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Systematic identification of driver mutations in cancer	

Matthew Tsn-Wei Chang 
	

	
The advent of next-generation sequencing has accelerated the search for somatic 

mutations that drive the initiation and progression of human cancers. Much emphasis 

has been placed on the few mutations that occur at high frequency either within or 

across cancer types. Yet most mutations in cancer genomes occur infrequently. 

Nevertheless, in aggregate, these rare mutations play a defining role in as many as 

one-fourth of all human cancers. Distinguishing which rare mutations, amidst a sea of 

incidental passenger mutations, drive critical molecular, biological, and clinical 

phenotypes is a foremost challenge of precision oncology. Here, this dissertation 

discusses complementary computational approaches to identify putative driver 

mutations in cancer with a focus on how such mutations can reveal novel biological and 

clinical insights. The two computational approaches leverage 1) recurrence, one of the 

best markers of selection, to identify mutations that arise more frequently than expected 

by chance and 2) protein structures, as orthogonal biological evidence, to credential 

even private driver mutations through significantly recurrent mutational clusters. These 

methods are applied to mutational data obtained from both retrospectively sequenced 

human tumor samples and prospectively sequenced cancer patients who received 

medical care at Memorial Sloan Kettering. As clinical actionability necessitates first 

understanding the prevalence and properties of driver mutations across diverse cancer 

types, exploration of patterns of driver mutation emergence as well as validating novel 

mutations reveal new insights into the pathogenesis and therapeutic sensitivity of 

human cancers.	 	
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CHAPTER 1*	

INTRODUCTION	

	

1.1 Overview	

Cancer can be thought as a “disease of the genome”1. As normal cells acquire 

somatic mutations, some contribute to aberrant cell growth that, through successive 

rounds of clonal expansion2, drive the evolution of a tumor3. Few in numbers, these 

driver mutations co-exist with a much larger number of incidental events, or passenger 

mutations. Together, these mutations are the result of diverse processes4 that shape 

the somatic mutational profile of tumors and can vary by cell lineage5, endogenous or 

exogenous mutagens6, and other factors7. Population-scale sequencing of human 

cancers in the last decade has revealed a new reality of mutational heterogeneity: while 

a small number of mutations arise frequently, about which we have learned a great 

deal, most individual mutations arise infrequently. Identifying which rare mutations drive 

the initiation, progression, and response to therapy of human cancers is a perennial 

challenge in translational cancer research. Here, this dissertation first outlines the 

importance of rare driver mutations and how they have guided the treatment of human 

cancers. The following chapters describe two complementary computational 

approaches that integrate orthogonal biological information to identify novel, putative 

driver mutations focusing on how the study of such mutations have revealed facets of 

cancer biology as well as nominated novel biomarkers for cancer therapy.	

																																																								
*Chang MT, Taylor BS. On the impact of rare mutations in cancer. Science 
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1.2 The long tail	

Most mutations in cancer genomes are rare. Whereas the cancer research 

community has justifiably focused on understanding the mutations that occur at high 

frequency in human tumors, but these represent only a small proportion of all known 

mutations. Consequently, the frequency distribution of somatic mutations in cancer has 

a “long right tail” of low frequency or private mutations (Figure 1.1a). This frequency 

distribution reflects a profound mutational heterogeneity that appears to operate on 

several levels and can be defined in many ways (Figure 1.1b-d and Box 1). However, 

the shape of the long right tail can vary from gene to gene, even among those that 

encode components of the same oncogenic signaling pathway (e.g. mutations in the 

PIK3CA, AKT1
8, and MTOR genes, all of which activate the PI3K signaling pathway)9,10 

(Figure 1.1b). As pharmacologic inhibitors targeting each of these mutant oncoproteins 

are being tested in various clinical trials, the identification and characterization of 

activating mutations in these genes, among many others, is relevant to patient care 

independent of their frequency. Beyond still uncharacterized rare mutations in well-

studied oncogenes, a subset of cancer patients remains so-called “driver negative” as 

their tumor genomes lack any known driver mutations. For example, 27% of lung 

adenocarcinomas11, 12% of prostate cancers12, 6% of cutaneous melanomas13, 25% of 

thyroid cancers14, and 18% of glioblastoma15 lack a genetic alteration that is clearly 

oncogenic. While epigenetic alterations undoubtedly play a role in some of these, the 
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growth progression of many of these tumors are likely driven by still unrecognized rare 

or even private mutations. 

 
Table 1.1 Characteristics of the long right tail of rare mutations 
 

The existence of large numbers of rare mutations raises important questions that 

we seek to address in this Review. What defines a rare mutation? Are rare or even 

“private” mutations (i.e. those found in the tumor of only a single patient) biologically or 

clinically important? How do we establish a framework for their identification, 

prioritization, and validation? While we focus here on non-synonymous mutations in 

protein-coding genes, many of these same questions must be addressed for the vast 

array of non-coding mutations in tumor genomes as well. Of course, there is no easy 

definition of what constitutes a rare mutation, and such mutations are often context-

dependent (Table 1.1). For instance, while KRAS G12 is one of the most common 

somatic mutations in human cancer16, the presence of which defines certain cancer 

types (90% of pancreas tumors)17,18, it arises quite rarely in others (<2% of acute 

myeloid leukemias) 19. Similarly, IDH1 R132 mutations arise frequently in gliomas, 
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myeloid leukemias, and cutaneous melanomas but also present rarely in approximately 

20 other cancer types in which it still drives aberrant epigenetic phenotypes despite 

lineage differences12,20. The clinical significance of other rare mutations highlights the 

value of understanding their biology irrespective of their frequency. For instance, FLT3 

D83521-23 is a very rare mutation overall that is more common in a single cancer type 

(>8% of AMLs)19, a finding that drove the development of FLT3 kinase inhibitors that are 

currently under active clinical investigation24,25 (ClinicalTrials.gov NCT02335814). 

Moreover, some rare oncogenic mutations arise in cancer types that are different from 

the cancer types associated with common mutations in the same gene16. Likewise, rare 

mutations also emerge in commonly mutated cancer genes as with KRAS L117 or 

BRAF G596 mutations or in oncogenes more commonly amplified26 than mutated, such 

as with CDK4 R24 and MYC T5827,28. Most challenging of all are rare mutations in rarely 

mutated genes, events often uncovered by orthogonal approaches for discovering novel 

regulators of pathways in cancer. The identification of oncogenic RAB35 as an activator 

PI3K/Akt signaling revealed very rare gain-of-function mutations resulting in constitutive 

activation29. Another is PIK3CB D1067, a rare oncogenic mutation that so far has arisen 

in only a single tumor in several cancer types16,30,31, drives aberrant PI3K signaling, and 

was identified in part by generating preclinical pan-PI3K inhibitor resistance32. These 

are just a handful of examples, among many more, where the translational significance 

of a mutation, defined as the possibility of near-term therapeutic intervention, does not 

always correlate with its frequency in any population.	
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The identification of oncogenic RAB35 typifies how rare mutations inform our 

understanding of the nuance of gene and pathway function. Such rare events may be 

the key mutational event in a substantial minority of patients, but we cannot currently 

distinguish these key events from other infrequent passenger mutations based on their 

recurrence, the most easily measured hallmark of positive selective pressure. These 

events typify the mutational heterogeneity of human cancers that has led to calls for 

sequencing many thousands of additional human tumors33. Yet, recurrence is the 

differentiating feature of relatively few mutations in human cancers (Figure 1.1a). So, 

while additional molecular profiling will surely credential new recurrent mutations, the 

number and frequency of rare mutations (both drivers and passengers) will only grow, 

pushing the long tail out farther but not fundamentally changing the shape of this 

frequency distribution (Figure 1.1e). 
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Figure 1.1: The long right tail of the frequency distribution in cancer. The long right 
tail of the frequency distribution in cancer operates on many levels: a) The frequency 
distribution of somatic mutations in human cancer has a long right tail. Highlighted are 
the position of four either commonly mutated (KRAS and BRAF) or uncommonly 
mutated (AKT1 and MTOR) oncogenes. b) Different hotspot mutations in genes 
[colored as in (a)] arise across orders of magnitude difference in frequency despite 
targeting different effectors of the same pathway. Both the affected cancer types c) and 
the mutant amino acids of a given residue d) of an oncogenic mutation (BRAF V600) 
can also form a long tail (e.g. common in melanomas, rare in prostate cancers). e) 
Unlike for common mutations, the rate of rare mutations discovery is still increasing. f) 
Despite the increasing number of rare mutations discoveries (e), the rate of which new 
recurrent alleles will be discovered relative to the growing number of total mutant 
residues is rapidly decreasing, arguing that additional sequencing will have diminishing 
returns over time. 
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1.3 Allele-specific approach to mutation discovery	

Few therapeutic decisions in the era of precision oncology are made at the level of 

individual genes, but instead at the level of specific mutant alleles. However, to expand 

the provisioning of therapies targeting mutant oncoproteins, we must first understand 

the biological and therapeutic significance of all mutant alleles in these genes. Because 

not all mutations are driver mutations, in even the best characterized and most often 

therapeutically targeted cancer genes, identifying which mutations are important is an 

enormous challenge. Moreover, we have only scratched the surface of the potential 

underlying pleiotropy among the many mutations within a given cancer gene (Figure 

1.2). To identify allele-specific differences within genes requires both computational and 

experimental approaches. 
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Figure 1.2: Alleles rather than genes: Mutant allele-specific functional complexity 
confounds the study of genes. Common, rare, or private mutations in a hypothetical 
gene (X) arise at very different frequencies (as indicated). Some mutations affecting 
distant residues may cluster in physical proximity when the protein is folded in three-
dimensions (arching lines), while other mutations may affect paralogous positions in a 
closely related family member (gene Y). Each of these mutations may possess different 
biological or clinical properties (bottom). Mutations may or may not activate signaling 
(left), transform cells (left middle), sensitize or not to therapy (middle and right) or 
possess different combinations of these phenotypes. For example, mutations may be 
sensitizing in vitro and a biomarker of response to therapy in patients, but cannot 
transform cells by themselves (blue), while other mutations may be activating and 
transforming, but not intrinsically sensitive to drugs (golden). 
 

Distinguishing which among many mutations in each cancer gene are functional is 

an enormous and often gene-specific challenge that demands orthogonal experimental 

approaches. This is especially urgent in cancer genes for which a therapeutic agent 

exists and functional mutations are potentially actionable in patients sequenced in 

oncology clinics today. Careful analysis of protein structure and mutational patterns can 

highlight these rare actionable mutations. For instance, AKT1 and MAP2K1 are key 

mediators of PI3K and MAPK signaling pathway activation respectively. While both 

genes harbor known activating mutations, even the most recurrent mutations in each 

gene are relatively rare compared to mutations in their upstream effectors, PIK3CA and 

BRAF, respectively. Nevertheless, studies show that not all mutations, even in their key 

domains or adjacent residues, are functional. Mutagenesis experiments in AKT1 

identified mutations only in key residues at the interface of the pleckstrin-homology and 

kinase domains result in oncogenic activation8. Likewise, thus far only MAP2K1 

mutations located within the alpha helix A/N-terminal lobe interface result in deregulated 

kinase activity34. But, a fundamental gap remains. To realize the promise of clinical 

sequencing to guide the care of individual cancer patients, we must understand better 
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the biological and therapeutic significance of any mutant allele in these genes and many 

others. With the advent of routine clinical sequencing of active cancer patients, the 

scope and urgency of such studies increases. At Memorial Sloan Kettering Cancer 

Center, we are performing prospective sequencing to inform the care of our cancer 

patient. In the over 10,000 patients sequenced to date, beyond the known recurrent 

mutations in these genes, we have identified mutations affecting 67 and 55 distinct 

residues in AKT1 and MEK1 respectively. Only a minority of these are recurrent and 

have been experimentally studied (6 and 18 in AKT1 and MEK1 respectively). The 

functional significance of the remaining ~98 mutant residues remains unknown. These 

are only two examples of many genes with a similar long tail of experimentally 

uncharacterized mutations for which common mutations in those genes are already 

biomarkers that guide the use of existing therapies. Because we do not know if these 

rare mutations are drivers or passengers, it is unclear whether patients would benefit 

from targeted therapies, thereby limiting the treatment options in advanced cancer 

patients in greatest need of novel approaches. 

While a conservative approach of requiring functional studies prior to clinical testing 

may be justified in mutant genes emerging now as new drug targets, in other cancer 

genes in which a subset of mutations is clearly associated with response to specific 

therapies, a guilty-until-proven-innocent approach is likely warranted. An example of this 

concept are EGFR mutations in lung adenocarcinomas, which predict for a response to 

EGFR tyrosine kinase inhibitors. Rare mutations in the kinase domain of EGFR 

continue to be discovered, but have not necessarily been biochemically validated like 
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more common EGFR alleles. Should patients with rare or even private EGFR kinase 

domain mutations be treated with EGFR inhibitor therapy even before supporting 

evidence indicates it is similarly a biomarker of response to such therapies? Unlike the 

aforementioned AKT1 and MEK1 mutants where the lack of information prevents clinical 

action, cases such as rare KRAS mutants in colorectal cancers could be presumed to 

exert similar phenotypes to more recurrent mutations (guilty) until further clinical 

validation shows otherwise (proven innocent). Other mutations may arise so rarely in an 

actionable cancer gene as to make their study difficult to justify. If these mutations were 

present in the tumors of patients who have already failed standard-of-care therapies, 

might they be presumed a driver and treated accordingly with the corresponding 

targeted therapy? The absence of a response does not prove the mutation was not a 

driver, but a response to therapy would justify broader studies and expand therapeutic 

options for the most advanced patients. The importance of separating such rare 

functional drivers from neutral alleles extends beyond signaling pathways and targeted 

inhibitors to other important molecular phenotypes that may guide the provision of 

newer classes of drugs35-37, especially as immunotherapy is being explored in patients 

with tumors of high somatic mutational load38,39.	

Beyond distinguishing functionally significant from neutral mutations in a given 

cancer gene, the more confounding problem is that subsets of the former may have a 

different functional impact. The clearest demonstration that not all mutations in each 

cancer gene have the same function comes from the nearly 40 years of study into TP53 

function. There is an enormous body of literature plumbing the types and patterns of 
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TP53 mutations in human cancer40. Beyond abundant loss-of-function mutations, many 

TP53 missense mutations have dominant negative or gain-of-function properties that 

lead to neomorphic functions and phenotypes41,42. While the extent of these functional 

differences remains elusive, there is no reason to believe such pleiotropy among 

individual mutations is specific to TP53, as both functional and therapeutic differences 

have been shown among different mutations in many other well-studied cancer genes 

including KRAS
43, EGFR 44, and PIK3CA

45. Translating such functional nuances 

between different mutations in the same gene into a mechanistic understanding of 

pathways is now leading to new therapeutic approaches with allele-specific 

inhibitors46,47.	

The distinct biochemical consequences of different mutations in the same gene 

(Figure 1.2) have implications beyond biological nuance and drug development, but 

have now been shown to affect therapeutic outcomes. For instance, a recent study 

revealed that BRAF mutants with activated kinase activity are all insensitive to ERK-

dependent feedback inhibition of Ras because these mutants, as opposed to wildtype 

Ras, function in a Ras independent manner. However, Ras independence occurs by 

two different allele-specific mechanisms that confer sensitivity to different types of RAF 

inhibitors48. These rare BRAF mutant alleles can be drivers and their mechanism of 

activation and sensitivity to therapy may be specific to different classes of alleles, a level 

of complexity that may exist for other targets, but at present is uncharacterized.	

Even in genes that lack a common mutation, the study of specific rare mutations 

can reveal novel mechanisms of pathway activation and specific therapeutic 



	

	

	

12 

vulnerabilities. One such example is diverse hypomorphic and loss-of-function 

mutations in PIK3R1 that have been documented in several cancer types and result in 

elevated PI3K signaling49. Nevertheless, one rare yet recurrent PIK3R1 Arg348* 

truncating mutation is uniquely neomorphic, producing a truncated peptide that results 

in selective activation of components of the MAPK pathway leading to therapeutic 

sensitivity to MEK and JNK inhibitors50. While uncommon, the differential function of 

such long tail mutations revealed unique PIK3R1 mutation-specific biology and a 

potential biomarker of sensitivity to MAPK and JNK pathway inhibitors. Allele-specific 

functional differences are also emerging among mutations affecting cell-essential genes 

such as those involved in the human spliceosome51-53. For instance, S34 and Q157 

mutations in U2AF1, which together affect ~45-85% of patients with myelodysplastic 

syndrome53 and arise very rarely in other cancer types16, are mechanistically distinct, 

binding distinct sites in the consensus 3’ splice site motif of differentially spliced exons54. 

Other such allele-specific differences exist in transcriptional activity and binding affinity 

among multiple rare mutations in ESR1 (Y537 and D538) in response to endocrine 

therapy in breast cancers55,56.	

Together, these exemplify the broad spectrum of function in which allele-specific 

molecular and phenotypic consequences may arise and suggest that many more 

nuanced functional differences between individual alleles in a cancer gene remain to be 

discovered. These data argue that a renewed focus on individual alleles and allele-

specific effects rather than genes5,57-61 can provide unique insight into facets of cancer 

biology and potential therapeutic vulnerabilities that may, in turn, have the most near-
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term therapeutic benefit, especially as more cancer patients have their tumors routinely 

sequenced to guide their care. Ultimately, precision medicine requires we determine 

whether alleles identified in potential proto-oncogenes are functional and, if so, 

characterize their function and their sensitivity to specific inhibitors	

	

1.4 Biological implications of mutational context	

The majority of both common and rare mutations arise across cancer types of very 

different tissues of origin suggesting these mutations may confer a growth advantage 

across diverse lineages and environments. These mutations may, therefore, confer a 

growth advantage in diverse cell types and tissue environments. Some of the most 

intensely studied somatic mutations arise at varying frequencies in nearly all cancer 

types. If all driver mutations confer a growth advantage, then why do some of them 

arise at such low frequency? Among many possibilities62, the function of a rare driver 

mutation may be conditioned by the context in which it arises. In this Review, we define 

“context” as the biological and physiological setting of a given rare mutation arising in 

patients including the cancer type, cell lineage, amino acid change, the presence or 

absence of other genomic alterations in the affected tumor, and the selective pressure 

of ongoing therapy (Figure 1.3). Here, we discuss how studying the function of rare 

mutations in a context-specific manner can enhance our knowledge of basic oncogenic 

properties and uncover unique context-dependent therapeutic vulnerabilities. 
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Figure 1.3: Context condition rare allele function: Among all mutations observed in 
cancer, the vast majority are passenger mutations (light gray). A small minority are 
driver mutations (dark gray, dark blue) are selected for because they confer gain-of-
fitness to the affected cell. Many of these driver mutations are functional across a broad 
spectrum of biological contexts (e.g. KRAS Gly12 mutations; blue, common mutations). 
Other driver mutations (dark gray) are selected for because they have an aberrant 
function conditioned by the context in which they arise (see Section 1.3). As these driver 
mutations have a function that is context-dependent, they are observed less frequently 
in the long right tail of the frequency distribution of all mutations in cancer. 
 

Lineage. The discovery that many oncogenic hotspot mutations arise in a variety of 

cancer types, often with low incidence, has excited the community about new models 

for testing targeted therapies, such as histology-independent “basket” clinical trials in 

which patients are enrolled based on a defined genetic lesion rather than their tumor’s 

organ of origin. Such studies may, however, reinforce the importance of lineage as a 

modifier of mutant allele function63. Receptor tyrosine kinases such as EGFR and 
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ERBB2 are a well-understood class of pharmacological targets with multiple targeted 

inhibitors of these enzymes approved for the treatment of specific types of cancer. At 

the population-level, these RTKs have a curious pattern of somatic mutations, with 

events clustering in either the extracellular or kinase domains as a function of cancer 

type16. In the case of EGFR, extracellular domain mutations preferentially arise in brain 

tumors, whereas catalytic domain mutations typically occur in lung adenocarcinomas, 

only the latter of which result in the active conformation of the mutant protein to which 

EGFR inhibitors bind, explaining in part the differential efficacy of these drugs in these 

cancer types44. While a similar pattern exists among ERBB2 mutations occurring 

bladder and breast cancers, it is unknown whether such differences will translate into a 

similar therapeutic difference, though this hypothesis is being tested clinically 

(ClinicalTrials.gov NCT01953926). Evidence that lineage is a modifier of function 

among different mutant alleles within the same gene also exists for two rare mutations 

in KRAS. Both A146 and K117 mutations arise nearly exclusively in colorectal tumors 

(~3 and <1% respectively), elevate phosphorylated ERK, and can facilitate cellular 

transformation64-67. However, neither rare mutation can induce pancreatic tumorigenesis 

in vivo68 despite the dependence of pancreas tumors on mutant Ras, indicating a 

functional specificity for colorectal tumors that correlates with their pattern of lineage-

specific emergence. A similar pattern of lineage specificity is emerging in the Rho-family 

GTPase RAC1 for both recurrent (P29 and A159)16,69,70 and rare paralogous mutations, 

which may possess clinical significance for treatment response71.	
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Mutant amino acid. Are different mutant residues at the same codon in the same 

gene functionally equivalent or distinct? Growing evidence suggests that mutant allele-

specific functional differences exist, which adds a dimension of complexity to both 

common and rare driver mutations. A commonly mutated codon in a given gene may be 

mutated to one of several amino acids, some of which are quite rare and form a long tail 

of alleles at that site (Table 1.1), but may represent functionally important differences. 

For instance, while KRAS G12 is not a long tail mutation, a diverse set of mutant 

residues have been observed, many of which are quite rare. Indeed, past studies have 

shown differences in G12 mutant residue-specific GTPase kinetics and biological 

potency43. More recently, work suggests that different KRAS G12 mutant amino acids 

vary in their ability to induce pancreatic tumor formation in vivo
68. KRAS G12R 

mutations, a rare allele overall arising preferentially in pancreas cancers rather than 

other Ras-driven cancer types16, formed tumors more efficiently than other KRAS G12 

mutant alleles. Conversely, KRAS G12S, another rare allele found predominantly in 

gastric and not pancreatic cancers16, failed to form pancreatic lesions in vivo. Further 

biochemical studies are necessary to fully elucidate the consequence of such mutant 

allele-specific functional differences, the extent of which genome-wide is largely 

unexplored. Further mechanistic studies are necessary to confirm these findings and 

determine the extent to which mutant allele-specific phenotypic differences exist across 

a broad spectrum of alleles and whether these differences have clinical implications.	

Co-mutation. The low incidence of rare driver mutations may be driven, in part, by 

their dependence on a secondary genomic event in order to confer their growth 
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advantage, as has now been discovered for rare mutations in BRAF. While hyperactive 

BRAF mutants result in constitutive ERK signaling and are mutually exclusive with 

activating Ras mutations72-74, a recent study described BRAF D594 mutations that 

render the protein catalytically inactive and paradoxically co-occur with activating Ras 

mutations75. These kinase-dead BRAF mutants enhanced Ras-mediated transformation 

through CRAF activation. This mechanism by which kinase-dead BRAF potentiates 

tumorigenesis exemplifies the need to understand how rare co-incident genomic 

alterations condition aberrant signaling pathways. Such discoveries will provide valuable 

insight into how patients should be selected for potentially mechanistically distinct 

targeted therapies, but they may also identify potential synthetic lethal dependences 

that can be therapeutically exploited.	

Selective pressure. Specific selective pressures can uncover rare functional 

mutations while simultaneously placing them in a specific biochemical, biological, or 

therapeutic context. The inhibition of specific oncogenic signaling pathways in 

molecularly defined patients with targeted therapies has proven to be an excellent 

model of short-term experimental evolution in patients. The first such example was 

imatinib therapy in BCR-ABL fusion positive CML, which led rapidly to the identification 

of mechanisms of drug resistance, one of which is the BCR-ABL Thr315Ile gatekeeper 

mutation76 that also arises infrequently in treatment-naïve CML patients77. This 

discovery was a harbinger of what was to come over the next 15 years with the use of 

various targeted inhibitors of diverse mutant oncoproteins. While similar gatekeeper 

mutations have been discovered in other targets (most notably EGFR T790M78, that 
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also arise infrequently pre-treatment79,80) the landscape of rare mutations mediating 

resistance has only become more complex with off-target and adaptive mechanisms of 

resistance emerging. Therapy, therefore, provides an exogenous selective pressure that 

enriched for a rare functional mutation present in primary cancers as well, the study of 

which will inform both future drug development and our mechanistic understanding of 

aberrant target activation81. Another recent example is the study of a lung cancer patient 

with an ALK rearrangement treated sequentially with three generations of ALK inhibitors 

(crizotinib, then ceritinib, then lorlatinib), where an initial ALK C1156Y mutation led to 

crizotinib resistance. After third generation lorlatinib treatment, a second ALK L1198P 

mutation arose that led to relapse but paradoxically re-sensitized the tumor to crizotinib 

therapy82. The discovery of such mutations that arise only under the selective pressure 

of active therapies will likely grow, forming their own right tail, as a greater number of 

increasingly potent and selective drugs are tested and as cancer genomics refocuses 

on clinically advanced and post-treatment disease. 

To date, studies of hotspot mutations in cancer have been limited to within 

individual tumor types70,83,84 or have focused on individual cancer genes across tumor 

types85. A systematic population-scale, cross-cancer, genome-wide analysis of critical 

driver mutations has not been performed. As broad-based clinical sequencing has 

begun to inform the care of individual cancer patients, this would begin to address one 

of the greatest challenges in the practice of genomically driven cancer medicine: 

interpreting the biological and clinical significance of mutations in even presumed 

actionable cancer genes as they arise in oncology clinics. The next two chapters 
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describe two complementary approaches to identify putative driver mutations. As 

recurrence is one of the best understood features of positive selection, we first sought to 

identify mutational hotspots, or mutations that recur more frequently than in the absence 

of selection. Next, as many oncogenic mutations are thought to alter protein function, 

rare mutations proximal to known activating mutations are likely to be biologically 

significant. Therefore, we sought to integrate protein structure to nominate candidate 

driver mutations in a pan-cancer analysis. Together, these complementary approaches 

have nominated thousands of potentially novel hotspots in human cancer and 

uncovered patterns that provide insight into cancer biology.  
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CHAPTER 2*	

IDENTIFYING RECURRENT MUTATIONS IN CANCER	

	

2.1 Background	

Among the best-studied therapeutic targets in human cancers are proteins encoded 

by genes with tumor-specific mutational hotspots, such as KRAS, NRAS, BRAF, KIT, 

and EGFR. The acquisition of somatic mutations is one of the major mechanisms 

responsible for the dysregulation of proliferation, invasion, and apoptosis that is required 

for oncogenesis. Comprehensive genomic characterization of tumors has produced 

significant insights into the somatic aberrations that define individual cancer types1,61, 

broadening our understanding of the dysfunctional molecular pathways that govern 

tumor initiation, progression, and maintenance. These data have spurred the 

development of computational algorithms to identify cancer driver genes, defined as 

those in which molecular abnormalities lead to a fitness advantage for the affected 

cancer cells.	

These computational approaches develop either gene-level statistical models that 

exploit different mutational patterns5,57,58,60 to identify significantly mutated genes or use 

weight-of-evidence-based methods59,61 that are heuristic and ratiometric in approach. 

Together, these methods focus on identifying cancer genes from a multitude of diverse 

molecular abnormalities affecting the gene. However, not all genomic alterations in 

cancer genes are driver alterations. Furthermore, not all driver alterations in a cancer 

																																																								
*Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, Gao J, Socci ND, Solit DB, Olshen AB, Schultz 
N, Taylor BS. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational 
specificity. Nature Biotechnology  
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gene have the same functional impact, and are therefore likely to have varying clinical 

significance. The potentially diverse functional effects of different lesions in the same 

gene are not captured and reported by gene-level models, but are rather assumed to be 

equivalent. However, emerging data indicate that different hotspot mutations in the 

same cancer gene can be functionally distinct in vitro and in vivo and display different 

clinical phenotypes and drug sensitivity44,86-88. Moreover, it is unknown how widespread 

such hotspot-specific functional differences may be.	

To address this challenge, we develop a computational algorithm to identify driver 

mutations, rather than driver genes. We assembled and rigorously curated a large 

repository of cancer genome data consisting of the sequenced tumor exomes and 

whole genomes of 11,119 human tumors representing 41 tumor types. We developed a 

biologically aware, statistically principled computational model by combining observed 

biological phenomena such as nucleotide mutability and varying gene-specific mutation 

rates into coefficients that we incorporate into binomial statistics. From this, we 

systematically identify individual recurrent mutations and associate these with related 

temporal and transcriptional data to investigate lineage-specific variation in mutations, 

and identify novel hotspots with likely clinical implications.	

	

2.2 Method	

For the purposes of this analysis, we first define a driver cancer gene as one in 

which a molecular abnormality leads to a fitness advantage for the affected cancer cell. 

This is the broadest definition that encompasses both initiating lesions on which tumor 
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growth depends as well as lesions arising later in tumor progression that perhaps confer 

a more modest fitness advantage. We then define a hotspot as an amino acid position 

in protein-coding gene mutated more frequently than would be expected in the absence 

of selection. Therefore, all the following mutation types result in the same hotspot: 1) 

mutations in different nucleotide positions in the same codon of a gene, 2) different 

nucleotide substitutions at the same site in the same codon that result in different amino 

acid changes, and 3) mutations where the amino acid substitution is identical but the 

nucleotide change is different. At present, this analysis is limited to recurrent somatic 

substitutions, but can be expanded to other classes of somatic alterations such as small 

insertions and deletions, DNA copy number alterations, and structural rearrangements.	

	

2.2.1 Determining significant mutational hotspots	

To determine the statistical significance of individual mutational hotspots, we 

developed a truncated binomial probability model by incorporating not only underlying 

features of mutation rates in cancer but also anticipating the gene-specific pattern with 

which hotspots may arise in different classes of possible cancer genes. In its most 

general form, if X represents the count of mutations in n samples, the probability of 

observing k mutations is:	

 	

 Pr # = % =
&
% '( 1 − ' +,( (1) 
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where p is the probability of a mutation in any sample. However, differences exist in 

the mutability of specific nucleotide contexts in cancer genomes. These vary as a 

function of the underlying mutational process, potential molecular abnormality in normal 

DNA maintenance pathways, and possible exposure to exogenous mutagens4. 

Moreover, individual genes have highly variably nucleotide composition and background 

mutation rates. To address these fundamental characteristics, we integrated a 

coefficient into a position-specific probability that incorporates both the mutability of the 

trinucleotide context in which the mutation arose and the trinucleotide composition of 

the affected gene. For each of the 32 possible trinucleotides, we estimate the mutability 

of a given trinucleotide t as:	

	

 -. =
/0
10

 (2) 

 	

where Ct is the number of mutations affecting the central position of trinucleotide t 

across all samples and Ft is the number of occurrences of the trinucleotide t in the 

coding genome. Too little data existed to compute tumor type- or underlying mutational 

process-specific mutability. Because a mutated codon in a given gene is comprised of 

mutations in any one of three trinucleotides that encode that codon, we estimate the 

mutability of a codon c in gene g as:	

 	

 -2,4 =
50+0,60∈6

+6
 (3) 
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where nt,c is the number of mutations in the central position of trinucleotide t in 

codon c and nc is the number of mutations in codon c overall. We estimate the 

mutability of gene g as mg = Cg/(nLg), where Cg is the number of mutations affecting the 

gene across the n samples and Lg is the length of the gene in amino acids. We then 

estimated the expected mutability of a given gene g as:	

	

 -4 =
80,950

:;
.  (4) 

	

where Nt,g is the number of occurrences of trinucleotide t in gene g. The relative 

mutability of a codon within a gene is then rc,g = mc,g/mg. This leads to a binomial 

parameter for hotspot detection of:	

 	

 '2,4 = <2,4=4 (5) 

 	

We sought to avoid overestimating the background mutation rate for a gene with 

several hotspots. This would limit the detection of lower frequency hotspots (warmspots) 

due to the rate of recurrence of one or a few dominant hotspots in the same gene. We 

therefore developed a truncated form by removing positions in gene g bearing greater 

than or equal to the 99th percentile of all mutations in the gene. The new background 

rate is therefore =4> , calculated as before where the prime signifies the mutation counts 

and lengths modified using the above threshold. Then '2,4> = <2,4=4> . Finally, in rarely 

mutated genes where the probability p is exceedingly small (relative to the size of the 
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cohort N and the length of the protein L), we limited the number of false positive 

hotspots by allowing '2,4>  to get no smaller than the 20th percentile of all '> dataset-wide. 

Therefore, the final binomial probability is:	

 	

 '2,4>> = -?@
'2,4>

20%DEF	HI	?EE	'>
 (6) 

 	

Accordingly, we calculate one-sided p-values for all unique amino acids in every 

annotated gene per the binomial form given in eq. (1) with probability from eq. (6) and 

test whether more mutations are observed than would be expected by chance given the 

pattern of all mutations in the gene; its composition and length; the pattern of its 

mutability; and the number and type of samples assessed.	

To correct for multiple hypotheses, we employed a method for false discovery rate 

correction that assumes dependence among tests. This correction was performed on 

the gene level in the following manner. P-values were aggregated per gene on the basis 

of their codon position. For codons that were not mutated in a given gene and therefore 

not formally assessed, we padded this with a vector of p-values equal to 1 such that the 

final set of p-values equaled the amino acid length of the given gene. For all resulting p-

values in each gene, they were corrected with the Benjamini and Yekutieli method 

(implemented in p.adjust in the stats package in R) and significant hotspots were those 

sites with q-values < 0.01.	

	

2.2.2 Mutational data, pre-processing, and false-positive filtering	
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Mutational data were obtained from three publically available sources: 1) The 

Cancer Genome Atlas (TCGA); 2) the data portal of the International Cancer Genome 

Consortium (ICGC); 3) various published studies in peer-reviewed journals in which 

mutational data was made available30,31. Mutation calling algorithms and mutation 

reporting practices varied from study to study in these curated data, so mutation data 

review and correction were undertaken where possible. Genomic coordinates of 

variants from alignments to human reference assembly NCBI36 (hg18) were converted 

to GRCh37 using LiftOver89 with an Ensembl chain file. After standardization to 

GRCh37, the mutation calls were annotated to gene transcripts in Ensembl release 75 

(Gencode release 19), and a single canonical effect per mutation was reported using 

Variant Effect Predictor (VEP) version 7790 and vcf2maf version 1.5. All possible pairs of 

any two samples with at least 10 somatic mutations were interrogated for sample 

duplication. For any pair of tumors that shared greater than 80% mutational identity and 

identical or near-identical clinic-pathological characteristics (upon review of data from 

the source site/publication), a single tumor in the pair was chosen at random and 

removed from further analysis as a presumptive duplicate specimen. Furthermore, we 

excluded small insertions and deletions (indels), despite their presence as true 

oncogenic hotspots in some genes, due to their greater variability in call quality across 

datasets. In total, the final dataset included 1,348,424 missense; 524,827 synonymous; 

100,866 nonsense; 30,346 splice-site; and 3231 mutations affecting translational start 

or stop codons. There are also 21,130 oligo-nucleotide variants the majority of which 

are di-nucleotide mutations along with 71 tri-nucleotide mutations and 13 substitutions 
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of 4bp or longer. Individual mutations and hotspots of interest (detected as described 

below) were inspected in individual BAM files from tumor and matched normal 

specimens of DNA and available RNA sequencing data downloaded from CGHub. 

When available, expression analyses were based on level-3 RNASeqV2 RSEM 

normalized gene expression counts from RNA sequencing available via the TCGA Data 

Coordinating Center. These values were log-transformed and scaled across all samples 

within each cancer type to facilitate comparisons between cancer types. 

Considerable variability exists in the processing and generation of mutational data 

in individual cohorts by originating centers. To address this variability, we developed 

several weight-of-evidence based criteria for eliminating presumptive false positives and 

sequencing artifacts from individual mutation calls as well as from hotspots across the 

dataset (Figure 2.1a-b). Initially, to exclude likely germline variants misattributed as 

somatic mutations we exclude any mutation identified by both 1000genomes and the 

NHLBI or those identified only by 1000genomes in two or more samples. We then 

reasoned that hotspots arising in genes not expressed in a given tumor type are less 

likely to exert biological impact. We therefore removed from consideration hotspot 

mutations in genes whose expression was <0.1 transcripts per million (TPM) in 90% or 

more of the tumors of that type, or for tumors that lacked RNA sequencing data, if more 

than 95% of all tumors independent of organ of origin had expression of TPM < 0.1. 

After determining statistically significant hotspots (described above), hotspots were 

removed from consideration based on a decision tree model as follows. First, a 

presumptive true positive (pTPs) list of hotspots was predetermined as coding positions 
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harboring substitutions in five or more tumor samples (from the August 2013 release of 

the cBioPortal30,31) in one of 341 key cancer-associated genes sequenced as part of 

routine CLIA-certified sequencing of matched tumor and normal specimens at Memorial 

Sloan Kettering Cancer Center91. Initially, for all samples in which a hotspot was 

observed and for which the fraction of tumor cells mutated could be calculated from 

corresponding variant allele frequency and DNA copy number data, we calculated the 

fraction of tumors in which that site was mutated subclonally (in fewer than 90% of 

tumor cells). If the fraction of samples in which the hotspot arose subclonally exceeded 

the maximum such value among pTPs, it was excluded. For remaining sites, we 

excluded potential hotspots that arose from mutation calling bias from a single source 

center. We identified cohorts in which subsets of samples were called by different 

centers and excluded hotspots in which greater than 85% of contributing mutation calls 

originated from a single mutation-calling center. Next, as local sequence complexity can 

affect alignment accuracy in various ways based on the read lengths and chemistry of 

source studies in our dataset, we sought to exclude hotspots on the basis of sequence 

context. We excluded hotspots where the minimum of Shannon entropy calculated from 

both 12bp or 24bp of flanking sequence on either the 5’ or 3’ side of the mutated site 

was less than the minimum such value among pTPs. We then excluded hotspots that 

were positioned at either the 5’ or 3’ end of a mono-, di-, or tri-nucleotide homopolymer 

runs of 10bp or longer. Remaining hotspots were then excluded if either the sum of their 

ranked weighted 100 and 24bp alignability (determined by CRG Alignability; UCSC 

Genome Browser) was less than the minimum value of pTPs or their weighted 24bp 
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alignability was lower than the 12.5 percentile of all sites. We also excluded any hotspot 

that while passing these criteria affected a gene that was 1) already rich in presumptive 

false positives by these criteria (the number of retained hotspots was less than two 

times the count of hotspots in the gene excluded by one or more of these criteria) or 2) 

one of 20 well-characterized presumptive “red-herring” cancer genes due to high 

mutation rates that co-vary with underlying features independent of selection4. Finally, 

we manually inspected the sequencing data contributing to the mutation call for select 

hotspots in a sampling of affected tumor and matched normal samples. The significant 

hotspots (q-value < 0.01) that were excluded from consideration on the basis of this 

model (Table 2.7). 
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Figure 2.1: Hotspot detection components and workflow 
a) Schematic of the hotspot detection methodology employed here is shown. b) The 
steps involved in filtering mutation calls, samples, and genes, as well as generating and 
curating the final hotspot list. 
 

2.2.3 RAC1 functional validation	

DNA coding sequences for wildtype RAC1 as well as RAC1
P29S, RAC1

Q61R, and 

RAC1
A159V were generated via site-directed mutagenesis (Genewiz, NJ) to include an 

N-terminal 3xFLAG epitope tag and were subcloned into a pcDNA3 mammalian 

expression vector (Life Technologies, NY). The expression constructs were transfected 

into HEK293T cells using Lipofectamine 2000 (Life Technologies), and cells were 

harvested after 72 hours. GTP-bound Rac1 (active Rac1) was isolated via 

immunoprecipitation using recombinant p21-binding domain (PBD) of PAK1 (PAK1-

PBD; Active Rac1 Detection Kit, Cat#8815, Cell Signaling, MA), according to the 

manufacturer's instructions. The Rac1 was detected using kit provided Rac1 primary 

antibody.	

	

2.3 Results	

We collected the mutational data from the sequenced exomes and genomes of 

11,119 human tumors in 41 tumor types. These originate from diverse sources including 

large international consortia and various published studies. This cohort represents a 

broad range of primary human malignancies with three or more tumor types in each of 

nine major organ systems (Figure 2.2a). The repository consists of 2,007,694 somatic 

substitutions in protein-coding regions with a median of 57 mutations (25 and 125 
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mutations; 25th and 75th percentile respectively) per tumor-normal pair with significant 

variability in mutation rates among and between tumors and types4,5. In total, 19,223 

human genes harbor at least one somatic mutation in this dataset.	

 

 

Figure 2.2: Mutational data and hotspot detection 
a) The distribution of tumor types included in this analysis. b) Breakdown of known and 
classified novel hotspots and genes. c) The number of hotspots in each of 49 genes 
with two more hotspots detected across the cohort. At right, a summary of hotspots 
identified. Novel hotspots are bolded blue. d) The distribution of mutations and hotspots 
in six oncogenes refines known patterns and reveals new hotspots. 

 

2.3.1 Landscape of hotspot mutations in primary human cancers	

Overall, more than half of all hotspots were determined to be novel (Figure 2.2b, 

Table 2.1) and 54.8% of all tumors assessed here possessed one or more hotspot 

mutations. 
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Table 2.1: Select new hotspots in cancer genes. A subset of newly identified hotspots is 
shown 

 

Most affected genes possessed only a single hotspot (Figure 2.3a). A subset of 

genes, however, possessed many hotspots of varying frequency. In total, 49 genes 

possessed two or more hotspots (Figure. 2.2c), with many of these also arising in the 

greatest number of tumor types (Figure 2.3b). TP53 R248 was the most disseminated 

hotspot, observed in 25 tumor types. Among a subset of even well characterized 

oncogenes, a pattern of both known and novel hotspots emerge (Figure 2.2d). 

Moreover, the number of observed mutant amino acids at a given hotspot generally 

increases with its mutational frequency across tumors types (Figure 2.c), though 35% 

(n=164) of hotspots mutate to only a single variant amino acid. In most genes, hotspots 

bear only a fraction of the total mutational burden across the gene, whereas in a subset 

of cancer genes, the dominant mutational hotspot constitutes the vast majority of 

mutations independent of total mutational burden (Figure 2.2d and Figure 2.3d). 

Overall, we identified considerable variability in the patterns of mRNA expression of 

individual hotspots in even canonical oncogenes (Figure 2.4), indicating that levels of 

expression are often not correlated with the biologic significance of known activating 

mutations. 
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Figure 2.3: Global features of significant hotspots 
a) The number of hotspots across the genes identified here (inset: distribution of hotspot 
type). b) The frequency of specific hotspots across the 41 tumor types analyzed here. c) 
The number of mutant alleles distributed among the hotspots detected (inset: number of 
mutant alleles at a given hotspot increases with the number of tumor types affected, dot 
is the average number of mutant alleles across the hotspots identified in each of the 
indicated number of tumor types, bars are the 95% confidence interval). d) The fraction 
of total mutational burden present in the hotspot (positional specificity) of each affected 
gene. 
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Figure 2.4: RNA expression in tumors with known oncogenic hotspots 
The mRNA expression of the indicated gene is shown for all tumors (gray bars) across 
cancer types in which one or more tumor harbors the indicated hotspot (count of tumor 
types plotted is indicated, expression is a Z-score of log2 RSEM normalized count data 
inferred from level-3 TCGA RNA sequencing data). Tumors harboring the oncogenic 
hotspot are indicated with red tick marks (x-axis) the density distribution of which is 
shown in blue. The top row indicates genes with no association between the level of 
expression and the presence of the hotspot. Middle row are those genes whose 
expression is elevated in tumors bearing the hotspot. The bottom row indicates genes 
and hotspots of variable patterns of expression. Multiple hotspots in the same gene with 
different patterns of expression (ERBB2 and PIK3CA) are shown for reference. 

 

The patterns by which some hotspots emerge support new clinical paradigms for 

testing targeted agents. Some hotspots that dominate the mutational landscape in one 

or a few cancer types also arise as uncommon subsets of many others. For instance, 
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IDH1 R132 is most common in low-grade gliomas, glioblastomas, acute myeloid 

leukemias (AMLs), and cutaneous melanomas; but it is also present in 1 to 6 tumors in 

each of 11 additional cancer types. AKT1 E17K arises in greatest numbers in breast 

cancer, but also in 1 to 3 tumors of 10 additional cancer types. The distribution of 

CREBBP R1446 mutations is qualitatively different. They were originally identified in 

relapsed acute lymphoblastic leukemias92, but in this cohort of mostly primary disease, 

we find that they arise in only a small minority (1-3; 0.17-1.7%) of many (11) cancer 

types. Such patterns reaffirm the value of basket study designs that test mutant-specific 

inhibitors in early phase clinical trials, where enrollment is based on specific mutations 

in patients instead of tissue of origin.  
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Figure 2.5	Lineage 
landscape of hotspot 
mutations. 
a) Both common and rare 
hotspots are largely 
disseminated across a broad 
range of malignancies. All 
hotspots detected in genes 
with at least one hotspot 
affecting >5% of tumors of 
one or more tumor types are 
shown. Novel hotspots are 
bolded blue. Genes are 
grouped broadly by functional 
similarity, hotspots are 
ordered by amino acid 
position, and tumor types 
(columns, labeled at bottom) 
are sorted according to the 
fraction of tumors affected by 
1 or more hotspots overall 
(panel B). The percent of 
samples altered is 
represented by colored 
squares and indicated text. 
Hotspots in tumor 
suppressors TP53, PTEN, 
APC, and FBXW7 were 
excluded here (see Figure 
2.6). b) The fraction of 
tumors of a given type (as 
indicated) affected by one or 
more hotspots. Black circles 
represent the median 
mutation rate (right axis) in 
the indicated tumor type (bar 
is the median absolute 
deviation). Shown at top is 
the number of tumors of each 
type with a hotspot mutation 
affecting a known or 
candidate oncogene. 
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Figure 2.6: Lineage 
map of hotspots in 
common tumor 
suppressors 
As in Figure 2.5, 
shown here are all 
hotspots detected in 
excluded tumor 
suppressor genes that 
harbor at least one 
hotspot affecting >5% 
of tumors of one or 
more tumor types are 
shown. Frequencies 
are indicated and 
genes, hotspots, and 
tumor types are 
ordered as described 
Figure 2.5. These 
included 14 hotspots 
from R213-1450 of the 
N-terminal of APC, the 
mutational cluster 
region (MCR), 
affecting between 6 
and 37 tumors nearly 
all of which were 
colorectal cancers. 
	 	



	

	

	

39 

A lineage map of all hotspots in genes with at least one common hotspot (Figure 

2.5a and Figure 2.6) indicates most hotspots are defined more by the tissue types 

rather than the organ systems in which they arise. Of all hotspots, 81% arise in two or 

more tumor types, suggesting that many hotspot mutations may confer a growth 

advantage across diverse lineages. Indeed, of hotspots present in multiple tumor types, 

only 7.6% (n = 36) are confined to a single organ system (Table 2.2). Thus, hotspot 

mutations that arise in a single tumor type may reflect organ-specific growth advantages 

but they represent only a small minority of all hotspot mutations in cancer. Likewise, a 

subset of hotspots arises in a cell-type specific manner. Twenty-seven hotspots (5.7%) 

were more frequently mutated in tumors of a squamous cell lineage (Figure 2.7a), the 

most significant of which were MAPK1 E322 and EP300 D1399 (Figure 2.7b, q-value = 

6x10-13 and 1x10-11 respectively, X2) and may potentially confer a squamous cell-type 

specific growth advantage. 
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Figure 2.7: Squamous cell type-specific hotspots 
a) The enrichment of hotspots in squamous cell tumors (by frequency and significance, 
as indicated). b) The distribution of tumor types among cases mutated for either MAPK1 
E322 (top) or EP300 D1399 (bottom). 

	

	

Table 2.2: Organ system-specific hotspots. Shown are the 10 most significant hotspots 
that arise in multiple tumor types of a single organ system. 
	

Overall, the presence, type, and frequency of hotspots by tumor type vary widely 

(Figure 2.5b). In some tumor types, a large proportion of tumors possess one or more 

hotspot mutations including a significant fraction of tumors with a hotspot in a candidate 

oncogene (Figure 2.5b, top). Conversely, other tumor types never or rarely possess a 

tumor defined by a hotspot identified here. Some of these differences are certainly 

attributable to the fact that hotspots are only one of many possible driver genomic 
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aberrations, including specific gene fusions or focal amplifications and deletions. These 

other aberrations may define tumors of a given type, but they are not mutually exclusive 

with hotspots in many cancers. Other differences could not, alone, be explained by the 

overall mutational burden in these tumor types. For instance, uterine carcinosarcomas 

and prostate cancers have a similar mutation rate while there is 3-fold greater frequency 

of hotspot-bearing tumors among the former. Likewise, while papillary thyroid and high-

grade pontine gliomas have mutations rates similar to nasopharyngeal tumors and 

neuroblastomas, the former far more commonly bear hotspot mutations (Figure 2.5b).	

	

2.3.2 Unconventional hotspots	

In addition to missense mutations, we identified a variety of unconventional hotspot 

mutations with varied impact. Among these were 13 splice site hotspots. For each of 

these hotspots, an associated transcript abnormality was identified from RNA 

sequencing of affected tumors (exon skipping, intron retention, in-frame deletions; 

Figure 2.8a), including two previously characterized in-frame activating mutations (MET 

D1010_splice and PIK3R1 M582_splice, both exon 14 skipping events). We also 

identified 70 hotspots in 34 genes for which a nonsense mutation was among a diversity 

of changes at the affected residue, including 28 hotspots in which only a nonsense 

mutation was present (Figure 2.8b). While nonsense mutations scattered throughout a 

gene may reflect a pattern of loss-of-function consistent with tumor suppressor activity, 

a nonsense hotspot would appear to indicate the selection for the selective truncation of 

specific functional domains. Such events are consistent with the loss of some functions 
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and the retention of others, as has been observed previously in genes such as PIK3R1, 

NOTCH1, and MET
50,93. These hotspots aside, there was a depletion of nonsense 

mutations in hotspots in constitutively essential genes (p-value<10-16, those genes 

predicted or experimentally verified to be essential across all cell and tissue types and 

developmental states94). Otherwise, the specific impact of nonsense hotspots is 

generally unknown and belies the disseminated pattern of truncating mutations in likely 

or proven tumor suppressors (Figure 2.8c).  
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Figure 11: Impact of 
unconventional 
hotspots 
a) Significant splice site 
hotspots are shown 
and have diverse effect 
on transcript sequence 
and structure. In blue is 
the coverage and 
splicing pattern inferred 
from RNA sequencing 
of a representative 
tumor harboring each 
hotspot. The impact of 
each is summarized 
(rightmost column) and 
include in- frame and 
frame-shift events 
resulting from exon 
skipping, intron 
retention, and 
deletions. Highlighted 
in yellow are splice site 
hotspots at opposite 
ends of the same intron 
with both similar and 
dissimilar impact on 
transcript structure. 
SMTNL2 was not 

assessable due to little detectable expression in E244 (e3+1)-mutant tumors. b) The 
spectrum of nonsense mutations in hotspots indicate a subset are comprised 
exclusively of nonsense mutations. c) Shown is the impact of nonsense hotspots on 
transcript expression in CDKN2A, TP53, and APC, three genes affected by the greatest 
number of nonsense mutations. As expected, the expression (inferred from RNA 
sequencing of affected cases in TCGA cohorts) of all three genes was significantly 
decreased between tumors with missense mutations versus those with candidate loss-
of- function (LOF) mutations of any kind, including nonsense hotspots. Nevertheless, 
where no difference in TP53 or APC expression existed between tumors with non-
hotspot LOF mutations (labeled Misc. LOF) and those carrying nonsense hotspots, the 
tumors bearing a nonsense hotspot in CDKN2A expressed significantly less transcript 
levels p16INK4A mRNA than did tumors with non-hotspot LOF mutations.  
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2.3.3 Lineage diversity and mutant allele-specificity	

The majority of hotspot mutations arose in diverse tumor types and organ systems, 

yet widespread differences exist among individual residues and mutant amino acids in 

hotspots, genes, and tumor types (Figure 2.9a). Examining the spectrum of KRAS 

mutations, which includes the most frequently mutated hotspot overall in our study 

(KRAS G12; n=736 mutant tumors, Figure 2.3d and 2.5a), clarified patterns only 

incidentally observed in the past. We found that gastric cancers were more similar to 

multiple myeloma in the preponderance of non-G12 mutations compared to 

endometrial, lung, colorectal, and pancreas tumors (p-value = 5.3x10-18). Only colorectal 

tumors had KRAS A146 mutations whereas pancreas tumors lacked G13 mutations (p-

values = 4x10-7 and 2.8x10-15 respectively). Many of these lineage-specific patterns 

were present at finer resolution as well. Among KRAS G12 mutations, the abundance of 

G12C mutations are highest in lung adenocarcinomas (p-value = 4x10-42), an event that 

may be associated with prognostic differences compared with non-G12C KRAS 

mutations95-97. Such mutant amino acid specificity was also apparent in pancreas 

tumors, where KRAS G12R was more common than in any other tumor type (21% 

versus between 0 and 2.6%; c2 p-value = 4.8x10-19). Gastric cancers, on the other hand, 

had the fewest G12V mutations among all KRAS G12-mutant tumor types, but the 

highest proportion of G12S (p-value = 0.007, Figure 2.9c). There is a different balance 

among hotspots in the other Ras genes. While papillary thyroid cancers nearly 

exclusively possessed codon Q61 mutations in HRAS and NRAS (p-value = 4x10-7), 

there was a higher prevalence of G12 and 13 codon mutations in these genes in AMLs, 
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colorectal, bladder, and head and neck cancers, which together share few mutational 

processes in common (p-value = 4x10-10, Figure 2.9a). 

 

	

Figure 2.9: Lineage diversity and mutant allele specificity 
a) The fraction of cases mutated for each of the most common hotspots in 8 frequently 
mutated genes in the most commonly mutated lineages indicate substantial lineage 
diversity and hotspot specificity. b) Same as in panel (a), but for KRAS G12 and IDH1 
R132 mutations, showing that mutant amino acid specificity exists within individual 
hotspots across affected tumor types. c) The fraction of clonal mutations, those present 
in 80% or more of the tumor cells of affected samples, was higher among mutations in 
hotspots versus all other non-recurrent mutations in the same genes (c2, p-value = 
1x10-14). d) The fraction of tumor cells mutated for PIK3CA E545 and H1047 hotspots in 
affected colorectal and uterine endometrial cancers indicates a pattern of allele-specific 
subclonality for E545 mutations in colorectal cancer 
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Similar differences emerged in other driver cancer genes with multiple hotspots. 

V600E mutations describe nearly all BRAF hotspot mutations in melanoma, papillary 

thyroid, and colorectal carcinomas, whereas multiple myelomas are similar to lung 

adenocarcinoma in which non-V600E hotspots predominate (p-value = 1.9x-10-32). The 

balance between extracellular and kinase domain mutations in EGFR between brain 

tumors and lung adenocarcinoma (p-value = 3.3x10-12) respectively have been 

documented previously and affect their biological impact and the efficacy of genotype-

directed therapy44. ERBB2 followed a similar pattern, where extracellular domain 

mutations typified by S310F are far more common than are kinase domain mutations in 

bladder cancers compared to breast cancers (p-value = 0.006, Figure 2.9a). Another 

notable gene was PIK3CA. While bladder and cervical cancers are similar in their 

distribution of PIK3CA hotspot mutations, they vary significantly from breast cancers in 

the overall balance of helical to kinase domain mutations, possessing far fewer H1047R 

mutations among PIK3CA-mutated cases (p-value = 4.8x10-19). Endometrial and 

colorectal cancers also have a similar pattern of PIK3CA hotspots, but both have a 

higher prevalence of R88Q mutations than any other tumor type (p-value = 1.3x10-11, 

Figure 2.9a). Such patterns extend beyond essential MAPK or PI3K signaling 

components, such as with SF3B1 K700 mutations that predominate in breast cancers 

and chronic lymphocytic leukemias whereas melanomas more frequently possess R625 

mutations (p-value = 0.0001). Finally, mutant amino acid specificity was not limited to 

hotspots in Ras genes. The IDH1 R132H hotspot mutation predominated in multiple 

brain tumor types, but cysteine was the most common IDH1 R132 mutant amino acid in 
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melanoma, which is unlikely to be exclusively related to UV light exposure, as this is 

also true in AMLs that lack a UV-driven etiology (p-value = 3.9x10-21). Together, these 

results indicate that substantial mutant amino acid specificity exists among hotspot 

mutations across highly diverse tumor lineages. Two related conclusions may be drawn 

from these data. First, different hotspots in the same gene may possess in many cases 

different function, much of which may be lineage-dependent, while not excluding the 

possibility that some may still arise as a function of differing underlying mutational 

mechanisms. Second, that perhaps different mutant amino acids within the same 

hotspot can be functionally different, support for which is growing86,88.	

	

2.3.4 Timing of individual hotspots	

We next sought to determine if hotspot mutations, many of which are likely driver 

mutations and in some cases may serve as the initiating lesion, typically arise earlier 

than do non-recurrent mutations in the same genes and are therefore more often clonal. 

Overall, mutations at hotspot residues more often resided in a greater fraction of tumor 

cells (see Section 2.2) and were therefore earlier arising (presumptive clonal), than 

were non-hotspot mutations in the same genes (Figure 2.9c). So, while prior work has 

shown that driver genes in lung adenocarcinomas were enriched for clonal mutations98, 

we found that this was true of hotspot mutations across a broad class of cancer genes 

and tumor types. However, there was considerable variability among hotspots. While 

colorectal and endometrial cancers have a similar pattern of PIK3CA hotspot mutations 

(Figure 2.9c) and share hypermutated subtypes of tumors driven by MSI and POLE 
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exonuclease domain mutations35,36, colorectal tumors were unique in the clonality of the 

E545 and H1047 mutations. The majority of PIK3CA E545 helical domain mutations in 

colorectal cancers were subclonal, whereas H1047 kinase domain mutations were 

clonal, a difference that was not apparent in endometrial tumors, in which both are early 

clonal mutations (Figure 2.9d). This may be a function of the pattern of oncogenic co-

mutation in these tumors as PIK3CA E545, but not H1047, mutations were significantly 

associated with KRAS mutations in these colorectal cancers (c2 p-value = 0.0004) and 

in previous cohorts99. Overall, these differences in the molecular timing of specific 

hotspots augurs potentially important differences in their function in tumor initiation 

versus progression that requires further study.	

	

2.3.5 Hotspots in the long right tail	

Consistent with the so-called long tail of the frequency distribution of somatically 

mutated genes across cancer, we found that 85% of all hotspots identified here were 

mutated in less than 5% of tumors of all cancer types in which they were found (Figure 

2.10a). Such findings have led to calls for sequencing up to many thousands of 

additional specimens from every tumor type33. However, many hotspots present at low 

frequency across cancers are not mutated commonly or significantly in even a single 

cancer type. Indeed, 23% of all hotspots identified here were present in only one or two 

samples in the tumor types in which it was observed. This included 19 hotspots arising 

in only one sample of each affected cancer type such as U2AF1 I24, MYC T58, the 

hyperactivating MTOR I25009, PIK3CB D1067, EP300 H1451, and ERBB3 M60. 
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Therefore, many driver mutations (rather than genes) may never be found mutated at 

even the minimal frequencies (2-3%) proposed by previous studies as a goal in each 

cancer type. Conversely, population-level analysis, rather than by individual cancer type 

or organ system, allows identification of hotspots that arise as even private mutations in 

rare malignancies, for which additional broad-scale sequencing is most challenging. 

While rare, such recurrent alleles are evidence of selection and may be associated with 

specific phenotypes, such as exceptional responses100,101, de novo resistance to cancer 

therapy, or reveal specific facets of pathway biology. 
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Figure 2.10: Candidate 
GTPase driver mutations 
in the long tail 
a) The frequency distribution 
of hotspot mutations in 
cancer has a long right tail 
of mutated residues that 
while recurrent, are not 
common in any cancer type. 
b) There is a statistically 
significant difference in the 
pattern of Q61 codon 
mutations in KRAS, HRAS, 
and NRAS (c2, p-value = 
0.016). c) The sequence of 
Gly60-Glu62 of KRAS, 
HRAS, and NRAS are 
shown along with mutant 
alleles from affected cases 
indicating the GQ60GK 
dinucleotide mutation was 
the only source of KRAS 
Q61K mutation, whereas the 
far more common HRAS 
and NRAS Q61K mutations 
arose almost exclusively 
from single nucleotide 
events. The KRAS G60G 
synonymous mutation also 
creates a G60 codon in 
sequence (ACC>TCC) 
identical to wildtype 
sequence of NRAS G60, 
where Q61 mutations are 

the most common. d) RAC1, RRAS2, and KRAS are shown in schematic form indicating 
the position of novel hotspots RAC1 A159V and RRAS2 Q72L/H at paralogous residues 
in the Ras domain to known activating mutations in KRAS (A146 and Q61 respectively). 
e) The pattern of RAC1 (left) and RRAS2 (right) mutations along with those in BRAF 
and Ras genes in affected tumor types. f)* RAC1 activation (GTP-bound RAC1) by 
PAK1 pull-down (right). RAC1 A159V was associated with significant RAC1 activation to 
levels equal to or exceeding the positive control GTPgS and greater than those of the 
known oncogenic RAC1 P29S  

																																																								
* In collaboration with Sizhi Paul Gao 
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2.3.6 Hotspot mutations in transporters and transcriptional regulators 

Among notable long-tail hotspots was E14K in Nucleoporin 93kDa (NUP93) (Figure 

2.10a). This highly expressed essential gene encodes a critical subunit of the nuclear 

pore complex. This hotspot was present in six breast cancers and one sample each of 

bladder, head and neck, hepatocellular, lung adenocarcinoma, and papillary thyroid 

cancers (Figure 2.11a, left). Among assessable breast cancers, these appear to arise 

in HER2-negative luminal tumors and is the fifth most commonly mutated gene in the 

1303 breast cancers studied here (after hotspots in PIK3CA, TP53, SF3B1 K700E, and 

AKT1 E17K) (Figure 2.11a, right). Directly adjacent to E14K was a Q15* truncating 

hotspot, however, affected tumors expressed high levels of both the wildtype and 

mutant alleles. There was no detectable effect on gene expression of transcripts 

carrying a mutation predicted to trigger nonsense-mediated decay102. This is consistent 

with prior studies of loss-of-function alleles in human genomes103, but contrary to the 

effect of such mutations in other cancer genes such as TP53
104and even CDKN2A 

(Figure 2.8c). 
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Figure 2.11: Additional candidate long tail hotspots. 
a) Two hotspot mutations were detected in the N-terminal of NUP93 (E14K and Q15*), 
a constitutively essential gene. The E14K hotspot was recurrently mutated in breast 
cancer (55% of all E14K mutants), making it among the most common hotspots in 
breast cancers (right). b) Two somatic missense hotspots H28R and R60Q affect the 
bHLHz domain of MAX in a diversity of tumor types (indicated at bottom of panel c). 
These hotspots are different in type and position to the germline nonsense mutations 
present in sporadic pheochromocytomas and paragangliomas (bottom). c) The 
MYC:MAX heterodimer bound to DNA in which the DNA binding domain of MAX is 
highlighted (in blue) indicates the position of R60Q and H28R hotspots in highly 
conserved residues at the 5’ and 3’ end of the canonical E-box CACGTG motif 
respectively. A H374R mutation in MYC (annotated), also present in a uterine 
endometrial like MAX H28R mutations, is at a site equivalent to MAX H28R, extending 
the affected subset of cases in this tumor type. d) MAX hotspot mutations are mutually 
exclusive with mutations and amplification of MYC in affected tumor types, irrespective 
of hypermutation status. 
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Among other genes with two or more hotspots in the long tail, mutations in the 

MYC-associated factor X (MAX) were notable. MYC is an oncogene broadly implicated 

in the pathogenesis of multiple human cancers. While genomic amplification of MYC is 

common in many tumor types, MYC mutations are rare. We identified two MYC 

hotspots in this study (T58 and S146L), in one to three tumors each of head and neck 

cancers, lung adenocarcinomas, melanomas, lymphomas, neuroblastomas, colorectal 

cancers. However, MYC-mediated transformation through either activation or repression 

of MYC targets is dependent on its heterodimerization with MAX
105, which is an integral 

and constitutively expressed protein. It was notable, therefore, that we identified two 

MAX hotspots mutations (H28R and R60Q) in the helix-loop-helix (bHLHZ) DNA binding 

domain (Figure 2.11b). While recurrent germline MAX mutations have been reported in 

hereditary and sporadic pheochromocytoma and paragangliomas106,107, these were 

truncating mutations at different residues compared to the somatic missense hotspots 

detected here (Figure 2.11b). The three-dimensional structure of the MYC-MAX 

heterodimer revealed that the R60 and H28 interact with 5’ CA and 3’ G of the CACGTG 

E-box respectively (Figure 2.11c), indicating that the mutations target DNA binding of 

the complex rather than MYC dimerization. Notably, all four H28R mutations and 20% of 

the R60Q mutations arose in endometrial tumors spanning three of the four previously 

established subtypes, including one POLE-ultramutated, three MSI-H hypermutated, 

and two copy number-low endometrioid-like tumors. Moreover, we also identified in 

another copy number-low endometrial tumor a MYC H374R mutation that is 

homologous to MAX H28R (Figure 2.11c). The presence of these mutations in diverse 
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cancer types and subtypes driven by very different underlying mutational processes 

indicates they are unlikely passengers due only to the mutational burden of the affected 

tumors. Finally, whereas the truncating germline mutations in MAX imply a tumor 

suppressor role, we found that MAX hotspots mutations were mutually exclusive with 

MYC mutations and genomic amplifications across affected tumor types (Figure 2.11d). 

This suggests that somatic MAX hotspots may be gain-of-function. However, due to the 

complexity of MYC function and the functional antagonism of MAX heterodimerization 

with MAD
108, functional validation is necessary. 

	

2.3.7 Long-tail Ras superfamily hotspots 	

Mutations in the Ras family of small GTPases occur widely in human cancers. As 

expected, these were among the most significant hotspots detected here, affecting 

1,335 tumors (12% of all cases). Whereas G12, G13, and Q61 codon hotspots 

predominate in KRAS, NRAS, and HRAS, albeit at varying frequencies in different 

tumor types (Figure 2.5a and Figure 2.9a), we also identified GQ60GK, K117, and 

A146 hotspots in KRAS. Both K117 and A146 are known activating hotspots in the long 

tail, but we also identified a previously occult GQ60GK dinucleotide substitution (q-value 

= 2.3x10-6) in 11 tumors. This dinucleotide substitution results in a Q61K mutation 

accompanied by a G60 synonymous mutation that are present in cis (in concomitant 

RNA sequencing, Figure 2.12). Although Q>K mutations at codon 61 can result from 

3’G>T single-nucleotide mutations in KRAS, 100% of these tumors harbored the 

dinucleotide substitution, a rare spontaneous event in human genomes. Overall, the 
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distribution of codon 61 mutations in KRAS, NRAS, and HRAS are very different, with 

Q>K mutations occurring significantly less frequently in KRAS (p-value=0.016; Figure 

2.10b). GA>TT mutations were the most common dinucleotide substitution producing 

GQ60GK (Figure 2.12c) and converts the ACC codon at KRAS G60 to TCC, which is 

the sequence of the G60 codon in NRAS, in which Q61K mutations are far more 

common and arise nearly exclusively from single-nucleotide mutations. It remains to be 

determined whether KRAS GQ60GK is therefore driven by a pattern of codon usage at 

the -1 position. Notably, only one tumor had evidence of a non-KRAS GQ60GK 

mutation, an NRAS-mutant cutaneous melanoma (Table 2.3 and Figure 2.10c). 

 

 
Table 2.3: GQ60GK and G60 mutations in Ras genes. Table of GQ60QK and G60 
mutations in K/N/HRAS. These mutations were found a variety of cancer types both in 
hypermutated and non-hypermutated samples. Samples with GQ60QK or G60 
mutations lack other clonal MAPK pathway drivers. 
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Figure 2.12: GQ60GK mutations are a single genomic event 
Shown are aligned reads from whole-exome sequencing of the tumor and matched 
normal DNA and RNA sequencing of the tumor from representative affected cases 
indicating that the GQ60GK dinucleotide mutation is a single event expressed in cis 
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We next explored whether KRAS GQ60GK may serve as a driver of Ras pathway 

activity as do conventional KRAS hotspots. GQ60GK is indeed present in diverse tumor 

types that all have well-established Ras-driven subsets (Table 2.3). Reasoning that if 

GQ60GK were a passenger mutation in Ras-driven tumors, alternative MAPK activating 

mutations may be present in these tumors. Instead, we found that in every GQ60GK-

mutant sample where another putative driver of MAPK signaling was present, that 

lesion was either 1) subclonal, defining a different clone than did GQ60GK; 2) low 

activity; or 3) a passenger mutation (Table 2.3). Also, despite the frequency of GA>TT, 

there was no evidence that a common underlying mutational process or exogenous 

mutagen was the source of GQ60GK. There was no evidence of UV light exposure in 

the clinical histories or nucleotide contexts of most affected cases, only one of which 

was a cutaneous melanoma. Moreover, GQ60GK arose in both hypermutated (MSI-H 

colon lacking BRAF V600E) and non-hypermutated tumors. Finally, rare G60 missense 

mutations were evident in K- and HRAS in this dataset and in the literature (Table 

2.3)109. So, while we cannot exclude the possibility that the GQ60GK dinucleotide 

substitution is simply an alternative mechanism to achieve Q61K, the accompanying 

KRAS-specific G60 synonymous mutation may potentiate a different class of Q61-

mutant tumors or cause signaling differences among Q61K-mutant tumors between K- 

N- or HRAS. Although further studies will need to explore the molecular properties of 

KRAS GQ60GK, this allele represents the most common dinucleotide substitution 

spanning two codons in human cancer and a mutation more common than other known 

hotspots in KRAS.	
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Novel long-tail hotspots were also identified in two other genes that encode 

members of the Ras superfamily of small GTPases. RAC1, in which we identified two 

hotspots, is a Rho subfamily member that plays a vital role in various cellular functions. 

RAC1 P29S is an oncogenic hotspot in melanomas69,70 that we also identified in head 

and neck and endometrial cancers (Figure 2.10d). This mutation can confer resistance 

to RAF inhibitor treatment in vitro
71, and may underlie early resistance in patients110. We 

also identified a novel RAC1 A159V hotspot present in 10 tumors (q-value = 2.27x10-6; 

Figure 2.10d). Notably, RAC1 A159V is paralogous to KRAS A146, a known activating 

mutation65. Whereas activating KRAS A146T mutations arise predominantly in 

colorectal carcinomas, RAC1 A159V mutations are most common in head and neck 

cancers and were not present in any melanomas, despite the frequency of RAC1 P29S 

in this cancer type. Moreover, similar to P29S mutations, we observed RAC1 A159V 

mutations in tumors that are both Ras/Raf wildtype and mutant (Figure 2.10e). To 

determine whether RAC1 A159V is an activating mutation, we assessed its effect in 

vitro. Active RAC1 is GTP-bound, interacting with PAK1 to activate downstream 

effectors. Therefore, to quantify RAC1 activation in vitro, we utilized a PAK1 pull-down 

assay. In HEK293T cells expressing RAC1 A159V, there was significant RAC1 

activation to levels equal to or exceeding positive control RAC1 GTPgS cells and 

greater than even those levels induced by the known RAC1 P29S oncogenic mutation 

(Figure 2.10f). Moreover, cells expressing RAC1 Q61R, a mutation we identified in a 

primary prostate cancer that is paralogous to KRAS Q61, also potently induced RAC1 

activation (Figure 2.10d-f).	
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RRAS2 is a Ras-related small GTPase111. RRAS2 is overexpressed or mutated in a 

small number of cancer cell lines of various origins112-114, and is oncogenic in vitro with 

transforming ability similar to established Ras oncoproteins115. However, it has not been 

documented as somatically mutated in human tumor specimens. Here, we identified a 

RRAS2 Q72 hotspot present in nine tumors (q-value = 8x10-15). Similar to RAC1 A159V, 

the RRAS2 Q72 hotspot is paralogous to KRAS Q61 (Figure 2.10d). However, unlike 

RAC1, RRAS2 Q72 does not predominate in any individual tumor type. Also unlike 

RAC1, the RRAS2 Q72 mutation was present in Ras/Raf wildtype tumors among the 

affected types (Figure 2.10e). This result suggests that RRAS2 activation may be an 

alternative avenue for tumors to acquire Ras-like activation as previous studies have 

shown that RRAS2 shares many Ras downstream signaling elements including 

phosphatidylinositol-3 kinase (PI3K)116,117, the Ral GDP dissociation pathway116, and 

Raf kinases118. Beyond these hotspots, several less common RAC1 and RRAS2 

mutations affect paralogous residues of highly recurrent alleles in KRAS (Figure 2.10d), 

some of which we validated were also activating in vitro (Figure 2.10f), indicating that 

the landscape of potentially functional mutations in these genes extends beyond even 

these less common long-tail hotspots to private mutations as well.	

	

2.4 Discussion	

Our work suggests that while a subset of hotspots were prevalent in individual 

cancer types, most hotspots are present infrequently across many cancer types. This 

indicates that studies of any individual cancer type may have limited power to identify 
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novel alleles. We have also begun to detail best practices for the use of diverse public 

cancer sequencing data in the translational setting. Our approach for hotspot detection 

incorporates features such as the variable background mutational burden of individual 

codons and genes, thereby avoiding passenger mutations whose recurrence is due only 

to their presence in highly mutable amino acids. While the identification of private driver 

mutations remains challenging, our approach did uncover low-incidence hotspots in 

highly mutated genes. Though less common, these hotspots are under selection and 

may confer important clinical phenotypes in cancer patients, such as exceptional 

responses to cancer therapy100,101.	

New mutant alleles in established genes are likely to emerge faster than new 

cancer genes are identified, extending the long tail of the frequency distribution of 

somatic mutations. This is especially true as clinical sequencing focuses on profiling 

advanced and metastatic disease for clinical trial enrollment. Such pre-treated, late-

stage cases have been historically under-represented among such population-scale 

resources, including the one studied here. Moreover, at present there are fewer 

actionable mutations in cancer than there are cancer genes. Yet the near-term clinical 

utility of expanding the former is far greater. Our results suggest this will require an 

understanding of the function of different hotspot mutants in the same gene by lineage, 

as their function and response to therapy may be mutant amino acid specific. While 

positive selective pressure may produce the same hotspot mutation, or different variant 

amino acid changes within the same hotspot residue, it does not imply that they will 

confer similar selective advantages across lineages. Underlying functional distinctions 
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may explain the differences observed here in the emergence and frequencies of 

hotspots across lineages. While this remains speculative or unknown for most hotspots, 

early evidence suggest that this will be true for even some of the most important alleles 

in human cancer86-88. Understanding this landscape of distinct molecular function is the 

necessary translational prerequisite for effective clinical implementation. This focus on 

mutations rather than genes will spur studies of the biochemical, biological, signaling 

impact, and drug sensitivity of candidate individual alleles. Collectively, the 

complementary study of both significantly mutated individual alleles as well as genes 

will prove indispensable in enabling precision oncology through clinical decision support 

for patients sequenced at the point of care.	
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CHAPTER 3*	

IDENTIFYING 3D MUTATIONAL CLUSTERS 	

	

3.1 Background	

Continued sequencing efforts, both within and across a broad spectrum of cancer 

types, has revealed a complex landscape of somatic mutations in various cancer 

types119. While the data generated have provided a more complete picture of the 

genomic aberrations in cancer cells, the interpretation of individual mutations can be 

difficult. One of the key challenges is distinguishing the few mutations that functionally 

contribute to oncogenesis (“drivers”) from the many biologically neutral mutations 

(“passengers”)120. While increasing the number of tumor types and samples in this 

analysis or refining computational methodologies will likely identify additional driver 

mutations, identifying rare or even private driver mutations in the long tail remains a 

persistent challenge. Though individually rare, these long-tail mutations are present in a 

significant fraction of tumors and are likely key molecular events and thus potential drug 

targets1. Several methods exist that identify driver genes or mutations in the long tail by 

incorporating protein-level annotation, such as local positional clustering121, 

phosphorylation sites 122, and paralogous protein domains123.	

Recently, three-dimensional (3D) protein structures have also been used to identify 

driver genes and mutations in cancer and other diseases. For example, Dixit et al.124 

studied cancer mutations in 3D structures of protein kinases. Wang et al.125 generated a 

																																																								
*Gao J#, Chang MT#, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, Zhang H, Solit DB, Taylor BS, Schultz N#, 
Sander C#. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. 
Genome Medicine  
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structurally solved interactome to study genetic diseases. Porta-Pardo et al.126 and 

Engin et al.127 used 3D structures to detect protein-protein interaction interfaces that are 

enriched with cancer mutations. CLUMPS128 used 3D clustering of mutations to detect 

cancer genes and also studied enrichment of mutations in protein-protein interaction 

interfaces. StructMAn129 annotated the amino acid variations of single-nucleotide 

polymorphisms (SNPs) in the context of 3D structures. SpacePAC130, Mutation3D131, 

HotMAPS132 and Hotspot3D133 used 3D structures to identify mutational clusters in 

cancer. These efforts have generated interesting sets of candidate functional mutations 

and illustrate that many rare driver mutations are functionally, and potentially, clinically 

relevant.	

Here, we describe a novel method that identifies mutational 3D clusters, i.e. 

missense (amino-acid changing) mutations that cluster together in three-dimensional 

(3D) proximity in protein structures above a random background, with a focus on 

identifying rare mutations. In this largest 3D cluster analysis of whole exome or genome 

sequencing data in cancer to date, we analyzed over one million somatic missense 

mutations in 11,119 human tumors across 32,445 protein structures from 7,390 genes. 

The analysis identified potential driver mutations, the majority of which are rare 

mutations (occurring in <0.03% of patients in the dataset), in 3,405 residues clustering 

in the protein structures of 503 genes (Figure 3.1). Many of these 3D clusters were 

identified in well-characterized cancer genes, such as KRAS, BRAF, and TP53, and 

include known oncogenic recurrent alleles (e.g., KRAS G12D) as well as rare long-tail 

alleles (e.g., KRAS D33E, which has recently been experimentally validated134). We 
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were able to identify new potential driver genes as well as novel candidate driver 

mutations in clinically actionable cancer genes that were not detected by our mutational 

single-residue hotspot detection method16 and previous 3D cluster detection 

methods131-133. We experimentally tested the activating potential of rare mutations 

identified in 3D clusters in the MAP2K1 and RAC1 proteins, enlarging the number of 

biologically and potentially clinically significant alleles in these two critical effectors of 

activated signaling pathways in cancer.	

	

	

Figure 3.1: 3D method and related resources 
a) Process of going beyond single-residue hotspots by considering occurrence in 3D 
clusters. The colors of different types of mutated residues in 3D clusters are defined in 
the bottom panel and used throughout the manuscript. b) Mutations in 3D clusters can 
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be explored via the web resource http://3dhotspots.org. The results are also made 
available via a web API service for use by other bioinformatics tools, and mutations 
viewed in the cBioPortal for Cancer Genomics are annotated if they are part of an 
identified 3D cluster. The identified 3D clusters are likely to change as the cancer 
genomics and 3D structure databases grow. 
	

3.2 Method	

Mutational data were obtained from publicly available sources including TCGA, 

ICGC and published studies from literature. Complete description of mutational 

processing can be found in Section 2.2.1.	

	

3.2.1 Protein 3D structure data collection and pre-processing	

Protein structures were downloaded from the RCSB Protein Data Bank (PDB, 

http://www.rcsb.org)135. Alignments of protein sequences from UniProt136 to PDB were 

retrieved from MutationAssessor137 and SIFTS138. Only alignments with sequence 

identity of 90% or above were included. For each structure chain, a contact map of 

residues was calculated. Two residues are considered in contact if any pair of their 

atoms is within 5 angstroms (Å), calculated by BioJava Structure Module139. A 3D 

cluster is defined by a central residue and its contacting neighbor residues (Figure 

3.2a). All residues are used in turn as centers of clusters. The test of statistical 

significance (below) is applied separately to each cluster in turn. Clusters are not 

merged, so each residue can be in more than one cluster, even after filtering for 

statistical significance of the clusters. 
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Figure 3.2: Illustration of the permutation procedure for calculating the statistical 
significance of 3D clusters.  
 

3.2.2 Determining significant mutated 3D clusters	

A 3D cluster was identified as significantly mutated, if its member residues were 

more frequently mutated in the set of samples than expected by chance. Mutations 

were mapped to the aligned PDB sequences and structures (Figure 3.2a) and the total 

number of mutations across all samples was calculated within each 3D cluster. To 

determine whether the residues in a 3D cluster in a particular structure were more 

frequently mutated than expected by chance, a permutation-based test was performed 

by generating 105 decoy mutational patterns on the aligned region of the protein 

structure. A decoy pattern was generated by randomly shuffling the residue indices 

(positions in the sequence), with their associated mutation count, on the structure 
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(Figure 3.2b-c). For each decoy mutational pattern, the number of mutations in clusters 

was calculated as above. For a given 3D cluster, the p-value was calculated as the 

fraction of decoys for which the number of mutations in the cluster was equal to or 

larger than the corresponding number (for any cluster position) in the real data. When 

shuffling the mutations, the mutation count in each residue was maintained, except that 

we set the maximum number of mutations in one residue in the decoy to the largest 

number of mutations in the assessed 3D cluster with the intent to ensure detection of 

less frequently mutated 3D clusters within a gene with one or a few dominant single-

residue hotspots (such as BRAF V600) Figure 3.2b-c). In the rest of the Section, we 

use the term ‘3D cluster’ as a short alias for ‘significantly mutated 3D cluster’.	

	

3.2.3 MAP2K1 and RAC1 functional validation	

MAP2K1 functional validation. Human embryonic kidney (HEK)-293H cells were 

maintained in DME-HG medium with 10% fetal bovine serum, supplemented with 2 mM 

glutamine, and 50 units/ml each of penicillin and streptomycin.	

MAP2K1 mutant constructs were generated from the MEK1-GFP plasmid 

(Addgene, #14746) using the QuikChange II XL Site-Directed Mutagenesis Kit 

(Stratagene) as recommended. All mutant plasmids were verified by Sanger 

sequencing. HEK-293H cells were seeded for 70% to 90% confluency at the time of 

transfection, then transiently transfected with the wild-type or mutant MEK1-GFP 

plasmid using Lipofectamine® 2000 Transfection Reagent (Invitrogen). Plasmid 
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transfection levels were standardized according to GFP expression. Cells were 

collected 24 hours post-transfection.	

Cells were lysed in 1% NP-40 buffer with protease and phosphatase inhibitors, then 

processed for immunoblotting as previously described140. Rabbit polyclonal antibodies 

recognizing MEK1/2, phosphorylated ERK1/2 (Thr202/Tyr204), and ERK1/2 were 

obtained from Cell Signaling. Rabbit monoclonal antibodies recognizing GFP and 

GAPDH were obtained from Cell Signaling. After incubation with horseradish 

peroxidase-conjugated secondary antibody, proteins were detected by 

chemiluminescence (SuperSignal West Dura Chemiluminescent Substrate, Thermo 

Scientific) and visualized using the Fuji LAS-4000 imager (GE Life Sciences).	

HEK-293H cells were transfected with MEK1 wild-type or mutant GFP-tagged 

plasmid. At 24 hours, cells were treated with 100 nM trametinib and collected after 2 

hours. Control cells were treated with dimethyl sulfoxide (DMSO). Cells were lysed for 

protein and immunoblotted as referenced above.	

RAC1 functional validation. Early-passage HEK293T cells, acquired from ATCC and 

authenticated as mycoplasma free, were cultured at 37°C in 5% CO2 in Dulbecco’s 

modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS).	

RAC1 mutation validation was performed similar to what was previously described 

in Section 2.2. DNA coding sequences for mutant RAC1 constructs were generated via 

site-directed mutagenesis (Genewiz, NJ). All mutant plasmids were verified by Sanger 

sequencing. RAC1 constructs contained an N-terminal 3xFLAG epitope tag and were 

subcloned into a pcDNA3 mammalian expression vector (Life Technologies, NY). The 
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expression constructs were transfected into these cells using Lipofectamine 2000 (Life 

Technologies).	

Cells were harvested 72 hours after transfection. GTP-bound Rac1 (active Rac1) 

was isolated via immunoprecipitation using recombinant p21-binding domain (PBD) of 

PAK1 (PAK1-PBD; Active Rac1 Detection Kit, Cat#8815, Cell Signaling, MA), according 

to the manufacturer's instructions. Total Rac1 was detected using kit-provided Rac1 

primary antibody. 

	

3.3 Results	

The 1,182,802 somatic missense mutations in our curated dataset of 11,119 human 

tumors occurred in 1,025,590 residues in 18,100 genes. The vast majority of these 

residues, 908,009, were mutated only once in the 11,119 samples (Figure 3.3a), i.e., 

most somatic mutations found in cancer are extremely rare. Most of these rare 

mutations are likely passenger mutations, but some may be unrecognized drivers134. 

Indeed, we found that a small fraction of rare mutations (mutated in three or fewer 

samples) are members of recurrently mutated clusters in 3D structures (Figure 3.3a) 

and thus probably are functional drivers. 
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Figure 3.3: 3D cluster analysis reveals numerous potentially functional rare 
mutations 
a) 3D cluster analysis identified a large number of statistically significant, yet rarely 
mutated residues (mutated 1-3 times in our dataset). The residues were binned by the 
number of mutations in each residue. The mutation counts for the single-residue 
hotspots also contain a small fraction of silent, nonsense, and splice-site mutations by 
Chang et al. 2016. b) Genes with the highest number of residues in 3D clusters. c) 
Genes with the highest frequency of tumor samples with mutations clustered in 3D 
structures across all cancer types. d) Per-residue comparison of significance as in 
single-residue hotspot (vertical axis) and 3D cluster (horizontal axis). Many residues 
were hotspots as well as parts of 3D clusters (upper right quadrant), but some were 
detected only as part of 3D clusters (bottom right quadrant). e) Number of residues 
(upper panel) and percentage of samples (bottom panel) with hotspots and 3D clusters 
per cancer type (see full cancer type names in the Abbreviations section). The category 
of a sample was assigned based on the lowest category if it had mutations that 
belonged to different categories. 
 

In total, we identified 943 unique mutational clusters that were statistically significant 

in 2,382 protein structures (Table 3.2). These 3D clusters encompassed 3,404 residues 

in 503 genes (Table 3.3). TP53 contained the largest number of residues in 3D clusters 
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(66 residues), followed by PTEN (n=48), SMAD4 (n=33), and KEAP1 (n=26) (Figure 

3.3b, Table 3.4). TP53 mutations in 3D clusters were also the most prevalent across all 

cancer types (in 1,914 samples, 17%), followed by KRAS (8%), BRAF (6%), and 

PIK3CA (4%), underscoring the roles of these well-characterized cancer genes in 

oncogenesis (Figure 3.3c, Table 3.5).	

	

3.3.1 Classification of mutational clusters in protein structures	

We classified the mutated residues in a 3D cluster into three categories (Figure 3.1, 

Figure 3.3d, Table 3.3) depending on whether the cluster contains single-residue 

hotspots identified by16: 1) 103 residues in single-residue hotspots. 2) 263 rarely 

mutated residues that were clustered in 3D with a single-residue hotspot. 3) 3,038 rarely 

mutated residues that were clustered in 3D only with other rarely mutated residues. If a 

residue belongs to category 2 in one cluster and category 3 in another, the residue is 

assigned category 2. There were 367 hotspots identified by16 that were not detected in 

3D clusters (Figure 3.3d), either because they were not part of a significant cluster with 

other mutated residues or because there was no 3D structure available for the protein 

or protein region.	

Notably, in 5,038 samples (45%) prior frequency-based hotspot analysis failed to 

identify hotspot driver mutations. By incorporating protein structure data, rare mutations 

present in 3D clusters were identified in 865 of these samples (17% of the samples 

without hotspot driver mutations, or 8% of all samples) (Figure 3.3e). As an example, 

141 (15%) of 961 lung tumors (lung adenocarcinoma, lung squamous cell carcinoma, 
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and small-cell lung cancer) with no hotspot mutations carried a rare mutation in a 

mutational 3D cluster. Assuming the diseases of these patients were genetically driven, 

these 3D cluster mutations were possibly driver events (Figure 3.3e).	

	

3.3.2 Rare missense mutations in occult drivers	

While tumor suppressor genes are often inactivated by truncating (e.g., nonsense 

and frameshift) mutations, their function may also be disrupted by missense mutations 

in critical regions. These missense mutations, unlike hotspot mutations in oncogenes, 

often are not recurrent at individual positions but instead their recurrence may only be 

evident in mutational clusters. By using protein structures, we identified potentially 

inactivating mutational clusters in critical regions of several tumor suppressors including 

PTEN, CDH1, and KEAP1.	

PTEN is one of the most frequently mutated tumor suppressors with mutations 

occurring in various cancers. In PTEN, we identified 15 3D clusters that included 48 

residues (2 single-residue hotspots, 46 rarely mutated residues) (Figure 3.4a). All these 

clusters reside in the flanking regions surrounding the phosphatase catalytic core motif 

(Figure 3.4a), a region that is necessary for PTEN activity141. 
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Figure 3.4: Examples of mutational 3D clusters in tumor suppressor genes 
a) Residues in 3D clusters in PTEN highlighted in the protein sequence (top) and a 
protein structure (bottom). The 3D cluster residues surround the catalytic site. b) 
Residues in 3D clusters in CDH1 (E-cadherin) highlighted in the protein sequence (top) 
and a protein structure (bottom). The 3D cluster mutations are likely to disrupt the 
critical calcium-binding site (calcium atoms in red). c) 3D clusters in KEAP1 in the 
protein sequence (top) and a protein structure (bottom). Most of the 3D cluster 
mutations are in the NRF2 binding region (NRF2 peptide in purple). 
	

CDH1 encodes E-cadherin, a transmembrane glycoprotein mainly expressed in 

epithelial cells. Germline mutations in CDH1 are associated with an increased risk of 

gastric and breast cancer142, and CDH1 somatic inactivation via epigenetic silencing or 

truncating mutations is common in both cancer types. We identified 11 3D cluster 

residues (all rarely mutated residues; mutation frequency 0.01-0.06% individually) in 

CDH1 (Figure 3.4b). Out of the 19 samples with these 3D cluster mutations, 11 were 

gastric tumors. Although distant in amino acid position (between the 165th and 291st 

residues), when mapped in 3D space, these residues surround the junction between the 

first and second extracellular cadherin domains in the 3D structure (Figure 3.4b). 
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Mutations in these residues are likely to perturb functionally essential calcium-binding 

sites in the junction region143 and hence are likely inactivating and potentially oncogenic.	

KEAP1 is a substrate adapter protein for the E3 ubiquitin ligase that targets NFE2L2 

(NRF2) for ubiquitination and subsequent degradation. Loss-of-function mutations in 

key KEAP1 residues result in accumulation of NRF2 in the nucleus and contribute to 

chemoresistance in vitro144. We identified 26 3D cluster residues (all rarely mutated 

residues; mutation frequency 0.01-0.03% individually) in KEAP1 (Figure 3.4c). These 

mutations were localized to the interaction domain of KEAP1, suggesting that they likely 

disrupt NRF2 binding (Figure 3.4c). Notably, out of the 36 samples with these 

mutations, 18 were lung adenocarcinomas, 6 of which lacked hotspot mutations.	

	

3.3.3 Functional validation of MAP2K1 and RAC1 mutants	

Identifying mutations in genes for which targeted therapies exist or are being 

developed, regardless of their individual frequency in the population, is critical for the 

effective practice of precision oncology. Our analysis identified 3D clusters in several 

genes for which selective inhibitors are either used as part of standard clinical 

management or are being actively tested in clinical trials, including EGFR, KIT, MTOR, 

PIK3CA, MAPK1, and FGFR3 (Table 3.1). The 3D clusters within these genes 

contained known activating hotspot mutations as well as rare candidate driver 

mutations. While the function of most of these rare mutations is unknown, a subset has 

been functionally characterized in prior studies. For example, EGFR T263P has been 

reported to induce oncogenic EGFR activation145, and recently, many of the rare 



	

	

	

75 

mutations in MTOR present within 3D clusters (A1459P, L1460P, Y1463S, T1977R, and 

V2006I/L) (Table 3.1) have been shown to induce increased mTORC1/2 pathway 

activity9. 

 
Table 3.1: Select 3D clusters of functional significance. Table of select clinically 
actionable genes and mutations identified in 3D clusters. 
 

To confirm that the method could identify functional driver alleles that would not 

have been nominated by previously reported frequency-based methods, we sought to 

functionally validate several non-recurrent mutations identified by our method in the 

MAP2K1 and RAC1 genes. Components of the MAPK pathway are among the most 

commonly altered genes in human cancer. 3D cluster analysis revealed 3D clusters in 

all three RAS proteins (K/N/H-RAS), RAC1, BRAF, MAP2K1, and MAPK1 in a variety of 

cancer types. MEK1, which is encoded by the MAP2K1 gene, is a dual specificity kinase 

that phosphorylates ERK to propagate MAPK signaling transduction. Activating 

mutations in MAP2K1 have been shown to result in constitutive MAPK pathway activity 

and to confer resistance to RAF inhibition and MEK inhibitor sensitivity146,147. 	

We identified a 3D cluster (p=0.03) in MAP2K1 that included 7 mutated residues 

(R49, A52, F53, Q56, K57, G128, and Y130). Two of these residues (F53 and K57) 

have been previously identified as single-residue hotspots16 and shown to induce 

Gene PDB_ID:chain Position (number of mutated samples) p Cancer types* (number of mutated samples)
EGFR 1IVO:B R252(8) F254(1) D256(2) K261(1) T263(2) C264(1) A289(28) 0.016 GBM(30) LGG(8) Stomach ADCA(2) Other(3)
EGFR 2JIU:B V769(1) R831(2) R832(2) L833(2) L858(30) L861(7) H893(1) 0.025 Lung ADCA(39) Lung SCC(2) CRC(2) Other(2)
KIT 4HVS:A W557(1) V559(3) V560(1) L576(2) 0.085 Melanoma(6) Stomach ADCA(1)
MTOR 4JT5:B A1459(1) L1460(2) V1461(1) Y1463(1) K1465(1) M1467(1) R1480(2) C1483(5) 0.035 ccRCC(7) BRCA(1) CRC(1) Other(5)
MTOR 4JSN:A A1971(3) I1973(2) Y1974(1) T1977(3) M1998(1) V2006(2) 0.047 ccRCC(4) CLL(2) Endometrial CA(2) Other(4)
PIK3CA 2v1y_A R38(14) E39(5) R88(40) C90(4) R93(15) 0.014 Endometrial CA(27) CRC(19) Other(32)
MAPK1 4FV5:A E81(2) R135(1) G136(1) D321(3) E322(15) 0.014 Cervical SCC(9) HNC(9) BRCA(1) Other(3)
FGFR3 1RY7:B R248(9) S249(18) P250(1) D280(2) 0.050 Bladder CA(17) HNC(6) Lung SCC(3) Other(4)

*Full cancer type names are listed in the Abbreviations section
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constitutive ERK pathway activation34. The other five were infrequently mutated 

(mutated in 1-3 samples, i.e. mutation frequency of 0.01-0.03%) (Figure 3.5). All seven 

of these mutated residues reside in the shared interface between helix A and the kinase 

domain (Figure 3.5b). As helix A has previously been shown to negatively regulate 

MEK1 kinase activity by interacting with the kinase domain148, mutations that disrupt this 

interaction may result in constitutive ERK pathway activation. We thus experimentally 

assessed the ability of the mutations in this 3D cluster to induce ERK1/2 

phosphorylation in a cellular model. We found that expression of five of the mutated 

proteins, including G128D, Y130C, as well as the previously characterized F53L, Q56P, 

and K57N mutations34, induced downstream MAPK signaling as assessed by increased 

expression of phosphorylated ERK (Figure 3.5c). To test whether the Y130C variant 

protein that is not in a single-residue hotspot but was nominated by 3D cluster analysis, 

is sensitive to MEK inhibition, we treated HEK293T cells expressing the Y130C mutant, 

or the Q56P mutant as a positive control, with trametinib, an FDA-approved MEK 

inhibitor. Trametinib treatment resulted in significant down-regulation of MAPK pathway 

activity (Figure 3.5d). As durable responses to MEK inhibitors have been reported in 

patients, whose tumors have an activating mutation in MAP2K1147, this example 

highlights the potential translational impact of 3D cluster analysis. 
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Figure 3.5: 
Experimental 
validation of 
functional impact of 
mutations in 3D 
clusters in MAP2K1 
and RAC1.* a) Seven 
residues in a 3D 
cluster in MAP2K1, in 
the context of the 
domain structure of 
the protein. Notation 
as in Figure 3.1: each 
circle is an occurrence 
in a sample; 
connecting lines 
(bottom) indicate 
cluster membership, 
i.e., statistically 
significant proximity in 
3D in the protein 
structure. b) The same 
cluster of mutated 
residues in the 3D 
structure of MAP2K1. 
The purple helix is 
known to negatively 
regulate the kinase 
activity of 
MAP2K1/MEK1. c) 
Functional 

characterization of MAP2K1/MEK1 mutants in HEK293H cells. Expression of G128D 
and Y130C (as well as the previously characterized F53L, Q56P, and K57N) mutants 
each resulted in increased expression of phosphorylated ERK compared to wild type 
MAP2K1 - but not the cluster member A52V. d) ERK phosphorylation was inhibited by 
trametinib in cells expressing the Q56P or Y130C MAP2K1 mutations in HEK293H 
cells. e) The four residues (two single-residue hotspots: P29 and A159, and two rarely 
mutated residues: G15 and C18) in the identified 3D cluster in RAC1 in the linear 
domain structure of the protein. f) The same cluster in the 3D structure of RAC1. g) 
Western blot analysis of RAC1 activation (GTP-bound RAC1 levels) by PAK1 pull down 
(left) and of total RAC1 levels (right) in HEK293T cells. The RAC1 3D cluster mutations 
G15S and C18Y, as well as the previously characterized P29S and A159V, were 
associated with significant RAC1 activation, as compared to wild-type RAC1.	 	
																																																								
* In collaboration with Brooke Sylvester, Hannah Johnson, Aphrothiti Hanrahan, and Sizhi Paul Gao 
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RAC1 is a Rho-family small GTPase that has been recently implicated to confer 

resistance to RAF inhibition in vitro and may underlie early resistance in patients71. 

Recently, two oncogenic hotspots in RAC1 were identified, P29 and A159, both of which 

activate RAC1 in vitro
16. We identified a statistically significant 3D cluster of four 

residues (p=0.009) in RAC1, which, in addition to P29 and A159, includes novel rare 

mutations at amino acids G15 and C18 (mutated in 1 and 2 samples, respectively) 

(Figure 3.5e-f). To confirm that these mutations activate RAC1, we utilized a PAK1-

pulldown assay to quantify activated RAC1 expression in cells expressing mutant and 

wild-type RAC1 protein. We found that, compared to wild-type RAC1, both the G15S 

and C18Y RAC1 mutants resulted in elevated active RAC1 expression (Figure 3.5g). 

These results expand the number of experimentally validated activating alleles in RAC1, 

suggesting that RAC1 G15 and C18 mutations in this 3D cluster may possess similar 

biological consequences as the previously characterized RAC1 hotspot mutations.	

	

3.3.4 Comparison to other 3D hotspot detection algorithms	

Previous methods have also detected many mutations that cluster in 3D structures. 

For example, Mutation3D identified 399 mutated residues in 75 genes131, HotMAPS 

identified 398 mutated residues in 91 genes132, Hotspot3D identified 14,929 mutated 

residues in 2,466 genes133, whereas our method identified 3,404 mutated residues in 

503 genes (Table 3.6, Figure 3.6). Only 15 residues were identified by all four methods, 

all of which were also previously identified as hotspots16. 2,908 of the 3,404 mutated 

residues detected by our method were not identified by any of the other three methods, 



	

	

	

79 

including MAP2K1 Q56 and K57, which we experimentally validated. Comparison to a 

recent in vivo screening study of rare driver mutations by Kim et al.134 also confirmed 

that the four methods showed different coverage and power to detect rare driver 

mutations and therefore provide complementary data (Table 3.7). The method 

described here was able to detect the KRAS D33E and SPOP K134N mutations that 

were validated by Kim et al.134, but the other three methods did not detect these 

mutations as statistically significant. 

	

	

Figure 3.6: Comparison of multiple 3D hotspots approaches. Comparison of 
mutated residues identified in 3D structure clusters by our method and those by three 
alternative methods (Mutation3D, HotMAPS, and Hotspot3D) 
 
3.4 Discussion	

Tremendous effort has been invested in the discovery of therapeutic agents to 

suppress oncogenic signaling. These efforts have resulted in several FDA-approved 
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agents that target a variety of genes and pathways in several different cancer types. For 

instance, vemurafenib, a selective inhibitor of V600E/K mutant BRAF was first approved 

in metastatic melanoma, a cancer in which approximately 50% of tumors harbor a 

BRAF V600E/K mutation149. Vemurafenib has since shown activity in a wide spectrum 

of malignancies that share this actionable mutation63, suggesting that molecular 

biomarkers can be predictive of drug response across cancer types. However, effective 

development and use of targeted therapies necessitates identification of “driver” 

mutations among the far more prevalent passenger mutations in patient genomes. 

Many of these mutations can be identified by their recurrence in a single position, but 

others are less common or private to a particular tumor. One property they often share 

with hotspots and previously functionally characterized mutations is three-dimensional 

proximity, i.e. rare mutations can be physically close to each other or to a known and 

common mutation in the same protein, raising the possibility that these mutations are 

also driver events. To prioritize rare driver mutations for functional or clinical validation, 

we developed a novel method that identifies significantly mutated regions in 3D protein 

structures. We applied this method to more than 11,000 tumors analyzed by whole 

exome or genome sequencing.	

Our analysis identified several thousand, mostly novel, candidate functional cancer 

mutations. While some mutations in the 3D clusters were in single-residue hotspots, 

which by definition are frequently mutated in cancer, the majority were rare mutations. 

Functional annotation is often not available or sparse for these rare mutations. On the 

one hand, rarely mutated residues coupled to a single-residue hotspot often occur in 
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many well-studied oncogenes (such as KRAS, BRAF, EGFR, PIK3CA, MTOR, among 

many others) and in several frequently mutated tumor suppressor genes (such as TP53 

and PTEN). It is therefore plausible that the functional impact of such mutations is 

similar to those in the single-residue hotspot and hence transfer of functional annotation 

makes sense. On the other hand, the functional annotation of rarely mutated residues, 

which are not coupled in a 3D cluster to a well-annotated single-residue hotspot, but 

instead clustered only with other rarely mutated residues, is much less certain. 

Fortunately, the placement of the clusters of mutated residues in known 3D structures 

affords the opportunity for informative mechanistic hypotheses facilitating the design of 

focused functional studies. For example, we identified a cluster of mutations that likely 

disrupt critical calcium-binding sites in CDH1, a tumor suppressor that mediates cell 

adhesion. Another example is a cluster of mutations in KEAP1 that potentially disrupt 

binding sites with NRF2, a key regulator of the cellular oxidative response.	

By experimentally validating candidate functional mutations in 3D clusters in 

MAP2K1 and RAC1, we show that our method readily identifies previously occult rare 

activating mutations that could not be revealed by positional frequency analyses alone 

and that a subset of such mutations are potentially biomarkers of sensitivity to targeted 

inhibitors in individual cancer patients. We showed, for example, that the rare MAP2K1 

G128D and Y130C mutations induce MAPK pathway activation and that such mutations 

retain sensitivity to MEK inhibitor treatment in vitro. While some mutations identified by 

our analysis were not activating in vitro, such as MAP2K1 mutations of A52, by 

analyzing mutations in the context of protein structures, we can form hypotheses about 
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the biochemical reasons for such results: in this case, A52 does not interact strongly 

with the kinase domain in the wild type 3D structure (Figure 3.5b). This example 

illustrates the potential functional insights resulting from detailed analysis of individual 

cancer mutations in the context of 3D structures.	

A proportion of rare mutations are not only biologically interesting (since they 

potentially promote tumor initiation or progression), but also clinically important with the 

advent of genomic-based clinical trial designs (such as the NCI-Molecular Analysis for 

Therapy Choice (NCI-MATCH) Trial). Forty-five percent of the 11K tumor samples in our 

dataset lacked a single-residue hotspot driver mutation, and identifying the genetic 

drivers of these patients is a critical step for choice of therapy, design of clinical trials or 

drug development. Here, we achieved a partial advance in this direction by identifying 

potential driver mutations in 17% of the samples without single-residue hotspot driver 

mutations (8% of all samples). Some of the identified mutations, e.g., those in MTOR, 

EGFR and MAP2K1, could have immediate translational importance. For example, 

clinical trials enrolling patients with MAPK pathway mutations, e.g. the NCT01781429 

trial, could expand their eligibility criteria beyond single-residue hotspot mutations in the 

MAPK pathway and enroll patients with the MAP2K1 3D cluster mutations identified 

here.	

While our approach can identify novel and potentially interesting mutations in 

cancer genes and in genes previously unknown to be involved in cancer, the method is 

still limited by the lack of complete protein structure data for many genes. For the 

18,100 genes with mutations in our dataset, we were able to align 7,390 of them to one 
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or more protein structures. However, for many genes, the structures included only 

individual protein domains, limiting the scope of our analysis. There were only 1,307 

genes with a protein structure that covered more than 90% of the protein length, and 

only 3,183 genes with more than 50% coverage. This limits the ability of our algorithm to 

detect 3D clusters that were not close in sequence, for example those involved in 

domain-domain interactions. Fortunately, as protein structure characterization 

technologies such as cryo-electron microscopy (cryo-EM) advance, more protein 

structures, and more complete protein structures, are being generated. We can also 

make use of the remarkable progress in 3D protein structure prediction using 

evolutionary couplings for proteins that are members of protein families with many 

known homologous sequences (http://evfold.org)150. We thus plan to periodically include 

new protein structures in our analysis pipeline, which along with the inclusion of 

additional sequencing data will allow for the nomination of additional novel 3D clusters. 

Given the current coverage of human proteins by 3D structural knowledge, one can 

expect a steady increase in the number of candidate functional mutations identified by 

methods of this type as more accurate structures of most human proteins become 

available. 

 

3.4 Discussion	

Like any statistical method, the power of our approach is also limited by the number 

of available tumor samples. For example, a 3D cluster in AKT1 (R15, E17, W22, and 

D323), which was not statistically significant (p=0.11), included the most frequent 
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hotspot mutation E17K, which has been evaluated as an indicator of response to AKT-

targeted inhibitors in clinical trials. In addition, in vitro studies indicate that AKT1 D323 

mutations lead to constitutive activation of AKT151. Fortunately, as more cancer genomic 

data are generated, additional significant 3D clusters will likely emerge.	

We showed that the mutational 3D clusters identified by three alternative methods 

(Mutation3D131, HotMAPS132, and Hotspot3D133) and our method were largely 

complementary (Figure 3.6). While different mutational and structural datasets used by 

these four tools may have led to some of the differences observed, methodological 

differences also likely played a role. For example, HotMAPS predicted as functional the 

IDH1 R132 and IDH2 R172 mutations (both are single-residue hotspots) without linking 

to other residues in 3D structures, while the other three methods predicted mutations 

only if a 3D cluster was formed with other mutated residues. Hotspot3D also predicted 

the IDH1 R132 and IDH2 R172 mutations as functional because it utilized long distance 

interactions in 3D structures, e.g., R172 was detected in a cluster with R140 with a 

distance of 10Å. Another reason for differences in results may reside in the sensitivity 

and specificity levels that different methods adopted. Mutation3D and HotMAPS 

achieved a high specificity and low sensitivity and therefore only predicted about 400 

mutated residues in less than 100 genes, most of which were single-residue hotspots. 

Conversely, Hotspot3D nominated close to 15,000 mutated residues in almost 2,500 

genes, which potentially include many false positives. An analysis of in vivo screen 

results by Kim et al.152 supported this observation: All mutations identified by 

Mutation3D and most mutations identified by HotMAPS that were included in the screen 
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were single-residue hotspots, whereas our method and Hotspot3D were able to identify 

significantly more rare mutations. Finally, the Hotspot3D prediction included many false 

positives (false detection rate 32% compared to 12% of our method when applied to the 

Kim et al. data) (Table 3.7).	
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CHAPTER 4*	

BIOMARKER DISCOVERY IN HOTSPOT MUTATIONS	

	

4.1 Background	

The adoption of prospective clinical sequencing of human tumors has led to the 

identification of an increasing number of somatic mutations of unknown significance. 

While a small number of mutations are now used to guide treatment selection, the vast 

majority of observed mutations lack biological or clinical validation, limiting our ability to 

use genomic profiling to guide therapy. Even among the small subset of oncogenic 

mutations targeted by standard-of-care therapies, significant gaps remain in our 

understanding of what characteristics condition their response63. Other mutations may 

serve as the basis of extraordinary responses to cancer therapies16,100, expand the 

number to existing biomarkers that predict therapeutic sensitivity, or elucidate novel 

biological and molecular phenotypes, but their prospective identification is challenging. 

Together, this underscores the need to identify and prioritize occult driver mutations in 

cancer for further biological and clinical study. Unraveling the relationships between 

mutant alleles, cell types, co-mutational patterns and other factors that determine 

mutant allele function, and consequently clinical actionability, is essential to expand the 

treatment options for molecularly defined populations of cancer patients. 

	

																																																								
* Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue M, Jonsson P, Chakravarty D, Phillips S, Kandoth C, 
Penson A, Gorelick A, Shamu T, Patel S, Harris C, Gao J, Sumer SO, Gao Y, Yao Z, Kundra R, Razavi P, Reales 
DN, Socci ND, Jayakumaran G, Zehir A, Chandralapaty S, Ladanyi M, Schultz N, Baselga J, Hyman DM, Solit DB, 
Berger MF, Rosen N, Taylor BS. Accelerating discovery of functional mutant alleles in cancer. In preparation 
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4.2 Methods	

4.2.1 Mutational data and pre-processing	

Retrospective mutational data were obtained from three publicly available sources: 

1) The Cancer Genome Atlas (TCGA), 2) International Cancer Genome Consortium 

(ICGC), and 3) independent published sequencing projects. The subset of this cohort 

that was prospectively sequenced consists of 10,945 samples from 10,336 unique 

advanced cancer patients and whose tumors were profiled as part of their active care 

between January 2014 and July 2016 at Memorial Sloan Kettering Cancer Center 

(MSKCC). The consent of these patients, acquisition of specimens, sequencing, 

analysis, and reporting are described in an accompanying manuscript (Zehir A, et al. 

submitted). Briefly, matched tumor and normal specimens were sequenced (to 500-

1000-fold sequence coverage) with a validated capture-based next-generation 

sequencing assay called MSK-IMPACT that is New York state-approved for clinical use. 

This assay captures the coding exons and select introns of oncogenes, tumor 

suppressor genes, all genes targeted by either approved therapies or those 

investigational drugs being studied in clinical trials at our Center, and significantly 

mutated genes reported by large-scale cancer sequencing efforts. These sequencing 

data are analyzed as previously described91 to detect somatic mutations, small 

insertions and deletions (indels), DNA copy number alterations (CNAs) and select 

translocations using DNA from both frozen and formalin fixed-paraffin embedded tissue. 

An IRB protocol facilitates this prospective genomic characterization (IRB #12-245, 

ClinicalTrials.gov NCT01775072) and enables the return of results to patients. All 
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genomic data generated as part of routine standard-of-care therapy is deposited, along 

with relevant clinical data, in a HIPAA-compliant manner, in the cBioPortal for Cancer 

Genomics30,31. All somatic nonsynonymous mutations reported were manually reviewed 

in primary sequencing data as described in Zehir A, et al. submitted and combined with 

synonymous mutations in the same samples and utilized in this analysis. All mutations 

in any one of 469 genes that overlap among the retrospective and prospective subsets 

of the final cohort were uniformly re-annotated using vcf2maf ver. 1.6.10 

(https://github.com/mskcc/vcf2maf). Variants identified by the Exome Aggregation 

Consortium (ExAC)153 as having a minor allele frequency greater than 0.0004 in any 

subpopulation were excluded as presumed germline unless they were annotated by 

ClinVar20 as either pathogenic, a risk factor, or protective. 

 

4.2.2 Determining pan-cancer and organ-type specific significance	

The statistical significance of single-codon hotspots was determined in each of 32 

separate organ types as well as pan-cancer (full cohort) using an extended version of 

our previously described method (See Section 2.2.2). Briefly, statistical significance of 

every codon was assessed with a truncated binomial probability model in which the 

expected probability incorporates underlying features of mutation rates including gene 

length, gene- and position-specific mutability, and overall mutational burden of the gene. 

Unlike in our prior study, here we calculated gene- and position-specific mutability on a 

per-organ type basis to reflect their differences in background mutability and mutational 

processes. The mutability of each of 32 possible trinucleotides was calculated 
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independently for each organ type as the fraction of mutations affecting the central 

position of the given trinucleotide t across all samples from cancer types belonging to 

the given organ type. The mutability of each codon, expected mutability of each gene, 

and the final binomial probability was calculated as before. For 7 of 32 organ types, 

insufficient whole exome sequencing data existed to robustly estimate trinucleotide 

mutability (<50 samples per organ type), so a pan-cancer mutability was calculated as 

above and utilized. Multiple hypothesis correction for both pan-cancer and organ-

specific analyses were performed using the method Benjamini and Yekutieli method. 

Mutational hotspots corresponding to a q-value < 0.1 were considered statistically 

significant (False Discovery Rate < 10%). 

	

4.2.3 Determining in-frame insertions/deletions significance	

We assessed the statistical significance of in-frame small insertions and/or deletions 

(indels) in a manner similar to the identification of single-codon hotspots using the 

truncated binomial probability model. From this analysis, we excluded frameshift 

mutations as presumed truncating loss-of-function mutations. As a background model of 

indel mutability in both normal and disease human genomes is poorly understood, none 

was utilized here (neither gene nor position-specific mutability). Also, when calculating 

the expected probability at each site, we allowed the minimum probability to decrease 

beyond the 20th percentile of all probabilities dataset-wide used for single-codon 

hotspot detection. Due to the allelic variability of indels, in-frame indels were grouped 

using a maximal common region defined as the contiguous genomic region spanned by 
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overlapping indels. The mutation count for each such region is the sum of all spanning 

(single bp or more) in-frame indels. Significance was assessed, as with single-codon 

hotspots, with the binomial model described above. Statistically significant indels that 

exclusively arose in samples from retrospective data (published or consortial studies) 

were manually reviewed in aligned sequencing data of representative cases to identify 

and exclude potential false positives. 

	

4.2.4 Simulating hotspot identification rates	

To assess hotspot acquisition rates within genes, we performed the hotspot 

analysis on repeated random downsampling of samples in the dataset starting from 100 

patients to the final total number of patients in the dataset in 100-sample increments. 

Only statistically significant hotspots in each downsample were considered if significant 

in the final analysis. For each gene, we then fit a locally weighted polynomial regression 

to the distribution of downsamples to estimate the rate of hotspot acquisition for each 

gene. To infer broader patterns of hotspot acquisition, these fits were then clustered 

using fuzzy c-means clustering (R package e1071 v1.6-7) and the optimal number of 

clusters (four) was determined based on reduction of sum of squared error for between 

1 to 15 clusters. To estimate the necessary number of samples needed to sequence to 

identify an additional hotspot, from the downsampled results from each gene, we fit a 

regression using a Conway-Maxwell Poisson distribution (R package COMPoissonReg 

v0.3.5). 
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4.2.5 Annotation of biological / clinical significance	

All mutations were annotated for their potential prognostic and therapeutic 

significance utilizing OncoKB, a curated knowledgebase of the oncogenic effects and 

treatment implications of mutations at the individual allele resolution 

(http://www.oncokb.org/). The potential therapeutic actionability of each mutation 

(sensitizing to either standard-of-care or investigational therapies) was defined as 

having one of four levels of evidence based on published clinical or laboratory evidence. 

Levels are: 1) genomic alterations that are FDA-approved biomarkers in patients of the 

indicated cancer type; 2A) mutations that were deemed to be standard-of-care 

biomarkers for FDA-approved drugs in the indicated cancer type based on currently 

accepted practice guidelines such as those issued by the National Comprehensive 

Cancer Network (NCCN); 2B) alterations that are FDA-approved biomarkers in another 

cancer indication, but not in patients with the affected cancer type; 3) alterations for 

which clinical evidence links the biomarker to drug response in patients, but use of the 

biomarker is not currently a standard-of-care in any cancer type; and finally 4) 

alterations for which compelling preclinical data associates the biomarker with drug 

response. Only levels 1, 2A, and 3A were utilized for the analyses and results described 

here.	

	

4.2.6 Enrichment and clinical analyses	

To test the enrichment of hotspots in either primary or metastatic disease within 

cancer types, we required that a given hotspot be present in at least 15 samples or 5 
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metastatic samples in each cancer type. Only samples and cancer types for which we 

could confirm their primary or metastatic disease status were included in the analysis 

(TCGA, SU2C prostate154), and the prospective MSK-IMPACT series). The significance 

of enrichment for individual hotspots was assessed on a per-cancer type basis and 

determined by two-sided Fisher exact test comparing the number of primary samples of 

a given cancer type that possess the hotspot to metastatic samples of that same type. 

Both cutaneous melanoma and gliomas were excluded from this analysis due to the 

high rate of presentation with metastatic disease in the former, and the absence of 

distant metastasis (local recurrence only) of the latter. Resulting p-values were 

corrected for multiple hypothesis testing with Benjamini and Hochberg method on a per-

cancer type basis.	

	

4.2.7 Co-mutational analyses	

To assess the statistical significance of observed co-mutational frequency, we first 

construct a 2-by-j binary matrix M where each entry mij refers to the status of the gene i 

in the sample j and whose value is 1 if sample j has a hotspot alteration in gene i. Co-

occurrence analysis was performed for all unique pairwise combinations of genes within 

a given pathway (whose members were curated from OncoKB, see above). Other than 

hotspots identified here, for the purposes of this analysis presumed loss-of-function 

mutations in tumor suppressor genes in these pathways (TSC1/2, PTEN, and NF1) 

were considered altered (nonsense, frameshift insertions or deletions, splice site, 

nonstop, or translation start site). We generated a null model of random co-occurrence 
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by permuting the observed alterations (106 permutations) while preserving the overall 

frequency of the alterations observed in our cohort. Empirically derived p-values were 

generated as the number of times co-occurrence was observed equal to or more often 

in this null distribution compared to that of the observed data. Multiple hypothesis 

correction was performed using Benjamini and Hochberg approach and significant co-

occurrence were those pairwise combinations of genes within pathway of q-value < 

0.01.	

	

4.2.8 AKT1 duplication indel validation	

293-FT cells were obtained from ATCC and maintained on DMEM supplemented 

with 10% FBS and 2mM glutamine. MCF10a cells were obtained from the the Solit 

laboratory and maintained in DMEM/F-12 base medium containing 5% horse serum and 

other supplements (20ng/ml EGF, 0.5mg/ml hydrocortisone, 100ng/ml cholera toxin and 

10mg/ml insulin) (complete growth medium). For experiments, growth factors were 

withdrawn from the media, and an “assay medium” was used (DMEM/F-12 base 

medium containing 2% horse serum, hydrocortisone, and cholera toxin). Plasmids, 

cloning, and stable line generation was performed as follows. AKT1-wildtype (WT) and 

AKT1-E17K in pDONR223 vector were provided by the Baselga laboratory. AKT1 point 

and indel mutants were generated by site-directed mutagenesis using KAPA HiFi 

polymerase (KAPA Biosystems) or Q5 mutagenesis kit (New England Biolabs) and 

verified by Sanger sequencing. AKT1-WT and all the other mutants were subsequently 

sub-cloned into gateway lentiviral vector pLX302 using LR Clonase II enzyme mix 
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(Invitrogen). Lentiviruses encoding WT or mutant AKT1 were packaged in 293FT cells 

and the supernatant media containing viral particles was filtered through 0.45μm filters 

and used to infect MCF10a cells. Cells stably expressing the lentiviral constructs were 

selected with puromycin (2.5μg/ml).	

For western blot assays, MCF10a cells stably expressing WT and mutant AKT1 

were seeded on 6-well plates. After overnight exposure to the assay medium the cells 

were lysed, sonicated, and 30μg protein was loaded onto SDS-PAGE gels, transferred 

to nitrocellulose membranes, and immunoblotted for p-Akt and other downstream 

molecular targets of Akt pathway activation. Antibodies for p-Akt (T308) (D25E6), p-Akt 

(S473), p-S6RP (S240/244), p-GSK-3β (S9), p-4E-BP1 (T37/46), p-ERK1/2 

(T202/Y204), and β-actin (8H10D10) were obtained from Cell Signaling Technology. V5 

probe (E10) antibody was purchased from Santa Cruz Biotechnology.	

For cell growth assays, 50,000 cells per well were seeded in triplicate for each of 

the MCF10a stable cells expressing WT or mutant AKT1 and maintained in assay 

medium for the length of the study period. Cells were washed with PBS, trypsinized, 

resuspended in 1ml of medium, and counted in ViCell-XR to obtain viable cell numbers 

on days 1, 3, 5 and 7. Drug treatment and cell viability assays were performed as 

follows. AZD5363 was generously provided by AstraZeneca, dissolved in DMSO to yield 

a 10mM stock, and diluted in assay medium to achieve the desired concentrations. 

MCF10A stable lines expressing WT or mutant AKT1 seeded in 96-well plates were 

treated with a range of drug concentrations, and cell viability was assessed 72 hours 

post treatment using the Cell Titer Glo assay (Promega).	
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4.3 Results  

We analyzed each of the 32 organ types independently as well as the full cohort 

(pan-cancer). To ensure sensitivity for detecting hotspots across organ types of often 

different mutational burdens and processes, we computed organ type-specific gene and 

position-specific background mutation rates and incorporated gene-specific samples 

sizes to enable the combination of exome-scale data with prospective clinical 

sequencing data (Zehir A, et al. submitted). In addition to the identification of 

substitution hotspots, we also developed a computational approach to identify candidate 

hotspots of oncogenic small in-frame insertions or deletions (indels, see Methods in 

Section 4.2.3), which are more challenging than substitutions to identify due to the 

variability of mutant allele length and position from tumor to tumor. Statistically 

significant single-codon or indel hotspots were those of q-value < 0.1 (false discovery 

rate of 10%) either within a given organ type or pan-cancer. 

 

4.3.1 Identification of lineage-specific hotspots 

In total, we identified 1,165 mutational hotspots (1,110 single-codon and 55 indel) in 

247 genes (median of 2 hotspots per gene, range 1-120) (Table 4.1). This analysis 

recovered nearly all previously identified hotspots16 (97%) and identified 840 more, 

reflecting an increased power of detection. The frequency distribution of hotspot-mutant 

genes across cancer had a long right tail16, which was independent of the count of 

unique hotspots in the gene and was different between single-codon and indel hotspots 
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(Figure 4.1a).  While the majority of hotspots (n=596, 51% of total) were significant both 

pan-cancer and within individual organ types (Figure 4.1b), 20 and 29% of hotspots 

were either significant only within an individual organ type or only in the pan-cancer 

analysis of the full cohort respectively (Figure 4.1c). Some of these mutant alleles 

arose in genes that did not harbor a significant hotspot in any other facet of this 

analysis, were new in genes with recently characterized hotspots (such as 

CYSLTR2)155, or arose in genes with more significant mutant alleles and reflected the 

impact of cohort size on the sensitivity for rare allele discovery in even well-

characterized cancer genes (such as PIK3CA, MTOR, ERBB2, MAP2K1) (Figure 4.1b).  
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Figure 4.1: The long tail of mutational hotspots in cancer. a) The frequency 
distribution of genes containing one or more single-codon hotspots (top, dark blue; 
count of hotspots in orange, right y-axis) and in-frame indel hotspots (light blue). b) 
Shown is the statistical significance of mutational hotspots inferred from the analysis of 
the full cohort (pan-cancer, y-axis) and the most significant individual cancer type (x-
axis). A subset of hotspots are annotated and include mutations significant in both 
analyses (upper right), those significant only when combing all cancer types and data 
(leftmost) and those significant only within a given cancer type (bottom). c) The 
proportion of hotspots that were significant only in individual organ types, only in the 
pan-cancer analysis, or both.  
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4.3.2 Hotspots enriched in metastatic disease 

Forty-two percent of the patients in this cohort were prospectively analyzed and had 

advanced previously treated disease, a clinical profile distinct from the primary 

untreated data that predominates in the literature. The inclusion of such patients 

allowed for the identification of hotspots that were present almost exclusively in the 

metastases of treatment-refractory patients. Eleven hotspots were enriched in 

metastatic disease compared to the primary tumors of given cancer types (see Methods 

in Section 4.2.6), nine of which were treatment-associated arising in specimens after 

treatment with either anti-androgen, anti-estrogen, or tyrosine kinase inhibitor therapies 

(Figure 4.2). Some of the hotspots that mediate drug resistance also arose in 

treatment-naïve tumors of other cancer types (such as KIT D820), suggesting that 

treatment-associated mutations in one cancer type can provide a selective growth 

advantage and arise de novo even in the absence of the selective pressure of therapy 

as a primary driver in other cancer types. Other hotspots may reflect new mechanisms 

of resistance to systemic therapies, such as TP53 N239, which was the only TP53 

hotspot that arose preferentially in metastatic breast cancers (q-value = 0.03). As 

previous work suggests TP53 N239 mutations confer paclitaxel resistance in vitro156, it 

was notable that all five patients with metastatic TP53 N239-mutant breast cancer had 

previously received and/or rapidly progressed on taxane-based therapy. Together, 

these analyses highlight a far broader range of hotspots than previously recognized and 

for which validation134,157 may accelerate clinical translation. 
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Figure 4.2: Metastatic enrichment of hotspots identified. A subset of mutational 
hotspots were enriched in metastatic disease compared to primary cancers of a given 
cancer type. Majority of metastatic-specific hotspots were those associated with 
targeted and/or hormonal treatment. Y-axis is the nominal p-value each hotspot by the 
cancer type-specific analysis. Hotspots with q-value < 0.1 were considered statistically 
significant colored by the affected cancer type. 
 

4.3.3 Landscape of recurrent indels in cancer 

While substitution hotspots are the most abundant mutation in cancer genomes, 

several recurrent constitutively activating in-frame indels in oncogenes are biomarkers 

for the use of molecular targeted therapies, including indels in exon 19 of EGFR in lung 

adenocarcinomas and in exon 11 of KIT in gastrointestinal stromal tumors. 

Nevertheless, hotspots of activating in-frame indels have never been defined in an 

unbiased manner before, some of which may similarly sensitize patients to therapy. We, 

therefore, extended our methodology to identify clusters that represent hotspots of in-
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frame indels (see Methods in Section 4.2.6). In total, we identified 55 statistically 

significant indel hotspots in 36 genes (Table 4.1). There were 20-fold fewer indel 

hotspots identified than single-codon hotspots and the majority of genes harboring at 

least one indel hotspot also harbored a single-codon hotspot (80%, 31 of 39 genes). In 

these genes, most indel hotspots span or are physically adjacent to single-codon 

hotspots (Figure 4.3). Three indel hotspots were distal (>15Å) from single-codon 

hotspots in the protein structure of the corresponding gene including the well-

characterized FLT3 internal tandem duplication (ITD)158, ESR1 V422del, and a cluster 

of indels spanning I99 to I107 in MAP2K1 (Figure 4.4a). Notably, ESR1 V422del lies 

approximately 20 angstroms from the ESR1 ligand binding domain (LBD) in which 

hotspots E380, L536, Y537, and D538 are known to confer resistance to estrogen 

deprivation therapies55 (Figure 4.2). Consistent with LBD hotspots, two of the three 

V422del mutations were clonal within the sampled metastatic site in otherwise ESR1-

wildtype estrogen receptor-positive breast cancers sequenced after failure of anti-

estrogen therapy (Figure 4.5). These findings suggest that V422del, unlike the LBD 

hotspots thought to stabilize ligand-independent confirmation of ESR1, may represent a 

novel mechanism by which mutant ESR1 confers resistance to anti-estrogen therapy. 
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Figure 4.3: Distance of indel hotspots compared to single-codon hotspots. 
Majority of the 55 significant indel hotspots overlapped directly or were adjacent to other 
single-codon hotspots. Three indel hotspots were found distal (> 15Å) away from any 
single-codon hotspot identified in the gene.  
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Figure 4.4: Oncogenic indel hotspots*: a) For the three indel hotspots (red) distal to 
the position of known single-codon hotspots in the same genes (gray/green), their 
position and distance is indicated (arcing lines, pink). b) The frequency distribution of 
both previously known (light blue) and novel (dark blue) duplication indels in the study 
cohort. Inset, duplications were identified in oncogenes significantly more frequently 
than either deletions or insertions. (asterisk, p-value < 0.01). c) The hotspot of 
duplication indels in AKT1 are shown in three dimensions (dark red) and lie adjacent to 
the L52 and Q79 single-codon hotspots in AKT1 (orange). The E17K hotspot is shown 
in red for reference. d) The paralogous indels are shown defining the AKT1 and AKT2 
duplication hotspot. The affected cancer types are similar to those that harbor known 
activating L52 and Q79 hotspot mutations. e) MCF10A cells stably expressing the 
indicated AKT1 mutations are shown and expression and/or phosphorylation levels 
were assayed by Western blot indicating the AKT1 P68_C77dup induces elevated 
levels of phosphorylated Akt and S6 comparable to or exceeding that of known 
activating E17K or Q79K hotspots. f) Cell survival upon AKT blockade with AZD5363 in 
AKT1-mutant cells indicated that P68-C77dup-mutant cells were most sensitive to AKT 
inhibition, more so than the canonical E17K hotspot.  

																																																								
* In collaboration with Tripti Shrestha  
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Figure 4.5: Treatment history of two ESR1 V422del mutant HR+/HER2- patients at. 
Two HR+/HER2- patients who progressed on aromatase inhibitor therapy after 5 and 3 
years, respectively. 
 
4.3.4 Validation of AKT1 duplications as sensitivity biomarkers 

Overall, while deletions predominate among the indel hotspots (69%, Figure 4.6), 

we found that duplications were enriched in oncogenes (p-value < 0.01, Figure 4.4b, 

inset). The most recurrent of these among previously uncharacterized alleles was 

paralogous indels in the pleckstrin homology (PH) domain of AKT1 and AKT2 (clusters 

spanning T65-C77 and C60-I84 respectively, q-values = 0.09 and 0.00002) (Figure 

4.4c). These indels are proximal to two known activating AKT1 hotspots L52 and Q79 

(q-values<10-4) (Figure 4.4d) and arise predominantly in estrogen receptor-positive 

HER2-negative breast cancers that lack other PI3K alterations. To determine whether 

indels at this hotspot were activating mutations that sensitized cells to Akt inhibition, we 

assessed the effects of AKT1 P68_C77dup and compared it to two known activating 

hotspots mutations (E17K and Q79). AKT1 P68_C77dup induced AKT phosphorylation 

(T308/S473) to levels higher than those achieved by the two known activating single-

codon hotspots (Figure 4.4e), similar levels of elevated S6 and PRAS40 

phosphorylation, and was the most sensitive of tested mutants to AKT inhibition with the 

selective ATP-competitive pan-AKT kinase inhibitor AZD5363 (Figure 4.4f). These 
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results suggest that novel methodologies to identify previously occult recurrent 

oncogenic in-frame indels, when coupled with functional validation, can expand the 

molecular eligibility of genotype-driven trials and ultimately validate as novel predictive 

biomarkers of inhibitor sensitivity. 

 

Figure 4.6: Distribution of types of indels identified as recurrent. Majority of indel 
hotspots were deletions, followed by duplications, complex insertions, and de-novo 
insertion. 
 
4.3.5 Co-occurrence of multiple pathway hotspots 

One limitation of these analyses is that each hotspot is considered individually, 

without consideration to the other mutations in affected tumors. We hypothesized that 

analyzing the patterns of co-mutation among hotspots could classify mutations that are 

independently oncogenic versus cooperative mutant alleles, those that are only 

functional in a specific mutational context. To formerly test this hypothesis, we assessed 

co-occurrence among individual hotspots and hotspot-containing genes in the same 

pathway that arose together in individual tumors more frequently than expected by 

chance, focusing on MAPK and PI3K pathways as the two most frequently 
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therapeutically targeted pathways in cancer patients. Overall, the pattern and frequency 

of co-mutation in these pathways varied widely (Figure 4.7a and Figure 4.8). The 

majority of PI3K pathway mutational co-occurrence exists between PIK3CA and PTEN 

in endometrial cancers36. The two most significant associations in MAPK signaling 

involved hotspots in ERBB3 and MAP2K1 (q-values < 10-6; Figure 4.7b). ERBB3 was 

most often co-mutated with hotspots in KRAS and ERBB2 in colorectal and breast 

cancers respectively. While further study of these relationships are necessary, the latter 

is notable as ERBB3 preferentially dimerizes with ERBB2 in vivo suggesting co-mutated 

heterodimers may further potentiate downstream activation.  

 
Figure 4.7: Co-mutational patterns among hotspots reveals function. a) The 
pattern of mutational co-occurrence among hotspots in genes essential to MAPK 
signaling reveals co-existing hotspot mutations in the same tumors, the most significant 
of which was BRAF and MAP2K1. The number in each cell is the count of co-mutated 
specimens; the numbers at the end of each row is the count of mutated cases for the 
indicated gene; the numbers in gray are the total co-mutated cases (row and column); 
and cell shading indicates increasing statistical significance of the association (as 
indicated in legend). b) The rate of BRAF and MAP2K1 co-mutation varied by MAP2K1 
hotspot, with P124 mutations always associated with upstream pathway activation and 
predominantly in melanomas, while others (E203, G128, F53, C121, and K57) only 
partially co-mutated while the the MAP2K1 I99_I107 indel hotspot never arose in tumors 
with another MAPK driver mutation. c) All but one MAP2K1 P124-mutant tumors 
possessed another known driver of MAPK signaling, of which most were BRAF V600E 
(59% of total) and these and others were mostly cutaneous melanomas. Conversely, 
the MAP2K1 I99_I107 indel hotspot never arose in an otherwise MAPK-altered tumor in 
a diversity of cancer types. 
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Figure 4.8: Co-mutational analysis of PI3K pathway hotspots. Pattern of co-
mutational pattern among hotspots in genes essential to PI3K pathway signaling reveals 
co-existence of mutations in the same tumors were predominanted by PIK3CA-PTEN 
mutant tumors 
 

In the case of MAP2K1 (MEK1), the pattern and frequency of co-mutation varied in 

an allele-specific and cancer type-specific manner. MAP2K1 P124-mutant tumors are 

nearly always co-mutated with another upstream activating mutation of MAPK signaling 

(95%), most often with BRAF V600E (55%) and largely, but not exclusively, in 

cutaneous melanoma patients (Figure 4.7b-c). Conversely, other MAP2K1 hotspots like 

the in-frame indels clustered in the region from I99 to I108 (q-value = 3.3x10-12) arise 

mutually exclusively with other MAPK lesions in affected tumors independent of cancer 

type (Figure 4.7c). This pattern of co-mutation does not reflect acquired resistance to 

MAPK pathway inhibitors, as only one such tumor was sequenced after RAF or MEK 

inhibitor failure. We hypothesized instead that this allele-specific difference in the 

MAP2K1 co-mutational pattern suggests that the second mutation in MAPK was 

required to condition the function of MAP2K1 P124 but not the MAP2K1 indels. While 
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this analysis of co-incident mutations in multiple pathway effectors suggest these 

lesions can condition distinctive signaling phenotypes, deeper mechanistic investigation 

is required to validate and fully elucidate the mechanism in which it is achieved. 

 

4.3.6 Rate of hotspot identification by gene 

Given the power for rare allele discovery in this cohort (82% of all hotspots were 

identified in 1 in 1000 or fewer patients), we sought to define the rate with which new 

hotspots were identified within and across genes as a function of increasing cohort size. 

We thus performed repeated random downsampling of increasing subsets of the cohort 

from which we inferred the rate of hotspot identification per gene. Principal component 

analysis of gene-specific rates revealed four distinct classes of genes that accrue their 

recurrent mutations, independent of their overall mutational burden, in different patterns 

and with considerable variability from gene to gene (Figure 4.9 and Figure 4.10). One 

cluster is defined by canonical oncogenes (IDH1, K/N/HRAS, GNAQ, MYD88) whose 

hotspots can be identified from few samples but, as genes, they are approaching 

saturation where additional sequencing is not expected to yield many additional 

currently unrecognized hotspots. The identification of hotspots in genes in the second 

cluster initially increased rapidly with increasing cohort size, but their rate is fatiguing yet 

not saturating, indicating additional rare alleles will continue to be discovered including 

in therapeutically actionable genes in this cluster (such as BRAF, PIK3CA, ESR1, 

AKT1, and ERBB2). The third cluster of genes are still in a linear phase of hotspot 

identification and additional sequencing should continue to reveal additional new, albeit 
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uncommon hotspots in these genes, many of which are therapeutically targetable 

oncogenes such as KIT. The fourth cluster is composed of genes (such as MET or 

MTOR) in which even the enormous quantity of sequencing to date has only begun to 

reveal rare hotspots of potential clinical significance. 

 

 
Figure 4.9: Saturation analysis and the discovery of actionability of mutational 
hotspots. a) Downsampling and clustering analysis revealed four distinct classes of 
genes with different rates of hotspot acquisition (green, purple, red, and blue) from the 
number of sequenced samples necessary to identify a given fraction of all hotspots in 
affected genes. Shown in gray are all genes. In red and purple are genes that are either 
saturating in their hotspot discovery (green) or were rapidly increasing and now 
fatiguing (purple). In red and blue are those genes in either their still linear and 
accelerating phases of hotspot discovery. b) An estimate of the number of additional 
specimens to be sequenced to identify an additional hotspot in each gene in each of the 
four aforementioned classes (clinically actionable genes are identified). c) Of hotspot 
mutations identified in one of 18 clinically actionable cancer genes (see panel b for 
genes), the fraction of hotspots used to guide the use of standard-of-care or 
investigational therapies at present (see Methods in Section 4.2) versus those that were 
identified here but are clinically uncharacterized. 
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Figure 4.10: Clustering of the rate of hotspot identification. a) Principle component 
analysis divided genes harboring one or more hotspots into four classes (green, purple, 
red, and blue). b) Overall gene mutational burden was not different between the 
different clusters and likely not a confounder in the rate in which hotspots were identified 
between the four clusters. c) Variability in the rate of hotspots identified exist both 
between and within clusters. Highlighting select cluster members colored appropriately 
to their cluster membership. 
 

As these patterns imply that hotspot discovery in many genes is far from complete, 

we sought to estimate the number of additional tumors of a cancer type composition 

similar to the cohort studied here would need to be sequenced to identify the next 

incremental hotspot in each gene and cluster. We estimate that tumor sequencing data 

on an additional ten thousand or more patients would be necessary to identify an 

additional hotspot in many genes in the saturating cluster (Figure 4.9b), whereas fewer 

than 1000 additional specimens would be necessary to identify additional hotspots in 

genes in the accelerating cluster. The results suggest that many additional hotspots are 

likely to be identified by pooling the sum of tumors prospectively sequenced across 

institutions that currently reside in silo repositories that prevent such analyses. Such 

consortia efforts could accelerate the identification of novel biomarkers for which drugs 

currently exist and expand treatment options for advanced stage patients. 
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This analysis indicates that we are far from saturating the identification of potentially 

actionable hotspots in even therapeutically targetable genes. Thus, affected patients are 

not being offered potentially beneficial matched therapies. To determine the prevalence 

of such occult actionability, we utilized a curated knowledgebase of the oncogenic 

effects and treatment implications of mutations (http://oncokb.org/) in 18 genes in which 

one or more mutations are standard of care (FDA-approved or part of established 

practice guidelines) or investigational biomarkers used to guide the use of approved or 

investigational therapies (see Methods in Section 4.2). Of the 196 hotspot mutations 

identified in these genes, only a minority have been investigated clinically (Figure 

4.10c), though patterns vary in individual genes (Figure 4.11). Fifty hotspots (26%) 

were newly discovered, being neither annotated in OncoKB nor identified in a detailed 

literature review. Because these novel hotspots arise in genes for which targeted 

therapies are available, we sought to test the therapeutic hypothesis that these 

mutations may be sensitizing biomarkers by matching a subset of the affected, 

prospectively sequenced patients to molecularly targeted therapies. Two patients with a 

novel ERBB2 V697 hotspot, one heavily pre-treated triple negative breast cancer and 

another cancer of unknown primary of the scalp, were treated with a selective HER 

tyrosine kinase inhibitor while another patient with a PIK3CA P104L-mutant uterine 

serous carcinoma received a mTORC1/2 catalytic inhibitor, all three of which responded 

to therapy. Taken together, these results indicate that, in some genes, recurrence alone 

can be used to select patients for targeted therapy, and that when affected patients are 
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identified prospectively, such novel mutations can expand selection biomarkers for 

molecularly targeted therapy. 

 
Figure 4.11: a) The number of hotspots per actionable cancer genes is shown and 
includes (left-facing) those with existing clinical evidence of activity to approved or 
investigational therapies (green, purple, and teal) or have been biologically studies but 
clinically characterized (gray) versus the number of hotspots identified here for the first 
time of the unknown significance (red, right-facing). b) Similar to (a), when expanding to 
distinct mutant residues, the number of clinically actionable and uncharacterized rises 
but pattern remains consistent.  
 

4.4. Discussion  

A central tenet of precision medicine in oncology is to provision therapy that targets 

the mutant proteins on which the growth and progression of individual human tumors 

depend. To expand the use of this approach, we identified here 1,165 hotspot mutations 

that extend the long tail of both common and rare recurrent mutations across a 

spectrum of 324 detailed tumor types comprised of both primary untreated and 

advanced post-treatment cancers. We show that the rate at which hotspots are being 

identified with increasing cohort size varies widely and that, in some genes, novel 
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potentially actionable mutational hotspots are still being identified at an accelerating 

rate. Because not all actionable hotspots have been identified yet, existing patients with 

mutant alleles identified here have largely not been offered matched molecular targeted 

therapies to which other patients have had a profound clinical benefit. The implications 

of these findings are especially relevant for patients with advanced, metastatic disease 

that are most in need of novel therapeutic approaches. Furthermore, our results imply 

that the development of broadly active targeted therapies that have clinical benefit may 

necessitate a better understanding of how co-mutations in multiple effectors of a given 

pathway condition distinct signaling biology and treatment sensitivity. Thus, pooling 

prospective genomic data from many sources may quickly achieve the scale needed to 

saturate the discovery of hotspots in most of the genes targetable with current drugs to 

expand the reach of precision therapeutic approaches. To accelerate the identification 

of novel clinically actionable hotspots, we have thus shared the prospective sequencing 

data described here with the Genomics Evidence Neoplasia Information Exchange 

(GENIE). Together, our findings provide a means to guide and prioritize experimental 

validation and clinical cross-validation to expand the treatment options for molecularly 

defined populations of cancer patients.	 	
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CHAPTER 5* 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Overview 

Functionally significant rare mutations are challenging to identify, as these are the 

very mutations that escape detection by computational tools that use recurrence as a 

measure to credential driver mutations. A systematic and scalable approach is needed 

to prioritize and validate these mutations. 

 

5.2 Lessons from phenotype-to-genotype 

A conventional genotype-to-phenotype approach first identifies mutations and then 

seeks to associate them with biological or therapeutic phenotypes such as drug 

sensitivity or outcome. Such approaches have proven to be an enormous challenge. 

The mutational complexity and clinical heterogeneity of most cancers make specific 

phenotypic predictions difficult. Conversely, a phenotype-to-genotype approach can 

reveal long tail mutations that are the molecular underpinnings of specific complex 

biological and clinical phenotypes. One of the most effective approaches has been the 

comprehensive analysis of therapeutic outliers. Here, tumors from individual patients 

who experienced an unexplained exceptional clinical response to a specific anti-cancer 

therapy that far exceeds other similarly treated patients undergoes extensive genomic 

																																																								
*Chang MT, Taylor BS. On the impact of rare mutations in cancer. Science 
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sequencing to identify the molecular basis of their therapeutic sensitivity, information 

that can then be used prospectively in future patients. 

Several studies have now shown that rare somatic mutations in proximal activators 

and inhibitors of mTOR signaling such as TSC1, TSC2, MTOR, and NF2 can engender 

pronounced and durable response to mTORC1 inhibitors101,159,160. Other outlier 

responses have been observed to sorafenib in a lung adenocarcinoma161, erlotinib in a 

HNSCC162, and selumetinib163 in a low-grade serious ovarian cancer revealing rare 

sensitizing mutations in ARAF (S214C), MAPK1 (E322K), and MAP2K1 (in-frame 

deletion), respectively. Exceptional responses to systemic or combination therapies can 

also reveal rare mutations that lead to a new mechanistic understanding of a 

physiologic signaling pathway. For instance, RAD50 hypomorphism sensitized a tumor 

to DNA damaging agents by creating a synthetic lethality of simultaneous genetic and 

pharmacological perturbation of the ATM and ATR axes of DNA damage response 

signaling100. 

Not all patients with similar mutations will have as dramatic a clinical response as 

the index extraordinary responders due in part to many of the context-specific effects 

discuss above. Assessing clinical responses to a given therapy based on the predicted 

sensitizing mutation rather than the organ of origin will certainly drive studies to uncover 

the biological mechanisms that condition variable responses to therapy. The study of 

exceptional responders has spurred a National Cancer Institute-sponsored initiative, 

and has accelerated the design of studies to expand and test these clinical hypotheses. 

A biochemical understanding of the molecular underpinnings, however rare, that 
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engenders deep and lasting response to anti-cancer therapies will serve as the basis for 

expanding rare outlier genotypes into a broader panel of biomarkers that bridge the gap 

between single-patient anecdotes and the identification of broadly applicable 

biomarkers of drug response. 

 

5.3 Prioritization and validation 

Prioritization. Given the number of rare alleles in potentially actionable cancer 

genes, all with possible context-dependent functional differences, the first step is 

determining which mutations are highest priority for in-depth characterization. New 

computational approaches that seek to identify functionally significant mutations look 

beyond the recurrence of individual mutant alleles, incorporating other complementary 

information from paralogous residues of proteins within the same family16,161, 

conservation of affected protein domains164, protein-protein interactions126, or their 

position in the three dimensional structure of the folded protein128. While such 

algorithmic approaches applied to large datasets can prioritize likely functionally 

important mutations, they cannot easily prove the converse – that a mutation has no 

functional effect. 

Beyond new computational methods, how can further directed sequencing of patient 

tumors guide rare allele discovery and prioritization? Rather than undirected sequencing 

of more primary untreated tumors, which has predominated in the literature to date, the 

sequencing of underrepresented patient populations such as those with rare cancer 

types or those with advanced or post-treatment disease may identify important 
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mutations that arise too rarely in common cancer types to draw the attention of the 

research community. In rare cancers, rare mutations have been discovered that are 

obligate events in their pathogenesis including GNAQ and GNA11 (Q209) in uveal 

melanomas165,166, H3F3A (K28) in pontine gliomas167,168, GNAS (R201) in intraductal 

papillary mucinous neoplasms169, and PRKD1 (Q710) mutations in salivary gland 

tumors170. Even rarer alleles are also emerging now small GTPases such as RRAS, 

RRAS2, RAC1 and RAC2
171-173. Likewise, novel and context-rich early-phase basket 

trials will similarly accelerate the speed of rare mutation discovery. In so doing, these 

studies are likely to enrich for the discovery of biological and clinically significant rare 

alleles because all patients are treated with a purpose-built molecularly-driven therapy 

and share a common genomic alteration. Moreover, integrating pre-treatment and post-

progression biopsies and serial collection of circulating tumor DNA into such trials may 

be as fruitful a strategy for rare mutation detection as mining large-scale cancer genome 

data from tens of thousands of primary untreated patients. Such clinical studies can, 

therefore, serve as a far more focused discovery platform as compared to retrospective 

characterization of otherwise unselected populations of cancer patients. 

Finally, an essential adjunct to the aforementioned approaches for rare allele 

prioritization is the development of high-throughput assays to facilitate broad-scale 

functional screening of mutations. One example is saturation mutagenesis174,175 of all 

possible mutant alleles in every residue of a given protein176,177. This approach would 

allow testing of the large number of mutations detected in tumors but also anticipate the 

discovery of yet unseen mutations. Such assays and related approaches134,157 can 
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parallelize the exploration of a large number of rare alleles in the long right tail, prioritize 

mutations for in-depth mechanistic characterization, and identify mutations that appear 

to be biologically silent, facilitating the refinement of the aforementioned computational 

methods. Nevertheless, one limitation of this approach is that the aberrant function of 

mutations can be dictated by the context in which they arise and thus oncogenicity may 

not always be evident in high-throughput assays. Capturing such context-specific 

biological properties would require screening mutations with these highly parallel 

approaches across a large number of different cell types and cell growth conditions for 

multiple phenotypes (eg., growth, signaling, stability, etc.), and combinations thereof. 

The complexity of such an endeavor may be prohibitive. Therefore, while appropriate as 

an initial screen, such approaches may be better suited for prioritization rather than the 

detailed biochemical validation that is necessarily lower throughput. 

Validation. Functional biochemistry remains the most powerful tool for investigating 

the varied and context-specific effects of rare mutations. This approach has been most 

effective when the physiologic function of the wildtype protein is well established. 

Discovering the often-subtle differences among driver mutations found in oncoproteins 

like MTOR, PKC178, and RAS stems from careful study of the biochemical functions of 

the wildtype proteins. Moreover, many examples exist of the importance of measuring 

varied phenotypes (e.g., pathway activation, enzyme activity, protein stability) for proper 

validation of mutant allele function. For instance, while NRAS G12 and Q61 both 

activate MAPK signaling to a similar degree (shared signaling phenotype), Q61 

mutations result in higher rates of melanoma initiation (different phenotype) in mice, a 
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finding that is consistent with the much higher frequency of Q61 mutations in melanoma 

patients86. Similarly, BRAF V600E is sufficient alone for cellular transformation in some 

cancers179, but not in others180, yet is an oncogenic driver of both. But, in which cellular 

system should such multi-phenotypic validation be performed? With the advent of RNA-

guided CRISPR/Cas9 in human cells, genome editing has become an attractive 

approach for engineering a candidate rare mutation into a cell that does not already 

possess it. But if context conditions rare allele function, then experiments in engineered 

cells must control for an enormous number of additional variables, beyond the mutation 

itself, to recapitulate the ecosystem in which the allele was observed in patients. 

Instead, an alternative strategy is to remove the mutation from a cell that natively 

possesses it such as in patient-derived tumor xenografts. Here, candidate driver 

mutations can be removed either genetically or pharmacologically with selective drugs. 

While patient-derived models are not without their own limitations, they have the 

potential to facilitate the study of rare alleles in their native context. Doing so, however, 

requires that our community heed recent calls to expand the generation of such patient-

derived models of human cancer181. Moreover, where prospective clinical sequencing 

has begun, and rare mutations of interest are now being routinely observed, 

incorporating into patient consent the ability to perform research biopsies to facilitate the 

systematic generation of such models is essential, as is sharing them widely182.  

Ultimately, a unified approach that integrates computational and experimental tools 

with judicious clinical validation will be necessary to identify and validate biologically and 

therapeutically significant rare driver mutations in real-time (Figure 5.1). Such an 
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accelerated process raises the provocative possibility that patients with rare mutations 

can be enrolled in clinical trials even before detailed experimental validation, especially 

when the weight of computational evidence is high and the affected patients have no 

standard of care treatment options. In such cases, rare mutations can be explored as a 

predictive biomarker of drug sensitivity in parallel with functional experiments in a co-

clinical trial framework. This strategy is especially appealing when coupled to basket 

studies that assess the therapeutic sensitivity of patients whose disease is defined by 1) 

a single rare driver mutation that is uncommon in all the cancer types in which it was 

identified, or 2) one of multiple rare mutations in a given uncommonly mutated cancer 

gene. Such studies can assess many rare mutations simultaneously while also 

assessing some of the aforementioned context dependencies such as how cell type 

conditions function and drug sensitivity. 
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Figure 5.1. Lifecycle of rare mutation discovery and actionability A complementary 
array of strategies can translate the large number of rare mutations of unknown 
significance being identified either retrospectively or prospectively in advanced cancer 
patients (top) into knowledge (bottom). These can include computational analyses 
(middle) or medium-to-high throughput functional genetic assays (far right) to prioritize 
mutant alleles for in-depth experimental characterization, which can lead to new 
biological discoveries and the validate of new drug targets. Results from any of these 
approaches may also expand the eligibility criteria for enrollment in clinical trials or 
motivate the design of new trials (left, brown and red).  
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5.4 Opportunities and challenges 

Understanding the biological and therapeutic importance of rare mutations is a 

prerequisite for the effective practice of precision oncology. A considerable fraction of 

human cancers, despite broad-based molecular characterization efforts, remain “driver-

negative”. An even larger percentage of tumors lack a currently recognizable 

therapeutically actionable alteration. Conceivably, the growth progression of some of 

these tumors may be driven by rare or even private mutations that remain to be 

discovered. Despite these realities, the therapeutic value of rare mutations is often 

called into question. Do infrequent mutations truly warrant such efforts?  

We argue that while rare individually, these mutations in aggregate affect a sizable 

number of patients across cancer types and may define a truly distinct molecular 

subtype of disease that contributes to our fundamental understanding of human cancer 

pathogenesis. Moreover, understanding the properties of rare mutations in effectors of 

the same pathways affected by common mutations may reveal therapeutic 

vulnerabilities that extend existing therapies to more patients. Therefore, the near-term 

therapeutic significance of a rare mutation does not always correlate with its frequency 

in any patient population. If the study of exceptional responses to anti-cancer therapy 

has taught us anything, it might be that translating rare mutations into broader 

therapeutic approaches is possible and can broaden the clinical utility of such therapies. 

Every rare or even private driver mutation matters when prospectively identified in 

advanced cancer patients having failed standard-of-care therapies for whom there are 

few therapeutic options. The clues left behind by the rare mutations characterized to 
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date will help the field develop better models for distinguishing rare functional mutations 

from passenger mutations. We have only begun to unravel what conditions the function 

and therapeutic sensitivity of both common and rare mutations. These efforts in turn 

may uncover new tumor biology and accelerate clinical translation of biomarkers for 

mechanism-based cancer treatments. 
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