5.578.

Note that this defines a challenging maneuver whereby the UAV has to move from (x(0), y(0), z(0)) =
(0, 0, 0) to (x(tf ), y(tf ), z(tf )) = (500, 500, 500) while the initial heading angle σ is in the opposite direc-
tion (see Figure 14a).

Next, we consider the stochastic path planning problem, i.e., the problem of computing robust controls
that can steer the UAV from an uncertain initial state (position, velocity, and configuration angles) to the final
position (x(tf ), y(tf ), z(tf )) = (500, 500, 500), under random aerodynamics forces. A simplified version
of this problem was recently studied by Shaffer et. al in [24], where uncertainty was modeled in terms of
only one random variable, i.e., Cx0 in Eqs. (37) and (38). The main reason for studying such simplified
model was that the computational control algorithm could not handle higher-dimensional random input
vectors. Indeed, the memory requirements and computational cost of the algorithms proposed in [24] are
currently beyond the capabilities of a modern workstation. To compute the optimal controls in the stochastic
path planning UAV problem we minimize the cost functional

J ([uT (t)], [uα(t)], [uµ(t)]) =E
{

(x(tf )− 500)2 + (y(tf )− 500)2 + (z(tf )− 500)2}
}

+

1

200

∫ tf

0

[
u2
T (t) + u2

α(t) + u2
µ(t)

]
dt, (41)

subject to (34), (35), the random initial condition

x(0) = r sin(θ) cos(φ), y(0) = r sin(θ) sin(φ), z(0) = r cos(φ), (42)

v(0) ∼ U(25.5750, 29.4250), γ(0) ∼ U(−0.05, 0.05), σ(0) ∼ U(3.1, 3.2), (43)

Cx0 ∼ U(−0.0380,−0.0330), Cxa ∼ U(0.0027, 0.0031),

Cz0 ∼ U(−0.0589,−0.0548), Cza ∼ U(−5.9685,−5.1875), (44)
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Figure 13: Stochastic path planning problem for the fixed-wing UAV model (34). Shown are the optimal thrust T (t), angle of
attack α(t) and bank angle µ(t) (integrals of uT , uα and uµ) we obtained to steer the UAV from the random initial position (42) to
the final position (x, y, z) = (500, 500, 500), under random aerodynamic forces.

where r ∼ U(0, 5.0), θ ∼ U(0, π) φ ∼ U(0, 2π), and the ensemble path constraints

13 ≤ E{v(t)} ≤ 42, −π
6
≤ E{γ(t)} ≤ π

6
, −π ≤ E{σ(t)} ≤ π,

3.0 ≤ E{T (t)} ≤ 35.0, − π

12
≤ E{α(t)} ≤ π

12
.

In Eqs. (41) and (34) E{·} is an expectation over the joint PDF of the random variables in the initial state,
which we approximate using Monte Carlo cubature rule with M = 4800 randomly drawn sample paths. To
compute the nominal and the optimal controls we utilized a single shooting algorithm with explicit RK3 time
integration (∆t = 0.1), and CSE to calculate the ensemble gradient of the cost functional (see Eq. (17)). This
yields a fully discrete optimal control problem of the form (12), which we solved using IPOPT [31, 3, 37]
linked with CSE, and verified using ADOLC [32]. The optimal thrust, angle of attack and bank angle are
shown in Figure 13. To verify the performance of the optimal controls under random initial conditions
and uncertain parameters, we propagated in time the controlled dynamics of 10000 randomly generated
trajectories, with initial conditions and parameters sampled according to (42)-(44). Such trajectories are
shown in Figure 14. It is seen that the final positions of the UAV converge to a smaller region about the
target location (x, y, z) = (500, 500, 500).

5.2.1. Nonlinear advection-reaction-diffusion PDE
In this section we study open-loop control under uncertainty of nonlinear PDEs. Specifically, we con-

sider the following initial-boundary value problem involving a nonlinear advection-reaction-diffusion equa-
tion 

∂ψ

∂t
= ψ

∂ψ

∂x
+

1

5

∂2ψ

∂x2
+

3

2
ψe−ψ/10 + IΩ(x)u(t),

ψ(t,−1) = ψ(t, 1) = 0,

ψ(0, x) = ψ0(x),

(45)

where ψ(x, t) : [−1, 1]× [0, tf ] 7→ R is a random field that is a functional of ψ0 (random initial condition)
and u(t) : [0, tf ] → R (control). Note that u(t) is actuated only on the spatial domain Ω = [−0.5,−0.2],
which is the support of the indicator function IΩ(x). We aim at determining the optimal control u(t) that
minimizes the cost functional

J([ψ], [u]) =
1

2
E
{∫ 1

−1
ψ(tf , x)2dx+ 2

∫ tf

0

∫ 1

−1
ψ(τ, x)2dxdτ

}
+

1

20

∫ tf

0
u(τ)2dτ, tf = 8, (46)
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(c) Random trajectories under optimal controls.

Figure 14: UAV stochastic path planning problem. Shown are trajectories obtained by sampling the random initial condition and
the random parameters of the model (34) and then propagating them forward in time using nominal and optimal controls. It is seen
that the optimal controls can mitigate the effects of uncertainty, and they yield final states clustered around the target located at
(x, y, z) = (500, 500, 500). Figures drawn to the same scale for comparison.

where E{·} is an expectation over the probability distribution of the initial state ψ0(x). To this end, we first
discretize (45) in space using a Chebyshev pseudo-spectral method [25]. This yields the semi-discrete form ψ̇ = ψ ◦Dψ +

1

5
D2ψ +

3

2
ψ ◦ e−ψ/10 + IΩu(t),

ψ(0) = ψ0,

(47)

where ψ(t) = [ψ(t, x1), ..., ψ(t, xn)]T collects the values of the solution ψ(t, x) at the (inner) Chebyshev
nodes

xj = cos

(
jπ

n+ 1

)
j = 1, ..., n. (48)

In equation (47), the circle “◦” denotes element-wise multiplication (Hadamard product), IΩ is the discrete
indicator function, while D and D2 ∈ Rn×n are, respectively, the first- and second-order Chebyshev dif-
ferentiation matrices. These matrices are obtained by deleting the first and last rows and columns of the
full differentiation matrices. In Figure 15 we plot two solution samples of the initial-boundary value prob-
lem (45) we obtained by integrating the discretized system (47) in time. The cost functional (46) can be
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Figure 15: Solution samples of the initial-boundary value problem (45) corresponding to different initial conditions. Here we set
the control u(t) equal to zero (uncontrolled dynamics).

Figure 16: Open loop control of the nonlinear PDE (45). Shown is the nominal control minimizing (46) for the deterministic initial
condition ψ0 = 2 sin(πx) and the corresponding solution dynamics. It is seen that the control u(t) sends ψ(t, x) to zero after a
small transient.

discretized as

J =
1

2M

M∑
i=1

wT

[
ψ(i)(tf )2 + 2

∫ tf

0
ψ(i)(τ)2dτ

]
+

1

20

∫ tf

0
u(τ)2dτ, (49)

where w are Clenshaw-Curtis quadrature weights (column vector), and M is the total number of samples.
To quantify the effectiveness of the ensemble optimal control algorithm we propose, we first determine

the nominal control corresponding to the deterministic initial condition ψ0(x) = 2 sin(πx). Such control
minimizes the functional (49) withM = 1 and ψ(1)

j (0) = 2 sin(πxj), and sends ψ(t, x) to zero after a small
transient (see Figure 16). Next, we introduce uncertainty in the initial condition. Specifically, we set

ψ0j = 2 sin(πxj) + εj εj ∼ N (0, σ2), (50)

where εj are independent and identically-distributed normal random variables with mean zero and variance
σ2. This makes the solution to (45) and (47) random. As seen in Figure 17 the introduction of a small
uncertainty in the initial condition, i.e., σ = 10−3, causes large perturbations to the system solution under
nominal control especially at t = 8. To compute the optimal control, we minimized the functional (49)
subject to M = 1000 replicas of the dynamical system (47). Specifically, we considered the single-shooting
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Figure 17: Comparison between the mean and the standard deviation of the stochastic solution to the PDE (45) under optimal or
nominal controls. The initial condition here is set to be random as in (50), with σ = 10−3. It is seen that the optimal control is
more effective in driving the stochastic solution to zero. In fact, both the mean and standard deviation of the optimally controlled
solution are closer to zero. Note also that the optimal control differs substantially from the nominal control.

method described in section 2 with ∆t = 0.0005, Euler-forward time integrator, and CSE gradient algo-
rithm. In Figure 17 we compare the mean and the standard deviation of the solution we obtain by using
nominal and optimal controls. It is seen that the optimal control is more effective in driving the solution
ensemble to zero. In fact, both the mean and standard deviation of the optimally controlled dynamics are
closer to zero. Note also that the optimal control differs substantially from the nominal control. To further
illustrate the performance of the method, we increase the uncertainty in (50) by several order of magnitude,
i.e., we set σ = 10−1 in (50). This yields the mean and standard deviation shown in Figure 18, where
it is seen that the optimal control performs much better than the nominal control in driving the stochastic
solution closer to zero for this increased level of uncertainty. Next, we verify the optimality of the control.
Since the dimension of the control problem is relatively large, we perform such verification by using use
asymptotic criterion explained at the end of section 4. To this end, we approximate the sample average in
(49) using an increasing number of sample paths M , and compute the corresponding sequence of optimal
controls. This sequence is shown in Figure 19 for M ranging from 1000 to 12000. It is seen that the optimal
controls converge to a well-defined control as the number of sample paths increases.

6. Summary

In this paper we developed a new scalable algorithm for computational optimal control under uncertainty.
The new algorithm combines multi-shooting discretization methods, interior point optimization, common
sub-expression elimination, and exact gradients obtained via automatic differentiation and computational
graphs. It also allows for point-wise control constraints and ensemble state-space constraints. The algorithm
has an extremely low memory footprint, which allows us to process a large number of sample trajectories
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Figure 18: Comparison between the mean and the standard deviation of the stochastic solution to the PDE (45) under optimal or
nominal controls for increased uncertainty. The initial condition here is set to be random as (50), with σ = 10−1. It is seen that
the optimal control performs much better than the nominal control in driving the stochastic solution closer to zero also for this
increased level of uncertainty. The nominal control is the same as in Figure 17.

and controls random dynamical systems over long time horizons. We also developed a new criterion for
verification and validation of optimal control based on the stochastic version of the Pontryagin’s minimum
principle. We demonstrated the accuracy and computational efficiency of the new algorithm in applications
to stochastic path planning problems involving models of unmanned aerial and ground vehicles, and in
distributed control of a nonlinear advection-reation-diffusion PDE.
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