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Statistical evaluation of coevolution

methods for predicting inter-protein

contacts

Aram Avila-Herrera

Abstract

In this work I rigorously benchmark thirteen methods for detecting

residue coevolution between proteins and illustrate their strengths and

weaknesses under a variety of practical data scenarios, including cross-

species protein interactions such as those involved in the host-pathogen

“arms race” between lentiviruses and the mammals they infect. I inves-

tigate the effects of a variety of null distributions on the false positive

rate of predictions. Additionally, I provide computational tools that

facilitate a standardized coevolutionary benchmark analysis.
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Chapter 1

Introduction to coevolution

1.1 A little biology and motivation

The interactions between proteins—the building blocks of cellular

machinery—drive most biological processes in a cell. Understanding

the basic connections and dependencies between these building blocks is

invaluable in learning how cells function, adapt, and how they can be

manipulated into performing new tasks or correcting harmful behaviors, as

in disease for example.

Through the lens of evolution, analyses of protein sequences can reveal the

successes and hint at the failures of nature’s experiments. By looking at

related proteins across multiple species, we can identify the regions within

those proteins that have not tolerated changes—are conserved—and infer

that they pinpoint an important structural or otherwise functional region.
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However, proteins seldom work in isolation. To carry out their functions,

they typically require assembly into complexes. Thus, mildly deleterious or

neutral mutations in one region may favor compensatory mutations in an-

other region (within the same protein or in another member of the complex).

For example, in signaling complexes, a sensory receptor and its ligand may

evolve as a pair while maintaining similar three-dimensional shapes, charge,

or polarity in the regions (residues) involved in maintaining the specific inter-

actions. These pairs of mutations appear correlated in a multiple sequence

alignment (MSA) and are a signature for an important relationship between

a pair of proteins.

These correlated mutations can happen over various timescales; obligate sym-

bionts and pathogens typically adapt quickly to changing conditions and new

hosts. Viruses exist solely by hijacking their hosts’ cellular machinery to re-

produce, engaging in an evolutionary arms race with their hosts’ immune

systems—each optimizing the interactions that benefit their own survival,

including restriction factors, degradation pathways, and antibodies (in the

case of a vertebrate immune system). On the other hand, compensating mu-

tations in an essential cellular pathway tend to be rarer and are found only

after comparing sufficiently diverged species.

Structural and systems biology have had great success in identifying and

characterizing many of these important interactions (e.g. Nucleosome [3],

Proteasome [44], regulation in protein networks [37], [74]). However, resolv-

ing very large complexes and unstructured proteins remains technically dif-

ficult, a daunting task as the number of proteins is ever increasing (Uniprot
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currently catalogs approximately 47 million [72]).

Coevolutionary information extracted from MSAs may provide a complemen-

tary means to assign importance to the complicated molecular networks of

the cell. However, before predicting contacting residues or antagonist viral

proteins, we must first define and learn to reliably measure coevolution.

1.2 Measuring coevolution

Coevolution—“the change of a biological object triggered by the change of

a related object” [79]—is a powerful concept when applied to molecular se-

quence analysis because it reveals positional relationships that are worth pre-

serving across evolutionary time scales. Sequence evolution is constrained by

essential molecular interactions, such as contacts within a protein or RNA

structure, as well as inter-molecular interactions within protein complexes

and signaling pathways. These constraints define an epistasis (i.e. genetic

interaction) between sites (residues or base-pairs) where the probability of

a substitution depends on the states of other sites involved in an interac-

tion [21]. For example, a mildly deleterious or neutral mutation may change

the fitness landscape such that compensatory or advantageous mutations at

another site become more likely. Because epistasis can induce correlation

between substitution patterns among columns in multiple sequence align-

ments, many methods have been developed that use evidence of coevolv-

ing alignment columns to detect physical interactions within and between

biomolecules. These methods draw inspiration from diverse techniques in
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molecular phylogenetics, inverse statistical mechanics, Bayesian graphical

modeling, information theory, sparse inference, and spectral theory (reviewed

in [20], [40]).

Despite good rationale for coevolutionary approaches, physically interacting

alignment columns have been notoriously difficult to identify from correlated

patterns of sequence evolution for several reasons. First, shared evolution-

ary history creates a background of correlated substitution patterns against

which it can be difficult to distinguish additional constraints derived from

physical interactions. Common phylogeny is particularly strong within a

gene family (e.g. predicting intra-molecular contacts). But it is also present

across gene families within a species or even between species (e.g. predicting

host-virus protein interactions), especially at shorter evolutionary distances

where gene trees mirror species trees more closely. Coevolution methods have

used a variety of approaches to counter the dependence induced by shared

phylogeny, including removing closely related sequences from alignments to

reduce non-independence [8], [26], differential weighting of sequences when

computing statistics [17], [19], [56], and null distributions that directly model

or indirectly account for phylogeny [22], [60], [9], [75].

A second challenge arises when trying to distinguish correlated evolution that

arises from direct versus indirect interactions. Alignment columns that are

implicated in an interaction only by transitivity can be strongly correlated,

and most columns are involved in multiple, partially overlapping interactions.

For these reasons, close physical interactions may not produce patterns of sub-

stitution that are significantly more highly correlated than the background

4



present in structures. This problem has been the focus of a recent class of

coevolutionary methods that focuses on reducing the number of incorrect

predictions by disentangling direct from indirect correlations [56], [39], [7],

[18], [12]. An alternative point of view considers these networks of indirectly

correlated residues as protein sectors that can easily, through cooperative

substitutions, respond to fluctuating evolutionary pressures [53].

Finally, due to low statistical power—resulting in part from the previous

two challenges—physically interacting sites can typically only be detected in

multiple sequence alignments that span large evolutionary divergences and

contain many hundreds to thousands of sequences. Recent evaluations of a

number of coevolution methods concluded that accurate contact predictions

require alignments with one to five times as many sequences (with <90%

sequence redundancy) as positions [42], [35].

To date, coevolutionary prediction of physically interacting alignment

columns has been applied with success to intra-molecular contacts [17], [52],

[36], [51] and well-characterized inter-molecular interactions [58], such as

bacterial two-component signaling systems [41], enzyme complexes [28], and

fertilization proteins [13].

Due in part to the rapidly changing computational environment, few com-

prehensive benchmarks exist, especially those that evaluate inter-protein con-

tact prediction. Dutheil [20] rigorously benchmark many mutual information

based methods along with a suite of phylogeny based statistics on intra-

molecular contacts in rRNA. Clark et al. [12] compares newer direct coupling

5



based methods against multi-dimensional mutual information in predicting

intra-protein contacts. Mao et al. [50] evaluate mutual information based

methods and newer direct coupling based methods on inter-protein contact

prediction in non-interacting proteins (i.e. under the null hypothesis), but do

not evaluate power and precision in true interactions.

In this work I rigorously benchmark thirteen methods for detecting residue

coevolution between proteins and illustrate their strengths and weaknesses

under a variety of practical data scenarios, including cross-species protein

interactions such as those involved in the host-pathogen “arms race” between

lentiviruses and the mammals they infect. I investigate the effects of a variety

of null distributions on the false positive rate of predictions. Additionally,

I provide computational tools that facilitate a standardized coevolutionary

benchmark analysis.

I am optimistic that this contribution will guide structural and systems biol-

ogists to use coevolutionary tools to resolve large protein complexes, identify

novel drug targets, predict drug resistance mutations, rationally design vac-

cines, and for other uses related to protein interactions that are unknown at

this time. Additionally, this work should serve to motivate comprehensive se-

quencing to generate the data needed to identify coevolution in interactions

with under-represented taxa. Finally, I hope that the statistically rigorous

evaluation framework developed will serve as proving grounds for more pow-

erful methods development.
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Chapter 2

Benchmarking coevolution

methods

In this chapter I address whether existing coevolutionary methods are spe-

cific and sensitive enough to predict structural contacts between interacting

proteins from their alignments. I confirm that such analyses benefit from

deep diverse alignments and from employing the empirical distribution of

coevolution scores in estimating their P-values. I also report on additional

features of the alignments that are important for predicting contacts.
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2.1 Background

2.1.1 Classes of coevolution methods

The thirteen coevolutionary methods benchmarked in this analysis fall into

three general groups (Table 2.1). Information-based methods are various fla-

vors of mutual information between pairs of alignment columns, each pair

considered independently. Direct methods are those that consider pairs of

sites in the context of a sparse global statistical model for contacts in the

multiple sequence alignment, i.e. they attempt to find a small number of cou-

plings that best explain the observed correlations between alignment columns.

In effect, Direct methods aim to remove indirect correlations that arise from

transitivity. Phylogenetic methods explicitly use a substitution rate matrix

and phylogenetic tree in their calculation of a coevolution statistic that can

be configured to take into account the biochemical and physical properties of

amino acid residues. The Phylogenetic methods implemented in the CoMap

package additionally report a P-value estimated from an internal simulation

of independently evolving sites. In this benchmark I use the CoMap P-value

as a statistic for comparison with other coevolution methods.

Other differences among the coevolution methods include the incorporation

of two additional techniques that have been shown to improve performance,

re-weighting sequences such that similar sequences contribute less to the

final score [8] and applying an Average Product Correction (APC) to remove

background noise and phylogenetic signal from the raw coevolution statistics
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[19].

2.1.2 Alignments and structures

A gold standard data set for which to benchmark the performance of co-

evolution detecting methods does not yet exist. Residues may coevolve due

to structural constraints or longer range functional constraints, however the

latter is more difficult to validate and to retrieve experimental results for.

In comparison, structural information is readily available for many protein

complexes through the Protein Data Bank (PDB) [4], and can be used to

validate predictions of coevolving residues.

Therefore, I benchmarked the coevolution methods on 33 within-species pairs

of bacterial protein families with an ortholog in E. coli that also have an asso-

ciated representative co-crystal structure deposited in the protein data bank

(PDB). These include a set of paired alignments compiled by Ovchinnikov,

Kamisetty, and Baker [58] (Ovch32), plus the histidine kinase-response reg-

ulator (HisKA-RR) bacterial two-component system from Procaccini et al.

[62], provided by the authors. I included HisKA-RR, because it is a well-

characterized interaction with a deep, diverse multiple sequence alignment

(8998 sequences for each gene) and genetic evidence supporting several in-

teractions. For these reasons, HisKA-RR has also been used previously in

coevolutionary analyses [65].

Because the HisKA-RR alignment is so deep, it enabled us to quantify the

effects of alignment size and diversity by uniformly down-sampling the full
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alignment to produce a wide range of smaller pairs of HisKA and RR mul-

tiple sequence alignments. These sub-sampled alignments have six different

numbers of sequences (5, 50, 250, 500, 1000, 5000) with phylogenies also

sub-sampled from the original tree (Figure 2.26). The 32 alignment pairs in

Ovch32 naturally varied in size (range 216–6732 sequences) (Figure 2.27).

In addition to the number of sequences in the alignments (N), I consider the

phylogenetic diversity (PD [25]) of the alignments—also captured in the effec-

tive number of sequences (Neff) as calculated by PSICOV [39], the diversity

within individual alignment columns measured by entropy, the alignment

length (L) (i.e. the number of alignment columns), the proportion of contact-

ing residues in the alignment.

2.1.3 Measuring performance

The performance of each method to distinguish contacting pairs of residues

(positives) from other residue pairs (negatives) was measured as previously

described [39], [24]. Briefly, for each pair of multiple sequence alignments

from two interacting proteins, I compared every site in the first protein to ev-

ery site in the second protein and scored these pairs of alignment columns for

coevolution using each of the methods in Table 2.1. I then used these coevo-

lution scores to predict inter-protein contacts—pairs of amino acid residues

that are less than 8 angstroms (Å) apart from each other (measured between

Cβs)—in a representative co-crystal structure.

I evaluated performance using power (also called recall and true positive rate
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(TPR)) (Equation (2.1)) and precision (also called positive predictive value

(PPV)) (Equation (2.3)) at a range of low false positive rates (FPR)—the pro-

portion of negatives falsely predicted as positives (Equation (2.2)). Power

and precision are complementary performance measures that quantify the

percentage of interacting residue pairs that are found and the percentage

of identified residue pairs that are interacting, respectively. Precision is a

useful measure of performance in cases where positives (contacting pairs of

residues) are overwhelmed by negatives (non-contacting residues). A method

with high precision is helpful for generating lists of high confidence pairs of

residues for expensive follow-up studies, even if it misses a number of truly

interacting sites and therefore has relatively low power. I additionally exam-

ined four threshold-independent performance measures, area under Receiver-

Operator Curve (auROC), area under precision-recall curve (auPR), maxi-

mum F1-score (fmax) (Equation (2.4)), maximum ϕ (ϕmax) (Equation (2.5)).

See Table 2.5.

TPR = TP

TP + FN
(2.1)

FPR = FP

FP + TN
(2.2)

PPV = TP

TP + FP
(2.3)
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F1 = 2 · PPV · TPR

TPR + PPV
(2.4)

ϕ = TP · TN − FP · FN√
(TP + FN)(TN + FP )(TP + FP )(TN + FN)

(2.5)

An alternate definition of contacts I explored defines contacts as residue-

pairs with less than 6Å between their closest non-hydrogen atoms. I also

evaluated performance in the HisKA-RR sub-alignments using a stricter def-

inition of contacts that, in addition to spatial proximity (Cβ < 8Å), requires

biochemical evidence for the role of the contacting residues in determining

the specificity of the protein interaction. A list of such residues in represen-

tative sequences is found in [10], [47], [32], [70], [45]. Trends in the results

were generally similar across these choices of definition for true interactions,

but I observed some differences in performance between definitions when the

false positive rate (FPR) is controlled (Figures 2.1 and 2.2).

2.1.4 Common null distributions

In practice, when applying the methods in this study the structure usually is

not known. In fact, one of the main goals of extracting coevolutionary infor-

mation from sequence alignments is to use it to predict structural contacts.

One therefore uses a null distribution to control false predictions. Specifi-

cally, an upper quantile of the distribution of coevolutionary statistics in the

absence of coevolutionary constraint is used as a threshold; one declares any
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pair of sites with a statistic exceeding the threshold a predicted contact.

The goal is to minimize false predictions by predicting contacts only when

statistics are much larger than expected under the null distribution. A variety

of null distributions are commonly used, including theoretical limiting distri-

butions [19], [2], [27], the empirical distribution of observed scores (under the

assumption that most pairs of sites are not coevolving) [30], and paramet-

ric, semi-parametric, and non-parametric bootstrap distributions [22], [76].

Theoretical and empirical nulls are computationally inexpensive compared to

bootstrap methods, which require accurately simulating thousands of large

data sets (See Chapter 3)

The empirical distribution of observed coevolution scores in an alignment

is commonly used as the null distribution. A P-value (Pempirical) for a score

S is simply the proportion of scores that are more extreme than S. This

straightforward method can be easily applied with any statistic. However, it

assumes that no pairs of sites are coevolving and should therefore produce

thresholds that are too strict when there are some coevolving sites in the

data set (i.e. making it harder to predict real contacts).

Another choice of null distribution is a theoretical distribution with param-

eters that are pre-determined or estimated from the observed scores, also

assuming that virtually no pairs of sites are coevolving. Often a standard

normal distribution is used. Under this assumption, I standardized the co-

evolution scores to Z-scores and compared these to upper quantiles of the

standard normal distribution (mean = 0, variance = 1). I then used the
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resulting upper-tail P-values (Pnormal) to predict contacting residue pairs.

Two properties of these distributions are that there is a one-to-one mapping

of scores to P-values within each alignment pair, but not necessarily across

alignment pairs. Therefore, P-values in short protein families (or in anal-

yses with extensive filtering) may be overly conservative and perhaps not

comparable to P-values in other alignment pairs.

2.2 Benchmark results

My primary finding is that many coevolutionary methods are able to detect

inter-molecular contacts at low FPRs in alignments with hundreds of di-

verse sequences from each protein, consistent with previous studies of intra-

molecular contacts [12], [20], specifically when the alignments are deeper

than they are long [42], [35]. I capture this rectangular quality in the statis-

tic Neff/L, where Neff is the effective number of sequences as calculated by

PSICOV [39] and L is the total number of columns in both alignments. I

observe similar trends when using the number of sequences (N) or their phylo-

genetic diversity (PD) [25], rather than Neff/L, to compare performance. The

relationship between N, PD, and Neff is explored further in Section 2.2.3.1:

Diversity of sequences. The diversity of residues within the individual align-

ment columns that make up each pair is another important factor to consider,

and is explored in Section 2.2.3.2: Variability in alignment column-pairs.
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2.2.1 Power and precision

Both power and precision improve with increasing Neff/L for nearly all coevo-

lutionary methods (Figures 2.4 and 2.5), in the HisKA-RR data set. However,

for alignments with Neff/L < 1.0, power at FPR < 5% remains relatively low

(< 50%), and even lower (< 10%) when controlling the false positive rate

more strictly (FPR < 0.1%). Precision is expectedly higher at FPR < 0.1%

than at FPR < 5%, but also remains below 50% for “square” alignments.

Additionally, the performance metrics fmax and ϕmax show that there are no

score thresholds (i.e. the strictness of predictions) that achieve both high

precision and power in alignments with Neff/L ≲ 3.0 (Figures 2.6 to 2.8).

Despite the smaller range in Neff/L values, these performance trends are also

observed across the 32 alignments in Ovch32 (Figures 2.9 to 2.11).

However, in the HisKA-RR alignment, I observed two exceptions to this trend

when using the strictest definition for contacting pairs (i.e. requiring residue

Cβ < 8Å coupled with biochemical evidence for specificity determination).

First, the standard MI statistic is the most precise method for detecting con-

tacting sites in alignments with Neff/L >1.6 and FPR < 0.1% (Figure 2.2).

Second, mutual information normalized by the joint entropy (MIj) has rel-

atively high power compared to the Information-based methods and is the

most powerful method for detecting contacting sites that are supported by

experimental evidence at FPR < 5% (Figure 2.1). However, MIj has drasti-

cally lower power at FPR < 0.1% (Figure 2.3). These findings suggest MIj
may be useful for detecting as many contacts as possible if a moderate FPR
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can be tolerated. Information-based methods are straightforward to compute,

adding to their utility in these settings.

2.2.2 False positive rate

I used the sampled sub-alignments of HisKA-RR and the 32 alignments in

Ovch32 to compare the performance of two commonly used null distribu-

tions and to evaluate the sensitivity of each approach to alignment size. For

each null distribution and coevolutionary statistic, I first employed the non-

contact pairs of residues to assess if the FPR was truly controlled or not at

given target FPRs of 5% and 0.1%.

2.2.2.1 Empirically distributed null (Pempirical)

Contrary to my expectations, I found that the empirical null distribution

produces nominal FPRs that exceed target FPRs (Figures 2.12, 2.13, 2.16

and 2.17). However, it is the Direct methods that best control the nomi-

nal FPR in both sets of alignments, marginally exceeding the target FPR

in only a couple of cases. The Information-based methods fared well in the

alignments in [58], however the HisKA-RR sub-alignments reveal that at

Neff/L < 0.3, control of the FPR is lost, especially in MIHmin. The Phylo-

genetic method that consistently exceeded the target FPR was the CoMap

correlation analysis (CMPcor) which makes no assumptions regarding the bio-

chemical properties of the amino acids. These results suggest that the em-

pirical null distribution is not as conservative of an approach as one might
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expect from including contacting residue pairs in the null distribution. Al-

though, it may suffer from some of the same effects that make the normal

null distribution anti-conservative, such as shared phylogeny or structural

constraints, alignments with very few sequences (e.g. 5–50) have a limited

number of possible scores which leads to ties in P-values between contacting

and non-contacting residues. If contacts and non-contacts have roughly the

same Pempirical values, the target and nominal FPRs should be similar. But

with large ammounts of ties, predictions are made in blocks, possibly forcing

discontinuous jumps in the nominal FPR with respect to the target FPR.

This could compound or balance the anti-conservativeness of Pempirical.

2.2.2.2 Normally distributed null (Pnormal)

Using a standard normal as the null distribution, we found that nominal

FPRs consistently exceed the target FPR across the range of Neff/L values in

both the HisKA-RR sub-alignments and the alignments in [58] (Figures 2.14,

2.15, 2.18 and 2.19). In general, as Neff/L increases, the nominal FPR for

Direct methods increases while it decreases in Information-based methods.

Nominal FPRs were observed to be as great as twice to 20 times the target

FPR for target FPRs 5% and 0.1% respectively. This suggests that either

non-contacting residue pairs carry signals of coevolution (e.g. due to phy-

logeny, structural, or other evolutionary constraints) and/or that Z-scores of

coevolution statistics have variance greater than one across non-contacting

residues (e.g. due to an underestimated standard deviation across residue

pairs resulting from within protein constraints or residues appearing in many

17



pairs). Three of the four phylogeny aware CoMap methods controlled the

nominal FPR below the target in all cases suggesting that the charge com-

pensation analysis is predicting long-range residue interactions as well as

contacts.

Thus, while the normal distribution applied to standardized coevolution

statistics can practically be used as a null distribution, we conclude that

this approach results in elevated rates of false positive predictions, likely

due to shared phylogeny or structural constraints affecting non-contacting

residue pairs. A theoretical null (e.g. non-central gamma [29]) that is param-

eterized for individual column pairs may therefore be more appropriate and

is explored in Section 3.3.

2.2.3 Other alignment features important for perfor-

mance

2.2.3.1 Diversity of sequences

To investigate whether higher power in larger alignments results primarily

from the number sequences per se or depends upon the diversity of the se-

quences, I compared the performance across alignments with different diver-

sity values but the same number of sequences. I quantified diversity using

phylogenetic diversity (PD) [25] and the effective number of sequences as

calculated by PSICOV (Neff) [39] (Figures 2.20 to 2.22).

For HisKA-RR sub-alignments, I found weak positive and negative relation-
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ships between the nominal false positive rate and PD for some methods in

alignments with 5000 sequences at given target false positive rates. For each

group of equally sized alignments for each method (and for each null distri-

bution and significance threshold), I tested whether the false positive rate

correlates with PD using Spearman’s rho. Few methods had uncorrected P-

values < 0.05 and none when controlling for the 336 comparisons (smallest

uncorrected P: 1.73e-3; ρ: 0.85 for MIj at N = 5000, Pempirical < 0.001). Test-

ing for a bulk correlation (ignoring method; normalizing PD by alignment

size) reveals a weak positive correlation (ρ = 0.27, P < 1.9e-29) at Pnormal and

Pempirical < 0.05 but not < 0.001. Overall this suggests that the false positive

rate may increase with more diverse sequences at loose significance thresh-

olds. Alternatively, the PD ranges were too small to detect a relationship

with false positive rate.

While the range in diversity for alignments with 5 sequences is small (PD: 7.5-

11, Neff: 5), under the normal distribution, the false positive rate is better

controlled in diverse alignments. However, under the empirical null, the

Information-based methods do not control the FPR for these alignments and

have larger false positive rates as diversity increases in these alignments.

One caveat of the HisKA-RR analysis is that (for computational reasons) I

generated sub-alignments by random sampling and therefore only explored

a range of phylogenies close to the typical diversity for each alignment size.

I observe fairly strong correlations between cutoff-independent performance

metrics and Neff (and also Neff/L as L is constant in HisKA-RR). The align-

ments in Ovch32 provide a broader range of phylogenetic scenarios. Across
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these 32 interactions, Neff is at best weakly correlated with the same per-

formance metrics (Table 2.2). However, accounting for alignment length

(with Neff/L) reveals that there is a relationship between alignment depth

and performance. (Table 2.3, Figures 2.21 and 2.22) show that high Neff
alone does not guarantee good performance. For example, taking the best

performing method at each alignment pair, the alignment pair with the high-

est Neff had at best the fourth poorest ϕmax. Conversely, the third smallest

Neff corresponds to the third best ϕmax; and at FPR < 0.001, it had the

highest precision (PPV = 63%). Interestingly, it also has the shortest length

(L = 168 columns), suggesting that perhaps taking into account the propor-

tion of possible contacts may play an important role in estimating expected

performance.

2.2.3.2 Variability in alignment column-pairs

To explore the effect of substitution rate variation across sites in HisKA and

RR, I parsed the performance results according to the entropy of the two

alignment columns (one from each gene) in every pair of evaluated sites. For

each alignment size (6 sizes; 10 alignments of each size), I split columns

into below- versus above-median entropy separately for each gene, and then

classified pairs of sites into the resulting four groups.

Then, for a subset of methods, I computed power and precision separately

for each rate category group. This analysis showed that faster evolving

(i.e. above-median-HisKA paired with above-median-RR) contacts are gen-
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erally the easiest to detect with coevolutionary methods. Dually conserved

residues (i.e. low-HisKA paired with low-RR) are the next easiest to detect

(Figure 2.23). I conclude that MIw’s drop in performance at 5000 sequences

may be due to dually-variable columns being improperly reweighted. These

analyses show that sequence variation quantitatively affects the accuracy of

coevolution analyses, with most methods performing best when coevolving

residue pairs have similar substitution rates.

2.2.3.3 Proportion of contacts in the alignment

Finally, I looked at the relationship between performance and the propor-

tion of residue pairs that are contacts. Comparing across the structures in

the Ovch32 data set, we observed the proportion of contacts is correlated

with precision at FPR < 0.1% (Figure 2.24, Table 2.4). This means that

most strongly coevolving residues in a protein pair are more likely to be

physically interacting in co-crystal structures with a larger fraction interface

residues. Power is also correlated with the proportion of contacts, though

not as strongly as precision (Figure 2.25).

2.3 Conclusions

In general, I confirm that coevolutionary methods that adjust for background

phylogenetic signal through sequence re-weighting and/or average product

correction (APC) (e.g. DI, DIplm, and PSICOV) perform better than the phy-
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logeny unaware mutual information (MI) based methods and the phylogeny

aware approaches that explicitly use evolutionary models.

CoMap performance is an interesting case because, in contrast to DI, DIplm,

and PSICOV, it was not designed to find contacting residues. In the smallest

alignments (5 sequences) I tested, it can have slightly better performance

than the other methods. However, its poor performance in other alignments

may indicate that it is identifying a set of coevolving residue pairs that

partially overlap with contacting residues. It remains to explore whether

CoMap can be used to prioritize residue pairs predicted by the other methods

for functional assays.

We are still left with the challenge of how to choose an appropriate P-value

cutoff in a real analysis when the structure is unknown. Since my findings

indicate that nominal FPRs exceed target FPRs using Pnormal and Pempirical
for nearly all methods, stricter P-value cutoffs than the target false positive

rate seem warranted. But it is not clear how much stricter will be needed

in any given alignment pair without additional information to guide such

modifications (e.g. incorporating alignment properties such as Neff/L into a

model for each coevolution method). Hence, in most applications one must

simply aim to control a target FPR, knowing that the true error rate is likely

to be larger. For this reason, the empirical null distribution may be the

best choice to use as it controls error rates across the majority of alignment

sizes, target FPRs, and coevolution methods tested (Figures 2.12, 2.13, 2.16

and 2.17). As a rule of thumb, the empirical null overall controls the FPR

for the Direct methods, however in small alignments (5 sequences or Neff/L
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< 0.3) it can be up to 1.5 times the target FPR. I therefore recommend

sequencing deeply enough to attain Neff/L > 1.0 to control FPR and > 2.0

to ensure modest TPR and PPV.

Null distributions that directly use an evolutionary model under the null hy-

pothesis (proteins are evolving independently) have the potential to provide

realistic thresholds for individual column pairs. Controlling the FPR using

P-values obtained through simulation is explored in Chapter 3.

2.4 Figures
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Figure 2.1: HisKA-RR with contacts defined using biochemical evidence for
specificity determination. Power (TPR) at FPR < 5%. 95% confidence
intervals for loess smooths are shown in gray
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Figure 2.2: HisKA-RR with contacts defined using biochemical evidence for
specificity determination. Precision (PPV) at FPR < 0.1%. 95% confidence
intervals for loess smooths are shown in gray
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Figure 2.3: HisKA-RR with contacts defined using biochemical evidence for
specificity determination. Power (TPR) at FPR < 0.1%. 95% confidence
intervals for loess smooths are shown in gray
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Figure 2.4: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). Power (TPR) at FPR < 5%. 95% confidence intervals for loess smooths
are shown in gray
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Figure 2.5: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). Precision (PPV) at FPR < 0.1%. 95% confidence intervals for loess
smooths are shown in gray
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Figure 2.6: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). Phimax. 95% confidence intervals for loess smooths are shown in gray
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Figure 2.7: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). Fmax. 95% confidence intervals for loess smooths are shown in gray
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Figure 2.8: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). AuPR. 95% confidence intervals for loess smooths are shown in gray

31



Direct

0.0

0.2

0.4

0.6

0.20 0.44 0.98 2.20 4.80
Neff/L

T
P

R

Method

DI

DIplm

PSICOV

Information_based

−0.2

0.0

0.2

0.4

0.20 0.44 0.98 2.20 4.80
Neff/L

T
P

R

Method

MI

MIj

MIminh

MIw

VI

Phylogenetic

0.0

0.1

0.2

0.20 0.44 0.98 2.20 4.80
Neff/L

T
P

R

Method

CMPchg

CMPcor

CMPpol

CMPvol

Figure 2.9: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). Power (TPR) at FPR < 5%. 95% confidence intervals for
loess smooths are shown in gray
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Figure 2.10: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). Precision (PPV) at FPR < 0.1%. 95% confidence intervals
for loess smooths are shown in gray

33



Direct

0.0

0.1

0.2

0.3

0.4

93 200 440 970 2100
Neff

ph
im

ax

Method

DI

DIplm

PSICOV

Information_based

0.00

0.05

0.10

0.15

93 200 440 970 2100
Neff

ph
im

ax

Method

MI

MIj

MIminh

MIw

VI

Phylogenetic

0.00

0.02

0.04

0.06

0.08

93 200 440 970 2100
Neff

ph
im

ax

Method

CMPchg

CMPcor

CMPpol

CMPvol

Figure 2.11: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). Phimax. 95% confidence intervals for loess smooths are
shown in gray
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Figure 2.12: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). False positive rate (FPR) at Pempirical < 0.001. 95% confi-
dence intervals for loess smooths are shown in gray
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Figure 2.13: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). False positive rate (FPR) at Pempirical < 0.05. 95% confidence
intervals for loess smooths are shown in gray
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Figure 2.14: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). False positive rate (FPR) at Pnormal < 0.001. 95% confidence
intervals for loess smooths are shown in gray
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Figure 2.15: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). False positive rate (FPR) at Pnormal < 0.05. 95% confidence
intervals for loess smooths are shown in gray
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Figure 2.16: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). False positive rate (FPR) at Pempirical < 0.001. 95% confidence intervals
for loess smooths are shown in gray
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Figure 2.17: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). False positive rate (FPR) at Pempirical < 0.05. 95% confidence intervals
for loess smooths are shown in gray
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Figure 2.18: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). False positive rate (FPR) at Pnormal < 0.001. 95% confidence intervals
for loess smooths are shown in gray
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Figure 2.19: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). False positive rate (FPR) at Pnormal < 0.05. 95% confidence intervals
for loess smooths are shown in gray
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Figure 2.20: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). Power (TPR) at FPR < 5%. 95% confidence intervals for
loess smooths are shown in gray

43



Direct

0.0

0.2

0.4

0.6

93 200 440 970 2100
Neff

P
P

V

Method

DI

DIplm

PSICOV

Information_based

−0.1

0.0

0.1

0.2

0.3

0.4

93 200 440 970 2100
Neff

P
P

V

Method

MI

MIj

MIminh

MIw

VI

Phylogenetic

−0.01

0.00

0.01

0.02

93 200 440 970 2100
Neff

P
P

V

Method

CMPchg

CMPcor

CMPpol

CMPvol

Figure 2.21: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). Precision (PPV) at FPR < 0.1%. 95% confidence intervals
for loess smooths are shown in gray
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Figure 2.22: Ovch32 alignments [58] with contacts defined using spatial prox-
imity (Cβ < 8Å). Phimax. 95% confidence intervals for loess smooths are
shown in gray
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Figure 2.23: HisKA-RR with contacts defined using spatial proximity (Cβ
< 8Å). Performance is evaluated on subsets of alignment pairs with above
and below median entropy for each HisKA and RR column. Power (TPR)
at FPR < 5% and Precision (PPV) at FPR < 0.1% are shown for CMPcor,
DIplm, and MI.
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Figure 2.24: HisKA-RR with contacts defined using spatial proximity (Cβ
< 8Å). Precision (PPV) at FPR < 0.1% 95% confidence intervals for loess
smooths are shown in gray
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Figure 2.25: HisKA-RR with contacts defined using spatial proximity (Cβ <
8Å). Power (TPR) at FPR < 5% 95% confidence intervals for loess smooths
are shown in gray
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Figure 2.26: HisKA-RR. Neff versus N for 60 sub-sampled alignments. 95%
confidence intervals for loess smooths are shown in gray
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Figure 2.27: Ovch32. Neff versus N for 32 alignments in [58]. 95% confidence
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HisKA-RR Ovch32

Metric ρ P ρ P

auPR 0.554336 7.70407e-69 -0.2055977 6.47389e-05
auROC 0.519496 3.06530e-59 -0.0128938 8.04243e-01

fmax 0.537467 4.73041e-64 -0.1890605 2.45104e-04
ϕmax 0.525671 7.33669e-61 -0.0556136 2.84684e-01

Table 2.2: Spearman correlations of threshold-independent metrics with Neff

HisKA-RR Ovch32

Metric ρ P ρ P

auPR 0.554336 7.70407e-69 0.162724 1.63855e-03
auROC 0.519496 3.06530e-59 0.170879 9.36027e-04

fmax 0.537467 4.73041e-64 0.127323 1.39922e-02
ϕmax 0.525671 7.33669e-61 0.202785 8.18168e-05

Table 2.3: Spearman correlations of threshold-independent metrics with
Neff/L

Metric FPR ρ P

PPV 0.001 0.337364 3.80652e-10
0.05 0.585178 1.81358e-35

TPR 0.001 0.202065 8.68295e-05
0.05 0.209154 4.79314e-05

Table 2.4: Spearman correlations of Power (TPR) and Precision (PPV) with
the proportion of contacts in an interaction.
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Prediction

Cβ distance Coevolving Not coevolving

< 8Å TP FN
≥ 8Å FP TN

Table 2.5: Confusion matrix.
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Chapter 3

Null distributions

Commonly used null distributions that are parameterized by the observed

scores can vary in their ability to control the false positive rate (Section 2.2.2).

An evolutionary model under the null hypothesis (proteins are evolving in-

dependently) can potentially be used to generate realistic null distributions.

In this chapter I present a semi-parametric bootstrap method for deriving

null distributions of coevolution scores for individual residue-pairs in an inter-

protein coevolution analysis. I find that this method, while well motivated,

fails to control the false positive rate when fast or slow evolving alignment

columns are inaccurately simulated.

An analytic method based on G-tests and an empirical method based on

non-interactors are proposed for estimating P-values.
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3.1 Background

In hypothesis testing, a null distribution of a test statistic is necessary in judg-

ing whether there is enough evidence to reject a null hypothesis. In the case

of predicting interprotein contacts from coevolution scores, we are concerned

with rejecting the hypothesis that a pair of residues are not contacts.

To do so I compared the coevolution score to a (null) distribution of scores

we expect to measure in non-contacts and quantify it in a P-value—the

probability that the null distribution would generate a score as or more ex-

treme than the observed value. However, assumptions on what shape and

scale that distribution should have affect the performance in predicting con-

tacts. For example, an overly conservative null distribution may assume that

non-contacts are likely to have scores as high as contacting residues, while

an anti-conservative null would assume non-contacts have lower scores than

they truly do.

An ideal null should account for shared phylogeny of the sequences in an align-

ment, finite sample effects, and evolutionary rates of individual alignment

columns. However, these can be difficult and computationally expensive to

implement and simpler, faster alternatives are common in practice.

In Section 2.1.4 I employed two common null distributions in the estima-

tion of coevolution P-values. While these are computationally inexpensive,

I showed that they suffer from elevated rates of false positives, likely due to

shared phylogeny or structural constraints affecting non-contacting residue

pairs.
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Bootstrap methods (e.g. in [22], [76]), though more computationally inten-

sive, have been used to generate null distributions of coevolution scores

by simulating independent evolution. Though these methods theoretically

account for shared phylogeny (by maintaining the phylogenetic relationships

between the sequences) and give a null distribution for each alignment-

column pair or class of column-pairs, they have typically been employed in

intramolecular analyses.

A non-parametric bootstrap method—recently used in an interprotein analy-

sis in [50]—shuffles individual alignment columns tens of thousands of times.

This shuffling method is faster than semi-parametric simulations, conserves

the entropy and composition of the observed columns, however it does not

preserve the relationships between the sequences, potentially leading to null

distributions that are overly anti-conservative.

As a middle ground, theoretical distributions that account for sequence vari-

ation in individual column-pairs could be used to generate null distributions

of scores for each column-pair without the need for expensive simulations.

3.2 P-values from simulated alignments (Pbootstrap)

This approach aims to independently simulate alignments for each protein

family (group of orthologous proteins) in an inter-protein analysis such that

the simulated alignments resemble the observed alignments in terms of substi-

tution rates, amino acid composition, and phylogenetic relationships. How-

ever, substitutions are generated independently for each protein family and
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are therefore not correlated beyond any correlation induced by similarities

in the phylogenies of the two gene families. This should directly account

for phylogenetic effects in the null distribution and therefore have the po-

tential to more accurately control FPRs. Simulations are computationally

intensive and not suitable for all methods as they can greatly increase compu-

tational time. To explore the possibility of using this approach with current

coevolution methods, I implemented a semi-parametric bootstrap null dis-

tribution for a subset of phylogeny-unaware methods using the HisKA-RR

sub-alignments used in Chapter 2.

3.2.1 Simulating independently evolving pairs of align-

ments

In order to classify pairs of sites as coevolving or not coevolving using a semi-

parametric bootstrapped null distribution, I calculated a P-value (Pbootstrap)

for the score at every pair of positions by comparing the observed score to

the distribution of scores simulated for that pair under the null hypothesis

(independent evolution).

To simulate alignments, I used FastTree (version 2.1.7 SSE3) [61] to build

maximum likelihood phylogenetic trees for the HisKA and RR protein fam-

ilies. I used hmmbuild from the HMMER3 package [23] (version 3.0 March

2010) to build a profile hidden Markov model (pHMM) for each family. I

sampled amino acid residues from a first order Markov chain to generate an

initial sequence for each family. Finally, I used Revolver (version 1.0) [43] to
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simulate 1000 8998-sequence alignments for each family independently. Re-

volver can simulate the evolution of a given root sequence that adheres to the

domain constraints imposed by a pHMM, and preserves a similar phyloge-

netic history to the observed alignment. Revolver used the WAG substitution

matrix and indel probabilities were set to zero in order to simulate constant

length alignments. Gaps from the observed alignment were then overlaid on

the simulated alignment. I automated this process in a pipeline available at

https://github.com/aavilahe/simulate_tools.

3.2.1.1 Example simulation of Response Regulator (RR) alignment

with simulate_tools:

First a phylogenetic tree for the RR alignment was built using FastTree

(version 2.1.7 SSE3) with options -gamma -nosupport -wag and saved in

RR.tree.

The following steps were then automated in the simulate_tools pipeline

(runSimAli):

1. Build profile HMM

2. Sample starting “root sequence” for simulation using first order Markov

chain

3. Generate xml control file for Revolver

• No tree scaling

• Heterogeneous rates (alpha = 1, ncats = 9)

• No indels
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4. Run Revolver

runSimAli --tree RR.tree \
--outdir /path/to/output \
--num_sims 1000 JobNameRR RR.phy

From these simulated master alignments, sequences corresponding to

the observed sub-alignments were extracted to create a total of 60,000

sub-alignments, each corresponding to one of the original 60 observed

sub-alignments.

3.2.2 False positive rate

Unfortunately, I found that P-values calculated using the bootstrap null

distribution were heavily influenced by the error in simulating alignment

columns with appropriate amino acid variation. Residue pairs for which the

bootstrap simulated alignment columns have too much sequence variation

(compared to the corresponding observed alignment column) tend to have

small P-values, regardless of whether or not they are contacting residues.

Simulation error increased with alignment size, as did nominal FPRs. Con-

sequently, at a target FPR of 5%, the nominal FPR was not adequately

controlled for alignments with more than 5 sequences (Neff/L = 0.02) for any

method except PSICOV. Interestingly, PSICOV is the method least affected

by the simulation error.

Recalculating the nominal FPR using only alignment column pairs that were

moderately well simulated (such that no more than 25% simulations were
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over or under conserved) showed much lower FPR for all methods except

MIHmin (Figure 3.1). MI and VI are controlled below a target FPR < 5%.

At a stricter target FPR < 0.1%, PSICOV, MI, and VI are the only meth-

ods with completely controlled FPR at all alignment sizes. MIw, DI, and

MIj are controlled in alignments with fewer than 1000, 500, 250 sequences

respectively. Together these results suggest that the DI, MIw, MIj, and VI

are sensitive to the amount of variation in alignments, while PSICOV and

MIHmin are more robust to that variation. This is important in directly com-

paring fast or slowly evolving column-pairs and in comparing observed scores

to simulated null scores.

MIHmin’s higher FPR suggests it is identifying coevolving residues that are

not structurally close. Perhaps some of them may be part of an alternate

network of evolutionarily important residues, for example “protein sectors

[53]” that span more than one protein. Or perhaps its null scores are simply

distributed unhelpfully.

3.2.2.1 Comparison with CoMap

CoMap internally estimates P-values using a similar simulation approach.

Nominal FPRs for CoMap methods, using their P-values directly, resemble

those of the Information-based approaches using the normal distribution as a

null (twice to 20 times the target FPR) (Figures 3.2 and 3.3). I conclude that

it is very important for the evolutionary conservation of alignment columns

in the bootstrap null distribution to closely match conservation levels in
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the observed data. Despite using currently accepted techniques for generat-

ing bootstrap distributions, I found that matching conservation levels this

closely is challenging. This is an important problem for future research in

the coevolution field.

3.3 Non-central gamma distributed null (Pgamma)

In addition to having a single null distribution for all pairs of sites, theoretical

nulls can be estimated for each pair of sites, taking into account properties

of the alignment columns involved. However, the theoretical null may be

unique to the coevolution statistic used and may not even have a closed-

form expression. The non-central gamma distribution as derived by [29] can

be used for estimating P-values (Pgamma) for MI and related methods due to

their relationship with G-tests. Here the shape and scaling parameters de-

pend on the number of observations (e.g. number of sequences in alignment)

and number of realizations of the two categorical variables (e.g. number of

different residues and gaps), and the non-centrality parameter is used to

specify MI under the null hypothesis. This is an interesting area for future

methods research.

3.4 Empirical P-values revisited

An alternative to independently simulating alignments is to permute the

connections in an interaction network and estimate a null distribution using
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scores from non-interacting proteins. The permutation approach is similar to

Pempirical in Section 2.1.4 except that by generating pairs of non-interactions,

it ensures that all of the null scores are generated according to the null

hypothesis—an assumption that is generally not true in Pempirical.

Using an empirical distribution from non-interacting proteins could prove

useful in detecting pairs of interacting proteins from non-interactors in the

case where contacting proteins share many weak coevolution signals as op-

posed to a few strong signals.

An implementation is demonstrated in Chapter 4.

3.5 Figures
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Figure 3.1: HisKA-RR with contacts defined using spatial proximity (Cβ
< 8Å). Pboostrap fails to control the FPR except for in PSICOV at target
FPR < 5% in HisKA-RR alignments. Eliminating residue pairs with large
simulation errors shows PSICOV and MIHmin are most robust to sequence
variation differences across sites.
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false positive rate (FPR) at P < 0.05 using CoMap’s internal P-values
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Chapter 4

Coevolution analyses of

networks and cross-species

interactions

Coevolution analyses of cross-species protein interactions potentially reveals

how tightly linked organisms adapt to each other at the molecular level. Mi-

crobes interact with the human gut, plant roots cooperate with mycorrhizae,

and viruses rewire host cells for their reproduction. In this chapter I ap-

ply coevolution methods benchmarked in Chapter 2 to measure the strength

of coevolution in HIV1-human interactions. Then I focus on a particular

arms-race between HIV1 protein Vif and its antagonist human A3G.
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4.1 Background

The ability to now measure physical interactions between biomolecules with

high-throughput technologies, such as affinity purification followed by mass

spectrometry (APMS) [57], two-hybrid methods [6], [73], and protein com-

plementation assays [55], raises the possibility of using sequence coevolution

to refine predicted interactions in an experimentally reduced search space.

For example, correlated substitution patterns in pairs of proteins could help

determine if an experimentally measured interaction is likely to represent

direct physical contact versus an indirect interaction in a complex or a false

positive. Coevolutionary analysis could also be informative regarding which

of the sites in a pair of interacting molecules are most likely to be in phys-

ical contact. Although, many coevolution studies have been conducted on

HIV-human interactomes [1], [46], [82], this is the first to my knowledge that

directly aims to measure coevolution between the lentiviral and mammal

interactions.

Although the signal-to-noise ratio is too low and the search space too large to

use sequence coevolution to effectively identify pairs of physically interacting

protein residues across entire proteomes—most pairs of sites with correlated

substitution patterns are not in direct contact, and most physically inter-

acting sites do not have statistically correlated substitution patterns [78]—I

applied my integrated framework for coevolutionary analysis (See Chapter 5)

to refine and annotate a recently derived human-HIV1 protein-protein inter-

action network [37] and to test for coevolution in the well studied arms-race
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interaction between the mammalian cytidine deaminase APOBEC3G (A3G)

and its HIV1 antagonist, Vif. Because fewer than ten orthologous mammal-

lentivirus proteome pairs have been sequenced and mammalian divergence is

low, I hypothesized that power would be low in these settings.

4.2 The interaction network of HIV and hu-

man proteins shows only weak evidence of

coevolution across mammals

I sought to use inter-protein residue coevolution to refine a recently derived

APMS protein-protein interaction network of the HIV-human interactome

[37]. This study detected human proteins that interact with each HIV protein,

either via direct physical contact or as members of complexes. Specifically, I

hoped to use evidence of sequence coevolution to resolve direct versus indirect

protein interactions amongst all human proteins measured to interact with

each HIV protein. Secondly, I wanted to know if coevolutionary signals are

strong enough to pinpoint key residues involved in the interfaces of any direct

interactions.

For each protein in the HIV genome (nine polyproteins and an additional nine

protease products), I computed a multiple sequence alignment with as many

sequenced immunodeficiency viruses that infect mammals with sequenced

genomes. I downloaded viral proteomes from Uniprot [72] and computation-

ally processed the polyproteins for unannotated viruses.
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Similarly, I leveraged a set multiple alignments of each human protein (22,947

CCDS records) with the sequences of its orthologs from any mammal with a

sequenced immunodeficiency virus [49].

4.2.1 Affinity purification mass spectrometry (APMS)

interactors

Together, this produced 425 pairs of host-virus protein alignments (out of

the original 497 detected interactions) with up to eight immunodeficiency

viruses and their primate, feline, and bovidae hosts (<N> = 7.35, <Neff> =

5.39). In an attempt to reduce the search space for high scoring interactions,

I filtered out alignment columns with little variation (keeping no more than

the top 300 most variable columns in the joined alignment). This step is

especially necessary for the Direct methods, such as DI, to fit in RAM as

they invert a 20 · L by 20 · L matrix as part of their algorithm. However,

even with filtering, Neff/L for the interactors is especially low. More than half

of the interactors have lower Neff/L than observed in either the HisKA-RR

data set or Ovch32 in Chapter 2 Figure 4.1.

4.2.2 Empirical null distributions

I created two sets of null interaction networks. The first network is con-

structed by permuting the interactions such that HIV and human proteins

in the original interactome are mispaired. The other is by randomly pairing

human proteins not observed in the APMS interactome with HIV proteins.
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Furthermore, these null networks can be used to generate a single null dis-

tribution using all null interactions, or separate null distributions per each

virus protein. Coevolution methods are applied to the nulls exactly as to the

APMS interactors to generate null score distributions. P-values are named

Pnempirical for the non-interactor null and Ppempirical for the permuted null.

The permuted network consists of 382 paired alignments. And the non-

interactor null consists of 400 alignments (alignments with fewer than 5 pair-

ing sequences were discarded). The nulls had slightly lower Neff/L than the

median in the APMS interactors Table 4.1, Figure 4.1.

Since Neff/L can have an effect on the distribution of scores (e.g. it may

indirectly set an upper bound and induce discreteness in MI when N ≪

400), it is important to either regularize the scores or ensure that the null

and observed alignments are matched in terms of conservation, depth, and

diversity.

4.2.3 Simulated null distributions

In my first attempt at understanding coevolutionary relationships between

lentiviral and mammal proteins, I quantified coevolution using MIj and used

a Pbootstrap < 0.001 cutoff to predict coevolving residue pairs. For each protein

pair, I varied the significance threshold and computed the count of signifi-

cantly coevolving residue-pairs. I then compared this statistic for interacting

protein pairs from the APMS network versus a control set of 100 randomly

chosen lentivirus-mammal protein pairs not included in the APMS network.
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I found that APMS detected interactions have only marginally more counts

of significant signals of coevolution compared to non-interactions (best au-

ROC = 0.541 at Pbootstrap < 0.001), and therefore counts of coevolving residues

are not sensitive enough to distinguish direct interactions or the residues in-

volved in them for this set of virus and host proteins.

Initially, it was unclear if this was due to low power from lack of sequence

depth, a poor choice of coeovlution statistic, or that there was no detectable

coevolutionary signals in the substitution patterns between lentivirusal and

mammal interactors.

Based on my subsequent benchmarking in Chapter 2, I concluded that this

lack of signal may result from low power in this setting. However, the results

from Section 3.2.1: Simulating independently evolving pairs of alignments

suggest that false positives in the null could be drowning a coevolution signal

and motivated the empirical approach with non-interacting and permuted

nulls.

I ran five Information-based methods (MI, MIw, MIHmin, MIj, and VI) and a Di-

rect method DI. The results with the empirical null distributions corroborate

the earlier simulation results, establishing that without more sophisticated

models and null distributions, coevolution problems with small Neff/L will

remain out of reach (Figure 4.2).
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4.3 Coevolution methods identify some residues

known to affect host-virus interactions in

Vif-A3G

Viral infectivity factor (Vif) is a lentiviral accessory protein whose primary

function is to target the antiviral cytidine deaminase APOBEC3G (A3G) of

its mammalian hosts through ubiquitination. Because the two protein fami-

lies are in an evolutionary arms race [16], [15], I hypothesized that they would

be an informative example for exploring the utility of coevolution methods in

host-virus protein pairs (i.e. inter-protein, inter-species interactions). This is

a novel application of coevolution analysis, which has primarily been applied

to residues within a protein or between pairs of proteins in the same genome.

A major challenge in performing coevolutionary analysis on cross-species pro-

tein pairs is acquiring appropriate data, including paired alignments and pro-

tein structures for validation. For Vif-A3G, I was able to identify 16 pairs

of sequences (Neff = 10.0) from different primates (A3G orthologs) and their

lentiviruses (Vif orthologs) in public databases (Table 4.2). My benchmark-

ing results on HisKA-RR indicate that such small protein families push the

useful limits of the coevolution statistics I tested (Neff/L = 0.014). The low

sequence diversity of A3G (Neff = 3.04) within primates compared to Vif (Neff
= 11.3) within primate lentiviruses also presents challenges. Hence, I expect

coevolutionary analysis to potentially have limited power in this scenario. To

quantitatively evaluate performance requires validated Vif-A3G interactions.
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The structure of Vif in complex with A3G has not been solved. However,

biochemical assays have solidly identified regions important for binding and

ubiquitination along the individual reference sequences of HIV1 Vif [11], [63],

[80], [34] and human A3G [81], [64] (Table 4.3). For this analysis, I there-

fore take the residues in biochemically-validated regions to be positives even

though they might not be contacts (i.e. Cβ distance ≥ 8Å), and assume

that all remaining residues are negatives, even though other sites (includ-

ing sites deleted in these reference sequences) are possibly involved in the

interaction. While further experimentation is needed to understand the rela-

tionship between functionally important sites and the structure of the protein

interaction, as well as the effects of mutations in these sites on the fitness of

lentiviruses, I explore whether any clues can be identified in the limited data

that describes the coevolutionary history of the Vif-A3G residues.

First, I computed coevolutionary statistics for all Vif-A3G residue pairs and

evaluated how well the statistics pinpoint the positive functionally important

residues compared to negatives. For this evaluation, I used the empirical dis-

tribution of scores as a null distribution to determine statistical significance

(i.e., Pempirical) because they have lower false positive rates across Neff/L val-

ues at strict significance thresholds. Because the positives and negatives are

single residues in each sequence instead of inter-protein residue pairs, I sum-

marized Pempirical for each residue by assigning it the most significant Pempirical
across all inter-protein pairs to which it belongs, and then explored the Vif

and A3G results individually. From my benchmarking on the bacterial data

sets, we know that significance thresholds that control the FPR vary by
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method and Neff/L, and that strict thresholds that yield very low (∼ 2–3%)

power are typically needed to control FPR in small alignments. I therefore

chose to identify a significance threshold for each method that maximizes

precision on the known functional sites in each protein. Then, I estimated

power and FPR at these thresholds.

On Vif, with the exception of CMPcor and DI32, the maximum precisions for

each method ranged from 9 to 20% (i.e. only one or two residues out of ten

predicted to be positives are truly positives) (Figure 4.20). At these precision-

optimized thresholds, MIj and MIminh predict almost every Vif residue to be

coevolving; a stricter threshold would not result in a lower proportion of

incorrect predictions. In contrast, the precisions for CMPcor, CMPpol, and

DI32 are the highest (20%, 40%, 100% respectively). However, this comes

at the cost of making the fewest number of predictions with the latter only

making a single prediction. For these methods, less strict thresholds are

needed to identify a greater proportion of positives at the cost of increasing

the proportion of false discoveries. Across all methods, low fmax and ϕmax

values (0.26 and below) suggest there are no significance thresholds that

balance power and precision for this data set.

I observed similarly low performance on A3G (Figure 4.21). Encouragingly,

I note that positions 128-130 are correctly identified by multiple methods

(Figure 4.19). Residues at position 130 (e.g., D vs A) are highly likely to be

adaptations that conferred species-specific resistance to Vif-induced degra-

dation in Old World Monkeys 5-6MYA [16], [15]. Position 128, that also

provides species-specific resistance, is thought to be more recent [16], [15],
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[77]. While these coevolution methods alone may not yet be accurate enough

to identify functional residues, they potentially enhance other evolutionary

analyses. For example, of the many Apobec sites under positive selection

[15], it is reasonable that lentiviruses are more likely shaping the evolution

of those sites that coevolve with Vif than sites that coevolve with other viral

or virus-like agents.

Secondly, I visualized the localization of Vif residues predicted to be coevolv-

ing with A3G on a partial structure of Vif in complex with cofactors utilized

for protein ubiquitination [31] (Figure 4.18). In [31], the authors are able to

see that a critical subset of the Vif positives is solvent-exposed. I re-evaluated

performance with only these residues as the positives (Table 4.3). There is

poor precision to identify the putative solvent-exposed interface among the

methods; CMPcor at 50% and CMPvol at 10% are the only methods with

precision > 6% (Figure 4.22).

My analysis of the Vif-A3G interaction confirms that power to detect func-

tionally important residues in each protein family is also low in inter-protein

analyses between species, even though it is plausible that an arms race be-

tween lentivirus and mammal would give rise to stronger signals of coevo-

lution compared to background. It is important to consider that perhaps

the positions I considered positives may not all be of equal evolutionary im-

portance across primates. Interfaces may be gained or lost and the rapid

evolution of the two proteins likely produces many alternative solutions to

maintaining an antagonistic interaction. There were many predicted posi-

tions that were not in the positives and further systematic validation and
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more comprehensive sequencing of lentiviruses and primates is needed to de-

termine which pairs of residues are actually in close proximity or functionally

required for other reasons. Additionally, there appears to be some level of

complementarity in the predictions made by VI and MIminh and the CMP

methods, which measure different biochemical trade offs between coevolving

residues. This strengthens the rationale for integrating methods to better

predict interface residues experiencing potentially different evolutionary con-

straints (e.g. structural, catalytic activity, specificity). Coevolutionary anal-

ysis can help to generate and prioritize candidates for these experiments.

4.4 Conclusions

In two example analyses involving HIV-human protein interactions, I further

demonstrate that coevolutionary analyses of cross-species protein-protein in-

teractions are largely hindered by a lack of phylogenetically deep protein

alignments.

Notably missing in the HIV-human interactome are capsid and p6 protein in-

teractions. If performance can be improved to the levels seen in the bacterial

data sets, either by methods development or further sequencing, coevolution

methods would become an important asset in discovering interactions missed

by experimental methods

4.5 Figures
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Figure 4.3: Pnempirical distributions for group-specific antigen (Gag) APMS-
interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.5: Pnempirical distributions for nucleocapsid (Nc) APMS-interactors
(pos: red) and non-interactors (neg: grey).
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Figure 4.6: Pnempirical distributions for polymerase (Pol) APMS-interactors
(pos: red) and non-interactors (neg: grey).
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Figure 4.7: Pnempirical distributions for protease (Pr) APMS-interactors (pos:
red) and non-interactors (neg: grey).
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Figure 4.8: Pnempirical distributions for reverse transcriptase (Rt) APMS-
interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.9: Pnempirical distributions for integrase (In) APMS-interactors (pos:
red) and non-interactors (neg: grey).
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Figure 4.10: Pnempirical distributions for viral infectivity factor (Vif) APMS-
interactors (pos: red) and non-interactors (neg: grey).

88



MI VI MIminh

MIj MIw DI

40

80

120
160

1

2
3
4
5

2.5

5.0

7.5
10.0

2.5

5.0
7.5

10.0
12.5

20

40

60

50

100

150

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.02 0.04 0.06 0.08
Pvalue

de
ns

ity

DataSet

neg

pos

vpr

Figure 4.11: Pnempirical distributions for viral protein r (Vpr) APMS-
interactors (pos: red) and non-interactors (neg: grey).

89



MI VI MIminh

MIj MIw DI

20

40

60

1

2

100

200

300
400

10

20

30

20

40

60
80

100

200

300

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.4 0.6 0.8 1.0 0.0600.0650.0700.075
Pvalue

de
ns

ity

DataSet

neg

pos

tat

Figure 4.12: Pnempirical distributions for transactivator of transcription (Tat)
APMS-interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.13: Pnempirical distributions for regulator of expression of virion pro-
teins (Rev) APMS-interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.14: Pnempirical distributions for envelope (Env) APMS-interactors
(pos: red) and non-interactors (neg: grey).
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Figure 4.15: Pnempirical distributions for glycoprotein 120 (Gp120) APMS-
interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.16: Pnempirical distributions for glycoprotein 41 (Gp41) APMS-
interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.17: Pnempirical distributions for negative factor (Nef) APMS-
interactors (pos: red) and non-interactors (neg: grey).
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Figure 4.18: HIV1 Vif (light blue) in complex with co-factors (grey) without
APOBEC3G (A3G) (PDB ID: 4N9F). Residues in red are predicted to be
coevolving with A3G optimizing precision (PPV) using A: previously known
essential residues, B-D: predictions using MI, DI, CMPvol respectively.
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Figure 4.20: Performance at Pempirical < α that maximizes precision in Vif.
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Figure 4.21: Performance at Pempirical < α that maximizes precision in A3G.
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Figure 4.22: Performance at Pempirical < α that maximizes precision in Vif
using critical residues.
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4.6 Tables

95% CI

µ Lower Upper P -value

Interactors Permutation null 0.0005 -0.0003 0.0014 0.2280
Non-interactors 0.0016 0.0008 0.0024 0.0003

Non-interactors Permutation null -0.0011 -0.0019 -0.0002 0.0177

Table 4.1: Mann-Whitney test for location shift of Neff/L distributions. H0:
location parameter µ = 0.
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Mammal A3G accession Lentivirus Vif accession

Homo sapiens NP_068594.1 HIV1 Q72499
HIV2 Q74121

Pan troglodytes NP_001009001.1 SIVcpz Q1A266
Gorilla gorilla AAT44394.1 SIVgor ACM63194.1
Macaca mulatta NP_001185622.1 SIVmac P05903
Macaca nemestrina ADU03765.1 SIVmne AAA91932.1
Chlorocebus pygerythrus AEY75955.1 SIVver P27983
Chlorocebus tantalus AEY75957.1 SIVtan P89905
Chlorocebus sabaeus AEY75959.1 SIVsab AAA21506.1
Chlorocebus aethiops aethiops AEY75961.1 SIVgri AAA47589.1
Cercopithecus cephus AGE34488.1 SIVmus1 ABO61046.1

SIVmus2 ABO61055.1
Cercocebus torquatus AGE34491.1 SIVrcm AAK69675.1
Cercocebus atys AGE34496.1 SIVsmm P19506
Colobus guereza AGE34499.1 SIVcol AAK01034.1

Table 4.2: Accessions for primate A3G orthologs and lentiviral Vif orthologs,
paired by host species.

Position Notes

Vif 21-23,26 A3G-specific
30

40-44
55-72 A3G and A3F

A3G 121-149 essential for Vif-binding

Table 4.3: Important residues for the Vif-A3G interaction. HIV1 Vif [11, 63,
80, 34]. Human A3G [81, 64].
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Chapter 5

Benchmarking software

I outline a few utilities I wrote to aid in processing sequences, structures, and

coevolution results for benchmarking and making predictions and visualiza-

tions.

5.1 Background

Over the years many implementations for computing coevolution scores have

been developed, either as standalone tools (See Table 2.1), web-servers [79],

[68], or occasionally as part of libraries for evolutionary computation (http:

//biopp.univ-montp2.fr/wiki/index.php/Main_Page).

Unfortunately, computational platforms rapidly change and quickly become

obsolete, and when coupled with the quick pace of computational biology,

leaves many useful tools abandoned, or forgotten after publication.
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In the case of coevolution software, this has resulted in many re-

implementations that are often hard to obtain and verify for correctness. In

turn this has led to the use of many different file formats.

Striking a balance between a general purpose utilitie and disposable scripts

for particular tasks is extremely difficult and is all but guaranteed to result

in inefficiencies. Either the researcher rewrites the same tool multiple times

or devotes entirely too much time to making the perfect software suite that

may unfortunately only be used a handful of times.

My attempt to balance standardization and hacks resulted in a handful of

utility functions I most frequently used in my analyses. They are organized

into complementary python and R packages for use in a scientific comput-

ing Linux environment. The goal of the packages is to easily format and

benchmark new coevolutionary tools as they become available.

5.2 Dealing with alignments and structures

A major aspect of coevolutionary analyses involves joining and splitting align-

ments, converting them to different input formats for various tools, and map-

ping column numbers to peptide chains in a structural model.

The coevo package at https://github.com/aavilahe/coevo_analysis_

pypackage contains many auxiliary functions and executable python scripts

for these purposes.

A typical processing step may involve mangling names:
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import Bio.AlignIO
from coevo.aln_aux import formatting as fmt

aln = Bio.AlignIO.read('example.fasta', format = 'fasta')
seqids = (seq.id for seq in aln)
id_map = dict(fmt.make_strict_phylip_id_map(seqids))
aln = fmt.replace_ids(aln, id_map)
print aln.format('fasta')

Here is a trivial example for converting between sequence formats:

# The coevolution programs benchmarked span three sequence formats.
# Convert fasta to a strict sequential phylip format
fasta_to_phy.py < left.fa > left.phy
# Convert fasta to the format PSICOV requires
fasta_to_psicov.py < left.fa > left.psi

Some methods require one concatenated alignment, while others read in two

separate ones:

# Join two alignments on sequence identifiers (horizontally concatenate)
join_fastas.py left.fa right.fa > left_right.fa

# Divide an alignment into two parts
# The left alignment will have 324 columns
split_faa_on_col.py left_right.fa 324 left.fa right.fa

Another important procedure is to map column numbers from a given align-

ment to a reference PDB structure. For example, I used map_column_to_resnum.py,

and get_dists.py to map atomic distances to column-pairs in exist-

ing alignments in order to compare them to coevolution scores and

P-values and to validate predictions. The HisKA-RR complex in (PDB:

3DGE) is actually an ABAB tetramer—two sets of identical chains
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form a structure such that a HisKA chain will make contact with

two RR chains. One can use min_dists.py to get the minimum dis-

tances between residues from both interactions. For a detailed example,

see https://github.com/aavilahe/coevo_analysis_pypackage/blob/dev/

example/pdb_tests/example_3DGE_column_distances.sh.

Visualization of coevolution score summaries on individual residues can be

accomplished by generating an attributes file for use with UCSF Chimera [59]

using make_attributes.py (e.g. Figure 4.18 shows Vif residues predicted to

coevolve with A3G, each Vif residue is colored by most significant P-value

out of all A3G residues).

5.3 Benchmarking and P-values

The code repository at https://github.com/aavilahe/coevo_analysis_

pypackage also contains functions for merging results from multiple coevo-

lution tools, handling different offsets (e.g. counting from 0 or 1), dropping

intraprotein columns and renumbering concatenated alignments by their

individual indices.

After preprocessing results, https://github.com/aavilahe/coevo_analysis_

Rpackage packages nifty wrappers for measuring performance with ROCR

[69]. It aims to transparently handle different types of scores (dissimilarities,

distances, and similarities) and estimate P-values that depend on observed

scores.
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5.4 Coevolution methods themselves

The most important component of a coevolution analysis—the coevolution

methods themselves—come in a variety of flavors and in different states of

maturity. I have written light wrappers for running the methods in Table 2.1

(available in https://github.com/aavilahe/coevo_tools) that are called sim-

ply by runWrapper aln.in aln.out. Flexibility for running with specific

parameters is maintained by optional positional arguments in some cases

(e.g. specifying number of CPUs or regularization strength for PSICOV).

The most useful wrappers abstract MATLAB away from the user in the case

of the DI family of methods.

The mutual information methods used in this work live at http://github.com/

aavilahe/infcalc. Originally, this package was intended to leverage cython

and the multiprocessing library to parallelize calculations for simulated

bootstrap alignments in Section 3.2.1. However, it is more convenient to take

advantage of a Sun Grid Engine supercomputing environment if available.

Example scripts for generating job submissions are included.

5.5 Simulating evolution

• See Section 3.2.1 for an overview of simulate_tools
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Chapter 6

Discussion

6.1 Summary of conclusions

Measuring coevolution between two proteins is a fundamental step in broad-

ening our understanding of the role that residue-residue interactions play in a

global evolutionary landscape. Although recent breakthroughs in methodolo-

gies have reignited a growing interest in coevolutionary analysis—especially

for predicting structural contacts in proteins—methods development has con-

centrated on intra-protein analyses and leaves unanswered whether current

methods are effective in inter-protein analyses, especially when the two pro-

teins are from different genomes. In this work I looked beyond intra-protein

contacts, and focus on coevolution between two different proteins, using data

sets that cover a variety of protein-protein interactions, and including cross-

species interactions.
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My benchmarks revealed that using Direct methods such as PSICOV when

coupled with an empirical P-value typically result in the best performance

for inter-protein analyses. However, it is critical to note that alignment depth

is arguably the most important aspect of a coevolutionary analysis, and one

should strive for obtaining hundreds to thousands of diverse sequences for

analyses (Neff/L ≳ 2.0).

6.2 Future improvements on methodologies

6.2.1 Statistical learning

As larger data sets of paired protein families are compiled, applying statis-

tical learning techniques to coevolution analyses is becoming feasible. [71]

investigated combining DIplm [24] and PSICOV [39] predictions with classi-

fiers trained on intraprotein analyses. [50] builds on [71] by testing a similar

classifier—trained on intraprotein analyses—on a null data set built from

the Negatome, a non-interaction database [5]. At a cutoff equivalent to

Pempirical < 0.001, their classifier is able to exclude virtually all false positives

from intermolecular contacts and achieves near 90% precision in predicting

intramolecular contacts. However, neither the FPR among all contacts, nor

TPR is reported. Li et al. [46] uses a monumental set of 27 coevolution

methods to predict intra- and inter-protein coevolution within HIV proteins,

and identifies a near-optimal combination of methods to average into a single

classifier for the given HIV data sets.
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Coevolution statistics may have different distributions for each type of molec-

ular interaction (e.g. RNA-protein), or it might depend on the evolution-

ary pressures involved (e.g. host-virus ubiquitination vs bacterial signaling).

Therefore, a variety of data sets is needed in order to validate that a partic-

ular classifier generalizes.

Classifiers that combine many different coevolution statistics face the chal-

lenge of regularizing features. Regularization is important for comparing

features on different scales to prevent, for example, features on large scales

from dominating optimization of an objective function. Additionally, values

of the same feature may cover different ranges depending on the underlying

data set. Transforming the raw values through quantile normalization is one

way to regularize features.

A logical next step is to apply the statistical learning techniques to moder-

ately sized data sets of deep alignment-pairs of true interactions and non-

interaction networks in a rigorous framework that incorporates prior knowl-

edge of the alignments and predicted structural elements of the involved

proteins. [38] accomplishes this in an intra-protein analysis, and although

current studies suggest that a similar inter-protein analysis is reasonable,

such a study has not yet been published. A multi-stage classifier such as

in [38] may prove advantageous in predicting different classes of coevolving

residues.

While statistical learning techniques aim to transform and partition the high

dimensional space in which these multitudes of correlation statistics live,
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another approach to improving classification performance and perhaps our

understanding of coevolution is to incrementally combine the best perform-

ing aspects of the various methodologies. For example, alignment column

covariation is encoded in many different ways, as categorical variables repre-

senting amino acid identity or class, as dissimilarities from a reference, and

expected number of substitutions on branches of a phylogenetic tree. Also,

amino acid frequencies are currently estimated directly, or with an ad-hoc

regularization or flat prior (e.g. pseudo-counts and L2 penalty in [24], [56]),

while perhaps a statistically and computationally efficient estimator, such

as a James-Stein type estimator discussed in [33] may be better suited for

small-sample high-dimensional data.

6.3 Future application of coevolution

One particularly exciting application of this approach is to characterize and

potentially manipulate interacting residues in host-virus and host-parasite

protein interactomes [37], [67].

I showed a limited application in predicting important residues in the Vif-

A3G interaction. As more sequence and structural data becomes available it

will be interesting to see how coevolutionary data becomes incorporated into

discovery and design of novel therapeutics for rapidly evolving pathogens and

elusive drug targets.

Newly emerging data on antibody and antigen sequences within a host [48]

offers an opportunity to harness coevolutionary signals to investigate the
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mechanisms of broadly neutralizing antibodies and immune evasion. The

primary open question for these new applications is whether existing meth-

ods are sensitive and specific enough to detect coevolution with the levels

of constraint and divergence that are present in sequences extracted from

patient samples.

Combined with an atlas of fitness landscapes for mutations that confer sus-

ceptibility or resistance to treatments, these analyses may hopefully prove a

powerful tool in understanding and overcoming many diseases.
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