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Abstract 

Several models have been developed to predict stroke outcomes (e.g., stroke mortality, patient dependence, etc.) in 

recent decades. However, there is little discussion regarding the problem of between-class imbalance in stroke 

datasets, which leads to prediction bias and decreased performance. In this paper, we demonstrate the use of the 

Synthetic Minority Over-sampling Technique to overcome such problems. We also compare state of the art machine 

learning methods and construct a six-variable support vector machine (SVM) model to predict stroke mortality at 

discharge. Finally, we discuss how the identification of a reduced feature set allowed us to identify additional cases 

in our research database for validation testing. Our classifier achieved a c-statistic of 0.865 on the cross-validated 

dataset, demonstrating good classification performance using a reduced set of variables.  

1. Introduction 

Stroke is a major cause of mortality and disability in the United States, with over 20% of affected individuals 

succumbing to the condition, and only one-fourth of surviving adults returning to normal health status [1-3]. There 

exist a variety of treatments for stroke, including intravenous and intra-arterial tissue plasminogen activator (tPA), as 

well as clot retrieval using mechanical devices (i.e. mechanical thrombectomy). However, the relationship among a 

patient's stroke presentation, treatment options, and functional outcomes is not well defined. To inform treatment, 

work in the literature has focused on building models to predict a patient's functional status given initial 

presentation, in hopes of detecting cases that need to be treated more or less aggressively.  

To build a predictive model that may be used in practice and which generalizes to multiple institutions, it is 

important to determine an informative feature set that is collected in the course of normal clinical care. More 

importantly, the distribution of data and associated class labels is also important. Recently, the problem of 

imbalanced data has received increased attention as it has been shown to decrease model performance and lead to 

biased prediction [4-6]. While previous work has been focused on using logistic regression models to predict stroke 

outcomes [7-10], alternative machine learning techniques are less studied, but potentially useful.  

In this work, we present a comparison between six models for predicting stroke mortality at discharge that includes 

methods for data balancing. We calculated the c-statistic for each classifier, following a systematic approach to 

identify the optimal set for each classifier by sequentially adding informative features until performance no longer 

increased.  

2. Previous Work 

There are many models for predicting acute stroke outcomes, which in general apply multivariate logistic regression 

techniques.  Counsell et.al. [7] developed a six simple variable (SSV) multivariate logistic regression model to 

predict survival rate 30 days and 6 months after stroke using a 530 patient dataset. The six variables used were age, 

living alone, independence in activities of daily living before the stroke, the verbal component of Glasgow Coma 

Scale, arm power, and the ability to walk. The model was validated using two external independent cohorts of stroke 

patients with c-statistics from 0.84 to 0.88. Teale et. al. [8] reviewed different literature databases (e.g., MEDLINE) 

and concluded that the SSV model demonstrated statistical robustness, good discriminatory function in external 

validation, and comprised clinically feasible variables that were easily collected; it performed well among all 

prognostic models for predicting outcome after acute stroke. 

Konig et. al. [9, 10] developed a multivariate logistic regression model to predict three month survival rate after 

acute ischemic stroke using age and the National Institutes of Health Stroke Scale (Pre-NIHSS) [11]. They showed 
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that Pre-NIHSS is a strong predictor variable that has significant impact on model accuracy. Further analyses [12, 

13] have supported the effectiveness of Pre-NIHSS in 30-Day mortality prediction after acute ischemic stroke. 

Saposnik et. al. [14-16] considered the utility of a predictive model in a clinical setting and developed an algorithm 

to predict mortality risk in ischemic stroke patients after hospitalization based on information routinely available in 

hospital, such as demographics, clinical presentation (diplopia, dysarthria, and aphasia, etc.), and patient 

comorbidities. The model, called iScore, was developed from multivariate logistic regression models by using a 

regression coefficient-based scoring method based on β coefficients. The iScore model is now available online [17]. 

In contrast to more general models, which attempt to predict an outcome based on a patient’s presentation, 

additional algorithms are under development that attempt to predict response to a specific therapy. Examples include 

the DRAGON score for intravenous thrombolysis therapy [18], and HIAT2 score for outcomes after intra-arterial 

thrombolysis [19]. 

While significant work has been done in predicting outcomes after acute stroke, there is little work regarding the 

problem of between-class imbalance, which is common in binary prediction tasks when one class (the majority) is 

more common than the other class (the minority). We address this problem by using a sampling method, called the 

Synthetic Minority Over-sampling Technique (SMOTE) [20]. We compare the performance of various models 

(logistic regression, support vector machines, naïve bayes, decision tree, and random forest) for balanced and 

imbalanced datasets and determine the best model for predicting discharge mortality. We then identify the best six 

features that appear to be critical for good model performance.  

3. Methods 

This section describes the stroke dataset used, the imbalanced dataset problem, and the modeling methods compared 

for mortality prediction. 

3.1 Dataset 

UCLA maintains a REDCap [21] database that stores acute stroke patients who have been treated with one or more 

of the following treatments from 1992 to 2013: intra-arterial tissue plasminogen activator (IA tPA), intravenous 

tissue plasminogen activator (IV tPA), or mechanical thrombectomy.  There are 778 patients in this study cohort, 

each with more than 500 features, including demographic information, laboratory results, and medications. Our goal 

is to predict patient mortality at hospital discharge, which is indicated by the discharge modified Rankin Scale 

(discharge mRS) [22, 23]. Discharge mRS is a commonly used scale for measuring the degree of disability or 

dependence in the daily activities of patients who have suffered stroke. The scale runs from 0-6, with 0 indicating 

perfect health and 6 indicating death. Our binary prediction model collapses this scale to two groups: alive (0-5) and 

dead (6).  

Using this dataset, we defined a cohort subset for analysis in this study using inclusion criteria (Table 1). The 

features are summarized in Table 2. The continuous features are patients’ demographics information and time-

related information while the binary features are patients’ presentation, and medication. This subset was used to 

build the model. 

Table 1. Inclusion criteria for cohort subset. 

Original dataset 778 patients; >500 features 

Patients’ inclusion 

criteria 
 Only patients with discharge mRS recorded. 

 Only patients with ischemic stroke (excluding patients with subarachnoid 

hemorrhage). 

 Only patients who received treatment solely at UCLA. 

 Only patients who with hospital stays less than 20 days (patients who stay 

longer are more likely to have other conditions in addition to stroke). 

 Only patients without missing any features’ values after using features inclusion 

criteria 

Features inclusion 

criteria 
 Only features that were available in over 90% of patient cases after the first four 

patients’ inclusion criteria. 

Cohort subset 190 patients (156 alive, 34 dead); 26 features 
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Table 2. Feature distribution of alive and dead patients in dataset before and after SMOTE. 

  Alive Dead  

(Before SMOTE) 

Dead 

 (After SMOTE) 

Size  156 34 156 

Continuous 

features 

  

Average(SD) 

 

Average(SD) 

 

Average(SD) 

 Age 67.91(17.05) 81.29(9.45) 81.41(8.06) 

 Pre-NIHSS 12.16(7.20) 18.24(5.93) 18.16(4.84) 

 Systolic blood pressure 151.03(28.20) 147.32(30.96) 145.54(27.54) 

 Diastolic blood pressure 82.42(17.71) 79.12(19.12) 77.88(16.30) 

 Blood glucose 131.72(48.14) 164.82(74.66) 160.81(61.98) 

 Blood platelet count 224.99(75.63) 181.47(54.86) 179.43(50.50) 

 Hematocrit 39.60(5.33) 38.66(5.37) 38.38(4.77) 

 Time difference between 

first MRI image and time of 

symptoms (minute) 

178.77(152.89) 166.15(109.27) 171.39(96.26) 

 Time difference between 

first MRI image and 

admission (minute) 

44.67(27.66) 49.35(34.73) 48.89(30.66) 

Binary 

features 

 Percentage of 

true(%) 

Percentage of 

true(%) 

Percentage of 

true(%) 

 Gender (Male) 44.87 52.94 37.82 

 Hypertension 66.67 82.35 84.62 

 Diabetes 16.67 20.59 6.41 

 Hyperlipidemia 27.56 35.29 17.95 

 Atrial fib 30.13 55.88 41.67 

 Myocardial infarction 12.18 38.24 25.00 

 Coronary artery bypass 

surgery 

7.69 11.76 2.56 

 Congestive heart failure 3.21 26.47 8.33 

 Peripheral vascular disease 0.00 2.94 0.64 

 Carotid endarterectomy 

angioplasty/stent 

1.92 5.88 1.28 

 Brain aneurysm 0.00 2.94 0.64 

 Active internal bleeding 0.00 0.00 0.00 

 Low platelet count 0.00 0.00 0.00 

 Abnormal glucose 0.00 0.00 0.00 

 Diabetes medication 14.74 32.35 10.90 

 Hypertension medication 53.21 82.35 86.54 

 Hyperlipidemia medication 16.67 23.53 7.69 

 

3.2 Imbalanced Learning Problem 

The cohort subset is imbalanced (156 alive vs. 34 dead). Previous research has shown that imbalanced learning can 

cause prediction bias, leading to inaccurate and unreliable results [4, 6]. In our case, models would predict all 

patients as alive to achieve high accuracy, but with low precision and recall. The imbalanced learning problem has 

received attention in both theoretical and practical application [5]. Most machine learning algorithms do not deal 

with imbalanced datasets during the training process [4]. In some cases, the minority are scattered in the feature 

space and the decision boundary is too specific. We addressed this issue by using Synthetic Minority Over-sampling 
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Technique (SMOTE) [20], a sampling technique combining under-sampling of the majority class with over-

sampling of the minority class.   

There are two parts to the SMOTE algorithm. In the first part, the minority class is over-sampled by taking each 

minority class sample and introducing new synthetic samples joining any or all of the k minority class nearest 

neighbors (by Euclidean distance). Neighbors from the k nearest neighbors are randomly chosen depending upon the 

amount of over-sampling required. Synthetic samples are generated in the following way:  

1. Find the difference between the normalized feature vector (sample), Forig, and a randomly selected 

normalized nearest neighbor, Fnear. 

2. Multiply the difference by a random number between 0 and 1. 

3. Add the product to the feature vector to generate a new feature vector.  

This approach essentially creates a random point along the line segment between two specific features and 

effectively forces the decision region of the minority class to become more general. The new feature vector, Fnew, is 

defined as follows: 

    Fnew = Forig + rand(0,1) * (Fnear - Forig)      (1) 

The above step is used for continuous features. For binary features, the new value is obtained by the majority vote (0 

or 1) of all the neighbors. In our training process, the second part of the SMOTE algorithm, under-sampling, was not 

performed because the dataset was small and all data should be considered. We applied the SMOTE algorithm using 

MATLAB, denoting this new dataset as SMOTE-dataset.  Five neighbors (k) were used and one of them was 

randomly selected to generate a synthetic sample. The synthetic step was repeated until the number of minority is 

equivalent to the number of majority. 

3.3 Model comparison and feature selection  

Early research has emphasized using logistic regression models [24] to predict stroke outcome [7-10].  To the best of 

our knowledge, none have compared the performance of different machine learning methods in stroke outcome 

prediction, particularly with a balanced dataset. Therefore, we compared the performance of five common machine 

learning methods: Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT), Random Forests (RF), 

and Logistic Regression (LR). In addition, we compared the performance of a combined method: principal 

component analysis followed by support vector machine (PCA+SVM).  

Briefly, NB is a probabilistic classifier algorithm based on Bayes’ Rule that makes a conditional independence 

assumption between the predictor variables, given the outcome [25]. SVM is a supervised learning classification 

algorithm that constructs a hyperplane (or set of hyperplanes) in a higher dimensional space for classification [26]. 

DT is a tree-like prediction model in which each internal (non-leaf) node tests an input feature and each leaf is 

labeled with a class [27]. RF is an ensemble learning method in which a multitude of decision trees are constructed 

and the classification is based on the mode of the classes output by individual trees [28]. LR is a probabilistic 

classification model in which label probabilities are found by fitting a logistic function of feature values [29]. 

Principal component analysis is a statistical procedure that uses orthogonal transformation to reduce the 

dimensionality of the feature space containing only principal components (principal features) [30]. Yang et. al. [31] 

and Gumus et. al. [32] have shown the effectiveness of using PCA to extract principal components for SVM 

classification. We also used this combination of methods and determine whether PCA is beneficial before SVM on 

stroke patient mortality classification.  

It is time-consuming to collect a comprehensive set of features for every patient, and not all the features are relevant. 

In addition, using all the features to construct a classifier may lead to decreased performance due to over-fitting, 

especially on small, imbalanced datasets, which are not uncommon in stroke. Thus, we sought a minimum feature 

set to mitigate these clinical and modeling challenges, and that could also be externally validated more easily. 

Different machine learning methods may not perform equally on the same feature set. Therefore, optimal feature 

sets for each machine learning method were defined systematically, with the top performing method determined 

using the c-statistic. First, chi-square tests were used to weight the association between features (categorical 

variables/binned continuous variables) and discharge mRS in the original dataset.  Then, the feature with the highest 

weight was used to construct a single-variable classifier and the c-statistic was calculated.  The feature with the 

second highest weight was then added, and c-statistic was re-calculated. This process of adding features was 

repeated until an optimal feature set for a machine learning method was obtained. The optimal feature set (the first  
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optimum) was defined as the point at which adding any additional features did not increase the performance of the 

classifier. All methods were compared and the best one was chosen for stroke patient mortality at discharge. A 

summary of steps is shown in Figure 1. Models were fitted and compared using RapidMiner (RM) [33], an open-

source software platform which provides an integrated environment for machine learning, data mining, and 

predictive analytics [34, 35]. 

 

Figure 1. Summary of building classifier for predicting stroke patient mortality at discharge. A sub-cohort based on 

clinical and missing data factors was first created. Then, the relevance between features and the classes were 

weighted by chi-square statistics, and then the dataset is balanced by SMOTE. The fourth step was an iterative 

process in which the highest weighted feature was first used to build classifiers and AUC was calculated. Features 

were added to the training feature set sequentially in the order of weighting and classifiers were trained. After 

several iterations, optimal feature sets for all classifiers were obtained. Finally, performances were compared (SVM, 

PCA&SVM, DT, RF, NB, and LR) and the best classifier was selected. 

 

4. Result and Discussion 

4.1 SMOTE over-sampling 

There were 190 patients in the training cohort with 156 class-1 patients (alive) and 34 class-2 patients (dead). The 

final SMOTE-dataset had 156 class-1 patients and 156 class-2 patients. Age and Pre-NIHSS have been shown to be 

two important features for stroke outcome prediction [9, 10, 12, 13]. Figure 2A shows the data distribution (x-axis: 

Pre-NIHSS; y-axis: age) between two the classes before SMOTE sampling and Figure 2B showed the distribution 

after SMOTE sampling. The original class-2 distribution was scattered, and it was hard to determine where the 

decision boundary should be. After oversampling by SMOTE, it was easy to observe that class-2 patients clustered 

in the region of high age and high Pre-NIHSS.  

 

 

Figure 2. Two classes distribution before and after SMOTE sampling. (A)  Before SMOTE, (B) After SMOTE. 

Two datasets for classifications: (A) original dataset with 156 class-1 patients and 34 class-2 patients), (B) SMOTE-

dataset with 156 class-1 patients and 156 class-2 patients.  
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4.2 Feature Selection 

Chi-square tests were used to weight the relevance between a feature and the classes in the original dataset. As our 

goal was to obtain a ranking of features (rather than finding statically significant features), we calculated the chi-

squared statistics (weight) and normalized them for comparison.  Continuous variables were discretized into ten 

bins. The top ten normalized weights are shown in Table 3. 

Table 3. Top ten normalized weights by chi-squared statistic. 

Feature Weight 

Pre-NIHSS 1.000 

Age 0.631 

Patient history of congestive heart failure 0.565 

Platelet count 0.450 

Patient history of myocardial Infarction 0.346 

Serum glucose 0.325 

Patient on hypertension medication 0.249 

Time difference between the first MRI image and admission 0.243 

Systolic blood pressure 0.223 

Patient history of atrial fibrillation 0.209 

 

4.3 Model Comparison 

Ten-fold cross-validation was used to compare different models on the datasets, measuring the model performance 

via c-statistic and model bias via F1-score [36]. In each validation, nine groups of original data were used to train 

the classifier and one group of data was classified. For the SMOTE-dataset, nine folds of data were balanced using 

SMOTE and then used to train the classifier. The held-out unbalanced dataset was then classified.  

Features were added sequentially to train a classifier in order of largest weight to smallest weight. The c-statistic of 

each classifier is shown in Figure 3, with its distribution shown in Figure 4. The enlarged markers represent the size 

of the optimal feature set for each classifier. With only one feature (Pre-NIHSS), all classifiers performed poorly. 

The performance gradually increased as more features were added. Each classifier reached to the first maximum c-

statistic at a different number of features, with performance for each leveling off with additional features. This 

validated our hypothesis that more features might not necessarily improve the performance. The size of each optimal 

feature set is summarized in Table 4. 

 

Figure 3. The c-statistics of classifiers with different number of top-ranked features based on Table 3. The size of 

the optimal feature set for each classifier was indicated by the enlarged marker. Each classifier has different size of 

optimal feature set. Among all classifiers, SVM has the highest c-statistic with 6 features being used. 

1792



  

 

Figure 4. c-statistic distributions for classifiers with optimal feature set (means are represented by blue diamonds). 

 

Table 4. The size of the optimal feature set for each classifier and the cross-validation result. 

  SMOTE-dataset Original dataset 

Classifier Optimal feature 

set size 

c-statistic F1-score c-statistic F1-score 

SVM 6 0.865 0.594 0.868 0.336 

PCA&SVM 4 0.802 0.488 0.856 0.368 

DT 2 0.695 0.441 0.709 0.061 

RF 5 0.828 0.401 0.789 0.249 

NB 4 0.831 0.560 0.839 0.354 

LR 4 0.859 0.582 0.867 0.226 

 

Among all the classifiers for the SMOTE generated dataset, SVM performed the best with a c-statistic of 0.865 and 

an F1-score of 0.594. PCA+SVM did not perform well, which could be due to a scenario where two classes 

overlapped more after projection [37].  RF and NB both generally performed more poorly than SVM in all feature 

sizes. DT had the worst performance with the first optimal c-statistic at 0.695. This is mostly because more features 

were required to build a good classifier based on the nature of DT. LR had the closest performance to SVM. 

However, previous research has shown that SVM performs better than LR in the case of multivariate and mixture of 

distributions with a better (or equivalent) misclassification rate [38, 39]. Therefore, SVM was determined to be the 

most suitable classifier. 

The size of the optimal feature set for SVM was six: Pre-NIHSS, age, platelet count, serum glucose, congestive 

heart failure, and myocardial infarction. These features are routinely collected in acute stroke patients. Pre-NIHSS is 

a standard measure of impairment caused by a stroke, with most patients receiving Pre-NIHSS assessment 

immediately after hospital admission. Pre-NIHSS, age, platelet count, and serum glucose level have also been shown 

to be relevant to stroke outcomes [9, 40, 41]. Therefore, it is reasonable to expect other institutions may maintain 

these variables and could validate our model. Moreover, the c-statistic was nearly optimal (0.854) with only four 

features (Pre-NIHSS, age, congestive heart failure, and platelet count), suggesting the possibility of using even less 

information.  

After identifying the top six features for the SVM model, we revisited the database and obtained an additional 39 

patients that were not included in the initial filtering due to missing data, but had all six important features. These 

data were then used as an independent testing dataset to test the classifier. We compared the performance of six-

variable SVM classifier trained with balanced and imbalanced testing dataset, and both c-statistic and F1-score were 

higher when the training dataset was balanced (Table 5). We also performed Mann-Whitney U tests to verify that 

both SVM1 and SVM2 are statistically better than random (p=0.020 and p=0.011, respectively), and used a 

weighted Wilcoxon signed-rank test to verify that the performance difference between SVM1 and SVM2 is 
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statistically significant (p=0.039). These results suggest that balancing data (i.e., SMOTE) yields an improved 

classifier for predicting mortality at discharge in acute stroke patients.  

Table 5. Performance comparison of six-variable SVMs. 

 SVM 1 SVM 2 

Number of testing data 32 alive, 7 dead 

Number of features 6 

Applied SMOTE? No Yes 

Number of training data 156 alive , 34 

dead 

156 alive,156 

dead 

c-statistic 0.750 0.781 

F1-score 0.400 0.500 

 

5. Conclusion and Future work 

In this paper, we compared the performance of SVM, PCA-SVM, DT, RF, NB, and LR models for predicting stroke 

patient mortality at discharge and determined SVM was the best based on relative c-statistic and F1-score. We then 

developed an SVM predictive model with six common variables (Pre-NIHSS, age, platelet count, serum glucose 

level, congestive heart failure, and myocardial infarction) and predicted mortality on the testing data, achieving a 

0.781 c-statistic. In addition, we demonstrated the importance of balancing the stroke dataset before training and 

illustrated the use of the SMOTE algorithm as a solution. We also discussed the benefits of identifying an optimal 

feature set for building the classifier. 

There are a few limitations in our work. First, there are roughly 800 patients available in our dataset, but nearly half 

of them were missing discharge mRS or other feature values, reducing the size of available data. Our next step will 

be collecting this information via chart review. Also, we plan to seek independent external datasets on which to 

validate the proposed models. Second, the distributions of binary features became more imbalanced after SMOTE 

(Table 2). A possible solution to this problem would be to assign values to binary features by sampling the 

probability distribution of nearest neighbors, rather than a majority vote. 

Lastly, mortality is a standard measure that most existing stroke models aim to predict. However, patients have 

different degrees of disability even though they are still alive. One clear difference is whether a patient can live 

independently or dependently [42].  We plan to investigate and improve existing methods in multi-class prediction 

[43-45] and extend our prediction ability to more classes (independent, dependent, and death), rather than just 

survival/non-survival.  
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