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ABSTRACT OF THE DISSERTATION

Innovative Approaches to Hardware Acceleration Through Performance Analysis and
Program Design

by

Abenezer Yitagesu Wudenhe

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Hung-Wei Tseng, Chairperson

The proliferation of new Artificial Intelligence (AI) and Machine Learning (ML) accelera-

tors has enhanced the performance of domain-specific applications with tightly integrated

software stacks. However, this focus often overlooks other critical applications that could

benefit from these unique architectures. This dissertation examines whether AI/ML applica-

tions fully utilize these architectures, proposes an alternative to tightly integrated software

stacks, and presents a novel approach to evaluating accelerators for both domain-specific

and broader applications through three bodies of work. These three works collectively

aim to expand the application domains of accelerators, benefiting a wide range of critical

applications.

The first work presents TPUPoint, a profiling and optimization tool that assesses

Google’s Tensor Processing Units (TPUs). It addresses the issue of underutilized accelera-

tors by classifying repetitive patterns into phases and identifying timing-critical operations

within each phase. TPUPoint demonstrates that despite being designed for AI/ML, these

accelerators may not be used to their full potential. This leads to a deeper investigation
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into how TPUs can be further optimized for AI/ML workloads. Moreover, it highlights

the importance of developing more sophisticated profiling tools to better understand the

performance bottlenecks in TPUs. Prompting the question of whether other applications

outside AI/ML might better utilize these devices.

The second work, T2SP, seeks to overcome the limitation of accelerators restricted

to specific software stacks. It focuses on achieving platform-agnostic tensor computations

by combining Data Parallel C++ (DPC++) and T2X, a framework that separates func-

tional specifications from spatial mappings for architectures like FPGAs and CGRAs. This

approach ensures portability, efficient hardware utilization, and ease of development by

allowing users to create implementations that are not confined to specific architectures.

The final work, Accel-Bench, is a benchmark suite designed to quantify the per-

formance gains from using hardware-accelerated functions across various application do-

mains, both within and outside AI/ML. Accel-Bench includes ten applications that utilize

hardware-accelerated functions such as GEMM, CONV, and FFT. The suite shows that

applications can achieve comparable or superior performance with hardware accelerators,

even with increased computational complexity.

Together, these projects provide comprehensive solutions for evaluating perfor-

mance, enabling portability, and diversifying applications across domains, advancing the

field of hardware-accelerated computing.
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Chapter 1

Introduction

1.1 Motivation

Through the past decade, we have seen extensive growth within the field of Machine

Learning and Artificial Intelligence. Due to greater processing power through parallelism

and data management in new architectures, we have also seen growth in both variety and

complexity of applications within their domain. This, in turn, has demanded even greater

processing power, and continues in this cycle.

In industry, we have seen several unique architectures. This includes familiar

SIMD, Vector, or Matrix based architectures such as Intel’s Gaudi processor [94] and

Nvidia’s A100 GPUs [37]. Others pose more unique approaches such as Google’s TPU’s

with systolic array [97], Graphcore’s Intelligence Processing Unit or IPUs [104], or Cere-

bras [110] which has a silicon wafer containing 2.6 trillion transistors compared to the largest

gpu with 54.2 billion transistors. However, many does not always mean good. their narrow

focus does not lend itself to easy utilization of many accelerable domains outside of AI/ML.
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Figure 1.1: Current State of Accelerable Application Domains

Many of these accelerators bind developers to a software stack including; libraries,

compilers, tools, and runtimes. Primary examples include TPUs with TensorFlow and it’s

XLA compiler [2], Nvidia’s CUDA Compiler and associated drivers [44], and Cerebras com-

piler [114]. As more and more domains begin to turn to accelerators, such as genomics [183]

and encryption [201], we need to assess and accommodate for these applications.

1.2 Solutions

Dr. Michael O’Boyle discusses in his article about the coming difficulties as new

heterogeneous hardware innovations are held back by the construction of a new DSL and

the inevitable refactorization of code [146]. Figure 1.1 demonstrates the space of growing

applicable accelerator domains. This is not an all inclusive figure, but it conceptualized
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that many accelerators disregard domains outside their primary focus, only considering

their applicability adhoc (as displayed by the dashed border of the inner oval). Many works

exist of lifting code and automating the refactorization process through methods such as

static analysis, natural language processing, and machine learning. However, these are

mitigating the symptoms rather than the root cause. The real challenge lies in designing

a unified framework that can seamlessly integrate diverse hardware architectures. Without

such a framework, the industry will continue to face fragmentation and inefficiencies.

Many of these issues can be addressed through the following:

• Software frameworks that are agnostic to the hardware architecture, but still display

non-trivial utilization.

• Software frameworks enabling the expansion of new algorithms implementations for

different hardware.

• Application implementation unshackled from redesigning and revisiting implementa-

tions as new algorithms develop.

• Application evaluation and insight methods that offer developers in-depth and high

level insights.

1.3 Contributions

Throughout this thesis, I explore the current state of one of the most primarily used

accelerators publicly available, expand a software framework to become hardware agnostic

in its implementation, design and construct a new programing paradigm to accommodate

3



the growing fields of both AI/ML and non-AI/ML applications within three separate bodies

of work. These three bodies of work are written in conference format, and can be viewed

as separate or as the accumulation of multiple approaches to these issues.

This thesis makes the following contributions:

• It examines the conventional notions that applications enable perfect utilization of

their domain accelerators.

• Demonstrates profiling and optimization techniques to demystify the performance of

the TPU accelerator.

• Opens argument to investigate applications outside AI/ML domain for potential full

utilization

• Demonstrates software stacks that can be made agnostic to accelerator hardware,

rather then the conventional tightly intertwined hardware software stack.

• Provides evidence that an unbound accelerator software stack can achieve non-trivial

performance to its counterparts when decoupled.

• Presents the first benchmark suite that considers a set of algorithms that allow ap-

plications beyond hardware accelerators’ target domains to take advantage of the

innovations of hardware accelerators.

• Presents insights into potential programming paradigms for composing performance

code.

4



• This thesis presents a benchmark suite that can guide the development of democra-

tized hardware accelerators.

1.4 Outline of the dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 presents TPUPoint: Automatic Characterization of Hardware-Accelerated

Machine-Learning Behavior for Cloud Computing. TPUPoint establishes that even

when targeting AI/ML applications, some accelerators are still underutilized.

• Chapter 3 presents T2SP: Embedding a DSL in SYCL for Productive and Performant

Computing on Heterogeneous Devices. Addresses the issue of ridged software stacks

for accelerators through a demonstration of a hardware agnostic software stack for a

domain specific language.

• Chapter 4 presents Accel-Bench: Exploring the Potential of Programming using

Hardware-Accelerated Functions. A unique benchmark suite with the principle of

application inclusivity through a novel API based framework and integrated simula-

tor.
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Chapter 2

TPUPoint: Auto-Characterization

of an Accelerator

With the share of machine learning (ML) workloads in data centers rapidly increas-

ing, cloud providers are beginning to incorporate accelerators such as tensor processing units

(TPUs) to improve the energy-efficiency of applications. However, without optimizing ap-

plication parameters, users may under-utilize accelerators and end up wasting energy and

money.

This section presents TPUPoint to facilitate the development of efficient applica-

tions on TPU-based cloud platforms. TPUPoint automatically classifies repetitive patterns

into phases and identifies the most timing-critical operations in each phase. Further, TPU-

Point can associate phases with checkpoints to allow fast-forwarding in applications, thereby

significantly reducing the time and money spent optimizing applications. Enabling more

precise and effective optimization strategies.

6



By running TPUPoint on a wide array of representative ML workloads, we found

that computation is no longer the most time-consuming operation; instead, the infeed and

reshape operations, which exchange and realign data, become most significant. TPUPoint’s

advantages significantly increase the potential for discovering optimal parameters to quickly

balance the complex workload pipeline of feeding data into a system, reformatting the data,

and computing results.

2.1 Introduction

The rise of machine learning (ML) has created a strong demand for efficient ML

systems designed for modern cloud-infrastructure applications [51, 52, 75, 103, 119, 118,

153, 164, 177, 136]. Because conventional, general-purpose processors and graphical pro-

cessing units (GPUs) are optimized for scalar or vector operations, the modern computer

architectures that rely on them waste energy when performing ML tasks. More efficient ML

accelerators that rely on matrix-based neural networks (NNs) are thus gaining ground in

data centers. Google’s Tensor Processing Unit (TPU), which offers 70× better performance

per watt than conventional GPUs, is by far the most representative case [97].

This section presents TPUPoint, an open-source toolchain1 to characterize the be-

havior and optimize the performance of applications on Google Cloud TPUs. TPUPoint’s

profiler automatically classifies the recurrent patterns of TPU applications into phases and

identifies the most timing-critical operations in each phase to inform optimization. TPU-

Point can also associate each phase with checkpoints to restart an application right before
1You may find TPUPoint at https://github.com/escalab/TPUPoint
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a target phase, and TPUPoint gives the user access to automated tools like the TPUPoint-

Optimizer to examine performance changes with different configurations.

In this section, we show how TPUPoint may be used to characterize a set of

popular ML workloads. We demonstrate that the iterative nature of NN models means that

all ML workloads exhibit repetitive behavior that can easily be characterized via very few

important phases. TPUPoint identifies time-consuming operators, such as infeed, outfeed,

and reshape, that are commonly used among almost all NN models and are not directly

related to computation; such indirect operators block the progress of computation if they

cannot prepare datasets or swap out datasets fast enough.

As performance characteristics differ among heterogeneous architectural compo-

nents and platforms, creating uniformly optimized ML programs is unrealistic. A more

tenable approach is to automate the optimization process itself. The TPUPoint framework

does this through the TPUPoint-Optimizer; the TPUPoint-Optimizer automatically and dy-

namically rewrites code on Cloud TPU platforms to reduce programmer effort. Our results

show that optimal parameters dynamically determined using TPUPoint-Optimizer allow a

reasonably written TensorFlow program to achieve at least the same level of performance

as that achieved through exhaustive programmer optimizations.

By introducing TPUPoint, this section makes four key contributions:

1. It presents TPUPoint to accelerate the development and optimization of ML applica-

tions for emerging ML accelerator-based cloud architectures.

2. It validates TPUPoint functionality with a wide range of ML applications.

3. It identifies the common bottlenecks of ML applications.
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4. It details a systematic approach for discovering optimal parameters for ML applica-

tions.

The rest of this section is organized as follows: Section 2.2 describes the archi-

tecture of TPUs and TPU-based cloud servers. Section 2.3 introduces TPUPoint’s design.

Sections 2.4 describes TPUPoint-Analyzer’s implementation. Section 2.5 describes our ex-

perimental platform. Section 2.6 reviews insights gained from TPUPoint-Analyzer. Sec-

tion 2.7 presents TPUPoint-Optimizer’s results. Section 2.8 provides a summary of related

work for context, and Section 2.9 offers concluding comments.

2.2 TPUs

Google has widely deployed TPUs in its data centers and made TPUs accessible

for user applications through Google Cloud Services. This section briefly describes the

capabilities and interfaces of Cloud TPUs.

2.2.1 Cloud TPUs

Google offers three different Cloud TPUs. Google uses the first-generation TPU in-

ternally for search and inference but makes the second and third-generation TPUs (TPUv2

and TPUv3, respectively) available via the Google Cloud Platform and TensorFlow Re-

search Cloud (TFRC) program [68]. The TPUv2 chip contains two Matrix Units (MXUs),

where each MXU is associated with 8 GiB of High Bandwidth Memory (HBM) to deliver a

combined theoretical 45 TFLOPS of computation throughput for 200–250 W TDP. Google

typically combines four TPUv2s on a single board [71].
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Google does not disclose many details about the TPUv3 architecture. Nonethe-

less, the performance-number specifications, which include a capacity of 90 TFLOPS and

32 GB HBM for each chip, suggest that TPUv3 simply leverages more advanced process

technologies to place four MXUs within the same chip while maintaining the same level of

power consumption as TPUv2.

2.2.2 The Cloud TPU Hardware/Software Interface

A Google Cloud TPU is only accessible through a compute instance (Compute

Engine) associated with a TPU instance. Along with the Compute Engine VM, a Google

Cloud TPU requires cloud storage (Storage Buckets) for training data and model informa-

tion during execution; the Compute Engine acts as a host, the TPU acts as a coprocessor,

and the Storage Buckets act as persistent memory. These components comprise the Cloud

TPU architecture.

TensorFlow [2] is another important part of the Cloud TPU equation. Google

developed the TensorFlow framework to model and execute ML algorithms on single ma-

chines and heterogeneous/distributed systems. Google Cloud TPUs are readily integrated

with TensorFlow. TensorFlow makes heavy use of Google’s Protocol Buffers (Protobuf)

and Google’s Remote Procedural Call (gRPC). Both Protobuf and gRPC are crucial to the

TensorFlow framework to allow communication to occur across TensorFlow. TensorFlow

makes heavy use of Google’s Protocol Buffers (Protobuf) and Google’s Remote Procedural

Call (gRPC). Protobuf allows for convenient data abstraction across multiple programming

languages, and gRPC allows TensorFlow to share data between multiple servers and clients

to facilitate execution across multiple devices. The gRPC server implements a method and
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waits for client requests. A gRPC client uses an object referred to as a stub to provide

a channel between the client and server. The stub handles gRPC client requests (with

Protobuf) and server responses and uses efficient formats such as RDMA for communi-

cation between processes during execution. Both Protobuf and gRPC are crucial to the

TensorFlow framework.

TensorFlow execution involves a client (the user), a master, and one or more worker

processes. The client interacts with the master, and the master coordinates the workers.

The master is responsible for handling device placement of graph nodes and partitions the

graph into subgraphs to be executed by the workers. In addition to managing the entire

computational graph, the master applies optimizations such as constant folding. The work-

ers handle requests from the master, execute kernel operations, and manage communication

between kernels.

Even though the Cloud TPU’s implementation is not fully available to the public,

registered API calls and serviceable requests are still available; a command-line tool called

cloud-tpu-profiler may be used to generate a client-to-master gRPC call that requests a

Cloud TPU profile for a small iteration. cloud-tpu-profiler is limited in its usefulness,

however, because it cannot be integrated into training code, only permits insights to be

gained post-execution, and only runs within a limited time range (and so cannot profile

program execution in its entirety).
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Figure 2.1: The TPUPoint system architecture

2.3 TPUPoint-Profiler: The Core of TPUPoint

TPUPoint offers a set of tools via the TPUPoint-Profiler module. TPUPoint-

Profiler measures Cloud TPU performance and enables the other two elements of the TPU-

Point toolchain: (1) TPUPoint-Analyzer (Section 2.4), a post-execution, offline analysis tool

that identifies the most important application phase and the cause of under-utilized system

components and (2) TPUPoint-Optimizer (Section 2.7), the online, automatic workload-

optimization tool that dynamically adjusts and rewrites code running on Cloud TPU plat-

forms. This section introduces the TPUPoint design and programming interface.

12



2.3.1 TPUPoint-Profiler Design

The complete TPUPoint toolchain consists of a set of extensions to the Tensor-

Flow framework (the only programming interface for Cloud TPUs at this point). Figure 1

shows the interactions of the core TPUPoint-Profiler that drives TPUPoint-Analyzer and

TPUPoint-Optimizer to work with a TensorFlow application.

TPUPoint creates a separate profiling thread upon initialization of the TPUPoint-

Profiler. Once created, the TPUPoint-Profiler thread periodically sends profile requests

to associated Cloud TPUs independently of the main TensorFlow thread, allowing TPU

training to continue uninterrupted while profiling takes place. When a Cloud TPU sends a

response back to the profiling thread, TPUPoint-Profiler generates a profile record contain-

ing operations along with meta-data of TPU idle time and MXU utilization provided with

each response.

If the programmer intends to use TPUPoint-Analyzer, the TPUPoint-Profiler

thread will create an additional recording thread to store the collected statistical infor-

mation in Cloud Storage (otherwise, TPUPoint-Profiler simply buffers the profile in the

host main memory). While the recording thread is storing data, TPUPoint-Profiler’s profil-

ing thread continues to request the next profile from the Cloud TPU. Reliably recording all

events during a profile period can produce numerous records, as each profile can potentially

include a maximum of 1,000,000 events lasting for a maximum duration of 60,000 ms in

total elapsed time. By storing only statistical information in a profile, TPUPoint-Profiler

reduces memory consumption and accelerates the post-processing in TPUPoint-Analyzer

and TPUPoint-Optimizer. Once the TensorFlow application has completed or reached a
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1 import tensorflow as tf

2 from tensorflow . contrib .tpu import TPUPoint as TP

3 # ...

4 def main(argv ):

5 # ...

6 estimator = tf. contrib .tpu. TPUEstimator (...)

7 tpprofiler = TP (...)

8 # ...

9 tpprofiler . Start ( analyzer = true)

10 estimator . train (...)

11 tpprofiler .Stop ()

12

13 if __name__ == " __main__ ":

14 tf.app.run ()

Figure 2.2: Example TensorFlow code that initiates TPUPoint’s profiling feature

user-specified breakpoint, TPUPoint-Profiler’s profiling thread will send out the last re-

quest. All TPUPoint-Profiler threads terminate after TPUPoint-Profiler has received and

appropriately saved the last profile record response to the Cloud TPUs. The number of

profile records generated depend on the duration of the TensorFlow application.

2.3.2 The TPUPoint Programming Interface

The current version of TPUPoint presents a Python/TensorFlow-based front end

to the programmer with backend features implemented in C++. Figure 2.2 shows example

code that enables TPUPoint-Profiler in a TensorFlow application. The programmer needs

to initiate TPUPoint usage by creating a TPUPoint-Profiler object (tpprofiler in line 7
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of the example) with appropriate options. TPU training is executed though TensorFlow’s

high level TPUEstimator API (lines 6 and 10). If a programmer wishes to use TPUPoint-

Analyzer to perform post-analysis, the analyzer flag must be set to true in the Start()

function call (line 9) ; when the analyzer flag is set to false, TPUPoint-Profiler only enables

TPUPoint-Optimizer. Once training is complete (i.e., TPUEstimator.train() has finished),

TPUPoint-Profiler is halted via Stop() function (line 11). When post-execution analysis has

been specified, as in the code example, Stop() will also instantiate the TPUPoint-Analyzer

process for visualizing the profiling results. This implementation allows TPUPoint to profile

the entire duration of an application, a feature unavailable in the cloud-tpu-profiler

command line tool.

2.4 TPUPoint-Analyzer: Post-Execution Analysis

To address the challenge of deriving meaningful results from extensive profiling

statistics, TPUPoint-Analyzer walks through and summarizes profiles into program phases.

To address these challenges, TPUPoint implements TPUPoint-Analyzer’s post-execution

analysis. Each program phase from TPUPoint-Analyzer’s post-execution processing iden-

tifies similar, repetitive program behaviors. Summarizing program behaviors into phases

to facilitate analysis, visualization, and checkpointing/restarting for performance optimiza-

tions.
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2.4.1 Profiling Algorithms

To reduce the TPUPoint-Analyzer search space for calculating program-behavior

similarities, TPUPoint-Analyzer first leverages the step numbers that Google makes avail-

able for Cloud TPUs—step numbers that indicate coarse-grained, repetitive application

behaviors. TPUPoint-Analyzer then uses these steps as the basic unit for similarity

comparisons and creates visual summaries for the steps. TPUPoint-Analyzer offers three

summarization methods: the conventional k-means algorithm [121, 127], Density Based

Spatial Clustering of Applications with Noise (DBSCAN) [59, 171], and a lower-overhead

online linear-scan (OLS) algorithm. k-means and DBSCAN run after all profiling records

have been recorded, while OLS is executed during recording (hence the term “online” in

it’s name).

k-means: We evaluate TPUPoint-Analyzer using the k-means algorithm implementation by

using three stages [174]:

1. Extract the records from all statistical profiles and aggregate records together using

the TPU step numbers. For each step, we define dimensions in terms of TensorFlow

operations, the accumulated number of invocations, and total durations. Using prin-

cipal component analysis (PCA) for dimensional reduction [207], we have at most 100

distinct operations for frequency vector representation.

2. Try the k-means clustering algorithm on aggregated steps for values of k ranging from

1 to 15. Each run of k-means produces a clustering that partitions the steps into k

different clusters.
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3. For each cluster (k = 1, . . . ,15), calculate the sum of squared distances of samples

to cluster centers (centroids) for each value of k. Attempt to minimize the sum

of squared distances while maximizing the number of clusters (k) using the elbow

method.

TPUPoint-Analyzer implements k-means like SimPoint does [174, 77, 152]. SimPoint uses

the Bayesian information criterion (BIC) [151] to measure the probability of clustering

for a given simulation. Using instructions per cycle (IPC) as the metric, SimPoint

compares using clusters rather than full simulations for analysis. TPUPoint aims to

simulate complete program execution without architectural metrics such as IPC, instead

employing the elbow method [188] as a heuristic to cut clustering off when improvement

stops increasing significantly (i.e., when the sum of squared distances for a cluster stops

improving significantly).

DBSCAN : DBSCAN [59, 171] follows the same general approach as k-means but re-

lies on core samples of high-density clusters. DBSCAN provides an alternative method for

comparison with k-means. DBSCAN also has three stages:

1. Extract the records from all statistical profiles and produce a frequency vector repre-

sentation as done in k-means.

2. Apply DBSCAN on aggregated steps of 25, requiring a minimum number of samples

from 5 to 200. As the minimum increases, the number of produced clusters decreases.
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3. For each clustering minimum sample size, measure the ratio of the noise by counting

the number of unlabeled points to the total number of points. Attempt to minimize

noise while maximizing the number of required samples to form a cluster using the

elbow method.

OLS : Both k-means and DBSCAN post-process all records after program execution, which

requires the system to store large numbers of records and incur high computational over-

head due to the dimensional complexity of each record. To address these issues, TPUPoint-

Analyzer offers OLS, which identifies similar, consecutive program behaviors that approx-

imate clustering with significantly lower overhead and reduced data-storage needs. With

OLS, TPUPoint-Analyzer simply relies on records from the current step, from the previous

step, and from two steps ago. OLS has four stages:

1. Extract the records from the incoming statistical profiles and group the records to-

gether using their step numbers. For each step, use all TensorFlow operations in the

program as well as the accumulated number of invocations and the total duration of

each operation.

2. When the program advances to another step, compare the previous step within a

profile to its successor step and calculate their similarity using Equation 2.1. Equa-

tion 2.1 computes the similarity of two steps as the ratio of the intersection of the set

of events from step i− 1 and the set of events from step i− 2 to the minimum size of

the two sets, where step i− 1 is the successor of step i− 2. (A set of events for a step

is defined as all the unique events that occur during that step.)
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Figure 2.3: Visualization of TPUPoint profiling output

3. If the successor step is similar according to either a user-specified threshold or the

default threshold (70% similarity), group the two steps together into a single phase.

Otherwise, associate the later step with a new program phase.

4. Repeat the above stages and gradually aggregate consecutive steps until all steps from

the stored profiles have been parsed.

StepSimilarity (Stepi−1, Stepi−2) = |Stepi−1| ∩ |Stepi−2|
min (|Stepi−1|, |Stepi−2|)

(2.1)

2.4.2 Visualization

TPUPoint-Analyzer produces a JSON file to store the summarized view of ap-

plication behavior. This file, along with a corresponding CSV file, contains (1) a for-

matted description of each phase and (2) the TPU and Host CPU operations executed

during training steps. The JSON file is compatible with Google Chrome’s event-profiling

tool, chrome://tracing. Figure 2.3 shows a visualization of TPUPoint-Analyzer output for

phases during TPU training from one such file. Each profile recorded is displayed as a

small subsection of the overall execution time on the horizontal Profile Breakdown axis.

Each phase identified is displayed as a larger subsection of the overall execution time on

the horizontal Phase Breakdown axis. Figure 2.3 displays how each phase can expand over
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multiple profile records, effectively summarizing the information from each profile. The

time markers displayed in Figure 2.3 are not to scale, as TPUPoint-Analyzer’s visualization

of the profiles and phases are only a representation, meant to reduce the information a user

must consume. Using Chrome’s controls, a user can zoom in/out of each program phase to

see more/less detail from the TPUPoint-Analyzer output.

2.4.3 Checkpointing and Restarting

Along with phases, TPUPoint records the closest checkpoint to each phase stored

by the TensorFlow model. To identify checkpoints, TensorFlow compares the steps within a

phase and finds the checkpoint with the smallest distance from those steps. This approach

allows applications to be modified based on a targeted phase and executed without starting

from step zero.

2.5 Experimental Methodology

To verify the TPUPoint-Profiler and TPUPoint-Analyzer designs and obtain ini-

tial insights to assist code optimizations, we ran a set of experiments on the Google Cloud

Platform. Each instance consisted of a single host with a 16-core, 2-way SMT Intel Skylake

CPU, 104 GB of main memory, and 250 GB of persistent disk [70]. To maintain implemen-

tation consistency, all instances used Docker version 19.03.1 and TensorFlow version 1.15

with TPUPoint installed. As mentioned in Section 2.2, each instance could access both

TPUv2 and TPUv3—model implementations running on a single TPU instance such as

TPUv2 could run on a single TPUv3 instance without code modifications. However, scal-
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ing for multiple TPU implementations “requires significant tuning and optimization” [71];

to avoid any inefficient model execution, experiments were conducted only on single-TPU

instances.

Table 2.1 describes the workloads we used to test and verify our designs and

hypotheses. We chose publicly available workloads from the TensorFlow 1.14 TPU

model library [186]: natural language processing (NLP) (BERT [191]), image generation

(DCGAN [159]), question answering (Q/A) NLP (QANet[215]), object detection (Reti-

naNet [115]), and image classification(ResNet-50 [81]).

2.6 Observations and Insights Learned from TPUPoint-

Analyzer

2.6.1 Representativeness of Phases

TPUPoint-Analyzer identifies similar, repetitive behaviors in applications and cat-

egorizes those behaviors into phases to facilitate analysis and optimization. This section

discusses and compares the phases identified from the k-means, DBSCAN, and OLS clus-

tering algorithms.

Figure 2.4 shows the clustering results for k-means with k between 1 and 15,

inclusive. Each cluster represents a phase of more extensive program execution. In this

case, TPUPoint-Analyzer determines that the sum of squared distances stops improving by

a significant margin when k is between 4 and 6; that is, 4 to 6 clusters are sufficient to cover

most program behaviors.
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Figure 2.4: Clustering results for TPUPoint-Analyzer with scanning based on k-means with
different workloads; the plot shows the sum of squared distances of samples to centroids for
k clusters (k = 1, . . . ,15)

Figure 2.5: Clustering results for TPUPoint-Analyzer using DBSCAN with different work-
loads; the plot shows the ratios of noisy samples to total samples for 5 to 180 minimum
required samples to form clusters in steps of 25

Although DBSCAN and k-means both use the elbow method, DBSCAN does not

use centroids, so distance cannot be used as a clustering metric. Instead, DBSCAN varies

the number of minimum required samples to form a cluster—designating a sample as either

a cluster or a noisy sample. Figure 2.5 shows the ratio of noisy samples to all samples

for the minimum number of required samples ranging from 5 to 180 in aggregated steps

of 25. The elbow method was applied in attempt to reduce the noise percentage while

maximizing the minimum number of samples required to form a cluster. Using DBSCAN,
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Figure 2.6: TPUPoint-Analyzer using OLS with different workloads; the plot shows the
number of phases identified with similarity thresholds from 0% to 100%

TPUPoint-Analyzer found that a minimum of 30 to 80 samples was optimal to reduce noise

and produced between 3 to 13 clusters. Again, each cluster represents a phase of more

extensive program execution.

Figure 2.6 shows the number of phases that OLS identifies for varying similarities

using Equation 2.1. With a similarity threshold of 70%, we found that most workloads are

condensed into just 3 phases. For a similarity threshold above 70%, the number of phases

identified grows significantly for the majority of the workloads. For these workloads, we

further examined the operators within neighboring phases that cannot combine together,

and we found the differences between neighboring phases are essentially ignorable, as they

often represent a small amount of the application’s execution time, turning even single

operations into a phase—this creates a low similarity between phases and so creates an

excessive number phases.

As OLS tends to break up steps with small differences into different phases, a high

similarity threshold leads to a significant increase in the number of identified phases. That
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Figure 2.7: Coverage of total execution time by the top three phases from TPUPoint-
Analyzer using OLS at the 70% similarity threshold with different workloads, where each
color represents one of the three identified phases

Figure 2.8: Coverage of total execution time by the top three phases from TPUPoint-
Analyzer using DBSCAN with minimum samples of 30 to form clusters for different work-
loads, where each color represents one of the three identified phases

being said, k-means, DBSCAN, and OLS all aggregate the same set of phases into a single

phase. Even when TPUPoint-Analyzer uses the extreme 100% StepSimilarity threshold

(meaning that TPUPoint-Analyzer requires all steps in a phase to share exactly the same

breakdown of operators), TPUPoint-Analyzer still breaks up most workloads into fewer

than 15 phases, except for the RetinaNet-COCO and ResNet-ImageNet workloads. The

above results give us the first observation for this section:

Observation 1: most TPU workloads can be summarized into a limited number of phases.
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Figure 2.9: Coverage of total execution time by the top three phases from TPUPoint-
Analyzer using k-means with k = 5 for different workloads, where each color represents one
of the three identified phases

Another metric to judge phase selection is the coverage of execution time. Based

on observation 1, we accumulated the total execution time of the 3 longest phases for

different threshold values. Figure 2.7 shows that these top 3 phases encompass at least 95%

of the entire execution of each workload at the 70% similarity threshold when using OLS.

For the 70% threshold, TPUPoint-Analyzer can cover almost 100% of execution time for all

workloads. The results are similar for k-means (k = 5) and DBSCAN (minimum samples

= 30), as shown in Figure 2.9 and Figure 2.8, respectively. Because of the high number of

noisy sample DBSCAN is unable to cluster, we consider these unlabeled samples to be a

cluster as well. We find that these represent a majority of most workload’s execution time

shown in Figure 2.8. Figure 2.9 demonstrates that even With k-means set to larger than 3

clusters, will still be dominated by the top 3.

Observation 2: the 3 longest phases cover most of the execution time for TPU workloads.
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2.6.2 Operators in Phases

Cloud TPUs are simply hardware accelerators in computer systems, so TPU-

accelerated workloads still rely on a host program for workload distribution. We now

describe the most time-consuming operations on both the host CPU programs and the

TPU.

Table 2.2 shows the top 5 most time-consuming operations from the top 3 longest

phases on both the CPU/host program and the TPU program using TPUv2. For k-means

and DBSCAN, the identified phases are mostly identical with nearly the same set of top

operators. For OLS, which tends to divide similar phases into multiple phases, the top 5

operators are slightly different from the top 5 k-means and DBSCAN operators.

Differences notwithstanding, all three algorithms identify a common set of the most

time-consuming operators on TPUv2 across workloads, with the fusion operator being the

most time-consuming overall. The identified fusion operator combines compute-intensive

operations from the XLA compiler and is intended to help reduce memory operations [187].

The reshape operator is also one of the most time-consuming operators. Unlike fusion,

reshape is not algorithm-related, but rather serves only to prepare input data for subsequent

TPU computations.

The most critical operators on the host side are TransferBufferToInfeedLocked

and OutfeedDequeueTuple. Both operators exchange data with TPUs. Figure 2.10 shows

the percentage of idle time on TPUs for each workload; the Cloud TPUs are, on average,

idle for 38.90% of the time for TPUv2 and 43.53% of the time for TPUv3. Figure 2.11
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Figure 2.10: Idle time for TPUv2 and TPUv3 across workloads

Figure 2.11: MXU utilization for TPUv2 and TPUv3 across workloads

explores the underutilization of the MXUs—on average, from 22.72% for TPUv2 to 11.34%

for TPUv3. During idle time, the host is busy preparing and sending data with the top

operators listed in Table 2.2. We now have two additional observations:

Observation 3: current TPU workloads incur a significant amount of overhead from data

preparation and data exchange.

Observation 4: improving TPU data-preparation and TPU data-exchange efficiency on the

host computer is key to improving TPU utilization and TPU workload performance.

To identify the differences between Cloud TPUs, we repeated our analysis with

the same workloads, datasets, and parameters with TPUv3. Using OLS, k-Means, and
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DBSCAN, we identified the top five operators for the longest identified phase and corre-

sponding cluster. Table 2.2 also shows that the top five operators generally remain consistent

for TPUv2 and TPUv3 (as well as the host). Notably, k-Means and DBSCAN reach mem-

ory limitations for larger workloads such as RetinaNet and ResNet, which affirms that the

TPUPoint-Analyzer/OLS combination can compete with clustering methods implemented

in SimPoint [77, 152].

For TPUv3, the most time-consuming operators are the same as those for TPUv2

across workloads, but the total utilization of TPU resources changes. The QANet and

RetinaNet workloads reduce flop utilization from about 16% on TPUv2 to 13% on TPUv3

for QANet and from about 46% on TPUv2 to 32% on TPUv3 for RetinaNet. The in-

creased percentage of time required for infeed operations indicates the parameters related

to memory operators such as outfeed need to change to fully utilize TPUv3. However, the

observed differences are mainly due to the improved computational capabilities of TPUv2

over TPUv3. The increased percentage of time observed for infeed implies that the non-

computational overhead in the later-generation TPUs may be more significant.

Observation 5: the significance of non-computational overhead increases as computational

throughput improves.

2.6.3 Datasets

For the BERT and DCGAN workloads, we used different datasets to help under-

stand the impact of inputs on the associated models. For BERT workloads with 4 different

input datasets, the top 5 operators in Table 2.2, the TPU idle time in Figure 2.10, and the
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Figure 2.12: Idle time for TPUv2 and TPUv3 across QANet, RetinaNet, and ResNet using
smaller datasets

Figure 2.13: MXU utilization for TPUv2 and TPUv3 across QANet, RetinaNet, and
ResNet using smaller datasets

MXU utilization in Figure 2.11 are different, just as they are different for the two workloads

that use the DCGAN model.

To further observe model behavior across datasets sizes, QANet, RetinaNet, and

ResNet were ran with reduced datasets. QANet and RetinaNet were ran by reducing

their original SQuAD and COCO datasets in half. ResNet was ran using the CIFAR10

dataset. Figure 2.12 and Figure 2.13 display the idle TPU time and matrix utilization

percentage respectively. All models experience a reduction in MXU utilization, and an

increase in idle time percentage overall. ResNet in particular experiences the greatest

change from it’s original ImageNet dataset observations in Figure 2.10 and Figure 2.11 even

though using the same methodology to feed in the CIFAR10 dataset. These observations
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provide another insight into performance tuning for ML applications: Observation 6: the

performance bottleneck can change as the input dataset changes, even with the same model.

Observation 6 implies that if a programmer optimizes a program with a specific model using

a certain dataset, that optimization may not carry over to different datasets. Observation 6

thus points to the need for dynamic runtime optimization to achieve the best performance

for ML workloads.

2.7 TPUPoint-Optimizer

Based on the observations from TPUPoint-Profiler, we designed TPUPoint-

Optimizer, an automatic tool that helps to fine-tune the performance of an identified phase

in a workload. TPUPoint-Optimizer works without programmer input and ensures that

tuning does not affect program-execution output. TPUPoint-Optimizer does the following

to help optimize a workload: (1) It analyzes code and automatically instruments code to

assist optimization. (2) It allows for online tuning without the need for complete pro-

gram execution. (3) It controls the output quality. This section describes the design of

TPUPoint-Optimizer.

2.7.1 Program Analysis

If the user enables TPUPoint-Optimizer, TPUPoint-Optimizer will analyze a Ten-

sorFlow program between the calls to start and stop TPUPoint-Profiler. During the

program-analysis phase, TPUPoint-Optimizer first identifies adjustable parameters origi-

nally defined by the user. These adjustable parameters include buffer size, the number of

threads dedicated to an operation, and the order of operations that can be rearranged while

30



maintaining correctness. If any of these adjustable parameters cause errors when altered,

TPUPoint-Optimizer will not treat them as adjustable. Using the list of input/output

variables and adjustable parameters, TPUPoint-Optimizer instruments code to produce

checkpoints before each function call within the profiled program.

2.7.2 Online Tuning

TPUPoint-Optimizer provides an online performance-tuning feature that adjusts

the performance of TPU workloads without requiring the program to finish a complete exe-

cution cycle. The design of TPUPoint-Optimizer’s online tuning algorithm comes primarily

from two observations described in the previous section: Observation 1—most TPU work-

loads can be summarized into a limited number of phases. Observation 2—the 3 longest

phases cover most of the execution time for TPU workloads. Taken together, these ob-

servations suggest that optimization of a small portion of program execution can have a

significant impact on program execution as a whole.

After TPUPoint-Optimizer analyzes input/output variables and instruments code

for checkpointing, it will start running the workload using the normal inputs and default

parameters. At the same time, TPUPoint-Optimizer tracks the accumulated execution time

in different code segments using the statistical model that we developed for TPUPoint-

Profiler. If TPUPoint-Profiler observes the most common pattern of operators described

in Section 2.6 (e.g., reshape, infeed, fusion, outfeed) within the most time-consuming

phases, or the current phase accounts for more than half of the aggregated execution time,

TPUPoint-Optimizer will designate the current code segment as having already entered the

performance-critical phase and will optimize accordingly, maintaining correctness.
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If performance improves and output does not change, TPUPoint-Optimizer con-

tinues adjusting parameter values in the same direction until an optimal value for that

specific parameter is found. If no other neighboring values are better than the default

value, TPUPoint-Optimizer will keep the default value. Finally, TPUPoint-Optimizer uses

the improved adjusted parameters to complete rest of the program’s execution.

2.7.3 Performance of TPUPoint-Optimizer

Figure 2.14: TPUPoint-Optimizer speedups for TPUv2

Figure 2.14 shows optimized program performance after using TPUPoint-

Optimizer to adjust the default parameters and the execution times on TPUv2 (for naive

implementations). Figure 2.14 only shows the workloads that originally took twenty minutes

or more to complete—other workloads with much shorter execution times (e.g., DCGAN

and BERT) show minimal performance gains from TPUPoint-Optimizer and can actually

take a performance hit by waiting for TPUPoint-Optimizer to complete any post processing

tasks. Using the default parameters from TPUv2, the workloads with long execution times
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achieve a speedup of about 1.12× on average. This indicates that with longer workloads,

there is a stronger ability for TPUPoint-Optimizer to isolate parameters that would be

beneficial to the execution and speedup of said workloads.

Figure 2.15: Idle time for TPUv2 and TPUv3 across workloads optimized with TPUPoint

Figure 2.16: MXU utilization for TPUv2 and TPUv3 across workloads optimized with
TPUPoint

It’s important to note that most of the publicly available ML workloads used in

this study were manually optimized by Google engineers. So to test TPUPoint-Optimizer,

we developed an original naive implementation to see if TPUPoint-Optimizer could improve

poor performance. Figure 2.15 displays TPU idle time of the naive implementation with
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and without TPUPoint-Optimizer for both TPUv2 and TPUv3. Figure 2.16 displays the

MXU utilization of the naive implementation with and without TPUPoint-Optimizer for

both TPUv2 and TPUv3. TPUPoint-Optimizer increased the TPU idle time of the naive

implementation for both TPUv2 and TPUv3 (Figure 2.15) and increased MXU utilization

for TPUv2 (Figure 2.16). Thus, TPUPoint-Optimizer is able to yield performance gains

from more efficient use of Cloud TPUs with TPUv2 exhibiting a pronounced change matrix-

operation reliance.

When we applied TPUPoint-Optimizer to our naive workloads that originally had

execution times of less than twenty minutes (BERT and DCGAN), the workloads showed

no notable change in speed compared to their original performance. In contrast, when

we applied TPUPoint-Optimizer to our naive workloads that originally took more than

twenty minutes (QANet and RetinaNet), we did see improvements in speed—not surprising

given that the workloads with longer execution times involve larger and more complex

datasets and deeper implementations relative to the workloads with shorter execution times.

Because TPUv3 simply contains twice as many MXUs and HBM as TPUv2, we did not

observe performance gains from TPUPoint-Optimizer for TPUv3. In fact, we observed an

average performance loss under 10% due to the overhead of our profiling/optimization tools.

Nonetheless, these results indicate that the overhead associated with TPUPoint-Optimizer

is relatively insignificant compared with the overhead associated with complete program

execution.
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2.8 Related Work

Targeting architectural simulation instead of full-system profiling (the key concept

of SimPoint [174, 77, 152]) and clustering similar program behaviors into program phases (as

with HyGCN [212]) inspired the development of TPUPoint. TPUPoint also incorporates the

checkpointing and restarting features of TurboSMARTS [204] to save time when undertaking

architectural simulation and to reduce the cost of cloud computing.

Both TPUPoint and ParaDnn [202] offer tools and systematic methodologies to

analyze Cloud TPU performance. TPUPoint provides direct feedback to programmers while

automatically and implicitly rewriting under-performing code. In contrast, ParaDnn focuses

on systematic testing and optimization insight on architectural perspectives and is therefore

complementary to TPUPoint.

In addition to using Cloud TPUs, data centers have often relied on heterogeneous

hardware components to accelerate ML workloads [62, 40, 56, 80, 209, 129, 54, 218, 34,

194, 173, 216, 180, 25, 137, 162, 32, 33]. However, hardware solutions are generally not

distribution friendly. As TPUPoint works at the programming-language/application level

to observe and optimize performance, TPUPoint is portable; simply changing the low-level

library function calls that TPUPoint uses to retrieve statistics makes TPUPoint’s profiling

and optimization available on a wide variety of platforms.

Some benchmark suites also attempt to standardize ML workload management: µ

Suite [179], BigDataBench [199], AI Benchmark [92], EEMBC MLMark Benchmark [190,

189], Fathom [3], AI Matrix [6], DeepBench [18], DAWNBench [42], and MLPerf [133],

and mixed-precision benchmarks as well [124, 213]. When benchmarking Cloud TPUs, we
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can only test a subset of each benchmark suite due to the limited front-end programming-

language support for the Cloud TPU platform. That being said, many benchmarks rely

on the same models and datasets, varying only frameworks and implementations. We have

tried our best to cover the spectrum of ML workloads. There have been several prior

works on summarizing ML such as EcoRNN [221], SeqPoints [149], and TBD [222]. These

works do not attempt to profile/optimize the same range of benchmarks as TPUPoint

does, where computation could be input independent or heterogeneous across iterations.

EcoRNN and TBD take a sampling and iteration-based approach to LSTM RNN and DNN

respectively, while SeqPoint considers how input variation effects sequence-based neural

networks (SQNNs). To provide insight to such a wide range of ML workloads, TPUPoint

aims for high coverage but low overhead regardless of the ML workload.

As ML workloads predominate in cloud services, methods for optimizing resource

utilization have received significant attention. Some methods use performance estimation

algorithms [219, 78, 101, 36, 178] or training models [198, 22, 50] to select optimal param-

eters. Such methods tend to have stagnant selectors, and while they offer lower overhead,

they are limited in their ability to adapt to new workloads. Instead of focusing only on

a specific workload, TPUPoint provides a more generic framework applicable to a much

broader range of ML tasks.

2.9 Conclusion

This section presents TPUPoint, a toolchain that collects, analyzes, and opti-

mizes the performance of TPU-accelerated ML workloads. Using the post-analysis tool,
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TPUPoint-Analyzer, we determined that most TPU-accelerated ML workloads are under-

utilizing precious TPU resources. Moreover, because workload behavior varies by model and

dataset, manually optimizing workloads is not feasible. Fortunately, the behavior within a

workload is often repetitive, opening the door for dynamic optimizations. Using the obser-

vations learned from TPUPoint-Analyzer, we designed TPUPoint-Optimizer to detect the

main application phase and dynamically adjust parameters in running code. Our results

show a 1.12× speedup over default parameters without programmer intervention.
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BERT

MRPC

BERT

SQuAD

BERT

CoLA

BERT

MNLI

DCGAN

CI-

FAR10

DCGAN

MNIST

QANet

SQuAD

RetinaNet

COCO

ResNet

Ima-

geNet
Total TPUv2 Total TPUv3
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OutfeedDequeueTuple 21 17

TransferBufferToInfeedLocked 19 17

RunGraph 15 9

Send 10 9

Linearizex32 9 15

LSRAv2 8 9

InfeedEnqueueTuple 8 8

InitializeHostForDistributedTpu 7 3

Restorev2 4 6

DisconnectHostFromDistributedTPUSystem 4 0

ReadHbm 3 1

Recv 1 1

Maximum 1 1

Minimum 1 0

Sub 1 1

Cast 1 1

DecodeAndCropJpeg 1 1

ResizeBicubic 1 1

StartProgram 0 12

BuildPaddedOutput 0 3

T
P

U
O

pe
ra

tio
ns

fusion 23 23

MatMul 15 15

Reshape 15 18

L2Loss 12 12

Conv2DBackpropFilter 8 4

Mul 6 6

Transpose 6 6

BiasAddGrad 6 6

Conv2DBackpropInput 6 3

FusedBatchNormV3 5 5

Infeed 3 6

all-reduce 3 3

Sum 3 3

Copy 1 1

InfeedDequeueTuple 1 1

FusedBatchNormGradV3 1 2

Relu 1 1

Table 2.2: The top 5 most time-consuming operators in the most time-consuming phase
using different phase-detection algorithms with TPUv2, shown with , TPUv3, shown with
, and for both.
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Chapter 3

T2SP: Embedding a DSL in SYCL

The wide spread of tensor computations throughout may domain specific areas

has led to a plethora of novel algorithms/workloads. On account of these unique work-

loads, many unique architectures have been developed to optimize, and exploit parallelism

found within tensor computations, utilizing FPGAs, GPUs, TPUs, ASICs, and so on. How-

ever, many of these optimizations are restrictive to their unique platforms. Often creating

frameworks and libraries to support these optimized implementations, creating platform

dependent code. Attempts to run on novel platforms requires new implementations to

showcase the platform’s individual characteristics. Preventing portability and increasing

the cost of development.

In order to gain speedup from tensor computation’s parallelism, many of these plat-

forms focus on optimizing latency, throughput, or a combination of the two. This project

focuses on combining data parallelism provided though Data Parallel C++ (DPC++),

industry-driven standard that adds data parallelism to C++ for heterogeneous systems,

40



and T2X. T2X is a programming model which realizes parallelism of tensor computations

though the efficient use of tensor primitives and systolic arrays. Thought the employment

of both these tools, users are able to create a platform agnostic implementation of novel

algorithms, without the restriction of architecture dependent frameworks/libraries. Pro-

viding portability, efficient utilization of hardware resources, and ease of development into

more domain specific areas in computing.

3.1 Introduction

Within the last few deceases, tensor computations have grown to affect many

domains including scientific computation, engineering, machine learning, and many other

sub-domains [9, 17]. Although all these domains can utilize tensor computation, each

individual application can vary in their overall implementation. This creates a diverse and

unique range of application, which may or may not preform reasonably on conventional

hardware.

In response to the demand in tensor computations, comes the proliferation of new

hardware platforms to perform more efficient execution. From TPUs [98], GPUs [130],

FPGAs [181], and NPUs [63, 41]. Many of these architectures utilize matrix-vector units,

systolic arrays [108], or some novel implementation to exploit the parallelism found within

tensor computations.

To support many of these new and developing hardware architectures, industry

and academia alike has produces libraries, compilers, and frameworks to exploit hardware

resources [1, 76, 181, 155, 95, 31]. This involves very close understanding of individual
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hardware characteristics, their downfalls, and well-engineered software stack to navigate

them effectively. As such, trade-offs between hardware/software implementations must be

made by researchers and developers alike [105, 158, 112, 48].

Creating an inflexible ecosystem and becomes a hurdle for the development of new

algorithms that utilize tensor computations [168, 48, 20, 217].

Creating an inflexible software ecosystem becomes a hurdle for the development

of new algorithms that utilize tensor computation. This project focuses on combining data

parallelism provided though the combination of Data Parallel C++ (DPC++), and Tem-

poral To Spatial Programming (T2SP) to provide a hardware agnostic programming model

to construct new tensor computations. DPC++ is an open source compiler project that is

based on SYCL, an industry-driven Khronos standard adding data parallelism to C++ for

heterogeneous systems. T2SP is both a novel programming framework and compiler which

helps enables tensor computations.

DPC++ is an open source compiler project that is based on SYCL, an industry-

driven Khronos standard adding data parallelism to C++ for heterogeneous systems. T2SP

is both a novel programming framework and compiler which helps enables tensor compu-

tation for both spatial and vector architectures such as CPUs/GPUs and FPGAs respec-

tively. T2SP does this by dissolving the marriage between functional specification from

spatial mapping. T2SP is based on several observations, notably that spatial architectures

favor optimized dataflow and partitioning the computation into many sub-computations

distributed over spatial architecture. T2SP allows programmers to describe the computa-

tion separately from spatial mapping, partitioning, and dataflow of a spatial architecture.
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Allowing programmers to quickly develop various spatial optimizations without having to

reconstruct an applications core functional implementation between architectures such as

CPUs, GPUs, and FPGAs.

Through the employment of both DPC++ and T2SP, users are able to create a

platform agnostic implementation of novel algorithms, without the restriction of architec-

ture dependent software. Providing portability, efficient utilization of hardware resources,

and ease of development for tensor applications. Initial evaluations were preformed using

General Matrix Multiply (GEMM), 2 Dimensional Convolution (CONV), and Capsule Con-

volution (CAPSULE), for an Arria-10 FPGA on Intel’s FPGA DevCloud Platform. Results

show that this project has been able to achieve an average of over 302.402, 285.301, and

231.877 GFLOPs for GEMM, CONV, and CAPSULE respectively. Achieve an average of

over 60% of the original T2SP’s performance. With minor adjustments, it can be said with

confidence that this combination of DPC++ and T2SP can provide competitive perfor-

mance of tensor applications between special and tensor architectures without extra effort

on the end user.

3.2 Overview of T2SP Framework

This section discusses the T2SP programming and compiling overview. Sec-

tion 3.2.1 delivers a brief overview of the building framework, Temporal to Spatial (T2S),

that T2SP is built upon. Section 3.2.2 Discusses the design behind the T2SP and it’s com-

pilation onto FPGA. Section 3.3 then goes onto the programming of T2SP specifications

and FPGA architecture.
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Figure 3.1: T2SP and framework on top of T2S

3.2.1 T2S Framework

The T2S framework [181] provides a language and compiler for efficiently gen-

erating high-performance systolic arrays for dense tensor kernels on spatial architectures,

such as FPGAs and CGRAs. This was done by decoupling functional specifications from

spatial mappings. T2S allows programmers to explore various spatial optimizations with-

out manually implementing them, significantly enhancing productivity and performance.

T2S was able to implement several important dense tensor kernels, including GEMM, MT-

TKRP, TTM, and TTMc, achieving up to 92% of the performance of manually optimized

implementations. The framework’s efficacy was demonstrated on an Arria-10 FPGA and

a research CGRA. Figure 3.1 displays the construction of T2SP on top of the T2S frame-

work. Originally, T2S utilized OpenCL and LLVM code to compile to FPGA and CPU
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Figure 3.2: T2SP Compiling and Code Translation onto FPGA

respectively. However, through T2SP and it’s extension into SYCL and the DPC++ com-

piler, the T2S framework now has the support needed to compile to devices such as FPGA,

GPU, and CPUs without having to choose between compiling frameworks. This work only

extended onto FPGA devices as a proof of concept that the union into SYCL was possible

and enables performance retention.

3.2.2 T2SP Design

Figure 3.2 Demonstrates the flow a programer uses to create a FAT binary to

compile onto FPGA. To begin, a developer will create T2S specifications for the target
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hardware, such as defining a systolic array to execute GEMM on an FPGA. This is done

using T2SP pragma specification directives to outline the desired hardware-specific opera-

tions. This allows the preprocessor to identify the T2S specs and pass them along to the

T2S compiler.

Once the specifications are set, developers need to allocate and define argument

parameters on the host side to ensure proper data handling and communication. This is seen

as peripheral code and is left untouched. Once T2S specifications are passed along through

the T2S compiler, both host and desired hardware-specific operations are in standard SYCL

code. The developer can now proceed with standard DPC++ OneAPI compiling to produce

an executable FAT binary and carried out onto the FPGA.

3.3 T2SP Programming

This section provides an overview of the T2SP Programming flow.

3.3.1 T2S Original Code

Figure 3.3 displays original T2S code. Here, we have an example of a simplified

GEMM implementation that a developer would create for the FPGA. The developer will

create T2S specification, such as for a systolic array to execute GEMM on FPGA, outlined

via the t2s spec start and t2s spec end pragma directives. A key part of the specifi-

cations is thecompile to oneapi() method within the T2S language. The developers will

also allocate and define argument parameters on the host side. Lastly, the developer will

invoke the matrix multiple via the t2s submit pragma directive.
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T2S specification for 
a systolic array to 
execute GEMM

Allocate and define 
argument 
parameters on the 
host side 

Invoke the GEMM 
implementation

Figure 3.3: Inital T2S Code.

3.3.2 T2SP Generated Code

Figure 3.4 displays the generated T2SP code. T2SP is a combination of

the OneAPI/SYCL Code Generator within T2S, exposed by the compile to oneapi

method. The function takes several arguments including: a set of input arguments (const

std vector<Argument> &, a string that will be the name of device function as well as the

generated file name (const std::string & fn name), and lastly a set of T2S targets (i.e.

Target::IntelFPGA or Target::IntelGPU). This is passed into the preprocessor imple-

mented with CLang and a new file is created with the run.cpp suffix. The generated code

is lengthy, but includes:
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Included OneAPI 
generated GEMM 
header file

Wrapped input 
argument inside 
T2SP DSL structures

Define OneAPI FPGA 
device selector 

Execute generated 
GEMM function

Figure 3.4: Generated T2SP Code.

• SYCL generated header file which defines the FPGA device kernels.

• SYCL memory management with domain specific class structures, necessary to inter-

act with the generated device kernels. Examples include:

– sycl::malloc device()

– std::malloc()
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• SYCL device selector, used by SYCL queues within the device kernels as well.

• Generated implemented the execution of the generated GEMM Function along with

printing out device kernel execution time for the developer.

3.4 Experimental Methodology

T2SP was carried out on the Intel DevCloud using the Arria A10 FPGA. Three

benchmark matrix kernels were tested; GEMM, CONV, CAPSULE. Experiments were com-

pared to it’s predecessor T2S.

At this time, we only have GEMM for T2S, We evaluate the utilization of the

Arria A10 hardware for all three kernels. And use GEMM as a comparison for Throughput

and clock frequency.

3.5 Results

In this section, we describe our findings of the T2SP. We find that T2SP is able

to deliver non-trivial (above 50% performance) in throughput for GEMM compared to it’s

predecessor, T2S.

3.5.1 Hardware Utilization

Table 3.1 displays the synthesised hardware utilization of GEMM, CONV, and

CAPSULE on the Aria A10 FPGA. Our belief that this initial utilization of the hardware

has been altered from what is expected to be produced from the original T2S. Through
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Benchmark # ALUT # Registers # DSP Blocks # RAM Blocks Clock Freq. (MHz)

GEMM 105,151 180,874 89 / 1,518 (6%) 462 / 2,713 (17%) 264

CONV 98,648 168,673 64 / 1,518 (4%) 499 / 2,713 (18%) 276

CAPSULE 119,038 198,909 112 / 1,518 (7%) 607 / 2,713 (22%) 275

Table 3.1: T2SP FPGA Synthesis Results

SYCL, higher clock frequency is achieved, 271.66 MHz on average. This could be due to

several sources including alternative memory management from OpenCL which is found

within T2S. More investigation is required at this time to establish the root cause.

3.5.2 Performance

Implementation Throughput (GFLOPs) Clock Freq. (MHz)

T2S 549 215

T2SP 302 264

Table 3.2: GEMM FPGA Synthesis Results for T2S and T2SP

Table 3.2 displays the compared throughput and clock frequency achieved by T2S

and T2SP. We find that T2SP is able to achieve about 55% of the original GFLOPs per-

formed by T2S. Only the GEMM kernel has been evaluated at this time. One reason, we

suspect, that we do not achieve higher throughput is due to Halide. A particular reason

T2S is able to achieve the throughput it does is due to its reliance on the Halide memory

optimization and management system. SYCL may obfuscate or neutralize some of these op-

timizations, encumbering T2SP from higher performance throughput. However, achieving

such roughly 1.22× clock frequency compared to T2S.
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3.6 Related Work

Embedding DSLs in various methods has been advanced through innovative tools

and techniques. Yogo [157], a semantic code search tool, leverages dataflow graphs and

rewrite rules to recognize operations, accommodating variations in APIs, temporary vari-

ables, and interleaved code structures. On another front, HAZE [43] introduces a gray-box

program synthesis tool focused on dynamic observations such as execution time and mem-

ory access patterns to guide program synthesis and lifting. Lastly, GraphCode2Vec [125]

employs a Graph Neural Networks approach to generate task-agnostic code embeddings. All

of which have the same core focus of maintaining or improving code performance through

DSLs on accelerators.

T2SP represents a significant advancement by embedding DSLs within SYCL for

productive and performant computing on heterogeneous devices, particularly for its enable-

ment of FPGAs which other works do not. Other works, such as Polly [74], ATC [131],

C2TACO [100], KernelFaRer [49], use drastically different methods; LLVM, program syn-

thesis , IO examples and source code analysis, etc.; however none go beyond targeting CPUs

or GPUs. This is unique to T2SP as integration with SYCL constructs the groundwork

to efficient utilization of GPU resources, but building upon its founding work of T2S [168]

which utilizes Halide, T2SP leverages foundational groundwork that includes OpenMP sup-

port, enhancing its versatility across different architectures inclusive of CPUs and GPUs.

T2SP represents a novel approach in the realm of heterogeneous computing by

embedding a DSLs within SYCL, thereby offering unprecedented flexibility across a wide

spectrum of architectures. This capability is particularly groundbreaking as it enables de-

51



velopers to write performance-critical code and deploy it efficiently across diverse platforms

without extensive rewriting.

3.7 Conclusion

T2SP is both a novel programming framework and compiler which helps enables

tensor computation for both spatial and vector architectures such as CPUs/GPUs and FP-

GAs respectively. This work constructs the foundation for the successfully expands Intel’s

T2SP by integrating SYCL to create a uniform compiling flow for hardware-agnostic accel-

eration. The development of a code generator for SYCL Device and Host Code, alongside

the implementation of a Clang source-to-source preprocessor, has displayed non-trivial per-

formance retention using FPGAs. T2SP has been able to achieve an average of over 302.402,

285.301, and 231.877 GFLOPs for GEMM, CONV, and CAPSULE respectively, achieve an

average of over 60% of the original T2SP’s performance.

This research not only highlights the potential of SYCL in domain-specific lan-

guages but also paves the way for future investigations into the hurdles in the extension of

this approach to GPUs, CPUs, and other tensor computing accelerators.
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Chapter 4

Accel-Bench: Programming Using

Accelerated Functions

Integrating hardware accelerators in modern computers has brought on a new age

of programming and application design. Initially, hardware accelerators target a specified

domain to reduce computation time and increase energy efficiency or some other metric ideal

for a set of applications. However, recent research has shown that hardware accelerators

designed for one application domain have the potential to increase performance well outside

that domain. Programming using hardware-accelerated functions needs more analysis to

quantify this potential across accelerators and applications.

This section presents Accel-Bench, a benchmark suite that aims to capture the

performance of accelerator-intensive programming. To the best of our knowledge, Accel-

Bench is the first benchmark suite that utilizes applications that can invoke different domain

kernels in their algorithm and quantifies the potential performance gain of using hardware-
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accelerated functions to compose programs agnostic to their domain. Accel-Bench contains

a total of 10 applications currently. In addition to conventional CPU and GPU imple-

mentation, applications in Accel-Bench also have another version that invokes popular

hardware-accelerated functions, including General Matrix Multiplication (GEMM), Con-

volution (CONV), or Fast Fourier Transform (FFT). Accel-Bench finds that applications

can counter-intuitively obtain similar or even better performance despite increased com-

putational complexity when utilizing hardware accelerators. These applications can also

scale up well with the advancement of hardware accelerators. Along with Accel-Bench, this

section presents insight into future applications and hardware development in this new age

of programming on hardware accelerators.

4.1 Introduction

The introduction of hardware accelerators has brought exotic flavors of computing

models into computer systems. Instead of implementing a rich set of fine-grained math-

ematical or logical operations, each operation in a hardware accelerator can implement a

complete compute kernel in the accelerator’s target application domain. As each operation

covers a coarse-grained computation and each hardware accelerator has a limited target

application domain, the design of hardware accelerators can use transistors more efficiently

and deliver better performance or energy consumption than general-purpose processors

when accomplishing the same task.

From the software design perspective, integrating hardware accelerators and the

domain-specific interface these accelerators expose to the rest of the world dramatically
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shifted the programming paradigm. Programmers no longer describe the low-level detail

of the algorithm using the authoring programming language but only need to invoke a

function/method that maps to an algorithm in an application domain that an underlying

hardware accelerator implements.

In addition to addressing the demands in accelerators’ original target domains, re-

cent research projects have successfully demonstrated the potential of accelerating a broader

spectrum of problems using these domain-specific functions. Examples include using AI/ML

accelerators for database queries [86, 45, 90], fast Fourier transforms [111], or scientific ap-

plications [123, 122, 88, 55, 57], and using ray tracing accelerators for data analytics [223].

As computer systems continue to seek performance gain and energy efficiency through

heterogeneous computing and hardware accelerators, computer programming will continue

moving toward an accelerator-intensive model. Coped with emerging research outcomes

in democratizing hardware accelerators, the future driving force of performance will scale

with the relatively faster-growing performance gain on functions that hardware accelerators

implement.

However, none of the existing benchmark suites can evaluate the performance

growth of leveraging domain-specific accelerators due to the following challenges:

• Conventional applications implement their versions of kernel algorithms. The imple-

mentation can only automatically leverage hardware accelerators’ functions by signif-

icantly revisiting the code.

• As many hardware-accelerated functions are traditionally slower or higher-complexity

algorithms (e.g., matrix multiplications, fast Fourier transforms), existing applica-
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tions tend to avoid using these functions, eliminating the opportunities for hardware

acceleration.

• As the hardware/software interfaces of hardware accelerators are more domain-

specific, we need to perform non-trivial code transformations to map an application

outside an accelerator’s target domain into a problem inside the domain.

This section presents Accel-Bench, a benchmark suite targeting the future world

of accelerator-intensive programming. Accel-Bench contains applications from various do-

mains that can leverage the most promising hardware accelerators, including tensor proces-

sors, digital signal processors, and ray tracing accelerators. In contrast to conventional pro-

grams, Accel-Bench provides alternative implementations that invoke hardware-accelerated

functions whenever possible. To increase the opportunities for using hardware accelerators,

we carefully re-engineered the algorithms or used different approaches in several applica-

tion kernels to map their core computation into accelerated, domain-specific functions. In

addition to running applications on real hardware, the resulting applications can use simu-

lators like Accel-Sim as long as the framework provides the required hardware-accelerated

functions. This section derives the following insights by evaluating Accel-Bench on vari-

ous platforms. First, the performance of Accel-Bench’s implementations scales better than

existing state-of-the-art GPU implementations generation-by-generation. Second, though

Accel-Bench’s implementation sometimes adopts algorithms with higher algorithmic com-

plexities, the actual performance is more competitive due to hardware acceleration. Finally,

hardware accelerators offer alternative parallelism that conventional programming models

cannot provide to improve performance further.
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In summary, this section makes the following contributions.

1. Presents the first benchmark suite that considers the use of hardware accelerators in

heterogeneous computers.

2. Presents a set of algorithms that allow applications beyond hardware accelerators’

target domains to take advantage of the innovations of hardware accelerators.

3. Presents insights into potential programming paradigms for composing performance

code.

4. Presents a benchmark suite that can guide the development of democratized hardware

accelerators.

4.2 Motivation

With performance improvements relying more on hardware accelerators, program-

mers must depend more on functions with hardware implementations to take advantage of

accelerators’ relatively faster performance scaling when composing applications. As a result,

the future high-performance programming paradigm should intensively invoke hardware-

accelerated functions instead of encouraging programmers’ customized implementation of

algorithms.

Accel-Bench fills in the gap of evaluating the benefit of the emerging, hardware-

accelerated programming paradigm and adopting new hardware technologies in a broader

spectrum of applications. This section will motivate this work and highlight popular, com-

mercialized hardware accelerators.
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Figure 4.1: The floating point operations per second (FLOPS) of the top-performing CPUs,
GPUs, and TPUs between 2017 and 2023

4.2.1 The case of Accel-Bench

Several key technology trends push the development of Accel-Bench. These trends

include the relatively faster performance scaling and the popularity of hardware accelera-

tors, the encouraging research outcomes of democratizing hardware accelerators, the shift

to domain-specific style programming models, and, most importantly, the absence of a

benchmark suite reflecting the paradigm shifts.

The discontinuation of Dennard scaling and the adoption of hardware acceler-

ators

The discontinuation of Dennard scaling increases the power density as the pro-

cess technology shrinks. The increased power density limits the performance gain of

general-purpose processors. Figure 4.1 shows the giga-floating point operations per sec-

ond (GFLOPS) that best-performing Intel Xeon processors, NVIDIA data center GPUs

(conventional vector/CUDA Cores Only), and two representatives of AI/ML accelerators,
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Google’s data center TPUs and NVIDIA’s Tensor Cores, can deliver at the year each gener-

ation of the commercialized product rolled out. Despite the lithography improvement from

14 nm to 7nm for Intel CPUs, the FLOPS per core only improves by 3.4×. On the other

hand, NVIDIA GPUs’ CUDA core performance also receives 21× improvement in the same

period as the increasing number of CUDA cores per chip. In the meantime, the FLOPS

of the most representative AI/ML accelerator, TPUs reveals 41× improvement. NVIDIA’s

Tensor Cores also see a very close 39× improvement as TPUs. Using the log-scale rep-

resentation in Figure 4.1, this figure shows that AL/ML accelerators consistently deliver

performance at a higher order of magnitude than GPUs. Based on the trend of faster per-

formance scaling and the current performance of hardware accelerators, we can project the

gap between conventional general-purpose scalar/vector cores and AI/ML accelerators to

widen.

Broader spectrum of applications

Similar to the technology trend as GPGPUs, we have seen the emerging research

outcomes of applying AI/ML accelerators on other application domains. For example, as

most accelerators can perform general matrix multiply efficiently, existing projects have

demonstrated the use of AI/ML accelerators in other matrix-based applications, including

image processing and database queries [87, 45, 90, 123, 122, 88, 111, 55, 57].
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(a)

(b)

(c)

Figure 4.2: Programming models using (a) GPGPU (b) Hardware-accelerated functions
and (c) Hardware accelerators without natively support of functions
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Hardware-accelerated-function-based Programming model

Unlike general-purpose processors, the programming models on hardware acceler-

ators are more domain-specific and API-based. Figure 4.2 illustrates the difference between

the emerging and conventional models. In conventional programming models (i.e., Fig-

ure 4.2(a)), the programmer typically describes the algorithm and resource allocation at a

very fine-grained level. In contrast, the hardware-accelerated function programming model

(i.e., Figure 4.2(b)) only allows the programmer to call the API function through parame-

ters without modifying the detail inside the cublasGemmEx() function. As a result, when

the underlying accelerator lacks support for the desired functionality, the programmer must

manually perform some data transformation before calling the hardware-accelerated func-

tion to perform the computation. In this work, we name this style of programming paradigm

as hardware-accelerated-function-based programming model. Figure 4.2(c) illustrates such

an example from a prior work that implements GEMM using the convolution 2D function

on Edge TPU [88]. As Edge TPUs focus on inference, Edge TPU only implements matrix-

vector and convolution 2D functions. Therefore, the programmer must explicitly compose

two additional for-loops before calling the hardware-accelerated conv2D to re-layout input

data and one for-loop after the function call to present the result as the application desires.

However, prior work still shows that a hardware-accelerated-function-based programming

model outperforms its counterparts even with such overhead [88].
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Type of Accelerators Commericalized Examples Accelerated Functions

AI/ML Accelerators [97] [10] [38, 144] GEMM/CONV

[73, 72] [7]

DSP [8, 150, 141] FFT

Ray Tracing Accelerators [38, 144] BVH Tree

Table 4.1: Popular accelerators and their accelerated functions

The absence of benchmark suite

To our knowledge, Accel-Bench is the first benchmark suite targeting the hardware-

accelerated-function-based programming model. Existing heterogeneous benchmark suites

only focus on supporting CPU and GPU implementations but do not provide versions

that can leverage hardware accelerators [89, 27, 67]. Benchmark suites like MLPerf [163]

can leverage AI/ML accelerators but only offer insights to applications within the AI/ML

domain, not others.

4.2.2 Commercialized Hardware Accelerators

Due to the demands of real applications, hardware accelerators have been rapidly

adopted and commercialized in modern architectures. The most promising categories of

hardware accelerators include AI/ML accelerators, digital signal processors, and ray trac-

ing accelerators. Table 4.1 summarizes these accelerators and their commonly supported

functions.
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AI/ML accelerators

AI/ML accelerators are ubiquitous in all forms of modern computer systems. On

high-performance computers, AI/ML accelerators can exist as standalone co-processors as

Google’s Tensor Processing Units (TPUs) [97] or part of the GPU cores as NVIDIA’s Tensor

Cores [38, 144] or AMD’s Matrix Cores [7]. AI/ML accelerators can also be part of system-

on-chip (SoC) solutions in personal computers or mobile/embedded platforms. Famous

examples include Intel’s GNA accelerators, Apple’s Neural Engines [10], and Google’s Edge

TPUs [73, 72].

For accelerators targeting the forward pass or inference in AI/ML applications,

these accelerators provide functions corresponding to 1D or 2D convolutions or fully con-

nected operations (i.e., matrix-vector multiplications). Accelerators targeting the training

process, especially the backward propagation phase, must implement domain-specific func-

tions with matrix multiplications at their cores.

Due to the importance of AI/ML applications and mismatching processor-

application demand, this work envisions AI/ML accelerators will last in the foreseeable

future and related mathematical functions will continue to be the target of performance

improvement. Accel-Bench therefore focuses on using mathematical functions in these ac-

celerators.

Digital Signal Processors and Hardware Codecs

Microprocessors and software implementations once replaced DSPs and hardware

codecs. However, we have seen the renaissance of DSPs and hardware codecs in modern
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architectures for several reasons. First, as the human-computer interface changes from text-

based commands to voice control and image/video sensor inputs, together with the demand

for immersive experiences and high-resolution video, the relatively slow improvement of

microprocessor performance cannot catch up with the application demand. Second, as

popular AI/ML applications rely on image, audio, and video as inputs, data center servers

must extract helpful information and features from these inputs at a speed that matches

the performance of AI/ML accelerators. Third, as wireless communication becomes the

primary data exchange method and the high bandwidth demand, computer systems also

need an accelerator to parse signals from the antenna. Finally, even though microprocessors

can perform these tasks, they cannot offer the same energy/power efficiency as DSPs and

codecs.

Beyond traditional standalone DSPs and codecs [8, 150, 141], they have become

a standard integration in modern GPU architectures [38, 144] and SoC solutions. These

DSPs and codecs typically offer transformations that convert signals from one space into

a numerical system that software can digest, clean up the noises in the signals, or decryp-

t/encrypt/compress/decompress data.

We found fast Fourier transforms (FFTs) relatively common among supported

transformation methods in these accelerators. Therefore, HDBench focuses on using FFTs

in our applications.

Ray Tracing Accelerators

As the demand for immersive user experience grows, ray tracing hardware gains

ground in modern GPU architectures. For example, NVIDIA has integrated RT Cores since
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Volta architecture. Ray tracing algorithm is irregular and more complex to compute than

conventional rendering methods that are embarrassingly parallel and highly regular. Cur-

rent ray tracing hardware accelerates the bounding volume hierarchy (BVH) tree traversal

process that tests if a ray intersects with a bounding volume/object. Research projects have

demonstrated the use of RT Cores in accelerating nearest neighbor search problems [223]

and Monte Carlo simulations [169].

Accel-Bench includes RTNN to compare alongside other implementations of near-

est neighbor search. However, as ray tracing hardware is still evolving, we aim to add more

applications using ray tracing hardware in the future.

4.3 The Accel-Bench Benchmark Suite

Accel-Bench aims to allow the community to access the potential of programming

using hardware-accelerated functions, evaluate performance scaling with emerging hard-

ware accelerators, and assist the architecture design of more general hardware accelerators.

Accel-Bench identifies a broad spectrum of applications that cover several vital dwarfs

while their algorithmic problems can map to hardware-accelerated functions. Accel-Bench

revisited these applications and revised their state-of-the-art implementations to leverage

existing/potential hardware-accelerated functions. This section will describe the goals and

the detailed implementations of Accel-Bench.
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4.3.1 Overview

To achieve the goals of designing and evaluating future accelerator-rich computer

architectures, Accel-Bench has the following features.

Efficient implementations on various programming models Each application in

Accel-Bench offers efficient implementations of various programming paradigms on differ-

ent computation models to enable the access of the programming paradigms relying on

hardware-accelerated functions. Each application contains at least three versions of imple-

mentations with (1) a pure CPU-based implementation, (2) a GPU-accelerated implemen-

tation, and (3) an implementation using the hardware-accelerated-function-based program-

ming model.

Hardware-accelerable function interface the application code in Accel-Bench calls

high-level hardware-accelerable function interfaces to facilitate the evaluation of different

types of hardware accelerators. These functions map to popular hardware-accelerated func-

tions (e.g., GEMM, FFT, etc.) that a future general-purpose programming paradigm can

potentially implement. In addition to the default implementation of functions we provided,

the user can easily customize the back-end implementations without significantly rewriting

the code.
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Algorithms that use hardware accelerated functions As hardware accelerators im-

plement a coarse-grained algorithm in their hardware design, the hardware-accelerated ver-

sion of each application in Accel-Bench will contain non-trivial transformations that allow

the application to leverage hardware-accelerated functions. These transformations typically

include a change in data dimensionalities and types. Some transformations may even use a

different algorithm to tackle the same problem.

Supporting architectural simulators Another target of Accel-Bench is encouraging

the development of more generic hardware accelerators. Therefore, applications in Accel-

Bench support architectural simulators like Accel-Sim [102]. The aforementioned virtual

function feature also helps support simulators as the user can call functions that the under-

lying architectural simulators support as the back-end.

Publicly available source code and datasets Finally, we will open-source Accel-Bench

applications 1. All applications will contain pointers to real datasets or provide generators.

4.3.2 Accel-Bench’s Accelerated Library and Application

As Accel-Bench promotes and evaluates the emerging hardware-accelerated-

function-based programming model, each application will contain a version besides the

state-of-the-art CPU/GPU implementations. Therefore, Accel-Bench provides an acceler-
1The current version is anonymized in https://anonymous.4open.science/r/hdbench-B2C9 before this

work is published.
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(a)

(b)

Figure 4.3: The Accel-Bench library’s (a) function definition in the header file and (b)
hardware-accelerable functions

ated function library that provisions function with the potential mapping to existing/fu-

ture hardware accelerators. Accel-Bench’s unique version of the benchmark implementation

leverages these functions as much as possible.

Each Accel-Bench’s hardware accelerated version of the benchmark will include the

header file of HDBench’s library. The current implementation of the library consists of fre-

quently used functions, including convolution (Conv2D/Conv3D), general matrix multiply

(GEMM), discrete Fourier transforms (FFT), and matrix-vector/fully connected (GEMV).

Figure 4.3(a) shows an exemplary function declaration of a hardware-accelerable

function in the library header of Accel-Bench. Following the interface defined by the function

declaration in the header file, the function implementation in Figure 4.3(b) can provide
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multiple versions of code, each potentially mapping to a different accelerator. In the example

of Figure 4.3(b), the accel hgemm() will use the implementation of Figure 4.2(b) if the user

sets the TensorCore flag when making the library or Figure 4.2(c) if the user sets the ETPU

flag when making the library. When running an application on real machines, the user can

choose the version of the accelerated library to link dynamically.

Figure 4.3(c) shows a hardware-accelerated coding example from genetic relation-

ship matrix (GRM) in Accel-Bench. The core algorithm only invokes accelbench gemm(),

the implementation handles the data transformation and internally calls the cuBLAS li-

brary that Tensor Cores can accelerate or any other implementation if the user sets the

corresponding compilation flag.

4.3.3 Workloads

Table 4.2 lists the applications that Accel-Bench includes. These applications

cover dwarfs, including dense linear algebra, Structured Grid, Spectral Methods, and Graph

Traversal. These applications fall into image processing, data mining, physics simulations,

genomics, signal processing, web mining, and social network analysis beyond the domains

of the hardware accelerators that modern computers provide.

However, as hardware accelerators implement complete kernel functions, we must

revise these applications’ algorithms and perform non-trivial code rewriting to leverage

hardware-accelerated kernel functions. The following paragraphs describe our efforts to

allow these applications to use hardware accelerators.
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Canny Edge Detection (CED)

CED contains a series of processes to detect the edges of images. CED includes

Gaussian Filtering, Non-Maximum Suppression, and edge detection with Hysteresis. The

Accel-Bench’s accelerated version revisited the Convolution for Gaussian Filtering and data-

level parallelism with hardware-accelerated convolution functions.

For state-of-the-art GPU version, Accel-Bench includes pure CUDA implementa-

tion from Chai benchmark suite [67]. We use RosettaCode [65] as baseline CPU implemen-

tation.

Fully Homomorphic Encryption (FHEW)

Fully homomorphic encryption (FHE) is an emerging approach that enables con-

fidential computing using encrypted data on an untrusted third party without decryption.

However, as the encrypted noise aggregates after each operation, FHE must perform ad-

ditional computations to reduce the noise level. The common practice is to apply Gen-

try’s Bootstrapping [64, 53] mechanism. The modern implementation adopts the idea from

Chillotti [35] by reducing the complexity of solving the polynomials using Fast Fourier Trans-

form (FFT) or numerical theoretic transform (NTT). Accel-Bench’s accelerated version re-

places the FFT/NTT code in our baseline with hardware-accelerated FFT. The current ver-

sion calls functions from the hardware-accelerated cuFFT library. The CPU baseline comes

from the GAP Benchmark suite [21] as a baseline. For the GPU, we utilized cuBLAS [142]

with and without Tensor Cores to accelerate matrix multiplication, along with CUDA ker-

nels, to calculate the Hamming product and summarize the final count.
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Genomic Relationship Matrix (GRM)

GRM is an important application in the genetic analysis of human traits. Equa-

tion 4.1 computes the average genetic similarity between individuals for each element of the

GRM.

GRMij = 1
S
∗

S∑
s=1

(xis − 2ps)(xjs − 2ps)
2ps(1− ps) (4.1)

In Equation 4.1, xis and xjs indicate the number of copies of the non-reference

base at location s for individuals i and j, and ps is the expected frequency of the non-

reference base at location s in the population. The genome contains a total of S SNV

(Single Nucleotide Variation) location markers.

The GRM workload starts with initializing a standardized genome matrix W as

shown in Equation 4.2.

Wij = (xij − 2pj)√
2pj(1− pj)

(4.2)

Then, GRM averages the multiplication of W with its transposed W T , as in Equation 4.3.

GRM = (W ∗WT )
S

(4.3)

The continuous iterations of Equation 4.1 to Equation 4.3 make matrix multipli-

cation accelerators well-suited option for GRM. However, Accel-Bench has to pre-process

to calculate the expected frequencies ps so enable matrix multiplication in Equation 4.3.

Accel-Bench’s CPU baseline comes from Plink2 [26] in Genomics Benchmark

suite [183]. There is no state-of-the-art CUDA/GPU implementation of GRM, so we de-

grade Accel-Bench’s implementation to use non-tensor-core accelerated cuBLAS function

(but still enjoys highly optimized CUDA core acceleration) as the pure GPU baseline.
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Heat (Heat2D/Heat3D)

Accel-Bench includes two benchmark applications in simulating heat dissipation

in 2D and 3D structured chips/materials. The benchmark has wide applications in many

engineering fields, such as fluid dynamics [23, 61, 84], electromagnetism [12, 107, 192],

mechanical engineering [161, 14, 184], meteorology [15, 99, 165, 166], cellular automata [134,

139, 175, 176], and image processing [154, 195, 203], use stencil computations.

The simulation performs stencil operations on 2D or 3D neighbors, depending on

the dimensionality of the design. Each stencil operation changes an element’s tempera-

ture by multiplying a set of coefficients on its neighbors and itself. One of Accel-Bench’s

acceleration is mapping the stencil operation to convolutions. As modern AI/ML acceler-

ators offer hardware-accelerated convolutions for convolutional neural networks and image

processing, mapping stencils to convolutions will enable the use of these functions (e.g.,

tensor core accelerated convolution in cuDNN [145]). However, the trade-off is the waste of

multiplications on zeros for coefficients mapping to non-immediate neighbors in the convolu-

tion kernel. Accel-Bench also offers another accelerated implementation using Fast Fourier

Transform (FFT) based on the recent research projects [4]. The FFT version of H2D/H3D

uses cuFFT [143].

KMeans

KMeans is a well-known and popular clustering algorithm in data-mining with

high dimensionality. The input dataset of KMeans contains n records standing for n input

data points. Each record contains d different attributes that represent d dimensions in a
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high-dimensional space. The application receives k initial query cluster centers, and the

goal is to assigns each point to its closest cluster and then updates each of the k cluster

centers with the mean of that cluster group. This process repeats for a defined number of

iterations iteration and until the result converges.

The main computation in KMeans is to compute the Euclidean distances between

a data point and all cluster centers as Equation 4.4.

d(u, v) =

√√√√ d∑
i=0

(ui − vi)z2 (4.4)

The cost is especially high as the data dimensionality goes large. Fortunately, Equation 4.4

can map to matrix multiplications, and since the application is typically error-tolerant.

Equation 4.4 becomes a great candidate using matrix multiplication accelerators. Accel-

Bench’s implementation recalculating and applying weights to the nearest k to enable the

application of GEMM in calculating Equation 4.4.

KMeans is a very popular application in other benchmark suites [27, 89]. Our

baseline implementation chooses [27] as the same benchmark suite includes a GPU imple-

mentation, and there is no significant performance difference from the other.

K Nearest Neighbor (KNN)

KNN is a common algorithm where KNN returns the k closest neighbor and the k

associated Euclidean distances. Researchers and practitioners apply KNN in domains such

as 3-dimensional object rendering, content-based image retrieval, statistics, and biology

(gene classification). Computer scientists have intensively investigated solutions to accel-

erate KNN on platforms including CPU [93, 46, 138], GPU [160, 85, 120], and hardware
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accelerators [156, 211]. As the most time-consuming computation in KNN is performing the

Euclidean distances, Accel-Bench’s accelerated version also focuses on Euclidean distance

between data points and randomized cluster centers using accelerated matrix multiplica-

tions.

We leverage the implementations from KNN-CUDA [196] repo for state-of-the-

art CPU and GPU baselines. Accel-Bench’s accelerated version modified the Euclidean

distances implementation as KMeans to apply cuBLAS and invoke Tensor Cores for further

acceleration. In addition, Accel-Bench also includes RTNN [223] implementation as another

accelerated implementation using Ray Tracing cores.

PageRank (PR)

PR [148] is a representative graph algorithm that is especially useful in Search

engines [167], social networks [83, 220], and data mining [205]. The input of PR is a vector

that contains the score of all vertices (i.e., web pages or users) in a graph and an adjacency

matrix that represents the connectivity of vertices in the page. The main algorithm of PR

computes Equation 4.5 iteratively.

PR(v) = 1− d
|V |

+ d
∑

u∈N−(v)

PR(u)
|N+(u)| (4.5)

In Equation 4.5, V is a set of vertices v, d is a set damping factor, |V | is the number

of vertices, N−(v) is the set of vertices that are incoming neighbors of v, |N+(u)| is the

number of vertices that are outgoing neighbors of u, and PR(u) is the score of vertex

u. Since Equation refeq:PR is essentially a matrix-vector multiplication. Therefore, PR

is an ideal candidate for using the acceleration (GEMV) in AI/ML accelerators. For the
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baseline CPU implementation, Accel-Bench uses the GAP Benchmark suite [21] with a

sparse vector matrix implementation (SpMV). We also use cuBLAS [142] without Tensor

Cores to accelerate the vector-matrix multiplication on the GPU.

Short-Time Fourier Transform (STFT)

STFT is a well-known Fourier transform used for spectral analysis in applications

such as digital signal processing [24], seismic analysis [116, 117], music and audio analy-

sis [126, 132], Electroencephalography (EEG) [109, 5]. STFT breaks a longer time signal

into shorter segments of equal length, and then computing the forward Fourier transform

on each segment. STFT plots these segments to produce a spectrogram. As each seg-

ment is performing an iteration of FFT, Accel-Bench’s implementation of STFT leverages

hardware-accelerated FFT functions from tcFFT [111].

Accel-Bench’s CPU baseline uses the implementation from Rosetta Code [60]. The

GPU baseline comes from cuFFT [143] without Tensor Core supports.

Triangle Counting (TC)

TC plays a crucial role in characterizing graphs [39]. TC is also popular in com-

puting important statistics such as clustering coefficients. Several ways to implement the

TC algorithm include those centered on Parallelism [16, 208, 200], MapReduce [106], and

wedge (a path of length two) sampling [172].

Accel-Bench’s accelerated version computes TC using matrix multiplication by

taking the lower and upper halves matrices, L and U , of adjacency matrix, A, so that

A = L + U . Then, Accel-Bench’s accelerated version calculates B = LU , followed by
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C = A ◦ B where ◦ is the Hamming product. Finally, compute the total sum of triangles

as n = 1
2

∑
i

∑
jCij . The baseline CPU implementation also comes from the GAP [21].

4.4 Experimental Methodology

Accel-Bench can run on both real machines and architectural simulators. This

section provides the details of our evaluation platforms.

4.4.1 Evaluation Platform

Name Component Notes

CPU Core i5 12600K 3.7 GHz

Main memory 64 GB DDR4-3200

GPU (default) RTX 2080 2944 CUDA Cores

368 Tensor Cores

8GB Device Memory

GPU (3090) RTX 3090 10496 CUDA Cores

328 Tensor Cores

24GB Device Memory

GPU (4090) RTX 4090 16384 CUDA Cores

512 Tensor Cores

24GB Device Memory

Table 4.3: Machine configurations

To evaluate the effect of programming in hardware accelerated API and compare

the performance, Accel-Bench evaluates the benchmark applications using machines with

various generations of NVIDIA GPUs. We selected NVIDIA GPUs for the following reasons.
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Benchmark Small Medium Large

CED 6 MB[197] 25 MB[197] 100 MB[197]

FHEW 20.64 MB [35] 516 MB [35] 1032 MB [35]

GRM 246 MB [183] 984 MB [183] 1.4 GB [183]

Heat2D/Head3D 7.5GB [27] 25.6 GB [27] 59 GB [27]

KM 67 MB [27] 134 MB [27] 268 MB [27]

KNN 8 GB 32 GB 128 GB

PR 37.9 MB [135] 201 MB [135] 461 MB [135]

STFT 1 MB [206] 2 MB [206] 4 MB [206]

TC 37.9 MB [135] 201 MB [135] 461 MB [135]

Table 4.4: Volume and sources of the datasets used

First, recent NVIDIA GPUs offer various hardware accelerators, including Tensor Cores

for AI/ML workloads, RT cores for ray tracing algorithms, and NVENC as hardware video

codecs. Second, despite the absence of dedicated hardware accelerators, some CUDA library

functions (e.g., cuFFT for FFT, convolution in cuDNN) can map to existing hardware

accelerators, and the function call can be easily swapped to the corresponding hardware

accelerators, if necessary. Some CUDA library functions can internally leverage Tensor

Cores to achieve better performance than the programmer’s implementation. Third, due

to CUDA’s popularity, simulators support CUDA functions that reduce the complexity of

porting. Finally, using the same library implementations will allow this work to compare

the performance among different generations quickly without revisiting the code.

Table 4.3 shows the machine configuration and 3 GPUs used in this work. The

default server in this work uses an Alder Lake processor with base frequency running at 3.7

GHz. We turned off the efficient cores on this processor to ensure the best single-thread

performance. The server contains 64 GB of main memory and runs Ubuntu 20.04 with
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kernel version 5.15.76. We used three different GPUs at comparable market segments in

Turing (RTX 2080), Ampere (RTX 3090), and Ada Lovelace (RTX 4090) architectures. The

default configuration uses the RTX 2080 server.

To evaluate Accel-Bench on architectural simulators, we used the default server to

run Accel-Sim. We selected Accel-sim as this simulator supports the hardware accelerated

APIs that we used to implement Accel-Bench.

4.4.2 Datasets

This work evaluates Accel-Bench with different dataset sizes. For each benchmark,

we create datasets with small, medium, and large volumes to access the effect of Accel-Bench

under different working set sizes. We used datasets from publicly available sources for CED,

STFT, PR, and TC. For the rest, we use publicly recognized generators to synthesize the

data Table 4.4 summarizes the sources and the size of our datasets.

4.5 Results

This section summarizes our evaluation of Accel-Bench. The result shows that

the hardware-accelerated API-based paradigm that Accel-Bench promotes is on par with

or outperforms the state-of-the-art implementation’s performance.

4.5.1 Performance

On average, using hardware accelerated API as the programming paradigm can

speed Accel-Bench applications by 1.14× to 1.77× compared to the state-of-the-art GPU
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Figure 4.4: The performance result on the default machine

implementations, despite that GPU implementations are already 2.8× to 6.5× faster than

CPU implementations. Figure 4.4 details the relative speedup of running Accel-Bench on

the default server, compared to the CPU baseline.

The performance gain of using hardware-accelerated APIs is generally more sig-

nificant when dataset sizes become more extensive. As the data structures that hardware-

accelerated APIs accept do not always fit the original application’s data structures, Accel-

Bench must contain code to explicitly convert and prepare data structures for the inputs

and outputs of hardware-accelerated APIs. When the dataset becomes larger, the increased

complexity in the accelerated function’s counterpart helps mitigate the overhead of such a

process.

H2D and H3D provide another aspect that shows the strength of hardware-

accelerated APIs. Despite simulating the thermal states using stencil operations, H3D

additionally considers twice as many diagonals as H2D. Therefore, the computation of H3D

becomes significantly higher than H2D. The current Accel-Bench implementation maps

stencil operations into convolution and the rest in FFT. Using the convolution function

for stencil will result in zero elements in computation and negate the effect of hardware

acceleration to a certain degree. FFT requires high overhead in data conversion but is also
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Figure 4.5: The latency breakdown in Accel-Bench applications

less optimized due to the absence of FFT accelerators on NVIDIA GPUs. Therefore, the

amount of computation in functions that hardware-accelerated APIs can accelerate does not

allow hardware-accelerated APIs to gain performance. In contrast, hardware-accelerated

APIs become more effective as these functions take more computation in H3D.

Figure 4.5 provides the breakdown of latencies in various versions of Accel-Bench

applications. Without hardware-accelerated functions, the CPU baseline averages 46%,

50%, and 52% for the small, medium, and large datasets in the hardware-accelerable code

regions. This confirms that Accel-Bench selected the most critical code in each application.

With customized GPU kernels, the hardware-accelerable code regions only account for these

three datasets’ 12%, 18%, and 19% of time. The hardware-accelerated version brings down

the portion of hardware-accelerable code to just 3%, 8%, and 9%.

The file I/O and data deserialization code emerge as the most critical stages and

consume 67%, 55%, and 46% of the time of the three datasets. The data movement overhead

between the host main memory and GPU/accelerators also consumes a comparable amount

of time as the hardware-accelerated code, with an average of 4%, 8%, and 7% in these three

datasets. The result suggests the increasing importance of data movements in hardware-

accelerator-based architectures. Even if the file I/O can be fully optimized with in-memory
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Figure 4.6: The performance comparison between two generations of NVIDIA GPUs and
Tensor Cores

database/storage, the movement overhead between the host main memory and accelerators

is still not negligible.

4.5.2 Performance comparison and projection for later generations

Another reason for advocating programming using hardware-accelerated API is

the potential of performance scaling with the evolvement of hardware accelerators. We

perform experiments that run unmodified Accel-Bench implementations using CUDA cores,

and hardware accelerated library on RTX 2080, RTX 3090, and RTX 4090 to compare

their relative performance on two generations of cards targeting similar market segments.

Figure 4.6 shows our result. Despite RTX 3090 has 10496 CUDA cores, 3.57× more than

that on RTX 2080 of the default server using RTX 2080, the geometric mean of speedup over

the same application on RTX 2080 only ranges between 1.69× and 1.92×. However, using

the hardware accelerated library, the same benchmark on RTX 3090 achieves an average

speedup over RTX 2080 by 2.05× to 2.34×, even though the amount of tensor cores on RTX

3090 is slightly fewer than RTX 2080. The result reveals that the architectural innovation

of hardware accelerators like Tensor Cores would power more performance gain than relying

on increasing conventional GPU cores.
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Figure 4.7: The speedup of hardware-accelerated function in Accel-sim over their GPU
baseline implementations

Comparing RTX 3090 with RTX 4090, which has 16,384 CUDA cores, 1.56× more

than that of RTX 3090, the performance gain has geometric means between 1.29× and

1.62×. RTX 4090 also has 1.56× more Tensor Cores than RTX 3090, but the performance

gain has geometric means between 1.61× and 1.96×, revealing more significant performance

scaling over hardware accelerated function potentially due to the new type of parallelism

(e.g., matrix tiling parallelism) that hardware-accelerated functions can better exploit.

4.5.3 Support for Accel-Sim

Supporting architectural simulators allows Accel-Bench to assist the development

of more generic hardware accelerators on selected functions. We examined the composed

hardware-accelerated Accel-Bench applications and compared the performance of GPU im-

plementations both on Accel-sim for this purpose.

Figure 4.7 shows the relative speedup of using hardware-accelerated functions

compared to their GPU counterparts. Unlike running on real hardware, where hardware-
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accelerated functions can help most applications to receive speedup, we only see KNN, H2D,

KMeans, PR, and TC get a significant performance gain. These applications all use cuBLAS

GEMM/GEMV, which can potentially use Tensor Cores acceleration in their implementa-

tions. It seems that the version of Accel-sim that we are working on has implemented the

GEMM/GEMV function using hardware accelerators.

However, for other benchmark applications, we have seen a significant slowdown

because the current implementations of CONV and FFT in Accel-sim do not leverage hard-

ware accelerators but use pure CUDA software implementations. The higher complexity of

implementing these functions hurts performance. On the other hand, this result also pointed

out the need for hardware accelerators in the programming paradigm that we envisioned in

this work.

4.6 Related Work

Here, in this section, we focus solely on prior work relevant to accelerator Ac-

celerator centric programming. Compared to many previous benchmark suites that have

attempted to capture aspects of accelerators, we present a very diverse collection of appli-

cations. Spanning 3 kernels over 7 domains, that can be categorized into 4 dwarfs.

Previous benchmarks often focus on the investigation of certain characteristics

or methods of performance improvement. Parboil [182] contains a collection of bench-

marks from throughput computing application from several domains. Benchmarks, includ-

ing Chai [67] and GenomicsBench [183], have a some focus on analysis of task and data

parallelism, although contain very somewhat target domains. Some benchmark suites all
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together lean into concentrated domains. SpMV [224] provides a number of applications

for Sparse matrix vector multiplication on FPGA. The GAP Benchmark suite [21] focuses

on graph applications, characterization, and optimizations, providing multiple implemen-

tations. GenomicsBench [183] addresses the lack of benchmark suites for bioinformatics in

computing research.

Altis [89], Rodinia [27], and Chai [67] each target heterogeneous computing simi-

larly to Accel-Bench. Altis [89], much like Accel-Bench takes inspiration from other bench-

mark suites, in particular Rodinia [27] and SHOC [47], and modernize the applications.

However, these benchmark suites do not support emerging hardware accelerators that Accel-

Bench does, to help construct new architecture. In regards to their approach of applications,

none have a concentrated effort on specific kernels, but do provide several alternative im-

plementations of an application, such as Chai [67] and GAP [21]. There has been great

interest in the direction of application designs, trying to identify the direction that the next

generation of accelerators and how to best utilize them. Daniel suggests that as the compu-

tational complexity of programs, and the problem they were designed to solve grow, such as

large language models contain parameters in the billions [30, 113, 13], the ”cost of building

and running large DL models has led some researchers to declare further improvements in

DL are becoming unsustainable” [214]. O’Boyle has suggested creating another layer of

abstraction between the programmer and hardware accelerators through the compiler to

allow the advancement of hardware, without the tax of refactoring code and mapping to

new APIs being placed on the programer [146]. Accelerators will continue to make improve

their performance with each generation, such as TPUs [97, 96]. Furthermore, these accel-
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erators will continue to be applied to applications outside of their domain [88, 87, 19, 11].

Accel-Bench is the first benchmark suite to quantify hardware accelerators performance

outside of their domain, allow for the design and evaluation of new accelerators, and allow

for the isolated improvements of a single kernel and its uses to a wide breath of applications,

verifying improvements to previous and alternative implementations.

4.7 Conclusion

As computer architecture shifts the path of seeking performance for applications

using hardware accelerators, we must let more applications capable of leveraging these ar-

chitectural innovations. To achieve this goal, we need to research in two directions: a

programming paradigm that helps exploit hardware accelerators and hardware accelerators

with features supporting a broader spectrum of applications. Accel-Bench fills in the de-

mand by revisiting the design of a set of applications and recomposing these applications

using popular mathematical kernels of modern accelerators. Accel-Bench runs on both real

hardware and architectural simulators. This work generates two critical insights. First, a

hardware-accelerated-API-centric programming model is evenly or more competitive than

conventional performance programming methods. Second, as architectural innovations fo-

cus more on hardware accelerators, we have seen more significant gains with upgraded

hardware using a hardware-accelerated-API-centric programming model.

We envision Accel-Bench will encourage more exploration of hardware-accelerated-

API-centric programming models. We also anticipate Accel-Bench can help identify and

design architectures to optimize the potential performance issues in such models.
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Chapter 5

Conclusion

Through these three works, TPUPoint, T2SP, and Accel-Bench, I have constructed

a case to not simply improve upon what is known as these accelerators continue to be con-

structed in the foreseeable future, but considering the wider impact to many domains critical

to fields outside of Ai/ML. Through the works displayed, the opportunity of underutilized

accelerators, that their hardware and software can be untangled and less-restricting, and

the foundation to expand to many hardware’s and domains alike, are the groundwork for

such improvements within the field of accelerated hardware.

TPUPoint examines the conventional notions that applications enable perfect uti-

lization of their domain accelerators. Demonstrating profiling and optimization techniques

to demystify the performance of the TPU accelerator. Opens argument to investigate appli-

cations outside AI/ML domain for potential full utilization. T2SP demonstrates software

stacks that can be made agnostic to accelerator hardware, rather than the conventional

tightly intertwined hardware software stack. Providing evidence that an unbinded accelera-
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tor software stack can achieve non-trivial performance to its counterparts when decoupled.

In culmination of the previous two works, Accel-Bench presents the first benchmark suite

that considers a set of algorithms that allow applications beyond hardware accelerators’

target domains to take advantage of the innovations of hardware accelerators.Presenting

insights into potential programming paradigms for composing performance code. This

work can guide the development of democratized hardware accelerators. Encapsulation

the essence of the total of these works.
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