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ARTICLE

Learning a genome-wide score of human–mouse
conservation at the functional genomics level
Soo Bin Kwon 1,2 & Jason Ernst 1,2,3,4,5,6,7✉

Identifying genomic regions with functional genomic properties that are conserved between

human and mouse is an important challenge in the context of mouse model studies. To

address this, we develop a method to learn a score of evidence of conservation at the

functional genomics level by integrating information from a compendium of epigenomic,

transcription factor binding, and transcriptomic data from human and mouse. The method,

Learning Evidence of Conservation from Integrated Functional genomic annotations (LECIF),

trains neural networks to generate this score for the human and mouse genomes. The

resulting LECIF score highlights human and mouse regions with shared functional genomic

properties and captures correspondence of biologically similar human and mouse annota-

tions. Analysis with independent datasets shows the score also highlights loci associated with

similar phenotypes in both species. LECIF will be a resource for mouse model studies by

identifying loci whose functional genomic properties are likely conserved.
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Many studies interrogate human loci of interest, such as
those implicated in genome-wide association studies
(GWAS), by perturbing their homologous loci in

mouse1–4. A key question in this context is the extent to which
the homologous loci in mouse is expected to have similar roles to
the human loci. Conversely, loci associated with phenotypes can
be discovered in mouse first, raising the question of the degree to
which their properties are shared with human5.

A relatively large percentage of the human genome, ~40%, has
a homologous locus in the mouse genome as determined by
human–mouse pairwise sequence alignment6. However, a much
smaller fraction of bases in these aligning pairs of loci are con-
strained at the sequence level7–10. This is because many bases are
within regions whose sequences are similar enough to be aligned
between species, but not necessarily constrained, which is defined
at a higher resolution and generally has even greater sequence
similarity. In general, it is unclear to what extent human and
mouse loci that align to each other have similar properties, in
particular, functional genomic properties. With large-scale func-
tional genomic resources of genome-wide maps of chromatin
accessibility, transcription factor (TF) binding, histone mod-
ifications, gene expression data across diverse cell and tissue types
that have become available in mouse11,12 in addition to
human13–15, there is an opportunity to systematically and con-
fidently detect evidence of conservation at the functional geno-
mics level between these species.

Previous work comparing cross-species functional genomics
data to infer conservation have largely focused on comparing
pairs of matched experiments for the same assay in a corre-
sponding cell or tissue type across species16–21. While useful, data
from a pair of experiments from two species provides limited
information for differentiating evidence of conservation from
similarity observed by chance. Studies that jointly compare
multiple pairs of experiments from different biological conditions
have additional information available for inferring conservation
of functional genomic properties17,18,20,21. However, such
approaches have often relied on manually matching corre-
sponding experiments and have not been scaled to leverage the
vast amounts of diverse data available in both human and mouse.
The challenge in taking advantage of such data is that many
experiments do not have an obvious corresponding experiment,
and even when one is assumed there could in practice be con-
founding differences. Previous work partly addressed some of
these issues11,22–27, but still limited their work to one data type at
a time and thus only utilized a small fraction of the available data
to find evidence of conservation. Given the increasingly diverse
functional genomic resources available for human and mouse,
there is a need for an integrative method to better leverage those
resources to infer evidence of conservation at the functional
genomics level between human and mouse.

Thus, here we develop Learning Evidence of Conservation
from Integrated Functional genomic annotations (LECIF), a
supervised learning approach that quantifies evidence of con-
servation based on large-scale functional genomic data from a
pair of species, which we apply to human and mouse. While
LECIF leverages data from diverse cell types collected by various
assays, it does not require explicit matching of experiments from
different species by biological source or data type. LECIF uses
pairwise sequence alignment data only to label training examples,
inferring conservation from functional genomics data and not
from DNA sequence. We apply LECIF to a compendium of
thousands of human and mouse functional genomic annotations
and learn the LECIF score for every pair of human and mouse
regions that align at the sequence level. The score captures cor-
respondence of biologically similar annotations between human
and mouse, even though LECIF was not explicitly given such

information. While the LECIF score is moderately correlated with
sequence constraint scores, it captures distinct information on
conserved properties. The LECIF score is preferentially higher in
regions previously shown to have similar phenotypic properties in
human and mouse at the genetic and epigenetic level. Overall, we
observe that the score can complement sequence conservation
annotations in capturing human–mouse conservation and con-
tribute to locating pairs of sequence-aligning regions whose
functional genomic properties are likely conserved. We thus
expect the human–mouse LECIF score will be an important
resource for studies using mouse as a model organism.

Results
Overview of LECIF. LECIF quantifies evidence of conservation
between human and mouse genomic regions at the functional
genomics level based on a large and diverse set of functional
genomic annotations (Fig. 1). LECIF uses functional genomic
features as input to an ensemble of neural networks, where
sequence alignment information is used to label training data, but
not as features (“Methods”). For training data, positive examples
are pairs of human and mouse regions that align at the sequence
level, while negative examples are randomly mismatched pairs of
human and mouse regions that do not align to each other (Fig. 1a).
All human and mouse regions included in negative examples align
somewhere in the mouse and human genomes, respectively, which
allows LECIF to learn pairwise characteristics of aligning human
and mouse regions instead of the characteristics of regions that
align to the other genome in general. LECIF assumes that positive
examples are more likely to be conserved at the functional geno-
mics level than negative examples. Since neighboring bases are
likely annotated by the same annotations and for computational
considerations, training examples and predictions were generated
at every 50 bp within each pairwise alignment block (“Methods”).
As a result, we provided the classifier with >2 million positive and
>2 million negative training examples, which covered up to 90Mb
of the human and mouse genomes.

For each example, there were >8000 human and >3000 mouse
functional genomic features defined. Among these features were
binary features corresponding to whether a genomic base
overlapped with peak calls from DNase-seq experiments, ChIP-
seq experiments of TFs, histone modifications and histone
variants, and cap analysis of gene expression (CAGE) experi-
ments. In addition, there were binary features corresponding to
each state and tissue combination of ChromHMM28 chromatin
state annotations and numerical features corresponding to
normalized signals from RNA-seq experiments. These data
covered a wide range of cell and tissue types and were generated
by the ENCODE13, Mouse ENCODE11, Roadmap Epigenomics
Project14, or FANTOM529 consortia (“Methods” and Supple-
mentary Data 1). We did not provide pairwise alignment or DNA
sequence information as features to the classifier so that LECIF
infers conservation specifically at the functional genomics level
rather than at the sequence level.

After training, we used the classifier to make genome-wide
predictions at 50 bp resolution or finer, annotating the 40% of the
human genome that aligns to mouse and those aligning regions in
the mouse genome with the LECIF score (Figs. 1b and 2a). We
weighted negative examples 50 times more than positive examples
during training because we wanted the LECIF score to highlight
regions with strong evidence of conservation at the functional
genomics level. As a result, a small fraction of the aligning regions
was highlighted with high LECIF score, whereas most aligning
regions would have scored high if the score was learned with
positive and negative examples weighted equally (Fig. 2b,
Supplementary Fig. 1a).
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Comparative evaluation of LECIF’s predictive performance.
We evaluated LECIF at predicting whether pairs of regions that
were held out from training align at the sequence level. LECIF
had strong predictive power for this with an area under the
receiver operating characteristic curve (AUROC) of 0.87 and an
area under the precision-recall curve (AUPRC) of 0.23 com-
pared to a random expectation of 0.50 and 0.02, respectively
(Fig. 2c, d). In addition, scores that were trained on non-
overlapping sets of chromosomes had strong agreement with
each other with a Pearson correlation coefficient (PCC) of 0.90
(“Methods”).

We compared LECIF to alternative methods that used random
forest (RF), canonical correlation analysis (CCA), deep canonical
correlation analysis (DCCA), or logistic regression (LR) instead of
an ensemble of neural networks (Fig. 2c, d). When classifying
held-out test examples, LECIF outperformed these methods with
statistically significantly better AUROC and AUPRC values (RF
AUROC: 0.82; CCA AUROC: 0.81; DCCA AUROC: 0.81; RF
AUPRC: 0.13; CCA AUPRC: 0.06; DCCA AUPRC 0.07; LR
AUROC: 0.50; AUPRC: 0.02; Wilcoxon signed-rank test P <
0.0001). LR had no predictive power as expected, since it only
considers features marginally and the positive and negative

examples were defined such that each feature has an identical
marginal distribution in positive and negative data.

We next evaluated LECIF design choices by comparing the
LECIF score to predictions based on alternative choices. We first
compared the LECIF score with a score computed at a single-base
resolution and confirmed they were strongly correlated (PCC:
0.99; “Methods”). We also compared the LECIF score to scores
learned with different weightings of positive and negative
examples and confirmed that relative ranking of predictions
and predictive power for aligning regions were robust (Supple-
mentary Fig. 1). We used LECIF with an ensemble of 100 neural
networks and confirmed it led to better performance than using
fewer networks, although fewer networks could be used to save
computational cost with a small decrease in performance
(Supplementary Figs. 2 and 3). We also compared the LECIF
score to scores learned separately for the coding and noncoding
genomes and observed that the scores were relatively well-
correlated with the original LECIF score in the coding (PCC:
0.71) and noncoding (PCC: 0.95) genomes (Supplementary Fig. 4
and “Methods”).

In addition, we evaluated the effect of the number of mouse
features on LECIF’s performance by learning two models with

Fig. 1 Overview of the LECIF method. a Supervised learning procedure of LECIF. For every pair of human and mouse genomic regions, two feature vectors
are generated from their functional genomic annotations, one vector for the human region (beige) and the other vector for the mouse region (gray). Each
feature vector consists of thousands of functional genomic annotations, as listed in Supplementary Data 1. Only a subset of the features is shown here.
These two species-specific feature vectors are given to an ensemble of neural networks (ENN). The ENN is trained to distinguish positive pairs (green),
which are aligning human and mouse regions, from negative pairs (red), which are randomly mismatched human and mouse regions that do not align to
each other, but somewhere else in the other species. Here, we provide about 2 million positive and 2 million negative training examples. Feature labels
(e.g., DNase in liver) and matching of features across species are not provided to LECIF. b Genome-wide prediction procedure of LECIF. Once trained as
illustrated in a, the ENN can estimate the probability of any given pair of human and mouse regions being classified as a positive pair. We consider this
probability, the LECIF score, to represent the evidence of conservation observed in the functional genomics data annotating the given pair. Here, we
generate the LECIF score for all pairs of aligning human and mouse regions. Although not shown here, for model evaluation we also generate predictions for
randomly mismatched negative pairs held out from training. When generating a prediction for a pair, LECIF uses an ENN trained on data excluding the pair
as described in “Methods” and Supplementary Data 2.
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fewer mouse features (“Methods”). A score learned with
10% of the mouse features had strong agreement with the
original LECIF score (PCC: 0.88; Spearman correlation
coefficient (SCC): 0.80) and slightly weaker predictive
performance (AUROC: 0.83 vs. 0.86; AUPRC: 0.16 vs. 0.21;

Supplementary Fig. 5). However, a score learned with 1% of
the mouse features had substantially weaker agreement with
the original LECIF score (PCC: 0.66; SCC: 0.18) and weaker
predictive performance for aligning pairs (AUROC: 0.66;
AUPRC: 0.07).
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Predictive power when including adjacent non-aligning mouse
regions. The LECIF method can also score pairs of human and
mouse regions that do not align at the sequence level. Previous
comparative studies have reported movements of regulatory ele-
ments during evolution, where homologous regulatory activity of
a human region is found in a region near the aligning region in
another species instead of the aligning region16,30,31. We thus
investigated whether it is advantageous for LECIF to consider also
the scores at non-aligning mouse regions proximal to the mouse
region aligning to human. Specifically, for a given aligning pair of
human and mouse regions, we took the maximum LECIF score
from pairs consisting of the human region and any mouse region
located within a window centered around the aligning mouse
region (“Methods” and Supplementary Fig. 6). We varied window
sizes and repeated the same AUROC evaluations for predicting
aligning regions as above (Supplementary Fig. 7).

We found that as we expanded the window size, the predictive
power decreased overall. We saw similar results when we repeated
the evaluation with pairs stratified by the LECIF score at the
aligning regions except for pairs with the lowest LECIF score
(Supplementary Fig. 8). When we trained LECIF with an
alternative set of negative examples selected from a genome
background and repeated the evaluations (“Methods”), the
expanded window still had decreased predictive power overall
(Supplementary Fig. 7). These results suggested that applying
LECIF to non-aligning regions would result in a substantial
increase in false-positive predictions, which indicates that
sequence alignment provides strong prior information in
detecting evidence for conservation at the functional genomics
level. Moreover, non-aligning regions in general tend to be less
conserved and exhibit different properties at the functional
genomics level than aligning regions on which LECIF was
trained11, making LECIF relatively less applicable to such regions.
We thus focused our initial application of LECIF to aligning
regions. We note that because of the resolution at which the
LECIF score is defined, even without explicitly expanding the
window the score may still be capturing small movements of
regulatory sites, which cannot be explicitly detected in the coarse-
resolution functional genomics data currently available to LECIF.

Distribution of LECIF score in chromatin states. To char-
acterize DNA elements highlighted by LECIF, we investigated the
distribution of the LECIF score overlapping the chromatin state
annotations that were provided to LECIF as input features. When
we computed the mean LECIF score for each chromatin state
across epigenomes14 (Fig. 2e and “Methods”), chromatin states
associated with strong regulatory or transcriptional activity

tended to have a higher mean LECIF score than other states, with
the highest of 0.71 for an active transcription start site (TSS) state
and the lowest of 0.07 and 0.08 for the heterochromatin and
quiescent states, respectively. Candidate enhancer states outside
of transcribed regions had an intermediate mean LECIF score
ranging from 0.18 to 0.32, which was lower than the mean scores
of promoter associated states, 0.53–0.71, and consistent with
previous findings that enhancers tend to evolve faster than
promoters19. We also observed similar trends with other input
features and external gene annotations in both human and mouse
(Supplementary Figs. 9–11).

LECIF highlights shared functional genomic activity. To vali-
date that the LECIF score reflects expected cross-species similarity
in functional genomic features, we investigated the LECIF score
in relation to human and mouse genomic annotations jointly. We
first matched a subset of human and mouse ChIP-seq experi-
ments of H3K27ac by their tissue of origin for 14 tissue type
groups (“Methods”). We then quantified the cross-species simi-
larity of the peak calls for each pair of regions jointly across the 14
tissue type groups, using a weighted Jaccard similarity coefficient
(“Methods”). We saw that the LECIF score was positively cor-
related with the weighted Jaccard similarity coefficient (PCC:
0.45; Fig. 3a). This is despite LECIF not being given any infor-
mation regarding tissue of origin of the experiments in the
compendium of functional genomic annotations.

To provide further evidence that the LECIF score reflects
expected cross-species similarity in functional genomic annota-
tions, we examined the LECIF score in relation to the chromatin
state annotations of pairs of human and mouse regions. We used
the state annotations from a concatenated model of
ChromHMM28, where a shared set of states were learned for
human and mouse11. For different ranges of the LECIF score, we
correlated the chromatin state frequency between human and
mouse across regions in that score range (“Methods”). High-
scoring pairs of regions tended to be annotated with similar sets
of states in human and mouse epigenomes (Fig. 3b, c and
Supplementary Fig. 12). Low-scoring pairs of regions were
annotated with dissimilar sets of states in human and mouse
and the quiescent state more frequently than high-scoring pairs
(Fig. 3b, d and Supplementary Figs. 12–14).

We also investigated the LECIF score at topologically
associated domain (TAD) boundaries that were previously
identified in human and mouse cell types32, as they represent
an important regulatory genomic feature not provided to LECIF.
Human regions overlapping a TAD boundary in any human cell
type had a mean LECIF score of 0.17 compared to the genome-

Fig. 2 Characteristics of the human–mouse LECIF score. a Genome Browser45 views with the LECIF score annotating human gene CTXND1 (top) and its
mouse ortholog Gm2115 (bottom). In each view, LECIF score is shown in the top, followed by net alignment annotation6 marking regions that align with
colored boxes. Below the net annotation are RefSeq gene annotation65 and ChromHMM chromatin state annotations28 for different epigenomes from a
model learned jointly for human and mouse11. State legend is in the bottom right. Below the state annotations are CpG island and PhastCons element7

annotations. Black lines highlight segments that largely align. The mouse genome browser view is shown in the reverse direction (3′–5′). b Distribution of
the LECIF score. Fifty equal-width bins were used. c Receiver operating characteristic (ROC) curve comparing LECIF, random forest (RF), canonical
correlation analysis (CCA), deep CCA (DCCA), and logistic regression (LR) for classifying pairs of regions that align at the sequence level, evaluated on a
common set of held-out test data. Legend indicates color and mean area under the ROC curve (AUROC) for each method. The curve of each method was
obtained by classifying 100,000 positive and 100,000 negative examples sampled with replacement from all test examples 100 times. Negative examples
were weighted 50 times more than positive examples. For each method, standard deviation of the 100 AUROC values was under 0.005. d Similar to c
except showing precision-recall (PR) instead of ROC. Standard deviation of the 100 area under the PR curve (AUPRC) values was under 0.005 for all
methods. e Left panel shows for each human chromatin state as described previously14,66 the distribution of mean LECIF score over different epigenomes
(n= 127). Mean LECIF score for a state in an epigenome is computed by averaging the score across regions overlapping the state in the epigenome. Each
distribution is represented by a boxplot with median (black vertical line), mean (black “x”), 25th and 75th percentiles (box), and 5th and 95th percentiles
(whisker). Right panel shows mean coverage of each state across human regions that align to mouse. Source data are provided as a Source Data file. A
mouse version of this plot is in Supplementary Fig. 10.Source Data
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wide mean of 0.14 (Mann–Whitney U test P < 0.0001). Pairs with
human and mouse regions both overlapping a TAD boundary in
a matched cell type had an even higher mean of 0.20, scoring
significantly higher than pairs with either human or mouse region

or neither regions overlapping a TAD boundary in the cell type
(Supplementary Fig. 15; Mann–Whitney U test P < 0.0001).

We also verified the advantage of integrating human and
mouse data by generating a human-only baseline score. The score

Fig. 3 Correspondence of LECIF score to matched human and mouse annotations. a Scatter plot showing with a gray dot for each aligning pair of human
and mouse regions the LECIF score (x-axis) and cross-species similarity of H3K27ac activity (y-axis). H3K27ac activity for a region in a tissue type is
quantified as the fraction of experiments in the tissue type with peak calls overlapping the region. Its cross-species similarity is quantified as the weighted
Jaccard similarity coefficient over 14 matched tissue types (“Methods”). One hundred thousand random pairs are shown. PCC and SCC, computed from all
regions, are shown in the top left. Black circles show the mean coefficient of pairs binned by the LECIF score using ten equal-width bins. The circles are
connected by piecewise linear interpolation. Source data are provided as a Source data file. A version of this figure for the human-only baseline score is in
Supplementary Fig. 16. b Cross-species agreement in chromatin state11,28 frequency in aligning human and mouse regions for a ChromHMMmodel learned
jointly for both species. Pairs were binned by LECIF score percentile rank using ten bins with similar number of pairs. For each state and percentile rank bin,
we computed PCC between the human and mouse state frequencies across all pairs in the bin (“Methods”). The values are shown with circles colored
according to the top left legend from ref. 11, which are connected by piecewise linear interpolation. Source data are provided as a Source data file.
Alternative versions of this plot with different binning schemes are in Supplementary Fig. 12. c ChromHMM chromatin state11,28 annotations in high-scoring
pairs of aligning human and mouse regions. Each row in top and bottom subpanels corresponds to human and mouse epigenomes, respectively. Each
column is a random pair of regions with high LECIF score (>95th percentile). Each cell shows the color of the state with which the region (column) is
annotated in an epigenome (row) based on the same model as in b. Pairs (columns) were ordered based on hierarchical clustering applied to state
annotations using Ward’s linkage with optimal leaf ordering67. A version of this figure using mismatched non-aligning pairs is in Supplementary Fig. 17.
d Same as c, but with pairs with low LECIF score (<5th percentile).Source Data.
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was learned using human functional genomics data with human
regions that align to mouse as positive examples and the rest as
negative examples (“Methods”). The human-only baseline score
was weakly correlated with the human–mouse LECIF score with a
PCC of 0.13 and did not reflect cross-species similarity in
functional genomic features as strongly as the LECIF score
(Supplementary Figs. 12, 15, and 16). These results support the
contribution of mouse data to identifying conserved functional
genomic properties.

Relationship to sequence-based conservation annotations. We
next analyzed the relationship between the LECIF score and
various sequence-based annotations of conservation within
aligning regions. We note that while human regions that align to
mouse at the sequence level do show some increase in sequence
constraint relative to the entire genome, the majority of aligning
regions do not show high levels of sequence constraint

(Supplementary Fig. 18). We found that human regions over-
lapping sequence constrained elements had a greater average
LECIF score, ranging from 0.19 to 0.22 across different element
sets, than the mean among human regions that align to mouse in
general (0.14; Fig. 4a). When compared to five sequence con-
straint scores and additionally the percent identity between
human and mouse, the LECIF score was moderately correlated
with PCCs ranging from 0.18 to 0.25 for 50-bp windows with
each score averaged across 50 bases (Fig. 4c, Supplementary
Fig. 19, and “Methods”). This moderate correlation may reflect
biological difference between sequence conservation and func-
tional genomics conservation33, although potentially also the
coarse resolution and incompleteness of functional genomics
data.

To provide evidence that most high LECIF scores observed in
regions with low sequence constraint scores are unlikely LECIF’s
false positives, we analyzed human and mouse chromatin state

Fig. 4 Relationship of LECIF score to sequence constraint annotations. a Distribution of LECIF score in human regions overlapping constrained elements
called by GERP++, SiPhy-omega, SiPhy-pi, and PhastCons (n= 5,500,681, 4,515,990, 6,277,929, and 6,634,667 human regions, respectively)7,9,10,68.
Each distribution is represented by a boxplot with median (orange solid line), mean (green “x”), 25th and 75th percentiles (box), and 5th and 95th
percentiles (whisker). Orange and green dashed vertical lines denote genome-wide median and mean, respectively. Right subpanel shows coverage of each
annotation across all human regions aligning to mouse. b Similar to a, except showing LECIF score of human regions overlapping CpG islands (n=
950,523), as well as subsets of regions overlapping slowly and quickly evolving CpG islands (n= 399,280 and 260,132, respectively) as defined based on
primates35. c Scatter plot showing with gray dots the LECIF score and PhyloP score based on a 100-way vertebrate alignment8. The plot displays 100,000
random human regions that align to mouse with all bases annotated by both scores. PCC and SCC, computed from all applicable regions, are shown in the
top right. Mean PhyloP score of all applicable regions binned by the LECIF score with ten equal-width bins are shown in black circles, connected by
piecewise linear interpolation. d Cross-species agreement in chromatin state11,28 frequency in pairs where the LECIF score is high and PhyloP score is low
or vice versa. The PhyloP score is the same as in c. The states are the same as in Fig. 3b–d. Diagonally hatched bars show PCC from pairs with high LECIF
score (>90th percentile) and low PhyloP score (<10th) in all bases within 500 bp of the human region. Horizontally hatched bars show PCC from pairs with
low LECIF score (<10th) and high mean PhyloP score (>90th) in the human region. Bars are colored according to the legend on the right. Similar plots with
different percentile cutoffs and also including pairs with both scores above or below the cutoffs are in Supplementary Fig. 20. Source data for a–d are
provided as Source data files.Source Data
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annotations in regions where the two scores strongly disagreed.
Specifically, for pairs of regions where the LECIF score was high
and the PhyloP score8 was low in all bases within 500 bp of the
human region, we computed the correlation of chromatin state
frequencies as described above (Fig. 4d and Supplementary
Fig. 20). We found that such pairs had strong cross-species
similarity for all states, often as strong as pairs that scored high in
both scores. In comparison, pairs of regions with low LECIF score
and high PhyloP score had weaker cross-species similarity of
frequency in all states. This suggests that the LECIF score can
capture conservation at the functional genomics level even in
regions that align, but have limited sequence constraint among
aligning regions, potentially detecting signatures of conservation
not captured by sequence constraint scores defined from
multispecies sequence alignments.

To further understand the differences between the LECIF score
and constraint scores, we next identified patterns within a
multispecies sequence alignment that may correspond to those
differences. To do this, we leveraged the ConsHMM34 conserva-
tion state annotation of the human genome, which annotates each
human genomic base based on alignment and matching patterns
with vertebrate genomes in a 100-way sequence alignment
(Supplementary Fig. 21). Among a hundred conservation states,
the state with the highest average LECIF score corresponded to
human bases that align and match to many vertebrate genomes
with a moderate probability, indicating signatures of conservation
across many vertebrates. This state was previously shown to most
strongly enrich for promoter and CpG islands out of all
conservation states. In contrast, this state had only the 12th
highest average PhyloP score. This suggests that the disagreement
between the LECIF score and constraint scores could be partly
explained by constraint scores not capturing signatures of
conservation that are actually present in the multispecies
sequence alignment and further supports that the LECIF score
can provide complementary information to sequence constraint
scores about conservation.

Since the LECIF score prioritized the conservation state most
enriched for CpG islands, which are known to have varying
evolutionary dynamics at the sequence level, we analyzed the
LECIF score of human CpG islands previously grouped by their
distinct regimes during primate sequence evolution35 (Fig. 4b).
CpG islands in general scored high with a mean LECIF score of
0.53, and the score positively correlated with the likelihood of a
CpG island being classified as slowly evolving as opposed to
quickly evolving (Supplementary Fig. 22; PCC: 0.50). Slowly
evolving CpG islands characterized by low rate of C-to-T
deamination had higher LECIF scores with a mean of 0.65. In
contrast, quickly evolving CpG islands had lower LECIF scores
with a mean of 0.35. Although LECIF scores CpG islands higher
than the rest of the genome in general, the score reflects the
distinct evolutionary dynamics among them.

Relationship to phenotype-associated variation. To investigate
if the LECIF score enriches for biologically important genomic
loci linked to phenotype, we analyzed the relationship between
the LECIF score and phenotype-associated genetic variation
(Fig. 5a). We observed that regulatory disease variants from
Human Gene Mutation Database (HGMD)36 enriched for
regions with high LECIF score. In contrast, we saw small deple-
tions for common variants37 in those high-scoring regions. We
saw that high-scoring regions also exhibited enrichment of
GWAS catalog38 variants and expression quantitative trait loci
(eQTLs) from GTEx39.

We also conducted a heritability partitioning analysis with the
LECIF score for 12 complex traits40. Specifically, we applied

heritability partitioning with an annotation of bases with a LECIF
score in the top 5% in the context of a baseline set of
annotations41, which we extended to also include annotations
of human regions that align to mouse and top 5% regions based
on the human-only baseline score. We note that the baseline
annotation set includes multiple sequence constraint annotations.
We observed that the top 5% regions based on the LECIF score
resulted in enrichments of heritability with statistical significance
for several traits (Fig. 5b). Furthermore, we observed overall
stronger enrichments for the LECIF annotation than the human-
only baseline annotation and the annotation of human regions
that align to mouse.

LECIF highlights regions in mouse QTL relevant to disease. To
demonstrate how LECIF could be applied to translating biological
findings, particularly in mapping trait-associated loci between
mouse and human, we analyzed mouse insulin secretion QTL and
human diabetes GWAS variants42. Previously, it was shown that
human regions syntenic to the mouse insulin secretion QTL were
enriched for the human diabetes GWAS variants. However,
mouse QTL in general can span several megabases, making it
difficult to identify likely causal variants within the loci for the
trait of interest5. We thus mapped the mouse insulin secretion
QTL to the human genome based on sequence alignment and
asked whether the LECIF score could provide information in
locating regions within the mapped mouse insulin secretion QTL
that correspond to human diabetes GWAS variants.

We observed that human genomic windows within the mapped
mouse insulin secretion QTL that overlap the human GWAS
variants had a statistically higher distribution of mean LECIF
scores than windows within the mouse QTL not overlapping the
variants or windows overlapping the variants (Mann–Whitney U
test P < 0.0001; Fig. 6a and Supplementary Fig. 23b, c). In
addition, we saw that the human diabetes GWAS variants that lie
within the mapped mouse QTL had a higher distribution of mean
LECIF scores than human GWAS variants outside the mouse
QTL, in addition to human bases within the mouse QTL that are
not the human GWAS variants (Mann–Whitney U test P <
0.0001; Supplementary Fig. 23a). These results indicate LECIF’s
potential value in locating regions within mouse QTL that are
more likely relevant to a given trait in human.

LECIF highlights conserved methylation patterns linked to
phenotype. To further illustrate potential applications of LECIF,
we also evaluated the ability of the LECIF score to prioritize
epigenetic features conserved between human and mouse in a
disease relative context. Specifically, we considered data from an
epigenetic study on differential methylation in diabetic pheno-
types in human and mouse43, which was independent of the data
provided to LECIF. The study identified conserved differentially
methylated regions (DMRs) associated with obesity by first
finding DMRs in high-fat-fed and low-fat-fed mice and then
testing their homologous human regions for differential methy-
lation between obese and lean patients. The LECIF score was
significantly higher in conserved DMRs in comparison to mouse-
specific DMRs (Mann–Whitney U test P < 0.01; Fig. 6b). This
supports the potential value of the LECIF score for prioritizing
among all loci with epigenetic associations with phenotype in one
species the specific loci whose associations are more likely to be
shared in the other species.

Discussion
We presented LECIF, a method that scores evidence for con-
servation between human and mouse based on a compendium of
functional genomic annotations from each species. To do so,
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LECIF trains neural networks to differentiate aligning pairs of
regions from mismatched pairs of the same set of regions based
on their functional genomic annotations without using sequence
information as features. The functional genomic annotations
include maps of open chromatin, TF binding, gene expression
signals, and chromatin state annotations. The resulting score
captures evidence of conservation at the functional genomics level
that is based on a diverse set of annotations and thus not specific
to one class of DNA elements.

We applied LECIF with >10,000 functional genomic annota-
tions from human and mouse to learn the human–mouse LECIF
score. The LECIF score had greater predictive power than several
baseline scores at discriminating pairs of human and mouse
regions that align to each other from mismatched pairs of
aligning regions. Using H3K27ac samples matched by their tissue
of origin and separately using chromatin state annotations
learned jointly between human and mouse, we showed that the
LECIF score reflects the relationships between biologically similar
human and mouse functional genomic annotations. LECIF was
able to do this without any explicit information provided about

the relationship between different features within or across spe-
cies. Furthermore, LECIF was able to do so even in regions where
sequence constraint was low, supporting that the LECIF score
provides complementary information to sequence constraint
annotations. Regions with high LECIF score were enriched for
phenotype-associated variants from curated databases and also
for heritability of complex traits. Using matched DNA methyla-
tion samples between human and mouse and separately using
matched GWAS and QTL datasets, both in the context of a
diabetes trait, we showed that the LECIF score has preference for
human and mouse regions with shared associations with the trait.

These results support the potential value of the LECIF score in
various applications in the context of model organism research.
For example, given a set of phenotypic-associated loci identified
in a mouse model, which are increasingly available through
efforts like the Mouse Phenome Database44, the highest-scoring
loci could be prioritized for experimental validation in human
cells if possible. Conversely, given human genomic variants or
candidate regulatory elements with known associations with a
trait, those with the highest LECIF scores could be prioritized for

Fig. 5 Relationship of LECIF score to genetic variants and heritability. a Shown from left to right are plots of log2 fold enrichment for variants based on
four different sets, (i) common SNPs37, (ii) HGMD regulatory variants36, (iii) GWAS catalog SNPs38, and (iv) GTEx cis-eQTLs39 across tissues, within
human regions binned by the LECIF score with ten equal-width bins. Analysis was restricted to human regions that align to mouse, and a uniform
background within these regions was used. Displayed above each subplot is the number of regions overlapping the variants from the corresponding set
included in the analysis. Black and dark gray bars denote log2 fold enrichments that resulted in P values <0.0001 and 0.001, respectively, based on one-
sided bionomial tests. b Fold enrichments for partitioned heritability of 12 phenotypes40 in human regions with high LECIF score. Enrichments are shown
for human regions with high human–mouse LECIF score (>95th percentile; blue), and additionally for comparison regions with high human-only baseline
score (>95th percentile; orange) and human regions that align to mouse (gray). Heritability partitioning40 for the LECIF score was applied in the context of
a baseline set of annotations41, which included sequence constraint annotations and was extended to include additional annotations generated based on
the human-only baseline score and sequence alignment (“Methods”). Error bars denote standard error around the enrichment estimates. Horizontal
dashed line denotes no enrichment (fold enrichment of 1). * and *** denote Bonferroni-corrected one-sided P values for the LECIF score annotation’s
enrichment <0.05 and 0.001, respectively. P values and standard errors were calculated using a block jackknife over SNPs with 200 equally sized blocks of
adjacent SNPs as described in ref. 40. Source data for a and b are provided as Source data files.Source Data
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testing in mouse models. In addition, when loci exhibit signals of
interest in both species, those with the highest LECIF scores could
be prioritized for follow-up experiments.

While we expect LECIF to be useful, we do note a few limitations.
LECIF only scores evidence of conservation at the functional geno-
mics level. There thus could be regions that are conserved at the
functional genomics level, but have a low LECIF score, since the
evidence was not present in the data currently available to LECIF.
This makes it difficult to distinguish the case of human-specific
regulatory activity from insufficient evidence in the aligning mouse
region’s annotations based on a low LECIF score. Fortunately, the
interpretation of high LECIF scores is less ambiguous. We also note
that the LECIF score’s resolution is limited by the resolution of the
input functional genomic annotations and thus does not have the
base resolution that sequence-based conservation annotations can
have. In addition, LECIF is designed to aggregate information across
multiple tissues and cell types and thus does not provide the direct
information about a particular tissue.

In addition, we note that currently the LECIF score is only
available for pairs of regions that align to each other. While in
principle LECIF can be applied to score any pairs of regions, more
false-positive predictions are expected as a result, compared to our
presented strategy of restricting to regions that align at the sequence
level. Although we explored an alternative strategy that considered
non-aligning regions in a neighborhood of each pair of aligning
regions, this did not lead to improvements in our evaluations over
considering only the aligning regions. However, future work could
develop other strategies that lead to improvements.

While here we focused on human and mouse, as mouse is a widely
used model organism for human and there is substantial data
available for both, LECIF can be applied to compare human to any
species with a genome-wide pairwise sequence alignment to human
and functional genomics data. Applying LECIF to human and mouse
with mouse features downsampled demonstrated that a few hundred
annotations from the nonhuman species may be sufficient to capture
a large portion of conservation at the functional genomics level,
although the quality of the score will depend on the coverage of the
data available for the nonhuman species. As functional genomics data

from a more diverse set of species, cell types, and assays continues to
become available, the utility of LECIF will continue to grow for
identifying regions conserved at the functional genomics level and
transferring findings from mouse and other model organism research
to human biology.

Methods
Pairwise sequence alignment. For the pairwise sequence alignment, we used the
chained and netted alignment6 between the human genome (hg19) and the mouse
genome (mm10), with human as the reference genome for the alignment. Given
multiple mouse genome segments that map to a single human genome segment, we
chose the mouse segment with the highest alignment score. This alignment was
obtained from the UCSC Genome Browser45.

Functional genomics data used for input features. ChromHMM28 chromatin
state annotations for human were from the 25-state model learned for 127 cell and
tissue types based on imputed data from the Roadmap Epigenomics Project14, and
for mouse from the 15-state model learned for 66 cell and tissue types from
ENCODE46. Peak calls for DNase-seq and ChIP-seq experiments of TFs, histone
modifications, and histone variants were from Roadmap Epigenomics14,
ENCODE13, and Mouse ENCODE11. Peak calls for CAGE experiments were from
FANTOM529. RNA-seq signal data were from ENCODE13 and Mouse
ENCODE11. For ENCODE and Mouse ENCODE data, we used the uniformed
processed version available from the ENCODE portal. Additional information
including the specific source of each dataset used is listed in Supplementary Data 1.

Defining pairs of human and mouse regions for training and prediction. To
define pairs of human and mouse regions for training and prediction for LECIF, we first
identified alignment blocks from the pairwise alignment. We defined alignment blocks
as pairs of human and mouse genomic segments without any alignment gap, meaning
the human and mouse genomic segments both had a nucleotide present at each base in
the block. We then for each alignment block defined nonoverlapping windows of 50 bp
starting from the first base in the alignment block. Each 50-bp window defined a region.
If the alignment block ended within the 50-bp window, we truncated the window to the
end of the block to define the region. This resulted in some regions being shorter than
50 bp. To define negative examples, we randomly paired up human and mouse regions
included in the positive examples. With this procedure, all human regions included in
the negative examples aligned somewhere else in the mouse genome, and all mouse
regions in the negative examples aligned somewhere else in the human genome.

Defining subsets of pairs of regions for training and evaluation. All human and
mouse chromosomes, except for Y and mitochondrial chromosomes, were used. X
chromosomes were excluded from training, validation, and test, but included for

a bLECIF score of mouse insulin secretion QTL and 
human diabetes GWAS variants

LECIF score of diabetes-associated 
differentially methylated regions (DMR)

Within mouse QTL overlapping
human variant (N:797)

Within mouse QTL not overlapping
human variant (N: 117,157)

Overlapping human variant (N: 644)

Conserved DMR
(N: 170)

Mouse-specific DMR
(N: 327)

Fig. 6 Relationship of LECIF score to genetic and epigenetic variation associated with phenotypes. a Distribution of mean LECIF score of nonoverlapping
1-kb human genomic windows identified as lying within a mapped mouse insulin secretion QTL or containing a human diabetes GWAS variant or both42.
“Within mouse QTL overlapping human variant” refers to windows that lie within the mouse QTL mapped to human and overlap the human diabetes
GWAS variant. “Within mouse QTL not overlapping human variant” refers to windows within the mapped mouse QTL that do not overlap any human
diabetes GWAS variant. “Overlapping human variant” refers to windows that overlap the human diabetes GWAS variant and lie in loci obtained by
randomly permuting the locations of the mapped mouse QTL. All windows were obtained by sliding a fixed window across the QTL, and any window with
less than half of its bases annotated with the LECIF score was excluded from this analysis. Displayed after each label is the number of qualified windows
corresponding to that label. Each distribution is represented by a boxplot with median (orange solid line), mean (green “x”), 25th and 75th percentiles
(box), and 5th and 95th percentiles (whisker). **** denotes P value <0.0001 based on a two-sided Mann–Whitney U test. Similar plots generated using
different window sizes are shown in Supplementary Fig. 23. b Distribution of mean LECIF score in conserved differentially methylated regions (DMRs)
and mouse-specific DMRs with respect to a diabetic phenotype43. “Conserved DMR” refers to regions with significant differential methylation (P value
<0.05) in both human and mouse and the same directionality with respect to the phenotype. “Mouse-specific DMR” refers to regions with significant
differential methylation in mouse, but either lacking significant differential methylation in human or showing inconsistent direction of methylation change
between human and mouse. The study in which the DMRs were reported did not provide human-specific DMRs because it first identified mouse DMRs and
then tested those in human and not vice versa. Displayed below each label is the number of DMRs corresponding to that label. Boxplots are formatted as
in a. ** denotes P value <0.01 based on a two-sided Mann–Whitney U test (P= 0.003). Source data for a and b are provided as Source data files.
Source Data
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prediction and downstream analyses. To generate predictions for all pairs of
human and mouse regions that included a human region from an even chromo-
some or X chromosome, we trained LECIF on pairs of human and mouse regions,
such that both the human and mouse regions came from a subset of odd chro-
mosomes for its respective species (Supplementary Data 2). To form a validation
set, which we used for hyper-parameter tuning and early stopping during training,
we used pairs of regions such that the human region came from a subset of odd
chromosomes not used in training and likewise for mouse. To form a test set,
which we used to generate the receiver operating characteristic (ROC) and
precision-recall (PR) curves, we used all pairs of regions such that both the human
and mouse region were from an even chromosome. To generate predictions for all
pairs that included a human region from an odd chromosome, we took an ana-
logous approach as above (Supplementary Data 2). There was no overlap in
genomic regions used for training, validation, and test. To assess the agreement
between a model trained on odd chromosomes and a model trained on even
chromosomes, we used pairs of regions that were from a subset of chromosomes
not used in training or validation of either model (Supplementary Data 2).

Feature representations. For each pair of human and mouse regions, we gen-
erated two feature vectors. The two vectors were based on annotations overlapping
the first base of the human and mouse regions, respectively, which were at most 50
bp. For computational considerations, we only used the first base of each region to
provide the LECIF score for all bases in the region. To evaluate the effect of this, we
computed the PCC between a score defined at base resolution for 1 million ran-
domly sampled pairs of human and mouse bases that align to each other and the
LECIF score, which was defined at every 50 bp within each alignment block, for the
same set of 1 million pairs.

Each peak call corresponded to one binary feature. If a base overlapped a peak
call for an experiment, the corresponding value in the feature vector was encoded
as a 1, otherwise it was encoded as a 0. While real-valued signals are also available
for these experiments with peak calls, we used the binary peak calls for improved
scalability and reduced potential for overfitting. Chromatin state annotations were
one-hot encoded such that there was a separate binary feature, representing the
presence of each chromatin state in each cell or tissue type. Each RNA-seq
experiment corresponded to one continuous feature. For human RNA-seq
experiments, to also have the features in the range 0–1, we first computed the
maximum and minimum signal value at any base in any of the human RNA-seq
experiments. We then normalized values by subtracting the minimum signal value
and dividing by the difference between the maximum and minimum signal values.
We separately did the same normalization for mouse RNA-seq experiments. In
total, we used 8824 human features and 3113 mouse features. Number of features
from each data type are reported in Supplementary Data 1.

LECIF classifier. The classifier that LECIF uses is an ensemble of neural networks
where each neural network had a pseudo-Siamese architecture47 (Supplementary
Fig. 24). A Siamese neural network consists of two identical subnetworks followed
by a final subnetwork that combines the output from the two subnetworks to
generate a final prediction48. A pseudo-Siamese network is similar except it uses
two distinct subnetworks instead of identical subnetworks. In LECIF, the two
subnetworks corresponded to human and mouse. Human and mouse feature
vectors were given to the human and mouse subnetworks, respectively, as input.
We also evaluated using a fully connected neural network, but found that it led to
highly similar predictions (PCC: 0.95), while taking longer to train.

Hyper-parameters of a neural network consisted of number of layers in each
subnetwork and the final subnetwork, number of neurons in each layer, batch size,
learning rate, and dropout rate. To set the values of the hyper-parameters, we
conducted a random search, where we generated 100 neural networks, each with
different randomly selected combinations of hyper-parameters (Supplementary
Data 3). Each neural network was trained on the same set of randomly selected 1
million positive and 1 million negative training examples. We applied 50 times
more weight to our negative examples than positive examples during training so
that a high LECIF score corresponds to strong evidence of conservation. We
identified the best-performing combination of hyper-parameters based on
maximizing the AUROC on the validation examples.

With the best-performing combination of hyper-parameters, we then trained a
new set of 100 neural networks, each provided with different subsets of 1 million
positive and 1 million negative training examples randomly selected from a pool of
all training examples (>2.2 million positive and >2.2 million negative). While the
same genomic regions in each species appear in both positive and negative
examples given all available training examples, a single neural network may not
necessarily encounter the same set of regions in its positive and negative examples
due to random sampling. We applied the same increased weighting of negative
examples as above. The final prediction of the ensemble was the average of the
predictions from the 100 trained neural networks.

For both hyper-parameter search and training, we stopped training if there were
no improvements in AUROC evaluated on the validation examples over three
epochs. We saved the classifier from the epoch with the highest AUROC on the
validation examples. The maximum number of epochs we allowed during training
was 100, and the maximum training time we allowed was 24 h.

We also generated a version of the LECIF classifier, LECIF-GB, which was
trained in the same way as LECIF except the negative examples were pairs of
human and mouse regions that were both randomly selected from anywhere in
their respective genomes, as opposed to being constrained to aligning regions.

We used PyTorch (version 0.3.0.post4)49 for implementation of the neural
networks.

Random forest baseline. We trained, applied, and evaluated RF using the same
procedure as explained above, except we used a decision tree in place of a neural
network. We also did hyper-parameter selection as explained above, but for a set of
hyper-parameters unique to decision trees (Supplementary Data 3). We used
Scikit-learn (version 0.19.1)50 for implementation.

Canonical correlation analysis baseline. We trained an ensemble of CCA
mappings using the same procedure as above, except using a CCA mapping in
place of a neural network and positive examples only. We applied and evaluated
the ensemble using the same procedure as explained above. We also did hyper-
parameter selection as explained above, but for a set of hyper-parameters unique to
CCA mapping (Supplementary Data 3) and through a grid search instead of
random search. We used Pyrcca51 for implementation. Similarly, we also trained an
ensemble of DCCA mappings52. We did hyper-parameter selection as done for
CCA, but for a set of hyper-parameters unique to DCCA mapping and through a
random search (Supplementary Data 3). We used a MATLAB implementation of
DCCA from prior work53.

Logistic regression baseline. We trained, applied, and evaluated an ensemble of
LR classifiers using the same procedure as above, except we used a LR classifier in
place of a neural network. We also did hyper-parameter selection as for the neural
networks, but for a set of hyper-parameters unique to LR models (Supplementary
Data 3) and through a grid search instead of random search. We used Scikit-learn
(version 0.19.1)50 for implementation.

LECIF scores separately learned for coding and noncoding bases. We trained,
applied, and evaluated two models using separate training data from coding and
noncoding bases. Training examples used to learn the original LECIF score were
grouped into coding and noncoding examples based on whether each example’s
human region overlapped GENCODE annotation of coding sequence. Given
noncoding training examples, the same learning procedure used to learn the ori-
ginal LECIF score was used to learn a score from noncoding regions. For coding
training examples, all available training and validation examples (~40,000 training
and ~20,000 validation examples) were used for hyper-parameter search. Given
optimized parameters, each classifier was trained on 10,000 positive and 10,000
negative training examples, instead of 1 million for each. These adjustments were
made specifically for training a model on coding regions because there were much
fewer regions to use.

LECIF scores with fewer mouse features. We trained, applied, and evaluated two
models that used the same human features as LECIF, but used fewer mouse fea-
tures. One of the models used 10% of the original set of mouse features and the
other used 1%. Except for downsampling features, model training, and hyper-
parameter search were done the same way as LECIF with the full set of features. To
select mouse features for the 10% model, we first randomly selected 6 out of 66
epigenomes in the 15-state mouse ChromHMM chromatin state annotations,
resulting in 90 one-hot encoded features corresponding to chromatin states. We
then randomly sampled 221 features from features corresponding to mouse
DNase-seq, ChIP-seq, RNA-seq, and CAGE annotations, resulting in 331 mouse
features in total. For the 1% model, we randomly sampled 31 features from those
corresponding to mouse DNase-seq, ChIP-seq, RNA-seq, and CAGE annotations.
We did not use any features corresponding to chromatin state annotations in the
1% model. This allowed us to simulate LECIF’s application to a nonhuman species
with limited functional genomic data, where chromatin state annotations are not
available. As in training, only the selected mouse features along with the full set of
human features were used for prediction and evaluation for these scores based on
fewer mouse features.

Human-only baseline. We trained, applied, and evaluated a human-only baseline,
which used the same human features as LECIF, but did not use any mouse features
and used a different set of positive and negative examples for training. The positive
examples were human regions that align to the mouse genome and the negative
examples were human regions that do not align to the mouse genome. We
otherwise used the same procedure for training, prediction, and evaluation as for
LECIF except we used an ensemble of fully connected neural networks. We also did
hyper-parameter selection as for LECIF, but for a set of hyper-parameters of a fully
connected neural network (Supplementary Data 3). We used PyTorch (version
0.3.0.post4)49 for implementation.
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Area under the ROC and PR curves. To compute each classifier’s classification
performance based on area under the ROC curve and PR curve, we used Scikit-
learn’s implementation50.

Defining LECIF score including adjacent non-aligning mouse regions. To
generate a LECIF score for each pair of a human region and its aligning mouse
region with adjacent non-aligning mouse regions also considered, we computed
LECIF scores for additional pairs that consisted of the same human region and
distinct 50-bp mouse regions located within a neighborhood of W bases centered
around the aligning mouse region (Supplementary Fig. 3). The non-aligning mouse
regions were defined by sliding a 50-bp window from the first base of the aligning
mouse region in both the 5′ and 3′ directions. We then took the maximum over
these LECIF scores to produce a score which we refer to as the region-
neighborhood LECIF score. We varied W between 0 and 20 kb. We note that W of
0 corresponds to the original LECIF score.

Computing mean LECIF score for chromatin states. To compute the mean
LECIF score for each chromatin state in the 25-state ChromHMM annotation
across 127 human epigenomes14,28, for every pair of chromatin state and epigen-
ome, we first averaged the LECIF score in all aligning regions annotated by the
state in the epigenome. We then for each chromatin state computed the average of
127 mean scores, each coming from an epigenome.

H3K27ac activity similarity. To define the H3K27ac activity similarity between
human and mouse based on known biology, we took all human and mouse
H3K27ac experiments used for features and manually grouped them into the
following 14 tissue type groups based on available annotations of the experiments:
adipose, bone element, brain, embryo, heart, intestine, kidney, limb, liver, lung,
lymph node, spleen, stomach, and thymus. Supplementary Data 1 specifies which
experiment was assigned to which group, but we note that information about these
groups were not used in learning the LECIF score. The 14 groups listed above were
represented in at least one H3K27ac experiment in both species. For the analysis,
we discarded experiments that did not belong to any of the tissue groups.

For each pair of human and mouse regions, we then defined vectors h and m of
length 14 where hi and mi correspond to the fraction of experiments in the ith
group with peak calls that overlapped the human and mouse regions, respectively.
Finally, for each pair of human and mouse regions, we computed the weighted
Jaccard similarity coefficient54 between these two vectors. The weighted Jaccard
similarity coefficient is defined as:

J h;mð Þ ¼ ∑imin hi;mið Þ
∑imax hi;mið Þ ð1Þ

Any pair with an undefined similarity coefficient due to the denominator
summing up to zero was removed from the analysis.

Chromatin state frequency correlation. To analyze cross-species agreement of
chromatin state frequencies as a function of the LECIF score, we first grouped pairs of
human and mouse regions based on their LECIF score. When binning based on either
score, five or ten equal-width bins were used with varying numbers of pairs in each bin.
We repeated the procedure when using the human-only baseline score in place of the
LECIF score. We also binned based on the percentile rank of scores, where either five or
ten bins were used with nearly the same number of pairs in each bin.

To compute the chromatin state frequency correlation across a set of pairs of
human and mouse regions defined as described above, we used a chromatin state
model jointly learned from both human and mouse genomes11. For each of the
seven chromatin states, we defined vectors for human and mouse. An element of a
vector for human corresponds to the fraction of epigenomes, in which one of the
human regions is annotated with the state, and similarly for the mouse vector and
regions. We then computed the PCC between the two vectors for each chromatin
state, resulting in seven PCC values.

Correlation between the LECIF score and sequence constraint scores. To
compute the correlation between the LECIF score and sequence constraint scores, we
slid a 50-bp genomic window in 10-bp increment across the human genome. For each
window, we computed the mean of each score (LECIF or sequence constraint). For each
sequence constraint score, we computed the PCC and SCC between the LECIF score
and the sequence constraint score for windows with at least n bases annotated by the
two scores, with n ranging from 1 to 50. The two scores were not required to be defined
on the same set of bases within the 50-bp window.

Heritability partitioning analysis. To perform the heritability partitioning ana-
lysis, we used the LD-score regression software ldsc (v1.0.0)40. We generated an
annotation of all human regions that align to the mouse genome and have a LECIF
score above the 95th percentile. We used this annotation in the context of the
baseline annotation set (v2.1) from Gazal et al.41 along with another annotation
generated based on the human-only baseline score instead of the LECIF score as
well as an annotation of human regions that align to the mouse genome. We also
included 500-bp windows around each annotation to dampen the inflation of

heritability in neighboring regions due to linkage disequilibrium, following the
procedure in ref. 40.

We applied ldsc to this extended set of 60 annotations for the following 12
traits40: age at menarche, body mass index, coronary artery disease, education
attainment, HDL cholesterol level, height, LDL cholesterol level, rheumatoid
arthritis, schizophrenia, smoking, triglyceride level, and type 2 diabetes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The human–mouse LECIF score is available at https://github.com/ernstlab/LECIF. Links
to data files used to generate input features to LECIF are listed in Supplementary Data 1.
The human–mouse pairwise alignment is available at http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/vsMm10/axtNet/. For TSS, gene body, intron, exon, coding exon, 5′
UTR, and 3′ UTR annotations, we used GENCODE annotations V31lift37 for human
and VM23 for mouse. We downloaded these annotations along with classification of
evolutionary dynamics of CpG islands35 and common SNPs (dbSNP v7)37 from the
UCSC Table Browser45. The HGMD variants that we used were variants annotated as
“regulatory mutations” in the April 2012 public release of HGMD database36,55. The
following URLs contain datasets that were used in the heritability partitioning analysis:
baseline annotation set41: https://storage.googleapis.com/broad-alkesgroup-public/
LDSCORE/1000G_Phase3_baselineLD_v2.1_ldscores.tgz; age at menarche56: https://
www.reprogen.org; body mass index and height57: http://www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files; coronary artery disease58:
http://www.cardiogramplusc4d.org/data-downloads; education attainment59: https://
www.thessgac.org/data; HDL cholesterol level, LDL cholesterol level, and triglyceride
level60: http://csg.sph.umich.edu/willer/public/lipids2010; rheumatoid arthritis61: http://
plaza.umin.ac.jp/yokada/datasource/software.htm; schizophrenia62 and smoking63: www.
med.unc.edu/pgc/downloads; and type 2 diabetes64: http://www.diagram-consortium.
org/downloads.html. Source data are provided with this paper.

Code availability
The LECIF software is available at https://github.com/ernstlab/LECIF.
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