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RESEARCH

A comparison of clinical development 
pathways to advance tuberculosis regimen 
development
V. Chang1,2*†   , P. P. J. Phillips2†, M. Z. Imperial1,2, P. Nahid2 and R. M. Savic1,2 

Abstract 

Background:  Current tuberculosis (TB) regimen development pathways are slow and in urgent need of innovation. 
We investigated novel phase IIc and seamless phase II/III trials utilizing multi-arm multi-stage and Bayesian response 
adaptive randomization trial designs to select promising combination regimens in a platform adaptive trial.

Methods:  Clinical trial simulation tools were built using predictive and validated parametric survival models of time 
to culture conversion (intermediate endpoint) and time to TB-related unfavorable outcome (final endpoint). This 
integrative clinical trial simulation tool was used to explore and optimize design parameters for aforementioned trial 
designs.

Results:  Both multi-arm multi-stage and Bayesian response adaptive randomization designs were able to reliably 
graduate desirable regimens in ≥ 95% of trial simulations and reliably stop suboptimal regimens in ≥ 90% of trial 
simulations. Overall, adaptive phase IIc designs reduced patient enrollment by 17% and 25% with multi-arm multi-
stage and Bayesian response adaptive randomization designs respectively compared to the conventional sequential 
approach, while seamless designs reduced study duration by 2.6 and 3.5 years respectively (typically ≥ 8.5 years for 
standard sequential approach).

Conclusions:  In this study, we demonstrate that adaptive trial designs are suitable for TB regimen development, and 
we provide plausible design parameters for a platform adaptive trial. Ultimately trial design and specification of design 
parameters will depend on clinical trial objectives. To support decision-making for clinical trial designs in contem-
porary TB regimen development, we provide a flexible clinical trial simulation tool that can be used to explore and 
optimize design features and parameters.

Keywords:  Adaptive Clinical Trials, Tuberculosis, Clinical Trial Design
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Background
Tuberculosis kills more people than any other single path-
ogen. 1.2 million people died from TB in 2020 and, while 
this number was slowly decreasing in recent years from 

1.7 million in 2000, progress was halted in 2020 with the 
first increase in TB mortality in decades as a result of the 
COVID-19 pandemic [1]. The unprecedented number of 
new drugs in development for the treatment of TB (more 
than fifteen in phase I or II clinical trials [https://​www.​
newtb​drugs.​org/​pipel​ine/​clini​cal, January 2022]) and the 
recent success of the 4-month regimen with rifapentine 
and moxifloxacin [2] provide hope that the 50-year-old 
6-month first-line regimen for the world’s oldest dis-
ease could be replaced with shorter, safer, more effective 
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regimens. Unlike previous approvals of single drugs for 
the treatment of TB, with limited information about use 
in combination [3], the development and approval of 
TB drugs is now focused on the combination regimen 
as a whole. A recent example would be the approval of 
a novel pretomanid-based regimen for the treatment of 
multidrug-resistant TB and extensively drug-resistant TB 
by the US FDA in 2019 and the EMA in 2020. Nonethe-
less, there are challenges in interpreting the data from the 
small uncontrolled trial that led to approval of the preto-
manid-based regimen BPaL [4, 5], and consequent need 
for better trial designs.

With a rich pipeline of new drugs and urgent need for 
tools to end the TB epidemic, the conventional clinical 
development strategy of testing single substitutions in 
series is recognized as too inflexible, slow and resource 
intensive. With this strategy, it is impossible to evalu-
ate all the new therapeutics and their combinations, 
increasing the likelihood of missing promising ones 
[6, 7]. Conversely, the efficiencies in adaptive clinical 
trial designs are well known in other disease areas [8], 
and the potential has been recognized in TB [9, 10]. A 
small number of TB clinical trials with adaptive designs 
have been initiated, including Simon’s two-stage design 
[11], a Multi-Arm Multi-Stage (MAMS) design [12] 
(NCT03474198), a Bayesian response-adaptive (BAR) 
design [13] (NCT02754756), and an adaptive dose-
finding design (NCT04044001). Adaptive trial designs 
are frequently used in dose-finding trials but are also 
particularly effective in platform trials, where multiple 
interventions are simultaneously compared to a single 
control group. Each of these designs have advantages, 
limitations, and contexts of use that have not been com-
prehensively described and evaluated in the setting of TB 
drug development. Additionally, with funding levels for 
TB research and development at half of what is required 
[14], it is imperative that these trials employ designs that 
can quickly and accurately identify the most promising 
regimens to fund and continue development. These trials 
must also generate strong evidence to support regulatory 
approval, inclusion in international practice guidelines, 
and programmatic implementation.

Our objective was to conduct a clinical trial simulation 
study to evaluate and compare innovative late-stage clini-
cal trial development pathways in TB drug development. 
We compared Phase II/Phase III sequential and seamless 
approaches, including Bayesian adaptive response and 
multi-arm multi-stage designs in terms of their efficiency 
and ability to identify successful regimens. We then pro-
vide recommendations for when, where, and how these 
innovative development strategies could be applied.

Methods
General considerations
We focused on the late-stage clinical development path-
way from phase II to phase III. For any regimen entering 
this pathway, we assumed that all drugs had been shown 
to have promising anti-TB activity in early-phase clinical 
trial(s) and that adequate early clinical and non-clinical 
safety studies had been undertaken to permit evalua-
tion of the combination regimens being given for up to 
4  months. We assumed that all pathways had these five 
main characteristics.

1.	 The main objective of all pathways is to identify short 
treatment durations of 12 weeks or less that are non-
inferior to the control.

2.	 All pathways included the same control arm, the 
standard 6-month rifampicin-based regimen to 
benchmark the trial to historical data (necessary as 
culture conversion and other treatment response bio-
markers vary even between studies of the same regi-
men [15]).

3.	 We did not consider more complex platform trial 
designs where treatment arms are added during the 
trial.

4.	 Recruitment to treatment arms can be stopped early 
for lack of benefit based on interim analysis results 
(design-dependent), but not for intermediate indica-
tors of overwhelming efficacy. Potentially promising 
TB regimens based on interim analyses still require 
full enrollment of all patients to allow for precise esti-
mates of efficacy.

5.	 All recruited patients in phase II are followed up 
to 78  weeks post-randomization to collect data on 
phase III clinical endpoints, e.g. TB-related unfavora-
ble outcomes. Application of this standard feature of 
phase III designs allows for the data-enrichment of 
phase II designs and enables better learning opportu-
nities [16].

Clinical trial designs
We evaluated two main adaptive trial designs, the Multi-
Arm Multi-Stage (MAMS) and Bayesian Response Adap-
tive Randomization (BAR) designs (described below). 
These designs are currently in use for TB regimen devel-
opment (NCT03474198 and NCT03259269 [13]) which 
gives evidence that they are considered by TB clinical 
trialists as suitable innovative approaches. The setting of 
phase III is non-inferiority as compared to control. We 
have evaluated five distinct drug development pathways:

A.	Conventional sequential TB regimen development. 
The standard clinical development pathway takes 
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a single combination regimen candidate through 
a learning phase II using an intermediate endpoint, 
then a confirmatory phase III using the final clinical 
endpoint. The pretomanid-moxifloxacin-pyrazina-
mide (PaMZ) regimen was the first combination reg-
imen to follow this pathway and will therefore be our 
non-adaptive comparator case study.

B.	 Multi-arm multi-stage (MAMS) phase IIC with 
a separate phase III. This design evaluates several 
potential regimens with the objective to quickly iden-
tify poorly performing arms and stop enrollment to 
them. A fixed number of interim analyses are con-
ducted with each intervention arm compared to con-
trol using an intermediate endpoint (time to culture 
conversion) with recruitment terminated to arms 
with insufficient evidence of benefit according to pre-
specified criteria (Fig.  1A). The MAMS trial design 
adapted for the context of TB has been previously 
described [10, 12].

C.	Bayesian response adaptive randomization (BAR) 
phase IIC with a separate phase III. The objective 
is to continuously evaluate the efficacy of regimens 
and enroll more patients and gather more data about 
the most promising regimens. The BAR trial design 
adapted for the context of TB has been previously 
described [13, 17], where accumulating intermedi-
ate endpoint data throughout the trial is evaluated 
each week of the trial with randomization probability 
weighted in favor of better performing arms (Fig. 1B).

D.	Seamless MAMS phase IIC/III. Where the phase IIC 
designs will only enroll a maximum of 100 patients 
per arm, the seamless trial combines the learn-
ing phase II and the confirmatory phase III, rely-
ing on adaptive elements to stop poor experimental 
regimens while enrollment continues for promising 
experimental regimens until phase III sample size 
(400 + per arm) is reached. Compared to the phase 
IIC MAMS design, the larger sample size of the 
seamless MAMS trial permits more interim analyses 
and adequately powered evaluation of final clinical 
endpoint of each regimen. The longer trial duration 
also permits the accumulation of final clinical end-
point data to perform interim analyses of final clini-
cal endpoint.

E.	 Seamless BAR phase IIC/phase III. The seamless 
BAR design utilizes the same framework as the phase 
IIc design, but with a larger maximum sample size 
and adaptive randomization modified to also depend 
on a later endpoint to simultaneously evaluate regi-
mens by intermediate endpoint and final clinical end-
point.

Our goal was to describe the operating characteris-
tics of the pathways that graduated desirable regimens 
(defined in the next paragraph) from phase II to phase III 
in at least 95% of simulations and suboptimal regimens 
in no more than 10% of simulations. Given the scarcity of 
regimens with excellent safety profiles with a high chance 
of substantial treatment shortening, we decided to limit 
the risk of falsely stopping a desirable regimen at the 
expense of graduating a suboptimal regimen to phase III 
in 10% of occasions. This is analogous to limiting the false 
positive error (Type I error) rate to 10% while maintain-
ing a high power in phase II.

For seamless phase III trials, to control type I error 
to < 5%, designs were optimized so that < 5% of simula-
tions graduate suboptimal regimens and demonstrate 
noninferiority. We used the 16-week suboptimal regimen 
(Arm 9) to evaluate type I error and a 5.5% noninferiority 
margin (the true difference between the median cure rate 
of Arm 9 and control, see Table 1) was selected for a two-
tailed 95% confidence interval noninferiority test.

Regimen characteristics
We assumed that the trial is evaluating 3 experimental 
regimens in comparison to the standard of care control 
arm, with the goal of treatment shortening from 24 to 
16 weeks. The simulated regimens were designed to have 
various characteristics (desirable, minimal, suboptimal) 
with respect to WHO treatment target regimen profile 
shortening goals [18] (Table 1). The desirable and mini-
mal regimens have efficacy comparable to the 24-week 
standard of care when given for 12 weeks and 16 weeks 
respectively. A suboptimal regimen has efficacy that is 
only slightly better than the 24  week standard of care 
when given for 24 weeks. Each experimental regimen is 
evaluated at 3 durations (8, 12, 16 weeks), which brings 
the total number of arms to 10. See Additional file  1: 
Fig. S1 for a graphical representation of the relationship 

Fig. 1  MAMS, BAR, & Simulation workflow schematics. A Basic schematic of Multi-Arm Multi-Stage adaptive trial design, where each experimental 
regimen must pass a predefined criteria at interim analysis to continue recruitment. B Basic schematic of Bayesian Adaptive Randomization 
adaptive trial design, where each week the efficacy of each experimental arm is estimated and randomization probabilities are weighted in favor 
of well performing arms. C Trial simulation workflow schematic, where simulation trial and design parameters were inputted and for each week 
in the trial patients are recruited and randomized, their individual TCC and TTR are calculated, and accumulated trial data is analyzed, and then 
randomization is adjusted or arms are stopped as needed. This is repeated until trial stopping conditions are met or the maximum number of 
patients are recruited

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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between regimen potency, treatment duration, time to 
culture conversion, and time to TB-related unfavora-
ble outcome. The relationship between time to culture 
conversion and time to TB-related unfavorable outcome 
is based on the relationship observed in TB-ReFLECT 
(Pooled databse of OFLUTUB, ReMOX, and RIFAQUIN 
fluoroquinolone trials) and is described further in the 
Data Generating Mechanism sections later in the meth-
ods and Additional file 5.

Median cure rate is drawn from 1000 simulations of 
2000 patients per arm with equal representation of easy, 
moderate, and hard-to-treat subpopulations within and 
between each arm drawn from the TB-ReFLECT data-
base. The top regimens in order from best to worst: Arm 
3, 2, 6, 1

Clinical endpoints
Time to culture conversion (TCC) of sputum liquid cul-
ture was used as the intermediate clinical endpoint and 
time to TB-related unfavorable outcome as the final clini-
cal endpoint. TB-related unfavorable outcomes include 
treatment failure, relapse, and death for up to 78 weeks 
post-randomization; henceforth abbreviated as relapse 
or time to relapse (TTR) [19, 20] since relapses make 
up most of TB-related unfavorable outcomes. The BAR 
design utilizes Bayesian estimates of binary endpoints as 
a measure of efficacy, so individual patient TCC and TTR 
were converted into binary outcomes at week 8, 24, 52, 
and 78 labeled as treatment success at 8 weeks or TS-8, 
TS-24, TS-52, and TS-78.

Data generating mechanism
The clinical trial data was simulated in R utilizing inte-
grated parametric survival models [19] for intermediate 
endpoint TCC (up to 26  weeks) and final clinical end-
point TTR (up to 78 weeks). Sputum samples were taken 

from patients at 1, 2, 4, 6, 8, 12, 17, 22, 26, 39, 52, 65, and 
78  weeks. The models quantify relationships between 
clinical, demographic and regimen features with phase II 
and phase III outcomes. To reliably represent the popu-
lation of TB patients, we sampled patients with replace-
ment from the TB-ReFLECT trial participant database 
with 3411 participants from the modified intent-to-treat 
analyses of three large TB phase III trials [19]. We used 
definitions of easy/moderate/hard-to-treat patient popu-
lations from Imperial et al. [20]. to weight the sampling 
so that all three risk strata groups are equally represented 
in each simulated trial.

The joint parametric survival models for intermediate 
(TCC) and final (TTR) endpoint were used to generate 
individual patient outcomes for each of the regimens. In 
the models, in addition to treatment effects, time to cul-
ture conversion was delayed by older age, higher smear 
grade, or African clinical site (vs. non-African). Patients 
with delayed time to culture conversion, male sex, HIV-
positive status, or cavitation on baseline chest x-ray had 
higher risk for TB-related unfavorable outcomes (final 
endpoint). Patients with the same characteristics will 
have identical probability functions for TCC and TTR, 
however the actual observed times for each patient are 
not deterministic, but randomly and independently 
drawn from these probability distributions. Models are 
described in more detail in the supplement and in Impe-
rial et al. [20]

MAMS design parameters
There are three MAMS design parameters to optimize: 
number of interim analyses, interim timing, and interim 
criteria. The timing of the interim analysis is crucial; too 
early and too little data is available to make adequately 
confident decisions, too late and too many patients have 
been enrolled into poorly performing regimens. Interim 

Table 1  Simulated regimens designed according to 2016 treatment shortening target regimen profile [18]

Arm Regimen Duration (Weeks) Assumed TCC hazard 
ratio

Assumed TTR hazard 
ratio

Median 
cure rate 
(%)

0 Control (HRZE) 24 Reference Reference 92.0

1 Desirable (meets targets) 8 3.4 0.6 90.0

2 12 92.5

3 16 93.5

4 Minimal (minimum targets) 8 1.9 0.7 86.5

5 12 87.5

6 16 90.5

7 Suboptimal (below minimum targets) 8 1.2 0.85 81.0

8 12 84.0

9 16 86.5
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criteria were framed as a minimum TCC hazard ratio and 
maximum absolute relapse rate (at 52  weeks) that each 
arm must not pass to continue enrolling until the end of 
trial. The control arm matches enrollment to the investi-
gational arms and the trial continues until the maximum 
sample size is reached in arms that are not stopped. These 
parameters were explored in a grid-like fashion with the 
goal of maximizing the probability of stopping subopti-
mal regimens and minimizing the probability of stopping 
desirable regimens, with the earliest interim timing and 
the least number of interim analyses.

Bayesian response adaptive randomization
The BAR design estimates efficacy in each arm after a 
week of participants are randomized and randomization 
probabilities are adjusted proportionally to the efficacy of 
each arm. Randomization into the control arm matches 
the experimental arm with the highest randomization 
probability, so that the two will have approximately equal 
sample sizes. Two stopping rules were used: (1) recruit-
ment to an arm is stopped after reaching a maximum 
sample size (recruitment continues to the other arms and 
control), and (2) the trial ends when n arms reach maxi-
mum sample size, where we allowed n to range from 1 to 
5. These rules were designed to recruit rapidly to the best 
performing arms and stop the trial as soon as the top n 

arms have recruited enough patients for sufficient statis-
tical power to demonstrate efficacy.

We modified a Bayesian adaptive randomization 
framework that has been described elsewhere [13, 17], 
our modifications are briefly described here but also in 
more detail in the supplement. Two BAR tuning param-
eters, ɣ and η, determine how aggressively (ɣ) the BAR 
algorithm and when (η) adaptations to randomization 
probability are weighed in favor of well performing 
arms. We measured the aggressiveness of adaptive ran-
domization by measuring the ratio of patients allocated 
to the 16-week desirable regimen over the 8-week sub-
optimal regimen, while the variability in patient alloca-
tion across arms between simulations was quantified by 
the % coefficient of variation (%CV) of that ratio. These 
two parameters were explored in a grid-like fashion 
across a range of reasonable values. Further, param-
eters were optimized to maximize aggressiveness of 
randomization and to minimize variability in allocation 
ratio between simulations with the goal of graduating 
clinically noninferior arms and stopping suboptimal 
arms. For phase IIc and seamless designs respectively, 
graduation of an arm was defined as greater than 80 
and 350 patients recruited into the arm and stopping 
of an arm defined as less than 50 and 200 patients 
recruited (analogous to stopping at MAMS first and 
second interims respectively). The equal recruitment 
period (before the allocation ratio is changed by the 

Table 2  Simulation conditions, assumptions, and trial design parameter space

*Indicates trial design parameters that were explored, and optimized

MAMS BAR

Parameters Phase IIc Seamless II/III Phase IIc Seamless II/III

Maximum patients 100 per arm 400 per arm 100 per arm 400 per arm

Recruitment rate 10 patients/week 10 patients/week

Culture and data lag time 6 weeks 6 weeks

Proportion of easy/moderate/hard to treat 
sub-populations

0.33 | 0.33 | 0.33 0.33 | 0.33 | 0.33

Intermediate and surrogate endpoints 
evaluated

TCC HR TCC HR
TS-52

TS-8
TS-24

TS-8
TS-24
TS-52

Number of interim analyses 1–2* 2–3* – –

Timing of interim analysis 10–100 patients* 100–400 patients* – –

Interim criteria TCC HR threshold: 1.1–2.3*
Relapse % threshold: 4–20%*

– –

Equal recruitment period (before adaptive 
algorithm is initiated)

– – 10 patients per arm 10–50 patients per arm*

Bayesian adaptive randomization tuning 
parameters

– – Nonaggressive–Aggressive
ɣ = 1–25*
η = 0.1–2.0*

Trial stopping rules – – 4 Arms reach max N 3 Arms reach max N

Priors – – – Optimistic*
Skeptical*
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algorithm) was adjusted in the range 10–50 patients per 
arm in the seamless design and fixed to 10 patient per 
arm in the phase IIc design due to its short recruitment 
period. The complete design parameter space explored 
for trial design optimization is summarized in Table 2.

Simulation tool
Recruitment to the simulated trials was fixed at a total 
of 10 patients per week, selected as a reasonable esti-
mate for a global multi-center TB trial [18–20]. It was 
assumed that TCC and TTR were available for statis-
tical analysis 6 weeks after the actual event to account 
for the biological assay time and for the results to be 
entered into the database. For each week of the trial 
simulations:

1.	 10 patients are ‘recruited’ from TB-ReFLECT patient 
database

2.	 Patients are randomized into arms/regimens; their 
individual intermediate (TCC) and final (TTR) end-
points simulated by the aforementioned integrated 
parametric survival models. Prior to any adaptive 
modifications, patients in each simulated trial were 
randomly allocated with equal probability to either a 
control arm or one of nine intervention arms.

3.	 For the BAR design, available data are analyzed, and 
randomization probabilities are updated. For the 
MAMS design, available data are only analyzed when 
interim analyses are triggered, then randomization is 
updated accordingly.

4.	 Proceed to the next week.
5.	 Steps 1–4 are repeated for each week of the trial until 

maximum number of patients have been recruited or 
trial stopping rules have been met.

MAMS and BAR design parameter space were 
explored with 1000 simulations performed for each set 
of parameter values to identify optimal sets with desired 
characteristics. Further details of design parameters have 
been explained above and the parameter space explored 
defined in Table 2; the simulation workflow is shown in 
Fig. 1C.

Performance measures
Each of the five optimized clinical development path-
ways were compared based on the following performance 
measures: total study and pathway duration, total recruit-
ment, enrollment per arm, bias in estimation of treat-
ment effects, number of observed relapse events per arm, 
and the probability of correctly selecting treatment short-
ening arms and stopping undesirable arms.

Sensitivity analyses
Sensitivity analyses were performed to assess how 
recruitment rate, the assumed relationships in the para-
metric survival models, longer data lag times, and differ-
ent compositions of desirable, minimal, and suboptimal 
regimens in the trials affect our conclusions. Further 
details can be found in supplemental methods.

Results
Results are summarized for each distinct design first, 
followed with a comparison between designs. Since dif-
ferences in treatment duration impact the final endpoint 
and not the intermediate endpoint, treatment duration 
does not impact phase IIc stopping criteria (based on the 
intermediate endpoint of TCC) and therefore different 
durations of the same regimen are combined in the pres-
entation of the phase IIc results.

Multi‑arm multi‑stage (MAMS) phase IIc
We found that one interim analysis that occurs after 50 
patients (Fig.  2A) have been recruited in each arm and 
an interim criteria hazard ratio threshold of 1.7 (Fig. 2B) 
meets our criteria for an optimal design. In this setting, 
the desirable and suboptimal regimens graduated in 
99.8% and 8.2% of simulations respectively. Minimal regi-
mens graduated in 65.2% of simulations (Fig. 2C). Setting 
a lower hazard threshold or an earlier interim analysis 
will decrease the graduation rate of desirable regimens 
without appreciably increasing the stopping rate of sub-
optimal regimens. A second interim was explored but 
did not add value. With the suboptimal regimen already 
being stopped in 91.8% of simulations after the first 
interim analysis, the logistical cost of a second interim 
analysis did not justify the small potential benefit of stop-
ping additional suboptimal regimens.

Bayesian response adaptive randomization (BAR) phase IIc
We identified a set of BAR tuning parameter values 
(ɣ = 18, η = 0.8) that meets our criteria for an optimal 
design. This optimized BAR design aggressively rand-
omizes 2.5 times (Fig. 2D) more patients into the desir-
able regimen (median N = 100, see Additional file 1: Fig. 
S2B) over the suboptimal regimen (median N = 40) while 
limiting % CV of this ratio to less than 20% (Fig. 2E). The 
desirable regimen graduated in 99.5% of simulations 
(where graduation is defined as the sample size reach-
ing 80 or more), and was stopped in 0.1% of simula-
tions (where stopping was defined as the sample size not 
exceeding 50, Fig. 2C). For minimal regimens 49.5% grad-
uated and 18.3% were stopped. For suboptimal regimens 
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2.7% graduated and 81.0% stopped. The heatmap in 
Fig.  2D shows the ɣ and η parameter space explored to 
optimize the aggressiveness of adaptive randomization, 
other sets of ɣ and η values might be suitable for trials 
with different objectives.

Seamless MAMS phase II/III
Building off the optimized phase IIc MAMS design, 
we found that a second interim occurring after 200 
patients (Fig. 3A) have been enrolled in each continuing 
arm with an interim criteria of a 12% relapse thresh-
old (Fig.  3B) met our criteria for an optimal seamless 
design. Because the differences in treatment duration 

largely manifest as differences in relapse rate, a relapse 
rate threshold is able to distinguish between different 
durations of the same regimen. Therefore, the second 
interim served primarily to stop regimens that have a 
favorable intermediate endpoint (TCC) profile, but 
underwhelming efficacy measured by final endpoint, 
e.g. relapse rate (Fig.  3C). Under these conditions, 
desirable regimens at 8, 12, and 16 week durations have 
a 2.2%, 1.3%, and 0% chance of being stopped respec-
tively, minimal regimens 65.8%, 38.6%, and 37.5%, 
and suboptimal regimens 99.7%, 97.5%, and 95.3%. 
Only 9/1000 (0.9%) simulations graduated and dem-
onstrated noninferiority for the 16-week suboptimal 

Fig. 2  Phase IIc MAMS and BAR optimization and comparison. A Fraction of simulations graduated for Phase IIC MAMS trials with interim criteria 
fixed at TCC HR > 1.7 while changing interim timing from 10 to 100 patients recruited into the control arm, at 10 patients/week interim timing 
is approximately study week 10–100. B Fraction of simulations graduated for Phase IIC MAMS trials with interim timing fixed to 50 patients and 
changes TCC HR criteria from 1.1 to 2.3. Dotted lines show the chosen optimized conditions, where an interim timing of 50 patients per arm is 
the earliest timing in which the risk of stopping the desirable regimen is negligible and an interim criteria of TCC HR > 1.7 is the strictest criteria in 
which the risk of stopping the desirable regimen is negligible. The control in grey, represents the proportion of simulations in which the trial was 
not stopped prematurely due to all investigational arms being stopped. C Comparison of graduation and stopping rates of optimized Phase IIc 
MAMS and BAR designs. The continuous nature of the BAR recruitment was translated into a semi-discrete outcome for comparison to the MAMS 
design, graduation of an arm was defined as greater than 80 patients recruited into the arm, stopping of an arm defined as less than 50 patients 
recruited (analogous to stopping at MAMS interim) and in-between defined as 50–80 patients recruited into the arm. Both designs meet our 
target criteria graduating > 95% of desirable regimens and < 10% of suboptimal regimens. D Heatmap quantifying the aggressiveness of Bayesian 
adaptive randomization as the ratio of patients allocated to the desirable regimen/suboptimal regimen across a range of reasonable ɣ and η values. 
E Heatmap of the variability expressed as %CV in the ratio shown in D across 1000 simulations. The optimal condition outlined in black was chosen 
for its aggressiveness and limited variability while meeting our target critiera
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Fig. 3  Seamless MAMS interim timing and criteria optimization A Fraction of simulations graduated for Seamless MAMS trials with second interim 
criteria fixed at relapse rate < 12% while exploring second interim timing. The control in grey, represents the proportion of simulations in which 
the trial was not stopped prematurely due to all investigational arms being stopped. B Fraction of simulations graduated for Seamless MAMS trials 
with second interim timing fixed at 200 patients per arm while exploring second interim criteria. Dotted line represents selected optimized second 
interim conditions, where an interim timing of 200 patients per arm is the earliest timing in which the risk of stopping the desirable regimen is 
negligible and an interim criteria of relapse rate < 12% is the strictest criteria in which the risk of stopping the desirable regimen is negligible. C 
Fraction of arms stopped in interim 1 and 2. Note that interim 2 can distinguish between different durations of the same regimen, whereas interim 
1 cannot

(See figure on next page.)
Fig. 4  Seamless BAR optimization. A Heatmap quantifying the aggressiveness of Bayesian adaptive randomization across a range of ɣ and η values. 
B Variability of patient distribution across simulations represented as % CV. C Representations of aggressive and less-aggressive BAR designs shows 
the suitability of less-aggressive adaptation for the seamless design. Less-aggressive adaptation allows relapse data to be taken into account and 
adjust randomization. At 1100–1200 patients randomized Arm 1 recruitment slows down while Arm 6 speeds up, reflecting incoming relapse 
data that reduces confidence in Arm 1 and increases confidence in Arm 6. D Graduation and stop plot comparing Seamless MAMS and BAR. The 
continuous nature of the BAR recruitment was translated into a semi-discrete outcome for comparison to the MAMS design, graduation of an 
arm was defined as greater than 350 patients recruited into the arm, stopping of an arm defined as less than 200 patients recruited (analogous to 
stopping at MAMS interim) and in-between defined as 200–350 patients recruited into the arm. Both designs are comparable and are suitable for 
our purposes, but BAR excels at penalizing and thus stopping poorly performing arms
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regimen (analogous to type I error). A third interim 
was explored, but since a two interim design well 
exceeded our aforementioned trial objective of graduat-
ing > 95% of desirable regimens and < 10% of suboptimal 

regimens, a third interim would provide limited benefit 
and was considered unnecessary.

Fig. 4  (See legend on previous page.)
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Seamless BAR phase II/III
We found that less aggressive BAR tuning parameters 
(ɣ = 8, η = 0.3) compared to the more aggressive phase IIc 
BAR tuning parameters, were better suited for our cri-
teria for an optimal seamless trial. This optimized BAR 
design randomizes 5.9 times (Fig. 4A) more patients into 
the 16-week desirable regimen (median N = 400) over the 
8-week suboptimal regimen (median N = 67) while lim-
iting the variability across simulations to < 50% (Fig. 4B). 
Although the heatmap (Fig. 4A) reveals more aggressive 
options for ɣ and η, the goals of phase IIc and seamless 
phase II/III differ where a seamless trial must not only 
distinguish between different durations of the same regi-
men but also evaluate regimens by the 52-week relapse 
endpoint. We found that a moderately aggressive rand-
omization was more suitable for this purpose; in Fig. 4C, 
representations of aggressive and less-aggressive BAR 
simulations demonstrates that less-aggressive adaptation 
allows more time for 52-week relapse data to accumu-
late and therefore affect randomization. At 1100–1200 
patients randomized, the 8-week desirable regimen 
recruitment begins to slow down while the 16-week 
minimal regimen speeds up in the less aggressive design 
eventually overtaking 8-week desirable regimen recruit-
ment as compared to the more aggressive design. This 
is the consequence of the accumulation of incoming 

long term relapse data and demonstrating the benefit of 
slower adaptation in this context. Additional file  2: Fig 
S3 further demonstrates the desired behavior where the 
enrollment distribution in each arm produced a graded 
allocation of patients across the different treatment dura-
tions where the phase IIc design did not.

The desirable regimens at 8, 12, and 16  week dura-
tions graduated in 57.2%, 82.6%, and 93.8% of simulations 
respectively and stopped in 24.5%, 9.4%, and 3.5% of sim-
ulations respectively (Fig. 4D). Although this set of design 
parameters falls just short of our 95% graduation target, 
the graded response of the BAR design makes a difficult 
translation to a binary graduation-stop result and we 
believe that this set of parameters is suitable for our trial 
objectives. Minimal regimens at 8, 12, and 16 week dura-
tions graduated in 8.6%, 23.5%, and 58.9% of simulations 
respectively and stopped in 75.5%, 54.1%, and 23.9% of 
simulations respectively. Suboptimal regimens graduated 
in 0%, 0% and 1.3% of simulations and stopped in 99.6%, 
98.9%, and 94.2% of simulations. Additionally, only 3.5% 
of simulations falsely rejected the null hypothesis for the 
16-week suboptimal regimen (analogous to type I error).

Overall comparison of trial designs
BAR designs offer a clear advantage in identifying the 
most promising regimens more quickly with fewer 
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Fig. 5  Study duration and total recruitment comparison of BAR and MAMS. A Phase IIc and B Seamless Phase II/III comparisons. BAR and MAMS 
designs have comparable performance in graduating the best regimens and stopping the suboptimal regimens (demonstrated previously) while 
BAR consistently outperforms MAMS in study duration and total recruitment. Although both MAMS and BAR provide enormous time and patient 
savings compared to conventional clinical trials, the median Phase IIc BAR enrolls 80 fewer patients and saves 8 weeks of time compared to the 
Phase IIc MAMS and the median Seamless BAR enrolls 420 fewer patients and saves 42 weeks of time compared to the Seamless MAMS
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patients than MAMS designs; BAR designs recruited 
80 and 420 patients less in phase IIc and seamless trials 
respectively. Both MAMS and BAR designs were much 
more efficient compared to the conventional sequential 
approach which would recruit 1000 patients for phase IIc 
and 4000 for the seamless design (Fig. 5). A major con-
tributing factor to the observed recruitment advantage 
of the BAR design, is that for MAMS, patient recruit-
ment by arm is clustered around the interim analyses 
(50 and 200 patients) and trial end (400 patients), while 
BAR’s patient distributions are continuous with each 
arm’s median scaling with efficacy (Additional file 1: Fig. 
S2B and Additional file 2: Fig. S3). Both MAMS and BAR 
designs produce accurate efficacy estimates consistent 
with values produced by unbiased simulations (Addi-
tional file  3: Fig. S4A and C), however the precision in 
estimating efficacy is directly proportional to the num-
ber of observed relapse events (Additional file  3: Fig. 
S4B) and thus number of patients (Additional file 2: Fig. 
S3) randomized into that arm. None of the designs intro-
duced significant bias (< ± 7% median bias, Additional 
file 3: Fig. S4C) except for 12% median underestimation 
of relapse rate in Phase IIc BAR suboptimal regimens due 
to the small sample size (N = 40).

Sensitivity analyses
Recruitment rates of 5–15 patients per week did not sig-
nificantly change the results of the optimized adaptive 
trial designs, MAMS and BAR graduation rates changed 
less than an absolute 5%. However, a faster enrollment 
of 30 patients per week was too fast to allow for TCC or 
relapse data to accumulate in time for MAMS interim 
analyses or significantly affect BAR randomization prob-
abilities. BAR designs were more sensitive to changes in 
recruitment rate because graduation is dependent on 
patient randomization which is directly dependent on the 
accumulation of data. All graduation decisions benefit-
ted from a slower recruitment rate, but the benefit was 
minimal in the range 5–15 patients per week. Sensitivity 
analyses are presented in more detail in Additional file 5.

Discussion
In this study, we have demonstrated the suitability of 
adaptive trial designs for TB regimen development and 
have described optimal MAMS and BAR designs in the 
phase IIC and seamless phase II/III settings. In the seam-
less phase II/III designs, suboptimal regimens graduated 
in less than 10% of simulations with desirable regimens 
graduating in more than 95% of simulations. Both designs 
were able to discriminate between different durations 
of the same regimens where the 16-week minimal regi-
men graduated in 62% and 58.6% of simulations and the 
8-week minimal regimen graduated in 33% and 8.6% of 

simulations for MAMS and BAR designs respectively. 
Additionally, both designs were able to reliably select the 
noninferior regimens (12 and 16 week desirable regimen) 
in at least 80% of simulations; bias was minimal in arms 
that graduated. In the phase IIC designs, desirable regi-
mens graduated in > 99% of simulations, while suboptimal 
regimens graduated in 8% and 2.7% of simulations for the 
MAMS and BAR designs respectively. Importantly, since 
adaptation in the smaller phase IIC trials is based only on 
the intermediate endpoint, TCC, which is independent of 
treatment duration, these phase IIc designs were not able 
to discriminate between different durations of the same 
regimen.

Recommendations regarding BAR and MAMS
Our objective was to compare the operating charac-
teristics of different designs that have utility for TB 
regimen development, and specifically to describe par-
ticular designs that met our objectives of a typical regi-
men development program. From a broad view, adaptive 
trial designs offer a clear advantage in simultaneously 
evaluating more intervention arms with similar numbers 
of patients in a shorter time frame. Indeed, we found that 
the BAR designs require the least number of patients 
and also allow for more flexibility in trial objectives. For 
example, the ɣ and η parameters of the BAR design can 
be modified to have a less aggressive adaptive algorithm 
so that less weight is put on early data and the algo-
rithm waits for more data before substantially changing 
randomization probabilities. Importantly, the adapta-
tion algorithm in BAR weighs randomization in favor of 
the best performing arms relative to control. Therefore, 
while there is not necessarily an direct comparison with 
the other arms, the final sample sizes and trial durations 
are influenced by the indirect comparative efficacy of the 
arms. In other words, a trial with all equivalent subop-
timal regimens will randomize patients equally between 
arms, as will a trial with all equivalent desirable regimens. 
Therefore, the BAR design is most efficient for multi-
arm trials with a combination of regimens of unknown 
efficacy potentially spanning suboptimal to desirable. In 
contrast, the MAMS design depends only on compari-
sons against the control arm and therefore whether a par-
ticular arm stops or continues does not depend on other 
arms in the trial, although that doesn’t rule out com-
parisons between two active arms in an indirect fashion. 
Additionally, MAMS designs are more efficient and result 
in smaller sample sizes compared to BAR when all evalu-
ated treatments are underperforming and fail to achieve 
minimum efficacy targets [21, 22].

Critically, the choice of design and specification of 
design parameters, including timing of the interim analy-
sis and target efficacy thresholds for the MAMS design, 
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and randomization tuning parameters and stopping rules 
for the BAR design, will very much depend on the spon-
sor’s objectives. If the objective is to consider each regi-
men on its own merit as compared to control, then the 
MAMS design is better suited, but if the objective is to 
rapidly select amongst a number of regimens that are 
likely to include a range of regimens from suboptimal to 
desirable then the BAR design is perhaps better suited. In 
the current landscape of TB drug development, with over 
ten new drug candidates, a MAMS design would select 
all regimens that meet the minimum target criteria, while 
the BAR design would efficiently rank the regimens and 
recruit greater numbers of patients to the top regimens 
to generate further evidence of efficacy. If the BAR design 
is modified to permit stopping for futility (see section on 
additional design modifications below) then the benefits 
(and limitations) of both MAMS and BAR would likely 
be combined—exploration of this was beyond the scope 
of this paper.

There are other considerations of MAMS and BAR 
designs that cannot be described with clinical trial sim-
ulations and make each design more or less suited to 
trial objectives. Adaptations can only occur at a limited 
number of interim analyses in the MAMS design which 
means a data and safety monitoring board can still have 
oversight over stopping decisions and incorporate safety 
considerations in their deliberations. Ongoing adaptation 
in the BAR design adds additional burdens on clinical 
trial conduct, workflow, and data management to ensure 
that data is available on the database with as few errors as 
possible at each point throughout the trial [23], whereas 
this is only needed at specific times when interim anal-
yses are being conducted in the MAMS design. On the 
other hand, MAMS can be less efficient than a BAR 
design when there are large differences between regi-
mens as no adaptations can occur until the first interim 
analysis.

The typical delay in culture assay results (up to 6 weeks 
to perform assays) introduces some complexities in 
implementing adaptive trial designs in TB clinical devel-
opment. Ideally, adaptive trial designs base interim analy-
ses on early, accurate, and fast prognostic biomarkers. 
TCC is anything but early and fast, with most patients’ 
culture converting between 4 and 8  weeks and there-
fore assay results not available until 10–14  weeks post-
treatment initiation. Nevertheless, the follow up period 
is long, up to 78  weeks, which in combination with the 
slow recruitment rate (approximately 10 per week for a 
large global multicenter trial) allows for plenty of time for 
the adaptive elements of a trial design to be effective even 
with a slow intermediate endpoint like TCC.

Notably, seamless designs are especially time effi-
cient; in addition to the time saved from reduced patient 

enrollment and thus reduced enrollment period, mov-
ing seamlessly between phases eliminates the need for 
two treatment follow up periods (each 18  months after 
enrollment of the last patient) and a 12–18 month analy-
sis and planning period between trial phases [24]. How-
ever, seamless designs require careful planning, rapid and 
efficient data management, large upfront investment of 
logistics and resources, and steadfast sponsors and stake-
holders to complete a prescribed seamless trial, not all of 
which are usually present which means seamless designs 
are rare in practice. In total, the seamless approach can 
accelerate TB regimen clinical development timelines by 
2–4 years.

The effect of recruitment rate
We have shown that modest changes in recruitment rate 
have limited impact in the scenarios we explored. It is 
true that a substantial increase in recruitment rate can 
reduce efficiencies in adaptive designs with late outcome 
measurements, but this effect is limited unless recruit-
ment is very fast relative to the overall study size. This 
means that it would normally be worth adding a new site 
to increase the rate of recruitment while reducing the 
overall duration of the trial with only a modest impact on 
design efficiencies.

Additional design modifications
Besides the parameters and designs described thus far, 
there are many additional levers and interesting tools 
that can be adapted to suit various objectives: (1) Adding 
new regimens and arms in an ongoing phase IIc screen-
ing trial is of particular interest and there are case studies 
in oncology and COVID where this has been done with 
a BAR [25] or MAMS [26, 27] design. (2) Stopping for 
overwhelming efficacy/futility is another often consid-
ered rule. Although stopping for overwhelming efficacy 
was not considered within the context of our work due 
to potential power issues, this feature can easily be added 
to MAMS interim analyses (which stop for futility). Stop-
ping for overwhelming efficacy/futility can also be added 
to a BAR design, instead of only relying on the adaptive 
randomization algorithm, thereby attaining some of the 
benefits of the MAMS design. However, these features 
must be implemented with planned interim analyses 
and appropriate sample size adjustments to control type 
I error [28–30]. (3) REMoxTB, RIFAQUIN, OFLUTUB, 
and ACTG5349/Study 31 phase III trials have all demon-
strated the complex interplay between regimen potency, 
disease severity, and treatment duration [19]. Patient 
subpopulation enrichment which enrolls and enriches 
for hard or easy-to-treat patients—is a strategy employed 
to control the disease severity representation in the trial. 
It can be used to increase trial efficiency and likelihood 
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of success. Hard-to-treat subpopulations have a higher 
probability for treatment failure and bacteriological 
relapse thus, in this population, one might observe the 
same number of unfavorable events with a smaller sam-
ple size. Opting to enrich for hard-to-treat subpopula-
tions instead of including all patients must be carefully 
approached. While higher outcome rates are likely to 
be observed, and therefore the design will have greater 
power to distinguish regimens, these types of trials 
might have other limitations when extrapolating efficacy 
and safety findings to the unstudied patient subpopula-
tions. (4) Finally, treatment duration represents another 
manipulable variable which heavily impacts regimen 
efficacy and trial success, and TB trialists have turned to 
duration randomization trials [31, 32] to optimize treat-
ment duration prior to large confirmatory trials. The trial 
designs described here can be altered to estimate dura-
tion response curves or to select the shortest treatment 
duration that exceeds a minimum likelihood threshold 
for noninferiority. Each of these design modifications 
could change operating characteristics of MAMS and 
BAR trials; additional simulations would be needed to 
explore this.

Limitations
There are a few limitations in the work described here. 
First, we explored a limited set of possible arm and regi-
men configurations, along with a limited set of param-
eters and trial rules. Given the vast parameter space and 
the flexibility of trial designs, we wanted to limit the scope 
of this study within the context of a large platform adap-
tive trial while highlighting the possible mechanisms that 
can be adjusted for a different set of trial objectives. Sec-
ond, the models used to predict individual patient inter-
mediate and final endpoints are based on data generated 
from rifamycin containing regimens, and the risk factors 
for culture conversion and relapse may not hold true for 
novel regimens with a different mechanism of action. 
However, with the recent success of high dose rifapentine 
with moxifloxacin in Study 31/A5349, it is clear that rifa-
mycin containing regimens will remain first line for drug 
sensitive TB for the foreseeable future. Finally, although 
we have confirmed that desirable regimens graduate 
in > 95% of simulations (analogous to power) and subop-
timal regimens graduate and demonstrate noninferiority 
in < 5% of simulations (analogous to type I error), an in-
depth power and type I error analysis was not explored 
in this study. To that end, we have assumed that a sample 
size of 400 is sufficient for a noninferiority confirmatory 
trial with a 6.6% margin to achieve 80% power and limit 
type I error to 5%. Instead, we focused on optimizing and 
reviewing the graduating and stopping decisions of the 

five pathways, which remain previously undiscussed in 
the context of TB.

Conclusions
We have developed a flexible clinical trial simulation 
tool integrated with parametric survival models to accu-
rately simulate the potential range of real-world trial 
outcomes [20]. We have also demonstrated the effi-
ciencies of MAMS and BAR designs over conventional 
approaches for a platform adaptive trial and provided 
sets of optimized design parameters. Through our ongo-
ing collaborations, this work described here will be used 
by international consortia for TB regimen development 
and sets the stage for future adaptive trial design studies 
within the context of TB.
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Additional file 1: Figure S1. Simulated Regimens Time to Relapse 
Kaplan Meier Estimates stratified by Time to Culture Conversion. In green 
are patients whose time to culture conversion is ≤ 4 weeks, in blue 
is > 4 and ≤ 8 weeks, in yellow is > 8 and ≤ 16 weeks, and in red is > 16 
and ≤ 25 weeks. On the right are density plots of time to culture conver-
sion for each of the regimens, more potent the regimens cause patients 
to culture convert earlier and thus the distribution becomes more right 
skewed. Together, the plots demonstrate the relationship between regi-
men potency, treatment duration, time to culture conversion, and time to 
relapse.

Additional file 2: Figure S2. Phase IIc Supplement. (A) points and the 
error bars represent the mean simulation HR estimation and 95% CI 
respectively. The accuracy of the HR estimate improves with increas-
ing number of patients; interim timing at N = 50 is where the median 
estimate stabilizes and provides sufficient accuracy to make interim deci-
sions. (B) Histogram of patient enrollment per simulation in each regimen 
across 1000 simulations of optimized BAR and MAMS trials. BAR’s graded 
response is clearly demonstrated in the median enrollment in each of the 
regimens. Within each regimen, BAR simulations also produce a distribu-
tion of patient enrollment, contrasting with MAMS simulations with 
patient enrollment clustered around 50 and 100 (interim and trial end).

Additional file 3: Figure S3. Seamless Phase II/III Supplement. (A) 
Histogram of patient enrollment per simulation in each arm across 1000 
simulations of optimized BAR and MAMS trials. BAR’s graded response is 
clearly demonstrated in seamless designs as well.

Additional file 4: Figure S4. Comparison of Performance Measures. (A) 
Estimated relapse rate across arms and trial designs is accurate when 
compared to unbiased simulations. Lower accuracy and higher 95% pre-
diction intervals are observed in arms with very low sample size, i.e. phase 
IIC BAR arms 7, 8, 9. (B) The higher number of relapse events observed in 
BAR designs’ desirable regimens provide greater evidence of efficacy for 
the best regimens. Given the low relapse rate in better regimens, higher 
sample size is particularly needed in the best regimens to observe an 
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appreciable number of relapse events to produce an accurate relapse 
rate estimate. (C) Minimal bias is observed in estimation of relapse rate 
across designs, except for phase IIC BAR arms 7, 8, 9 where the low sample 
size produces a consistent underestimation of relapse rate. Overall, both 
MAMS and BAR designs provides excellent accuracy and precision in 
relapse rate estimation. The bias in suboptimal regimens is inconsequen-
tial as these arms would quickly be abandoned for lack of efficacy.
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