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Abstract

Decision making (DM) requires the coordination of anatom-
ically and functionally distinct cortical and subcortical areas.
While previous computational models have studied these sub-
systems in isolation, few models explore how DM holistically
arises from their interaction. We propose a spiking neuron
model that unifies various components of DM, then show that
the model performs an inferential decision task in a human-like
manner. The model (a) includes populations corresponding to
dorsolateral prefrontal cortex, orbitofrontal cortex, right inferior
frontal cortex, pre-supplementary motor area, and basal ganglia;
(b) is constructed using 8000 leaky-integrate-and-fire neurons
with 7 million connections; and (c) realizes dedicated cognitive
operations such as weighted valuation of inputs, accumulation
of evidence for multiple choice alternatives, competition be-
tween potential actions, dynamic thresholding of behavior, and
urgency-mediated modulation. We show that the model repro-
duces reaction time distributions and speed-accuracy tradeoffs
from humans performing the task. These results provide be-
havioral validation for tasks that involve slow dynamics and
perceptual uncertainty; we conclude by discussing how addi-
tional tasks, constraints, and metrics may be incorporated into
this initial framework.

Keywords: Neural Engineering Framework; decision making;
computational model;

Introduction
In both natural and artificial environments, the dynamic and
stochastic nature of decision making (DM) presents unique
challenges for cognitive systems. Effectively performing DM
tasks like appraising a potential mate or diagnosing an ill-
ness requires dealing with time and uncertainty, both when
acquiring information and when comparing action alternatives.
Although most humans perform these steps intuitively, the
required cognitive operations are far from trivial: an agent
must internally represent information sampled from the envi-
ronment, judge the quality of that information, keep track of
utilities for multiple actions, and choose when to make a deci-
sion. Furthermore, agents must flexibly adapt these operations
to fit the demands of the current task: although DM would
ideally proceed both quickly and accurately, either speed (time
taken before making a choice) or accuracy (about the quality
of the choice) must often be sacrificed in dynamic and noisy
environments. We are interested in the neural and cognitive
processes that underlie these operations, specifically (a) how
brains flexibly manage tradeoffs between speed and accuracy,
and (b) whether an integrated neural model can successfully
reproduce human behavior.

Consider a DM task in which an interviewer must hire
a new employee from a pool of candidates by asking them
specific questions and numerically scoring their responses.
Each question probes a specific attribute, such as intelligence,
initiative, or creativity. Imperfect judgement implies the inter-
viewer’s score may not reflect the candidate’s true value for
that attribute; observations are noisy. Each attribute also has an
associated weight indicating its importance in the interviewer’s
rubric. To select the best candidate, the interviewer may use
the following algorithm: (1) choose a random candidate, (2)
ask a random question and score the value, (3) multiply this
score by the attribute’s weight, and (4) add the result to the
current score for that candidate. Once the interviewer has
asked each candidate each question, she can select the individ-
ual with the greatest total score. Although this algorithm will
produce the correct selection, it may be unnecessarily slow;
for example, if one candidate receives a perfect score on each
question, there is no need to continue interviewing. Various
heuristics could similarly improve speed, but many come at
the expense of no longer guaranteeing the correct selection.

The goal of this study is to introduce a framework for DM
which is cognitively plausible, mathematically tractable, and
biologically constrained. To do so, we present an anatomically
mapped, spiking neuron model that performs the probabilistic
inference task (PIT), a simplified version of the above inter-
viewer task for which behavioral data is available. Model
parameters corresponding to abstract variables such as uncer-
tainty, urgency, and threshold are translated into connection
weights and neural activities, bridging the gap between cog-
nitive algorithm and biological implementation. This signif-
icantly extends previous works, which have either ignored
neural plausibility or focused on implementing a single aspect
of DM (e.g. evidence accumulation) in a spiking network. Our
model covers multiple brain areas and diverse DM computa-
tions, producing agents that display heterogeneous behaviors.
These behaviors align with strategies used by humans on the
PIT. Specifically, we reproduce (a) the reaction time distri-
butions of various individual participants, and (b) the speed-
accuracy tradeoff across all participants in the study. The
discussion compares our model with recent neural and compu-
tational models of DM. We conclude by discussing extensions
of the model to expand its cognitive realism, to fine-tune its
anatomical mapping, and to account for emotional state.
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Background
Psychology

DM with multiple attributes requires many interrelated cog-
nitive operations. Normative theories of choice rooted in
economics postulate that before making a decision, humans
should carefully process all available information; that is, mul-
tiply weights with attribute values and add the results. De-
scriptive theories of choice, on the other hand, postulate that
people frequently use heuristics to simplify decision problems
(Gigerenzer & Todd, 1999). Although generally quite suc-
cessful, heuristics often trade off choice accuracy for speed,
particularly in situations that require integrating many pieces
of information. Given their simplicity, heuristics were pro-
posed as plausible models of choice, particularly under time
pressure (Rieskamp & Hoffrage, 2008) and emotional stress
(Wichary, Mata, & Rieskamp, 2016). Research suggests that
these factors drive individuals to make faster, less informed
decisions in order to adapt to urgent or uncertain situations.

Cognitive Algorithms

Computational models have explored many aspects of DM,
including the speed-accuracy tradeoff (SAT), reaction times
(RT), and the roles of uncertainty, urgency, and threshold. A
foundational model in the field is the drift-diffusion model
(DDM), which states that evidence for alternative choices is
accumulated in a dynamic, noisy manner until the process
reaches a fixed decision threshold, at which point a choice
is made. Although the DDM has been very successful in
modelling human behavior across many domains (Ratcliff &
McKoon, 2008), it is a purely mathematical model, and is
therefore agnostic about neural implementation.

One important extension of DDM is the notion of time-
varying decision thresholds, which may be realized by modu-
lating the gain of accumulating sensory signals by an urgency
variable that increases over time. The existence of an urgency
signal is consistent with behavioral data (Ditterich, 2006),
neural data (Cisek, Puskas, & El-Murr, 2009), and simple
neural-network implementations (Standage, You, Wang, &
Dorris, 2011). Anatomically-detailed computational models
also have investigated variable decision thresholds (Standage
et al., 2011; Frank, 2006): these models suggest that deci-
sion conflict (uncertainty about stimulus information) may
compliment urgency signals in flexibly controlling the SAT.

Neuroanatomy

DM emerges from the interplay of distinct cognitive opera-
tions associated with activity in distinct brain structures. To
understand how these operations align with the algorithms
discussed above, and to anatomically map them onto a spiking
neuron model, we draw from a growing literature documenting
the neural correlates of DM. However, given the redundancy
of neural computation and the diversity of operations required
by DM tasks, these functional assignments remain a work-in-
progress (see the Discussion).
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Figure 1: Probabilistic Inference Task. See text for details.

Perceptual inputs on DM tasks are processed through vari-
ous sensory hierarchies, producing high-dimensional cortical
representations. To ascribe meaning to this information, an in-
dividual must draw on previous experience or abstract knowl-
edge of task requirements: the retrieval and assessment of
salience involves numerous brain areas that are outside of the
current scope. However, it appears that the binding of sensory
representations with this salience signal occurs especially in
ventromedial prefrontal cortex and orbitofrontal cortex (OFC);
these populations effectively weigh external stimuli by their
relevance to the current task (Rangel & Clithero, 2014). Be-
cause perception and evaluation evolve over time, internal
buffers are needed to track the accumulation of relevant infor-
mation. Such a working memory retains the weighted evidence
(utility) for various choice alternatives, and may be realized in
dorsolateral prefrontal cortex (dlPFC) and sensorimotor areas
(Thura & Cisek, 2014).

Before an action is selected, activity in certain regions may
modulate DM to meet contextual demands. Areas such as
the anterior cingulate cortex (ACC) and inferior frontal cor-
tex (IFC) are thought to shift decision thresholds by gating
inputs from presupplementary motor area (pSMA) to the basal
ganglia (BG), effectively delaying decisions until more infor-
mation in available (Forstmann et al., 2010). Given the role
of ACC and IFC in monitoring cortical representations, this
may realize an urgency- or uncertainty-based modulation of
decision criteria (Aron, Robbins, & Poldrack, 2014). Further-
more, projections from locus coeruleus (LC) to these cortical
regions may utilize norepinephrine to mediate arousal, further
manipulating decision thresholds or evidence accumulation
based on an agent’s emotional state (Aston-Jones & Cohen,
2005); this would provide another mechanism whereby ur-
gency (and affect) could mediate DM (Murphy, Boonstra, &
Nieuwenhuis, 2016).

Finally, the brain must select a single action and inhibit any
alternatives. This winner-take-all (WTA) competition between
action representations is realized by recurrent connections
between (and within) cortex and BG (Bogacz & Gurney, 2007;
Frank, 2006). Once alternative actions have been suppressed,
motor commands may be executed by projecting the cortical
representation back to cerebellum, brainstem, and spinal cord.

Task
In the probabilistic inference task (PIT), participants begin
by memorizing weights associated with six attributes. The
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weights in this task are compensatory: they do not differ signif-
icantly from one another, encouraging participants to attend to
each attribute rather than (heuristically) discard the low-weight
attributes. During the task, participants are simultaneously
shown the values (0 or 1) of objects A and B for one attribute.
The participants respond by pressing one of three buttons, in-
dicating their selection of A, selection of B, or a request for
more information. If they choose the later, the current display
is replaced by another pair of values for the next attribute.
This is repeated until the participant makes a choice or until
all attributes have been exhausted, at which point a choice is
forced. Each participant performs the task 48 times; behavior
on each trial is quantified by the number of attributes requested
before the final decision (RT) and whether the choice corre-
sponded to the highest-value option (accuracy). See Fig. 1
for a schematic and the original paper (Wichary, Magnuski,
Oleksy, & Brzezicka, 2017) for further experimental details.

Neural Engineering Framework
The NEF (Eliasmith & Anderson, 2003) describes how spiking
neural activity may represent a time-varying, vector-valued
signal x(t) such as value, weight, or evidence. A neuron spikes
most frequently when presented with its particular “preferred
stimulus” and responds less strongly to increasingly dissimilar
stimuli (i.e. values of x(t)). In the NEF, each neuron i is ac-
cordingly assigned a preferred direction vector, or encoder, ei.
To produce a variety of tuning curves that match electrophysio-
logical variance within the brain, each neuron is also assigned
a unique gain αi and bias βi. These quantities determine how
strongly an incident vector x(t) drives the neuron:

Iin(t) = αi ∗ (ei ·x(t))+βi (1)

where Iin(t) is the current flowing into the neuron and (·) is
the dot product between the encoder and input vector. So long
as there is a well-defined relationship between input current
and resulting firing rate, the neuron’s activity can be said to
encode the vector x(t). A distributed encoding extends this
notion: if x(t) is fed into multiple neurons, each with a unique
tuning curve defined by e, α, and β, then each neuron will
respond with a unique spiking pattern ai(t), and the collection
of all neural activities will robustly encode the signal.

For neural encoding to be meaningful, there must be meth-
ods to recover, or decode, the original vector from the neurons’
activities; together, encoding and decoding constitute neural
representation. The NEF identifies neural decoders di that
either perform this recovery or compute arbitrary functions,
f (x), of the represented vector. A functional decoding with
d f

i allows networks of neurons to transform the signal into a
new state, which is essential for performing operations such
as value-weight multiplication. To compute these transforma-
tions, a linear decoding is applied to the neural activities:

f̂ (x(t)) =
n

∑
i=0

ai(t)∗d f
i , (2)

where ai is the spiking activity of neuron i (smoothed by a

lowpass filter), n is the number of neurons, and the hat nota-
tion indicates that the computed function is an estimate. To
find decoders d f

i that compute the target function, we use
least-squares optimization to minimize the error between the
target value f (x(t)) and the decoded estimate f̂ (x(t)). The
general-purpose Nengo neural simulator (Bekolay, Laubach,
& Eliasmith, 2014) optimizes these decoders for the specified
transformations. Connection weights between each presynap-
tic neuron i and each postsynaptic neuron j combine encoders
and decoders into a single value used during simulation

wi j = α je j ·d f
i . (3)

Finally, the NEF specifies methods to build neural networks
that implement any dynamical system, including linear sys-
tems of the form ẋ(t) = Ax(t)+Bu(t). To do so, the matrices
A and B must be modified to account for the dynamics that
naturally occur when using neurons with non-instantaneous
synapses. Nengo performs this optimization for the specified
target dynamics; this is essential for constructing networks
that include the recurrent connections required for working
memory, evidence accumulation, and choice competition.

Mathematics aside, the NEF provides a framework for
combining distinct cognitive subsystems into a coherent
agent while respecting biological constraints. As explored
in (Eliasmith, 2013) and numerous subsequent papers, models
built with the NEF unify perception, cognition, and action
using a standardized representational format. This can be
contrasted with models that focus on detailed implementation
of isolated cognitive processes, such as winner-take-all com-
petition via lateral inhibition; although these models provide
key insights into the neural basis of particular algorithms, we
are interested in unifying several of these components into
a stand-alone agent. As we show in this paper, such agents
can be presented with inputs resembling the prompts humans
receive during a task, perform internal operations that can be
measured and compared with neural data, and produce out-
puts with well-defined action-space mappings for behavioral
comparison. Furthermore, the integrated neural-, synaptic-,
and network-level dynamics of NEF models are essential for
studying temporally-extended DM. Finally, the complexity of
the perceptual space, internal representations, and motor com-
mands can be adjusted to model DM across many domains.

Model
The model architecture is summarized in Fig. 2 and outlined
here, with detailed descriptions of key components in the fol-
lowing paragraphs. A two-dimensional vector representing
the values of A and B for the currently displayed attribute is
provided as external input to a population labelled OFC. This
population also receives the “remembered” attribute weights;
to reduce model complexity, we model this recall process as
a noisy perturbation of externally-supplied weights. Neurons
in OFC thus represent both the perceived attribute value and
the remembered weight for the current attribute. Connection
weights between OFC and dlPFC multiply values by weights
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Figure 2: Model Schematic. Boxes are inputs and outputs, circles are spiking neuron populations. Red connections are inhibitory.
See text for details on represented quantities and cognitive operations.

and send the result to the two-dimensional dlPFC population.
Recurrent connections within dlPFC implement integration,
leading to the accumulation of evidence from OFC as addi-
tional attributes are presented. When the difference between
accumulated evidence for A and B exceeds a dynamic thresh-
old, neurons in rIFC disinhibit the pSMA population. This
allows information to flow from dlPFC through pSMA to the
BG network. In the BG, mutual inhibitory competition selects
the option with the greatest evidence as a final output. If BG
does not output a selection after one second of input, then the
next attribute is presented for one second, and so on.

The dlPFC population is a neural integrator, a system
which maintains its currently represented value while addi-
tively incorporating any inputs. This network has previously
been used in neural models of working memory, where it has
reproduced activity in PFC and behavior on several WM tasks
(Eliasmith, 2013). The system is described by the target dy-
namics ẋ = Bu; notice that changes in the represented value
ẋ do not depend on the represented value x itself, but only on
the input u. This implies that the integrator will remember the
current evidence perfectly, and steadily add any input evidence
to arrive at a new value. However, because the integrator is
implemented in noisy spiking neurons, the feedforward and
recurrent connections do not perfectly implement these dy-
namics: evidence is slightly distorted and prone to drift.

The rIFC population determines when the accumulated
evidence is sufficient to make a decision. Connections between
dlPFC and rIFC compute the function

xunc(t) = T −|A(t)−B(t)|, (4)

where the threshold T is a free parameter and the absolute
difference is between accumulated evidence for A vs B. This
signal can be interpreted as the current uncertainty about ac-
tion selection, with larger values implying greater internal
conflict. Neurons in rIFC have tuning curves with positive
slope and an intercept at x = 0, ensuring that neural activities
remain positive for x > 0 and go silent for x < 0. rIFC con-
nects to pSMA with strong inhibitory connections, such that
any activity in rIFC dampens all activity in pSMA, restrict-
ing the flow of information to BG and delaying a decision.

Consequently, when |A(t)−B(t)| exceeds the threshold T ,
disinhibition opens the gate, activating WTA competition (see
below) and producing a decision with reaction time RT= t.

To simulate an urgency signal that modulates the SAT, we
model an additional input xurg to rIFC. This input grows
linearly during the course of the trial and is additive with xunc,

xurg(t) =−R∗ t, (5)

where R is a free parameter governing the magnitude of the
urgency signal. Large R implies that time pressures cause
uncertainty to shrink quickly during a trial. We also set xurg(t)
to a large negative value when t > 5.8s, which removes gating
at the end of the trial and forces a selection.

The BG population is based off an anatomical reconstruc-
tion of the BG and implements WTA competition between
action alternatives (Stewart, Choo, & Eliasmith, 2010). As
with the neural integrator, this network has been used in nu-
merous functional brain models as part of the action selection
system (Eliasmith, 2013). Here, it is used to select the action
with the greatest evidence value by engaging a WTA circuit
that produces a single motor output (choose A or choose B).

Each model agent is initialized with unique T , R, and ran-
dom seed for generating neuron parameters e, α, and β. As
with human participants, each agent repeats the task 48 times,
and its RT and accuracy on each trial are recorded.

Results
To clarify model dynamics, we begin by looking at time series
for the state variables represented in spiking neural popula-
tions. Fig. 3 shows an easy trial from an agent with moderate
urgency and threshold (R = 0.4,T = 2.5). On this trial, choice
B has positive values for the first three attributes, while choice
A has zero value. The difference in accumulated evidence
(dlPFC) steadily grows (blue vs. red line), diminishing the
activity of the “hold” population (rIFC, black line) until its
neurons cease firing around t = 2.3s. With the inhibitory hold
on the pSMA gate removed, information flows from dlPFC
to BG, where WTA dynamics quickly selects the dominant
choice (B), leading to nonzero motor output by t = 2.4s.
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Figure 3: An easy trial with a typical agent (R = 0.4,T = 2.5)
leads to an accurate selection with moderate RT (2.4s).

Fig. 4 shows a hard trial from an agent with low urgency
and high threshold (R = 0.3,T = 3.0). On this trial, attributes
for both A and B have numerous positive values, making an
accurate choice difficult. As a result, the difference in accu-
mulated evidence does not remove the inhibitory hold. At the
end of the trial (t = 5.8s), xurg is externally boosted, opening
the gate and forcing a decision. By this point, noise-induced
errors have accumulated in the dlPFC representation, result-
ing in a poor estimate of the total evidence for each option
(solid vs. dashed lines). This drift favors B, leading to the
correct selection; in other trials, such errors produce incorrect
responses.
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Figure 4: A hard trial with a patient agent (R = 0.3,T = 3.0)
leads to stochastic selection with large RT (5.9s).

Fig. 5 shows a trial from an agent with high urgency and low
threshold (R = 0.5,T = 2.0). In the third trial, the evidence
initially favors B; because this agent is impatient, its decision
criteria is met by t = 3.4s, leading to selection of B. However,
the evidence from subsequent attributes favors A, making the
agent’s early choice ultimately incorrect.

To explore the SAT predicted by the model, we first ex-
amined individuals (both humans and agents) who strongly
favored either speed or accuracy. Fig. 6 compares the RTs
of fast, inaccurate decision makers and slow, accurate deci-
sion makers across all 48 experimental trials. As expected, an
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time (s)

0

1

2

3

x

Figure 5: A trial from an impatient agent (R = 0.5,T = 2.0)
leads to a hasty (RT= 3.4s) and inaccurate selection.

Figure 6: RT distributions of agents and humans with opposing
DM strategies. Legend indicates mean accuracy.

agent with high urgency and low threshold (R = 0.5,T = 1.8)
typically makes selections after 2− 3 attributes but has low
accuracy (73%). Conversely, an agent with low urgency and
high threshold (R = 0.32,T = 3.0) typically views 4− 6 at-
tributes before making an accurate choice (92%). The RTs and
accuracies of both agents are closely aligned with the behavior
of individual human participants performing the PIT.

We also generated a population of agents with random pa-
rameters in the range R ∈ [0.3,0.5], T ∈ [2.0,3.0], then had
each agent perform the 48 experimental trials. Fig. 7 plots
the mean RT of each agent against its mean accuracy (across
trials). The SAT is readily apparent: larger RTs correlate
with more accurate decisions, and the slopes of the best-fit
trendlines are remarkably similar between humans and agents.

Discussion
Our model was designed to recreate the anatomy and cogni-
tive function of the human DM system using populations of
spiking neurons. Although DM is too complex to capture in
a simple network, we believe that our computational model
distills many of its core features into a functionally clear cir-
cuit which aligns with the central tenants of the DDM. OFC
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Figure 7: The speed-accuracy trade off. Mean accuracy in-
creases as a function of mean RT among humans and agents.

receives inputs from sensory and memory systems and passes
weighted values to dlPFC. These inputs are incorporated into
actively maintained dlPFC representations of the accumulated
evidence for each choice alternative. Connections between
dlPFC and BG are responsible for sending the utility of poten-
tial actions to an action selection system, but these connections
are gated by intermediate structures like pSMA, ensuring that
individuals wait for sufficient information before executing a
behavior. Only once an inhibitory hold, represented in areas
like rIFC, has been released will BG be freed to select the best
action and engage a motor response. This delay is modulated
by signals representing uncertainty and urgency, which are
estimated from the current evidence and the elapsed time, and
together determine the SAT implemented by the agent.

We showed that our model agents reproduced human RTs
and SATs on this task: agents with small thresholds and
high urgency chose quickly but inaccurately, while agents
with large thresholds and low urgency chose slowly but accu-
rately. The distributions of model RTs matched both extremes
of human behavior (Fig. 6), and the SAT evident across a
population of agents matched the trend from a small human
dataset (Fig. 7). These behavioral results provide further sup-
port for the urgency-gating hypothesis while demonstrating
that the proposed cognitive algorithms can be realized in an
anatomically-mapped spiking neural system. In particular,
they highlight the role of modulatory signals in dynamically
controlling a neural implementation of the DDM, and indicate
that individual variability may be explained by two parameters:
the slope of the urgency signal R and the decision threshold T .

Dynamic decision thresholds have been explored in pre-
vious neural and computational models, with similar find-
ings regarding the SAT. Our model stands apart in several
respects. First, our agents model DM from start-to-finish:
they receive inputs that resemble the attributes presented to
humans, process that information using spiking neural activi-
ties and weighted synaptic connections, and produce outputs
that are directly comparable to human behavioral data. While

other models explore the mathematical basis for urgency-gated
DDM (Ditterich, 2006), the neural activities associated with
various populations (Cisek et al., 2009), or the detailed neu-
roanatomy of particular cognitive algorithms (Frank, 2006),
our framework unifies these perspectives into a single model.
This unification provides clarity about how neural activities
relate to cognitive operations, mathematical representations,
and behavior, providing numerous means for model validation.
In this paper, we chose to focus on behavioral validation; fu-
ture work should compare the neural activities predicted by
our model with measured activities from the relevant areas.

Our model also has a well-defined anatomical mapping
that includes the principal areas associated with human DM.
By including both cortical and subcortical structures, we cap-
ture the dynamic interplay of weighted evidence accumula-
tion and thresholded action selection. While some models
attribute these process exclusively to competition within cor-
tex (Standage et al., 2011) or BG (Frank, 2006), we believe
that both anatomic divisions are active when the human brain
engages in high-level, abstract DM. Although simpler tasks
(e.g., classifying random dot motion) may be solved by iso-
lated neural systems, we hypothesize that complex, temporally-
extended tasks (e.g., interviewing job candidates) will involve
both cortex and BG. Our model proposes an initial framework
for this coupling, one that can be expanded to include more
anatomical and cognitive detail, as discussed below.

Although our model strives for neural and anatomical detail,
it remains biologically unrealistic in several respects. With
respect to the model’s fundamental units, we use LIF neu-
rons with mixed-sign connection weights and current-based
synapses. This makes our model more biologically-detailed
than (Standage et al., 2011), whose network is built from rate-
approximated cortical columns and connected using weights
drawn from mathematical distributions, but less biologically-
detailed than (Frank, 2006), whose network is built from bio-
physical neuron models and connected using a reconstruc-
tion of BG circuitry that permits STDP learning. However,
both these models emphasise validation with neural activities,
whereas we emphasise behavioral validation. With respect
to cognitive algorithms, we implement urgency-induced gain
by adding a linearly-ramping signal to the decision variable.
Many alternative forms of this function are possible: urgency
may ramp according to a sigmoid function, and the effects
of urgency may be multiplicative rather than additive, if this
signal is e.g. modulated by noradrenergic inputs from LC
(Aston-Jones & Cohen, 2005). With regards to anatomy, the
exact targets of urgency modulation are unclear: while our
model posits that urgency causes rIFC to disinhibit pSMA,
some evidence suggests that urgency increases the rate of ev-
idence accumulation in sensorimotor areas (Thura & Cisek,
2014). Similarly, the decision threshold may be realized in
any of several areas, including rIFC, pSMA, lateral interpari-
etal area (Standage et al., 2011), striatum, or subthalamic
nucleus (Frank, 2006). Further empirical and modelling work
is needed to clarify the contribution of each area.
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Future work can profitably proceed in several directions. In
the current model, attribute weights were provided as inputs,
whereas humans performing the task were required to memo-
rize the weights beforehand. To increase the model’s cognitive
realism, we plan to add an associative memory system that,
when presented with a high-dimensional vectors representing
the current attribute, recalls the associated one-dimensional
weight value. Online learning rules would be used to train
these associations during an initial phase of the task. When pre-
sented with an attribute at test time, this system would return
a noisy recall of the associated weight, which would then be
routed to OFC as in the current model. We are also interested
in extending the model to more complex DM tasks, including
the interview task described in the introduction. This task
involves more choice alternatives, a wider range of attribute
weights, and a less strict schedule: participants must choose
which option to investigate next, rather than being presented
values and weights in a fixed order. This last feature introduces
an extra dimension of exploration, in which the decision about
which “questions to ask” may interact in interesting ways with
the current evidence for various options. Finally, experimental
data is available for a variant of the PIT in which participants
are shown aversive images before testing, priming them with
an emotional state that affects DM (Wichary et al., 2016). We
plan to investigate whether arousal-mediated changes in the
urgency signal can capture such emotional biases.

Conclusion
We leveraged anatomy, a cortical integrator, a detailed basal
ganglia model, the drift-diffusion model, and the Neural En-
gineering Framework to build a spiking neuron model of
urgency- and uncertainty-gated decision making. We showed
that model agents with varying degrees of urgency and deci-
sion threshold reproduced the reaction times and the speed-
accuracy tradeoff of humans performing a probabilistic infer-
ence task.
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