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EPIGRAPH

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts.

Arthur Conan Doyle

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

Chapter 1 Introduction to Longitudinal and Functional Data Analysis . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Alzheimer’s Disease Biomarker Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Accelerometer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Scientific and Methodological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Multivariate Growth Mixture Models and the Application with Longitudinal

Alzheimer’s Disease Biomarker Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Motivation: ADNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Linear Mixed Effects Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Growth Mixture Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Functional principal component analysis and its application in accelerometer-
measured physical activity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Motivation: The MENU weight-loss study . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Statistical analyses on accelerometry-based physical activity . . . . . . . . . . 16
2.2.4 Functional principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Scalar-on-function regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Spatial-Temporal Modeling and Spatial Inference Using Regional Climate Data 20
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 NA-CORDEX Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



2.3.3 Spatial-Temporal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Spatial Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 Bayesian Multivariate Growth Mixture Modeling of Longitudinal
Alzheimer’s Disease Biomarker Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Case Study: Alzheimer’s Disease Neuroimaging Initiative (ADNI) Study . . . . . . 28
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Model fitting with varying numbers of outcomes and latent states . . . . . . 33
3.4.2 Model misspecification performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 ADNI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4 Longitudinal Associations Between
Timing of Physical Activity Accumulation and Health: Application of
Functional Data Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Study Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Accelerometer Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Longitudinal FPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Sample characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Functional Physical Activity Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.3 Regression Patterns: Associations between Physical Activity and Health

Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Multilevel Longitudinal Functional Principal Component Analysis . . . . . . . 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Overview of FPCA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Multi-level Longitudinal FPCA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Estimation of the mean and covariance operators . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Estimation of eigenfunctions and scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Comparing different models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



5.3.4 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Study 1: Two-level functional inputs and one-level scalar outcomes . . . . 87
5.4.2 Study 2: Three-level functional inputs and two-level scalar outcomes . . . 91

5.5 Application in MENU Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 6 Spatial-Temporal Modeling and Spatial Inference Using NA-CORDEX
Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Analysis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Temporal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Spatial-temporal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.3 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Temporal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.1 Multivariate time series regression model . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.2 Temperature model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.3 Precipitation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Spatial-temporal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.1 Geographically weighted temporal model . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.2 GWMTSR model for temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.3 GWGR model for precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5.4 Simulation Studies for Geographically Weighted Regression Models . . . 132

6.6 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6.1 CoPE sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6.2 CoPE Sets for Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6.3 CoPE Sets for Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendix A Additional Results for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.1 Gibbs Sampler Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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c (green boundary) with confidence 0.9. Empty

lower (ELS) and upper sets (EUS) are shown in the figures with the same
color, representing empty lower and upper bounds. ES-L denotes all
estimated slopes are smaller than the specified level c and ES-H denotes
the opposite effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 6.12. Heat maps of estimated historical temperature changing slopes (◦C/decade)
of four seasons in CO and corresponding CoPE sets computed at three
prespecified levels (a) 0.1, (b) 0.15 and (c) 0.2. . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 6.13. Heat maps of estimated historical temperature changing slopes (◦C/decade)
of four seasons in KS and corresponding CoPE sets computed at three
prespecified levels (a) 0.1, (b) 0.15 and (c) 0.2 (c). . . . . . . . . . . . . . . . . . . . . 137

Figure 6.14. Heat maps of estimated future temperature changing slopes (◦C/decade)
of four seasons in CA and corresponding CoPE sets computed at three
prespecified levels (a) 0.5, (b) 0.55 and (c) 0.6. . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 6.15. Heat maps of estimated future temperature changing slopes (◦C/decade)
of four seasons in CO and corresponding CoPE sets computed at three
prespecified levels (a) 0.5, (b) 0.55 and (c) 0.6. . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 6.16. Heat maps of estimated future temperature changing slopes (◦C/decade)
of four seasons in KS and corresponding CoPE sets computed at three
prespecified levels (a) 0.5, (b) 0.55 and (c) 0.6. . . . . . . . . . . . . . . . . . . . . . . . 138

xiv



Figure 6.17. Heat maps of historical precipitation changing slopes (mm/month) of four
seasons in CA and corresponding CoPE sets computed at three prespecified
levels (a) −0.05, (b) 0 and (c) 0.05. The uncertainty in the excursion set
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ABSTRACT OF THE DISSERTATION

Applications of Longitudinal and Functional Data
Analysis

by

Wenyi Lin
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Professor Armin Schwartzman, Chair

The objective of this thesis is to utilize statistical methods for longitudinal and functional

data analysis, where repeated measures are observed. This dissertation is comprised of three main

applications. In the first study, we aimed to model developing trajectories of multiple biomarker

outcomes simultaneously and predict latent disease stages of Alzheimer’s disease, using data

from the multicohort longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

For sparsely observed outcomes over a relatively short period of time, we proposed a flexible

Bayesian multivariate growth mixture model to identify distinct longitudinal patterns of disease

progression and three latent trajectory patterns among ADNI participants that overlap with but
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do not correspond one-to-one with diagnostic status.

In the second study, we observed densely sampled physical activity (PA) data acquired

from accelerometers, which are widely used for tracking human movement and provide minute-

level PA records, and intended to explore its association with health outcomes related with

obesity. We developed multiple multilevel functional models, based on functional principal

component analysis (FPCA) approaches, to study the hierarchical structure and temporal patterns

of daily PA data from 245 overweight/obese women at three visits over a one-year period. We

found that the health outcomes are strongly associated with PA variation and revealed that the

timing of PA during the day can also impact changes in outcomes.

We further extended the implementation to densely sampled data in both spatial and

temporal domains, focusing on modeling and testing climate change effects using regional

climate data from the North American Coordinated Regional Downscaling Experiment (NA-

CORDEX). We constructed spatial-temporal models which incorporate geographically weight

regression strategies, and performed spatial inference on trend parameters regarding temperature

and precipitation change. As a result, we identified regions with significant climate change in

California, Colorado and Kansas, and compared similarities and differences of global warming

effects in local scales.
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Chapter 1

Introduction to Longitudinal and Func-
tional Data Analysis

1.1 Introduction

Study designs with repeated measurements, where records are measured on the same

subject at different times or under different conditions, are consistently gaining interests currently.

These measurements can be collected sparsely or densely, temporally or spatially, regularly or

irregularly, thus posing challenges and also great possibility for statistical modeling and inference.

In this thesis, we aimed to derive analysis strategies for studies with varying types of repeated

measured data structure.

Both longitudinal data analysis (LDA) and functional data analysis (FDA) deal with data

consisting of repeated measurements of objects over time. In FDA, the analysis and theory of

data can be further derived to images or other general objects. The major difference between

them comes from the format of data points distribution, or in other words, the type of sampled

’grids’. Specifically, ’grids’ treated in the LDA studies are typically more sparse, and often

irregularly spaced, whereas FDA typically models ’grids’ which are densely recorded in an

equally spaced domain. Rice (2004) [152] provided an interesting overview for comparing the

perspectives and methods of LDA and FDA. It was demonstrated that though with differences,

there are many common intentions among them, including estimation of individual curves or

functions from noisy measures, characterizing both homogeneity and patterns of variability
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and assessment of the associations between curves and covariates. These similarities could be

reflected from smoothing individual curves, in both LDA and FDA.

The LDA is aimed to characterize the change in response over time and the factors

that affect change, which plays a key role in epidemiology, clinical research, and therapeutic

evaluation [44]. Compared with a cross-sectional study, where the response is measured once per

subject and only the between-individual differences can be obtained, LDA can capture within-

individual change from repeated measures on individuals. Therefore, one main characteristic

of LDA is to estimate the correlation within the observations for each subject for drawing valid

inferences. In addition, the number of repeated observations and their timing, are commonly not

the same for each subject, which is known as unbalanced data. Let yi j denote response variable

for subject i at time j, where i = 1, . . . ,n and j = 1, . . .ni. Usually, ni is a relatively small number

in LDA, especially when compared with the number in FDA modeling.

Functional data, on the contrary, normally have high or even infinite dimensional structure.

A one-dimensional stochastic process, referred to as the first-generation functional data in Wang

et al. (2016) [181], is the most general form of functional data. It can be represented as a

random sample of independent real valued functions {X1(t), ...,Xn(t)} over a compact interval

I = [0,T ] on the real line and assumed to be in a Hilbert space such as the space of square-

integrable functions of L2(I). Specifically, a stochastic process X(t) is called L2(I) if and only if

it satisfies E(
∫

I X2(t)dt)< ∞. The time interval where observations are recorded can be dense or

sparse, whereas a sparse functional data normally arise in longitudinal studies. The conventional

functional data are considered densely sampled when the number of observations converges to

infinity, the mean function EX(t) can achieve the parametric
√

n convergence rate for standard

metrics, such as the L2 norm. For all n subjects, functional data are usually recorded on the

same dense time grid of ordered and regular time grid t1, . . . , tp and p → ∞ applies to typical

functional data. Next-generation functional data are part of complex data objects, which can be

multivariate, be correlated, or involve images or shapes.

In reality, measurement errors are commonly observed in both LDA and FDA, such as
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random fluctuations around a smooth trajectory or actual errors in the measurements. These

random noises are often assumed to be independent across and within subjects. Because repeated

measurements were recorded for each subject, LDA and FDA naturally better accommodate

measurement errors than cross-sectional studies. In addition, smoothing the raw curves using

expansions in basis functions are commonly seen in both LDA and FDA, but from different

points of view. In FDA, the number of basis functions are chosen for good approximation

properties and thus can be very large. However, the dimension of subspace is typically small in

LDA, which may only include linear or quadratic functions.

Another difference in LDA and FDA is about the estimation of covariance matrix. In

FDA, because the data are sampled on a regular grid, the covariance structure can be estimated

directly from observations using the sample covariance. Therefore, estimating covariance is of

direct interest rather than viewed as a nuisance parameter in FDA. However, since the grid points

are sparse and perhaps irregularly spaced in LDA, this covariance structure is not of primary

interest and is usually with some specific formats, such as independent and autoregressive

correlations.

Currently, there is no significant gap between LDA and FDA studies. FDA-based

approaches, such as the functional principal component analysis, are commonly implemented

in LDA. Meanwhile, the methods taken in LDA, in particular ideas borrowed from mixed and

random effects modeling, are widely utilized by recent FDA studies. Hence, the criteria of

constructing statistical models and performing inference for LDA or FDA intrinsically rely on

study objectives and method performances.

1.2 Objectives and Research Questions

The main objective of this thesis is to investigate statistical modelling and inference of

varying types of data related with LDA and FDA. Specifically, methods and algorithms were

proposed to respect the original data structure and extract features for answering corresponding
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scientific questions. Data sources were from Alzheimer’s Disease Neuroimaging Initiative

(ADNI) study, the MENU study and North American Coordinated Regional Downscaling

Experiment (NA-CORDEX) Program. Their related research questions are presented briefly in

this section.

1.2.1 Alzheimer’s Disease Biomarker Data

The main objective of this project is to model Alzheimer’s disease developing trajectories

and predict latent disease stages. Data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) study (http://adni.loni.usc.edu/) were used as an illustration example for understanding

the Alzheimer’s disease pathological progression. This multicohort longitudinal study started

in 2004, recording over 1900 volunteers at varying disease progression stages. Difficulties

arise in capturing both between- and within-subject variation, as well as estimating overall

and individual trajectories across various biomarker domains and disease stages. We aimed to

model the trajectories of multiple biomarker outcomes by means of Bayesian multivariate growth

mixture model and simultaneously predict individual’s disease stage.

1.2.2 Accelerometer data

In this study, we focused on statistically modeling the physical activity data and exploring

its association between health outcomes related with obesity. The data were collected from the

MENU weight-loss study conducted in UCSD, which contains 245 non-diabetic and overweight

women [97, 154]. Specifically, physical activity data were measured via accelerometer sensors,

based on activity counts derived from high-resolution acceleration signals in minute-level. Chal-

lenges mainly arise in deriving solid models to extract features from these densely sampled data,

together with accounting for the unbalanced hierarchical structure in predictors and outcomes.

In our analysis, we treated PA as functional data with multiple levels and implemented the multi-

level/longitudinal functional principal component analysis and functional longitudinal regression

models to investigate the complex data structure.

4



1.2.3 Climate data

The main objective of this project is to model climate change effects in regional scales

incorporating both temporal-spatial modeling and inference strategies. Climate data were

downloaded from the North American Coordinated Regional Downscaling Experiment (NA-

CORDEX) [117], including temperature and precipitation data. The dataset provided both

observed historical and simulated future time series data over North America from 1950 to

2100, which were generated from Regional Climate Models. Challenges typically come from

the structure of climate, for which we need perform the model construction and inference in

both densely-sampled temporal and spatial domains. We considered to build spatial-temporal

models for both temperature and precipitation data and further provided statistical inference on

estimated parameters via the Coverage Probability Excursion (CoPE) sets approach.

1.3 Organization Structure

This dissertation is structured as follows.

Chapter 1 provided an overview of longitudinal and functional data analysis. An outline

of this dissertation was laid out.

Chapter 2 introduced both the scientific and methodological background related with

each research question included in this thesis.

In Chapter 3, we introduced a longitudinal study using ADNI data and derived a Bayesian

multivariate growth mixture model. The proposed methods simultaneously model the trajectories

of multiple Alzheimer’s Disease biomarkers and provide predictions of latent states of disease

progression.

In Chapter 4, methods related with functional principal component analysis were provided

to analyze functional physical activity and its association with related health outcomes, using

data from the MENU study. Chapter 5 further developed the proposed models in Chapter 4 to

more general cases and performed a series of simulation studies.
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In Chapter 5, we proposed strategies to construct spatial-temporal models, using climate

data from NA-CORDEX project, and implemented spatial inference on climate changing effects.
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Chapter 2

Scientific and Methodological Background

2.1 Multivariate Growth Mixture Models and the Applica-
tion with Longitudinal Alzheimer’s Disease Biomarker
Data

2.1.1 Introduction

Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disease and the

most common cause of dementia - a continuous decline in thinking, behavioral and social skills

that may cause final loss of cognitive functions. Currently, among approximately 50 million

people worldwide with dementia, between 60% to 70% of all cases are estimated to have AD

[113]. In the United States, estimated 6.2 million people aged 65 and older are living with AD.

Furthermore, because of the increasing number of Americans aged 65 and older, the annual

number of new cases of AD and other dementias is about to double by 2050 [187]. Meanwhile,

there’s still no cure for AD, but some treatments may change disease progression. In 2021, the

Food and Drug Administration (FDA) has granted accelerated approval for the first putative

disease-modifying therapy [43, 135]. Therefore, AD is recognized as a major epidemic and

poses great medical challenges [71].

A diagnosis of definite AD requires direct and accurate analysis of brain tissue samples,

which can be obtained either at autopsy or from a brain biopsy. In 2007, new knowledge and

guidelines about the prodromal symptomatic stage of AD were incorporated by an International
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Working Group (IWG) [37]. And in 2011, Alzheimer’s Association and the National Institute on

Aging (NIA) issued four diagnostic criteria and guidelines for AD that focus on three stages of

AD, inclduing dementia due to Alzheimer’s, mild cognitive impairment (MCI) due to Alzheimer’s

and preclinical Alzheimer’s [81, 115, 3, 167]. Harmonized diagnostic criteria for AD were later

proposed to reach consensus between two sets of diagnostic criteria from IWG and NIA [126].

Biomarkers are key indicators of specific changes that characterise AD progression.

Specifically, the pathological confirmation of AD requires presence of amyloid beta (Aβ ) peptides

and the evidence of neurofibrillary tangles (NFTs) of protein tau [3], which also differentiates

AD from other forms of dementia. Meanwhile, dementia also represents the end stage of a

long time of accumulation of related pathological changes [83]. Besides Aβ and tau, atrophy

measured by structural magnetic resonance imaging (MRI) is regarded as a powerful biomarker

of AD state and progression [179, 52]. It provides rich information in estimating tissue damage

or loss in vulnerable brain regions, such as the hippocampus and entorhinal cortex, which

are predictive of progression of MCI to AD. Even though the exact mechanisms related with

cognitive impairments are still largely unknown, Jack et al. (2010, 2013) proposed that major AD

biomarkers become abnormal in a temporally ordered manner, with a shape of sigmoidal function

of time [83, 82]. It starts with abnormality in amyloid biomarkers, followed by biomarkers of

neurodegeneration related with tau, then clinical symptoms. Figure 2.1 presents the patterns of

these biomarkers changing from cognitive normal to dementia over the course of AD.

In addition to biomarkers, the Apolipoprotein E (APOE) gene, especially the ε4 allele,

is believed to be the most common genetic risk factor for both early-onset and late-onset AD

[142, 102]. Comprehensive evaluations suggest that the gene is closely associated with decreased

CSF Aβ levels and higher tau-related levels. Meanwhile, carriers of APOE ε4 are at increased

risk for numerous structural and functional brain changes associated with AD, before clinical

symptoms become evident [102, 103].

In this project, we focused on developing and applying innovative analytical tools to

determine the multivariate dynamics of long-term trajectories of AD-related biomarkers.

8



Figure 2.1. The temporal changes of biomarkers along the cognitive
continuum from normal to abnormal. Illustration adapted from ADNI
(http://adni.loni.usc.edu/study-design/).

2.1.2 Motivation: ADNI

The data used for this study came from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), one of the world’s leading studies designed to develop clinical, imaging, genetic, and

biochemical biomarkers for the early detection and tracking of AD (https://adni.loni.usc.edu/,

[128]). This ongoing longitudinal study was initiated in 2004 and has already implemented four

phases of the study, including ADNI-1, ADNI-GO, ADNI-2 and ADNI-3. To date, the study

has recruited over 1900 participants at different AD stages, including normal cognition (CN),

early or late MCI and early AD. In addition, many of the participants enrolled in ADNI 1 are

also followed in subsequent studies, and new participants have been enrolled in each of the

subsequent phases. It prolonged follow-up times of some participants and enriched the database

in the ADNI study, while on the other hand, it also brought challenges of missing data in the

longitudinal study.

Certain inclusion criteria need to be met for all participants to be enrolled in the ADNI

study, including age between 55 and 90, Modified Hachinski score ≤ 4, Geriatric Depression
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Scale less than 6, permitted medications stable for at least 4 weeks prior to screening, etc.

Furthermore, there were specific criteria for MCI and AD patients, such as memory complaint

from patient or study partner and the disease stage identified with multiple objective scores and

ratings.

2.1.3 Linear Mixed Effects Model

Developing analytical models of longitudinal disease trajectories was underscored in

ADNI study, where the outcome variables were measured repeatedly for each study participant.

Linear mixed effects models (LMEs) are commonly implemented to investigate changes over

time in longitudinal studies. In this section, we provide a brief overview of the LME modeling

based on works in Laird and Ware (1982) [95].

Let yi j denote a biomarker response for subject i, i = 1,2, . . . ,n at visit j, j = 1,2, . . . ,mi

and yyyi = (yi1, . . . ,yimi)
′ be the vector of response. The LME model has the form,

yyyi = Xiβββ +Ziaaai + εεε i, (2.1)

where Xi is the mi ×q fixed effects covariate matrix and βββ is the corresponding coefficient vector

with length p. Zi is the random effects model matrix with dimension mi × p. aaai is the p× 1

vector of subject-specific random effects and follows aaai ∼ N(0p,Σ). εεε i = (εi1, . . . ,εimi), with

εεε i ∼N(0mi,σ
2
ε Imi) and is independent of aaai’s. Conditional on aaai, observations yi j are independent

with each other with

E(yyyi|aaai) = Xiβββ +Ziaaai and Var(yyyi|aaai) = σ
2
ε Imi

If the random effect aaai is considered as a part of error term in (yi j, i.e. ei j = Z′
i jaaai + εεε i j,

the marginal distribution of yyyi is given as yyyi ∼ N(Xiβββ ,Gi), where Gi = ZiΣZ′
i +σ2

ε Imi . The
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marginal representation in fact reduces the linear mixed effects model to a general linear model.

Denote all covariance parameters in Gi by a parameter vector θθθ .

Given covariance parameters θθθ are known, the maximum likelihood estimator (MLE) of

fixed effects βββ and the best linear unbiased predictors (BLUP) of random effects aaai are provided

as,

β̂ββ = (
n

∑
i=1

X ′
i G−1

i Xi)
−1

n

∑
i=1

X ′
i G−1

i yyyiii, (2.2)

and

âaai = ΣZ′
iG

−1
i (yyyi −Xiβ̂ββ ). (2.3)

It can be seen that both β̂ββ and âaai are linear functions of yyyiii’s, therefore, their corresponding

standard errors are derived as,

V̂β =Var(β̂ββ ) = (
n

∑
i=1

X ′
i G−1

i Xi)
−1, (2.4)

and

Var(âaai) = ΣZ′
i(G

−1
i −G−1

i Xi(
n

∑
i=1

X ′
i G−1

i Xi)
−1X ′

i Gi)ZiΣ. (2.5)

However, Equation 2.5 only assesses the error of estimation and underestimates the

variation in âaai − aaai, because it ignores the variation of aaai. In practice, the standard errors of

prediction for âaai are based on
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V̂a =Var(âaai −aaai) = Σ−ΣZ′
i(G

−1
i −G−1

i Xi(
n

∑
i=1

X ′
i G−1

i Xi)
−1X ′

i Gi)ZiΣ. (2.6)

When the covariance parameters θθθ are unknown, we use the empirical MLE for β̂ββ and

empirical BLUP for âaai, by replacing the Gi with Ĝi. θθθ are estimated using restricted maximum

likelihood (REML), which are generally preferable to maximum likelihood estimates. In fact, the

REML estimate maximize based on any full-rank set of error contrasts uuu′yyy, such that E(uuu′yyy) = 0.

The full details of REML estimates derivation can be found in original Laird & Ware (1982)

paper, which is involved with the Bayesian approach with unified treatment of estimation and

computation.

These estimates are denoted as β̂ββ (θ̂θθ) and âaai(θ̂θθ). Meanwhile, estimates of the standard

errors of β̂ββ (θ̂θθ) and âaai(θ̂θθ) are obtained by substituting θ̂θθ in Equation 2.5 and 2.6.

In addition, unlike a general linear model, for which we are often interested in estimating

the mean response profile E(yyyi) = Xiβββ , with LMEs we can predict individual response profile

ŷyyi = Xiβ̂ββ +Ziâaai. It can be found from this equation that the individual prediction ŷyyi is in fact a

weighted average of estimated population mean Xiβ̂ββ and observed individual profile yyyi, expressed

as ŷyyi = (σ̂ε
2Ĝ−1

i )Xiβ̂ββ +(1− σ̂ε
2Ĝ−1

i )yyyi. These weights can be interpreted as the ”proportion”

of variability in yyyi within subjects and the ”proportion” of variability between subjects.

Therefore, advantages of using LMEs modeling include, a) it allows partitioning of

variation into between-subject and within-subject variation b) it provides prediction of response

at individual-level, c) it can also handle unbalanced designs, such as different observation times.

2.1.4 Growth Mixture Modeling

The LMEs modeling, which models the longitudinal developmental trajectories of

biomarkers for individuals in the ADNI study, is also known as the growth curve modeling.

Conventional growth modeling applications are able to model within-person change and between-

12



person differences in change [133], while they normally assume that the sample is drawn from

a single population. Therefore, a latent class or growth mixture modeling (GMM) approach

[130] was introduced to capture information about between-person differences in within-person

change, by incorporating unobserved heterogeneity within the larger population in the model.

Instead of assuming that the growth trajectories of all individuals are generated from

common parameters, GMM allows for differences in growth parameters across unobserved sub-

populations. Specifically, it provides a framework for identifying post-hoc stages and describes

the group differences in change. Extending Equation 2.1, a GMM can be written as,

f (yyyi|XXX i,ZZZi) =
K

∑
k=1

P(Ci = k) f (yyyi|XXX i,ZZZi,Ci = k), (2.7)

where f (yyyi|XXX i,ZZZi,Ci = k) has the same distribution as in Equation 2.1, conditional on Ci = k.

P(Ci = k) is the probability that individual i belongs to class k and satisfies ∑
K
k=1 P(Ci = k) = 1.

It can be estimated using either the maximum likelihood [99] or Bayesian methods [145]. In

essence, both approaches implement iterative procedures to obtain parameter estimates, as well

as the posterior estimates of the P(Ci = k) for identifying individuals’ sub-groups.

One typical challenge for constructing a GMM is to determine the number of classes.

In Ram & Grimm (2009) [145], they provided detailed instructions for performing the model

selection. The first criterion is to check the validity and interpretability of all potential models.

Secondly, the remaining models can be compared using relative fit information criteria, such

as finding models with the smallest Bayesian information criteria (BIC) value or a significant

likelihood ratio test statistic [105]. With a Bayesian approach, we may also consider the Widely

Applicable Information Criterion (WAIC) [184]. Furthermore, models can be evaluated with

respect to the classification accuracy, if ground truths are known for some classifications.

The basic implementation of the GMM was extended to accommodate with our data

structure and analysis goals in Chapter 3. In particular, we constructed a Bayesian multivariate
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growth mixture model (BMGMM), which can efficiently fit longitudinal trajectories and identify

latent classes via Bayesian methods.

2.2 Functional principal component analysis and its ap-
plication in accelerometer-measured physical activity
data

2.2.1 Introduction

Physical inactivity is a major public health problem in modern society, with national

reports from CDC showing that only 1 in 4 US adults meet recommended amounts of physical

activity (PA) [24]. Combined with sedentary behavior, they are believed to be strongly related

with an increased risk of chronic health conditions, such as obesity, type 2 diabetes, heart disease,

and certain types of cancers and all-cause mortality [151]. Regular PA, such as walking, cycling

or doing sports, provides significant benefits for health and is recommended by the majority of

health-related facilities [136].

Both subjective and objective assessment tools have been developed to measure PA

levels, which is critical for providing any forms of intervention. Subjective methods, such as

diaries, questionnaires and surveys, can be easily obtained and are time-efficient. However, these

methods normally depend on individual‘s own observation and subjective evaluation, which can

make the reports inconsistent, biased or with inadequate reliability [144, 68].

On the other hand, objective approaches use wearable, or body-fixed motion sensors, to

provide PA estimates. For instance, accelerometry-based sensors can measure the accelerations

of objects in motion along reference axes. Therefore, because acceleration is correlated with

external force, it can reflect intensity and frequency of human movement [194]. Currently,

accelerometers have been widely utilized as useful and practical sensors for measuring and

assessing PA in not only clinical/laboratory practices but also free-living environments [111].

In this project, we focused on developing and implementing multiple statistical models
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to explore the associations between accelerometer measured PA and health-related outcomes.

2.2.2 Motivation: The MENU weight-loss study

The motivation of this project came from the MENU study. It was conducted in the

NIH-funded Transdisciplinary Research on Energetics and Cancer Center (TREC) at UCSD

(2011-2017) and was a one-year behavioral intervention study to investigate the role of dietary

macronutrient composition on weight loss and metabolic, hormonal and inflammatory factors in

overweight/obese women [97, 154]. Clinical measurements were taken at three time points, the

baseline, 6 and 12 months, when participants were instrumented with the accelerometer for 7

days during all waking hours. 245 overweight non-diabetic women were recruited in this study.

Accelerometry-based PA data was collected using the GT3X Actigraph (ActiGraph, LLC;

Pensacola, FL). The device provides second-by-second estimates of activity that can be catego-

rized into minutes spent in sedentary, light, moderate, and vigorous activity using calibration

thresholds [158]. Non-wear time was defined using pre-defined algorithms, identifying intervals

of 90 minutes or longer in which all count values were 0. Days with more than 10 hours of wear

time were saved.

At each data collection clinic visit, body mass index (weight in kilograms/ height in m2)

was calculated. Other related health outcomes, including glucose, total cholesterol, triglycerides,

high-density lipoprotein cholesterol (HDL-C) levels, low-density lipoprotein cholesterol (LDL-

C) levels, high-sensitivity C-reactive protein (CRP), insulin values, etc., were acquired at each

visit.

Therefore, the major goal is to derive statistical analysis models to investigate the patterns

of PA in the MENU study using data collected from accelerometers, as well as the relation with

health outcomes which quantify overweight and obese status.
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2.2.3 Statistical analyses on accelerometry-based physical activity

Currently, many health studies use wearable accelerometry-based devices, for they are

fairly inexpensive and convenient for participants to wear for a period of time [47]. As it was

summarized in Zhang et al. [198], two main categories of statistical analyses were considered

for utilizing accelerometer data.

The first approach is to derive algorithms for translating the acceleration signal into

estimates of metrics. For instance, the raw acceleration data acquired from ActiGraph devices

can be transformed to activity counts [19, 73] or a more complex vector magnitude using

count data from 3-axes [11]. Bai et al. [8] further summarize a general workflow to translate

the acceleration signal for identifying different activity types. Meanwhile, related software

implements were developed to handle the increasing need of more accurate and precise estimates

of acceleration signal, such as R packages PhysicalActivity and pawacc [27, 56].

The second interest is to find out association patterns regarding the obtained summary

estimates or behaviors. Since the devices can save the PA data for multiple days or weeks,

longitudinal data analysis was always incorporated. Carson V et al. [23], for example, explored

the longitudinal association between time spent in vigorous-intensity PA and cardiometabolic

risk factors in youth. Harding et al. [63] described the longitudinal changes of sedentary time and

physical activity through adolescence. Furthermore, more complex longitudinal data analysis

models were generated to handle multivariate outcomes and different variable types, however,

most of these studies mainly utilized summary metrics of PA data.

2.2.4 Functional principal component analysis

With respect to the form of measured count data from accelerometers, which are often

continuous curves or functions, functional data analysis (FDA), especially the functional principal

components analysis (FPCA), is considered as a potent statistical approach [148]. It is based

on principal component analysis (PCA) [87], which is an essential unsupervised dimension

16



reduction tool for multivariate data analysis. PCA aims to find a set of orthogonal components,

or principal components (PCs), which are linear combinations of original features and preserves

the maximum amount of variation from them. The idea of PCA was then extended to functional

data, by replacing vectors by functions, as well as a series of corresponding notations [162].

Therefore, the major goal of FPCA is to decompose the space of curves into principal directions

of variation.

For one observed PA curve X(t) at time t ∈ D , it is assumed to be a squared integrable

random function with mean E{X(t)}= µ(t) and covariance function cov{X(s),X(t)}= KX(s, t).

Mercer’s theorem implies the spectral decomposition of KX(s, t):

KX(s, t) =
∞

∑
k=1

λkφk(s)φk(t),

where λk are the nonnegative eigenvalues with descending order and φk are the corresponding

orthogonal eigenfunctions. The Karhunen and Loéve (KL) [88, 107] expansion of X(t) is

provided as X(t) = µ(t)+∑
∞
k=1 ξkφk(t), where ξk =

∫
t∈D{X(t)− µ(t)}φk(t)dt. Here ξk’s are

referred as principal component scores, with mean zero and variance λk and are mutually

uncorrelated. The KL expansion is the fundamental platform for FPCA and facilitates dimension

reduction for in practice, only the first few eigenvalues and eigenfunctions are needed to provide

a good approximation to the infinite sum.

For estimating the mean function, µ(t), and covariance function, K(s, t), the method of

moments (MoM) [89] approach was employed based on symmetric sums. With the empirical

covariance function, the estimation of the eigenfunctions and eigenvalues based on spectral

decomposition is straightforward, while the tricky part is to select optimal number of components

for the approximation of the full KL expansion. Practical solutions include using cross validation

[153] or Akaike information criterion (AIC) and Bayesian information criterion (BIC) [195].

A simpler way is to keep the first few PC components, which fulfill a cumulative fraction of
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variance explained threshold, such as 0.9. With the estimated µ(t) and φk(t), the principal

component scores ξk’s can then be estimated by direct numerical integration.

Another issue with the implementation of FPCA is the existence of measurement error in

functional observations, which is commonly seen in many applications. It can be addressed by

smoothing the raw data before applying FPCA [147, 164]. An alternative approach is to smooth

the covariance function [195] and furthermore, Xiao et al. [192] provided a computationally

faster sandwich smoother on the empirical covariance matrix, which is in particular applicable in

high- dimensional settings.

The FPCA model provides the fundamental technique to functionally model data with

more than one level, based on the framework of functional linear mixed model (FLMM) [124].

Extensions include but not limit to Multilevel FPCA for extracting core intra- and inter-subject

geometric components in the two-level nested model [33]; Longitudinal FPCA for modeling

longitudinal dynamics [60]; High Dimensional Multilevel FPCA for accommodating high-

dimensional setting [199]; and Structured FPCA for handling both nested and cross designs.

Details and comparisons of these models will be further discussed in Chapter 4 and 5.

2.2.5 Scalar-on-function regression models

Scalar-on-function regression models are extensions of the traditional multivariate linear

model that associates functional predictors with scalar outcomes, and in our study, we are

interested in exploring the relationship between PA effects on overweight-related health outcomes.

The topic has been investigated in a rich literature.

For outcomes with normal distribution, the functional linear model (FLM) was reviewed

in Ramsay and Silverman [148]. A linear model with scalar outcome Y ∈ R and vector predictor

X with length p is provided as

Y = α0 +Xβββ + ε, (2.8)
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where α0 and βββ are the regression coefficients. ε is the random noise with mean zero and

finite variance. Replacing the vector predictor X with the centered functional predictor X̃(t) =

X(t)− µ(t) introduced in Section 2.2.4, the coefficient vector βββ now becomes a coefficient

function β (t) and the corresponding FLM is expressed as,

Y = α0 +
∫

t∈D
X(t)β (t)dt + ε. (2.9)

By expanding X(t) and β (t) in the same functional basis, such as the eigenbasis, it leads

to X(t) = ∑
∞
k=1 ξkφk(t) and β (t) = ∑

∞
k=1 βkφk(t). The resulting model can be seen as equivalent

to the traditional linear model with the form,

Y = α0 +
∞

∑
k=1

βkξk + ε, (2.10)

where the infinite sum on the right side can be replaced with a finite sum of the first few terms

as discussed in Section 2.2.4. Since the scores ξk’s are treated as the predictors in the model,

it is called a functional principal components regression (FPCR) model [150]. Model 2.9 can

be extended to include multiple functional predictors X1(t), . . . ,Xp(t), as well as other vector

predictors Z1, . . . ,Zq.

Equation 2.9 and 2.10 provide the basis to settings where repeated functional observations

or scalar outcomes are collected for each subject in a sample. Crainiceanu et al. [31] derived

the Generalized Multilevel FLM for modeling data with only multilevel functional structure

in predictors, based on the data-driven basis derived from Multilevel FPCA [33]. Goldsmith

et al. [59] proposed longitudinal penalized functional regression to data include both repeated

measures in scalar outcomes and functional predictors. Furthermore, based on the Longitudinal

FPCA setup [60], Gertheiss et al. [57] constructed two versions of Longitudinal FPCR by either
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using scores or spline-based curves as functional predictors when data are observed at multiple

visits.

2.3 Spatial-Temporal Modeling and Spatial Inference Using
Regional Climate Data

2.3.1 Introduction

Essentially, climate can be viewed as the statistics of weather over an arbitrarily defined

time span [29]. The most common statistic is the average of climate conditions, such as

temperature, precipitation, the frequency and intensity of extreme events. Other statistics

include variance, no trend, etc. In the past, climate models were built under a key assumption

termed stationarity, which indicates that these statistics of climate conditions do not vary with a

sufficiently long time period and will be similar to the recent past in the future [91]. However,

this stationarity assumption is violated as a result of human-induced climate change. Currently,

the effects of global climate change are apparent across a wide range of extreme weather events,

such as prolonged periods of heat, heavy rainfall, and severe droughts or floods in some regions

[118]. The global climate is changing because of human emissions of heat-trapping gases.

Overall, a global warming of approximately 0.85 ◦C has occurred over the period 1880 to 2012

[119]. The situation is even worse in Arctic areas. Alaskan temperatures have increased nearly

twice as fast as those in the contiguous United States, and is expected to continue in the future

[1]. Meanwhile, as the temperature increases, more water evaporates from aquatic systems, i.e.

oceans, lakes, etc., which have already caused more heavy rainfall and precipitation events over

the past 50 years.

Climate models are an extension of weather forecasting in long time spans, which are

used to project the possible future evolution and to understand the climate system itself [70].

They are built to divide the atmosphere, ocean, and land surface up into a large amount of discrete

cells to solve numerical equations representing the physical, biological, and chemical phenomena.
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Projections of the past and future climate on a global scale, calculated by global climate models

(GCMs), have been extensively studied. In particular, GCMs incorporate measured values

as forcing data to simulate the past climate, whereas for future projections, information from

particular emission scenarios needs to be employed. The Intergovernmental Panel on Climate

Change (IPCC) provided two sets of emission scenarios used in GCM simulations, including

SRES and RCP scenarios [80, 79, 1]. Currently, GCMs have a spatial resolution of horizontal

mesh ranging from 100-500 km and provide output with a 6-hour temporal frequency. Due to

this relatively coarse spatial resolution and temporal scale, GCMs often fail to capture many

features of regional and local scale estimates of climate change. The limitations are particularly

critical in estimating extreme climate and research questions involved with local or regional

topography and geographical features.

Downscaling techniques are needed to describe the local consequences, which extract

high-resolution information from GCM output into projections that are more representative of

regional-scale climate changes [70]. There are two principal ways to combine the information

on local conditions with global change, including the empirical-statistical downscaling (ESD)

and dynamical downscaling by means of regional climate models (RCMs). RCMs use the GCM

output data as lateral boundary conditions at a much higher resolution and cover only selected

portions of the globe. Typically, RCM integrations are run at 10-50 km horizontal resolution, thus

they are able to provide more detailed characteristics of climate in a small area. They are different

from statistical models, such as ESD models, which establish statistical relationships to translate

GCM output into high-resolution future projections. Compared with RCMs, ESD models are

relatively easy to implement and interpret but heavily rely on historical climate data and observed

relationships. Though RCM integrations generation can be costly and computationally intensive,

they are believed to be better representative of the current climate, as well as a more accurate

projection of future climate. Therefore, many studies, including the North American Regional

Climate Change Assessment Program (NARCCAP) [116] and North American Coordinated

Regional Downscaling Experiment (NA-CORDEX) [117], have devoted many efforts to derive
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dynamically downscaled output and their results have been extensively used in varying impacts

research.

Numerous statistical methods and models are used to analyse climate change. Because

climate is a complex system with many variables acting nonlinearly on a wide range of spa-

tial–temporal domains, both statistical modeling and uncertainty measurements are important in

analysis. Hennemuth et al. [69] summarized multiple statistical methods for exploring various

properties of the climate system, including general summary statistics of fundamental concepts,

extreme value analysis, time series analysis, significance test, spatial-temporal methods, etc.

Some of these methods will be introduced in more detail in Chapter 6.

In this project, we focused on deriving novel multivariate spatial-temporal models and

performing corresponding spatial inference on climate data generated from regional climate

models in NA-CORDEX program.

2.3.2 NA-CORDEX Program

NA-CORDEX is the North American part of the international Coordinated Regional

Downscaling Experiment (CORDEX) program sponsored by the World Climate Research

Program [116]. The general aim of the CORDEX program [58] is to downscale a number of

GCM climate scenarios/predictions derived from the Coupled Model Intercomparison Program

Phase 5 (CMIP5) archives, in a range of limited-area regions. Within the CMIP5 data archive,

the following variables: temperature, eastward and northward wind velocity, specific humidity

and surface pressure, were covered in 6 hourly global models. Additional measures, including

daily and/or monthly values of sea surface temperature, sea-ice fraction, soil moisture and soil

temperature, were also requested. According to the specifications of the international CORDEX

program, the NA-CORDEX program produced downscaled simulations and data for North

America using multiple statistical and dynamical downscaling models driven by an ensemble of

GCMs.

In NA-CORDEX program, the RCM simulations were completed across an approxi-

22



mately 150-year time span, including the historical simulations driven by CMIP5 GCMs for

1950–2006, and the RCP 8.5 and 4.5 scenarios for 2006–2100. A balanced matrix of GCM-RCM

combinations focused on 25 km and 50 km resolutions was incorporated for the dynamical

downscaling. In total, the NA-CORDEX currently has 27 simulations, coming from seven

different RCMs, forced by seven different CMIP5 GCMs, at two different resolutions (25 km

and 50 km).

2.3.3 Spatial-Temporal Modeling

Modeling climate data simulated in the NA-CORDEX program normally involves with

temporal and spatial data structures. Firstly, climate change in general refers to change over

time, which makes time series modeling as an important field for climate analysis. It is obvious

that the stationarity assumption is violated under current climate changing scenario, especially

the global warming situation, therefore, the major task of the time series analysis is to model

the data for estimating the parameters describing the trend, variability and other effects [34]. In

climate modeling, a trend represents the gradual change of some variable, such as temperature

and precipitation, over a period of time. Trend estimation can be realized via simple linear

regression, using climate variables as outcomes and the time as the predictor [92]. Since the

climate is a complex system, the trend analysis can be further extended to incorporate nonlinear

or nonparametric terms [127].

Spatial interpolation is commonly used to transform one grid resolution to a different

grid resolution, in both GCMs and RCMs. In climate models, the field typically refers to a two-

dimensional geographical space (longitude–latitude). The two-dimensional bilinear interpolation

is the simplest interpolation method, determining values by means of linear interpolation first

in one direction, and then going into the other direction [177]. Additional information, such as

the distance between points, can be incorporated to calculate values at unknown points based

on a weighted average value at known points. The inverse distance weighting (IDW) approach

was motivated by the weighted average, which assigns weights as inverse of the distance to each

23



known point [64]. In addition, the spline interpolation, such as thin plate smoothing splines

[171] and B-splines [98], further constructed a surface with minimal curvature and preserve

small-scale properties.

The trend analysis and spatial interpolation provide the basis for spatial-temporal model-

ing of climate data, separately in the time domain and space domain. Interpretation of correlations

of time series values from climate records and estimated parameters in a spatial domain can be

provided via correlation maps [160]. Currently, more advanced methods, such as spatial-temporal

Gaussian random field [14] and Generalized Additive Models [67], are widely implemented to

explore the spatial-temporal data structure.

2.3.4 Spatial Inference

Hypothesis testing or significance testing is another important aspect of climate research.

For instance, statistical significance of those linear slopes estimated from the trend analysis

needs further assessment, with the null hypothesis set as no trend. At each location, the normally

distributed parameters can be tested pointwisely via a Z-test or Student-t test. Furthermore,

the bootstrapping provides a resampling method, which repeats the test parametrically or non-

parametrically from resamples and determines a distribution of the test statistic [42]. These

approaches are commonly seen in climate science due to the simplicity and efficiency [32],

however, pointwise inference can be weakened because the familywise error rate (FWER) is not

controlled.

A better approach is to account for the problem of multiple testing problems or adjust the

spatial correlation between tests. The traditional way is to perform the Bonferroni correction for

controlling the FWER, but it is too conservative when many tests are done in the whole spatial

domain. Other approaches, such as FWER-controlling methods for spatial signal detection based

on Gaussian random fields, were derived to implement simultaneous inference [51, 49]. Recently,

Sommerfeld et al. [166] proposed a new approach for addressing these problems based on

constructing Coverage Probability Excursion (CoPE) sets, which accounts for the simultaneous
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inference problem caused by multiple comparison in a space. Meanwhile, because the confidence

sets are constructed by means of a multiplier bootstrap method, the CoPE method only requires

mild assumptions about the data and is also very fast to apply.
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Chapter 3

Bayesian Multivariate Growth Mixture
Modeling of Longitudinal
Alzheimer’s Disease Biomarker Data

3.1 Introduction

Alzheimer’s disease (AD), an irreversible neurodegenerative disorder, is the most com-

mon cause of dementia, affecting millions across the world. Biomarkers, such as those derived

from neuroimaging, are commonly collected to characterize progression of AD pathology. Track-

ing the temporal evolution of multiple AD biomarkers may improve understanding of disease

mechanisms [83, 82]. Several authors have also emphasized the importance of using biomarkers

to predict risk of decline from mild cognitive impairment to dementia [114, 17]. Prediction of

AD progression is potentially valuable for designing clinical trials and in clinical practice, as

preventive measures can be more effective prior to onset of dementia, i.e. when patients are

cognitively normal (CN) or have mild cognitive impairments (MCI) [139, 28].

Linear mixed-effects models (LMEs) provide a flexible and powerful statistical frame-

work for analyzing longitudinal biomarkers that enable characterization of between-patient

variation in within-patient AD progression. LMEs have been widely implemented in prior AD

research, including applications to magnetic resonance imaging (MRI) data [16], positron emis-

sion tomography (PET) [96], and clinical and neuropsychological assessments [178]. However,
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disease progression may be better captured by evolution of multiple biomarkers simultaneously

[83, 82]. Additionally, most longitudinal studies of AD are of much shorter duration than the

length of time involved in progression of the illness [35]. Analytic approaches are thus needed

to account for multivariate biomarker dynamics (and their heterogeneity across subjects) using

available short-term longitudinal data.

Growth mixture models (GMM) [131], which are an extension of mixed-effects mod-

els that incorporate latent classes for random effects distributions, can be usefully applied to

address these issues. GMMs have been implemented in multiple longitudinal studies related

with Alzheimer’s disease. For example, Pietrzak et al. [141] applied GMMs to reveal three

predominant trajectories of a composite score of episodic memory change. Lin et al. [101]

fit two separate GMMs to examine the potentially heterogeneous longitudinal trajectories of

episodic memory and executive function for identifying the existence of successful cognitive

agers. Leoutsakos et al. [100] implemented parallel-process growth mixture models on both

cognitive and functional measures and a follow-up multinomial logistic regression to predict

class membership. These applications either focused on univariate modeling or post hoc anal-

yses of the effects of multiple measures based on GMM results. Lai et al. [94] constructed a

multivariate finite mixture latent trajectory model, which can identify subgroups of patients.

However, the specification of the model requires constraints on covariance matrices; moroever,

the expectation–maximization (EM) algorithm was applied for parameter estimation, for which

the performance often depends on the choice of starting values.

To address these limitations, we propose a Bayesian multivariate growth mixture model

(BMGMM) incorporating latent states for prediction of AD progression. Our proposed method-

ology has several advantages compared with previous work. First, our model enables statistical

inference for modeling multivariate longitudinal growth trajectories and simultaneously predicts

latent classes, incorporating random effects for both latent classes and outcomes. Second, the

proposed model accommodates covariates for both outcome trajectory modeling and latent class

modeling. Third, the proposed model estimates probability of latent class membership predicting
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future transitions in disease progression. Finally, as a fully Bayesian hierarchical model, the

BMGMM incorporates data from longitudinal trajectories of multiple outcomes in a unified

modeling framework, allowing flexible and rigorous interrogation of the posterior distribution,

model selection and checking, and inference about long-term disease dynamics from short-term

multivariate longitudinal biomarker data.

3.2 Case Study: Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) Study

The proposed approach was applied to the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data. ADNI is a multicohort longitudinal study started in 2004, tracking the progression

of AD with clinical, imaging, genetic and biospecimen biomarkers. Over 1900 volunteers

between the ages of 55 and 90 have been recruited in four waves or phases of study. The first

phase, referred as ADNI-1, consists of 800 individuals: 200 cognitvely normal (CN), 400 mild

cognitive impairment (MCI), and 200 with mild dementia. Following phases enrolled additional

individuals at different stages as well as keeping participants from the prior cohorts. More

information about the details of the study can be found at http://adni.loni.usc.edu/.

The classification of stages of disease progression in ADNI was given as follows [140].

CN individuals have a Clinical Dementia Rating (CDR) score of 0, Mini Mental State Exam

(MMSE) between 24-30, no memory complaints, and paragraph recall scores meeting education

adjusted cutoffs for CN. In addition, CN individuals could not have any significant impairment

in cognitive functions or activities of daily living. The Significant Memory Concern (SMC)

cohort was added to the second phase of the study, i.e. ADNI-2. Individuals identified as in the

stage of SMC have a self-report significant memory concern, quantified by using the Cognitive

Change Index. MCI participants have a CDR of 0.5, MMSE between 24-30, a subjective memory

complaint and could not qualify for the diagnosis of dementia, and paragraph recall scores

meeting education adjusted cutoffs for MCI. Dementia participants had CDR of 0.5 or 1, MMSE
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of 20 to 26, memory complaints and meet criteria for probable AD. At the screening visit, all

subjects were required to provide demographics, family history, medical history and physical

examinations and neurological examinations were given to record crucial signs.

3.3 Methods

Here, we present our Bayesian multivariate growth mixture model (BMGMM) for

analyzing multiple biomarkers from multivariate longitudinal data. Section 3.3.1 presents the

BMGMM model formulation. Section 3.3.2 and Appendix A.1 describe our model inference

and our efficient Gibbs sampling algorithm. Sections 3.3.2, 3.3.2 and 3.3.2 describe prior

specification, derivation of conditional posteriors, and model selection.

3.3.1 Model

Let yi jl denote the response of biomarker l, l = 1,2, ...,L, for subject i, i = 1,2, ...,n

at jth time point ti jl , j = 1, ...,mil . We assume the distribution of yi jl is characterized by a

mixed-effects model,

yi jl = xxxT
i jlβββ l +a0il +a1ilti jl + εi jl, i = 1, . . .n, j = 1, . . . ,mil, l = 1, . . . ,L, (3.1)

where xxxi jl is Ql-dimensional vector of fixed effects (which may include time-varying covariates);

βββ l is the corresponding Ql-dimensional vector of regression coefficients, and εi jl
i.i.d.∼ N(0,σ2

ε ).

The parameters a0il and a1il are biomarker-specific subject random intercepts and slopes, re-

spectively. We assume that the joint distribution of these random effects depends on subject

membership in one of K latent subgroups in the data, capturing underlying differences in disease

states not necessarily captured by clinical diagnostic assessments.

Let Ci ∈ {1, . . . ,K} be a random variable denoting the (unknown) latent class membership

of the ith subject. Further, let aaai = (a0i1,a1i1, ...,a0iL,a1iL)
T denote the 2L-dimensional vector of
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random coefficients for the ith subject. We assume aaaiii follows a multivariate normal distribution

conditional on Ci, so that aaai|Ci = k ∼ N(αααk,ΣΣΣk). Here, αααk = (α0k1,α1k1, ...,α0kL,α1kL)
T are

class-specific random effect means and ΣΣΣk are class-specific 2L×2L random effect covariance

matrices, k = 1, . . . ,K.

Subject-specific probabilities of latent class memberships πππ i(zzzi) = (πi1(zzzi), ...,πiK(zzzi))
T

are modeled using multinomial logistic regression:

P(Ci = k|zzzi) = πik(zzzi) =
exp(zzzT

i γγγk)

∑
K
k′=1 exp(zzzT

i γγγk′))
, (3.2)

where zzzi is a Qz-dimensional vector of time-invariant covariates related with latent class and

γγγk is the corresponding class-specific coefficient vector. To ensure identifiability of the model,

γγγK ≡ 000 and hence the last class K is the reference category for the multinomial logistic regression.

Therefore, by incorporating the latent class setting, we implement a mixture model of the form

f (yi jl|xxxi jl, ti jl,zzzi) =
K

∑
k=1

P(Ci = k|zzzi) f (yi jl|xxxi jl, ti jl,Ci = k), (3.3)

where f (yi jl|xxxi jl, ti jl,Ci = k) denotes the mixed-effects model format in Equation 3.1, conditional

on Ci = k, and P(Ci = k|zzzi) denotes the multinomial logistic model in Equation 3.2.

3.3.2 Model Inference

In this section we describe the Bayesian prior specification, model fitting algorithm, and

model selection metrics. A detailed description of the Gibbs sampling algorithm is given in

Appendix A.1.

Prior Specification

Here, we describe the prior specification for the BMGMM. We adopt weakly informative

prior distributions to all model parameters. For βββ l, l = 1, . . . ,L and αααk,k = 1, . . . ,K, independent

conjugate normal distributions NQx(0,cI) and N2L(0,cI) are assigned, respectively. In our
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implementation, we set c = 100. We assume a conjugate Inverse-Gamma(δ1,δ2) prior for σ2
ε

and specify δ1 = δ2 = 1.

For class-specific coefficients γγγk,k= 1, . . . ,K−1, we adopt Polya-Gamma data augmenta-

tion approach, to avoid the the need for complicated approximation or numerical integration[143].

Each γγγk is assigned a prior under the Pólya–Gamma sampling scheme. A Detailed description of

this algorithm, with corresponding priors, can be found in A.1.1.

For the class-specific covariance matrix ΣΣΣk, the prior is specified as Inverse-Wishart(ν +

2L−1,2ν∆), where ∆ is a diagonal matrix with elements λl , which are assumed to be indepen-

dently distributed with Gamma(1
2 ,

1
ψ2

l
). This prior is referred as Half-t(ν ,ψψψ) for it generates a

Half-t distribution with ν degrees of freedom and scale parameter ψl for standard deviations. This

prior is implemented to reduce potential impact of misestimation of the correlation coefficients

[75], considering the complex covariance matrices designed for multivariate biomarkers. We

specify ν = 2 to obtain a uniform prior for the correlation coefficients [55] and φl = 1.

Posterior Computation

The prior specification above provides full conditional distributions for all model pa-

rameters which can be efficiently updated via a Gibbs sampler. Let CCC = (C1, . . . ,Cn)
T denote

the vector of latent class memberships and let aaa = (aaaT
1 , . . . ,aaa

T
n )

T denote the stacked vector of

random effects for all n subjects. Assuming prior independence of the model parameters, the

joint posterior is given by

P(CCC,aaa,βββ 1, . . . ,βββ L,ααα1, . . . ,αααK,ΣΣΣ1, . . . ,ΣΣΣK,γγγ1, . . . ,γγγK−1,σ
2
ε |y) ∝

K

∏
k=1

n

∏
i=1

{πik(zzzi)[
L

∏
l=1

mil

∏
j=1

N(yi jl|ξi jl,σ
2
ε )]N2L(aaai|αααk,ΣΣΣk)}1(Ci=k)

·π(βββ l)π(σ
2
ε )π(ΣΣΣk)π(αααk)π(γγγk),

(3.4)

where ξi jl = xxxi jlβββ l +a0il +a1ilti jl and N(yi jl|ξi jl,σ
2
ε ) denotes the normal distribution for yi jl as

described in Equation 3.1; N2L(aaai|αααk,ΣΣΣk) denotes the normal likelihood for random effects aaai
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with mean αααk and covariance matrix ΣΣΣk; 1(Ci = k) is an indicator if subject i belongs to class

k; π(·) = {π(βββ l),π(σ
2
ε ),π(ΣΣΣk),π(αααk),π(γγγk)} denote the prior distributions for corresponding

parameters as described above. At each iteration s, the sampling scheme consists of the following

steps:

1. Sample γγγ111, . . . ,γγγK−1 by incorporating Polya-Gamma auxiliary variable as desribed in

A.1.1.

2. Sample the class indicators Ci(i = 1, . . . ,n) from a discrete categorical distribution with

probability πππ i = (πi1, . . . ,πiK) described in A.1.2.

3. For k = 1, . . . ,K, sample the class-specific parameters αααkkk and ΣΣΣk from their full condition-

als.

4. Given Ci = k, sample aaai from their full conditionals.

5. Sample σ2
ε and sample βββ l, l = 1, . . . ,L from their full conditionals.

The detailed Gibbs sampling algorithm can be found in Appendix A.1. A corresponding R script

is provided on Github (https://github.com/wendylin23/BMGMM).

Model comparison

For model comparisons, we implement the Widely Applicable Information Criterion

(WAIC) [184]. The WAIC is computed using the log-likelihood evaluated at the posterior draws

of the parameter values. Let θθθ denote all parameters in the model. The log-likelihood for

individual observation vector yyyi = (yi11, . . . ,yimi11, . . . ,yi1L, . . . ,yimiLL) is given by

l(yyyi|θθθ) =
K

∑
k=1

1(Ci = k){
L

∑
l=1

[log(Imil σ
2
ε )

− 1
2 − 1

2
(yyyil −ξξξ il)

T (Imil σ
2
ε )

−1(yyyil −ξξξ il)]−

1
2

log |ΣΣΣk|−
1
2
(aaai −αααk)

T
ΣΣΣ
−1
k (aaai −αααk)},

(3.5)
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where yyyil = (yi1l, . . . ,yimil l) and ξξξ il = (ξi1l, . . . ,ξimil l). Then the WAIC is defined as[156],

WAIC =−2
n

∑
i=1

log{
S

∑
s=1

exp(l(yyyi|θθθ (s)))}+2
n

∑
i=1

VarS
s=1l(yyyi|θθθ (s)), (3.6)

where S is the number of MCMC iterations and θθθ
(s) is the sth draw from the posterior distribution.

Lower values of WAIC indicates better model fit. R code providing an efficient computation of

WAIC for our BMGMM can be found at https://github.com/wendylin23/BMGMM.

3.4 Simulation study

In these simulation studies, we conducted Monte Carlo experiments to examine the

performance of the proposed algorithm and how model misspecification affects performance.

For each example, we simulated n = 200 individuals and t = 6 time points. We kept only 75% of

the generated data to create a sparser datasets to better mimic the data in ADNI study. For each

individual, the observation times were sampled from a uniform distribution ti jl ∼ Unif(0,5) and

the baseline time was sampled from a normal distribution Ti0 ∼ N(0,5) for indicating varying

starting time points. Setting σε = 0.1 for all simulation scenarios. For each model fitting, we ran

two parallel Markov chains and each chain was run 2000 iterations, with the first 1000 iterations

discarded, yielding a total of 2000 samples for posterior analysis. Each model was simulated

M = 100 times.

3.4.1 Model fitting with varying numbers of outcomes and latent states

In the first scenario, we simulated examples from P = 1,2,3 outcomes and K = 2,3

latent states. Let θ̂s be the posterior estimate of a model parameter θs in the s-th simulation.

The following quantities were considered for assessing the model performance: (i) average

bias, Bias = 1
S ∑

S
s=1(θ̂s −θs), (ii) total mean squared error, MSE = 1

S ∑
S
s=1(θ̂s −θs)

2 and (iii) the

coverage rate of the 95% credible intervals, C95%. Prediction accuracy of latent classes, pacc for
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Table 3.1. Simulation study results of P = 2 and K = 3. The model was fit to all
200 samples.
Parameter (true values) Bias MSE C95 Bias MSE C95

l = 1 l = 2

βl1 (1,3) 0.0104 0.0030 0.92 0.0062 0.0025 0.94
βl2 (0.5,-0.1) 0.0018 0.0003 0.86 0.0023 0.0003 0.88
α01l (0.2,0.5) -0.0189 0.0173 0.96 -0.0236 0.0270 0.96
α02l (2,1) -0.0041 0.0291 0.90 0.0185 0.0227 0.96
α03l (10,2) -0.0345 0.0582 0.90 -0.0066 0.0651 0.94
α11l (3,1) -0.0119 0.0070 0.93 -0.0100 0.0072 0.96
α12l (1,2) 0.0007 0.0033 0.98 0.0050 0.0065 0.93
α13l (-0.5,-0.5) -0.0085 0.0969 0.97 0.0049 0.0418 0.98

Covariate 1 Covariate 2

γγγ1 (1,0.5) 0.1180 0.1453 0.90 -0.0227 0.0973 0.94
γγγ2 (2,-0.5) 0.1240 0.1227 0.91 -0.0631 0.0901 0.93
pacc 0.987
* K = 3 is the reference class with γγγ3 = 0.

200 samples, is also included in the table.

Table 3.1 presents the average bias, MSE and C95 from the simulation setting with P = 2

outcomes and K = 3 latent classes. Simulation parameters were set to fixed effects coefficients

βββ 1 = (1,3)′, βββ 2 = (0.5,−0.1)′ and class-specific coefficients γγγ1 = (1,0.5)′, γγγ2 = (2,−0.5)′.

Random effects are to with intercepts ααα01 = (0.2,0.5)′, ααα02 = (2,1)′, ααα03 = (10,2)′ and slopes

ααα11 = (3,1)′, ααα12 = (1,2)′, ααα13 = (−0.5,−0.5)′, where the random intercepts in the first

outcome are more separable compared with the second outcome. For each latent class k, the

covariance matrix of random effects are generated from Wishart distribution with 2P degrees

of freedom. Figure 3.1 plots the coverage rate of the 95% credible intervals of each element

in the covariance matrix. Both summary table and plot illustrate that parameters are estimated

accurately and coverage of posterior credible intervals is close to the nominal 95%. Other

simulation results from varying combinations of number of latent classes and outcomes, included

in Appendix A.2, show similarly good performance.
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Figure 3.1. Coverage rate of the 95% credible intervals for estimated random effects covariance
matrix for three latent classes.

3.4.2 Model misspecification performance

In the second simulation study, we explored the model performance when it is misspeci-

fied. The true model was simulated with P = 2 outcomes and K = 3 latent classes, using the same

parameter setting as in section 3.4.1. The covariance matrix was assumed to be varied between

classes. In addition to fitting the model with the true setting, we included five misspecification

scenarios, (i) assuming K = 3 but fitting a univariate model for each outcome (ii) assuming K = 1

and fitting multivariate linear mixed models on both outcomes (iii) assuming K = 2 latent classes

(iv) assuming K = 4 latent classes and (v) assuming K = 3 but fitting model with homogeneous

convariance matrices for all latent classes. Estimated WAICs are computed by averaging over

100 simulation samples and compared between the true model and each misspecified model.
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Specifically, for two univariate models, we computed a combined WAIC by assuming an identity

covariance matrix between two outcomes. The simulation results are presented in Table 3.2,

shows that the model specified with P = 2 outcomes, K = 3 or K = 4 latent classes and hetero-

geneous covariance matrices is preferred with lower values of WAIC’s. This is expected since

K = 3 conforms with the original model setting and K = 4 increases the complexity of model,

thus improves the model performance. However, among all 100 simulation replicates specified

with K = 4 latent classes, 78 of them are predicted with 3 latent classes, indicating the stability

of our proposed algorithm even with misspecified parameters.

Table 3.2. Simulation study results from multiple misspecified scenarios and the true model,
including case (i): fitting a univariate model for each outcome, case (ii): assuming K = 1 and
P = 2, case (iii): assuming K = 2 and P = 2, case (iv): assuming K = 4 and P = 2, and case (v):
assuming equal Σk for all k’s. WAIC is an averaged value from 100 simulation replicates, along
with its corresponding standard deviation.

Scenario WAIC (SD)

True model 2930.32(151.36)
Case (i) 3626.53 (299.09)
Case (ii) 3900.75 (103.86)
Case (iii) 3302.77 (193.95)
Case (iv) 2914.95(128.30)
Case (v) 3421.25 (111.41)

3.5 Real Data Analysis

3.5.1 ADNI Data

We used the BMGMM on the ADNI data, focusing on the Alzheimer’s Disease Assess-

ment Scale Cognitive Subscale (ADAS-Cog) and structural Magnetic Resonance Imaging (MRI)

volumes. The ADAS-Cog [155] is a cognitive assessment, with higher scores indicating more

severe cognitive dysfunction, and is frequently used in clinical trials in populations with dementia.

In addition, MRI volumes from multiple regions of interest (ROIs), including hippocampus,

middle temporal lobe (Mid-Temp), fusiform gyrus, and entorhinal cortex [106, 84], to track the

pathophysiology of AD progression. Trajectories for each outcome are displayed in Figure 3.2,
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with diagnostic status (CN, MCI, AD) indicated by color (blue, yellow, red, respectively). It can

be seen from this figure that there is some clustering of trajectories by diagnostic status, most

pronounced in ADAS-Cog and least pronounced in fusiform volume.

Figure 3.2. Spaghetti plots of the observed biomarker values of ADAS-Cog, hippocampus
volume, middle temporal lobe volume, fusiform volume, and entorhinal thickness from 745
participants in the Alzheimer’s Disease Neuroimaging Initiative study with respect to their age
over time. Colors indicate diagnostic stage at entry, including cognitively normal (blue), mild
cognitive impaired (yellow) and dementia (red).

3.5.2 Data analysis

We fitted the proposed BMGMM on n = 745 ADNI participants to determine if there are

latent classes of disease progression. Note, clinical diagnosis was not included as a predictor in

the BMGMM as one goal of this analysis was to examine the degree to which predicted latent

class memberships from biomarker and cognitive data mapped on to clinical assessments. Thus,

we evaluated the concordance of our predicted latent classes based on these P = 5 outcome

trajectories with baseline and with follow-up diagnoses. In addition, we compared the predicted
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latent classes with the progression of the Clinical Dementia Rating Sum of Boxes (CDRSB)

[77, 125], which is a global assessment tool for both cognitive and functional impairment. It is

used widely as a single primary endpoint for trials studying individuals at earlier stages of AD,

when the use of ADAS-Cog is more limited[185]. The comparison between our predicted latent

classes and the progression of CDRSB can further imply the role of MRI measures plays in the

model fitting.

Since outcome measures have varying scales (as showed in Fig 3.2), they were normalized

to be within range 0 and 1 by subtracting the minimum value and divided by the difference

between maximum and minimum values, to ensure the stability of model fitting. Presence of

apolipoprotein E (APOE) ε4 allele is a strong genetic risk factor for the development of AD [142]

and was used as the fixed effect covariate. High elevated amyloid existence is a binary indicator,

defined on high amyloid PET standardized uptake value ratio (SUVR) 11 or low cerebrospinal

fluid β -amyloid peptide (CSF Aβ42), and is believed to be significantly associated with worse

cognitive measures [36, 62]. Thus we included it as a covariate for class parameters. We ran two

parallel Markov chains for 3000 iterations and the first 1500 warm-up iterations were discarded.

We compared the WAIC’s from models with K = 1,2,3,4 latent classes and K = 3 was found

to be the optimal one. Detailed results of model selection were included in Appendix A.3. We

constrained the order of the random intercepts of ADAS-Cog scores to be increasing from latent

class 1 to latent class 3, to fix the orders of predicted latent classes. The posterior mean and the

95% credible intervals were computed using the obtained samples for all parameters.

Figure 3.3 shows both population- and subject-level fits of longitudinal trajectories,

colored with predicted latent states (left) and baseline diagnosis in ADNI (right). The predicted

latent classes give a clearer clustering of trajectories compared with baseline diagnosis, especially

for the MRI measures. The posterior means (95% credible intervals) for model parameters are

given in Table 3.3. For ADAS-Cog and MidTemp volumes, parameters of both class-specific

random intercepts and slopes illustrate a significant separation between the three predicted

latent states. For the hippocampal volume and entorhinal thickness, the credible intervals of
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the estimated random intercepts and slopes between class 2 and class 3 are more overlapping.

Fusiform volumes show a similar overlapping pattern in intercepts but more separation in slopes

in the three latent classes.

Figure 3.4 displays the predicted individual-level progression intercepts and slopes for

ADAS-Cog and four MRI measures, colored by latent classes and symbolized with baseline

diagnostic states. These figures support our assumptions of the non-constant convariance

matrices among varying latent classes and concur with the results of class-specific parameters

in Table 3.3, i.e. the three latent classes are better separated in ADAS-cog and MidTemp

volumes. The predicted latent classes display varying patterns of AD development regarding the

baseline measurement values and progressive slopes, indicating potentially different rates of AD

development in the future within each diagnostic disease state.

The top of Table 3.4 provides the classification summary between the baseline diagnoses

and predicted latent classes. The posterior proportions indicate that almost all patients diagnosed

with CN at baseline are classified as L1 (86%) while those with dementia at baseline were mostly

classified as either L2 (55%) or L3 (43.2%). MCI patients present comparable classification

proportions for each latent class. The bottom of Table 3.4, shows that nearly all MCI patients

who are predicted with L1 (96.3%) stay in MCI in follow-up diagnosis while for those in L2

and L3, they are more likely to develop dementia. This illustrates that sub-groups within MCI

populations can be identified with the predicted latent classes with respect to varying rates of

disease progression.

Figure 3.5 further explores the varying patterns of disease progression using the CDRSB

as a clinically meaningful marker. The slopes and intercepts were calculated with univariate

linear mixed regression models without considering latent states, colored with corresponding

predicted latent states and differently shaped to reflect status of changing diagnostics in the

future. For MCI patients, almost all patients classified as L1 did not progress to dementia while

those who were classified as L2 or L3 were more likely to have progressed. Furthermore, MCI

subjects with higher intercepts or slopes in L2 and L3 are more likely to develop to AD dementia.
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Table 3.5 concludes the estimated random effect parameters of ADAS-Cog, entorhinal volumes

and CDRSB within different disease stages and changing diagnostic states, which conforms with

our findings in Figure 3.5, i.e. both intercepts and slopes can inform future direction of AD

progression.

3.6 Discussion

We developed a Bayesian multivariate growth mixture model for multivariate longi-

tudinal data. The model is appealing in its ability to incorporate several novel hierarchical

approaches, including Half-t priors for standard deviations and Pólya–Gamma data augmentation

for class-specific coefficients in multinomial regression. Compared with previous works with

growth mixture models, these improvements promote the stability of model fitting with multiple

outcomes and latent classes simultaneously in a fully Bayesian hierarchical model, which is

efficient and flexible.

The advantages of the proposed model have been supported with our simulation results.

We showed that our model can accommodate varying combinations of latent classes and outcomes.

For comparison, we also implemented the simulation with commonly-used Inverse-Wishart priors

for covariance matrix, which failed to converge in 50% simulation samples. In addition, another

binomial and multinomial sampling approach introduced by Holmes and Held (2006) [72], the

Bayesian auxiliary variable algorithm, was examined and compared with our algorithm. The

Pólya–Gamma algorithm outperforms it both in efficiency and prediction accuracy, especially

for multinomial cases. Furthermore, the second part of simulation experiment demonstrated that

the misspecification of the model can significantly impair the model performance, validated with

WAIC.

We applied our method to ADNI data to characterize the trajectories of ADAS-Cog and

four MRI measures simultaneously and predict the latent classes of individuals. We identified

three classes and compared them with the baseline diagnosis. We found that CN participants are
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more likely to be included in latent class 1 and 2 while participants in MCI and dementia tend to

be in latent class 2 and 3. In addition, CN and MCI participants have more meaningful variability

with respected to predicted states. From milder latent classes (L1/L2) to more severe classes

(L2/L3), potential sub-classes within mild-to-moderate baseline diagnosis can be identified.

Furthermore, we showed that the predicted latent classes indicate the future disease progression

direction for individuals with different baseline diagnoses, which is helpful in understanding the

heterogeneity of disease progression, and designing future clinical trials.

Further works are required to extend current study. Firstly, more types of biomarker

outcomes may be incorporated and compared for finding optimal combinations in predicting the

latent disease classes and future disease progression. Additionally, instead of using the linear

model and normality assumption, other methods can be implemented to capture more variability

within the data, such as splines and skew-normal distributions. Another potential direction is to

include functional data analysis for modeling the random effects, which is flexible and able to

capture more complex associations between random intercepts and slopes.
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Figure 3.3. The modeled population and individual trajectories of ADAS-Cog, hippocampus,
middle temporal lobe, fusiform, and entorhinal volumes (top to bottom). The colors indicate
predicted latent classes (left panels) or diagnostic stages (right panels), including cognitively
normal or latent class 1 (blue), mild cognitive impaired or latent class 2 (yellow) and dementia
or latent class 3 (red).
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Table 3.3. Results of posterior estimates of parameters for the proposed BMGMM fit to
ADAS-Cog and four MRI measures. Colors indicate the severity of latent classes of the
corresponding parameters (blue:1, yellow:2, red:3).

Parameter
Posterior 95%

Parameter
Posterior 95%

Mean Credible Interval Mean Credible Interval
ADAS-Cog Hippocampus
β1 0.008 (-0.004, 0.017) β1 -0.001 (-0.018, 0.017)
α01 0.112 (0.104, 0.119) α01 0.584 (0.569, 0.600)
α11 0.005 (0.004, 0.007) α11 -0.012 (-0.013, -0.011)
α02 0.275 (0.259, 0.292) α02 0.377 (0.354, 0.398)
α12 0.032 (0.027, 0.037) α12 -0.026 (-0.030,-0.024)
α03 0.324 (0.298, 0.351) α03 0.413 (0.388, 0.439)
α13 0.102 (0.084, 0.121) α13 -0.028 (-0.033, -0.021)
Entorhinal MidTemp
β1 -0.017 (-0.041, 0.007) β1 0.005 (-0.016, 0.024)
α01 0.564 (0.549, 0.579) α01 0.599 (0.586, 0.613)
α11 -0.008 (-0.011, -0.005) α11 -0.008 (-0.009, -0.006)
α02 0.418 (0.391, 0.444) α02 0.482 (0.457, 0.506)
α12 -0.030 (-0.034, -0.025) α12 -0.024 (-0.027, -0.022)
α03 0.450 (0.417, 0.479) α03 0.407 (0.376, 0.435)
α13 -0.032 (-0.045, -0.020) α13 -0.028 (-0.054, -0.040)
Fusiform Class coefficients
β1 0.0003 (-0.020, 0.020) γ1 -2.405 (-2.886,-1.96)
α01 0.483 (0.468, 0.498) γ2 1.368 (0.268,2.739)
α11 -0.005 (-0.006, -0.002)
α02 0.399 (0.373, 0.423)
α12 -0.017 (-0.020, -0.013)
α03 0.380 (0.352, 0.408)
α13 -0.033 (-0.040, -0.026)

* β1 is the estimated coefficient for APOE.
** γ1 and γ2 are estimated class coefficients for binary variable of elevated amyloid in the first two latent
classes, when K = 3 is the reference group.
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Figure 3.4. The distribution of estimated individual progression intercepts and slopes from
multivariate GMM for ADAS-Cog, hippocampus, middle temporal lobe, fusiform, and entorhinal
volumes. The dots are colored with predicted latent states and symbolized with diagnostic states.
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Table 3.4. Classification summary table for MGMM fitted with ADAS-Cog and four MRI
measures. Top table presents the marginal proportions of each baseline diagnostic state being
classified as latent state classes. For MCI patients at baseline, the bottom table shows the
percentage of future disease development within predicted latent classes.

Predicted Latent Class
Baseline Diagnosis L1 L2 L3

CN 0.860 0.061 0.079
MCI 0.349 0.424 0.550

Dementia 0.018 0.550 0.432

Progression L1 L2 L3
Stable MCI 0.963 0.388 0.526

MCI to Dementia 0.037 0.612 0.474

Table 3.5. Disease progression parameter summary table for ADAS-Cog, ventricular volumes
and CDRSB. ’Change’ is a binary variable for indicating whether an individual deteriorate in the
follow-up diagnosis, i.e. CN to MCI/AD or MCI to AD. The intercepts and slopes are average
estimates for corresponding sub-classes.

ADAS-Cog Entorhinal CDRSB

Parameter CN MCI Dementia CN MCI Dementia CN MCI Dementia
Change = 1

intercept 0.151 0.256 0.337 0.541 0.451 0.418 0.001 0.099 0.143
slope 0.019 0.050 0.088 −0.019 -0.030 -0.040 0.030 0.082 0.064

Change = 0
intercept 0.104 0.171 0.366 0.559 0.525 0.382 0.003 0.071 0.234
slope 0.006 0.020 0.738 −0.009 -0.016 -0.034 0.002 0.013 0.103
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Figure 3.5. The individual-level progression intercept and slope of CDRSB for CN (left), MCI
(middle) and dementia (right), colored with predicted latent states. The symbol types represent
whether the individual has developed to a severer stage during the study, i.e. ’stable’ means
no change and ’change’ means either progression from CN to MCI/Dementia or from MCI to
Dementia.
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Chapter 4

Longitudinal Associations Between
Timing of Physical Activity Accumulation
and Health: Application of Functional
Data Methods

4.1 Introduction

Physical inactivity and sedentary behavior are known risk factors for cardiovascular

disease (CVD), cancer and mortality [108, 18, 9, 137]. Increased physical activity has been

demonstrated to improve cardiopulmonary fitness and promote healthy weight management

[110]. Current CDC guidelines recommend engaging in 150 minutes/week or more of moderate-

vigorous-activity in order to maintain a healthy weight, and for reducing the risk of hypertension,

diabetes, heart attacks, and stroke, as well as, osteoporosis, risk of falls, and depression [25].

Given the multitude of health benefits, it is important to develop robust and informative statistical

models for exploring the relationship between all aspects of Physical activity (PA) and health

outcomes.

Traditional approaches for collecting information about an individual’s PA have relied

heavily on self-reported questionnaires, sleep-logs, and daily diaries [173]. However, these

methods require an individual to recall their PA over a previous period, and hence are often

inaccurate and/or biased. Further, these methods do not usually obtain daily PA level or elicit
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information regarding PA accumulation patterns throughout the day [4]. Because accurate and

consistent measurement of PA is critical for designing and assessing interventions, devices

such as accelerometers, are increasingly used for recording objective estimates of PA [85].

These devices are self-worn sensors and measure PA based on activity counts derived from

high-resolution acceleration signals obtained at the minute-level, or even second-level.

Most studies utilizing accelerometers have focused on aggregate or summary statistics

such as daily total or weekly average activity counts or minutes of moderate-vigorous physical

activity (MVPA) [182]. While such summary measures of activity are easy to understand and

implement using standard statistical techniques, aggregating activity records to daily or weekly

averages results in a loss of information. In particular, summarizing precludes the evaluation of

temporal variation (e.g., the timing during the day) of PA, which may provide additional insight

into associations between diurnal variation in PA and health outcomes.

Functional data analysis is a powerful and well-studied statistical method [146, 181] for

modeling curves or functions that are continuous. In the context of PA, functional data methods,

and functional principal components analysis (FPCA) in particular, can better elucidate patterns

of the full spectrum of accelerometer data. In essence, this approach treats each participant’s

activity profile as a single functional datum, rather than reducing it to a scalar summary. Various

models have been developed to explore the minute-level information, extrapolating from densely

sampled accelerometer inputs rather than simply implementing daily or weekly summaries

[146, 123, 20, 33, 60, 164]. The review paper by Ramsay et al. [146], provides an overview of

methods and applications in FPCA. The main idea is to decompose the dense signal inputs and

to extract the principal variation directions, thus reducing the dimension. The FPCA searches

for a set of mutually orthogonal and normalized weight functions to summarize subject-specific

features. This idea was generalized to multilevel FPCA, which captures both the intra- and

inter-subject variation [33]. In addition, Greven et al. [60] proposed longitudinal FPCA to

include dynamic subject-specific variability and Shou et al. [164] extended the analysis to

decompose the variability of any functional model with a particular linear structure via structured
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FPCA. Due to the hierarchical structure of our data with repeated days clustered within subjects

and visits, longitudinal FPCA is implemented in this paper in order to obtain information from

the entire accelerometer signal inputs, while at the same time accounting for the nested structure

of our data.

Much statistical research has focused on developing regression models to evaluate

associations between these functional measures of activity and health outcomes. Crainiceanu

et al. [31] proposed a framework for regression models where the functional predictor is

repeatedly observed but the response is a scalar variable. Along these lines, our previous

study [193] implemented a multilevel FPCA to characterize subject- and visit-level variation,

and used the corresponding principal component scores as predictors to examine associations

between PA patterns and health outcomes. Similarly, several studies have utilized functional data

methods to investigate accelerometer-measured physical activity and health [161, 6, 13], but these

studies have been primarily cross-sectional, and/or the methods do not apply to longitudinally

collected exposures (i.e., physical activity) and health outcomes, which is a focus of prospective

epidemiologic studies. There have been methodological advances in the statistical realm. To

model the longitudinal structure, Goldsmith et al. [59] extended the spline-based estimation

strategy on functional predictors and added subject-specific random effects to the standard cross-

sectional setting. Furthermore, combined with longitudinal FPCA [60], Gertheiss et al. [57] were

able to incorporate the longitudinal structure of the functional predictors in the regression model.

Thus, these models include subject-specific effects and functional predictors in the regression

model, and can be summarized as functional mixed effect models.

In this paper, extending our earlier cross-sectional investigation [193], we implemented

longitudinal FPCA and functional mixed effects models to investigate associations between

diurnal PA patterns and longitudinal health outcomes. To this end, we leveraged data from a

dietary intervention weight-loss trial of 245 overweight women (the MENU Study [154, 97])

with acceleromtry and a wide array of glucoregulatory and inflammatory biomarkers collected at

three visits over 12 months. We used a two-step approach. In the first step, a longitudinal FPCA
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was applied to incorporate subject- and visit-specific variability when decomposing functional

inputs. In the second step, mixed effect models were fitted with functional predictors from

the first step to inform the association between PA and health outcomes. By applying this

procedure, we not only addressed the subject-to-subject and visit-to-visit variation in activity

patterns, but also made more nuanced inferences about how diurnal patterns of physical activity

could longitudinally affect weight-loss and biomarkers related to obesity.

4.2 Study Overview

The MENU weight-loss study (2011-2017) [154, 97], a project in the UC San Diego

NIH-funded Transdisciplinary Research on Energetics and Cancer (TREC) Center, comprised of

245 non-diabetic and overweight/obese women. Participants were randomized to one of three

diet arms for investigating how variation in macronutrient diet composition impacted weight loss

and cardiometabolic biomarkers. All participants across the diet arms also received a physical

activity intervention. Eligibility criteria for study participation were age ≥ 21 years, body mass

index (BMI; kg/m2) between 27 and 40, and willingness and ability to participate in clinic visits,

group sessions, and telephone and internet communications during the 12-month study.

Clinic visits, measurements and data collection occurred at three time points: baseline

and 6 and 12 months. Demographic data, including age, ethnicity and smoking status, were

collected only at the baseline visit. Fasting levels of C-reactive protein (CRP), insulin and body

mass index (BMI) were measured at each visit and these constituted the longitudinal (scalar)

health outcomes in our analysis. In general, larger values of each outcome indicate worse health

status. Insulin and CRP were log-transformed so that the distribution of the transformed data is

close to Gaussian. Details of the study protocol and main results have been previously published

[154, 97].

Physical activity (PA), measured with accelerometer devices GT3X Actigraph (Acti-

Graph, LLC; Pensacola, FL), was recorded daily at each visit. The devices collect acceleration

50



data at 30 Hz on the x, y, z axes and then the ActiLife program applies a band-pass filter

to remove non-human acceleration signals from the data. The triaxial activity counts vector

(ACx,ACy,ACz) are summarized as magnitudes
√

AC2
x +AC2

y +AC2
z , which are referred to as

activity magnitude in the manuscript and related to intensity of the activity [11]. These activity

counts can be categorized into minutes spent in sedentary, light, moderate, and vigorous activity

using calibration thresholds. Participants were instructed to wear the devices for 7 days during

waking hours, except when in contact with water. Non-wear time was identified via pre-defined

algorithms of consecutive zero counts using standard protocols [26] and labeled as missing data.

Records with at least 10 hours of device wear (per standard protocols) were retained. The final

dataset includes accelerometer data for 4259 days for 245 participants; 4 records with fewer than

10 hours of wear were removed. All participants received the same physical activity intervention

regardless of diet group. Thus for the current investigation the three diet arms are combined and

the study is analyzed as a longitudinal cohort.

4.3 Statistical Model

4.3.1 Accelerometer Data Processing

We proposed analysis models based on the PA time-series inputs. Figure 4.1 presents

an example of activity records from 6:00 am to 11:29 pm for one participant on the first day

of each visit. Each data point (y-axis) represents minute-wise PA activity magnitude. Based

on calibration studies on energy expenditure, sedentary time is defined as minutes with activity

magnitude < 200, and moderate to vigorous physical activity (MVPA) time is defined as minutes

with activity magnitude > 2690 [158].

As shown in Figure 4.1(a), the starting time and duration time are not constant for a given

participant across days, and furthermore, these measures also vary among participants. To be

specific, the mean time for participants to start wearing the devices was around 7 am (SD 127

min), indicating that participants, generally started daily activities in the morning. Therefore,
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to ensure a more consistent and balanced data structure, we re-aligned daily records, so that

all participants had a “common” starting time of device wear denoted as ”0” on the x-axis in

subsequent plots, so that 10-hours of device wear are recorded as 0 to 600 minutes (10 hours) on

the x-axis. This realignment ensures that the start and end times across all days and participant

activity profiles are on the same grid of points.

Lastly, the daily activity data for each participant were averaged over days within each

visit to obtain an averaged PA profile for each visit. Of note, the mean (SD) number of days of

device data per participant was 3.9 (SD 2.1). Sensitivity analysis was performed to assess the

impact of the averaging on our findings, and results are included in the Appendix B.3.

By smoothing the averaged daily activity, Figure 4.1(b) shows the overall population

mean PA intensity curve over 600 consecutive minutes, as well as the mean at each visit. As

noted above, time “0” on the x-axis (Figure 4.1(b)) indicates the common start time for all

participants (after realignment), and 10-hours of device wear are recorded as 0 to 600 minutes.

To account for the hierarchical structure of the data (visits within subjects) and its

longitudinal nature in both predictors (PA) and health outcomes, we applied a longitudinal FPCA

model to decompose densely sampled PA data, and a (functional) mixed effects regression model

to explore the association between predictors and outcomes.

4.3.2 Longitudinal FPCA

Assuming no measurement error, a multilevel FPCA [33] can decompose an activity

record Xi j(t) for each subject i (i = 1,2, ...,N) at time t ∈ D (measured at the minute-level in

the current analysis and D can be treated as a set of grid points with length D) at each visit j

( j = 1,2, ...,ni) in the form of

Xi j(t) = µ(t)+Ui(t)+Vi j(t), (4.1)
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(a)

(b)
Figure 4.1. The plots provide (a) an example of activity patterns from minute-level accelerometer
count data for one subject across three visits: the raw activity curve (black solid line), the
sedentary count threshold(blue dotted line) and the MVPA count threshold (red dotted line); (b)
the smoothed overall and visit-level mean activity magnitude curves at baseline, 6 months and 12
months. The y-axis denotes estimated activity magnitude and the x-axis depicts a time sequence
from the start of devices wear (0) up to 600 minutes.

where µ(t) represents the overall population mean function at t. Ui(t) is the subject-specific

deviation from the overall mean function. Vi j(t) is the subject- and visit- specific deviation from
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the subject-mean function. The subject-specific variation can be further decomposed into the

sum of a static part and a longitudinal part, which forms the basis of the longitudinal FPCA

structure [60]. The detailed derivation of the model was given in Greven et al. (2011) and we

will briefly describe it under our study setup. Specifically, for a two-level model, the functional

input can be rewritten as,

Xi j(t) = µ(t)+Ui0(t)+Ui1(t)Ti j +Vi j(t), (4.2)

where Ui0(t) is the random functional intercept for subject i, Ui1(t) is the random functional

slope for subject i and Ti j is the time at visit j for subject i, and in our application Ti j has the

form Ti j = j. To ensure the identifiability of the model, Ui(t) = (Ui0(t),Ui1(t)) and Vi j(t) are

assumed to have mean zero and be mutually uncorrelated. KU(s, t) = cov{Ui(s),Ui(t)} and

KV (s, t) = cov{Vi j(s),Vi j(t)} are covariance operators for the above random processes and KU

and KV represent the corresponding covariance matrices for all s, t ∈ D . Furthermore, for the

subject-specific variation KU(s, t), the covariance operator between the bivariate process UUU i(t)

has two parts: the auto-covariance KU0(s, t), KU1(s, t) and the cross-covariance KU01(s, t), which

is represented as:

KU(s, t) =

KU0(s, t) KU01(s, t)

KU01(t,s) KU1(s, t)

 . (4.3)

Therefore, by Karhunen–Loéve expansion [89] on Ui(t) and Vi j(t), we obtain

Xi j(t) = µ(t)+
∞

∑
l=1

(1,Ti j)ξilφ
(1)
l (t)+

∞

∑
m=1

ζi jmφ
(2)
m (t), (4.4)

where φ
(1)
l (t) = (φU0

l (t),φU1
l (t))′ are the ordered eigenfunctions of KU(s, t) with correspond-

ing eigenvalues λU
l and φ

(2)
m (t) are the ordered eigenfunctions of KV (s, t) with corresponding

eigenvalues λm. Specifically, eigenfunctions φ
(1)
l (t), l ∈ N, are elements of L2[0,1]×L2[0,1]
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and satisfy the additive scalar product < ( f0,g0),( f1,g1)>=
∫ 1

0 f0(t)g0(t)dt +
∫ 1

0 f1(t)g1(t)dt.

Details of the derivation can be found in Appendix B.1. The corresponding principal component

scores have the forms,

ξil =
∫

Ui0(s)φ
U0
l (s)ds+

∫
Ui1(s)φ

U1
l (s)ds and ζi jm =

∫
Vi j(s)φ

(2)
m (s)ds, (4.5)

and are uncorrelated with mean zero and variances λl and λm, respectively. In this way, the

covariance operator of the longitudinal functional model becomes

Cov{Xi j(s),Xi j′(t)}= KU0(s, t)+(Ti j +Ti j′)KU01(s, t)+Ti jTi j′KU1(s, t)+KV (s, t)δ j j′,

δ j j′ =

1, if j = j′

0, otherwise
.

(4.6)

Here, {KU0(s, t),KU1(s, t),KU01(s, t),KV (s, t),s, t ∈ D} are estimated by linearly regress-

ing Xi j(s)Xi j′(t) on (1, Ti j, Ti j′ , Ti jTi j′ ,δ j j′) after mean-centering Xi j(t). Eigenfunctions and

eigenvalues of the estimated covariance matrices {K̂U0, K̂U1, K̂U01 , K̂V} can be obtained via spec-

tral decomposition, i.e. K̂U = ∑
2D
l=1 λ̂U

l φ̂
(1)
l {φ̂

(1)
l }′ and K̂V = ∑

D
m=1 λ̂V

m φ̂
(2)
m {φ̂

(2)
m }′. It is proved in

Greven et al. (2011)[60] that if the time variable Ti j is standardized to have zero mean and unit

variance, i,e, E(Ti j) = 0 and Var(Ti j) = 1, the variation in Xi j(t) can be decomposed additively

and expressed with respect to the estimated eigenvalues,
∫
D var(Xi j(t))dt = ∑

∞
l=1 λU

l +∑
∞
m=1 λV

m .

Usually a few most informative eigenfunctions are retained for further analysis. Criteria for

selecting a finite number, NU and NV , of subject- and visit level eigenfunctions is discussed in

Section 4.3.3. This finite sum then replaces the infinite sum in equation 4.4.

For fixed NU and NV , equation 4.4 is a linear mixed model and we use the best linear

unbiased prediction (BLUP) to obtain the predicted principal component scores ξil and ζi jm.

Let β̂ββ = (ξ̂11, . . . , ξ̂1NU , . . . , ξ̂N1, . . . , ξ̂NNU , ζ̂111, . . . , ζ̂11NV , . . . , ζ̂NnN1, . . . , ζ̂NnNNV ), then estimated
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BLUP of β̂ββ is given by,

β̂ββ = (ZZZ′ZZZ)−1ZZZ′XXX . (4.7)

where ZZZ = [EEEIII
⊗

ΦΦΦ
U0 +TTT

⊗
ΦΦΦ

U1|III
⊗

ΦΦΦ
V ], EEEIII = (δi jh)i j=11,...,NnN ;h=1,...,N ,

TTT = (Ti jδi jh)i j=11,...,NnN ;h=1,...,N , ΦΦΦ
U0 = {φ

U0
l (t)}t∈D ,l=1,...,NU , ΦΦΦ

U1 = {φ
U1
l (t)}t∈D ,l=1,...,NU , ΦΦΦ

V

= {φV
l (t)}t∈D ,l=1,...,NV , III is the ∑i Ni dimensional diagonal matrix with element 1, XXX =

[{X11(t)}t∈D , . . . ,{X1N1(t)}t∈D , . . . ,{XN1(t)}t∈D , . . . ,{XNnN (t)}t∈D ], and
⊗

denotes the Kro-

necker product of matrices. (δi jh)i j=11,...,NnN ;h = 1, . . . ,N denotes the indicator matrix with

entries δi jh at row i j, i = 1, . . . ,N, j = 1, . . . ,ni and column h,h = 1, . . . ,N, with δi jh = 1 if i = h

and δi jh = 0 otherwise.

Although the methods were described in detail in Greven et al. (2011) [60], our no

measurement error setting differs slightly from the model specified in the original paper. There-

fore, for completeness we provide the proof of the BLUP derivation (see Appendix B.1). In

addition, we implemented simulation studies, in order to illustrate the applicability of the pro-

posed methods, and to evaluate how higher values for subject-level versus visit-level variation

(and vice-versa) influenced goodness of fit of the various model components. The simulation

assumptions and results can be found in Appendix B.2. We discuss a few key results here. The

boxplots of the estimated normalized errors of principal component scores show all parameters

are unbiasedly estimated, demonstrating agreement with the simulation results in Greven et al.

(2010) [60].

In addition to results from parameter estimation, we include residual mean square error

(MSE) results in Appendix B.2 from each of the two simulation scenarios with three ways

of computing residuals Ri j(t), the residuals from subject level Xi j(t)−Ui(t), the residuals

from visit level Xi j(t)−Vi j(t) and the overall residuals Xi j(t)−Ui(t)−Vi j(t). Let M be the

total number of observations, the residual MSE for one simulation replicate is defined as

1
M ∑i, j(∑t |Ri j(t)|)2, which in fact reflects the total mean squared count difference per observation

between the predicted and observed activity curves, when using only level-1 predictions, only
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level-2 predictions or both. Thus this mean-squared error represents the goodness-of-fit of the

model when using different fitted components. Since larger eigenvalues indicate more explained

variability, the goodness of fit of the subject- versus visit-level predictions depends on which

component has the largest eigenvalue, as seen from the two simulation scenarios.

The simulations confirm that the estimated principal component scores ξil , ζi jm and

hence the decomposed random processes Ui(t), Vi j(t) obtained from the longitudinal FPCA

model are reasonably accurate at recapitulating the observed temporal patterns of subject- and

visit-level PA. We will use the PA patterns as predictors of outcomes in regression models, as

detailed in the next section.

For data observed with white noise, denoted as X̃i j(t) = Xi j(t)+ εi j(t), as suggested in

Shou et al. 2015 [164], smoothing the raw data X̃i j(t) can be implemented before performing the

longitudinal FPCA. Since the main purpose of this study is to explore the associations between

general activity patterns and health outcomes, smoothing the raw inputs is preferable for these

densely sampled accelerometer inputs. .

4.3.3 Regression model

With results from the longitudinal FPCA, the associations between physical activity and

health outcomes are explored via regression modeling. Two regression models, regression mod-

eling with principal component scores (PCR) and functional regression model with decomposed

random processes (fPCR), are implemented in our analysis, and briefly discussed in this section.

The first regression model directly incorporates subject- and visit-level principal component

scores as predictors. To account for the repeated measures pattern in outcomes Yi j, we use linear

mixed models. Thus, the PCR is given as,

E(Yi j) = α0 +α1I( j > 1)+bi +
NU

∑
l

β
U
l ξil +

NV

∑
m

β
V
m ζi jm +other covariates, (4.8)
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where the α and β parameters are fixed effects, namely, α0 is the intercept at baseline visit

and α1 is the mean change at follow-up visits, and β s quantify associations between diurnal

activity pattern (captured via subject- and subject-visit principal components and scores); bi

is a subject-specific random effect and the assumptions bi ∼ N(0,ε2) and bi is conditionally

independent of Yi j hold. ‘other covariates’ refers to covariates which one might adjust for, which

will depend on the particular study. In our application to the MENU study, we adjusted for age,

ethnicity, smoking status, and follow-up visit. The number of components NU and NV are chosen

to explain a pre-specified proportion of variance and in our application, we will choose enough

components to explain over 85% variance. The fixed effects βU , βV and random effects bi are

estimated with R package lme4 [12].

Another regression model we consider in this paper is the fPCR, which replaces principal

component scores with functional curves as predictors. The functional predictors include

between-subject variation Ui(t) and between-visit variation Vi j(t),which can be reconstructed in

the form of Ui(t) = ∑
NU
l ξilφ

(1)
l (t) and Vi j(t) = ∑

NV
m ζi jmφ

(2)
m (t). Here Ui(t) is interpreted as the

overall trend for subject i while subject-visit variation is captured by Vi j(t). The fPCR model

then has the form,

E(Yi j) = α0 +α1I( j > 1)+bi +
∫

βU(t)Ui(t)dt +
∫

βV (t)Vi j(t)dt +other covariates.

(4.9)

The αs and bi have similar interpretation as the PCR model. The β parameters are now

represented as smooth coefficient functions βU(t) and βV (t), and are estimated using penalized

spline methods in our application via the R package mgcv [191, 190].

The estimated principal component scores quantify the extent to which a subject or

subject-visit subscribe to the corresponding temporal patterns delineated by the principal com-

ponents. Thus, as noted in Gertheiss et al. (2013) [57], by incorporating principal component

scores as covariates, the PCR assesses associations between activity patterns and outcomes, and
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thus may have intuitive appeal. However, PCR is subject to overfitting, due to the need to a priori

choose the number of principal components (NU and NV ). The fPCR, on the other hand, is more

flexible and can yield a more nuanced interpretation, especially when the coefficient functions

are significant for some time domains. We will demonstrate the comparison in later sections.

4.4 Results

4.4.1 Sample characteristics

The study population had average age of 50.8 years (SD 9.9), with range 22-72 years;

81.6% were non-Hispanic and 69% had no history of smoking. In addition, summary information

of insulin, C reactive protein (CRP) and body mass index (BMI) across the three visits are listed

in Table 4.1. All three outcomes present a decreasing trend after the baseline visit, indicating

improved health status at follow-up.

Summary statistics of physical activity by visit are included in Table 4.1 as well. Total

magnitude computes the averaged sum of activity counts for a participant at each visit and is a

measure of total activity. We also present standard metrics for PA study, including daily sedentary

time and MVPA time. The increasing average movement magnitudes, shorter sedentary time and

longer MVPA at follow-up visits imply that on average, participants increased physical activity

after enrolling in this study. Boxplots of daily-average activity magnitudes at individual level are

provided in Appendix B.4, which further establish an increase in PA magnitudes after baseline

visits. Meanwhile, no notable seasonal variability was detected for this one-year longitudinal

study, which is unsurprising for a study conducted in southern California.

4.4.2 Functional Physical Activity Patterns

For functional PA inputs, we fitted the longitudinal FPCA on averaged daily activity

magnitudes, given the longitudinal design of our study. The number of principal components

for subject (level 1) and visit (level 2) level patterns, i.e. NU and NV , were chosen based on the
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percentage of explained variation, and an attempt to achieve balance between under-fitting of

the covariance matrix and over-fitting the regression model. In this study, we retained sufficient

components to ensure that 95% overall variation in activity patterns could be explained.

Five level 1 principal components and nine level 2 principal components explained 95%

of activity variation and were retained. The detailed results are included in Appendix B.4, which

gives cumulative variation explained for the first five components at each level. For the level 1

principal components, the first component for subject-specific process U explains 25% of the

variation. Also, within U, most of the variation is explained by the random functional intercept U0

(38.55%) while the random functional slope only explains < 5% of the variation, suggesting that

variation between subjects is largely captured by overall PA amount rather than by longitudinal

trends. Another 25% of the variation is explained by the first principal component of the level

2 visit-specific process V . Overall, the first five components of the subject-level process and

visit-level process each explain around 43% variation, indicating that they capture equal amount

of variation in the data.

Figure 4.2 illustrates the first three estimated principal components for the random

intercept, random slope and visit-specific process by columns. The plots in Figure 4.2(a) depict

the overall mean curve µ(t) (black curve) with adding (red) or subtracting (blue) the value of 2

square root of eigen values multiplying first (or second level) principal component curves (i.e.,

±2
√

λlφ
U
l or 2

√
λmφV

m ), respectively. The plots in Figure 4.2(b) represent the eigenfunctions

themselves and together these sets of plots can be used to interpret the PA patterns associated

with each principal component. For instance, the first level 1 intercept principal component (top

left in Figure 4.2(b)) is above the horizontal line at 0 throughout the 600 minutes, and represents

an overall vertical shift of the mean activity curve. As seen in the corresponding top left plot in

4.2(a), the red curve, which represents adding (a multiple of) this principal component to the

mean, is always higher than the mean curve. Thus a high score on this component indicates that

a participant is on average more physically active throughout the time interval compared to one

with a lower value. It is also observed that the peak of this curve appears at around an hour after
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wearing, showing that early activity is more notable for capturing between subject variability.

The first level 1 random slope process curve (top middle plot of Figures 4.2(a) and 4.2(b)) show

a similar pattern but with smaller variance. We also note that in the Karhunen–Loéve expansion,

the level 1 intercept and slope eigenfunctions share the same level 1 score. This implies that a

subject with a higher score in the first level 1 component will not only be more active overall,

but also show a higher increase across visits.

The other level 1 components illustrate variation in timing of activity and identify periods

of higher versus lower activity. For instance, the second level 1 intercept component (middle left

plot in Figure 4.2(b)) is negative (i.e., below the horizontal line at 0) for the first 100 minutes and

then becomes positive for the remaining 500 minutes, which indicates a contrast between earlier

versus later activity. This is further evident in the middle left panel in Figure 4.2(a), where the

red curve is below the mean for the first 100 minutes and then switches to being above the mean.

A high positive score on this component would signify less activity in the early period (i.e., first

100 minutes) with increased activity later on.

The first level 2 visit-specific curve, on the other hand, captures visit-to-visit shift from

the subject-level curve. A participant with a higher score on this component would be more

physically active longitudinally, based on the red curve in the top right panel of Figure 4.2(a)

being always above the mean, or equivalently the curve in Figure 4.2(b) being always positive

(i.e., above the horizontal line at 0). The peak for this curve appears at around 100 minutes and

shows a delayed pattern compared with the first level 1 process, suggesting that visit-to-visit

variation is more pronounced at the later morning time.

For each principal component, the corresponding principal component score quantifies

the magnitude of the temporal pattern associated with that component. Thus, the principal

component score itself can be used as a quantified indicator of the variation in PA records.

To demonstrate this, two examples are given in Figure 4.3. In Figure 4.3(a), an individual

example with a large first level 1 principal component score but a small first level 2 principal

component score is given, showing a significant early-time bounce at both visits, with little
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variation between visits. Figure 4.3(b) presents an individual example with a small first level 1

principal component score but a large first level 2 principal component score and in this case,

the large variation between visits is apparent. Detailed decomposition figures are included in

Appendix B.4, illustrating a step-wise reconstruction after decomposition. These two examples

to some extent also reflect our simulation results of residual MSEs (Section 4.3.2, Appendix B.2),

since larger eigenvalues are more likely to have higher scores. Both examples further illustrate

Figure 4.2, and demonstrate how level 1 versus level 2 principal component scores are useful

for evaluating between- and within-subject activity patterns. It is also evident that the fitted

(smoothed) FPCA curves track the original activity counts reasonably well, indicating that our

fitted model provides a good fit to the data.

4.4.3 Regression Patterns: Associations between Physical Activity and
Health Outcomes

In regression analysis, we first implemented the PCR models to explore the association

between PA and health outcomes. In these models, physical activity patterns are modeled with

estimated principal component scores as predictors, similar to the model in equation 4.8. Table

4.2 gives the results of the regression model, adjusting for baseline age, ethnicity, smoking

status, and a logical variable indicating whether the participant is at a follow-up visit. The model

accounts for individual variation by adding a random intercept bi. The regression coefficients of

the visit indicator and the first two principal component scores for both levels, which explained

over 70% of variance jointly, are given in Table 4.2. For the purpose of comparing and interpreting

model coefficients, all level 1 and level 2 principal component scores are also scaled to be in the

range of 0 and 1.

All three health outcomes were negatively associated with the visit indicator, reflecting

decreasing levels at follow-up, i.e., after the intervention. The first level 1 principal component

scores were negatively associated with insulin, CRP and BMI, suggesting that more PA was

associated with lower levels of these health outcomes, i.e., higher PA is associated with better
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(a)

(b)
Figure 4.2. The first three estimated principal components for the random intercept (left column),
random slope (middle column) and visit-specific process (right column). The plots give the
(a) overall mean value curve µ(t) (black) with addition (red) or subtraction (blue) of 2 square
root of eigen values multiplying first or second level principal component curves (±2

√
λlφ

U
l or

2
√

λmφV
m ) respectively; (b) estimated eigenfunctions of the first three principal components. The

horizontal gray line represents 0.

metabolic health. In addition, the first level 2 principal component scores were negatively associ-

ated with insulin and CRP, suggesting that increased PA between visits (within an individual)

was associated with greater decline in biomarkers.

To compare PCR to standard methods which use physical activity summaries, we also
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(a)

(b)
Figure 4.3. Two examples of PA records with raw count inputs (black) and estimated curves
at each visit (red, blue): (a) is an example with a large first level 1 principal component score
but a small first level 2 principal component score; (b) is an example with a small first level 1
principal component score but a large first level 2 principal component score.
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fitted a mixed effect regression model by including total (averaged) activity counts and MVPA as

predictors respectively (Appendix B.4), whose values were also scaled to be in the range of 0

and 1. It shows that both total activity counts and MVPA also exhibit a negative association with

health outcomes, which supports findings from PCR models. However, the analysis based on

daily summary PA estimates such as total activity counts or MVPA fails to capture the temporal

aspect of PA accumulation, e.g., the level 1 first principal component of the intercept process

suggests that peak activity occurred at around an hour from the start time. We further elucidate

on these and other differences between standard and functional regressions methods in the

Discussion section.

Along with the PCR, fPCR models were also implemented to better exemplify the diurnal

association between PA and health outcomes. Figure 4.4 presents the estimated coefficient

functions with 95% pointwise confidence intervals. The coefficients at a given time-point (on

the x-axis) are considered significant if the 95% confidence limits at that time do not cross

the reference horizontal line at y = 0. As shown in the figure, the coefficient functions for the

level 1 and 2 processes for log(insulin) were negative and significant for most time-points of the

day, suggesting that participants with more PA (irrespective of time of accumulation) than the

”average participant” or the ”previous visit” tended to have lower insulin. These effects were

stronger (and significant) if PA occurred during earlier times (of day) for the level 2 coefficients

for log(insulin), indicating stronger effects for visit-to-visit change in PA earlier in the day.

Similar results were observed for BMI, although the level 1 coefficients were minute-wise

significant up to approximately the first 300 minutes (see x-axis), whereas the level 2 coefficients

were significant throughout the day. Interestingly, both level 1 and level 2 coefficients for BMI

showed an initial increasing pattern with leveling off later, suggesting that PA earlier (rather than

later) in the day was more beneficial for reducing weight. The effect of PA on log(CRP) was

not significant in the first level but showed a pointwise negative association in the second level

coefficients only during the first 100 minutes of wear.
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4.5 Discussion

In this work we have demonstrated the use of functional principal component analysis to

extract patterns of physical activity from accelerometer data, and use these patterns to evaluate

associations between PA and health outcomes. Functional data analysis provides a rich statistical

framework for modeling the variation of physical activity curves. While summary statistics such

as weekly total activity counts or MVPA provide aggregated metrics, functional data analysis

can unravel temporal patterns, and presents varying activity patterns of individuals throughout

the day.

Conventional approaches usually summarize statistical characteristics from accelera-

tor data (e.g., mean weekly MVPA), and then use these summaries to examine longitudinal

associations between PA and health outcomes. These methods ignore the full spectrum of

activity magnitude trajectories. On the other hand, functional modeling allows a more robust

decomposition of the original accelerometer inputs, and thus could provide a richer framework

for examining PA-health associations. From mixed effect regression models by including con-

ventional summary measures of PA as predictors, such as total activity counts and MVPA, the

results (Appendix B.4) show high concordance with coefficients of the first level 1 and level 2

principal components scores from the PCR models (Table 4.2), which in fact can be interpreted

as measuring the average amount and visit-visit change of activity for each individual. However,

the total activity counts and MVPA in the model did not explicitly separate the subject-level

(level 1) and between-visit variations (level 2). Importantly, summary PA measures such as

weekly total activity or MVPA cannot identify associations between diurnal variation in PA

accumulation and health, which is exemplified by fPCR to further extend the regression model,

by using smooth coefficient functions to explain predictors’ influence on health outcomes. From

the coefficient functions for the health outcomes (Figure 4.4), the fPCR shows advantages by

providing a trend of changing coefficients over time (of day). The level 1 and level 2 functional

coefficients are negatively associated with the outcomes, which is in conformity with the findings

66



for both, standard summary measures and PCR. However, from fPCR we are also able to discern

that the level 1 and 2 coefficients for BMI, albeit negative, increase during the day, indicating

that earlier activity is potentially more beneficial for weight management among overweight

women. Interestingly, while also negative, the level 1 coefficient function for log(insulin) is

relatively stable throughout the day, suggesting that PA, irrespective of time of accumulation, is

equally beneficial for controlling insulin level. Thus, the timing of activity during the day may

differentially impact biomarker outcomes, a fact that would be useful for designing personalized

activity interventions.

In addition, the implementation of longitudinal models emphasizes the statistical analysis

of cross-visit variation in both functional PA predictors and scalar health outcomes. On one

hand, longitudinal FPCA reveals how different PA patterns within one participant reflect either

a more active or sedentary style, as the examples shown in Figure 4.3. On the other hand,

the application of the fPCR, extends the interpretation of the regression coefficients to minute-

level at each visit. This is advantageous because the PA inputs and predicted coefficients are

correspondingly matched in the same scale. In contrast with ordinary regression coefficients of

principal component scores (Table 4.2), which provide the association between the full daily

activity profile and health outcomes, the fPCR approach treated regression coefficients as smooth

functions of time and computed an estimated coefficient at each time-point. As it was mentioned

in Dziak et al. [40], a motivation of incorporating coefficient curves is to look for a period of

time during which the predictors are more strongly associated with outcomes. However, we urge

caution when interpreting time intervals, as our results are based on pointwise 95% intervals,

and thus could be subject to increased Type 1 error when considering multiple time-points.

Another advantage of using fPCR compared with PCR is consideration of the number

of functional principal components. In PCR, the number of principal components to retain is

usually determined based on explaining sufficient variability in functional inputs, which might

result in overfitting the regression model. On the contrary, when fitting a fPCR model, this is

not an important concern, since a penalty is used to avoid overfitting. Construction of random
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process predictors often requires a large enough number of principal components to capture

important features, which makes the fPCR more robust when the first few principal components

do not explain enough variation in the predictor.

Further research is needed to address several limitations of this work. Firstly, we only

implemented the model on visit-level data averaged across days. Additional methodological

work, beyond the scope of the current investigation, is required to extend our current model to a

three-level longitudinal FPCA model, which can be fitted with daily inputs. For our application,

a sensitivity analysis (Appendix B.3) demonstrated that averaging the day-level PA inputs did

not materially affect our analysis or results. Also, we realigned all PA profiles to a common

start time. We believe that this realignment initializes each record at the participant’s own

starting time which seems more appropriate for capturing an individual participant’s wake-time

activity patterns, compared to using an arbitrary and fixed clock time for all individuals. Even

so, more advanced analytic and registration approaches may need to be considered, especially

when performing analysis directly on the day-level data, and particularly for applications where

the variation could be larger within this level. Thirdly, we used pointwise 95% confidence

intervals, which are specific to a given time-point. Estimating confidence bands for functional

data that will account for all time-points simultaneously, is an area of active research; we will

consider these extensions in future work. Also, although our findings could be used to optimally

design timing of PA interventions, we recommend replication in independent cohorts, given the

exploratory nature of principal components analysis. Finally, the functional approach does not

specifically delineate levels of activity intensity, e.g., MVPA from light activity. Compositional

data analysis, an emerging and highly relevant area of research[38], allows evaluation of different

(correlated) activities (e.g.,sleep, sedentary time, MVPA) in the same model. While the focus

of our functional approach is to elicit diurnal patterns of overall activity, it may be interesting

to incorporate multiple behaviors into a functional model, thus leveraging the strengths of both

functional and compositional data analysis methodologies. We leave this to future investigations.
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4.6 Conclusion

In summary, our longitudinal FPCA model offers a new approach for analyzing the

association of physical activity patterns with health outcomes. We have demonstrated that

functional modeling can not only yield comparable results with traditional PA summary statistics

with longitudinal outcomes, but also provide further information on the time domain of daily

activities, including the association between PA effects at certain times of the day and health

outcomes. These findings could be useful for providing individualized activity guidelines for

overweight women and to promote health and weight control. Importantly, the use of wearable

sensors for PA is becoming more and more common in public health research. Use of functional

data methods to explore PA patterns could offer a useful complement to summary-based PA

measures.
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Table 4.2. Linear mixed effect regression results of health outcomes on the first
two level 1 and level 2 principal component scores of physical activity
Outcome Predictor Coefficient estimate SE Confidence interval
Log(insulin) PC11 -0.15 0.04 (-0.23,-0.06)

PC12 -0.08 0.03 (-0.14,-0.03)
PC21 -0.16 0.04 (-0.24,-0.08)
PC22 0.03 0.03 (-0.03,0.08)

visit > 1 -0.09 0.03 (-015,-0.04)
Log(CRP) PC11 -0.23 0.09 (-0.41,-0.06)

PC12 -0.11 0.06 (-0.24,0.01)
PC21 -0.09 0.08 (-0.24,-0.06)
PC22 -0.04 0.05 (-0.14,0.06)

visit > 1 -0.36 0.05 (-0.45,-0.27)
BMI PC11 -0.74 0.29 (-1.31,-0.17)

PC12 -0.31 0.23 (-0.75,0.14)
PC21 -0.23 0.21 (-0.66,0.18)
PC22 -0.02 0.14 (-0.3,0.25)

visit > 1 -2.56 0.13 (-2.81,-2.3)

*Adjusted for baseline age, ethnicity, smoking history and visit indicator.
**PC11 represents the first level 1, PC12 the second level 1, PC21 the first level 2, and

PC22 the second level 2 principal component scores.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Estimated functional coefficients curve (with 95% pointwise confidence intervals)
when functional principal component regression (fPCR) models with functional predictors Ui(t),
Vi j(t) and random intercept bi are fitted (adjusted for baseline age, ethnicity, smoking history
and visit indicator).
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Chapter 5

Multilevel Longitudinal Functional Princi-
pal Component Analysis

5.1 Introduction

Currently, accelerometer-based devices are commonly used to characterize physical

activity (PA) behavior in research and clinical trials [174]. These devices, such as GT3X

Actigraph, are able to provide estimates at minute-level. Meanwhile, to acquire valid data,

participants were required to wear the device at least 10 hours in 5-7 consecutive days at each

visit [30, 109, 175, 97, 154]. However, other characteristics, such as related health outcomes, are

normally measured once per subject or visit. Therefore, the flexibility of accelerometer-based

devices allows a rich amount of data being objectively collected, but also brings challenges when

more frequent high-dimensional PA data were acquired but relatively infrequent the outcomes of

interest were measured. In this paper, we intend to propose a multilevel longitudinal functional

principal component model to address the case when PA is measured more frequently than

related health outcomes in a longitudinal study. Meanwhile, a comprehensive simulation study is

applied to evaluate performance of scalar-on-function regression models when unbalanced data

structure is observed between predictors and outcomes, in both cross-sectional and longitudinal

scenarios.

The motivating dataset comes from the MENU trial, a 12-month behavioral intervention

longitudinal study consisted of 245 overweight non-diabetic women [97, 154]. PA was recorded
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with GT3X Actigraph monitors, set to collect data at 30 Hz [11], for about a week per subject at

each clinical visit. Each day’s PA record for a subject and a visit is a densely and finely sampled

function across the time interval. Therefore, these PA data are considered to have a three-level

hierarchical structure under a longitudinal study design. Figure 5.1 displays an example of one

subject’s daily PA records on three random days obtained at baseline, 6 months and 12 months.

Scalar health outcomes, such as body mass index (BMI), were acquired at subject and visit

level, thus having a two-level structure. In fact, the study is one example of many biomedical

studies, either having cross-sectional or longitudinal study designs, where the predictors are

more frequently observed than the outcomes. The goal of this study is to explore the question

regarding unbalanced study design, typically with accelerometer-measured functional predictors

and scalar outcomes.

There are several existing statistical approaches for analyzing accelerometer data. The

most common one is to derive algorithms that can translate the dense signal into many metrics,

such as total/average time spent or counts of activity with varying intensities [48, 172, 176]. For

instance, sedentary behaviors are defined as activity with less than 100 counts/minute [112] and

moderate to vigorous physical activity (MVPA) time is defined as minutes with activity counts ¿

2020 [172]. Bürgi et al. (2011) [22] investigated the cross-sectional and longitudinal relationship

of PA with body fat and other health outcomes for preschool children, using total PA, moderate

PA and vigorous PA summarized from at least 3 days of PA recording. Though these metrics

provide useful summary of overall activity, they lose the ability to capture the correlation over

time within a subject activity profile.

Functional data analysis (FDA) is applied recently to address this concern, since we are

more interested in analyzing minute-by-minute temporal pattern of PA. As it was summarized in

Ramsay and Silverman (2005) [149], FDA treats a sequence of observations, such as the daily

activity profile curve in our case, as a single unit rather than disjoint minutes spent in varying

types of activity. Specifically, our proposed model is based on Functional Principal Component

Analysis (FPCA), which is performed on densely-sampled PA data to get the principal directions
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of variation and achieve dimension reduction. Current studies of FPCA have extended its

application in modeling multilevel functional data [33, 164], longitudinal functional data [60]

and longitudinal association with scalar outcomes [59, 57], based on corresponding study design

or data structure. Our previous works ([193], Wenyi et al. to appear) have implemented these

methods on the MENU study. For example, Selene et al. [193] applied a two-level FPCA model

and explored the cross-sectional association between extracted principal component scores and

health outcomes. Wenyi et al. (to appear) further explored the longitudinal association by means

of longitudinal FPCA modeling. However, both of them were not optimal solutions for the PA

data have repeated measures at visit-level. The issue was previously addressed by taking the

average of the daily records or selecting one single day at each visit, which may cause a loss of

information within the corresponding level. Therefore, we propose the multi-level longitudinal

FPCA approach by extending the longitudinal FPCA model in Greven et al. (2010) [60] to

accommodate the situation where additional levels of inputs were observed in a longitudinal

study.

Another research question of interest in this paper is to assess the regression performance

when functional predictors are measured more frequently than scalar outcomes. In real analysis,

models can be easily misspecified due to lack of background information or the preference to

simplified models. In particular, misspecification may happen at the stage of model construction

or data preprocessing. As far as we know, there is no related work that has been done to explore

the effects of misspecification on model performance, in both cross-sectional and longitudinal

studies. In this paper, we provide a comprehensive investigation on the question using both

mathematical derivation and simulation studies.

We organize this chapter as follows: Section 5.2 first describes existing methods in the

field of FPCA modeling, then provides our proposed multi-level longitudinal FPCA. Section 5.3

illustrates the estimation procedure of our model and its comparison with misspecified models.

Section 5.4 shows the performance of our model and existing methods with extensive simulation

studies. Section 5.5 presents the application of the multi-level longitudinal FPCA methods to the
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MENU study. And Section 5.6 concludes the article with a discussion.

Figure 5.1. An example of daily activity patterns in three days from minute-level accelerometer
count data for one subject across three visits.

5.2 Statistical Model

The observed physical activity records are functional data XXX i jk = {Xi jk(t), t ∈ D}, which

are random functions in L2[0,1] measured at minute-level time t on a set of grid points D with

length D, for subject i = 1,2, . . . ,n at visit j = 1,2, . . . ,ni and day k = 1,2, . . . ,ni j. The total

number of observations are denoted as I = ∑i, j ni j and the number of observations for subject i is

Ii = ∑ j ni j. In the following sections, we first summarize previous works in Di et al. (2009)[33],

Greven et al. (2010)[60], Shou et al. (2015)[164], and then present our proposed algorithm in

the multi-level longitudinal setup.
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5.2.1 Overview of FPCA models

We first review existing FPCA models for one-, two- and three-level data, which may also

combine longitudinal setting. FPCA plays an important role in functional data analysis, whose

basic purpose is to decompose the functional curves into principal directions of variation. For the

sake of simplicity, we use Xi(t), Xi j(t) and Xi jk(t), t ∈ D to denote the one-,two- and three-level

functional inputs, respectively, where the hierarchical structure of the data can be analogous to

subject i, visit j and day k. Assuming no measurement error, in the one-level setting, Xi(t) can

be represented as,

Xi(t) = µ(t)+Ui(t). (5.1)

µ(t) is the overall population mean function at t and Ui(t) is the subject-specific deviation

from the overall mean function. Specifically, µ(t) is a fixed function and Ui(t) are assumed to be

i.i.d. with mean zero and covariance operator KU(s, t) = cov{Ui(s),Ui(t)}. By Mercer’s theorem

[121], the spectral decomposition is provided as KU(s, t) = ∑
∞
l=1 λlφ

U
l (s)φU

l (t), where λ1 ≥ λ2 ≥

. . . are ordered nonnegative eigenvalues and φU
l are corresponding orthogonal eigenvectors. Using

the Karhunen-Loève (KL) expansion [89], model M1 becomes Xi(t) = µ(t)+∑
∞
l=1 ξilφ

U
l (t),

where ξil =
∫

Ui(s)φU
l (t)dt are uncorrelated principal component scores with mean zero and

variance λl .

Di et al. (2009) [33] expanded the one-level FPCA model to a two-level FPCA when the

data Xi j(t) are measured at both subject- and visit-level. The decomposition has the form of

Xi j(t) = µ(t)+Ui(t)+Vi j(t), (5.2)

where Ui(t) is the subject-specific (level 1) deviation from the overall mean function and

Vi j(t) is the subject- and visit- specific (level 2) deviation from the subject-mean function.

It assumed that Ui(t) and Vi j(t) are uncorrelated stochastic processes with zero mean and
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continuous covariance functions. KU(s, t) = cov{Ui(s),Ui(t)} and KV (s, t) = cov{Vi j(s),Vi j(t)}

are covariance operators for the above random processes. Therefore, the variability of Xi j(t)

is determined by the sum of KU and KV , that is, KX = KU +KV . With the KL expansion, level

1 and level 2 processes can be decomposed as Xi j(t) = µ(t)+∑
∞
l=1 ξilφ

U
l (t)+∑

∞
m=1 ζi jmφV

m (t),

where φU
l (t) and φV

m (t) are the eigenfunctions of covariance operators KU and KV , respectively.

ξil =
∫

Ui(s)φU
l (s)ds and ζi jm =

∫
Vi j(s)φV

m (s)ds are uncorrelated level 1 and level 2 principal

component scores, with mean 0 and variance λl and λm, respectively. λl and λm are ordered

eigenvalues for every l and m.

Greven et al. (2010) [60] further extended the two-level FPCA to longitudinal FPCA,

analogous to a classical longitudinal model but in functional format, which has the form,

Xi j(t) = µ(t)+Ui0(t)+Ui1(t)Ti j +Vi j(t), (5.3)

where Ui0(t) is the random functional intercept and Ui1(t) is the random functional slope for

subject i, respectively, and Ti j is the time at visit j for subject i, which can be either the

visit indicator with Ti j = j or a continuous time variable. One major difference between the

longitudinal FPCA and multilevel FPCA is the construction of the subject-specific variation

KU(s, t), which is the covariance operator between the bivariate process UUU i(t) = (Ui0(t),Ui1(t))

and has two parts: the auto-covariance KU0(s, t), KU1(s, t) and the cross-covariance KU01(s, t). It

is represented as:

KU(s, t) =

KU0(s, t) KU01(s, t)

KU01(t,s) KU1(s, t)

 .

Corresponding KL expansion is given as, Xi j(t) = µ(t) + ∑
∞
l=1(1,Ti j)ξilφ

U
l (t) +

∑
∞
m=1 ζi jmφ v

m(t). Similarly, φU
l (t) = (φU0

l (t),φU1
l (t))′ and φV

m (t) are the eigenfunctions of co-

variance operators KU and KV , respectively. ξil =
∫

Ui0(s)φ
U0
l (s)ds+

∫
Ui1(s)φ

U1
l (s)ds and

ζi jm =
∫

Vi j(s)φV
m (s)ds are uncorrelated level 1 and level 2 principal component scores with
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mean 0 and variance λl and λm.

Additional levels of data structure were considered in Shou et al. (2015) [164], referred

as structured FPCA. Specifically, with three-level data {Xi jk(t)}, the three-way FPCA model

decomposes the data into three parts, subject-specific process Ui(t), visit-specific process Vi j(t)

and day-specific process Wi jk(t), which can be written as,

Xi jk(t) = µ(t)+Ui(t)+Vi j(t)+Wi jk(t), (5.4)

where Ui(t) is the subject-specific process, Vi j(t) is the subject-visit-specific deviation and Wi jk(t)

quantifies the daily (level 3) deviation from the the subject- and visit-mean function. Ui(t), Vi j(t)

and Wi jk(t) are mutually uncorrelated random processes with mean zero and covariance operators

KU , KV and KW . Using the KL expansion, model 5.3 becomes, Xi jk(t) = µ(t)+∑
∞
l=1 ξilφ

U
l (t)+

∑
∞
m=1 ζi jmφV

m (t)+∑
∞
r=1 ηi jkrφ

W
r (t), where φU

l (t), φV
m (t) and φW

r (t) are the eigenfunctions of

covariance operators KU , KV and KW , respectively. ξil =
∫

Ui(s)φU
l (s)ds, ζi jm =

∫
Vi j(s)φV

m (s)ds

and ηi jkr =
∫

Wi jk(s)φW
r (s)ds are uncorrelated level 1, level 2 and level 3 principal component

scores, with mean zero and variance λl , λm and λr, respectively. Therefore, the variability of

Xi jk(t) is fully determined by processes Ui(t), Vi j(t) and Wi jk(t), i.e. KX = KU +KV +KW .

5.2.2 Multi-level Longitudinal FPCA Model

We proposed our multi-level longitudinal model by extending the previously introduced

FPCA models, for better accommodating the data structure from our study, that is, a longitudinal

study with repeated day-level records, i.e. day k at visit j, for each subject i. Let UUU i(t) =

(Ui0(t),Ui1(t)), Vi j(t) and Wi jk(t) be mutually uncorrelated random processes with mean zero as

described in section 5.2.1. In our particular implementation with the MENU study, the method

can also be referred as a three-level longitudinal FPCA model.

We assume that Ui0(t) and Ui1(t) have covariance functions KU0(s, t) and KU1(s, t), re-

spectively, and cross-covariance function KU01(s, t); Vi j(t) has covariance function KV (s, t) and
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Wi jk(t) has covariance function KW (s, t). The model becomes,

Xi jk(t) = µ(t)+Ui0(t)+Ui1(t)Ti j +Vi j(t)+Wi jk(t). (5.5)

The model in fact is a natural generalization of the longitudinal FPCA and structured

FPCA. Similarly, we provide the KL expansion as,

Xi jk(t) = µ(t)+
∞

∑
l=1

(1,Ti j)ξilφ
U
l (t)+

∞

∑
m=1

ζi jmφ
V
m (t)+

∞

∑
r=1

ηi jkrφ
W
r (t), (5.6)

where φU
l (t) = (φU0

l (t),φU1
l (t))′, φV

m (t) and φW
r (t) are the eigenfunctions of covariance operators

KU , KV and KW , respectively. ξil =
∫

Ui0(s)φ
U0
l (s)ds+

∫
Ui1(s)φ

U1
l (s)ds, ζi jm =

∫
Vi j(s)φV

m (s)ds

and ηi jkr =
∫

Wi jk(s)φW
r (s)ds are uncorrelated random variables with mean zero and variance

λU
l , λV

m and λW
r , respectively. Since the infinite expansions is impractical, we consider the case

the finite-dimensional approximations of processes UUU , V and W , when most variability of each

process is captured by the first NU , NV , and NW principal components,

Xi jk(t) = µ(t)+
NU

∑
l
(1,Ti j)ξilφ

U
l (t)+

NV

∑
m

ζi jmφ
v
m(t)+

NW

∑
r

ηi jkrφ
W
r (t). (5.7)

5.3 Estimation

We assume Xi jk(t) are measured on a set of grid points D with finite length D. Missing

data, either in terms of visits or days, can be easily handled with our method. Estimation can be

done in the following steps, and more details are provided in the next few sections.

Step 1. Estimating the mean function µ(t) by the sample average µ̂(t) = 1
I ∑i, j,k Xi jk(t).

Denote the centered data as X̃i jk(t) = Xi jk(t)− µ̂(t)

Step 2. Estimating the covariance function K̂W from X̃i jk(t) via method of moment (MoM)

estimators (Koch 1968, Shou et al. 2015).
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Step 3. Estimating the covariance functions K̂U for UUU i = (Ui0,Ui1) and K̂V for Vi j via mixed

linear regression model.

Step 4. Performing eigen decompositions of the estimated covariance functions to provide

bases for representing UUU i = (Ui0,Ui1), Vi j and Wi jk.

Step 5. Estimating the best linear unbiased prediction (BLUP) to provide subject-, visit- and

day-specific principal component scores.

5.3.1 Estimation of the mean and covariance operators

The fixed population mean function µ(t) is estimated by taking the sample mean in our

implementation. When the observations across visits and subjects are relatively dense, a bivariate

smoother in s and T may be considered to form the mean surface µ(s,T ), such as penalized

splines smoothers (Greven et al. 2010). Similarly, as for sparser collection of Ti j, µ(t) can be

approximated via the univariate smoother µ j(t). With the estimated mean function µ̂(t) from

any of the optional methods, data are centered via Xi jk(t)− µ̂(t) and without loss of generality,

we assume that Xi jk(t) has mean zero.

The main challenge of our proposed method is to estimate the covariance operators

KU =

KU0 KU01

KU01 KU1

, KV and KW . Under the setup and assumptions of model 5.5, for all

i, j, j′,k,k′,s, t, we have

Cov(Xi jk(s),Xi j′k′(t)) = E(Xi jk(s)Xi j′k′(t))

=Cov(Ui0(s),Ui0(t))+Ti jCov(Ui0(s),Ui1(t))+Ti j′Cov(Ui0(t),Ui1(s))

+Ti jTi j′Cov(Ui1(s),Ui1(t))+Cov(Vi j(s),Vi j′(t))+Cov(Wi jk(s),Wi j′k′(t)).
(5.8)

The estimation of these covariance operators is not straightforward, and we cannot simply

apply the method of Greven et al.(2010) [60], that is, linearly regressing the left side ”outcome”
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Xi jk(s)Xi j′k′(t) on the right side ”covariates”. This is because the total number of the observations

I = ∑i, j ni j in the three-level model can be much larger than that in a two-level setup, and hence

it is impractical and computationally inefficient to fit a regression model at once. Therefore, we

proposed a two-step procedure to estimate these covariance estimators, combining the method of

moment (MoM) estimators and regression strategy. Let δ denote the Kronecker’s delta defined

as δii′ =

1, if i = i′

0, otherwise
, Equation 5.8 can be rewritten as,

E(Xi jk(s)Xi j′k′(t)) =


KU0(s, t)+2Ti jKU01(s, t)+T 2

i jKU1(s, t)+KV (s, t)+δkk′KW (s, t),

if j = j′

KU0(s, t)+Ti jKU01(s, t)+Ti j′KU01(t,s)+Ti jTi j′KU1(s, t),otherwise.
(5.9)

We first estimate the day-level covariance operator KW using a MoM estimator,

K̂W =
1

∑i, j ni j(ni j −1)∑
i, j

∑
k,k′

(XXX i jk −XXX i jk′)(XXX i jk −XXX i jk′)
T . (5.10)

Substituting KW with the empirical estimator K̂W in both sides of the first line of Equation

5.9, we eliminate the day-to-day variation from the total variation. The remaining proportion

of variation therefore only involves variations at subject and visit levels. Denote X̃XX i j.XXXT
i j′. as the

resulting residual variance, the estimators of the covariance operators of the U and V processes

can be expressed as,

E(X̃XX i j.XXXT
i j′.) = KU0 +Ti jKU01 +Ti j′KU01 +Ti jTi j′KU1 +δ j j′KV . (5.11)

By implementing the two-step procedure, we are able to reduce the dimension of the

’outcome’ variable in the regression modeling. The computational feasibility for the 2-level case

has been proved in Greven et al.(2010), and we then regress the product X̃XX i j.XXXT
i j′. on ”predictors”

(1,Ti j,Ti j′,Ti jTi j′,δ j j′) and get the estimated (K̂U0, K̂U01, K̂U1 , K̂V ).
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5.3.2 Estimation of eigenfunctions and scores

With the estimated covariance operators from the two-step procedure, K̂U = K̂U0 K̂U01

K̂U01 K̂U1

, K̂V and K̂W in the previous section, using the spectral decomposition, we

can easily estimate the eigenvalues λU
l , λV

m , and λW
r , and eigenfunctions φU

l (t), φV
m (t), and

φW
l (t), t ∈ D , at grid points D, that is, K̂U = ∑

2D
l=1 λ̂lφ

U
l (φU

l )T , K̂V = ∑
D
m=1 λ̂mφ̂V

r (φ̂
V
r )

T and

K̂W = ∑
D
r=1 λ̂rφ̂

W
r (φ̂W

r )T . The eigenfunctions, φU
l = {φ

U0
l (t),φU1

l (t), t ∈ D} are orthogonal vec-

tors in IR2D, and φV
m and φW

r are orthogonal vectors in IRD. If the time variable Ti j is standardized

to have zero mean and unit variance, i,e, E(Ti j) = 0 and Var(Ti j) = 1, the variation in Xi j(t) can

be decomposed additively and expressed with respect to the estimated eigenvalue,

∫
D

var(Xi jk(t))dt = ∑
l

λ
U
l +∑

m
λ

V
m +∑

r
λ

W
r . (5.12)

It has been proved in a two-level longitudinal FPCA setting in Greven et al.(2010) and

we extend its validity to three-level scenario (Appendix B.1). We usually retain finite numbers

of eigenfunctions of subject (NU ), visit (NV ) and day (NW ) levels for further analysis, which is

based on a pre-specified percentage of explained variation.

For fixed NU , NV and NW , it is evident that model 5.7 is a three-level linear mixed

model. Therefore, the principal component scores ξ̂il , ζ̂i jm and η̂i jkr can be obtained via

the best linear unbiased prediction (BLUP). Let XXX i = vec{XXX i11, . . . ,XXX i1ni1, . . . ,XXX i j1, . . .XXX i jni j}

be a vector with stacked functional inputs for subject i and has length of D× Ii and βββ iii =

(ξi1, . . . ,ξiNU , . . . ,ζi11, . . . ,ζi1NV , . . . ,ζini1, . . . , ζ̂iniNV ,ηi111, . . . ,ηi11NW , . . . ,ηi1nini j1, . . . ,ηinini jNW )

be the vector of scores to be estimated. The BLUP for βββ iii is given as,

β̂ββ iii = (ZZZ′
iZZZi)

−1ZZZ′
iXXX iii, (5.13)

where ZZZi = [111Ii

⊗
ΦΦΦ

U0 + TTT i
⊗

ΦΦΦ
U1|IIIni

⊗
(111ni j

⊗
ΦΦΦ

V )|IIIIi

⊗
ΦΦΦ

W ], TTT i = (Ti jδ jh) j=1,...,ni;h =

1, . . . ,ni, ΦΦΦ
U0 = {φ

U0
l (t)}t∈D ,l=1,...,NU , ΦΦΦ

U1 = {φ
U1
l (t)}t∈D ,l=1,...,NU , ΦΦΦ

V = {φV
l (t)}t∈D ,l=1,...,NV ,
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ΦΦΦ
W = {φW

l (t)}t∈D ,l=1,...,NW , III is the diagonal matrix with element 1, and
⊗

denotes the Kro-

necker product of matrices. (δ jh) j=1,...,ni;h = 1, . . . ,ni denotes the indicator matrix with entries

δ jh at row j, i = 1, . . . ,N, j = 1, . . . ,ni and column h,h = 1, . . . ,ni, with δ jh = 1 if j = h and

δ jh = 0 otherwise.

5.3.3 Comparing different models

The proposed three-level longitudinal FPCA model was motivated by the MENU study

[97, 154], which is a longitudinal study in which the functional measurements were collected

daily for each visit for each participant, thus encompassing a three-level nested structure. To

further illustrate the need for deriving our method, we explored the relationship between our

three-level method and previous approaches with the aim of gaining deeper insights. For instance,

with the three-level longitudinal data, one may consider ignoring the random functional slope

process and applying three-level (structured) FPCA [164]. Alternatively, assuming that data are

well aligned, the two-level longitudinal FPCA provided in Greven et al.(2010) [60], can be fitted

on the mean values of daily measurement curves at each visit. While it is intuitive that either of

these simplifications can cause a loss of information, we wanted to demonstrate their concrete

effects.

Suppose that we fit the data with three-level FPCA model, and decompose the total

variance with the idea of symmetric sum MoM estimators from Shou et al. (2015) [164]. Rewrit-

ing the covariance operators as E{Xi jk(s)−Xi′ j′k′(s)}{Xi jk(t)−Xi′ j′k′(t)}′, gives the following

decomposed form,


2KW (s, t), if i = i′, j = j′,k ̸= k′

2(Ti jKU01(s, t)+Ti j′KU01(t,s)+Ti jTi j′KU1(s, t)+KV (s, t)+KW (s, t)), if i = i′, j ̸= j′

2(KU0(s, t)+Ti jKU01(s, t)+Ti j′KU01(t,s)+Ti jTi j′KU1(s, t)+KV (s, t)+KW (s, t)), if i ̸= i′

(5.14)

Let KVU (s, t) = Ti jKU01(s, t)+Ti j′KU01(t,s)+Ti jTi j′KU1(s, t)+KV (s, t), which combines
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variation from random slope auto-covariance KU1 , cross-covariance KU01 and subject-visit specific

covariance KV . As a result, the total covariance will be only decomposed into three parts, the

KU0 , KVU and KW . Therefore, if the model is misspecified as a three-level FPCA model which

ignores the slope process, it is expected to witness an inflation of variation at visit level, while

the rest of the variation at subject and day level will not be changed. Given that the total amount

of variation is a fixed number, the proportions explained by subject will be underestimated.

On the other hand, if we take the mean of the observed curves at visit level, that is, let

X̄i j =
1

ni j
∑

ni j
k=1 Xi jk, we then have,

X̄i j(t) = µ(t)+Ui0(t)+Ui1(t)Ti j +Vi j(t)+
1

ni j

ni j

∑
k=1

Wi jk(t)

Var(X̄XX i j) = KU0 +Ti jKU01 +Ti jKU01 +T 2
i jKU1 +KV +

1
n2

i j
∑
k,k′

Cov(Wi jk,Wi jk′).

(5.15)

The total variation is increased with an additional part 1
n2

i j
∑k,k′ Cov(Wi jk,Wi jk′), compared

with Equation 5.11. As a result, the estimated explained variance within both KU and KV

are increased by an approximately same amount, and correspondingly, the proportions of

the respective explained variations. However, the relative variation, i.e. the ratios between

eigenvalues of K̂U and K̂V are fixed. In fact, taking the average can be considered as a form of

smoothing, especially when the processes Ŵi jk are random errors. Therefore, a two-level model

may be applicable if the day-to-day variation in the data is ignorable or the major objective is

more focused on subject and visit levels.

Both comparisons with three-level FPCA and longitudinal FPCA are further demonstrated

with our simulation studies in Section 5.4.

5.3.4 Regression model

Traditional multivariate linear models are extended to scalar-on-function regression

models to explore the associations between scalar outcomes and functional predictors. With
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normally-distributed outcomes, a functional principal components regression (FPCR) model

[150] with functional predictor Ui(t) has the form,

E(Yi) = α0 +
∫

t∈D
Ui(t)βU(t)dt, (5.16)

where Yi ∈ R is a scalar outcome and α0 is the regression intercept. The subject-level Ui(t)

can be reconstructed from any FPCA models introduced in Section 5.2 and βU(t) is the corre-

sponding functional regression coefficient. Gertheiss et al. (2013) [57] extended the method to a

longitudinal setup, where the outcome Yi j was recorded for each subject i at visit j and includes

both subject-level functional predictors Ui(t) and visit-level functional predictors Vi j(t). The

longitudinal FPCR model then has the form,

E(Yi j) = α0 +bi +
∫

βU(t)Ui(t)dt +
∫

βV (t)Vi j(t)dt, (5.17)

where bi is a subject-specific random effect. We assume bi ∼ N(0,τ2) and it is conditionally

independent Yi j. The βU(t) and βV (t) are smooth coefficient functions for processes Ui(t)

and Vi j(t), respectively. Both standard FPCR and longitudinal FPCR yield smooth coefficient

functions, which have nice interpretation over time and don’t depend on the number of principal

components selected [57].

These functional coefficients in Equation 5.16 and 5.17 can be estimated using penalized

spline methods via the R package mgcv [189, 190].

5.4 Simulation Study

In this section, simulation studies were implemented to explore the properties of the

methods provided in Section 5.2. In addition to testing the robustness of our proposed methods,
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another goal is to explore how these methods perform when the model is misspecified under

varying simulation settings. Specifically, we performed simulation studies in both unbalanced

cross-sectional (one-level outcome and two-level predictor) and longitudinal (two-level outcome

and three-level predictor) setups. Our motivation for considering these two setups is to explicitly

evaluate the impact of ignoring the multilevel structure of the data versus ignoring the longitudinal

structure. For instance, taking the average at visit level of a two-level predictor could result in

simultaneous loss of information in both multilevel and longitudinal structure. However, for a

three-level predictor, the averaging process performed on day-level measures still retains the

longitudinal structure of the input data and is expected to lose the three-level structure. We

perform a series of simulations studies to validate these assumptions in cross-sectional and

longitudinal setups.

For both simulation studies, we compared the performance in both functional models

and regression models. The normalized errors between the estimated and true eigenvalues

and principal component scores were used as the evaluation criteria for functional modeling.

As for regression results, we computed the observed mean squared errors (MSE). For each

simulation setting, we generated 100 replicates with N = 100 subjects. The corresponding

R code for our proposed method and other models used in simulation studies is available at

https://github.com/wendylin23/MixedFPCA.

5.4.1 Study 1: Two-level functional inputs and one-level scalar outcomes

We assumed a balanced design with ni = 3 visits for each subject and the time variable Ti j

is generated by standardizing the visits, i.e. Ti j =
j− 1

ni
∑ j

var( j) , to have unit variance. The functional

curves Xi j(t) with length of D = 600 were generated according to the two-level longitudinal

FPCA model 5.2 and the true model was set as,
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
yi =

∫
βU(t)Ui(t)dt + εσ ,

Xi j(t) = ∑
NU
l=1 ξilφ

(U0)
l (t)+∑

NU
l=1 Ti jξilφ

(U1)
l (t)+∑

NV
m=1 ζi jmφ

(V )
m (t),

ξil
i.i.d.∼ N (0.λU

l ), ζi jm
i.i.d.∼ N (0.λV

m ), t ∈ D

, (5.18)

where the number of eigenfunctions was set as NU = NV = 4. The eigenfunctions bases can

be orthonormal sine/cosine basis (F-basis) and Legendre polynomials basis (L-basis). It is

noted that the sine/cosine basis is orthogonal with each other but it is correlated with the

Legendre polynomials basis. In addition, we also considered the cases where only smoothed

random error curves were added to the subject-level slope and visit-level curves, to mimic

the situations when the between-visit variability is small. The random error curves (E-basis)

were generated via ei j ∼ N(0,σ2
e ), σe = 0.3, which was used to replace the random slope or

visit-specific term in Equation 5.18. In the following sections, we used abbreviations to represent

the combination of different basis. For instance, ”FFF” refers to the combination of all three

orthogonal Fourier basis in U0, U1 and V processes. In this part, we simulated data from five

combinations, (a) FFF (b) FFL (c) FLF (d) FFE (e) FEF. Meanwhile, we set the eigenvalues to

be λU
l = λV

l = 0.5l−1, l = 1,2,3,4.

The scalar outcomes yi in the regression models were assumed to be normally distributed

with variance σ2 = 2. Following the regression simulation settings in Gertheiss et al. (2013) [57],

we considered a nonlinear function having the shape of a Gamma-density for the true coefficient

function βU(t).

For each of the 100 simulated datasets, we implemented the two-level longitudinal

FPCA and two-level FPCA on the two-level simulated functional data Xi j(t), and a simple

one-level FPCA model on the visit-average functional inputs X i.(t) = 1
ni

∑ j Xi j(t). We estimated

the eigenfunctions, eigenvalues, scores and predicted functional trajectories Ûi(t). To assess

the performance of functional modeling, we computed the normalized errors between the
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estimated and true eigenvalues (λ̂U
l − λU

l )/λU
l , and scores (ξ̂il − ξil)/

√
λU

l at subject-level.

With the simulated scalar outcomes yi, we then computed the MSE from the regression fitting

1
M ∑i(yi − ŷi)

2 as the assessment for regression modeling.

Figure 5.2 presents results of normalized errors between the estimated and true eigenval-

ues for subject-level process (λ̂U
l −λU

l )/λU
l based on 100 replicates from the five simulation

scenarios. Eigenvalues estimates are generally unbiased if the model is correctly fitted with

a two-level longitudinal FPCA, although scenarios with correlated basis, i.e., FFL and FLF

show slight bias, which is not evident for FFF. If the model was misspecified, compared with

results from one-level FPCA modeling, the two-level FPCA models yield less biased results.

Meanwhile, in the last two scenarios, FFE and FEF, estimates from both two-level FPCA models

are comparable, which is perhaps unsurprising since in these scenarios, the random processes at

slope or visit-level were replaced with error terms.

Figure 5.3 displays results of the normalized errors between the estimated and true scores

for subject-level process (ξ̂il −ξil)/
√

λU
l . All three models provide unbiased estimates of the

level 1 principal component scores, while the correctly-specified two-level longitudinal model

always has the least variance.

Figure 5.4 shows the MSE results 1
M ∑i(yi − ŷi)

2 from the regression fitting. Two-level

longitudinal FPCA models consistently have the least MSE compared to the other two methods

in all scenarios. It is noted when we replace the visit-specific processes with random error terms,

i.e., the FFE scenario, the misspecified one-level FPCA model works similarly well as the true

model, which is not surprising since in this case, one-level FPCA is simply averaging out the

visit-level ”noise”. However, one-level FPCA provides biased estimations in all other scenarios.

Fitting a two-level FPCA model was generally more robust to the misspecification, and in general

had better performance than one-level FPCA models, except in scenario (c) with FLF.
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(a) (b)

(c) (d)

(e)
Figure 5.2. Boxplots of the normalized errors between the estimated and true eigenvalues for
subject-level process (λ̂U

l −λU
l )/λU

l based on 100 replicates, comparing the two-level models
with the one-level model. Red line represents the zero. The simulation scenario includes (a) FFF
(b) FFL (c) FLF (d) FFE (e) FEF.
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(a) (b)

(c) (d)

(e)
Figure 5.3. Boxplots of the normalized errors between the estimated and true scores for subject-

level process (ξ̂il −ξil)/
√

λU
l based on 100 replicates, comparing the two-level models with the

one-level model. Red line represents the zero. The simulation scenario includes (a) FFF (b) FFL
(c) FLF (d) FFE (e) FEF.

5.4.2 Study 2: Three-level functional inputs and two-level scalar
outcomes
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(a) (b)

(c) (d)

(e)
Figure 5.4. Boxplots of the MSE 1

M ∑i(yi − ŷi)
2 from the regression fitting based on 100

replicates, comparing the two-level models with the one-level model. The simulation scenario
includes (a) FFF (b) FFL (c) FLF (d) FFE (e) FEF.

In this section, the simulation studies were extended to three-level settings and we

assumed a fixed numbers of visits ni = 3 and days ni j = 3 for each subject. The functional curves

Xi jk(t) with length of D = 600 were generated according to the three-level longitudinal FPCA
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model 5.4 and the true model was set as,


yi j = bi +

∫
βU(t)Ui(t)dt +

∫
βV (t)Vi j(t)dt + εσ ,

Xi jk(t) = ∑
NU
l=1 ξilφ

(U0)
l (t)+∑

NU
l=1 Ti jξilφ

(U1)
l (t)+∑

NV
m=1 ζi jmφ

(V )
m (t)+∑

NW
r=1 ηi jkrφ

W
r (t),

ξil
i.i.d.∼ N (0.λU

l ), ζi jm
i.i.d.∼ N (0.λV

m ), ηi jkr
i.i.d.∼ N (0.λW

r ), t ∈ D

,

(5.19)

where the number of eigenfunctions is set as NU = NV = NW = 4. Similar to the previous

simulations, the eigenfunctions bases were from orthonormal sine/cosine basis, Legendre poly-

nomials basis or the smoothed random error curves. These error curves were generated via

ei jk ∼ N(0,σ2
e ), σe = 0.3. In this study, we simulated data based on five types of basis com-

binations, including (a) FFFF (b) FFFL (c) FLFF (d) FFFE (e) FEFF. Similarly, we set the

eigenvalues to be λU
l = λV

l = λW
l = 0.5l−1, l = 1,2,3,4.

The two-level scalar outcomes yi j in the regression models were assumed to be normal

with variance σ2 = 2. bi is a random intercept process and follows bi ∼ N(0,1). We also used

Gamma-density to simulate the true coefficient functions βU(t) and βV (t). For each of the 100

simulated datasets, we implemented the three-level longitudinal FPCA and three-level FPCA

on the three-level simulated functional data Xi jk(t), and the two-level longitudinal FPCA model

on the day-average functional inputs X i j.(t) = 1
ni j

∑ j Xi jk(t). The eigenfunctions, eigenvalues,

scores and predicted functional trajectories Ûi(t) and V̂i j(t) were estimated from each model.

Furthermore, we considered the case where varying amounts of variation are explained in the

visit- and day-level and assumed that the true eigenvalues can vary among levels. Additional

tests, such as unbalanced design (missing visits), were also implemented.

We include the results using equal eigenvalues at each level, assuming no missing data.

In Figure 5.5 and Figure 5.6, we show the results of normalized errors between the estimated and

true eigenvalues for subject-level process (λ̂U
l −λU

l )/λU
l and visit-level process (λ̂V

m −λV
m )/λV

m ,

respectively, based on 100 replicates from five simulation scenarios. At subject level, all three
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methods provide similarly unbiased estimates of the eigenvalues. But at visit level, only the

proposed three-level longitudinal model can unbiasedly estimate the eigenvalues in all five

scenarios. Meanwhile, the two-level longitudinal model performs consistently better than the

three-level FPCA model, except for the last scenario, where only random error terms are added

to the day-level. This finding conforms with our theoretical derivation in Section 5.3.3, where

we proved that when the model fitting ignores the random slope process and is misspecified as a

three-level FPCA model, estimated variation at visit level is inflated and the consequences are

reflected by these overestimated visit-level eigenvalues. On the contrary, when the two-level

longitudinal FPCA is fitted to the day-averaged data, because the relative explained variation at

the subject and visit levels are not as affected, the estimation biases are hence much less.

Finally, as an interesting parenthetical remark, the last two scenarios can be considered

as special cases in model misspecification, and can also guide decisions on when our proposed

three-level model is most needed. Specifically, if the proportion of explained variation is small

for the random slope processes or day-specific processes, the three-level longitudinal model

essentially reduces to a three-level FPCA model (i.e., ignoring the slope process) or a two-level

longitudinal model (i.e., averaging over days). Table 5.1 provides the percentages of explained

variance by different levels of the first two principal components, comparing results from three

fitted model with the true setting of the first simulation scenario. It further validates our derivation

in Equation 5.14 and 5.15, showing the impact of misspecification at different levels.

Figure 5.7 and Figure 5.8 display results of the normalized errors between the es-

timated and true scores for subject-level process (ξ̂il − ξil)/
√

λU
l and visit-level process

(ζ̂i jm − ζi jm)/
√

λV
m , respectively. The scores are unbiasedly estimated and the three-level

longitudinal models have the least variance, which is similar as we seen in Study 1. Figure 5.9

presents MSE results 1
M ∑i, j(yi j − ŷi j)

2 from the regression fitting and the three-level longitudinal

models always have the best prediction performance. Compared with three-level FPCA models,

the two-level longitudinal FPCA models still perform better in the first four scenarios. Combined

with the similar findings in eigenvalues, we conclude that in real analysis, misspecifying a model

94



with the form of a two-level longitudinal structure may be a more acceptable than misspecifying

it as three-level FPCA models. However, it is important to note that all simulated data in our study

are well-aligned, which may also increase the relative robustness of the averaging procedure.

(a) (b)

(c) (d)

(e)
Figure 5.5. Boxplots of the normalized errors between the estimated and true eigenvalues for
subject-level process (λ̂U

l −λU
l )/λU

l based on 100 replicates, comparing the three-level models
with the two-level model. Red line represents the zero. The simulation scenario includes (a)
FFFF (b) FFFL (c) FLFF (d) FFFE (e) FEFF.
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(a) (b)

(c) (d)

(e)
Figure 5.6. Boxplots of the normalized errors between the estimated and true eigenvalues for
visit-level process (λ̂V

m −λV
m )/λV

m based on 100 replicates, comparing the three-level models
with the two-level model. Red line represents the zero. The simulation scenario includes (a)
FFFF (b) FFFL (c) FLFF (d) FFFE (e) FEFF.
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Table 5.1. Percentages of average variance explained by different levels of the first two principal
components in (a) Simulated model (b) Three-level longitudinal FPCA (c) Three-level FPCA (d)
Two-level longitudinal FPCA.

# Component φ
U0
l φ

U1
l φV

m φW
r

(a) Simulated model
1 0.09 0.09 0.18 0.18
2 0.04 0.04 0.09 0.09

(b) Three-level longitudinal FPCA
1 0.09 0.09 0.18 0.17
2 0.04 0.04 0.09 0.09

(c) Three-level FPCA
1 0.09 0 0.22 0.17
2 0.04 0 0.17 0.08

(d) Two-level longitudinal FPCA
1 0.13 0.14 0.27 0
2 0.07 0.07 0.13 0

5.5 Application in MENU Study

The prevalence of obesity in the US has been steadily increasing over the last 20 years

with recent age-adjusted estimates indicating that 42.4% of US adults are obese [61, 54]. Obesity

can be associated with serious health risks [120]. For instance, compared with persons with

normal weight, overweight or obese persons are more vulnerable to dyslipidemia, which is a

major risk factor for cardiovascular disease and other comorbidities [134, 41, 46]. In addition,

overweight status and obesity increase the risk of end-stage renal disease and many types of

cancer [74, 93]. Since weight gain occurs when energy expenditure (EE) remains low while

dietary consumption levels are high, certain amounts of physical activity (PA) for increasing

EE are commonly considered as part of treatment plans for achieving weight-loss in obese

individuals [65].

The MENU trial, conducted under the auspices of the NIH-funded Transdisciplinary

Research on Energetics and Cancer (TREC) Study at UCSD from 2011–2017, recruited n = 245

overweight women to a 12-month three-arm dietary weight-loss intervention. All participants
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(a) (b)

(c) (d)

(e)
Figure 5.7. Boxplots of the normalized errors between the estimated and true scores for subject-

level process (ξ̂il −ξil)/
√

λU
l based on 100 replicates, comparing the three-level models with

the two-level model. Red line represents the zero. The simulation scenario includes (a) FFFF (b)
FFFL (c) FLFF (d) FFFE (e) FEFF.

received the same PA intervention. There were three study-related clinic visits at baseline, 6

and 12 months. [97, 154]. PA was measured using a triaxial accelerometer device, the GT3X
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(a) (b)

(c) (d)

(e)
Figure 5.8. Boxplots of the normalized errors between the estimated and true scores for visit-
level process (ζ̂i jm−ζi jm)/

√
λV

m based on 100 replicates, comparing the three-level models with
the two-level model. Red line represents the zero. The simulation scenario includes (a) FFFF (b)
FFFL (c) FLFF (d) FFFE (e) FEFF.

Actigraph (ActiGraph LLC, Pensacola FL). Participants were instructed to wear the devices for 7

days during waking hours and measurements of health outcomes were collected at each visit.
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(a) (b)

(c) (d)

(e)
Figure 5.9. Boxplots of the MSE from the regression fitting 1

M ∑i, j(yi j − ŷi j)
2 based on 100

replicates, comparing the three-level models with the two-level model.The simulation scenario
includes (a) FFFF (b) FFFL (c) FLFF (d) FFFE (e) FEFF.

The goal of the current work is to utilize the longitudinal accelerometer-based PA to implement

three-level functional data methods, and evaluate associations with longitudinal health outcomes.

For this purpose, to ensure consistent data availability across participants, we extracted daily
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PA counts on three random days, including weekdays and weekends, for each participant at

each visit. Sensitivity analysis were performed to show that the selected three-day data were

representative of whole-week measures, explaining similar amount of variation at day-level.

For exploring the association between PA and overweight/obese status, we considered

several related health outcomes, including body mass index (BMI), insulin levels and homeostatic

model assessment (HOMA). The BMI, computed as weight in kilograms divided by height in

meters squared (kg/m2), is commonly used to identify overweight/obese status if BMI ¿ 25.0

[54]. In addition, high-level of insulin was proven to be associated with lifestyle-dependent

obesity risk factors [90]. The HOMA index is computed using fasting plasma glucose (mg/dL)

and plasma insulin concentration (µU/mL), which further quantifies insulin resistance status.

Therefore, lower values of each outcome indicate better metabolic health.

We first fitted the proposed three-level longitudinal FPCA model on the daily PA counts

data for all subjects at each visit. Figure 5.10 presents the first estimated principal components

for the random intercept, random slope, visit-specific and day-specific process by columns. The

top row of the figure provides the first principal component at each level. It shows that the red

curve, which represents adding (a multiple of) the principal component to the mean, is always

higher than the mean (black) curve in each figure. Specifically, a high score on this component

at the subject-level (level 1) indicates that a participant is on average more physically active, as

well as a higher increase across visits, compared to a participant with a low score. Similarly, a

high score at the visit-level (level 2) indicates that the participant has higher activity on that visit.

Interestingly, the first principal component at the day-level emphasizes higher (or lower activity)

during the first 200 minutes. Figure 5.11 provides an example of the daily raw, smoothed and

model-recovered PA curves at each visit of one participant. As is evident, the model recovered

curves mirror closely the (smoothed) observed PA data, which further illustrates the robustness

and applicability of our proposed model. Finally, to have 95% explained variance, we acquired

NU = 10, NV = 5 and NW = 13 principal components at three levels, respectively.

Next, we aimed to fit a regression model to evaluate associations between functional PA
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inputs and longitudinal health outcomes. For this, as described in Section 5.3.4, the estimated

scores and principal components are used to reconstruct the subject-level process Ui and visit-

level process Vi j for each subject i and visit j. We then fitted the longitudinal FPCR model

on each health outcome, respectively, with the reconstructed curves Ûi and V̂i j, as denoted in

equation 5.16. The model also includes a random intercept and additional covariates including

age, ethnicity, smoking status and 1(visit > 1). Figure 5.12 gives the estimated coefficient

functions for log(Insulin), BMI and HOMA levels. From the coefficient functions for the subject-

level (level 1) process of BMI, it shows that women with higher levels of PA than the ’average

participant’ are inclined to have lower BMI levels, especially in the first 300 minutes. The

subject-level effects are not significant for either log(Insulin) and HOMA, as is evdenced by

the 95% confidence bands including the null (zero) value. However, the estimated coefficient

curves at visit-level (level 2) of these two health outcomes were negative and significant for the

first 300 minutes, indicating that women with more PA than the ”previous visit” tended to have

lower insulin and HOMA. Interestingly, though the regression patterns at subject and visit level

slightly varied among three health outcomes, we found that having PA earlier in the day was

more beneficial for mitigating the overweight/obese status.

As a comparison, we also applied a two-level longitudinal FPCA model with the day-

averaged data, similar as we did in the simulation study. Figure 5.13 provides the corresponding

coefficient functions for three outcomes at the subject and visit level, which presents that none of

these coefficient curves has significant pattern. Since the day-to-day PA patterns can be quite

different within a week for one participant, taking the average of daily measures can eliminate or

dampen trends in the data.

5.6 Discussion

In this work, we proposed a multi-level longitudinal functional principal component

analysis approach and compared its performance with different functional principal component
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Figure 5.10. The first three estimated principal components for the random intercept (1st
column), random slope (2nd column), visit-specific process (3rd column) and day-specific
process (4th column). The plots give the overall mean value curve µ(t) (black) with addition
(red) or subtraction (blue) of 2 square root of eigenvalues multiplying first, second or third level
principal component curves.

models that have been previously applied on multilevel data, by means of both simulation study

and real data application. Specifically, the proposed model was designed to fit data from a

longitudinal study but has three-level functional inputs. It includes a two-step estimation proce-

dure and eigen-expansion based methods to capture and decompose the covariance structures

of the observed PA curves. The association between PA and overweight/obesity related health

outcomes was then examined via functional regression approaches. In addition, a wide range of

simulation studies were performed to validate and compare model performances.

Our proposed model can be considered as a natural extension of previous methodology

on multilevel and longitudinal FPCA [33, 164, 60]. To demonstrate the necessity of such

an extension, we provided both theoretical illustration in Section 5.3.3 and simulations in
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Figure 5.11. An example of PA records with raw count inputs (thin solid), smoothed curves
(thick solid) and model-recovered curves (thick dashed) at baseline (top), 6 months (middle) and
12 months (bottom). Different colors of the line represent the day of the measurement.

Section 5.4. On the one hand, compared with previous implementations which used averaging

to reduce the number of nested levels (e.g., averaging over days at each visit), our method

retained the three-level longitudinal design structure, and thus can fully extract the variation

information included in all nested levels and provide solid inference. On the other hand,

though our proposed method consistently yields better performance, under certain scenarios,

simpler models may be acceptable depending on the study aims, and when they accurately

reflect the pertinent information contained in the data. For instance, if the day-to-day variation

in a three-level dataset explains a relatively small proportion of total variability, a two-level

longitudinal FPCA model may be applicable for inputs averaged over days. Importantly, our

simulation studies illustrate different misspecification effects in cross-sectional and longitudinal

setups. We found that in the setting with cross-sectional outcomes, even with longitudinal

functional inputs (Section 5.4.1 Study 1), the simpler misspecified multilevel FPCA models

(which ignore the slope term but retain the multilevel structure in the functional inputs) had
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(a) (b)

(c) (d)

(e) (f)
Figure 5.12. Estimated coefficient functions when implementing the longitudinal FPCR model
on log(Insulin) (top), BMI (middle) and HOMA (bottom), with U and V processes reconstructed
from a two-level longitudinal FPCA model as functional predictors, after adjusting for age,
ethnicity, smoking status, and visit>1.

superior performance in terms of estimation and prediction, compared to single-level FPCA

which reduced the levels of the functional inputs by averaging (Figures 5.2, 5.4). However, in

the setting with longitudinal outcomes (Section 5.4.2 Study 2), averaging the functional inputs

(over the third-level) had superior performance compared to multilevel FPCA (which ignored the
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(a) (b)

(c) (d)

(e) (f)
Figure 5.13. Estimated coefficient functions when implementing the longitudinal FPCR model
on log(Insulin) (top), BMI (middle) and HOMA (bottom), with U and V processes reconstructed
from a two-level longitudinal FPCA model as functional predictors, after adjusting for age,
ethnicity, smoking status, and visit>1.

longitudinal component)[Figures 5.6, 5.9]. Thus, depending on the structure of the outcome data,

misspecifying the longitudinal functional component appears to strongly influence results. We

believe that these results can guide researchers in how to choose simpler approaches, should they

wish to do so. Of course, preserving the full data structure, i.e., all levels of the functional data,
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performs best, and although this method appears to be more complex, the simulation studies and

application indicate that the computation is in fact fairly efficient.

We also implemented the three-level longitudinal FPCA model in data application. Our

analysis of the MENU study, revealed a negative association between physical activity and

overweight/obese related health outcomes, that is, more diurnal physical activity is related with

healthier status. Understanding how timing of physical activity most impacts health could be

useful when designing intervention trials and informing public health recommendations.

Future studies can be further extended to functional data in longitudinal studies with

more than three levels, such as studies in which the variation between morning versus evening

physical activity are of interest. In fact, the structural FPCA proposed by Shou et al. (2015)

[164] provided a general estimation procedure for data with any number of levels, but they do not

explicitly consider longitudinal designs. By combining their approach and ours, we expect that

these methods could be extended to multilevel longitudinal data, and we aim to pursue a similar

approach in future work, in particular if relevant clinical questions are posed. In addition, with

functional regression models where predictors are measured more frequently than outcomes, we

could consider other summary metrics that can incorporate information from the higher levels in

the predictors. For instance, Steele et al. (2017) [168] proposed multilevel structural equation

models for longitudinal data, but the implementation involved with functional data needs further

exploration, which we aim to address in future studies.

In summary, in this work, we propose an efficient two-step estimator for three-level

longitudinal functional data, as are common in physical activity studies. Through simulations

and theory we examine and compare this estimator to potentially simpler but missspecified model

structures, and provide guidance when the simpler models may be appropriate. We applied our

method to data from a longitudinal study on obesity measures and physical activity assessed

via accelerometry and obtained meaningful results. Importantly, our approach can be applied

to other applications with densely sampled data e.g., continuous glucose monitoring, heart rate

monitoring etc. We believe that this work could add to the body of methods for analyzing
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data from wearable sensors, which are becoming more and more common in public health and

biomedical applications.
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Chapter 6

Spatial-Temporal Modeling and Spatial
Inference Using NA-CORDEX Climate
Data

6.1 Introduction

The historical and future behavior of regional climate change is of great interest because

of its potential effects on policymakers in managing and mitigating the impacts of global

climate change on local communities [1]. For climate conditions at any given location, the

previous stationarity assumption states that the future statistics of climate conditions (e.g.,

temperature, precipitation) will be similar to the recent past when averaged over a sufficiently

long time. However, this assumption of stationarity is becoming unreliable today, due to

increasing emissions of carbon dioxide, methane, and other heat-trapping greenhouse gases

from human activities [91]. It has been reported that annual and seasonal temperatures have

increased by 1.3 to 1.9 ◦F (0.7 to 1.1 ◦C) since records began in 1895 in the United States

[180]. Meanwhile, as the temperature increases, more water evaporates from aquatic systems,

i.e. oceans, lakes, etc., which have already caused more heavy rainfall and precipitation events

over the past 50 years. In climate research, a trend is defined as the gradual change of climate

variables, such as temperature and precipitation, over time and the assumption of stationarity

intrinsically implies no significant trend exists. Therefore, statistical modeling and testing the
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trend of current climate change, especially at regional or local scale, is beneficial and crucial for

monitoring currently non-stationary environment.

The global climate models (GCMs) were initially developed to model the earth system,

seeking to understand the relationship between multiple aspects of the environment and modeling

the dynamics in the future. The GCMs operate at fairly coarse resolutions of approximately

100–500 km [70], which may not be sufficient for capturing the local-scale climate features.

Regional Climate Models (RCMs) were used to address this limitation, with both increased

resolution and improved representation of physical processes in the model [91, 70]. In fact, the

GCMs provide the multiple boundary conditions for the RCMs, then the RCMs can dynamically

downscale and model climate behavior within a limited area with finer scale. With higher-

resolution data from RCMs, we were able to statistically model the climate variables, such as

temperature and precipitation, and perform significance tests on parameters of interest at regional

and local scales.

The estimation and prediction of the climate change trend and its associated significance

are of high priority in climate research. Simple linear regression is the simplest model for

estimating the linear trend (slope), and the corresponding statistical significance can be tested via

a Z-test or Student-t test. However, certain limitations exist in this commonly used model. Firstly,

since the climate data were observed over a period of time, these observations are not necessarily

independent and could potentially have temporal correlations with each other. In addition,

Gaussian assumptions in a linear model may not be appropriate with non-negative climate

measures, such as precipitation. Ye et al. proposed a time-series model consisted with both

deterministic and stochastic processes for monthly absolute temperature data [196]. Specifically,

deterministic processes contained the trend term and stochastic processes were explained by

seasonal autoregressive integrated moving average models. The model was shown to have a

promising performance in predicting future temperature, while the parameter of the linear trend

can not be directly interpreted as the change over time. Other non-parametric tests, such as the

Mann-Kendall (M-K) test, were widely used to detect trends in precipitation modeling, due to
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less sensitive to outliers and skewed distributions [197, 170, 5]. However, these tests might not

be appropriate for climate data with seasonal effects and don’t explicitly inform the magnitude of

change. To address these limitations, we proposed multivariate time series regression modeling

strategies for temperature and precipitation under different distribution assumptions, along with

a series of diagnostic tools for validating the model selections. Data from each season were

treated as a sequence of time series observations, and they were combined to form a multivariate

outcome matrix with correlations between seasons.

In addition to modeling the temporal trend, because climate data derived from RCMs

reside on a finer grid, the spatial correlation between time series is a nonnegligible factor. The

geographically weighted regression (GWR) was proposed to investigate heterogeneity in data

relationships across geographic space and constructed local spatial relationships via spatial

weight matrix [21]. Huang et al. (2010) [76] extended the GWR for modeling local spatial

dependency across time using a spatiotemporal weight matrix. However, calculating distance

in three dimensions can be challenging since the scales of geographical distance and time

are usually different. Fotheringham et al. (2015) [45] further proposed a geographical and

temporal weighted regression (GTWR) model by constructing spatiotemporal kernel functions

to ensure the data points are both spatially and temporally weighted. These implementations

motivated us to propose geographically weighted multivariate spatial-temporal models for climate

data, which not only incorporated geographical correlation between locations but also kept the

interpretability of parameters in the trend analysis. Under different model assumptions of

temperature and precipitation, we validated that these geographically weighted models provide

unbiased estimates and improve the model performance.

With estimated climate change parameters, appropriate significance testing procedure

over a space domain is necessary for identifying statements about the climate change effects.

Pointwise tests, such as the Z-test on the point-by-point basis, are basic methods to determine

where an effect is significant and easily to perform in climate research [32]. However, this

pointwise inference can not control familywise error rate (FWER), the probability of making at
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least one Type I error when a series of hypothesis tests are simultaneously performed. In normal

situations, it can be fixed with the traditional Bonferroni correction, but may be too conservative

for climate models, where data are sampled over a dense grid and many tests are required.

French et al. (2017) [50] summarized approaches for simultaneous inference by controlling

the false discovery rate (FDR) or FWER, while they normally require the field to be Gaussian.

In contrast, Sommerfeld et al. (2015) [165] proposed a approach for addressing this issue by

constructing Coverage Probability Excursion (CoPE) sets. For data observed on a fine grid of

fixed locations, the CoPE method is able to account for the simultaneous inference problem and

computes statistically significant spatial region based on proposed hypothesis. Meanwhile, it is

also fast to apply and only requires mild assumptions about the data structure. Using the CoPE

method, we intended to perform simultaneous tests of the trend parameters over the space and

determine the region where a climate change effect is significant.

Spatial-temporal random field using Bayesian hierarchical model (BHM) paradigm

was also commonly implemented to provide estimation and inference framework for climate

evolution, where temporal data were considered as a realization of random field [15, 186].

In a Bayesian framework, a common and useful approach is to use Markov chain Monte

Carlo (MCMC) techniques [132] for spatial modeling, given their power and simultaneously

accounting for parameter uncertainty. Samantaray et al. [157], for instance, investigated changes

in regionalization and regional hydroclimatic patterns over India using Markov random field

model and provided spatial inference of estimated variable. However, Bayesian approaches

usually come at a cost of greater computational complexity, especially in large spatial datasets

[10]. It mainly arises from the difficulty when modeling large covariance matrices, which also

needs prior information to specify them with correct formats. Thus, our implementation is

more applicable from both efficiency and flexibility points of view. Firstly, because the GWR

provides unbiased estimators, the algorithm can still provide robust parameter estimates even

when covariance structure between locations is misspecified. Secondly, the CoPE-based spatial

inference is performed on the obtained parameter space rather than the original data, thus it only
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requires minimal diagnostic checking.

For modeling and testing the climate change effects for temperature and precipitation in

both spatial and temporal domains, we proposed a two-step analysis procedure in this study. In

the first step, we selected the optimal spatial-temporal models using strategies from geographi-

cally weighted multivariate time series regression models, to extract interested climate change

parameters based on series of diagnostic analysis and model comparisons. Secondly, we applied

spatial inference, i.e. the CoPE method, on these estimated parameters and identified spatial

confidence regions where a significant climate change pattern exists. With a case study using

data from North American CORDEX (NA-CORDEX) program, we aimed to provide a pipeline

and a reference for constructing spatial-temporal models with data generated from RCMs, as well

as evaluating the effect of regional climate change based on novel statistical inference method.

6.2 Data Overview

The data we used for this study was acquired from the North American CORDEX

Program (NA-CORDEX) [117], which contains output from RCMs run over a domain covering

most of North America using boundary conditions from GCM simulations in the Coupled Model

Intercomparison Project Phase 5 (CMIP5) archive. Because we mainly focused on providing a

pipeline of statistical modeling and inference in regional climate data in this paper, we extracted

raw monthly near-surface temperature (◦C) and precipitation (mm/day) data of 0.44◦ (50-km

projected grid) in Kansas (KS), Colorado (CO) and California (CA), with both history data (1950

- 2005) and future data (2006 - 2100) from the a typical combination of CanRCM4 (RCM 8.5)

and CanESM2 (GCM) [159]. A detailed description and characteristics of NA-CORDEX models

can be found on https://na-cordex.org/rcm-characteristics.

CA, CO and KS were selected as regional examples for representing varying geographical

and topological conditions in the US. Figure 6.1 presents the elevation maps of the three states.

KS has a square shape and is located on the great central plain of the US, with a generally flat
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or undulating surface among two-thirds of the state and a mild elevation increase from east to

west. CO is inside the Mountain States region and is famous for its diverse geography, which

includes alpine mountains, high plains, desert lands, and deep canyons, which could affect local

climate. CA is considered to be the one with the most complex diversity in both geography and

topology among all three states. It has a vast land, irregular border shape and is beside the ocean

coast, where ocean may play an important role in moderating the climate. Also, CA is also home

to both the highest (Mount Whitney) and lowest (Death Valley) points of the continental US.

Considering the geographical variability, we seek to derive statistical models which can capture a

systematical change of climate and meanwhile, can reflect distinct characteristics across the three

states. In addition, we also picked several typical locations in these states for further illustrating

local features at specific locations. For instance, San Francisco, San Diego, Death Valley and

Yosemite were selected to represent Northern/Southern and mountain/dessert areas in CA. In

addition, for constructing a robust statistical model and inference, ocean areas are not considered

while partial areas adjacent to CA in Nevada are included in our analysis, which establish a

squared shape at the east of CA map.

Figure 6.1. Elevation (m) map in CA, CO and KS.

In this study, we targeted to model climate change of each season in a year, therefore,

the seasonal means of monthly temperature and precipitation were computed as the outcome

variables. In particular, since all monthly records start in January, we define seasons as Winter
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(January, February, March), Spring (April, May, June), Summer (July, August, September)

and Fall (October, November, December). Figure 6.2 illustrates examples of seasonal climate

data in CA. Two heat maps on the top show the spatial distributions of temperature (left) and

precipitation (right), respectively, in 1992. In consistent with the common knowledge, here we

use darker blue to represent either lower temperature or more precipitation. It can be seen from

the maps that, at the given grid resolution, measurements of temperature and precipitation over

space look smooth and can be treated as spatially continuous data. Meanwhile, we provide two

figures on the bottom to show time series of temperature and precipitation at these locations

in historical scenario from 1950 to 2005 and RCM-based future scenario from 2006 to 2100.

It is apparent that the temperature has an increasing trend over years, with similar patterns for

all four seasons. Compared with historical series, the simulated future series tend to have a

faster increase. It is also noticeable that the patterns and progression of both temperature and

precipitation differ significantly at these locations, indicating that the climate variability can be

common in CA. Therefore, we also intend to derive models to reflect the continuity, similarity

and discrepancy of climate data within a state, in both time and spatial domains.

6.3 Analysis Overview

The statistical strategy for analyzing the climate data has three major steps, including

temporal modeling, spatial-temporal modeling and statistical inference, to form a comprehensive

and solid analysis pipeline. We used the historical temperature and precipitation data as training

data for constructing our final models, while the future climate data will be used as the validating

set. Meanwhile, we only presented modeling results in CA as an illustrating example, while for

the purpose of comparison, statistical inference results of all three states are included. Additional

results can be found in the Supplementary Materials.
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Figure 6.2. Example of temperature (left) and precipitation (right) data in CA. Figures on the
top present the climate data in 1992 on map. Lower temperature and higher precipitation are
represented with darker blue, respectively. Four typical locations are marked on the map and
their corresponding seasonal temperature and precipitation time series from 1950 to 2100.

6.3.1 Temporal modeling

We started constructing models for temperature and precipitation with only temporal

modeling and fitted models at each location individually. Regarding distinct assumptions of

data distributions, linear and gamma regression models were considered for temperature and

precipitation, respectively. The temporal models are supposed to have a form of multivariate

linear or gamma time series regression models for temperature and precipitation separately,

while they may be simplified based on further model checking. Details of temporal modeling are
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introduced in Section 6.4 and the main procedure includes:

1. Checking the validity of data assumptions. Specifically, linear models are considered

for fitting temperature data and the Shapiro-Wilk test [163] was performed to check the

normality assumption. As for positively skewed distributed precipitation data, it is assumed

that they have gamma distributions and gamma regression models were implemented [188].

2. Investigating within-season correlations, such as the autoregressive (AR) effect of regres-

sion residuals. Temporal dependence of temperature and precipitation data in each season

could be assessed using autocorrelation function (ACF), partial autocorrelation function

(PACF) or the Durbin Watson test [39].

3. Assessing the between-season correlations using a simple linear regression model.

4. Constructing final models based on selection results, with a form of multivariate linear or

gamma time series regression model for temperature or precipitation, respectively.

6.3.2 Spatial-temporal modeling

The temporal model only considered modeling the data in time domain and fitted in-

dependent models at each location, which may neglect potential spatial correlations between

neighboring locations. Meanwhile, the geographical conditions at the location, such as local

elevation, may also affect the climate change. Therefore, we extended individual temporal

models to geographically weighted models, incorporating spatial effects using GWR strategy

[21]. For temperature and precipitation data, the following steps are performed and modeling

details are illustrated in Section 6.5,

1. Computing the pairwise Pearson correlation coefficients of seasonal residual sequences

from the temporal modeling between locations and constructing weight functions in by

inspecting the association between the pairwise correlation and distance.
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2. Incorporating the weight information to build the geographical weighted multivariate

time series regression (GWMTSR) model and gamma regression (GWGR) model for

temperature and precipitation, respectively.

6.3.3 Statistical inference

We implemented inferential procedure to identify locations with significant climate

change effects in the spatial domain, using the coverage probability excursion (CoPE) sets

approach proposed by Sommerfeld et al. (2015) [165]. Details of the CoPE methodology are

provided in Section 6.6, which in brief have two steps,

1. Assessing whether the assumptions, including continuity and Gaussianity of estimated

parameters and the independence of errors at each location, apply for results obtained from

temperature and precipitation modeling.

2. Constructing CoPE sets on historical and future temperature and precipitation results, with

some prespefied sets of threshold levels.

6.4 Temporal modeling

6.4.1 Multivariate time series regression model

In this section, we seek to generalize models which can explain the overall seasonal

temporal changing of temperature and precipitation, independently fitted at each location. For a

time series vector yyyis = (yi1s, . . . ,yiT s)
′ at location i, i = 1, . . . ,n and in season s,s = 1, . . . ,4, on

a fine grid time interval t ∈ {t1, . . . , tT}, a univariate time series regression model is defined with

the form,

yyyis = XXX ′
iβββ i(s)+φφφ isbbbi(s)+ εεε is, (6.1)
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where XXX i is a (k+1)×T predictor matrix and βββ i(s) is the corresponding (k+1)×1 coefficient

vector. φφφ is is the lagged response vector variable of yyyis, such as AR(p), and bbbi(s) is a p× 1

parameter matrix. εεε is is a sequence of independent and identically distributed white noise vector,

N(0,σis). Specifically, if the Xi j is specified as (1, t j) and φφφ is = 0, the model decays to a simple

linear regression for trend estimation.

In addition to modeling each season sequence independently and considering the potential

cross-season correlations, we stacked all four seasonal time series together to construct a T ×4

outcome matrix YYY i = (yyyi1,yyyi2,yyyi3,yyyi4) and proposed the multivariate time series regression

(MTSR) model,

YYY i = XXX ′
iβββ i +ΦΦΦibbbi + εεε i, (6.2)

where ΦΦΦi is the lagged response matrix variable for YYY i. βββ i = [βββ i(1),βββ i(2),βββ i(3),βββ i(4)] and

bbbi = [bbbi(1),bbbi(2),bbbi(3),bbbi(4)] are the parameter matrices. Rows in εεε i are white noise processes and

have distributions N4(0,Σi). Estimation of coefficients βββ i and bbbi is based on the assumptions of

outcome variable distributions. For instance, least square estimates are generally provided for

temperature data with Gaussian distribution. We implemented the ideas of MTSR models for

temperature and precipitation, respectively. In particular, to separate the notations of two types

of climate measures, we use y to denote temperature data and z to denote precipitation data in

following sections.

6.4.2 Temperature model

We first provided an illustration example for showing the procedure of selecting a model

for modeling temperature data, by inspecting the normality of the seasonal temperature sequences,

as well as within-seasonal and cross-seasonal correlations. For assessing the validity of the first

two assumptions, a simple linear regression model was fitted at each location i and season s
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individually, that is, fitting Equation 6.1 with covariates specified as φφφ is = 0 and XXX i with column

vectors (1, t j)
′. The acquired residual sequences εεε is can be considered as a detrending process

in analyzing time series data. The normality of the residuals was evaluated using Shapiro-Wilk

tests and the autocorrelation test was performed with the ACF function in R. We further examined

the cross-seasonal correlations by fitting simple linear models between two consecutive seasons,

where a significant slope indicates nonnegligible association. Figure 6.3 shows diagnostic results

for selecting temporal models for temperature data in CA.The normality assumption is confirmed

with Figure 3a, since the empirical cumulative distribution function (CDF) of the p values from

Shapiro-Wilk tests approximately follow the CDF of a standard uniform distribution for all four

seasons. Figure 3b presents lag-1 autocorrelation values of each season and their corresponding

95% confidence intervals, which shows no significant within-seasonal autocorrelations. Figure

3c displays the p values of coefficients from the one-on-one between-season linear regression at

each location, indicating that certain numbers of locations have significant correlation between

consecutive seasons, except the correlation between Fall and Summer. From these diagnostic

results, selected models might vary among locations and seasons, it is recommended to fit one

single model which fits most of cases for the purpose of simplicity and consistency. Meanwhile,

we further demonstrated that the proposed MTSR models can be reformalized to approximate

the limit of trend parameter in a simple linear regression, which is the parameter of interest in

this study.

Based on preliminary diagnostic results, the MTSR model for modeling temperature was

given as,

YYY i = XXX ′
iβββ i +YYY (1)

i bbbi + εεε i, εεε i ∼ N4(0,Σi). (6.3)

XXX i is the design matrix with column vectors (1, t j), representing the deterministic trend

in the regression model. t j is the centralized time variable of year j = 2, . . . ,T divided by 10,
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which leads to the corresponding trend coefficient βββ i1 be interpreted as the change per decade.

Based on model selection, ΦΦΦi in Equation 6.2 is replaced with YYY (1)
i , with typical row elements

yyy(1)i j = (yi( j−1)4,yi j1,yi j2,yi j3). It provides a stochastic process in the regression model, which

also reflects the between-season effects. The superscript 1 represents the consecutive or lag-1

cross-seasonal effect and we can further denote the k-year lagged seasonal effects with yyy(k)i j . It

is easy to note that yyy(4)i j = yyyi j−1. We denote the full set of covariate matrix as SSSi = (XXX i,YYY
(1)
i ),

including both deterministic and stochastic processes.

βββ i = (βββ i0,βββ i1) and bbbi are the corresponding parameters matrix with dimension 2×4 and

4×4. In this temperature model, bbbi is a diagonal matrix, represented as diag(bi1,bi2,bi3,bi4). We

use BBBi = {βββ i,bbbi} and ΣBBBi to denote the full parameter space at location i and its corresponding

variance-covariance matrix, respectively. Therefore, B̂BBi can be estimated using a least square esti-

mator (SSS′iSSSi)
−1SSS′iYYY i, and covariance of the parameter estimates is computed as Σ̂BBBi = (SSS′iSSSi)

−1Σ̂i,

where Σ̂i is the empirical estimator of Σi and can be estimated from residuals. The process of

estimation follows the least square theory for multivariate linear regression and details of the

derivation can be found in Johnson and Wichern (2014, Chapter 7) [86].

Figure 6.4 presents the heat maps of estimated linear time trend parameters (β̂ββ i1, i =

1, . . . ,n) in four seasons and their corresponding Z-scores, defined as β̂ββ i1/se(β̂ββ i1). In general,

the estimated parameters over the space are smooth and the field can be treated as continuous at

the given grid resolution. Adjusting with the cross-seasonal effects in regression models, these

estimates are positive mostly at all locations in Winter, Spring, Summer and at southern part in

Fall, indicating an increasing trend of the temperature in historical series. Specifically, Spring

was estimated to have the most drastic warming effects, reflected in both parameter and Z-Score

levels. Meanwhile, the Z-score maps also indicate that temporal temperature changing patterns

were not significant in Winter and Fall, with the values very close to 0.

It is noted that βββ i1’s are not equivalent with the slope estimates in trend analysis, since the

model is adjusted with neighboring season variable. To compensate for the differing interpretation

of trend parameters in our model and simple linear regression, we further derived a changing
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parameter vvvi j, which has the same interpretation as the trend slope when j is large. Details of the

derivation are included in Appendix A.

(a) (b) (c)
Figure 6.3. Temporal model selection for CA temperature data. (a) Empirical CDFs of the p
values from the Shapiro-Wilk test of gaussianity of residuals. The black line is the CDF of a
standard uniform distribution and red lines provide the 95% confidence band of it. This figure
demonstrates the validity of gaussianity assumption. (b) Boxplots of autocorrelation of the
residuals at lag 1. The red lines are the 95% confidence band based on ±1/

√
T −1. The figure

shows that within-seasonal autoregressive model are not needed. (c) Boxplots of coefficient p
values from fitting linear regression between consecutive seasons. The red line provides the
threshold p values of 0.05. This figure proves that a large amount of places have significant
correlation between consecutive seasons.

Figure 6.4. Heat maps of estimated linear time trend parameters (left) and corresponding Z-
scores (right) of temperature change (◦C) in a decade of four seasons from MTSR models, fitted
individually at each location.
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6.4.3 Precipitation model

The gamma distribution is assumed to be suitable for modeling distributions of precipita-

tion data in previous studies [188, 122, 129]. It assumes that the response variable z has a gamma

distribution, with the form z ∼ Gamma(α,θ) and indicating E(z) = αθ and Var(z) = αθ 2.

The probability density function of gamma distribution with parameters α and θ is given as

f (z,α,θ) = 1
θ α Γ(α)z

α−1e−
z
θ , where Γ(a) represents the gamma function evaluated at α . Simi-

larly, we performed within-season and between-season tests (Figure 6.5) for precipitation data,

and no significant effect was found from both tests, meaning that temporal correlation can be ne-

glected. Therefore, a univariate gamma regression model is sufficient for modeling precipitation

data at each season.

Given the precipitation data zzzis = (zi1s, . . . ,ziT s)
′ at location i and season s, the gamma

regression model, using a log link function such that the expected value (µi js) is always positive,

is provided as,

E(zzzi js) = exp(XXX ′
iβββ is) = αisθθθ is, (6.4)

such that θθθ is =
exp(XXX ′

iβββ is)
αis

. XXX i is the design matrix with j-th column input (1, t j). The log-

likelihood is given as,

L(βββ is,αis|ZZZis) = ∑
j
[(αis −1) log(zi js)− logΓ(αis)−

αis(XXXT
i jβββ is − log(αis))−

zi jsαis

exp(XXXT
i jβββ is)

],

(6.5)

which is maximized to estimate βββ is and αis from the data [183]. Numerical methods can be

implemented to estimate the maximum likelihood estimates (MLEs). In our model, we fitted the

data with the GLM function in R using IWLS method and assessed the goodness of fit of gamma
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distribution by chi-square test of the deviances. Using MLE theory and under mild conditions, it

is shown that β̂ββ is is asymptotically N2(βββ is,(XXX
′
iXXX i)

−1/αis), where αis here plays a similar role of

σ2 in general linear models [183]. Therefore, the slope parameter βis1 in the gamma regression

model can be interpreted as the amount of precipitation changes by a factor of exp(βis1) in every

decade, at location i and season s.

Figure 6.6 presents the heat maps of estimated regression slopes (β̂is1, i = 1, . . . ,n,s =

1,2,3,4) and corresponding Z-scores of precipitation changing. Unlike the consistent increasing

trend with historical temperature data, the changing patterns of precipitation varied in four seasons

and areas in the state. For example, in Spring, the majority of the states experienced a drier

situation in historical periods, while in Fall, most parts in the state have more precipitation, though

the effect is not significant (small Z-scores). In fact, overall changing effects of precipitation

estimated from the uncorrelated temporal models are not significant as shown in Figure 6.6 with

relatively small Z-scores.

(a) (b)
Figure 6.5. Temporal model selection for CA precipitation data. (a) Empirical CDFs of the p
values from the Durbin Watson test of autocorrelation. The figure shows that within-seasonal
autoregressive model are not needed. (c) Boxplots of coefficient p values from fitting linear
regression between consecutive seasons. This figure proves that cross-seasonal correlations are
not significant.
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Figure 6.6. Heat maps of estimated slopes (left) and corresponding Z-scores (right) of precipi-
tation change (mm/month) in a decade for four seasons from GR models, fitted individually at
each location.

6.5 Spatial-temporal modeling

6.5.1 Geographically weighted temporal model

With the basic temporal modeling framework, we further considered to extend the

model by incorporating geographical correlations. In addition, temporal models disregard

covariates related with topological features, such as elevation measures, which may influence

climate changing rates. Therefore, we combined proposed MTSR models with framework from

geographically weighted regression (GWR), which provides a means of incorporating spatial

heterogeneity in linear regression models and modeling spatially varying relations [21]. For

scalar outcome and predictor variables, a general form of GWR is given as,

yi = xxx′iβββ i + εi, (6.6)
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where yi is the outcome variable at location i (with coordinates [ui,vi]); xxxi is a p-dimensional

covariate vector with corresponding coefficients βββ i; εi are the normally distributed random noise

terms with mean 0 and a common variance σ2.

In fact, the GWR considers local likelihood and makes a point-wise calibration, i.e. given

a specific point [ui,vi] in geographical space, the corresponding coefficients βββ i are more likely to

be affected by nearer observations than those farther away. The estimation expression for it is

provided as,

β̂ββ i = (X ′WiX)
−1X ′Wiyyy, (6.7)

where X is p-by-n matrix of all covariates stacked by columns; yyy = (y1, . . . ,yn)
′ is the outcome

vector; Wi is a n-by-n diagonal weight matrix denoting the local weight of each observed data for

point i.

Kernel functions were commonly considered for constructing the weight matrix Wi, such

as (a) linear kernel, (b) bisquare kernel, (c) exponential kernel and (d) gaussian kernels, with the

following forms, respectively,

• Linear kernel: wi j =


0, if di j ≥ li

1− (
di j
li
), otherwise

.

• Bisquare kernel: wi j =


0, if di j ≥ li

(1− (
di j
li
)2)2, otherwise

.

• Exponential kernel: wi j = exp[−di j
li

].

• Gaussian kernel: wi j = exp[−(
di j
li
)2].

where di j is distance between all observed locations j and a given point i. In our study,

the distance was defined as the geometrical distance between grid points, since the location
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points were interpolated on a common latitude–longitude grid in the study. li can be interpreted

as either the bandwidth in Gaussian/exponential cases or a threshold distance in linear/bisquare

cases, which may be constant or varying among all i’s.

Types of kernel function and values of bandwidth/threshold were determined through

exploratory regression models for all pairs of locations i and j, using pairwise correlations

of residuals from the previous regression models as outcomes and distances as predictors.

Let the ρ̂i j be the estimated Pearson correlation between residuals at location i and j, we

tested the associations using four types of regression models correspondingly, (a) ρi j ∼ di j, (b)

ρi j ∼ d2
i j, (c) log(ρi j) ∼ di j and (d) log(ρi j) ∼ d2

i j, accounting for four kernel types. Results

showed that a linear kernel is appropriate for modeling spatial structure in both temperature

and precipitation data. Then an optimal threshold is specified for each time period based on a

10-fold cross-validation (CV) criterion. In addition, we further determined that an adaptive li is

not necessary. Results related with the kernel selection can be found in Supplementary Materials.

In practice, because the GWR provides unbiased estimators compared with uncorrelated models,

misspecification of the kernels won’t affect the estimation results, which is considered as an

advantage of its implementation.

6.5.2 GWMTSR model for temperature

We extended the scalar GWR framework to fit our multivariate time series data and

proposed the geographically weighted MTSR (GWMTSR) model. Let Yi = (yyyi1, . . . ,yyyiS)
′ be the

T −1 be the outcome matrix by stacking all yyyis = (yi1s, . . . ,yi(T−1)s), i = 1, . . . ,n,s = 1, . . . ,4 in

Equation 6.3. Let Xw
i be location-specific design matrix for deterministic process in this weighted

model. Specifically, compared with the MTSR model, here we had the elevation hi included

as an additional covariate and the design matrix can be written as XXXw
i =


1 t2 hi

. . . . . . . . .

1 tT hi


′

, for

i = 1, . . . ,n. The model construction then has a similar format as in Equation 6.3,
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YYY i = XXXw
i
′
βββ i +YYY (1)

i bbbi + εεε i, εεε i ∼ N4(0,Σi), (6.8)

where βββ i is a 3×4 parameter matrix for deterministic covariates, with row elements βββ is. bbbi =

diag(bis) is a 4×4 diagonal matrix for quantifying the stochastic processes. The weight matrix is

defined as Wi = diag(wwwi)
⊗

IT , where
⊗

is the kronecker product. Denote ỹyys = vec(yyy1s, . . . ,yyyns)

and SSSw
i = (XXXw

i ,YYY
(1)
i ), the estimated coefficient of each season is computed as,

B̂BBis = (β̂ββ is, b̂bbis) = ((SSSw)′WiSSSw)−1(SSSw)′Wiỹyys

=

(
n

∑
l=1

wil(SSSw
l )

′SSSw
l

)−1( n

∑
l=1

wil(SSSw
l )

′ỹyys

)
.

(6.9)

Consequently, the corresponding variance-covariance matrix of estimated coefficients

has the form Σ̂BBBis = CiC′
iΣ̂i, where Ci = ((SSSw)′WiSSSw)−1(SSSw)′Wi. Meanwhile, it is still valid to

derive the limiting trend parameter under the GWMTSR setting, since the weighted estimates

are obtained from the same model.

Model comparison is based on corrected Akaike Information Criterion (AIC) [2, 78],

which is defined as,

AICc = 2n log(
∑i σ̂2

is
n

)+
n+Tr(Rs)

n+2−Tr(Rs)
,s = 1,2,3,4, (6.10)

where σ̂is is the s- diagonal element of Σ̂i; Rs is the hat matrix with the form Rs = (rrr1s, . . . ,rrrns)
′

and rrris = SSSw
i ((SSS

w)′WiSSSw)−1(SSSw)′Wi. We found that the GWMTSR model with elevation yields

a smaller AIC value, indicating that adding topological information has improved the model

fitting.

Figure 6.7 shows heat maps of GWMTSR estimated linear time trend and their corre-

sponding Z-scores. Compared with the results from previous individually fitted MTSR models
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(Figure 6.4), the weighted estimates produced unbiased estimators of these parameters but

significantly reduced values of standard errors, especially in Spring and Summer. It can be

further illustrated with Z-score heat maps in Figure 6.7 and the histogram for comparing the

ranges of Z-scores from both models in Figure 6.8, both showing an overall increased Z-scores in

GWMTSR models and demonstrating the necessity of incorporating the geographical relations.

In addition, it further indicates that fitting a weighted regression generates a smoother estimated

parameter space than estimates from uncorrelated MTSR models, which provides an additional

advantage for statistical inference.

Figure 6.7. Heat maps of estimated linear time trend parameters (left) and corresponding Z-
scores (right) of temperature change (◦C) in a decade of four seasons from GWMTSR models.

6.5.3 GWGR model for precipitation

We also incorporated the GWR strategy in GR models for precipitation, referred as the

GWGR model. Using the selected weight matrix Wi and design matrix XXXw
i at location i in Section

6.5.2, the log-likelihood of a GWGR model is given as,
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Figure 6.8. Histogram of Z-scores of linear time trend parameters from temperature MTSR
and GWMTSR models in four seasons. This figure indicates increasing Z scores from the
geographically weighted models. OLS = ordinary least squares estimates; GWR = geographically
weighted estimates.

L(βββ is,αis|ZZZi) ∝

n

∑
l=1

wil ∑
j

L(βββ is,αis|ZZZi j)

=
n

∑
l=1

wil ∑
j
[(αis −1) log(zi js)− logΓ(αis)−αis((XXXw

i )
′
βββ is − log(αis))

−
zi jsαis

exp((XXXw
i )

′βββ is)
].

(6.11)

However, the MLE method could not produce solution analytically with Equation 6.11,

thus the numerical optimization method using Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm was employed to estimate the MLEs of the model [7]. Figure 6.9 shows the heat maps

of estimated regression slopes and corresponding Z-scores of precipitation using GWGR models.

Similar to the results of fitting GWMTSR on temperature data, GWGR models also produce

unbiased but more significant estimations of the slopes, indicating the robustness and benefits

of the geographically weighted modeling in precipitation modeling. Figure 6.10 provides the

histogram of Z-score distributions fitting GR and GWGR models on precipitation data, which
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further showing smaller standard errors were generated from the GWGR models.

Figure 6.9. Heat maps of estimated slopes (left) and corresponding Z-scores (right) of precipita-
tion change (mm/month) in a decade for four seasons from GWGR models.

Figure 6.10. Histogram of Z-scores of precipitation change in a decade from GR and GWGR
models in four seasons. This figure indicates increasing Z scores from the GWGR models. GR =
gamma regression estimates; GWGR = geographically weighted gamma regression estimates.
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6.5.4 Simulation Studies for Geographically Weighted Regression
Models

To further illustrate the performance of GWR modeling and to compare it with non-

weighted regression models, we simulated spatial time series data to conform with data structure

of temperature and precipitation, respectively. The basis for generating spatially correlated data is

the association between distance and residuals from models in Section 6.4. Specifically, for both

temperature and precipitation, we simulated 100 datasets on a regular n = 10×10 lattice, where

correlations between grid points decay linearly in distance. The error term εεε were generated from

a multivariate normal distribution N(000,Σ), where Σ refers to the corvariance matrix constructed

from the linearly decayed correlations. Specifically, the generating procedure for simulating

temperature data (Scenario 1) is,

yyyi = β0i +β1ittt i + εεε i, (6.12)

where ttt i = {1,2, . . . ,T} is a time sequence with length of T = 50. And for simulating precipita-

tion (Scenario 2), we have,

zzzi = exp{β0i +β1ittt i}+ εεε i. (6.13)

We simulated β0i and β1i based on the mean estimates and corresponding standard errors

from previous results regarding temperature and precipitation, respectively. Several evaluation

methods were employed to compare the performance of the two scenarios. The ability of

estimating the slope surface is measured by the mean squared error (MSE) of the parameter

β1i, i.e. 1
n ∑

n
i=1(β1i − β̂1i)

2, where β̂1i is the estimated coefficient for location i from either

geographically weighted or non-weighted models. The goodness of fit of models is evaluated

with the MSE of fitted values ŷyyi or ẑzzi and simulated yyyi or zzzi, defined as 1
n∗T ∑i,ti(yyyi − ŷyyi)

2 or

1
n∗T ∑i,ti(zzzi − ẑzzi)

2. Lastly, we compare Z-score distribution of each model for assessing the

significance of estimates.
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Simulated data regarding the association between correlation and distance, as well

as the slope surfaces is visualized in Appendix B, Figure ??. Figure ?? depicts the MSE

values for parameter surfaces of the 100 simulations, showing that the geographically weighted

models in both scenarios generate more accurate estimates, compared with non-weighted models.

Regarding the MSE values for assessing the goodness of fit, the weighted or non-weighted

models produce very similar results in two scenarios, as shown in Figure ??. Figure ?? conforms

with our findings in Figure 6.8 and 6.10, that is, the weighted models for both temperature and

precipitation data can enhance the significance of parameter estimates.

6.6 Statistical Inference

6.6.1 CoPE sets

The proposed GWMTSR and GWGR models provide the estimated changing parameters

of temperature and precipitation, along with the Z-scores showing pointwise significance of

these estimated parameters. However, as it was discussed in 6.1, pointwise tests are not valid

when the data are densely sampled on a fine grid, without considering FWER in simultaneous

testing. To account for this limitation, we introduced the CoPE method as a effective and feasible

substitution.

The CoPE sets approach was proposed by Sommerfeld et al. (2018) [165], to address

the inference problem when multiple tests across the spatial domain need to be performed

simultaneously. The main idea of this method is to set confidence bounds for regions reflecting

time variability. Specifically, for a target function µ : S → R on a spatial domain S ⊂ Rd , an

excursion set µ(s) above a fixed threshold c is defined as Ac(µ) := {s ∈ S : µ(s) ≥ c}. And

based on an estimate µ̂n(s) of µ(s), the confidence regions Â±
c := {Â+

c ⊂ Ac ⊂ Â−
c } are obtained

to hold asymptotically above a desired level 1−α . Such excursion sets Â±
c are referred as

CoPE sets. In our analysis, µ̂(s) refers to each estimated trend parameters from previously fitted

models. A straightforward way of interpreting the CoPE results is that, given a significance
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value α and a fixed threshold level c, the estimated CoPE sets denote that with simultaneous

approximate probability of 1−α%, slopes in this region are no smaller than the region given

by the Â+
c boundary and no larger than indicated by the Â−

c boundary. The confidence sets are

constructed using the multiplier bootstrap method. Detailed background and theories related

with the CoPE method can be found in the original paper by Sommerfeld et al. (2018) [165]

and we mainly focused on the interpretation of the generated confidence sets, which is more

instructive and beneficial for climate changing inference.

Before performing statistical inference, an important aspect is to assess whether certain

assumptions are satisfied. One advantage about the CoPE method is that it only requires mild

assumptions about the data structure. French et al. 2017 [50] summarized three assumptions

need to be checked, including the continuity and Gaussianity of the estimated coefficients in the

space domain, as well as independence in time domain of the standardized errors at each location.

The first assumption can be assessed with heat maps of estimated coefficients over the space,

which should look smooth enough for treating the estimated coefficients fields as continuous. For

temperature data, the Gaussianity assumption is valid as long as εεε is at each location, are Gaussian,

which can be evaluated similarly using the Shapiro-Wilk test. For precipitation data modeled with

Gamma regression models, the Shapiro-Wilk test was performed on deviances at each location

for assessing the Gaussianity of estimated parameters. Lastly, the temporal independence was

evaluated using the Ljung-Box tests [104], which tests whether the first l autocorrelations in

a time series are significant. We took l = 10 following the recommendation of Hyndman and

Athanasopoulos [66]. The assumption of independence is confirmed if the empirical CDF of the

p values is approximately follow with the CDF of a standard uniform distribution. Figures of the

assumption assessment were included in the Supplementary Materials.

In this work, considering that geographically weighted models yielded smoother pa-

rameter space and smaller standard errors in both temperature and precipitation data, we only

implemented the CoPE inference on results from these models. Meanwhile, because the proposed

GWMTSR for temperature data includes cross-season effects, corresponding linear time trend
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coefficients βββ i1 can not be interpreted similarly as the slope in a trend analysis. To bridge the

gap of interpretation between our proposed model and simple linear regression model in trend

analysis, we derived limiting estimates of temperature slope parameters vvvi and corresponding

standard errors from MTSR and GWMTSR models. vvvi’s represent the velocity of temperature

changing at location i when t is large, and thus could be interpreted as a limiting estimator of

the slope parameter in a simple linear trend model. The CoPE approach was then implemented

on these estimated limiting slopes from both historical and future data in CA, CO and KS, for

comparing the climate changing effects in differing time intervals and regions.

6.6.2 CoPE Sets for Temperature

We began with the CoPE set inference related to temperature changing slopes vvvi. The

significance level α was fixed at 0.1. As it is shown in Figure 6.2, the slopes of temperature

in historical periods were less than that in the future. Therefore, we selected two different sets

of testing threshold levels c to reflect the discrepancy between these two periods. Bonferroni

correction was implemented to account for the number of comparisons (nt) when performing

simultaneous testing, which resulted in an adjusted significance level with value α = 0.1/nt .

Specifically, the level set for historical data was specified as {0.1,0.15,0.2}◦C/decade and

{0.5,0.55,0.6}◦C/decade for future data.

Figure 6.11, 6.12 and 6.13 provide the results of CoPE sets, constructed for slopes in

historical temperature data in CA, CO and KS, respectively. The contours of lower set Â−
c (green

boundary) and upper set Â+
c (red boundary) only appear if they are not empty sets, otherwise

they were labeled as ELS and EUS. Take c = 0.15◦C as an illustrative example, these CoPE plots

have the interpretation that with probability 0.9, the region with temperature increased 0.15 ◦C

per decade is no smaller than the region bounded by the red boundary (Â+
c ) and no larger than

illustrated by the green boundary (Â−
c ). Therefore, these generated CoPE sets and confidence

regions are able to provide assessment of climate change at all locations simultaneously.

Figure 6.11 shows that the historical temperature in CA was consistently increasing in
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all four seasons with varying rates. Temperature in Spring and Summer significantly increased

more than 0.2 ◦C per decade, for most of areas were either captured within the upper bound or

with higher values than that. Temperature changing was much milder and less notable in Fall

and Winter, which in fact was in accordance with the relatively smaller Z-score results shown

in Figure 6.7. In Figure 6.11(b), for instance, northern areas in Fall and partial areas in Nevada

in Winter that are bounded by the lower set (green boundaries), indicating no more than 0.15

◦C increase per decade. In CO, Figure 6.12 displays that in a decade, temperature in most of

areas significantly increased 0.15 ◦C in Spring and 0.1 ◦C in Summer. And in KS, only Summer

temperature significantly increased 0.1 ◦C per decade. Therefore, CA seemed to have a more

drastic temperature changing effect in the past fifty-six years than the other two states. It is also

interesting to see that Winter temperature even decreased in CO and KS.

We then implemented the proposed GWMTSR models on future data, using the same

model format and weight matrix selected from the historical model fitting in each state. Figure

6.14, 6.15 and 6.16 present the CoPE sets results for future temperature changing slopes, with

threshold levels set as c = {0.5,0.55,0.6}◦C/decade. These constructed CoPE sets further con-

firm that more extreme temperature increase happens and will continue in the future. Specifically,

in most of the areas of CA, the increase in a decade will be over 0.5 ◦C in Winter and over 0.6

◦C in Summer. Compare with their historical trends, inland states will witness relatively more

significant temperature increase, for instance, temperature of Springs in both CO and KS are

likely to have a over 0.55 ◦C per decade after 2005.

6.6.3 CoPE Sets for Precipitation

The CoPE method was also performed on precipitation results. To conform with the

colors in heat maps which reflect the direction of precipitation changing, we use green boundaries

to represent the upper bounds indicating more precipitation and red boundaries for lower bounds.

In addition, because we assumed a log link in the gamma models, these estimated slopes were

interpreted as a factor of exp(βis1) change in the precipitation in a decade. Thus, a negative slope
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(a) (b) (c)
Figure 6.11. Heat maps of estimated historical temperature changing slopes (◦C/decade) of four
seasons in CA and corresponding CoPE sets computed at three prespecified levels (a) 0.1, (b)
0.15 and (c) 0.2. The uncertainty in the excursion set estimates Âc (purple boundary) is captured
by the CoPE set Â+

c (red boundary) and Â−
c (green boundary) with confidence 0.9. Empty lower

(ELS) and upper sets (EUS) are shown in the figures with the same color, representing empty
lower and upper bounds. ES-L denotes all estimated slopes are smaller than the specified level c
and ES-H denotes the opposite effect.

(a) (b) (c)
Figure 6.12. Heat maps of estimated historical temperature changing slopes (◦C/decade) of four
seasons in CO and corresponding CoPE sets computed at three prespecified levels (a) 0.1, (b)
0.15 and (c) 0.2.

(a) (b) (c)
Figure 6.13. Heat maps of estimated historical temperature changing slopes (◦C/decade) of four
seasons in KS and corresponding CoPE sets computed at three prespecified levels (a) 0.1, (b)
0.15 and (c) 0.2 (c).
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(a) (b) (c)
Figure 6.14. Heat maps of estimated future temperature changing slopes (◦C/decade) of four
seasons in CA and corresponding CoPE sets computed at three prespecified levels (a) 0.5, (b)
0.55 and (c) 0.6.

(a) (b) (c)
Figure 6.15. Heat maps of estimated future temperature changing slopes (◦C/decade) of four
seasons in CO and corresponding CoPE sets computed at three prespecified levels (a) 0.5, (b)
0.55 and (c) 0.6.

(a) (b) (c)
Figure 6.16. Heat maps of estimated future temperature changing slopes (◦C/decade) of four
seasons in KS and corresponding CoPE sets computed at three prespecified levels (a) 0.5, (b)
0.55 and (c) 0.6.

would mean decreasing precipitation and the corresponding CoPE sets have the interpretation

that with a simultaneous approximate probability of 90%, the area with the decreasing pattern is

no smaller than the region given by the red boundary (Â−
c ) and no larger than indicated by the
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green boundary (Â+
c ). In addition, the zero level value is set to find regions where the change of

precipitation is nonzero with probability 0.9.

Figure 6.17, 6.18 and 6.19 show the results of precipitation modeling from GWGR

models using historical data in CA, CO and KS, respectively, estimated with three fixed levels

c= {−0.05,0,0.05} mm/decade. It is noticed in Figure 6.17 that only Springs in CA experienced

a significantly drier situation in the past fifty-six years, especially for those areas circled within

the lower (red) boundaries in Figure 6.17(a) and (b). For instance, in SF, at least 5% decrease

in precipitation could have happened in Springs with 90% confidence. While in Yosemite, we

could only conclude that the precipitation was decreasing (less than zero). For other seasons in

(a), on the contrary, we inferred with 90% confidence that the decrease of precipitation wasn’t

more than 5%, especially for those areas circled by upper (green) boundaries. Figures in KS and

CO can be interpreted in a similar way, while no significant effect was seen from them.

Figure 6.20, 6.21 and 6.22 display the precipitation changing in the future. In CA, more

precipitation is expected in most of areas of CA from Figure 6.20(b) except for Springs. In

Springs, drier situations still exist, especially within the area bounded with the lower (red) set,

while the estimated decreasing rate is more gentle than that in historical period. A significant

increasing pattern of Summer precipitation can be seen in Figure 6.20(c). Most of areas, including

San Diego, Yosemite and Death Valley, could have an over 5% increase in precipitation per

decade. Similarly as the patterns of temperature change, CO and KS present more notable

increasing of precipitation than the past, especially in Winters and Summers.

6.7 Discussion

In this paper, we proposed a series of geographically weighted multivariate time series

regression models for temperature and precipitation using data from NA-CORDEX program.

In addition, the CoPE method was implemented to perform simultaneous inference of esti-

mated climate change rates across the spatial domain. Multivariate time series regression
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(a) (b) (c)
Figure 6.17. Heat maps of historical precipitation changing slopes (mm/month) of four seasons
in CA and corresponding CoPE sets computed at three prespecified levels (a) −0.05, (b) 0 and
(c) 0.05. The uncertainty in the excursion set estimates Âc (purple boundary) is captured by the
CoPE set Â+

c (green boundary) and Â−
c (red boundary) with confidence 0.9. Empty lower (ELS)

and upper sets (EUS) are shown in the figures with the same color, representing empty lower and
upper bounds. ES-L denotes all estimated slopes are smaller than the specified level c and ES-H
denotes the opposite effect.

(a) (b) (c)
Figure 6.18. Heat maps of historical precipitation changing slopes (mm/month) of four seasons
in CO and corresponding CoPE sets computed at three prespecified levels (a) −0.05, (b) 0 and
(c) 0.05.

(a) (b) (c)
Figure 6.19. Heat maps of historical precipitation changing slopes (mm/month) of four seasons
in KS and corresponding CoPE sets computed at three prespecified levels (a) −0.05, (b) 0 and
(c) 0.05.
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(a) (b) (c)
Figure 6.20. Heat maps of estimated future precipitation changing slopes (mm/month) of four
seasons in CA and corresponding CoPE sets computed at three prespecified levels (a) −0.05, (b)
0 and (c) 0.05.

(a) (b) (c)
Figure 6.21. Heat maps of estimated future precipitation changing slopes (mm/month) of four
seasons in CO and corresponding CoPE sets computed at three prespecified levels (a) −0.05, (b)
0 and (c) 0.05.

(a) (b) (c)
Figure 6.22. Heat maps of estimated future precipitation changing slopes (mm/month) of four
seasons in KS and corresponding CoPE sets computed at three prespecified levels (a) −0.05, (b)
0 and (c) 0.05.

models were constructed for modeling climate data in each season, considering both within- and

between-season effects. They were extended to GWMTSR and GWGR, which further include

geographical correlation information in modeling multivariate temperature and precipitation
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sequences. Compared with fitting models independently at each location, these geographically

weighted models generated smoother and more significant parameter spaces. These improve-

ments further validated the applicability of CoPE methods, with which we were able to identify

areas with significant climate change effects in different seasons and states. As a summary,

our work provides a comprehensive two-step analysis procedure for climate change studies, by

firstly constructing spatial-temporal models and followed with spatial inference on estimated

parameters.

We typically implemented our proposed modeling and inference strategies on three

representative states in the US, for comparing climate changing patterns in small regions with

varying geographical features. CA is the most geographically diverse state among these three

states, which also presented more significant climate changing effects in both temperature and

precipitation, especially in the historical period (1950-2005). Using the CoPE method, we

identified that most of areas in CA had experienced over 0.15 ◦C increase in temperature every

ten years in Summers and Springs. It is also interesting to witness that the upper bounds gradually

separates the coastal areas with the inland parts as we increase the specified testing levels (Figure

6.11). In addition, less precipitation was typically determined in Winters and Springs, which

could potentially be associated with the increasing incidence of wildfires in CA in the first

six months of the year recently. As for CO and KS, the regional warming temperature and

precipitation changing patterns were less significant, illustrating a mitigated climate changing

effect in inland areas in the past fifty-six years. On the contrary, results of future climate change

(2006-2100) are more consistent in all three states, including significantly higher temperature

and more precipitation in most of seasons. Therefore, though the impact of global warming

might be delayed in inland areas, it is expected to happen in the near future.

For model construction, we innovatively incorporated the geographically weighted re-

gression (GWR) models to account for the limitation in fitting regression models independently

at each location, especially when data were densely recorded within a relatively small spatial

domain. Furthermore, we extended the original GWR, which was designed for scalar spatial data,
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to our multivariate time series regression setting. In particular, we derived a GWMTSR model for

temperature and a GWGR model for precipitation data, respectively. The implementation of these

models shows promise in terms of a smoother parameter space, reduced spatial autocorrelation

in residuals and improved interpretation of estimated coefficients in the spatial domain. These

improvements were further validate our simulation studies, in which we mimic the data structure

and modeling strategies for both temperature and precipitation.

In addition, we performed statistical inference on the significance of the estimated climate

changing rates using the CoPE method (Sommerfeld et al., 2015), which provided simultaneous

testing results over the whole spatial domain. Compared with pointwise inference, which was

typically done separately at each location, the CoPE methods can control the familywise error

rate. As it was discussed in French et al. (2017) [50], because pointwise inference does not make

any adjustments for multiple comparisons, it in general detected more significant areas than the

CoPE method. Meanwhile, the construction of CoPE sets and their corresponding confidence

sets requires mild assumptions and is easy to apply, therefore, the useful CoPE method can be

generalized to other types of data that involve with spatial inference, such as brain imaging or

infectious disease studies.

Further research is needed to address several limitations. Firstly, we mainly provided

a guidance for constructing statistical models and inference process for explaining climate

change trend in our work and illustrate its performance with one example dataset. However,

in NA-CORDEX program, there are 27 simulations in total and over twenty kinds of climate

outcomes that could be further explored. A valid impacts research normally requires the use of

the ensemble of simulations regarding the uncertainties and systematic biases included in climate

projection. Therefore, it is suggested to test our proposed pipeline using other datasets, especially

when the modeling and inference results need to be considered for polity making. In addition,

we could consider to have more covariates that might affect the climate change included in our

proposed spatial-temporal model, such as distance to the coast, density of population, etc. Last

but not least, the CoPE method can be further extended to perform automatically simultaneous
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testing, without the need of prespecified set of levels and Bonferroni correction.
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Appendix A

Additional Results for Chapter 3

A.1 Gibbs Sampler Details

A.1.1 Pólya–Gamma data augmentation approach for multinomial
regression

For estimating class-specific parameters in the multinomial latent class regression, we

implement algorithms using a family of Pólya–Gamma distribution, introduced by Polson et

al.(2013)[143]. The main strategy of the algorithm is to implement Gaussian draws for generating

regression parameters and the Pólya–Gamma draws are incorporated for single layer of latent

variables. Compared with previous attempts with missing-data strategy to the logit model[72, 53],

which is either approximate or complicated, the Pólya–Gamma method is efficient and simpler.

A random variable ω is said to follow Pólya–Gamma distribution with parameters b > 0

and c ∈ R if

f (ω|b,c) = 1
π2 Σ

∞
r=1

gr

(r−1/2)2 + c2/(4π2)
(A.1)

where gr ∼ Gamma(b,1) and ω is denoted as ω ∼ PG(b,c). Polson et al.(2013)[143] proved

that for the Bayesian logistic regression model, the Pólya–Gamma family can yield a simple

Gibbs sampler and the posterior distribution is a scale mixture of Gaussians. Based on the

derivation procedure for binary outcomes, we extend the algorithm to a multinomial setting.

Suppose that a random variable ωik, i = 1, . . . ,n,k = 1, . . . ,K, follows Pólya–Gamma
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distribution with parameters (1,0). We denote it by PG(ωik|1,0) and assume that the multinomial

model of Equation ?? holds. Following Holmes and Held(2006)[72], the likelihood for γγγk

conditional upon γγγ−k, i.e. the parameter matrix with column vector γγγk removed, is

L(γγγk|γγγ−k) =
n

∏
i
[

exp(zzzT
i γγγk −Oik)

1+ exp(zzzT
i γγγk −Oik)

]1(Ci=k)[
1

1+ exp(zzzT
i γγγk −Oik)

]1(Ci ̸=k) (A.2)

where Oik = log∑k′ ̸=k exp(zzzT
i γγγk). Based on the logistic regression form of conditional likelihood,

the contribution of zzzi to the likelihood in γγγk can be written as

L(γk) ∝

n

∏
i

exp{κik(zzziγγγk −Oik)}exp{−(zzzT
i γγγk −Oik)

2ωik

2
}PG(ωik|1,0)

∝

n

∏
i

exp{κik(zzzT
i γγγk −Oik)−

(zzzT
i γγγk −Oik)

2ωik

2
}

∝ exp{−1/2(Sk − (ZZZγγγk −Ok))
′
Ωk(Sk − (ZZZγγγk −Ok))}

(A.3)

where κik = 1(Ci = k)−1/2, Sk = {κ1k/ω1k, ...,κnkk/ωnkk}, and Ωk = diag({ωik}nk
i=1). nk is the

number of subjects that belong to latent class k. Z = {zzz1, ...,zzzn} is the aggregated design matrix

of class-related covariates. Providing the prior γγγk ∼ N(m0k,V0k), the posterior is given as

(γγγk|Ωk)∼ N(mk,Vk)

(Ωk|γk)∼ PG(1,Zγk −Ok)

(A.4)

where Vk = (Z′ΩkZ + V−1
0k )−1, mk = Vk(Z′Ωk(κk + ΩkCk) + V−1

0k m0k) and Ok =

log∑k′ ̸=k exp(Zγγγk). Therefore, it allows for Gibbs sampling from the joint posterior

distribution without appealing to analytic approximations to the posterior.

A.1.2 Gibbs Sampling Algorithm

• Sample random effects:
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For i = 1, . . . ,n and given Ci = k, we draw aaai from N2L(µµµai
,ΣΣΣai), where ΣΣΣai = (T ′

i Ti/σ2
ε +

ΣΣΣ
−1
k )−1 and µµµai

= (T ′
i ỹyyi/σ2

ε +ΣΣΣkαααk)ΣΣΣai . The derivation process is expressed as,

P(aaai| . . .) ∝ exp{−
∑

L
l=1 ∑

mil
j=1(yi jl −ξi jl)

2

2σ2
ε

} · exp{−
(aaai −αααk)

T ΣΣΣ
−1
k (aaai −αααk)

2
}

= exp{−1
2
[(ỹyyi −Tiaaaiii)

T (ỹyyi −Tiaaaiii)/σ
2
ε +(aaai −αααk)

T
Σ
−1
k (aaai −αααk)]}

where ξi jl = xxxT
i jlβββ l +a0il +a1ilti jl and ỹi jl = yyyi jl −xxxT

i jlβββ l; ỹyyi is a stacked vector specified as

ỹyyi = (ỹi11, ...ỹimi11, ..., ỹi1L, ...ỹimiLL)
T ; Ti is a concatenated block diagonal matrix, specified

as Ti =



(1, ttt i1),0, . . . ,0

0,(1, ttt i2), . . . ,0

. . .

0,0, . . . ,(1, ttt iL)


with (1, ttt il) =



1, ti1l

1, ti2l

. . .

1, timil l


.

• Update class-specific covariance matrix:

For k = 1,2, ...K, we draw ΣΣΣk from Inverse-Wishart (IW) distribution, which includes an

additional half-t prior as described in Section 3.3.2:

P(ΣΣΣk| . . .) ∝|ΣΣΣk|−nk/2 exp{−1
2
(aaai −αααk)

T
ΣΣΣ
−1
k (aaai −αααk)}

· |ΣΣΣk|
−(ν+2L+2)

2 exp(−1
2

trace(2ν∆ΣΣΣ
−1
k ))

where ∆ is a diagonal matrix with elements λl , which are assumed to be independently

distributed with Gamma(1
2 ,

1
ψ2

l
). Therefore, ΣΣΣk,k = 1, . . . ,K and λl can be updated from:
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ΣΣΣk ∼ IW (nk +η +2L−1,2η∆+
nk

∑
i
(aaai −αααk)(aaai −αααk)

′)

λl ∼ Gamma(
η +2L

2
,

1
ψl

+η(ΣΣΣ−1
k )l)

where (Σ−1
k )l is the lth diagonal element of the inverse of Σk and nk is the number of

subjects that belongs to latent class k.

• Update class-specific random effect parameters:

For k = 1,2, ...K, we draw αααk from N2L(µµµαk
,ΣΣΣαk), where µµµαk

= ΣΣΣαkΣΣΣ
−1
k ∑

n
i=1 aaa1(Ci=k)

i and

ΣΣΣαk = (nkΣΣΣ
−1
k +1/cI)−1.

• Update fixed effects:

For l = 1,2, ...,L, we update βββ l from NQx(µµµβl
,ΣΣΣβl

), where µµµβl
= ΣΣΣβl ∑

n
i=1 xxxT

il yyyil/σ2
ε and

ΣΣΣβl
= (∑n

i=1 xxxT
il xxxil/σ2

ε +1/cI)−1. Here xxxil = (xxxi1l, . . . ,xxximil l) and yyyil = (yi1l, . . . ,yimil l).

• Update variance parameter:

Draw σ2
ε from Inverse-Gamma(δ1 +

∑i,l mil
2 , δ2 +

1
2 ∑i, j,l ỹ2

i jl)), where ỹi jl = yi jl − xxxT
i jlβββ l −

a0il −a1ilti jl .

• Update multinomial logit regression parameters:

For k = 1, . . . ,K − 1, we draw γγγk from N(mk,Vk) as described in A.1.1, where Vk =

(Z′ΩkZ +V−1
0k )−1, mk =Vk(Z′Ωk(κk +ΩkCk)+V−1

0k m0k) and Ok = log∑k′ ̸=k exp(Zγγγk).

• Update latent class indicators:

For i = 1, . . . ,n, we sample Ci from Multinomial(1,πππ i), where πππ i = (πi1, . . . ,πiK). For

k = 1, . . . ,K, πik is proportional to

exp(zzziγγγk)exp{ (aaai−αααk)
T ΣΣΣ

−1
k (aaai−αααk)

2 }|ΣΣΣk|−1/2. πik is then scaled to be with sum 1 for all k’s.
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In addition, to address the common label switching issue when fitting Bayesian mxiture

models, we implemented the Stephens’ method[169] using the label.switching package

in R[138]. On the other hand, once the truth is known, for both simulation study and ADNI data,

the order constraint can be assigned to one parameter in random effects to avoid the potential

label switching.

A.2 Simulation results

Table A.1. Simulation study results of P = 1 and
K = 3. The model was fit to all 200 samples.
Parameter (true values) Bias MSE C95

k = 1

β1 0.5 -0.0023 0.0013 0.91
β2 1 -0.0042 0.0001 0.89
α011 0.2 -0.0057 0.0001 0.90
α012 2 -0.0070 0.0042 0.94
α013 10 -0.0380 0.0965 0.94
α111 3 0.0036 0.0011 0.95
α112 1 0.0070 0.0028 0.92
α113 -0.5 0.0196 0.0142 0.89

Covariate 1

γγγ11 1 -0.0394 0.0933 0.91
γγγ12 2 0.0938 0.1129 0.92
γγγ21 0.5 0.0410 0.0723 0.93
γγγ22 -0.5 0.0695 0.0270 0.95
pacc 0.987
* K = 3 is the reference class with γγγ3 = 0.

A.3 Supplementary Results
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Table A.2. Simulation study results of P = 3 and K = 2. The model was fit to
all 200 samples.
Parameter (true values) Bias MSE C95 Bias MSE C95

Ql = 1 Ql = 2

β1Ql (1,0.5) -0.0070 0.0030 0.93 0.0007 0.0001 0.95
β2Ql (3,-0.1) -0.0015 0.0029 0.93 0.0013 0.0002 0.94
β3Ql (4,-0.5) -0.146 0.0081 0.94 0.0043 0.0003 0.91

k = 1 k = 2

α0k1 (0.2,2) -0.0346 0.0967 0.95 0.0207 0.0409 0.91
α0k2 (0.5,1) 0.0166 0.0105 0.95 -0.0173 0.0200 0.97
α0k3 (3,0.5) -0.0132 0.0261 0.96 0.0420 0.1048 0.97
α1k1 (3,1) -0.0119 0.0149 0.95 0.0104 0.0714 0.93
α1k2 (1,2) 0.0110 0.0223 0.96 -0.0141 0.0502 0.96
α1k3 (0.1,4) 0.0354 0.0632 0.94 -0.0568 0.1502 0.95

Covariate 1 Covariate 2

γγγ1 (1,0.5) 0.0096 0.0270 0.99 0.015 0.0314 0.98
pacc 0.981
* K = 2 is the reference class with γγγ2 = 0.

Table A.3. Simulation study results of P = 3 and K = 3. The model was fit to
all 200 samples.
Parameter (true values) Bias MSE C95 Bias MSE C95

l = 1 l = 2

βl1 (1,3) -0.008 0.0031 0.92 0.0011 0.0011 0.98
βl2 (0.5,-0.1) -0.0004 0.0002 0.86 -0.0020 0.0001 0.99
α01l (0.2,0.5) -0.0111 0.0157 0.98 -0.0088 0.0355 0.94
α02l (2,1) 0.0134 0.0096 0.98 0.0258 0.0069 0.98
α03l (10,2) -0.1358 0.4774 0.92 -0.0734 0.0896 0.99
α11l (3,1) 0.0328 0.0177 0.94 -0.0050 0.0495 1
α12l (1,2) 0.0007 0.0033 0.98 -0.0443 0.0229 0.94
α13l (-0.5,-0.5) 0.0718 0.1183 0.92 0.0520 0.0968 0.99

l = 3

βl1 4 -0.0194 0.01114 0.90
βl2 -0.5 -0.0024 0.0006 0.85
α01l 3 -0.0424 0.0364 0.98
α02l 0.5 0.0138 0.0308 0.94
α03l -2 0.2017 0.4193 0.94
α11l 0.1 -0.0826 0.0908 0.88
α12l 4 0.0063 0.0108 0.96
α13l 2 0.0667 0.0827 0.94

Covariate 1 Covariate 2

γγγ1 (1,0.5) -0.0720 0.1555 0.90 0.0571 0.1289 0.90
γγγ2 (2,-0.5) -0.3398 0.3115 0.91 0.0122 0.0827 0.96
pacc 0.95
* K = 3 is the reference class with γγγ3 = 0.
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Table A.4. Results of model selection regarding different numbers of latent classes K assumed.
Latent Class K WAIC

1 -83771.54
2 -84613.31
3 -85294.46
4 -84929.75
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Appendix B

Additional Results for Chapter 4,5

B.1 Theoretical results and proofs

• If KU(s, t) =

KU0(s, t) KU01(s, t)

KU01(t,s) KU1(s, t)

 = ∑
∞
l=1 λU

l φ
(1)
l (s)φ (1)

l (t)′, where φ
(1)
l (t) =

(φU0
l (t),φU1

l (t))′, then KU0(s, t)=∑
∞
l=1 λU

l φ
U0
l (t)φU0

l (s), KU1(s, t)=∑
∞
l=1 λU

l φ
U1
l (t)φU1

l (s)

and KU01(s, t) = ∑
∞
l=1 λU

l φ
U0
l (t)φU1

l (s).

Proof:

KU(s, t) =
∞

∑
l=1

λ
U
l φ

(1)
l (s)φ (1)

l (t)′

=
∞

∑
l=1

λ
U
l (φU0

l (s),φU1
l (s))(φU0

l (t),φU1
l (t))′

=
∞

∑
l=1

λ
U
l

φ
U0
l (s)φU0

l (t) φ
U0
l (s)φU1

l (t)

φ
U0
l (t)φU1

l (s) φ
U1
l (s)φU0

l (t)


=

∞

∑
l=1

λU
l φ

U0
l (s)φU0

l (t) λU
l φ

U0
l (s)φU1

l (t)

λU
l φ

U0
l (t)φU1

l (s) λU
l φ

U1
l (s)φU0

l (t)


=

KU0(s, t) KU01(s, t)

KU01(t,s) KU1(s, t)


• Proof of Equation 4.7. For given eigenfunctions, eigenvalues, the BLUP for principal
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component scores β̂ββ =

(ξ̂11, . . . , ξ̂1NU , . . . , ξ̂N1, . . . , ξ̂NNU , ζ̂111, . . . , ζ̂1J11, . . . , ζ̂N1NV , . . . , ζ̂NnNNV ) has a usual form

as,

β̂ββ = ΛΛΛZZZ′(ZZZΛΛΛZZZ′)−1XXX

where ΛΛΛ = blockdiag{IIIN
⊗

diag(λU
1 , . . . ,λU

NU
), IIIn

⊗
diag(λV

1 , . . . ,λV
NV
)}, n = ∑

N
i=1 ni.

When D > NU +ni ∗NV , ZZZΛΛΛZZZ′ is not invertible and only the generalized inverse of ZZZΛΛΛZZZ′

can be used[200]. For our implementation, NU and NV are in general small numbers

and the length of grid points of time is always significantly larger. In this case, β̂ββ =

ΛΛΛZZZ′(ZZZΛΛΛZZZ′)−1XXX = ΛΛΛ
1/2(ΛΛΛ1/2ZZZ′ZZZΛΛΛ

1/2)−1ΛΛΛ
1/2ZZZ′XXX = (ZZZ′ZZZ)−1ZZZ′XXX [200]. Thus we proved

the expression in Equation 7 is the BLUP for βββ .

• Proof of Equation 5.15 With iterated expectation, we have

Var{Yi jk(t)}=Var{E(Yi jk(t)|Ti j)}+E{Var(Yi jk(t)|Ti j)}

With E{Var(Yi jk(t)|Ti j)}= 0, the equation is written as,

∫ 1

0
Var{Yi jk(t)}dt =

∫ 1

0
E{∑

l
ξil(φ

U0
l (t)+Ti jφ

U1
l (t))2 +∑

m
ζi jm(φ

V
m (t))

2

+∑
r

ηi jkrφ
W
r (t)2}dt

If E(Ti j) = 0 and Var(Ti j) = 1, then,
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∫ 1

0
Var{Yi jk(t)}dt = ∑

l
ξil

∫ 1

0
(φU0

l (t))2 +(φU1
l (t))2dt +∑

m
ζi jm

∫ 1

0
(φV

m (t))
2dt

+∑
r

ηi jkr

∫ 1

0
(φW

r (t))2dt

= ∑
l

ξil +∑
m

ζi jm +∑
r

ηi jkr

B.2 Simulation Results

We simulate data based on ideas implemented in [60]. For each simulation setting, we

generate 100 replicates with n = 100 subjects in each dataset. We assume a balanced design with

ni = 3 visits for each subject and the time variable Ti j is generated by standardizing the visits

(j=1,2,3) to have unit variance. M = 300 is the total number of observations in each simulation

replicate. The functional curves Xi j(t) with length of 600 are generated as follows,

Xi j(t) = ∑
NU
l=1 ξilφ

(U0)
l (t)+∑

NU
l=1 Ti jξilφ

(U1)
l (t)+∑

NV
m=1 ζi jmφ

(2)
m (t), t ∈ D

ξil
i.i.d.∼ N (0.λU

l ),ζi jm
i.i.d.∼ N (0.λV

m )

where the number of eigenfunctions NU = NV = 4 and the scores ξil’s and ζi jm’s are

mutually independent. The eigenfunctions bases are set as,

φ
U0
1 (t) = sin(2πt), φ

U1
1 (t) = 1/2, φV

1 (t) = 1

φ
U0
2 (t) = cos(2πt), φ

U1
2 (t) = sin(6πt), φV

2 (t) =
√

3(2t −1)

φ
U0
3 (t) = sin(4πt), φ

U1
3 (t) = cos(6πt), φV

3 (t) =
√

5(6d2 −6d +1)

φ
U0
4 (t) = cos(4πt), φ

U1
4 (t) = sin(8πt), φV

4 (t) =
√

7(20d3 −30d2 +12d −1)

where φ
U0
l and φ

U1
l are orthogonal but they are correlated with φV

m if m ̸= 1.

The true eigenvalues have two scenarios,
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1. level 1: λU
1 = 4,λU

l = 0.5l−1, l = 2,3,4 and level 2: λV
m = 0.5m−1,m = 1,2,3,4

2. level 1: λU
l = 0.5l−1, l = 1,2,3,4 and level 2: λV

1 = 4,λV
m = 0.5m−1,m = 2,3,4

For each of the 100 simulated datasets, we implemented the longitudinal FPCA, as de-

scribed in section 3.2 to estimate the eigenfunctions, eigenvalues, scores and predicted functional

trajectories. As a first assessment of model estimation accuracy, we computed the normalized

errors between the estimated and true values of subject-level (ξ̂il − ξil)/
√

λU
l and visit-level

(ζ̂i jm −ζi jm)/
√

λV
m scores. The results are displayed in B.1, which show that the score parame-

ters are unbiasedly estimated. The simulation results demonstrate the agreement with simulation

results in Greven et al. (2010)[60], which provided a more complete list of simulation examples.

As a second assessment of accuracy, we calculated three ways of residual (Ri j(t))

MSE described in section 3.2, which is defined as the total mean squared count difference per

observation between the predicted and observed activity curves, i.e. 1
M ∑i, j(∑t |Ri j(t)|)2. The

results are displayed in B.2, and the findings are discussed in section 3.2.

B.3 Sensitivity Analysis

To assess, if averaging daily records impacted on our findings, we conducted three

sensitivity analyses. In particular, we took (i) a random day, (ii) the first three-day average and

the (iii) up to the first seven-day average for each participant at each visit, and then applied

the same longitudinal FPCA on these new inputs. The results are provided B.1, B.2 and B.3.

Compared with results in the original manuscript (Table 2 and B.4), averaging over daily inputs

does not meaningfully alter results of either functional PCA or regression procedures. Specifically,

although the variation explained by level-1 PCs is lower when only considering a random day,

the overall variance explained by both level 1 and level 2 PCs are similar in general. Also, in

the regression models, while point estimates vary, the findings are consistent across approaches,

namely that higher person-level PC scores 1 and 2 are associated with lower (log)insulin and
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BMI. In fact, the averaged inputs could reduce the influence of random movements or activity on

a single day, thus reducing noise in the data.

Table B.1. Percentages of average variance explained by different levels of principal components
and regression results of log(insulin) and BMI on the first two level 1 and level 2 principal
component scores using a-random-day data.
# Component φ

U0
l φ

U1
l φ 2

m cumulative variation explained
1 0.0764 0.0120 0.2543 0.3427
2 0.0200 0.0034 0.1606 0.5267
3 0.0125 0.0017 0.0836 0.6245

0.1089 0.0171 0.4985 0.6245
Outcome Predictor Coefficient estimate SE Confidence interval
Log(insulin) PC11 -0.09 0.03 (-0.15, -0.04)

PC12 -0.07 0.03 (-0.12, -0.01)
PC21 -0.04 0.02 (-0.07, -0.01)
PC22 0.00 0.01 (-0.03, 0.03)

BMI PC11 -0.45 0.22 (-0.87, -0.03)
PC12 -0.39 0.22 (-0.82, 0.04)
PC21 -0.10 0.08 (-0.25, 0.05)
PC22 0.10 0.07 (-0.03, 0.24)

B.4 Additional Results

B.3 provides two examples from our dataset of step-wise reconstruction of the activity

curves, after the eigen-decomposition. The first individual example has a large first level 1

principal component score but a small first level 2 principal component score, and vice versa for

the second individual example. It further illustrates that principal component scores can inform

explained variation at subject- and visit-level. Specifically, minimal between-visit difference

is witnessed in the first example, i.e., adding in the visit-level component to the subject-level

curves does not improve the fit materially, indicating the majority of variation is explained at

subject-level. While in the second example which has a larger level 2 principal component score,

the figure presents more significant variation between the two visits, and thus the visit-level

component is needed to recapitulate the trends of the original data.
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Table B.2. Percentages of average variance explained by different levels of principal components
and regression results of log(insulin) and BMI on the first two level 1 and level 2 principal
component scores using three-day average data.
# Component φ

U0
l φ

U1
l φ 2

m cumulative variation explained
1 0.1507 0.0104 0.2160 0.3771
2 0.0391 0.0142 0.1322 0.5626
3 0.0206 0.0052 0.0898 0.6782
4 0.0152 0.0013 0.0585 0.7532

0.2256 0.0311 0.4965 0.7532
Outcome Predictor Coefficient estimate SE Confidence interval
Log(insulin) PC11 -0.11 0.03 (-0.16, -0.05)

PC12 -0.10 0.02 (-0.14, -0.06)
PC21 -0.03 0.02 (-0.06, 0.00)
PC22 0.01 0.02 (-0.02, 0.04)

BMI PC11 -0.86 0.21 (-1.28, -0.44)
PC12 -0.12 0.18 (-0.47, 0.22)
PC21 -0.13 0.08 (-0.28, 0.02)
PC22 0.13 0.02 (-0.12, 0.03)

Table B.3. Percentages of average variance explained by different levels of principal components
and regression results of log(insulin) and BMI on the first two level 1 and level 2 principal
component scores using up to seven-day average data.
# Component φ

U0
l φ

U1
l φ 2

m cumulative variation explained
1 0.2302 0.0220 0.1551 0.4073
2 0.0852 0.0167 0.1030 0.6122
3 0.0363 0.0044 0.0843 0.7372
4 0.0192 0.0013 0.0484 0.8061

0.3709 0.0444 0.3908 0.8061
Outcome Predictor Coefficient estimate SE Confidence interval
Log(insulin) PC11 -0.14 0.04 (-0.22, -0.06)

PC12 -0.09 0.03 (-0.15, -0.03)
PC21 -0.13 0.04 (-0.20, -0.06)
PC22 0.02 0.03 (-0.03, 0.08)

BMI PC11 -0.78 0.29 (-1.34, -0.22)
PC12 -0.39 0.24 (-0.86, 0.07)
PC21 -0.19 0.19 (-0.56, 0.18)
PC22 0.00 0.14 (-0.26, 0.27)
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(a) (b)

(c) (d)

Figure B.1. Boxplots of the normalized biases of estimated principal component scores for

subject-level process (ξ̂il −ξil)/
√

λU
l (left) and visit-level (ζ̂i jm −ζi jm)/

√
λV

m (right) based on
simulation scenario 1 (top) and scenario 2 (bottom) with 100 replicates. Red line represents the
zero.
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(a) (b)
Figure B.2. Boxplots of residual MSE from stepwise decomposition based on simulation
scenario 1 (top) and scenario 2 (bottom) with 100 replicates. From left to right, the mean
squared errors are acquired from three ways of computing residuals: Xi j(t)−Ui(t) (Case 1),
Xi j(t)−Vi j(t) (Case 2), Xi j(t)−Ui(t)−Vi j(t) (Case 3)

Table B.4. Percentages of average variance explained by different levels of principal components.
The cumulative variation is the sum of row entries for the current row. The last row presents the
cumulative variance for each column.

# Component φ
U0
l φ

U1
l φ

(2)
m cumulative variation explained

1 0.2301 0.0228 0.2530 0.5059
2 0.0863 0.0163 0.1026 0.7111
3 0.0365 0.0048 0.0412 0.7935
4 0.0196 0.0015 0.0210 0.8356
5 0.0131 0.0022 0.0153 0.8662

0.3855 0.0476 0.4331 0.8662
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(a)

(b)
Figure B.3. Stepwise decomposition of two examples of PA records with raw count inputs
(black) and estimated curves at each visit (red, blue): (a) is an example with a large first level 1
principal component score but a small first level 2 principal component score; (b) is an example
with a small first level 1 principal component score but a large first level 2 principal component
score.
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Figure B.4. Boxplot of individual daily-average activity magnitude (sum of activity magnitudes
over 600 minutes divided by 600) overall and at baseline, 6 months, 12 months. It illustrates an
increase in PA magnitudes after baseline visits.

Table B.5. Linear mixed effect regression results of health outcomes on scaled total activity
counts and MVPA respectively. It presents that both total activity counts and MVPA both exhibit
a negative association with health outcomes, which supports the PCR results.

Outcome Total Activity Counts MVPA
Log(insulin) -0.13 (-0.17, -0.09) -0.12 (-0.16,-0.08)
Log(CRP) -0.09 (-0.17, -0.01) -0.09 (-0.17,-0.02)
BMI -0.69 (-0.9, -0.48) -0.63 (-0.84,-0.43)

*Adjusted for baseline age, ethnicity, smoking history and visit indicator.
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Appendix C

Additional Results for Chapter 6

C.1 Deriving Trend Parameters (Slopes) in MTSR Models

To better interpret the linear time trend parameter βββ i1 in MTSR models for temperature

data, we provided an analytical expansion of the original model. For the purpose of clear

representation, we use yyy(k)i j , βββ
(k)
i j , bbb(k)i j and εεε

(k)
i j to denote the k-lagged covariates, parameters and

residuals, with k = 0,1,2,3. yyyi j can be computed as,

yyyi j = XXX ′
i jβββ

(0)
i + yyy(1)i j bbb(0)i + εεε

(0)
i j

= XXX ′
i jβββ

(0)
i +(XXX ′

i jβββ
(1)
i + yyy(2)i j bbb(1)i + εεε

(1)
i j )bbb(0)i + εεε

(0)
i j

= XXX ′
i j(βββ

(0)
i +βββ

(1)
i bbb(0)i )+ yyy(2)i j bbb(1)i bbb(0)i + εεε

(0)
i j + εεε

(1)
i j bbb(0)i

= . . .

= XXX ′
i j

3

∑
k=0

(∏
k′<k

bbb(k
′−1)

i )βββ
(k)
i + yyyi( j−1)

3

∏
k=0

bbb(k)i +
3

∑
k=0

(∏
k′<k

bbb(k
′−1)

i )εεε
(k)
i j

where k′ ≥−1 and b(−1)
i = 1. Similarly, we can write out yyyi( j−1) with the form,

yyyi( j−1) = XXX ′
i j−1

3

∑
k=0

(∏
k′<k

bbb(k
′−1)

i )βββ
(k)
i + yyyi( j−2)

3

∏
k=0

bbb(k)i +
3

∑
k=0

(∏
k′<k

bbb(k
′−1)

i )εεε
(k)
i j−1
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Take the difference of the above two equations and denote ∆(yyyi j) = yyyi j − yyyi j−1, ∆t =

t j − t j−1 and ∆(εεε
(k)
i j ) = εεε

(k)
i j − εεε

(k)
i j−1, a difference model is provided as,

∆(yyyi j) = ∆t

3

∑
k=0

(∏
k′<k

bbb(k
′−1)

i )βββ
(k)
i1 +∆(yyyi j−1)

3

∏
k=0

bbb(k)i +
3

∑
k=0

(∏
k′<k

bbb(k
′−1)

i )∆(εεε
(k)
i j )

In our model setting, ∆t = 0.1 is a fixed number. Therefore, when we divide the two

sides of the equation with ∆t and let vvvi j =
∆(yyyi j)

∆t
, the equation becomes,

vvvi j =
3

∑
k=0

aaa(k)i0 βββ
(k)
i1 +aaai1vvvi j−1 +

3

∑
k=0

aaa(k)i0 ∆(εεε
(k)
i j )/∆t

where aaa(k)i0 = ∏k′<k bbb(k
′−1)

i and aaai1 = ∏
3
k=0 bbb(k)i . vvvi j is in fact the temperature changing

rate per decade, and hence has the same interpretation as the slope parameter if we fit a simple

linear trend model with time as the only predictor. Meanwhile, if −1 < aaai1 < 1, vvvi j, itself is a

autoregressive model with the long-run mean E(vvvi j) =
∑

3
k=0 aaa(k)i0 βββ

(k)
i1

1−aaai1
.

The corresponding standard deviance of vvvi j is derived from,

Var(vvvi j) = aaa2
i1Var(vvvi j−1)+

1
∆2

t
Var(

3

∑
k=0

aaa(k)i0 ∆(εεε
(k)
i j ))

With the time-independent assumption of εεε
(k)
i j , i.e. Cov(εεε(k)i j ,εεε

(k)
i j−1) = 0, and let Σ

(k1,k2)
i =

Cov(εεε(k1)
i j ,εεε

(k2)
i j ),k1,k2 = 0,1,2,3, we have Var(∑3

k=0 aaa(k)i0 ∆(εεε
(k)
i j )) = 2∑k1,k2 aaa(k1)

i0 aaa(k2)
i0 Σ

(k1,k2)
i .

Therefore, the variance of the vvvi j has the form,

Var(vvvi j) =
Σvi

1−aaa2
i1
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where Σvi =
2

∆2
t

∑k1,k2 aaa(k1)
i0 aaa(k2)

i0 Σ
(k1,k2)
i . Thus we have sd(vvvi j) =

√
Σvi

1−aaa2
i1

.

We further estimated the standard errors of v̂vvi j. It can be estimated from the stan-

dard error of ∑
3
k=0 âaa(k)i0 β̂ββ

(k)
i1

1−âaai1
via the multivariate delta method, that is,

√
T −1(h(B̂BBi)− h(BBBi))

d−→

N(0,∇h(BBBi)
′ΣBBBi∇h(BBBi)), where h(BBBi) =

∑
3
k=0 aaa(k)i0 βββ

(k)
i1

1−aaai1
and ∇h(BBBi) is the vector notation for the

gradient.

For the simplicity of representation, we remove all i and j’s in this part. The denominator

1−aaa2
i1 is a number close to 1, therefore we treated it as a constant in our computation. These

gradients were computed as,

∇v1

∇BBB
= (1,b1b4b3,b1b4,b1,β4b2 +β3b2b4,β1 +β4b1 +β3b1b4,0,β3b2b1)

′

∇v2

∇BBB
= (b2,1,b2b1b4,b2b1,β4b3b2,β1b3 +β4b3b1,β2 +β1b2 +β4b2b1,0)′

∇v3

∇BBB
= (b3b2,b3,1,b3b2b1,0,β1b4b3,β2b4 +β1b4b2,β3 +β2b3 +β1b3b2)

′

∇v4

∇BBB
= (b4b3b2,b4b3,b4,1,β4 +β3b4 +β2b4b3,0,β2b1b4,β3b1 +β2b1b3)

′

C.2 Supplementary Materials for CA

In this section, we provided supplementary figures and tables for analysis in California.

Figure C.1 and Table C.1 illustrates the results of selecting an appropriate kernel for constructing

the weight matrix in geographically weighted models, which shows that the linear kernel has

the best performance. The regression lines demonstrate a linear association between pairwise

residual correlation and distance, and the results are supported by the R-square results. FigureC.2

presents the results of selecting a threshold value for constructing the weight matrix. The

mean squared errors (MSE) were computed based on a 10-fold cross-validation process, which

performed the fitting procedure a total of ten times. Each fit was performed on a training set

consisting of 90% of locations selected at random, with the remaining 10% used as a hold out
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set for validation. The MSE reflected the averaged fitting performance from the ten folds and we

selected the threshold l which has the least MSE.

Figure C.3 and C.4 provide the assessment of CoPE method assumptions for temperature

and precipitation, respectively. For temperature data (Figure C.3(a)), we performed Shapiro-Wilk

test on regression residuals at all locations and seasons and computed corresponding p-values.

For precipitation (Figure C.3(b)), the Shapiro-Wilk test was performed on deviance from the

gamma regression models. The normality assumption were valid for all scenarios since the

empirical cumulative distribution function of these p values approximately follow the CDF of a

standard uniform distribution. As for assessing the assumption of independence, the Ljung–Box

tests were performed on residuals from both temperature and precipitation results (Figure C.4).

In general, the independence assumptions were valid from the CDF results.

(a) (b)

(c) (d)
Figure C.1. Selecting appropriate kernels in modeling CA climate data in four seasons. The
y-axis provides the pairwise residual correlations for all locations with the form of either log(ρ)
or rho.The x-axis provide the pariwise distance in grid.
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Table C.1. R-squares of regression models for selecting appropriate kernels in modeling CA
climate data in four seasons.

Winter Spring Summer Fall
Exponential kernel 0.89 0.91 0.81 0.90

Gaussian kernel 0.80 0.89 0.77 0.81
Linear kernel 0.90 0.94 0.90 0.91

Bisquare lernel 0.79 0.88 0.80 0.81

Figure C.2. 10-fold cross-validation results for selecting a threshold value in constructing the
weight matrix of geographically weighted models.

(a) (b)
Figure C.3. Assessment of CoPE assumptions for temperature parameters. (a) Empirical CDFs
of the p values from the Shapiro-Wilk test of normality of the residuals for all locations. (b)
Empirical CDFs of the p values from the Ljung–Box test of independence of the residuals for all
locations. The black line is the CDF of a standard uniform distribution.
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(a) (b)
Figure C.4. Assessment of CoPE assumptions for precipitation parameters. (a) Empirical CDFs
of the p values from the Shapiro-Wilk test of normality of the deviance for all locations. (b)
Empirical CDFs of the p values from the Ljung–Box test of independence of the residuals for all
locations. The black line is the CDF of a standard uniform distribution.
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[29] Lubomı́r Civı́n and Luboš Smutka. Vulnerability of european union economies in agro
trade. Sustainability, 12(12):5210, 2020.

[30] Rachel C Colley, Didier Garriguet, Ian Janssen, Cora L Craig, Janine Clarke, and Mark S
Tremblay. Physical activity of canadian adults: accelerometer results from the 2007 to
2009 canadian health measures survey. Health reports, 22(1):7, 2011.

[31] Ciprian M Crainiceanu, Ana-Maria Staicu, and Chong-Zhi Di. Generalized multilevel
functional regression. Journal of the American Statistical Association, 104(488):1550–
1561, 2009.

[32] Clara Deser, Adam Phillips, Vincent Bourdette, and Haiyan Teng. Uncertainty in climate
change projections: the role of internal variability. Climate dynamics, 38(3):527–546,
2012.

[33] Chong-Zhi Di, Ciprian M Crainiceanu, Brian S Caffo, and Naresh M Punjabi. Multilevel
functional principal component analysis. The annals of applied statistics, 3(1):458, 2009.

[34] Dmitry Divine. Climate time series analysis: Classical statistical and bootstrap methods,
m. mudelsee, springer, dordrecht (2010), isbn: 978-90-481-9482-7, 2012.

[35] Michael C Donohue, Hélène Jacqmin-Gadda, Mélanie Le Goff, Ronald G Thomas, Rema
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[38] Dorothea Dumuid, Željko Pedišić, Javier Palarea-Albaladejo, Josep Antoni Martı́n-
Fernández, Karel Hron, and Timothy Olds. Compositional data analysis in time-use
epidemiology: what, why, how. International journal of environmental research and
public health, 17(7):2220, 2020.

[39] James Durbin and Geoffrey S Watson. Testing for serial correlation in least squares
regression: I. Biometrika, 37(3/4):409–428, 1950.

[40] John J Dziak, Donna L Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul
Shiffman, and Mariya P Shiyko. Scalar-on-function regression for predicting distal out-
comes from intensively gathered longitudinal data: Interpretability for applied scientists.
Statistics surveys, 13:150, 2019.

[41] Robert H Eckel, John M Jakicic, Jamy D Ard, Janet M de Jesus, Nancy Houston Miller,
Van S Hubbard, I-Min Lee, Alice H Lichtenstein, Catherine M Loria, Barbara E Millen,
et al. 2013 aha/acc guideline on lifestyle management to reduce cardiovascular risk: a
report of the american college of cardiology/american heart association task force on
practice guidelines. Journal of the American college of cardiology, 63(25 Part B):2960–
2984, 2014.

[42] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press,
1994.

[43] FDA. FDA Grants Accelerated Approval for Alzheimer’s Drug. https://www.fda.gov/
news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug,
2021. Accessed: 2022-03-21.

[44] Garrett M Fitzmaurice, Nan M Laird, and James H Ware. Applied longitudinal analysis.
John Wiley & Sons, 2012.

[45] A Stewart Fotheringham, Ricardo Crespo, and Jing Yao. Geographical and temporal
weighted regression (gtwr). Geographical Analysis, 47(4):431–452, 2015.

[46] Caroline S Fox, Sherita Hill Golden, Cheryl Anderson, George A Bray, Lora E Burke,
Ian H De Boer, Prakash Deedwania, Robert H Eckel, Abby G Ershow, Judith Fradkin, et al.
Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in
light of recent evidence: a scientific statement from the american heart association and the
american diabetes association. Circulation, 132(8):691–718, 2015.

171

https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug


[47] Patty Freedson, Heather R Bowles, Richard Troiano, and William Haskell. Assessment of
physical activity using wearable monitors: recommendations for monitor calibration and
use in the field. Medicine and science in sports and exercise, 44(1 Suppl 1):S1, 2012.

[48] Patty Freedson, David Pober, Kathleen F Janz, et al. Calibration of accelerometer output
for children. Medicine and science in sports and exercise, 37(11):S523, 2005.

[49] Joshua P French. Confidence regions for the level curves of spatial data. Environmetrics,
25(7):498–512, 2014.

[50] Joshua P French, Seth McGinnis, and Armin Schwartzman. Assessing narccap climate
model effects using spatial confidence regions. Advances in statistical climatology,
meteorology and oceanography, 3(2):67, 2017.

[51] Joshua P French and Stephan R Sain. Spatio-temporal exceedance locations and confi-
dence regions. The Annals of Applied Statistics, 7(3):1421–1449, 2013.

[52] Giovanni B Frisoni, Nick C Fox, Clifford R Jack, Philip Scheltens, and Paul M Thompson.
The clinical use of structural mri in alzheimer disease. Nature Reviews Neurology, 6(2):67–
77, 2010.
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[126] John C Morris, Kaj Blennow, Lutz Frölich, Agneta Nordberg, Hilkka Soininen, Gunhild
Waldemar, L-O Wahlund, and B Dubois. Harmonized diagnostic criteria for alzheimer’s
disease: recommendations. Journal of internal medicine, 275(3):204–213, 2014.

[127] Manfred Mudelsee. Trend analysis of climate time series: A review of methods. Earth-
science reviews, 190:310–322, 2019.

[128] Susanne G Mueller, Michael W Weiner, Leon J Thal, Ronald C Petersen, Clifford R Jack,
William Jagust, John Q Trojanowski, Arthur W Toga, and Laurel Beckett. Ways toward
an early diagnosis in alzheimer’s disease: the alzheimer’s disease neuroimaging initiative
(adni). Alzheimer’s & Dementia, 1(1):55–66, 2005.

[129] Akihiko Murata, Shun-ichi I Watanabe, Hidetaka Sasaki, Hiroaki Kawase, and Masaya
Nosaka. Assessing goodness of fit to a gamma distribution and estimating future projection
on daily precipitation frequency using regional climate model simulations over japan with
and without the influence of tropical cyclones. Journal of Hydrometeorology, 21(12):2997–
3010, 2020.

178



[130] Bengt Muthén and Linda K Muthén. Integrating person-centered and variable-centered
analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical
and experimental research, 24(6):882–891, 2000.

[131] Bengt Muthén and Kerby Shedden. Finite mixture modeling with mixture outcomes using
the em algorithm. Biometrics, 55(2):463–469, 1999.

[132] Radford M Neal. Probabilistic inference using Markov chain Monte Carlo methods.
Department of Computer Science, University of Toronto Toronto, ON, Canada, 1993.

[133] John R Nesselroade. Interindividual differences in intraindividual change. 1991.

[134] Ninh T Nguyen, Cheryl P Magno, Karen T Lane, Marcelo W Hinojosa, and John S Lane.
Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity:
findings from the national health and nutrition examination survey, 1999 to 2004. Journal
of the American College of Surgeons, 207(6):928–934, 2008.
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http, 2008.

[150] Philip T Reiss and R Todd Ogden. Functional principal component regression and func-
tional partial least squares. Journal of the American Statistical Association, 102(479):984–
996, 2007.

[151] Leandro Fornias Machado de Rezende, Maurı́cio Rodrigues Lopes, Juan Pablo Rey-López,
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