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Abstract: The heat shock response (HSR) is a conserved cellular mechanism critical for
adaptation to environmental and physiological stressors, with broad implications for cell
survival, immune responses, and cancer biology. While the HSR has been extensively
studied at the proteomic and transcriptomic levels, the role of lipid metabolism and mem-
brane reorganization remains underexplored. Here, we integrate mass spectrometry-based
lipidomics with RNA sequencing to characterize global lipidomic and transcriptomic
changes in HeLa cells exposed to three conditions: control, heat shock (HS), and HS with
eight hours of recovery. Heat shock-induced extensive lipid remodeling, including sig-
nificant increases in fatty acids, glycerophospholipids, and sphingolipids, with partial
normalization during recovery. Transcriptomic analysis identified over 2700 upregulated
and 2300 downregulated genes under heat shock, with GO enrichment suggesting potential
transcriptional contributions to lipid metabolism. However, transcriptional changes alone
did not fully explain the observed lipidomic shifts, suggesting additional layers of regula-
tion. Joint pathway analysis revealed enrichment in glycerophospholipid and sphingolipid
metabolism, while network analysis identified lipid transport regulators (STAB2, APOB),
stress-linked metabolic nodes (KNG1), and persistent sphingolipid enrichment during
recovery. These findings provide a comprehensive framework for understanding lipid-
mediated mechanisms of the HSR and highlight the importance of multi-omics integration
in stress adaptation and disease biology.

Keywords: lipidomics; heat shock response; cellular stress adaptation

1. Introduction
The heat shock response (HSR) is a conserved cellular mechanism enabling cells to

adapt to environmental and physiological stressors, such as elevated temperatures, oxida-
tive stress, and metabolic challenges [1,2]. This response is classically characterized by the
induction of heat shock proteins (HSPs), which act as molecular chaperones to maintain pro-
tein homeostasis [3,4]. However, beyond protein regulation, the HSR encompasses broader
cellular reprogramming, including significant changes in lipid metabolism and membrane
composition [5–7]. These lipidomic changes are critical for maintaining membrane integrity,
cellular signaling, and stress adaptation [8–10].
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Lipids play a central role in cellular stress responses by contributing to membrane
remodeling, intracellular signaling, and energy storage [11–13]. Heat stress induces pro-
found lipidomic changes, including increased levels of fatty acids, sphingolipids, and
phosphatidylserine (PS) [14,15]. These changes alter the biophysical properties of the
plasma membrane (PM), such as fluidity and rigidity, which are essential for stress sensing
and cellular adaptation [8–10]. For example, elevated sphingolipids and ceramides have
been implicated in membrane stabilization during stress, while increases in PS facilitate
signaling pathways critical for the stress response [12]. Additionally, changes in cholesterol
levels and phosphatidylethanolamine (PE) influence the organization of lipid rafts, which
serve as hubs for signal transduction [16].

Despite the well-characterized role of transcriptional regulation in the heat shock
response, how lipid remodeling is regulated at the molecular level remains unclear [17–20].
Prior studies suggest that transcriptional changes alone may not fully account for lipidomic
shifts during heat stress, indicating that alternative regulatory mechanisms, such as enzyme
activity and lipid trafficking, may be at play [18,21]. Emerging evidence suggests that these
lipidomic shifts may not be primarily driven by transcriptional regulation but by enzymatic
activity, metabolic flux adjustments, and post-transcriptional modifications [22–25]. This
evidence underscores the need to investigate non-genomic mechanisms governing lipid
metabolism in stress adaptation [19,26].

Across biological systems, lipid remodeling is a conserved adaptive strategy for coping
with thermal and metabolic stress [18,21–25]. In plants, bacteria, and mammalian cells,
membrane composition and lipid biosynthesis shifts support stress tolerance by modu-
lating membrane fluidity, vesicle trafficking, and energy homeostasis [21,27–30]. Similar
lipidomic shifts are observed in cancer cells, where altered lipid metabolism is a hallmark of
malignancy [31–33]. Cancer cells reprogram lipid biosynthesis to sustain rapid proliferation
and survive in hostile microenvironments, such as hypoxia and oxidative stress [31,34,35].
For instance, increased sphingolipid metabolism and fatty acid synthesis are associated
with enhanced cell survival and metastasis, while altered phosphatidylcholine (PC) to PE
ratios disrupt membrane homeostasis and signaling [33,36]. The parallels between lipid
remodeling during the HSR and in cancer suggest that these processes share overlapping
mechanisms, highlighting the importance of lipids in both physiological and pathological
stress responses [37,38].

We integrate mass spectrometry-based lipidomics with transcriptomic analyses to
investigate the regulation of lipid remodeling in the heat shock response. Since lipid
metabolism is often regulated at the enzymatic and post-transcriptional levels [39],
this multi-omics approach provides a comprehensive framework for understanding the
metabolic adjustments that enable cells to withstand thermal stress [40,41]. Our study
focuses on identifying key pathways and molecular processes driving lipidome reorgani-
zation. By addressing the gap in understanding how lipid metabolism contributes to the
HSR, we aim to elucidate mechanisms that could inform therapeutic strategies for diseases
linked to stress adaptation, including cancer.

2. Results
2.1. Global Lipidomic Changes in Response to Heat Shock
2.1.1. Principal Component Analysis (PCA) Reveals Distinct Lipidomic Profiles

Principal Component Analysis (PCA) was performed to assess the global variance in
lipid composition across control, heat shock (R0), and recovery (R8) conditions. The scree plot
(Figure 1A) demonstrates that the first three principal components explain more than 95%
of the total variance, with PC1 capturing the majority of separation between experimental
conditions. The PCA score plot (Figure 1B) shows an apparent clustering of lipid profiles based
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on treatment, with R0 samples diverging significantly from control along PC1. Interestingly,
R8 samples shift away from R0 and toward the control cluster, indicating a partial lipidome
recovery after 8 h. These results confirm that heat shock induces a widespread reorganization
of the lipidome, which begins to normalize during recovery.
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Figure 1. Principal Component Analysis (PCA) of lipidomic profiles reveals distinct clustering
of lipidomic profiles across experimental conditions. (A) A scree plot shows that the first three
principal components explain >95% of the total variance. (B) PCA score plot demonstrating distinct
clustering of lipidomic profiles based on experimental conditions. PC1 primarily separates heat shock
(R0) from control and recovery (R8), with R8 samples shifting closer to control, indicating partial
lipidome normalization.

2.1.2. ANOVA Identifies Lipids Significantly Altered by Heat Shock

A one-way ANOVA followed by Fisher’s least significant difference post hoc test
identified 771 lipids with significant abundance changes (p < 0.05) across experimental
conditions (Figure 2). Most significantly altered lipids were observed in R0 vs. control,
suggesting that the immediate heat shock response involves substantial lipid remodeling.
The number of differentially abundant lipids remains high in R8 vs. R0 but with a distinct
subset exhibiting sustained elevation or return to baseline levels, suggesting dynamic
regulation of lipid metabolism throughout the stress-recovery process.
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did not reach statistical significance (p ≥ 0.05). The y-axis (−log10(p-value)) indicates the statistical
significance of lipid changes, with higher values reflecting more substantial evidence for differential
abundance. The x-axis represents different lipid species arranged arbitrarily.
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2.1.3. General Shifts in Major Lipid Classes

Total lipid abundance was quantified across conditions (Figure 3A,B) to evaluate broad
lipidomic changes. Heat shock resulted in a 35% increase in total lipid content compared to
control, primarily driven by changes in phospholipids, sphingolipids, and free fatty acids.
By R8, total lipid abundance showed a partial reduction, suggesting activation of lipid
turnover mechanisms during recovery.
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Figure 3. Global lipidomic changes in response to heat shock. (A,B) Total lipid abundance increased
by 35% upon heat shock (R0), with a partial reduction at R8, indicating lipid turnover during recovery.
Phospholipids, sphingolipids, and free fatty acids showed the most pronounced changes, while sterol
lipids remained relatively stable. (C,D) Lipid class composition shifts in response to heat shock and
recovery. Phospholipid subclasses (PS, PE, PG, PI, PC), sphingolipids, and ceramides significantly
increased during heat shock, supporting membrane remodeling and stress adaptation. Free fatty
acids (FA) increased sharply at R0 and continued rising in recovery (R8), suggesting sustained
metabolic activity. Sterol lipids remained essentially unchanged. Boxplots display median (center
lines), 25th and 75th percentiles (box limits), and whiskers extending 1.5 times the interquartile range.
Dots represent outliers, crosses indicate sample means, and bars represent 95% confidence intervals
(n = 6 biological replicates). A statistically significant difference between groups was determined
using ANOVA with post hoc Tukey HSD (* p < 0.05), indicated by an asterisk.

Proportional composition analysis (Figure 3C,D) revealed that membrane-associated
lipid classes exhibited the highest shifts, and phospholipid subclasses and sphingolipids
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increased significantly in response to heat shock. These shifts suggest that membrane
remodeling is a key feature of the heat shock response, potentially altering biophysical
properties such as fluidity and curvature.

2.1.4. Heatmaps Reveal Distinct Lipidomic Clusters Across Conditions

Hierarchical clustering heatmaps were generated to visualize further the lipidomic
shifts across conditions (Figure 4 and Supplementary Figure S1). These heatmaps demon-
strate the apparent clustering of samples based on lipid composition, aligning with PCA
results (Figure 1B). The R0 condition exhibits a striking increase in specific lipid subclasses,
while R8 samples display a partial return toward the control profile. Notably, clusters
of phospholipids and sphingolipids showed persistent elevation in R8, suggesting a pro-
longed role in membrane remodeling and stress recovery. These heatmap findings support
the PCA and ANOVA results, confirming that lipidomic remodeling during heat shock
follows a dynamic, condition-dependent pattern.
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Figure 4. Hierarchical clustering of lipidomic profiles demonstrates that PC species dominate the top
25 differentially abundant lipids, implying dynamic lipidome remodeling in response to heat shock.
Heatmap depicting hierarchical clustering of the top 25 differentially abundant lipids (One-way
ANOVA; p < 0.05) across experimental conditions. Lipid intensities are represented as Z-scores,
with blue indicating decreased abundance and red indicating increased abundance relative to the
mean. Experimental groups are color-coded at the top: control (green), HS_T0 (red; heat shock),
and HS_T8 (blue; recovery at 8 h post-heat shock). Lipid subclasses such as phosphatidylcholines
(PCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs) exhibit significant shifts upon
heat shock. Some lipids remain partially elevated at R8, suggesting prolonged lipid remodeling and
delayed recovery dynamics. The clustering pattern highlights lipidomic reorganization as a critical
component of the heat shock response.
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2.1.5. Paired Univariate Statistical Analysis Highlights Key Lipid Changes

Volcano plots from paired univariate statistical analysis (Figure 5 and Supplementary
Figure S2) revealed specific lipid species with significant fold changes across conditions.
Paired univariate statistical analyses demonstrated that over 70% of the lipidome exhibited
significant abundance shifts under heat shock (R0 vs. control), with a subset maintaining
altered levels during recovery (R8 vs. R0).

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 7 of 27 
 

 

 

Figure 5. Differential lipid abundance in heat shock and recovery highlights major lipidomic shifts 
post-stress. Volcano plot displaying the distribution of differentially abundant lipids in the R0 vs. 
Control comparison. More than 70% of the lipidome exhibits significant changes upon heat shock. 
The color gradient represents log2 fold changes (log2FC) in lipid abundance, ranging from blue 
(negative FC, downregulated lipids) to red (positive FC, upregulated lipids), with intermediate val-
ues appearing as shades of purple, beige, and orange. Lipids in gray either fail to meet the fold-
change cutoff (|log2FC| > 1.5) or do not reach statistical significance (p.adj < 0.05). The size of each 
dot corresponds to p-value significance, with larger dots indicating stronger statistical support. Se-
lected lipids of interest are labeled with their PubChem Compound Identifiers (CID), highlighting 
major lipid species undergoing rapid reorganization in response to heat stress. 

Specifically, In the R0 vs. control comparison, 494 lipids were significantly upregu-
lated, while 213 lipids were downregulated. For the R8 vs. control comparison, 268 lipids 
showed significant upregulation, reflecting sustained metabolic adaptation even during 
recovery. The R8 vs. R0 comparison identified 40 upregulated and 213 downregulated 
lipids, demonstrating a transition from stress to recovery states. These results confirm that 
lipid regulation during heat shock and recovery is highly dynamic, with specific lipids 
playing key roles in each phase. 

2.2. Specific Lipid Alterations and Pathway Enrichment 

2.2.1. Characterization of Lipid Subclasses and Their Heat Shock Response 

Individual lipid subclasses were analyzed for specific trends in abundance changes 
to further resolve the nature of lipidomic alterations under heat shock. A breakdown of 
lipid categories (Figure 3 and Supplementary Figure S1) revealed significant shifts across 
phospholipids, sphingolipids, and free fatty acids, highlighting their potential roles in 
stress adaptation. 

2.2.2. Fatty Acid and Phospholipid Dynamics 

Heat shock resulted in a substantial increase in free fatty acids (Figure 3), with the 
most pronounced changes observed in unsaturated species, suggesting their involvement 

Figure 5. Differential lipid abundance in heat shock and recovery highlights major lipidomic shifts
post-stress. Volcano plot displaying the distribution of differentially abundant lipids in the R0 vs.
Control comparison. More than 70% of the lipidome exhibits significant changes upon heat shock.
The color gradient represents log2 fold changes (log2FC) in lipid abundance, ranging from blue
(negative FC, downregulated lipids) to red (positive FC, upregulated lipids), with intermediate values
appearing as shades of purple, beige, and orange. Lipids in gray either fail to meet the fold-change
cutoff (|log2FC| > 1.5) or do not reach statistical significance (p.adj < 0.05). The size of each dot
corresponds to p-value significance, with larger dots indicating stronger statistical support. Selected
lipids of interest are labeled with their PubChem Compound Identifiers (CID), highlighting major
lipid species undergoing rapid reorganization in response to heat stress.

Specifically, In the R0 vs. control comparison, 494 lipids were significantly upregulated,
while 213 lipids were downregulated. For the R8 vs. control comparison, 268 lipids
showed significant upregulation, reflecting sustained metabolic adaptation even during
recovery. The R8 vs. R0 comparison identified 40 upregulated and 213 downregulated
lipids, demonstrating a transition from stress to recovery states. These results confirm that
lipid regulation during heat shock and recovery is highly dynamic, with specific lipids
playing key roles in each phase.

2.2. Specific Lipid Alterations and Pathway Enrichment
2.2.1. Characterization of Lipid Subclasses and Their Heat Shock Response

Individual lipid subclasses were analyzed for specific trends in abundance changes
to further resolve the nature of lipidomic alterations under heat shock. A breakdown of
lipid categories (Figure 3 and Supplementary Figure S1) revealed significant shifts across
phospholipids, sphingolipids, and free fatty acids, highlighting their potential roles in
stress adaptation.
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2.2.2. Fatty Acid and Phospholipid Dynamics

Heat shock resulted in a substantial increase in free fatty acids (Figure 3), with the
most pronounced changes observed in unsaturated species, suggesting their involvement
in membrane fluidity modulation and stress signaling. Unsaturated fatty acids are known
to increase membrane flexibility, which could facilitate stress-induced remodeling of the
plasma membrane [8–10].

Among phospholipids, phosphatidylcholine (PC), phosphatidylserine (PS), and phos-
phatidylethanolamine (PE) were the most dynamically altered lipids, exhibiting signifi-
cant enrichment during heat stress, followed by partial normalization during recovery
(Figures 3 and 4 and Supplementary Figure S1). The increase in PS and PE is particu-
larly relevant, as these lipids are known regulators of membrane curvature and vesicular
trafficking, which may aid in the relocalization of stress-associated proteins during heat
shock [8–10]. The sustained elevation of these phospholipids in R8 suggests lipid-driven
membrane remodeling may persist beyond the immediate stress phase, contributing to
cellular adaptation.

2.2.3. Sphingolipid Remodeling Under Heat Stress

Sphingolipids, particularly ceramides and sphingomyelins, exhibited marked in-
creases following heat shock (Figures 3 and 5). Sphingomyelin levels peaked during heat
stress but remained elevated during recovery, suggesting a sustained role in membrane
stability and stress signaling. Increased ceramide abundance is particularly noteworthy, as
ceramides are key regulators of apoptotic pathways and cellular stress responses. Their
accumulation suggests that, under extreme stress conditions, sphingolipid metabolism may
contribute to both protective adaptation and programmed cell death mechanisms.

These lipidomic alterations reveal that heat-induced stress triggers a coordinated
remodeling of membrane lipids involving structural (phospholipid) and signaling (sphin-
golipid) changes. The observed shifts in lipid composition are likely to affect membrane
biophysical properties, such as fluidity, curvature, and protein–lipid interactions, facilitat-
ing the activation of downstream stress-response pathways [42].

2.2.4. Pathway Enrichment Analysis

Pathway enrichment analysis (Figure 6, Supplementary Figure S3, and Supplementary
Table S1) provided further insight into the biological processes driving lipidomic alterations.
Over-representation analysis using KEGG and SMPDB databases identified key metabolic
pathways impacted by heat stress. However, after correction for multiple comparisons, most
pathways did not reach statistical significance. Though not statistically significant, the most
enriched pathways included glycerophospholipid metabolism, sphingolipid metabolism, and
biosynthesis of unsaturated fatty acids. Glycerophospholipid metabolism was enriched due to
the widespread remodeling of membrane lipids, consistent with the observed increases in PS
and PE, which play a role in stress adaptation and vesicle trafficking. Sphingolipid metabolism
was also among the most affected pathways, with increased ceramide and sphingomyelin
levels suggesting a role in stress signaling and membrane stability. Additionally, biosynthesis
of unsaturated fatty acids appeared enriched, aligning with the elevated levels of free fatty
acids following heat shock.

These findings establish a clear metabolic trajectory wherein lipid remodeling during
heat stress is driven by distinct but dispersed molecular changes rather than a single
dominant pathway. The following section will explore transcriptomic responses to heat
shock to elucidate further the regulatory networks orchestrating these lipidomic changes.
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Figure 6. Pathway enrichment analysis of lipids after heat shock. Over-representation analysis
using (A) KEGG and (B) SMPDB databases revealed no statistically significant metabolic pathway
enrichment after post hoc corrections. The x-axis shows −log10(p-value), where higher values
indicate greater statistical significance. The y-axis lists the enriched pathways, with a focus on
lipid metabolism. Each dot represents a metabolite set, colored by p-value (red = more significant,
yellow = less significant). Dot size represents the enrichment ratio, with larger dots indicating greater
pathway involvement.

2.3. Transcriptomic Responses to Heat Shock
2.3.1. Principal Component Analysis (PCA) of Transcriptomic Changes

Principal Component Analysis (PCA) was performed to assess global variance in gene
expression across control, heat shock (R0), and recovery (R8) conditions. The scree plot
(Figure 7A) indicates that the first five principal components explain the most variance,
with PC1 (43.8%) capturing the most considerable differences between conditions. The PCA
score plot (Figure 7B) shows a clear clustering of experimental groups, with R0 samples
diverging significantly from the control along PC1, while R8 samples shift closer to the
control, suggesting transcriptional recovery.
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Figure 7. Principal Component Analysis (PCA) of transcriptomic profiles in response to heat shock. 
(A) A scree plot displays the proportion of variance explained by the first five principal components 
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Figure 7. Principal Component Analysis (PCA) of transcriptomic profiles in response to heat shock.
(A) A scree plot displays the proportion of variance explained by the first five principal components
(PCs). The first two PCs capture the majority of transcriptomic variance, with PC1 contributing
the most. (B) PCA score plot showing distinct clustering of experimental groups. R0 (red) samples
diverge significantly from control (blue) along PC1 (43.32% variance explained), indicating a strong
immediate transcriptional response to heat shock. R8 (green) samples shift back toward the control
group along PC1 and PC2 (22.45% variance explained), suggesting a partial recovery of transcriptomic
profiles after 8 h.
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2.3.2. Differential Gene Expression Analysis

Using DESeq2, we identified differentially expressed genes (DEGs) across experimen-
tal comparisons. In the R0 vs. control condition, 2729 genes were upregulated, while
2377 genes were downregulated (adjusted p-value < 0.05). Volcano plot analysis further
highlighted 1371 significantly upregulated genes and 434 downregulated considerably
genes (|log2FC| > 1.5, adjusted p-value < 0.05) (Figure 8). In the R8 vs. control condition,
2183 genes were upregulated, while 2264 genes were downregulated, with a subset of
543 upregulated and 403 downregulated genes meeting stringent significance thresholds
(Supplementary Figure S4A). The R8 vs. R0 comparison exhibited the most pronounced
transcriptomic shifts, with 4194 genes upregulated and 4154 genes downregulated, includ-
ing 569 genes with significant upregulation and 1420 genes with significant downregulation
(Supplementary Figure S4B). These results indicate a large-scale transcriptional reorganiza-
tion in response to heat shock, followed by a partial recovery phase in R8.
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Figure 8. Differential gene expression analysis identifies key upregulated heat shock genes and
stress-responsive factors. Volcano plot depicting differentially expressed genes in R0 vs. control. Each
point represents a single gene, plotted by log2(Fold Change) on the x-axis and −log10(p-value) on
the y-axis. Upregulated genes (red): Genes significantly increased in expression upon heat shock
(log2FC > 1.5, adjusted p-value < 0.05). Heat shock proteins (HSPA1A, HSPA1B, HSPA6) and stress-
responsive factors (DNAJB1, BAG3, IER5) are among the most highly upregulated. Downregulated
genes (blue): Genes significantly decreased in expression (log2FC < −1.5, adjusted p-value < 0.05),
including CCN1, SGK1, and AFP. Non-significant genes (black): Genes that do not meet statistical
thresholds (|log2FC| ≤ 1.5 or adjusted p-value ≥ 0.05). The overall pattern suggests a strong heat
shock response, with molecular chaperones and stress-associated genes strongly induced, while other
pathways, potentially related to normal cellular function, are repressed.

2.3.3. Gene Ontology (GO) and KEGG Pathway Enrichment

Functional enrichment analysis using gene set enrichment analysis (GSEA) and topGO
revealed key biological pathways involved in the heat shock response. Gene Ontology
(GO) enrichment analysis identified a significant overrepresentation of cellular stress
response pathways, including those related to molecular chaperone activity, unfolded
protein response, and translational regulation (Figure 9, Supplementary Figure S5, and
Supplementary Table S2).
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Figure 9. Heatmap of differentially expressed heat shock response genes reveals distinct transcrip-
tional shifts. The heatmap illustrates the hierarchical clustering of differentially expressed genes
(DEGs) across experimental conditions, with each column representing an individual sample and
each row corresponding to a specific gene. Genes upregulated in response to heat shock are shown
in red, while downregulated genes are displayed in blue. The clustering highlights distinct tran-
scriptional shifts, with a pronounced separation between control and heat shock (R0) conditions
and a partial return to baseline expression levels in the recovery phase (R8). Upregulated genes
include key molecular chaperones, stress-response regulators, and transcription factors, reinforcing
the activation of heat shock pathways. Downregulated genes primarily include those associated
with normal cellular homeostasis, suggesting temporary suppression of non-essential functions
under stress.

Additionally, KEGG pathway analysis highlighted ribosome biogenesis, sphingolipid
metabolism, and oxidative stress response as enriched pathways in response to heat shock.
The transcriptional signature of heat shock-exposed cells included genes associated with
protein refolding and metabolic adaptation. Notably, pathways related to RNA process-
ing, chromatin regulation, and ribosome function exhibited dynamic regulation across
conditions, emphasizing the interplay between transcriptional and translational control
in the heat shock response. However, no single pathway fully accounted for the observed
lipidomic shifts, suggesting a complex regulatory network rather than a direct transcrip-
tional control mechanism. These findings indicate that while heat shock broadly affects
gene expression, lipid metabolism-specific transcriptional responses are more subtle, neces-
sitating further integrative analyses.

2.4. Focus on Lipid Metabolism Genes
2.4.1. Targeted Enrichment Plots and Manual Verification of Gene Ontology Analyses

Initial gene ontology (GO) and pathway enrichment analyses did not highlight lipid
metabolism as a major transcriptional response to heat shock. This observation suggests
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that lipidomic changes may be regulated at levels beyond transcription. Therefore, we used
a more targeted approach to investigate lipid-related pathways and genes that might have
been overlooked in the broader analyses.

GO results were manually verified by extracting and analyzing genes associated with
lipid-related biological processes, molecular functions, and cellular components. A custom
script was used to reconstruct the human GO network locally and filter for lipid-related
terms (Supplementary Table S3) [43]. This process identified 352 genes in R0 vs. control
and 444 genes in R8 vs. R0 associated with lipid-related GO terms. Still, only a small subset
met differential expression cutoffs (|log2FC| > 1.5, adjusted p-value < 0.05). These findings
reinforce the idea that lipid metabolism genes are transcriptionally responsive but do not
dominate the stress response signature.

2.4.2. Custom Gene Set Heatmap and Log Fold Change Analyses

A series of heatmaps and log fold change (LFC) analyses were performed on prede-
fined lipid metabolism gene sets to refine our understanding further. Heatmaps of variance-
stabilized transformed (VST) counts revealed that while most lipid metabolism-related
genes exhibited relatively stable expression, a subset of 60 genes appeared to undergo
differential expression in response to R0 (Figures 9 and 10 and Supplementary Figure S6).
These genes included ACACA, FASN, PLA2G4C, LPIN1, and PCK1, which are known
regulators of lipid biosynthesis, fatty acid metabolism, and phospholipid remodeling.
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Figure 10. Heatmap of lipid metabolism-related genes highlights the hierarchical clustering of genes
involved in lipid biosynthesis, remodeling, transport, and degradation. The heatmap presents the
hierarchical clustering of lipid metabolism-related genes differentially expressed across experimental
conditions. Each row corresponds to a gene associated with lipid biosynthesis, remodeling, transport,
or degradation, while each column represents a sample. Genes upregulated in response to heat shock
(R0) appear in red, whereas downregulated genes are displayed in blue.
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However, quantitative evaluation using LFC values confirmed that only 13 genes met
stringent differential expression cutoffs across multiple lipid metabolism pathways. These
included SOCS1, CD74, ALOXE3, B3GALT4, and PLA2G4C (Supplementary Figure S6).

2.4.3. Quantitative PCR Validation of Lipid Metabolism Genes

Given the extensive lipidomic remodeling observed in response to heat shock, we
performed qPCR (Figure 11) of key lipid metabolism-related genes to determine whether
the transcriptional changes detected in RNA-seq correlated with lipid abundance shifts.
The selection of genes was guided by specific lipidomic trends identified in our analysis.
The observed increase in free fatty acids (FA) following heat shock suggested upregulation
of de novo lipogenesis, warranting the inclusion of fatty acid synthase (FASN) in our
validation panel. Additionally, the enrichment of unsaturated fatty acids indicated potential
alterations in lipid desaturation pathways, leading us to examine fatty acid desaturase
genes (FADS1 and FADS2).
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Figure 11. qPCR validation of lipid metabolism genes. (A) Quantitative panel summarizing the mean
log2 fold change (log2FC) and standard deviation (SD) of selected lipid metabolism-related genes
measured by qPCR for 0RvsCnt and 8RvsCnt comparisons. Most lipid-related genes exhibit minimal
transcriptional changes, aligning with RNA-seq findings. (B,C) Scatter plots comparing log2FC values
obtained from RNA-seq and qPCR for the 0 h ((B), blue) and 8 h ((C), orange) conditions. A strong
correlation is observed for HSPA1A, confirming heat shock-induced upregulation. the dotted line
represents a linear regression.

Similarly, since phosphatidylserine (PS) levels were significantly elevated in response
to heat shock, we included phosphatidylserine synthase genes (PTDSS1 and PTDSS2)
to determine whether their transcriptional regulation contributed to PS accumulation.
Given the role of lipases in lipid remodeling, we analyzed phospholipase A2 group IVB
(PLA2G4B), while genes associated with fatty acid oxidation (ACOT2, SLC27A1), sphin-
golipid biosynthesis (UGCG), and lipid hydrolysis (OLAH, ENPP7) were selected to assess
broader metabolic changes.

Despite clear lipidomic shifts, qPCR results (Figure 11) confirmed that none of these
genes exhibited substantial transcriptional changes, consistent with RNA-seq findings. This
finding reinforces the notion that heat shock-induced lipid remodeling is not primarily
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driven by transcriptional regulation. Instead, post-transcriptional mechanisms, enzymatic
activity modulation, and metabolic flux adjustments are likely responsible for the observed
lipidomic phenotype.

These findings further support the need for multi-omics integration, where we ex-
amine whether joint lipidomic–transcriptomic analyses can reveal underlying regulatory
mechanisms governing heat-induced lipid remodeling.

2.5. Multi-Omics Integration: Linking Lipidomics and Transcriptomics
2.5.1. Joint Pathway Analysis Reveals Coordinated Lipid-Gene Responses

To explore the interplay between lipidomic and transcriptomic responses to heat shock,
we conducted a joint pathway analysis using MetaboAnalyst’s multi-omics integration
module. This analysis incorporated differentially abundant lipids and differentially ex-
pressed genes (DEGs) across conditions to identify enriched metabolic pathways with
concurrent transcriptional and lipidomic regulation.

The joint pathway analysis identified several key metabolic pathways significantly
enriched in response to heat shock, including biosynthesis of unsaturated fatty acids,
sphingolipid metabolism, and alpha-linolenic acid metabolism (Figure 12, Supplementary
Figure S7, and Supplementary Table S4). Notably, glycerophospholipid metabolism was
also highlighted, further supporting the role of membrane remodeling as a major adaptive
mechanism to heat stress. These pathways were consistently enriched across multiple
comparisons (R0 vs. control, R8 vs. control, and R8 vs. R0; Supplementary Table S4
and Supplementary Figure S7), suggesting a tightly regulated response coordinating lipid
metabolism and gene expression.
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Figure 12. Integrated pathway analysis of lipidomic and transcriptomic data identifies coordinated
changes after heat shock. Key metabolic pathways, including biosynthesis of unsaturated fatty
acids, alpha-linolenic acid metabolism, fatty acid biosynthesis, and sphingolipid metabolism, exhibit
significant coordination between lipidomic and transcriptomic changes in response to heat shock.
Dot size represents pathway enrichment, while color intensity corresponds to statistical significance
(−log10(p-value)), with darker red indicating higher significance.
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2.5.2. Network Analysis Identifies Key Regulatory Nodes in Stress Adaptation

To further dissect interactions between lipid species and gene expression, we per-
formed a network analysis to visualize molecular hubs integrating lipidomic and tran-
scriptomic changes. This analysis identified key regulatory nodes in stress adaptation,
highlighting genes and lipid species with high betweenness centrality in metabolic subnet-
works (Figure 13).
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Figure 13. Lipid–gene interaction network highlights key metabolic connections and transcriptional
regulators associated with lipid metabolism. Network representations of lipidomic and transcriptomic
interactions, where squares represent lipids and circles represent genes. (A) Displays lipid-protein
interactions, highlighting associations between specific lipids such as PC (16:0/16:0) and capric acid
with lipid-binding proteins, including ALB, APOB, and STAB2. (B) Shows metabolic connections
of alpha-linolenic acid, arachidonic acid, and oleic acid with lipid-related genes such as PLA2G4C,
GPR132, and NR4A1. (C) Expands the network to include additional lipids and genes, illustrating
connections between fatty acids such as arachidonic acid, palmitic acid, and capric acid with multiple
transcriptional regulators. Lines indicate interaction edges linking lipids and genes.

For the R0 vs. control comparison, network analysis revealed a core subnetwork
centered around STAB2 and APOB, genes involved in lipid transport and metabolism
(Figure 13A). These genes exhibited high betweenness centrality and were directly linked
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to sphingomyelin (SM) and cholesterol ester levels, which were significantly altered under
heat shock (Figure 2 and Supplementary Figure S1). The enrichment of SM and cholesterol
esters within this network suggests an adaptive response to maintain membrane integrity
during acute stress. In the R8 vs. control condition, KNG1 and arachidonic acid emerged
as key regulatory nodes, linking lipid signaling pathways with inflammatory and stress-
related responses (Figure 13B). Finally, in the R8 vs. R0 network, ALB (albumin), APOB,
STAB2, and PTGER1 formed central hubs, suggesting a role in lipid transport and metabolic
recovery post-stress (Figure 13C). The network also highlighted arachidonic acid, oleic
acid, palmitic acid, and other lipids as key metabolites with multiple gene interactions.
These findings provide a systems-level perspective on how lipidome and transcriptome
responses coordinate stress adaptation and membrane remodeling.

2.5.3. Overlapping Signatures Between Lipidomics and Transcriptomics

Despite the extensive lipid remodeling observed in response to heat shock, initial
global transcriptomic enrichment analyses did not highlight lipid metabolism as a primary
feature (Supplementary Figure S4).

The joint pathway and network analyses reinforce the importance of membrane
lipid reorganization during heat shock adaptation. Although transcriptomic changes
alone did not fully explain the lipidomic phenotype, multi-omics integration revealed
functionally relevant pathways where gene expression changes align with lipidomic shifts
(Figures 12 and 13). These findings highlight the necessity of integrating molecular datasets
to uncover regulatory mechanisms governing cellular adaptation to stress.

3. Discussion
The heat shock response (HSR) is a well-conserved adaptive mechanism that protects

cells from proteotoxic stress by activating molecular chaperones, altering protein home-
ostasis, and triggering broad metabolic reprogramming [2,4,44]. While the transcriptional
regulation of HSR is well characterized, the role of lipid remodeling in cellular stress
adaptation remains underexplored. This study integrates lipidomics and transcriptomics to
elucidate the metabolic adjustments accompanying heat shock, revealing that heat-induced
lipidomic changes are not primarily driven by transcriptional regulation.

Lipidomics analysis revealed a global shift in lipid composition during heat shock,
with specific enrichment of fatty acids, phospholipids, and sphingolipids. The significant
increase in phosphatidylserine (PS) and phosphatidylethanolamine (PE) suggests a role
for membrane restructuring, vesicle trafficking, and stress-induced lipid signaling [45].
Sphingolipid metabolism was also highly enriched, consistent with its known roles in
cellular stress signaling, apoptosis, and membrane integrity regulation [46]. These lipid
changes are likely to alter the biophysical properties of the plasma membrane (PM), such as
fluidity and rigidity, which are essential for stress sensing and cellular adaptation [8,47–50].
Membrane composition is critical in modulating protein–lipid interactions and organizing
signaling platforms. The sustained enrichment of PS and PE suggests prolonged alterations
in membrane dynamics, which may affect protein localization, vesicle trafficking, and
membrane-associated signaling events that facilitate stress adaptation [8,47–51].

Despite the significant lipidomic changes observed, pathway enrichment analyses
did not identify a single dominant metabolic pathway driving the heat shock response.
This finding suggests that lipid remodeling during heat stress is governed by dispersed
metabolic adjustments rather than a single transcriptionally regulated program [21]. The
lack of strong pathway enrichment may be due to the complexity of lipid metabolism, where
multiple overlapping pathways contribute to lipidomic shifts [52], or due to limitations in



Int. J. Mol. Sci. 2025, 26, 2843 16 of 25

annotation databases that do not fully capture the dynamic remodeling of lipids in acute
stress conditions.

RNA-seq analysis identified thousands of differentially expressed genes (DEGs) re-
sponding to heat shock and recovery, clustering into distinct transcriptional response
groups. As expected, genes involved in chaperone activity, unfolded protein response, and
cellular stress signaling were among the most upregulated in R0, shifting toward metabolic
adjustment during recovery (R8) [53,54]. However, global transcriptomic enrichment anal-
yses did not highlight lipid metabolism as a dominant feature of the heat shock response.
Despite the widespread lipidomic alterations observed, genes involved in fatty acid biosyn-
thesis, phospholipid remodeling, and sphingolipid metabolism did not exhibit statistically
significant transcriptional upregulation. The observation that lipid remodeling occurs with-
out strong transcriptional enrichment suggests that additional layers of regulation—such
as enzyme activity, metabolic flux adjustments, or post-transcriptional modifications—may
be involved. Lipid metabolism is often controlled by substrate availability, enzyme activity,
and post-translational modifications rather than transcriptional upregulation [18,19,21–26].
The sustained increase in fatty acids (FAs), ceramides (Cer), phosphatidylserine (PS), phos-
phatidylethanolamine (PE), and sphingolipids in R8 further suggests that stress-induced
lipid remodeling is not transient but persists beyond the immediate heat shock response,
potentially through altered lipid trafficking and turnover.

Lipid remodeling is a key adaptive strategy across different biological systems to
cope with thermal and metabolic stress. Previous studies have shown that heat stress
induces a shift from membrane lipids to storage lipids as a protective mechanism against
damage [13,55]. In plants, lipid remodeling during heat stress is highly coordinated,
adjusting membrane fluidity and metabolic fluxes to enhance survival [22,23,28–30,49].
Similarly, stress-induced lipidomic alterations in human cells impact membrane stability,
protein trafficking, and energy metabolism [56]. The findings of this study align with
these observations, reinforcing the idea that heat stress triggers lipidomic shifts essential
for maintaining cellular integrity. The increase in phospholipids involved in membrane
remodeling and sphingolipid-associated stress signaling suggests lipid metabolism is
integral to cellular stress tolerance.

The metabolic rewiring observed in the HSR shares similarities with lipid metabolic
adaptations in cancer. Cancer cells frequently reprogram lipid metabolism to support
rapid proliferation, membrane biosynthesis, and survival under stress conditions [31].
For example, fatty acid metabolism and lipid storage mechanisms are upregulated in
tumors to buffer oxidative and proteotoxic stress. Furthermore, cancer cells manipulate
lipid metabolic pathways to evade cell death mechanisms such as ferroptosis, a form of
iron-dependent lipid peroxidation [57]. The results suggest lipid remodeling during heat
shock mirrors metabolic adjustments observed in cancer cells, particularly in phospholipid
and sphingolipid metabolism. Understanding these lipidomic changes in a stress context
may provide new insights into how cancer cells exploit lipid metabolism for survival and
therapy resistance. Targeting lipid metabolic vulnerabilities in cancer—such as sphin-
golipid metabolism or fatty acid synthesis—could provide novel therapeutic strategies for
disrupting stress-adaptive mechanisms in tumor cells.

Given the absence of potent lipid metabolic enrichment in global transcriptomic analy-
ses, targeted enrichment analyses and manual verification of lipid-related pathways were
performed. These analyses identified a subset of lipid metabolism genes with condition-
dependent expression changes, including PCK1, PLA2G4C, and ACACA, which are in-
volved in phospholipid biosynthesis and fatty acid metabolism. qPCR validation confirmed
that these genes followed similar expression trends to RNA-seq, and the overall changes
in expression were not large enough to account for the lipidomic phenotype. This finding
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aligns with prior studies demonstrating that lipidomic changes in response to stress can
be regulated through metabolic reprogramming and enzyme activity rather than gene
expression alone [18,19,21–26].

Joint pathway and network analyses revealed that lipid remodeling is coordinated
with stress adaptation pathways but does not strongly correlate with direct transcriptional
changes. Integrating lipidomic and transcriptomic data identified key metabolic path-
ways with concurrent lipid and gene regulation, such as glycerophospholipid metabolism,
sphingolipid biosynthesis, and fatty acid metabolism. While individual transcriptomic
or lipidomic analyses did not fully explain the regulatory mechanisms underlying heat
shock adaptation, the integration of both datasets revealed key metabolic pathways with
concurrent lipidomic and transcriptional regulation. Network analysis identified cen-
tral hubs linking lipid transport (APOB, STAB2), stress signaling (STAB2), and stress
adaptation (KNG1, ALB), reinforcing the role of lipid remodeling in cellular resilience to
thermal stress. These findings highlight the necessity of multi-omics approaches to un-
cover functionally relevant stress adaptation pathways that may not be apparent through
single-layer analyses.

While this study provides new insights into lipidomic and transcriptomic integration
in the heat shock response, some limitations should be acknowledged. A single trans-
formed cell line (HeLa) may not fully represent lipidomic and transcriptomic responses in
other cell types, mainly primary or non-cancerous cells. Additionally, while RNA-seq pro-
vided a broad overview of transcriptional changes, it does not capture post-transcriptional
modifications or enzyme activity, which are critical regulators of lipid metabolism. The
lipidomic analysis, while extensive, was constrained by database limitations, meaning
some lipid species are not yet fully annotated, and consequently, not all measured lipids
could be mapped to specific activity networks. Future studies can expand these findings to
multiple cell types, integrate proteomics and metabolomics for a more complete picture
of lipid regulation, and employ functional assays to validate key genes involved in lipid
remodeling under heat stress.

Understanding how cells dynamically reprogram lipid metabolism in response to
stress has broad implications beyond heat shock adaptation. Given the parallels between
stress-induced lipid remodeling and cancer metabolism, further research into lipidomic
regulation may uncover new therapeutic targets for diseases characterized by altered lipid
homeostasis, including cancer and metabolic disorders.

4. Materials and Methods
4.1. Cell Culture

HeLa cells (ATCC® CCL-2™; ATCC, Manassas, VA, USA), originally derived from
Henrietta Lacks, were obtained from ATCC in December 2016 and verified bi-annually.
Cells were maintained in Minimum Essential Medium (MEM) supplemented with 10%
fetal bovine serum (FBS), 2 mM L-glutamine, 0.1 mM non-essential amino acids (NEAA),
1 mM sodium pyruvate, and penicillin–streptomycin (all from Thermo Fisher Scientific,
Waltham, MA, USA). Cultures were grown in a humidified atmosphere containing 5% CO2

at 37 ◦C and passaged every 2–3 days to maintain optimal growth.

4.2. Heat Shock Treatment

To examine lipidome changes following heat shock, HeLa cells were subjected to
one of three conditions: control (37 ◦C), heat shock (42 ◦C for 60 min), or heat shock fol-
lowed by recovery at 37 ◦C for 8 h. Cells were seeded into 175 cm2 flasks and cultured
to ~80% confluency using low-passage cells (passages 4–7). For each experiment, three
biological replicates per condition were prepared: one flask was maintained at 37 ◦C
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as a control, while two flasks were subjected to heat shock. Of the heat-shocked flasks,
one was harvested immediately after heat shock (0 h recovery, 0R), and the other was
allowed to recover at 37 ◦C for 8 h (8 h recovery, 8R). Cells were harvested by trypsiniza-
tion, washed with PBS, pelleted, and stored at −80 ◦C for subsequent lipidomics and
transcriptomics analyses.

4.3. Lipid Quantification and Analysis
4.3.1. Sample Preparation

Six biological replicates were prepared for lipidomic analysis, each containing four
million HeLa cells. Cells were pelleted and stored at −80 ◦C before use.

4.3.2. Mass Spectrometry and Lipidomics

Lipid extraction and analysis were conducted using a biphasic lipid extraction
method at the UC Davis West Coast Metabolomics Center. Lipids were separated using a
C18-based hybrid bridged column with a ternary water/acetonitrile/isopropanol gradient
and analyzed on a ThermoFisher Scientific Q-Exactive HF mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany) with heated electrospray ionization (HESI-MS).

For ionization, the HESI-MS operated at a spray voltage of 2.5 kV (positive mode) and
3.5 kV (negative mode). The capillary temperature was set to 290 ◦C, with a sheath gas
flow rate of 60 arbitrary units, auxiliary gas set to 18 arbitrary units at a probe temperature
of 475 ◦C, and a curtain gas setting of 3.5 arbitrary units.

For data-dependent acquisition (DDA), precursor ions were selected using a 4 Da
isolation width and fragmented with a collision energy of 25 eV for both positive and
negative ion modes. MS/MS spectra were acquired in data-dependent mode at a resolution
of 10,000 (ESI+) and 20,000 (ESI−) using an Agilent 6530 and 6550 QTOF MS (Agilent
Technologies, Santa Clara, CA, USA), respectively. The spectral acquisition speed was
set to 2 spectra per second, and precursor selection was dynamically excluded after two
occurrences to minimize redundant fragmentation.

Lipid annotations were processed using MS-DIAL vs. 4.60, with precursor mass
errors < 10 mDa, retention time matching, and MS/MS matching to corresponding lipid
classes [58]. Lipid annotations were assigned based on total carbon number and degree of
unsaturation, with structural assignments following the convention X:Y, where X denotes
the total number of carbon atoms and Y represents the number of double bonds (e.g., TAG
51:2). In cases where acyl chain composition was resolved, it was reported as PC 15:1-20:3,
indicating the known fatty acid constituents. However, cis/trans (E/Z) configurations
and double bond positional information were not determined in this study. Lipid inten-
sities were sum-normalized by representing each lipid as a fraction of total lipids within
the sample, scaled by the median intensity for each treatment group [37]. All reported
lipid identifications are consistent with Supplementary Table S5, which provides detailed
annotations from our lipidomics analysis.

4.3.3. Lipidomics Analysis

Mass spectrometry-identified lipids were annotated using PubchemPy and Metabo-
Analyst to resolve identifiers from InChI Keys, SMILES, or common names into PubChem
CID, HMDB, and KEGG formats. The provided InChI Keys were converted into Pub-
Chem identifiers using the “get_compounds” function in PubchemPy via custom scripts
(https://github.com/lesolano/MS-Thesis). If automated resolution failed or discrepancies
occurred, manual queries of PubChem, LipidMaps, and HMDB databases were performed
to identify the best matches. MetaboAnalyst’s Metabolite ID Conversion tool further
converted Pubchem identifiers to HMDB and KEGG formats for downstream analyses [59].

https://github.com/lesolano/MS-Thesis
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Lipid abundance data were visualized using boxplots and heatmaps to represent total
and proportional lipid class abundances across experimental conditions. Heatmaps were
generated with MetaboAnalyst’s hierarchical clustering tool, using Euclidean distances
and Ward’s clustering method, to group samples by lipid profiles and highlight lipidomic
changes. Boxplots depicted lipid abundance variations across major lipid classes [59].

Statistical analyses were conducted in MetaboAnalyst [59]. Univariate analyses in-
cluded fold-change and Student’s t-tests to identify significantly altered lipids for each
condition comparison (R0 vs. control, R8 vs. control, R8 vs. R0). Multivariate analy-
ses involved one-way ANOVA with Fisher’s LSD post hoc tests to assess differences in
lipid abundance across conditions, with results visualized as plots of lipid abundance vs.
−log10(p-value). The false discovery rate (FDR)-adjusted p-value cutoff was set to 0.05 for
all tests.

Dimensionality reduction techniques were applied to simplify the lipidomic dataset.
Principal Component Analysis (PCA) was used to identify major sources of variation
and estimate effect sizes, with results visualized as scree and 2D score plots. Hierarchical
clustering heatmaps provided further insight into sample grouping and lipid group changes
in response to heat shock.

Enrichment and pathway analyses were performed to explore metabolic pathway
involvement. Qualitative over-representation analysis identified enriched metabolite sets
and pathways using KEGG and SMPDB databases, producing bar charts, dot plots, and
network views [59]. Quantitative pathway analyses further quantified pathway-level
impacts, mapping lipid abundance to pathways and generating scatter plots and pathway
network overlays. Analyses used KEGG and SMPDB libraries, with criteria for pathway
inclusion set to at least two metabolites per pathway or set.

Final outputs from these analyses included detailed statistics, visualizations (e.g., bar
charts, dot plots, scatter plots), and pathway maps that collectively highlighted lipidomic
changes under heat shock and recovery conditions.

4.4. RNA Sequencing and Analysis
4.4.1. Sample Preparation, cDNA Library Preparation, and Sequencing

Cells from the control, 0R, and 8R conditions were sent to Novogene (Sacramento, CA,
USA) for RNA extraction, library preparation, and sequencing. Total RNA was isolated using
the Qiagen RNeasy Kit (Qiagen, Hilden, Germany). RNA quality and integrity were assessed
using 1% agarose gel electrophoresis, a NanoPhotometer® spectrophotometer (IMPLEN,
Munich, Germany, and the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa
Clara, CA, USA). Sequencing libraries were constructed using the NEBNext® UltraTM RNA
Library Prep Kit for Illumina® (New England Biolabs (NEB), Ipswich, MA, USA).

Poly-A mRNA was isolated using oligo-dT magnetic beads, fragmented under ele-
vated temperature, and reverse transcribed into cDNA. Second-strand cDNA synthesis
used DNA Polymerase I and RNase H. The cDNA was end-repaired, adenylated, and lig-
ated to NEBNext adaptors. Fragments of 150–200 bp were selected using AMPure XP beads
(Beckman Coulter, Brea, CA, USA) and amplified via PCR with Phusion High-Fidelity DNA
polymerase (New England Biolabs (NEB), Ipswich, MA, USA) and indexed primers. Li-
brary quality was validated on the Agilent Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, USA).

Paired-end sequencing was performed on the Illumina NovaSeq S4 PE100 platform
(Illumina, San Diego, CA, USA), generating at least 30 million reads per sample. RNA-seq
data were processed to ensure high-quality reads for differential gene expression analysis.
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4.4.2. Transcriptomics Analysis (Additional Detailed Methods in [53])

Read Processing and Quality Control: Paired-end sequencing reads in FASTQ.gz
format were obtained from Novogene and processed on a Linux-based system using
BBDuk for quality control. Reads were trimmed for adapters, filtered for PhiX sequences,
and subjected to phred-based quality filtering (Q ≥ 10) to ensure high-quality inputs
for downstream analyses [60,61]. Trimmed reads were saved with updated file naming
conventions and accompanied by summary statistics for verification.

Reference Genome Indexing and Alignment: Reads were aligned to the human refer-
ence genome (GRCh38.p13) using the STAR aligner, which was configured for splice-aware
two-pass mapping. Before alignment, the reference genome was indexed using Gencode
primary assembly annotation files and STAR’s genome generation mode [62]. Alignment
outputs included sorted BAM files, unmapped reads in FASTQ format, and gene count
files for downstream analyses.

Gene Feature Counting: Feature counting was performed using HTSeq, which quan-
tified mapped reads per gene from sorted and indexed BAM files. Input included the
GRCh38.104 GTF annotation file, and outputs comprised raw gene count matrices anno-
tated with gene IDs and expression values [63].

Differential Gene Expression Analysis: Raw gene count matrices were imported
into R and analyzed with DESeq2. Gene expression levels were modeled using negative
binomial regression to identify differentially expressed genes (DEGs) for three pairwise
comparisons: R0 vs. control, R8 vs. control, and R8 vs. R0. Results included log2 fold
change (LFC), p-values, and FDR-adjusted p-values, which were visualized as volcano plots
using ggplot2 [64]. All data can be found in [53].

Dimensionality Reduction: Variance-stabilizing transformation (VST) was applied
to normalize gene counts and mitigate heteroscedasticity. Principal Component Analysis
(PCA) was used to identify primary sources of variance, visualized via 2D score plots,
while heatmaps of Z-score-scaled VST data highlighted gene expression patterns and
sample clustering [65].

Functional Enrichment and Gene Set Analysis: Competitive gene set enrichment
analysis (GSEA) was performed using the Hallmark (H), curated (C2), computational
(C4), ontology (C5), and oncogenic (C6) collections from MSigDB to identify enriched
pathways. GSEA ranked genes by LFC and evaluated enrichment significance using
normalized enrichment scores (NES). Outputs included dot plots of top pathways and en-
richment statistics [66,67]. Gene Ontology (GO) analysis with topGO provided hierarchical
insights into biological processes, molecular functions, and cellular components enriched in
the data [66,67].

Custom Gene Set and Lipid-Specific Analyses: A curated list of lipid-related GO
terms and pathways was generated by parsing GO and QuickGO databases. DESeq2-
calculated LFC values and DEG statistics were mapped to these custom gene sets to
identify transcriptional changes associated with lipid metabolism. Heatmaps of Z-score-
scaled VST data were created for targeted lipid-related gene sets, highlighting key genes
and pathways involved in lipid homeostasis during heat shock [65,68].

Summary and Visualization: All processing and analysis outputs, including sum-
mary statistics, gene set enrichment plots, heatmaps, PCA plots, and DEG results, were
consolidated into Excel files using Power Query for streamlined comparisons across
experimental conditions.

4.4.3. Quantitative Polymerase Chain Reaction (qPCR)

Following the manufacturer’s protocol, RNA was isolated using 4 million HeLa cells
per condition (control cells, 0 h recovery, 8 h recovery; different batches from the ones used
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for RNA-seq) using the Direct-Zol RNA mini-prep Kit (ZymoResearch, Irvine, CA, USA).
Following the manufacturer’s protocol, cDNA was synthesized from 1 µg of total RNA
using the Superscript IV First-Strand synthesis system (ThermoFisher Scientific, Waltham,
MA, USA) and Oligo (dT)20 primers. cDNA samples were diluted to a concentration of
50 ng/µL. qPCR reactions were prepared with the Power SYBR™ Green PCR Master Mix
(ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
Three biological replicates were run for each gene and condition [Gene names and primers
(generated using NCBI’s primer-blast utility) are shown in Supplementary Table S6]. qPCR
was performed using the CFX96 Touch Real-Time Detection System (Bio-Rad, Hercules,
CA, USA).

The relative normalized expression [69] of the raw transcript levels was calculated
using the Livak method for each gene [70] using the software provided with the instru-
ment [71]. The reference genes used in this method were ACTB and GAPDH. Statistical
significance was assessed using one-way ANOVA (Analysis of Variance) followed by post
hoc Tukey HSD (Honestly Significant Difference) and Bonferroni tests. A p value < 0.05 was
considered statistically significant. Results were plotted via boxplot using BoxPlotR [72].

4.5. Integration of Lipidomics and Transcriptomics
4.5.1. Joint Pathway Analysis

To uncover insights unavailable from single-dataset analyses, MetaboAnalyst’s joint
pathway analysis module was used to integrate lipid abundance and gene expression
data [59]. Inputs included quantitative lipid abundance data and differentially expressed
genes (DEGs) with accompanying fold changes. Enrichment analysis utilized a hyperge-
ometric test, while topology measurements were based on degree centrality. Combined
gene and metabolite queries were cross-referenced with KEGG and SMPDB databases to
identify enriched pathways [73–76]. Outputs included summary statistic files, enriched
pathway plots, and network visualizations with genes and lipids highlighted. Pathways
containing both gene and lipid data were prioritized for further analysis.

4.5.2. Network Analysis

Gene–metabolite interaction networks were constructed using MetaboAnalyst’s net-
work analysis module [59]. This tool aggregated subnetworks of metabolites and genes
based on known interaction networks. Subnetworks were defined as having at least three
nodes and could be filtered by node type, regulation status (up/down), or database-specific
queries (e.g., KEGG, Reactome, GO, motif). Outputs included pathway names, interaction
counts, and p-values for filtered queries. The overall gene–metabolite interaction network
was visualized and saved as an image for interpretation.

5. Conclusions
This study integrates lipidomics and transcriptomics to investigate lipid remodel-

ing during the heat shock response. Our findings reveal that lipidomic changes occur
independently of strong transcriptional regulation, suggesting the involvement of post-
transcriptional, enzymatic, and metabolic flux-driven mechanisms. Specific alterations in
phospholipids and sphingolipids highlight membrane remodeling as a key feature of stress
adaptation. These results provide a framework for understanding how lipid metabolism
contributes to cellular stress responses, with potential implications for cancer and metabolic
disorders. Further research is needed to explore the regulatory mechanisms underlying
lipidomic changes and their functional consequences in diverse biological contexts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26072843/s1.
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