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Abstract. Healthcare professionals speculate about the effects of poses
and pose manipulation in healthcare. Anecdotal observations indicate
that patient poses and motion affect recovery. Motion analysis using
human observers puts strain on already taxed healthcare workforce
requiring staff to record motion. Automated algorithms and systems are
unable to monitor patients in hospital environments without disrupt-
ing patients or the existing standards of care. This work introduces the
DECU framework, which tackles the problem of autonomous unobtrusive
monitoring of patient motion in an Intensive Care Unit (ICU). DECU
combines multimodal emissions from Hidden Markov Models (HMMs),
key frame extraction from multiple sources, and deep features from mul-
timodal multiview data to monitor patient motion. Performance is eval-
uated in ideal and non-ideal scenarios at two motion resolutions in both
a mock-up and a real ICU.

1 Introduction

The recovery rates of patients admitted to the ICU with similar conditions vary
vastly and often inexplicably. ICU patients are continuously monitored; how-
ever, patient mobility is not currently recorded and may be a major factor in
recovery variability. Clinical observations suggest that adequate patient position-
ing and controlled motion increase patient recovery, while inadequate poses and
uncontrolled motion can aggravate wounds and injuries. Healthcare applications
of motion analysis include quantification (rate/range) to aid the analysis and
prevention of decubitus ulcers (bed sores) and summarization of pose sequences
over extended periods of time to evaluate sleep without intrusive equipment.

Objective motion analysis is needed to produce clinical evidence and to quan-
tify the effects of patient positioning and motion on health. This evidence has
the potential to become the basis for the development of new medical therapies
and the evaluation of existing therapies that leverage patient pose and motion
manipulation. The framework introduced in this study enables the automated
collection and analysis of patient motion in healthcare environments. The mon-
itoring system and the analysis algorithm are designed, trained, and tested in a
mock-up ICU and tested in a real ICU. Figure 1 shows the major elements of the
c© Springer International Publishing Switzerland 2016
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framework (stages A–H). Stage A (top right) contains the references. Stage B
(bottom left) shows frames from a sample sequence recorded using multimodal
(RGB and Depth) multiview (three cameras) sources. At stage C, the framework
selects the summarization resolution and activates the key frame identification
stage (if needed). Stage D contains the motion thresholds (dense optic-flow esti-
mated at training) to distinguish between the motion types and account for depth
sensor noise. Deep features are extracted at stage E. Stage F shows the key frame
computation, which compresses motion and encodes motion segments (encoding
of duration of poses and transitions). Stage G shows the multimodal multiview
Hidden Markov Model trellis under two scene conditions. Finally, stage H shows
the results: pose history and pose transition summarizations.

Fig. 1. Diagram explaining the DECU framework, which uses Hidden Markov Modeling
and multimodal multiview (MM) data. Stage A provides the references; (A1) a dictio-
nary of poses and pose transitions, and (A2) the illustrative motion dynamics between
two poses. Stage B shows the multimodal multiview input video. Stage C selects the
summarization resolution and activates key frame identification when required. Stage
D integrates the motion thresholds (estimated at training) to account for various lev-
els of motion resolution and sensor noise. Stage F shows the key frame identification
process using Algorithm 1. Stage G shows the multimodal multiview HMM trellis,
which encodes illumination and occlusion variations. Stage H shows the two possible
summarization outputs (H1) pose history and (H2) pose transitions.

Background. Clinical studies covering sleep analysis indicate that sleep hygiene
directly impacts healthcare. In addition, quality of sleep and effective patient rest
are correlated to shorter hospital stays, increased recovery rates, and decreased
mortality rates. Clinical applications that correlate body pose and movement to
medical conditions include sleep apnea – where the obstructions of the airway
are affected by supine positions [1]. Pregnant women are recommended to sleep
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on their sides to improve fetal blood flow [2]. The findings of [3–5] correlate
sleep positions with quality of sleep and its various effects on patient health.
Decubitus ulcers (bed sores) appear on bony areas of the body and are caused by
continuous decubitus positions1. Although nefarious, bed sores can be prevented
by manipulating patient poses over time. Standards of care require that patients
be rotated every two hours. However, this protocol has very low compliance and
in the U.S., ICU patients have a probability of developing DUs of up to 80 % [6].
There is little understanding about the set of poses and pose durations that cause
or prevent DU incidence. Studies that analyze pose durations, rotation frequency,
rotation range, and the duration of weight/pressure off-loading are required,
as are the non-obtrusive measuring tools to collect and analyze the relevant
data. Additional studies analyze pose manipulation effects on treatment of severe
acute respiratory failure such as: ARDS (Adult Respiratory Distress Syndrome),
pneumonia, and hemodynamics in patients with various forms of shock. These
examples highlight the importance of DECU’s autonomous patient monitoring
and summarization tasks. They accentuate the need and challenges faced by the
framework, which must be capable of adapting to hospital environments and
supporting existing infrastructure and standards of care.

Related Work. There is a large body of research that focuses on recognizing
and tracking human motion. The latest developments in deep features and convo-
lutional neural network architectures achieve impressive performance; however,
these require large amounts of data [7–10]. These methods tackle the recognition
of actions performed at the center of the camera plane, except for [11], which
uses static cameras to analyze actions. Method [11] allows actions to not be
centered on the plane; however, it requires scenes with good illumination and
no occlusions. At its current stage of development the DECU framework cannot
collect the large number of samples necessary to train a deep network without
disrupting the hospital.

Multi-sensor and multi-camera systems and methods have been applied
to smart environments [12,13]. The systems require alterations to existing
infrastructure making their deployment in a hospital logistically impossible. The
methods are not designed to account for illumination variations and occlusions
and do not account for non-sequential, subtle motion. Therefore, these systems
and methods cannot be used to analyze patient motion in a real ICU where
patients have limited or constrained mobility and the scenes have random occlu-
sions and unpredictable levels of illumination.

Healthcare applications of pose monitoring include the detection and clas-
sification of sleep poses in controlled environments [14]. Static pose classifica-
tion in a range of simulated healthcare environments is addressed in [15], where
the authors use modality trust and RGB, Depth, and Pressure data. In [16],
the authors introduce a coupled-constrained optimization technique that allows
them to remove the pressure sensor and increase pose classification performance.
However, neither method analyzes poses over time or pose transition dynamics.
1 Online Medical Dictionary.
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A pose detection and tracking system for rehabilitation is proposed in [17]. The
system is developed and tested in ideal scenarios and cannot be used to detect
constrained motion. In [18] a controlled study focuses on work flow analysis
by observing surgeons in a mock-up operating room. A single depth camera
and Radio Frequency Identification Devices (RFIDs) are used in [19] to analyze
work flows in a Neo-Natal ICU (NICU) environment. These studies focus on staff
actions and disregard patient motion. Literature search indicates that the DECU
framework is the first of its kind. It studies patient motion in a mock-up and a
real ICU environment. DECU’s technical innovation is motivated by the short-
comings of previous studies. It observes the environment from multiple views
and modalities, integrates temporal information, and accounts for challenging
natural scenes and subtle patient movements using principled statistics.

Proposed Approach. DECU is a new framework to monitor patient motion
in ICU environments at two motion resolutions. Its elements include time-series
analysis algorithms and a multimodal multiview data collection system. The
algorithms analyze poses at two motion resolutions (sequence of poses and pose
transition directions). The system is capable of collecting and representing poses
from multiview multimodal data. The views and modalities are shown in Fig. 2(a)
and (b). A sample motion summary is shown in Fig. 2(c). Patients in the ICU
are often bed-ridden or immobilized. Overall, their motion can be unpredictable,
heavily constrained, slow and subtle, or aided by caretakers. DECU uses key
frames to extract motion cues and temporal motion segments to encode pose
and transition durations. The set of poses used to train and test the framework
are selected from [15]. DECU uses HMMs to model the time-series multimodal
multiview information. The emission probabilities encode view and modality
information and the changes in scene conditions are encoded as states. The two
resolutions address different medical needs. Pose history summarization is the
coarser resolution. It provides a pictorial representation of poses over time (i.e.,
the history). The applications of the pose history include prevention and analysis
of decubitus ulcerations (bed sores) and analysis of sleep-pose effects on quality
of sleep. The pose transition summarization is the finer resolution. It looks at
the pseudo/transition poses that occur while a patient transitions between two
clearly defined sleep poses. Physical therapy evaluation is one application of
transition summarization. The pose and transition sets are shown in Fig. 1(A1).

Main Contributions

1. An adaptive framework called DECU that can effectively record and analyze
patient motion at various motion resolutions. The algorithms and system
detect patient behavior/state and healthy normal motion to summarize the
sequence of patient sleep poses and motion between two poses.

2. A system that collects multimodal and multiview video data in healthcare
environments. The system is non-disruptive and non-obtrusive. It is robust to
natural scenes conditions such as variable illumination and partial occlusions.
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3. An algorithm that effectively compresses sleep pose transitions using subset
of the most informative and most discriminative frames (i.e., key frames).
The algorithm incorporates information from all views and modalities.

4. A fusion technique that incorporates the observations from the multiple
modalities and views into emission probabilities to leverage complementary
information and estimate intermediate poses and pose transitions over time.

2 System Description

The DECU system is modular and adaptive. It is composed of three nodes and
each node has three modalities (RGB, Depth, and Mask). At the heart of each
node is a Raspberry Pi3 running Linux Ubuntu, which controls a Carmine RGB-
D cameras2. The units are synchronized using TCP/IP communication. DECU
combines information from multiple views and modalities to overcome scene
occlusions and illumination changes.

Multiple Modalities (Multimodal). Multimodal studies use complementary
modalities to classify static sleep poses in natural ICU scenes with large varia-
tions in illumination and occlusions. DECU uses these findings from [15,16] to
justify using multiple views and modalities.

Multiple Views (Multiview). The studies from [16,20] show that analyzing
actions from multiple views and multiple orientations greatly improves detection
and provides algorithmic view and orientation independence.

Time Analysis (Hidden Semi-Markov Models). ICU patients are often
immobilized or recovering. They move subtly and slowly (very different from
the walking or running motion). DECU effectively monitors subtle and abrupt
patient motion by breaking the motion cues into temporal segments.

3 Data Collection

Pose data is collected in a mock-up ICU with 10 actors and tested in medical
ICU with two real patients (two days worth of data). The diagram in Fig. 2(b)
shows the top-view of the rigged mock-up ICU room and the camera views.
In the mock-up ICU, actors are asked follow the same test sequence of poses.
The sequence is set at random using a random number generator. Figure 2(c)
shows a sequence of 20 observations, which include ten poses (p1 to p10) and ten
transitions (t1 to t10) with random transition direction.

All actors in the mock-up ICU are asked to assume and hold each of the
poses while data is being recorded from multiple modalities and views. A total
of 28 sessions are recorded: 14 under ideal conditions (BC: bright and clear) and
14 under challenging conditions (DO: dark and occluded).
2 Primesense, manufacturer of Carmine sensors, was acquired by Apple Inc. in 2013;

however, similar devices can be purchased from structure.io.

http://structure.io/
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Fig. 2. The transition data is collected in a mock-up ICU and a real ICU: (a) shows
the relative position of the cameras with respect to the ICU room and ICU bed; (b)
shows a set of randomly selected poses and pose transitions, which are represented by
lines (dashed, dotted, and solid lines defined in the legend box); (c) shows the complete
set of possible sleep-pose pair combinations.

Pose Data. The actors follow the sequence poses and transitions shown in
Stage A from Fig. 1. Each initial pose has 10 possible final poses (inclusive)
and each final pose can be arrived to by rotating left or right. The combination
of pose pairs and transition directions generates a set of 20 sequences for each
initial pose. There are 10 possible initial poses. A recording session of one actor
generates 200 sequence pairs. Also, two patients sessions are recorded in the
medical ICU for one day each (two-hour long video recordings).

Feature Selection. Previous findings indicate that engineered features such as
geometric moments (gMOMs) and histograms of oriented gradients (HOG) are
suitable for the classification of sleep poses. However, these features are limited
in their ability to represent body configurations in dark and occluded scenarios.
The latest developments in deep learning and feature extraction led this study
to consider deep features extracted from the VGG [21] and the Inception [22]
architectures. Experimental results (see Sect. 5) indicate that Inception fea-
tures perform better than gMOMs, HOG, and VGG features. Parameters for
gMOM and HOG extraction are obtained from [15]. Background subtraction
and calibration procedures from [23] are applied prior to feature extraction.

4 Problem Description

Temporal patterns caused by sleep-pose transitions are simulated and analyzed
using HSMMs as shown in Sects. 4.1 and 4.2. The interaction between the modal-
ities to accurately represent a pose using different sensor measurements are
encoded into the emission probabilities. Scene conditions are encoded into the
set of states (i.e., the analysis of two scenes doubles the number of poses).
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4.1 Hidden Markov Models (HMMs)

HMMs are a generative approach that models the various poses (pose history)
and pseudo-poses (pose transitions summarization) as states. The hidden vari-
able or state at time step k (i.e., t = k) is yk (statek or posek) and the observable
or measurable variables (x(v)

k,m, the vector of image features extracted from the
k-th frame, the m-th modality, and the v-th view) at time t = k is xk (i.e.,
xk = x

(v)
k,m = {Rk,Dk, ...Mk}). The first order Markov assumption indicates

that at time t, the hidden variable yt, depends only on the previous hidden vari-
able yt−1. At time t the observable variable xt depends on the hidden variable
yt. This information is used to compute the joint probability P (Y,X) via:

P
(
Y1:T ,X1:T

)
= P (y1)

T∏

t=1

P
(
xt|yt

) T∏

t=2

P
(
yt|yt−1

)
, (1)

where P (y1) is the initial state probability distribution (π). It represents the
probability of sequence starting (t = 1) at posei (statei). P

(
xt|yt

)
is the obser-

vation or emission probability distribution (B) and represents the probability
that at time t posei (statei) can generate the observable multimodal multiview
vector xt. Finally, P

(
yt|yt−1

)
is the transition probability distribution (A) and

represents the probability of going from posei to poseo (statei to stateo). The
HMM has parameters A = {aij}, B = {μin}, and π = {πi}.

Initial State Probability Distribution (π). The initial pose probabilities
are obtained from [4] and adjusted to simulate the two scenes considered in this
study. The scene independent initial state probabilities π is shown in Table 1.

State Transition Probability Distribution (A). The transition probabili-
ties are estimated using the transitions from one pose to the next one for Left
(L) and Right (R) rotation direction as indicated in the results from Fig. 7.

Emission Probability Distribution (B). The scene information is encoded
into the emission probabilities. This information server to model moving from
one scene condition to the next shown in Fig. 3. The trellis shows two scenes,
which doubles the number of hidden states. The alternating blue and red lines
(or solid and dashed lines) indicate transitions from one scene to the next.

One limitation of HMMs is their lack of flexibility to model pose and transi-
tion (pseudo-poses) durations. Given an HMM in a known pose or pseudo-pose,
the probability that it stays in there for d time slices is: Pi(d) = (aii)

d−1(1−aii),
where Pi(d) is the discrete probability density function (PDF) of duration d in
pose i and aii is the self-transition probability of pose i [24].
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Table 1. Initial transition probability for each of the 10 poses. Notice that poses facing
Up have a higher probability than the poses that face Down, while Left and Right poses
are equally probable. Please note that there is a category for poses not covered in this
study identifiable by the label Other and the symbol p11. Also, note that one pose can
have two states based on the BC and DO scene conditions.

Initial State Probability: π = {πi}
Pose name Acronym Symbol State - BC Probability State - DO Probability

Soldier up solU p1 s1 0.03 s11 0.02

Fetal right fetR p2 s2 0.145 s12 0.07

Fetal left fetL p3 s3 0.145 s13 0.07

Log right logR p4 s4 0.05 s14 0.03

Soldier down solD p5 s5 0.02 s15 0.01

Yearner left YeaL p6 s6 0.04 s16 0.02

Log left logL p7 s7 0.05 s17 0.03

Faller down falD p8 s8 0.05 s18 0.02

Faller up falU p9 s9 0.05 s19 0.03

Yearner right yeaR p10 s10 0.04 s20 0.02

Other other p0 s0 0.036 s0 0.073

Fig. 3. Multimodal Multiview Hidden Markov Model (mmHMM) trellis. The variation
in scene illumination between night and day are examples of scene changes. (Color figure
online)

4.2 Hidden Semi-Markov Models (HSMMs)

HSMMs are derived from conventional HMMs to provide state duration flexi-
bility. HSMMs represent hidden variables as segments, which have useful prop-
erties. Figure 4 shows the structure of the HSMM and its main components.
The sequence of states y1:T is represented by the segments (S). A segment
is a sequence of unique, sequentially repeated symbols. The segments contain
information to identify when an observation is first detected and its duration
based on the number of observed samples. The elements of the j-th segment
(Sj) are the indexes (from the original sequence) where the observation (bj) is
detected, the number of sequential observations of the same symbol (dj), and
the state or pose (yj). For example, the sequence y1:8 = {1, 1, 1, 2, 2, 1, 2, 2} is
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represented by the set of segments S1:U with elements S1:J = {S1, S2, S3, S4} =
{(1, 3, 1), (4, 2, 2), (6, 1, 1), (7, 2, 2)}. The letter J is the total number of seg-
ments and the total number of state changes. The elements of the segment
S1 = (1, 3, 1) are, from left to right: the index of the start of the segment (from
the sequence: y1:8); the number of times the state is observed; and the symbol.

Fig. 4. HSMM diagram indicating the hidden segments Sj indexed by j and their
elements {bj , dj , yj}. The variable b is the first detection in a sequence, y is the hidden
layer, (x) is the observable layer containing samples from time b to b + d − d′. The
variables b and d are the observation’s detection (time tick) and duration.

HSMM Elements. The hidden variables are the segments S1:U , the observable
variables are the features X1:T , and the joint probability is given by:

P
(
S1:U ,X1:T

)
= P

(
Y1:U , b1:U , d1:U ,X1:T

)

P
(
S1:U ,X1:T

)
= P (y1)P (b1)P (d1|y1)

b1+d1+1∏

t=b1

P (xt|y1)×

U∏

u=2

P (yu|yu−1)P
(
bu|bu−1, du−1

) × P
(
du|yu

) b1+d1+1∏

t=bu

P (xt|yu),

(2)
where U is the sequence of segments such that S1:U = {S1, S2, ..., SU} for Sj =(
bj , dj , yj

)
and with bj as the start position (a bookkeeping variable to track

the starting point of a segment), dj is the duration, and yj is the hidden state
(∈ {1, ..., Q}). The range of time slices starting at bj and ending at bj + dj
(exclusively) have state label yj . All segments have a positive duration and
completely cover the time-span 1 : T without overlap. Therefore, the constraints

b1 = 1,
U∑

u=1
and bj+1 = bj + dj hold.

The transition probability P (yu|yu−1), represents the probability of going
from one segment to the next via:

A : P
(
yu = j|yt−u = i

) ≡ aij (3)

The first segment (bu) always starts at 1 (u = 1). Consecutive points are
calculated deterministically from the previous point via:

P
(
bu = m|bu−1 = n, du−1 = l

)
= δ

(
m,n + l

)
(4)
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where δ(i, j) is the Kroenecker delta function (1, for i = j and 0, else). The
duration probability is P (du = l|yu = i) = Pi(l), with Pi(l) = N (μ, σ).

Parameter Learning. Learning is based on maximum likelihood estimation
(mle). The training sequence of key frames is fully annotated, including the exact
start and end frames for each segment X1:T , Y1:T . To find the parameters that
maximize P

(
Y1:T ,X1:T |θ), one maximes the likelihood parameters of each of the

factors in the joint probability. The reader is referred to [25] for more details. In
particular, the observation probability P

(
xn|y = i

)
, is a Bernoulli distribution

whose max likelihood is estimated via:

μn,i =
∑T

t=1 xi
tδ

(
yt, i

)

∑T
t=1 δ

(
yt, i

) , (5)

where T is the number of data points, δ(i, j) is the Kroenecker delta function,
and P

(
yt = j|yt−1 = i

)
is the multinomial distribution with:

aij =
∑N

n=2 δ
(
yn, j

)
δ
(
yn−1, i

)

∑N
n=2 δ

(
yt−1, j

) (6)

4.3 Key Frame (KF ) Selection

Data collected from pose transition is very large and often repetitive, since the
motion is relatively slow and subtle. The pre-processing stage incorporates a
key frame estimation step that integrates multimodal and multiview data. The
algorithm used to select a set (KF ) of K-transitory frames is shown in Fig. 5
and detailed in Algorithm 1. The size of the key frame set is determined exper-
imentally (K = 5) on the feature scape using Inception vectors.

Let X = {x
(v)
m,n}f be the set of training features extracted from V views

and M modalities over N frames and let Pi and Po represent the initial and
final poses. The transition frames are indexed by n, 1 ≤ n ≤ |N |. The views
are indexed by v, 1 ≤ v ≤ |V | and the modalities are indexed by m, 1 ≤ m ≤
|M|. Algorithm 1 uses this information to identify key frames. Experimental
evaluation of |KF | is shown in Fig. 5. The idea behind key frames selection is to
identify informative and discriminative frames using all views and modalities.

5 Experimental Results and Analysis

Static Pose Analysis - Feature Validation. Static sleep-pose analysis is used
to compare the DECU method to previous studies. Couple-Constrained Least-
Squares (cc-LS) and DECU are tested on the dataset from [16]. Combining the
cc-LS method with deep features extracted from two common network architec-
tures improved classification performance over the HOG and gMOM features in
dark and occluded (DO) scenes by an average of eight percent with Inception
and four percent with Vgg. Deep features matched the performance of cc-LS
(with HOG and gMOM) in a bright and clear scenario as shown in Table 2.
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Fig. 5. Selection of transition key frames based on Algorithm 1. This figures shows how
the algorithm is used to identify five key frames from three views and two modalities.
The first two key frames are extracted from the RGB view 1 video. Subsequent key
frames are selected from Depth view 2 and RGB view 3 videos.

Input: X , set of mm features and dissimilarity threshold th;
Result: KF = {Key Frames}K , K ≥ 1
Initialize: KF = {empty}K , K ≥ 1 and count = 0 ;
Stage 1: Modality (m) and View (v) Selection;
for 1 < v < V and 1 < m < M do

D(v)
m = euclid(x(v)

mni
, x(v)

mno
), ni = 1, no = N ;

end

v̂, m̂ = max D(v)
m > th;

{x(v̂)
m̂n1

, x
(v̂)
m̂nN

} → FK ;

Stage 2: Find Complementary Frames to KF ;
for 1 < v < V and 1 < m < M and 1 < n < N do

D1 = D(v)
m,n1

= euclid(x(v)
mn1

, x(v)
mn);

D2 = D(v)
m,nN

= euclid(x(v)
mnN

, x(v)
mn);

end
Sort D1 = {d1 > d2 > ... > dN−2} descending;
Sort D2 = {d1 > d2 > ... > dN−2} descending;

di → KF if
di
dj

> th, for 1 < i, j < N − 2 ;

Stage 3: Find Center Frame (i.e., Motion Peak);
for KF2 and KFK−1 do

Use Stage 2 to compute D3 and D4;
if max(D3, D4) > 0) then

max (D3, D4) → KF ;
end

end

Algorithm 1. Multimodal multiview key frame selection using euclidean dis-
similarity measure. The algorithm is applied at training with labeled frames to
estimate the number and indexes of key frames across views and modalities.

Key Frame Performance. The size of the set of key frames that represent a
pose transition affects DECU performance. DECU currently uses |KF | = 5 and
a dissimilarity threshold th ≥ .8 as shown in Fig. 6.
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Fig. 6. Performance of the DECU framework for the fine motion summarization based
on the number of key frames used to represent transitions and rotations between poses.

Table 2. Evaluation of deep features for sleep-pose recognition tasks using the cc-LS
method from [16] in dark and occluded (DO) scenes using. The performance of HOG
and gMOM is compared to the performance of the Vgg and Inception features.

Feature Suitability Evaluation with cc-LS [16]

Scene HOG + gMOM Vgg Inception

BC 100 100 100

DO 65 69 (+4) 73 (+8)

Table 3. Pose history summarization performance (percent accuracy) of the DECU
framework in bright and clear (BC) and dark and occluded (DO) scenes. The sequences
are composed of 10 poses with durations that range from 10 s to 1 min. The sampling
rate is set to once per second.

DECU: Pose History Summarization

Scene Average Detection Rate

BC 85

DO 76

Summarization Performance in a Mock-Up ICU Room. The mock-up
ICU allows staging the motion and scene condition variations. The sample test
sequence is shown in Fig. 2(c).

Pose History Summarization. History summarization requires two parameters:
sampling rate and pose duration. The experiments are executed with a sampling
rate of one second and an pose duration of 10 s with a minimum average detection
of 80 %. A pose is assigned a label if consistently detect 80 % of the time, else
they are assigned the label “other”. Poses not consistently detected are ignored.
The system is tested in the mock-up setting using a randomly selected scene
and sequence of poses that can range from two poses to ten poses. The pose
durations are also randomly selected with one scene transition (from BC to DO
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Fig. 7. Performance of DECU in the mock-up ICU under a dark and occluded con-
ditions. Detection results are obtained using (a) single view and (b) multiview data.
The cells are gray scaled to indicate detection accuracy. The color coded scale and
the legend are shown in (c). Note that overall detection improves with longer rotation
angles and worsens when rotations include facing the bed (cameras recording actor
backs). (Color figure online)
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Fig. 8. Performance of DECU pose transition summarization in a real ICU shown in
(a) using multimodal data under natural scene conditions. The set of patient poses is
reduced and the summarization performance for a two hour session is shown in (b). The
detection scores are shown in (c), where the cells are gray scaled to indicate detection
accuracy. The font color indicates rotation angle range and N/A indicates the pose is
not available (i.e., not possible). The grading color scale is shown in Fig. 7(c). (Color
figure online)
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or from DO to BC). A sample (long) sequence is shown in Fig. 2(c) and its
history summarization performance is shown in Table 3.

Pose Transition Dynamics: Motion Direction. The analysis and pose transi-
tions and rotation directions are important to physical therapy and recovery
rate analysis. The performance of DECU summarizing fine motion to describe
transitions between poses is shown in Fig. 7. Results for the DO scene with (a)
singleview and (b) multiview data. The legend is shown in (c).

Summarization Performance in a Real ICU. The medical ICU environ-
ment is shown in Fig. 8(a) and (b). Note that it is logistically impossible to
control ICU work flows and to account for unpredictable patient motion. For
example, ICU patients are not free to rotate, which reduces the set of pose
transitions (unavailable transitions are marked N/A). The set of poses for the
history summary require that a new pose be included (pulmonary aspiration). A
qualitative illustration is shown in Fig. 8(b). DECU’s fine motion summarization
results for two patients are shown in Fig. 8(c).

6 Conclusion and Future Work

This work introduced the DECU framework to analyze patient poses in nat-
ural healthcare environments at two motion resolutions. Extensive experiments
and evaluation of the framework indicate that the detection and quantification
of pose dynamics is possible. The DECU system and monitoring algorithms
are currently being tested in real ICU environments. The performance results
presented in this study support its potential applications and benefits to health-
care analytics. The system is non-disruptive and non-intrusive. It is robust to
variations in illumination, view, orientation, and partial occlusions. DECU is
non-obtrusive and non-intrusive but not without a cost. The cost is noticed
in the most challenging scenario where a blanket and poor illumination block
sensor measurements. The performance of DECU to monitor pose transitions
in dark and occluded environments is far from perfect; however, most medical
applications that analyze motion transitions, such as physical therapy sessions,
are carried under less severe conditions.

Future studies will investigate the recognition and analysis of patient motion
and interactions in natural hospital scenarios using recurrent neural networks
and integrate natural language understating to log ICU actions and events.
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