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Abstract

Estimating Causal Effects of Occupational Exposures

by

Monika A. Izano

Doctor of Philosophy in Epidemiology

University of California, Berkeley

Professor Ellen A. Eisen, Chair

Estimates of the risk of occupational exposures are typically based on observational
workplace studies that are subject to bias due to the healthy worker survivor effect (HWSE),
a ubiquitous process that results in the healthiest workers accruing the most exposure. This
body of work is concerned with the estimation of causal effects of occupational exposures
from observational workplace studies, in the context of the HWSE.

We estimate the effect of cumulative exposure to straight, soluble, and synthetic metal-
working fluids (MWFs) on the incidence of colon cancer in the United Autoworkers-General
Motors (UAW-GM) cohort. We use longitudinal targeted minimum-loss based estimation
(TMLE) to compute the 25-year risk difference if always exposed above compared to if al-
ways exposed below an exposure cutoff while at work. Exposure cutoffs were selected a
priori at the median of exposed person-years among colon cancer cases. Risk differences
are 0.038 (95% CI = 0.022 to 0.054), 0.002 (95% CI = -0.016 to 0.019), and 0.008 (95%
CI = 0.002 to 0.014) for straight, soluble, and synthetic MWFs, respectively. By control of
the time-varying confounding on the casual pathway that characterizes the HWSE, TMLE
estimated effects that were undetectable in earlier reports.

Most workers in UAW-GM were hired decades before the reporting of incident cancers
began. Incident cancers that occurred before the start of reporting were left filtered. We
show that if ignored, left filtering can lead to downward bias in exposure effect estimates.
Further, we propose a novel delayed-entry adjusted Kaplan-Meier estimator that controls for
time-varying confounding, and permits delayed risk-set entry. The estimator results in little
bias in simulated datasets when the outcome is sufficiently rare.

In addition to dynamic (realistic) interventions that assign exposure according to work-
ers’ employment status, causal contrasts can be defined under static (etiologic) interventions
that additionally prevent leaving work. Causal effect estimates of the two classes of inter-
ventions can differ substantially. While ideally the choice of intervention would be driven
by the research question, in practice it may be dictated by the available data. Furthermore,
when estimates of the long-term etiologic effects of occupational exposures are not available,
guidelines for exposure limits may be based on studies that estimated effects of realistic
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interventions. In a simulation study we investigate the conditions under which the two effect
measures are comparable, and identify factors that drive the differences between the two.
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Chapter 1

Introduction

This body of work is concerned with the estimation of causal effects of occupational exposures
on incident cancer events. Many of the aspects of this work are motivated by a longitudi-
nal study of approximately 40,000 workers in three automotive manufacturing facilities, the
United Autoworkers - General Motors cohort study (UAW-GM). We demonstrate the abil-
ity of causal estimators to correct for time-varying confounding of the exposure-outcome
relationship in an applied example that suggests a causal relationship between colon cancer
and metalworking fluid exposure. We explore remaining barriers to unbiased estimation of
causal parameters from cohorts of prevalent hires. We conclude with a discussion of classes
of hypothetical of workplace interventions, and discuss factors that impact the behavior of
causal parameters of such interventions.

Assessments of risks of workplace exposures are typically based on observational studies
of occupational cohorts. Estimates from these studies are often subject to bias due to the
healthy worker survivor effect (HWSE), a ubiquitous process that results in the healthiest
workers accruing the most exposure over their lifetimes [1–5]. Workers in poorer health
tend to accrue less exposure, whether by taking more time off, switching to lower exposed
jobs, or by leaving the workforce entirely. The workers who remain active in the workforce
and accrue the most exposure, are the healthiest ones. Time-varying confounding affected
by prior exposure and selection bias have been identified as two potential sources of the
HWSE. Time-varying confounding affected by prior exposure occurs if health status or other
factors are on the causal pathway between earlier exposure and the outcome. While standard
statistical models conditional on such factors result in biased estimates even under the null
hypothesis, failure to adjust for them also results in bias [6].

Chapter 2 presents an analysis of the relationship between occupational exposure to
straight, soluble, and synthetic metalworking fluids (MWFs) and incident colon cancer in
the UAW-GM study. MWFs are a class of complex mixtures of chemicals, including several
known or suspect carcinogens, that are aerosolized during marching operations and may pose
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a cancer risk to millions of manufacturing workers. Prior studies of the relationship between
MWFs and colon cancer incidence have reported conflicting results [7, 8], likely due to the
use of standard statistical methods that fail to adjust for time-varying confounding affected
by prior exposure. We used longitudinal targeted minimum-loss based estimation (TMLE)
to estimate the causal effect of exposure to each fluid type. Along with crude Kaplan-Meier
survival estimates, we present adjusted survival curves predicting the estimated cumulative
incidence of colon cancer among all workers had they been continually exposed above and
below exposure cutoffs while actively employed. A detailed description of the steps involved
in the analyses is also provided, intended to guide an epidemiological audience. This is the
first applications of the TMLE framework in the field of cancer epidemiology.

Selection bias is a second component of the HWSE that occurs when the set of workers
included into the study represents a sample of survivors drawn from a target population of
all workers initially hired in a plant or industry. It operates through two main processes.
The first occurs when follow-up ends with employment termination [9]. Bias may be induced
by conditioning on employment status, a phenomenon known as collider stratification [10–
12]. Selection bias may also be induced in the presence of differences in the susceptibility
of workers to an occupational exposure: workers who are more susceptible to the adverse
effects of an exposure experience the outcome earlier than the less susceptible [13]. Exposure
effect estimates generally attenuate with follow-up time as workers who are more susceptible
leave the cohort. Effect modification by susceptibility is responsible for left truncation bias
in occupational cohorts of prevalent hires [14, 15]. It may also induce bias in the presence of
left filtering, a less common feature of time-to-event data than censoring or truncation. Left
filtering occurs when the reporting of secondary health outcomes begins after the original
start of follow-up, and events that occur prior to the start of reporting are unknown. While
cancer mortality follow-up started as early as 1941 in the UAW-GM study, follow-up for can-
cer incidence started in 1985, when the Michigan Cancer Registry was established. Studies
of incident cancers in the UAW-GM cohort have been based on the sub-cohort of workers
who were alive in 1985 [16–20]. Incident cancers are left filtered among this sub-cohort, since
workers diagnosed before 1985 are included in the follow-up, but cannot become reported
primary cancer cases after 1985.

Motivated by the left filtering of incident cancer events in the UAW-GM cohort, Chapter 3
presents a simulation study that assesses methods for the analysis of time-to-event data in the
presence of left filtering, in the context of HWSE. We formally define left filtering as a process
distinct from left truncation and left censoring. Five simulation scenarios are considered,
each reflecting a key aspect of occupational cohorts. Complete (full) data where all incident
cancers were known are simulated along with observed (left filtered) data. Incident cancers
before the registry are unknown in the observed data. The exposure effect is measured
as the difference in mean survival of workers always exposed versus never exposed to an
occupational hazard while at work. Survival in the observed data is estimated using a
novel delayed-entry adjusted Kaplan-Meier estimator that combines two known approaches:
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the adjusted Kaplan-Meier estimator that adjusts for time-varying confounding [21], and
a delayed-entry approach traditionally used to address random left truncation [22]. Bias
for each of the five scenarios was measured as the difference between exposure effects in
the full data, and the mean of exposure effects estimated in 500 observed datasets. We
provide details on the estimation approaches and argue that the proposed approach may be
appropriate in any study with a secondary outcome follow-up imposed on an existing cohort.

In Chapters 2 and 3 we consider causal effects of dynamic (realistic) interventions that
assign exposure as a function of a worker’s active employment status. To assess the etiologic
effects of long-term exposure, causal effects can be further defined as contrasts of the distri-
bution of counterfactual outcomes under static (etiologic) interventions that assign exposure
and prevent leaving work throughout the study period. The two classes of interventions have
different implications for disease prevention. In contrast to etiologic interventions that aim
to estimate the biologic effect of long-term, sustained exposure, realistic interventions aim
to estimate the expected disease experience of a population under a proposed standard. Oc-
cupational exposure guidelines are based on estimates of risks of long-term exposures, which
correspond to causal effects of etiologic interventions that prevent leaving work. When the
estimation of such effects is unfeasible, risk estimates of realistic interventions may be used
to inform policy. It is therefore important to understand under what conditions the two
effect measures are comparable, and identify factors that drive differences between the two.
In Chapter 4 we present a simulation study that assesses the relationship between the two
exposure-response measures in the context of the HWSE.

Chapter 5 concludes the dissertation by reviewing implications of the three studies con-
ducted and priorities for future research.



4

Chapter 2

Metalworking Fluids and Colon
Cancer Risk: Longitudinal Targeted
Minimum-loss Based Estimation

2.1 Introduction

Despite the increased screening and improved treatment, colorectal cancer remains the third
highest incident and fatal cancer worldwide [23, 24]. The rapid increase in the rates of
colorectal cancer among migrants from low-risk to high-risk areas indicates that much of
the disease burden is due to environmental causes. Many environmental carcinogens were
initially identified in populations of highly exposed workers. Metalworking fluids (MWFs)
are a class of complex mixtures used as coolants, lubricants, and anti-corrosives used during
the fabrication of metal products in manufacturing industries that perform machining op-
erations [25]. MWFs are aerosolized when sprayed, generating airborne particulate matter
(PM) that has been linked to a number of cancers. With an estimated 4.4 million U.S.
workers exposed in 1997 [26], and many more worldwide, MWF exposure poses a potential
cancer hazard to workers in electronics manufacturing, new technologies, and alternative en-
ergy. The potentially carcinogenic nature of MWFs and their additives has long been noted
[27]. MWFs have been linked to excess prostate cancer mortality [20], as well as excess in-
cidence of laryngeal cancer [17, 28], bladder cancer [29], and malignant melanoma [16]. The
few studies of MWFs in relation to incident colon cancer have reported conflicting findings.
While an aerospace cohort study reported a statistically insignificant protective effect of min-
eral oils on colorectal cancer incidence [8], a Swedish population-based case-control study
reported an elevated risk of incident colon cancer among male petrol station/automobile re-
pair workers exposed to cutting fluids/oils after adjusting for known risk factors such as diet,
physical activity and body mass [7]. A previous analysis of the United Autoworkers-General
Motors (UAW-GM) cohort reported no association between straight, soluble, and synthetic
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MWFs and incident colon cancer [18]. An important limitation of those studies is the use
of standard statistical methods that fail to account for time-varying confounding affected by
prior exposure. Time-varying confounding occurs if some factor is both a confounder of the
exposure-outcome relationship and lies on the causal pathway between earlier exposure and
the outcome. Active employment status, for instance, may both be affected by past exposure
and predict future exposure. In addition, employment status may also be associated with
the outcome of interest if a proportion of workers terminated employment because they were
ill [5].

In the current work, we estimate the difference in the risk of colon cancer under hy-
pothetical interventions to limit the average time weighted daily exposure in each year of
employment, adjusting for time-varying confounding on the causal pathway. We used a
novel approach, longitudinal targeted minimum-loss based estimation (TMLE), which has a
number of advantages in the estimation of causal effects. To our knowledge, this is one of
first applications of the longitudinal TMLE in the field of occupational epidemiology, and
the first in the field of cancer epidemiology.

2.2 Methods

2.2.1 Study Population

The UAW-GM cohort study was initiated in 1984, jointly funded by the United Autoworkers
labor union as well as the General Motor’s management, to address workers’ health concerns.
The cohort includes 46,316 hourly workers from three automobile manufacturing plants in
Michigan [27]. All hourly employees who had worked at least 3 years between January 1, 1938
and January 1, 1985 were included with the exception of employees who had ever worked
in the large forge operation and may have been exposed to a variety of known carcinogenic
agents [27]. Date of birth, sex, race, as well as the complete work history, including job title,
department, and dates worked, were abstracted from employment records. Information
on race was recorded for most worker, but remains unknown for approximately 10% of
participants [30].

2.2.2 Outcome

Follow up for mortality began in 1941 and was recently extended to 2009. Vital status was
obtained through the Social Security Administration, the National Death Index, as well as
plant records and copies of state mortality files provided by the United Autoworkers Union
[30]. Cohort members alive on January 1, 1985 (N = 33, 915) constitute the UAW-GM
cancer incidence sub-cohort. The analyses presented here are based on the cancer incidence
sub-cohort, which was linked with the Michigan Cancer Registry to obtain cases diagnosed
between January 1, 1985 and December 31, 2009. The diagnoses were classified using the
International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Notably,
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findings from previous analyses suggest that the effects of MWFs and their components may
vary across the different regions of the large bowel [18, 31]. The analyses presented here
are based on the first primary diagnosis of incident colon cancers (ICD-O-3 codes C18.0-
C18.9), since the small number of rectal cancers (n=144) did not permit the evaluation of
this sub-site.

2.2.3 Exposure Assessment

The three plants in this study represented exposure to three broad MWF classes: straight
mineral oil, soluble oil (includes semisynthetic oils), and synthetic fluids. Quantitative ex-
posure levels for each class of fluids had been previously developed for each time period,
plant, department, and job-specific exposure category [32, 33]. Scale factors for each fluid,
operation, and time period, were developed from a statistical model based on 394 air mea-
surements collected by the company between 1958 and 1987 and determinants of exposure.
The scale factors were then applied to plant, operation, and fluid-specific exposure levels
from measurements collected by the original research study team in 1986-1987 [33]. An in-
dustrial hygienist revisited the plants in 1995 to update the scale factors for the 1985-1995
time period on the basis of company measurements collected since the study team’s field
visits [34].

Twenty-two percent of the UAW-GM cancer incidence sub-cohort was missing some of
their work history. Subjects missing more than 50% of their work history were excluded
(2.4%). Among the rest, missing work history information was interpolated by averaging
the exposures from the previous and subsequent job for each subject. We used the annual
quantitative measurements to compute an annual measure of exposure to each fluid type.
Cumulative exposure was estimated by summing across years of employment. To account
for a latency period, exposures were lagged by 15 years.

2.2.4 Statistical methods

We applied a targeted minimum-loss based estimation (TMLE) approach to estimate the
cumulative incidence of colon cancer in each year t of follow-up in a cohort following a
longitudinal exposure regimen specified by the researcher [35]. We considered regimens that
set exposure above or below a cutoff while at work, and prevent right censoring by death.
We used a dichotomous definition of exposure in which MWF levels above the cutoff were
defined as ”exposed”, while MWF levels below the cutoff were defined as ”unexposed”. The
cutoffs were determined a priori at the median exposure to each type of fluid among the colon
cancer cases for the years during which they had non-zero exposure levels. We compared
the estimated cumulative incidence of incident colon cancer if the worker population had
been always exposed above the cutoff while actively employed, to the estimated cumulative
incidence if the same worker population had been exposed below the cutoff (unexposed)
while employed.
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The description and the derivation of the statistical properties of the TMLE for multiple
time point interventions are provided elsewhere [36], and a more detailed explanation of the
assumed data structure, statistical models, identifiability assumptions, and target parameters
are provided in next section. Briefly, the TMLE [37] is a semi-parametric substitution
estimator that uses the efficient estimating equation framework [38–40], adjusts for time-
varying confounding, is consistent under partial model misspecification (double robustness
property), and is efficient when models for exposure/censoring mechanism and outcome
are correctly specified (local efficiency). It involves estimation of two components: (1) the
probability of being exposed (exposure mechanism) and remaining uncensored (censoring
mechanism) conditional on covariates, and (2) the average outcome conditional on exposure
and covariates (outcome model).

Exposure models were fit among actively employed workers. In addition to year of hire,
sex, race, and year of follow-up, exposure models included a set of 15-year lagged time-
varying covariates consisting of age and duration of employment at the start of t, as well
as the proportion of the year spent on leave, an indicator of the plant at which the worker
was employed, and cumulative exposure to each fluid type in the previous year (year t− 1).
Censoring models included year of hire, sex, race, age, year of follow-up, lagged duration
of employment, the proportion of the year spent on leave, a plant indicator, cumulative
exposure to each fluid type, and active employment status, all measured in year t. Both
the exposure and censoring models were estimated using SuperLearner, a machine-learning
approach that avoids the potential bias caused by assuming a fixed parametric relationship
between covariates [41, 42]. SuperLearner uses cross-validation to create the best combi-
nation of algorithm specific estimates from a library of algorithms. In this application, the
library we chose included Generalized linear models (GLMs) with Elastic Net Regularization
[43], and Gradient Boosting Machines (GBM) with regression and classification trees [44].
We considered an ensemble of six elastic net models with parameter alpha ranging from 0 to
1, and optimal lambda picked by minimizing the cross validation mean-squared error. The
tuning parameters for GBM were selected via the random grid search over the space of model
parameters. For each year, model-based predicted exposure and censoring probabilities were
used to estimate weights defined by inverse propensity scores of remaining uncensored and
following the exposure of interest. Weights greater than 50 were set to 50. The truncation of
the weights affected approximately 0.9%, 1.5%, and 0.4% of the observations in the analyses
of the effects of straight, soluble, and synthetic MWFs, respectively.

Among the same population, we then applied the iterative g-computation formula [38],
estimating an iterative series of conditional regressions predicting the average outcome at
year t. Outcome models were estimated using main term logistic regression. While current
exposure to each MWF was considered separately, models were adjusted for cumulative ex-
posure to the other two by the end of the previous year. The initial estimator of the outcome
regression was then updated in a targeting step that augments the initial outcome regres-
sion with information in the estimated exposure and censoring mechanisms. The targeting



CHAPTER 2. METALWORKING FLUIDS AND COLON CANCER RISK:
LONGITUDINAL TARGETED MINIMUM-LOSS BASED ESTIMATION 8

ensures that if either the treatment and/or the outcome models are correctly specified, the
resulting estimator is efficient, in that it has the lowest variance among unbiased estimators
in the model. The end result is a series of estimates of the cumulative incidence of colon can-
cer in each year t and exposure group. These estimates were used to calculate risk differences
comparing exposures over the cutoff to under the cutoff. In addition, cumulative incidence
estimates for each exposure group were used to create curves that indicate the estimated
survival (1 - cumulative incidence) in each year. TMLE provides estimates of cumulative in-
cidence at each time point considering all the past. Notably, since the estimated cumulative
incidence at year t + 1 is not constrained to be greater than cumulative incidence at year
t, the TMLE-derived discrete survival curve is not necessarily a monotonically decreasing
function. We present crude Kaplan-Meier survival curves in addition to TMLE curves for
comparison.

The analysis was performed using the stremr [45] package in R [46].

2.2.5 The observed data structure

As previously noted, in the UAW-GM cancer incidence sub-cohort data were collected each
year and were subject to right censoring. The observed data on each worker consists of mea-
surements on baseline covariates, denoted by L(0). In addition, for each worker the observed
data includes annual measurements of 15-year lagged exposure to each metalworking fluid,
the outcome, and confounding variables, starting in 1985, until each worker’s end of follow-
up at their death or 2009, whichever occurred first. The maximum observed follow-up was
25 years. The year when the worker’s follow-up ends is denoted by T̃ , and is defined as the
earliest time to an incident colon cancer diagnosis denoted by T , or right censoring, denoted
by C. At each year t = 0, . . . , T̃ , the worker’s exposure above a predetermined cutoff to
each type of a metalworking fluid is represented by the binary variable E(t). D(t) denotes a
worker’s right censoring indicator at year t. The combination A(t) = (E(t), D(t)) is referred
to as the action at year t. At each year t = 0, . . . , T̃ time-varying covariates such as inter-
mittent time-off, years of employment, age, employment status, and cumulative exposure to
each of the three fluids, are denoted by the multi-dimensional variable L(t). L(t) is defined
from measurements that occur before the action at year t, A(t), or are otherwise assumed
to be unaffected by the actions at time t or thereafter. In addition to the aforementioned
time-varying covariates, L(t) includes an indicator of whether a colon cancer diagnosis oc-
curred prior to the end of year t, Y (t) = I(T < t) ∈ L(t). Furthermore, it is assumed that
Y (0) is constant 0 (the event of interest cannot occur at time t = 0). By definition, the
outcome is missing at t if the worker was right censored at t. For notational simplicity, we
use over-bars to denote covariate and exposure histories. For example, a subject’s exposure
history through time t is denoted by Ē(t) = (E(0), . . . , E(t)). We approach the observed
data in this study as realizations of n independent and identically distributed (i.i.d.) copies
of

O =
(
L̄(t), Ā(t) : t = 0, . . . , T̃

)
,
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where the data on each unit i is denoted by Oi, for i = 1, . . . , n.

2.2.6 Causal and statistical models

The probability distribution P0 of O can be factorized according to the time ordering as

P0(O) =
K+1∏
k=0

P0 (L(k)|Pa(L(k)))
K∏
k=0

P0 (A(k)|Pa(A(k)))

≡
K+1∏
k=0

Q0,L(k) (O)
K∏
k=0

g0,A(k) (O)

≡ Q0 (O) g0 (O) ,

where Pa(L(k) ≡
(
L̄(k − 1), Ā(k − 1)

)
and Pa(A(k) ≡

(
L̄(k), Ā(k − 1)

)
denote the par-

ents of L(k) and A(k) in the time-ordered sequence, respectively. Q0,L(k) denotes the true
conditional distribution of L(k), given Pa(L(k)). g0,A(k) = g0,E(k)g0,D(k) denotes the true dis-
tribution of the treatment vector (E(k), D(k)) given Pa(A(k)). We define a statistical model
M for the observed data distribution, P0. If Q represents the set of all possible values for Q0,
and G represents the set of all possible values of g0, then this statistical model can be rep-
resented as M = {P = Qg : Q ∈ Q, g ∈ G}. In this statistical model, Q puts no restrictions
on the conditional distributions Q0,L(k), for k = 0, . . . , K + 1. Let

P d(l) =
K+1∏
k=0

Qd
L(k)

(
l̄(k)

)
,

where Qd
L(k)

(
l̄(k)

)
= QL(k)

(
l(k)|l̄(k − 1), Ā(k − 1) = d̄(k − 1)

)
, the so called G-computation

formula for the post-intervention distribution correction with the intervention that sets each
intervention node A(t) to that determined by some rule d(L̄(t)). In this study, we considered
a class of dynamic regimes defined by a deterministic function d(L̄(t)) of the observed data,
where d(L̄(t)) is used for setting the intervention nodes A(t). In more detail, d1,t is a dynamic
intervention that sets E(t) to 1 at time t while a worker is actively employed, and sets D(t)
to 0. However, once the individual leaves work, d1,t(L̄(t)) then sets E(t) and D(t) to 0.
Similarly, d0,t is defined as a dynamic intervention that sets E(t) to 0 while a worker remains
employed. Both interventions prevent right censoring. We define d̄θ,t = (dθ,0, . . . , dθ,t).

A causal model serves as the link between the observed data and the counterfactual
data. We use the non-parametric structural equation model (NPSEM) framework [47, 48]
to construct the following causal model, MF , for k = 0, . . . , K:

L(k) = fL(k)

(
Pa(L(k)), UL(k)

)
A(k) = fA(k)

(
Pa(A(k)), UA(k)

)
,

...

L(K + 1) = fL(K+1)

(
Pa(L(K + 1)), UL(K+1)

)
,
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where Pa(L(0)) is null for convenience, fA(k), fL(k) are non-parametric deterministic func-
tions, and

(
UA(k), UL(k)

)
are random unmeasured factors assumed to follow an unknown

distribution, PU . UnderMF , each component of the data structure is generated as a deter-
ministic function of its parents and the exogenous errors. Furthermore, this causal model
can be used for generating the counterfactual values Ld(k) under the dynamic treatment dk,
for k = 0, . . . , K:

A(k) = fA(k)

(
Pa(A(k)), UA(k)

)
Ld(k) = fL(k)

(
L̄d(k − 1), dθ,k

(
L̄d(k − 1)

)
, UL(k)

)
...

Ld(K + 1) = fL(K+1)

(
L̄d(K), dθ,K

(
L̄d(K)

)
, UL(K+1)

)
.

That is, we replace the intervention nodes in fL(k) with those set by our rule, and previous
Y nodes by their previously generated counterfactual values. The counterfactual values of
Yd̄θ,t−1

(t) ∈ Ld̄θ,t−1
(t) are then generated sequentially for each year. Yd̄θ,t0−1

(t0) for θ = 0, 1
denotes a worker’s potential outcome at time t0 had she been exposed between study entry
and time t0 − 1 according to rule d̄θ,t0−1. Specifically, following the Neyman-Rubin model
[49], for d̄t ∈ (d̄0,t, d̄1,t), the counterfactual Yd̄t−1

(t) is the outcome an individual would have
at time t if, possibly contrary to fact, they had exposure assigned according to rule d̄t−1. For
notational convenience we will denote Yd̄t−1

(t) as Yd̄(t).

2.2.7 Identifiability

Interventions are defined with respect to counterfactual outcomes of interest. The proba-
bility distribution of the counterfactual Yd̄(t) is called the post-intervention distribution of
Y . Under the sequential randomization assumption and the positivity assumption, Yd̄(t)
and Y d̄(t) have the same probability distribution. Formally, the assumptions required for
identifiability are as follows:

Sequential randomization assumption.

A(k) ⊥⊥ Pa(A(k)) for k = 1, . . . , K.

Positivity assumption.

P0

(
A(k) = dk(L̄(k))|L̄(k), Ā(k − 1) = d̄k(L̄(k − 1))

)
> 0 almost everywhere.

Informally, the sequential randomization assumption states that at each time point k,
all common causes of the L and A nodes are measured and included in the dataset. The
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positivity assumption states that the probability that all workers follow an intervention
determined according to rule dk for k = 1, . . . , K is positive. In other words, the positivity
assumption states that some workers will experience the outcome of interest for all strata of
the covariates in the observed data.

2.2.8 Target parameters

As first demonstrated by Robins [50], under the sequential randomization and positivity
assumptions, the intervention specific means E0(Yd̄(t)) can be identified through a sequence
of recursively defined conditional expectations, the first of which takes the form:

Q̄d
L(t) = E0

(
Y (t)|L̄(t− 1), Ā(t− 1) = d̄t−1

(
L̄(t− 1)

))
.

This regression corresponds to the regression of Y (t) on the past covariates and interven-
tion nodes, performed among the population of treatment regimen followers, i.e., evaluated at
the values of the intervention nodes that would have been assigned by applying the dynamic
rule d̄t. The quantity Q̄d

L(t) is then regressed in reverse chronological order on covariates and

intervention nodes set by d̄t up to time t− 2, t− 3, . . . , 0. Specifically, for t = k − 1, . . . , 1:

Q̄d
L(t) = E0

(
Q̄d
L(t+1)|L̄(t− 1), Ā(t− 1) = d̄t−1

(
L̄(t− 1)

))
.

When k = 0 the results is a final constant E0(Yd̄(t)) = Q̄d
L(0) = E0

(
Q̄d
L(1)|L(0)

)
. Under

the stated assumptions, the distribution of the counterfactual outcome Yd̄(t) is equal to the
distribution of the observed outcome under intervention, Q̄d̄

L(0), which is estimated from the

observed data [36, 51].

The causal parameter of interest is the cumulative incidence of the outcome for each
regimen d̄t is given by P (Yd̄(t0 + 1) = 1). The parameter of interest is then defined as the
difference between the cumulative incidences at time t0 associated with the regimens d̄1,t0

and d̄0,t0 :
ψRD = P

(
Yd̄1

(t0 + 1) = 1
)
− P

(
Yd̄0

(t0 + 1) = 1
)
.

2.3 Results

Our analytic cohort consisted of 33,063 workers. During the 25-year follow-up we identified
466 incident colon cancers. Table 2.1 compares the characteristics of the study population
at baseline, in 1985. Colon cancer cases were more likely to be women, black, and older at
the time of their hire than non-cases. Approximately 8% of the cases were actively employed
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at the time of their colon cancer diagnosis. The mean age at diagnosis was 68.2 years (SD
= 10.3 years). Workers diagnosed with colon cancer had a shorter mean follow-up, longer
mean duration of employment, and were more likely to work in Plant 1 at baseline compared
to their healthy counterparts. In addition, workers diagnosed with colon cancer were more
likely to have been exposed at baseline, and had higher cumulative exposure to all three fluid
types compared to non-cases.

Incident Colon Cancer
Cases

Non-cases

N 466 32597
Person-year contribution, 1985− 2009 6185 685850
Censored (Death), n (%) – 35.25
Duration of follow-up, mean (SD) 13.27 (6.91) 21.04 (6.81)
Age at hire, mean (SD) 32.75 (9.13) 29.25 (7.98)
Female, (%) 14.16 13.58
Black, (%) 25.11 18.77
Age at diagnosis, mean (SD) 68.21 (10.3) –
Actively employed at diagnosis, (%) 7.73 –
Covariates at baseline (1985)
Age, mean (SD) 55.94 (11.63) 46.24 (14.07)
Duration of employment, mean (SD) 18.19 (10.08) 14.03 (8.69)
Active at work, (%) 46.78 58.71
Active workers in plant 1, (%) 29.82 18.43
Active workers in plant 2, (%) 30.28 40.67
Active workers in plant 3, (%) 39.91 40.84
Ever exposed, (%)
Straight 41.85 28.46
Soluble 70.17 48.37
Synthetic 18.24 13.51

Cumulative exposure among exposed person-years (
mg

m3
year), median (IQR)

Straight 1.33 (0.36 - 6.35) 0.93 (0.26 - 3.79)
Soluble 8.63 (2.77 - 18.3) 5.90 (2.13 - 14.74)
Synthetic 1.43 (0.29 - 3.54) 0.89 (0.24 - 2.42)

Annual Exposure (
mg

m3
) during exposed person years of follow-up, median (IQR)

Straight 0.10 (0.04 - 0.36) 0.07 (0.03 - 0.32)
Soluble 0.37 (0.18 - 0.60) 0.27 (0.16 - 0.47)
Synthetic 0.04 (0.02 - 0.13) 0.04 (0.02 - 0.12)

Table 2.1: Characteristics of the United Autoworkers-General Motors (UAW-GM) study
population.

Crude Kaplan-Meier and TMLE survival curves comparing the experience of workers
under the two exposure regimens for each type of MWF are presented in Figures 2.1a-2.3b.
Kaplan-Meier survival estimates for all three fluid types (Figures 2.1a, 2.2a, 2.3a) indicate
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similar survival among exposed and unexposed workers during the first few years of follow-
up, with survival among workers exposed to synthetic MWFs exceeding that of unexposed
workers. Exposed workers had poorer survival for all three fluid types during the second
half of the follow-up, and the difference in survival increased over time. Of note, while both
crude and TMLE estimates indicate poorer survival for exposed workers, adjustment for
time-varying confounding via TMLE resulted in greater survival differences (Figures 2.1b,
2.2b, 2.3b).

Table 2.3 presents, the number of workers at risk at the start of the year each year, as well
as the number of workers that were right censored (died) and diagnosed with colon cancer
during that year. The risk differences comparing the cumulative incidence of colon cancer
as predicted for a cohort exposed above the cutoff to the cumulative incidence for that same
cohort exposed below the cutoff while at work are also presented in Table 2.3. Cumulative
incidences for each exposure group and year of follow-up are provided in Table 2.2. Overall,
exposure to straight MWFs resulted in higher cumulative incidence of colon cancer as
reflected by positive risk difference estimates. Estimates reached statistical significance in
the last year of follow-up. Specifically, we estimated that the 25-year cumulative incidence
of colon cancer would be approximately 3.80% higher if workers were always exposed above

the 0.100
mg

m3
cutoff than if the same workers had always been exposed below the cutoff while

at work (RD = 0.038, 95% CI = 0.022 to 0.054).

Exposure to soluble MWFs was also associated with increased risk of colon cancer. We
estimated that the 25-year risk difference comparing a cohort of workers always exposed

above the 0.369
mg

m3
cutoff, to the same cohort of workers always exposed below the cutoff

while at work was 0.002 (95% CI = -0.016 to 0.012) (Table 2.3).

Exposure to synthetic MWFs was also associated with higher cumulative incidence
of colon cancer among exposed workers compared to unexposed workers (Table 2.3). The
estimated 25-year risk difference was 0.008 (95% CI = 0.002 to 0.014).
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2.4 Discussion

These results provide evidence that increased risk of incident colon cancer is associated with
occupational exposure to straight, soluble, and synthetic MWFs after accounting for possible
time-varying confounders on the causal pathway.

An aerospace cohort that only examined colon and rectal cancer incidence combined
in relation to mineral oil exposure reported a statistically insignificant protective effect of
mineral oils; however, water-based MWF were not examined [8]. The reasons for the in-
consistencies between our findings and those in aerospace cohort are not clear, but suggest
that, in addition to differences in the definition of the outcome, there may be important
differences in the formulation of MWF types, processes, or work practices. While earlier
mortality studies of the UAW-GM cohort found no associations with colon cancer mortality
and MWF exposure [34], a previous analysis of the UAW-GM cancer incidence sub-cohort
reported that soluble and synthetic MWF exposure were associated with a modest increase
in the risk of colon cancer [18]. However when known carcinogenic components of soluble
and synthetic MWFs were individually examined, both biocides (HR = 1.04, 95% CI: 1.02 -
1.07) and nitrosamines (HR = 1.02, 95% CI: 1.00 - 1.04) were found to increase the risk of
colon cancer [18]. The presence of these components could describe the observed association
of synthetic and soluble MWFs and colon cancer in our analyses.

A number of potential limitations should be considered in the interpretation of these
findings. The time-varying job exposure matrix is the hallmark strength of the UAW-GM
cohort study. However, the possibility for exposure misclassification exists. Few individual-
level covariates were available for this cohort, raising concerns about residual unmeasured
confounding. Dietary factors, physical inactivity, and excess body weight are important risk
factors for colon cancer and would be confounders in this study if they were also associated
with exposure. There is no a priori reason to expect that any of these factors are likely
to vary with exposure. The assumption of causal consistency, which is subsumed by our
approach [50], may be jeopardized by the categorization of exposure; it is unlikely that all
workers would have the same outcome had they been assigned to any exposure level above
the cutoff that defined the category. Data on the use of protective equipment is not available
for this group. A last limitation of the proposed work is the assumption of a unique latency
period of 15 year for all workers, when in fact latency periods may vary across individuals
[52].

In addition to the aforementioned limitations this work has several strengths. A feature
of the UAW-GM cohort is that follow-up continues past employment termination. As unem-
ployed workers cannot be exposed, the data contains subject-times in which the probability
of exposure is 0, resulting in a violation of the positivity assumption. This has been used
as a justification for the use of G-estimation of accelerated failure time models in occu-
pational epidemiology [53, 54], which do not rely on the positivity assumption. However,
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G-estimation is more appropriate for commonly occurring outcomes (e.g., heart disease or
all-cause mortality) compared to relatively rare events such as incident cancers [54]. Instead,
we used an approach that allows us to estimate causal parameters of dynamic interventions
[55], interventions that assign exposure in response to a subject’s covariate values, such as her
employment status. The causal effects of such interventions have been assessed in few simu-
lated or applied examples in the fields of cancer and occupational epidemiology [56–58]. The
prospective design of the UAW-GM study precludes recall bias. Its large size and long period
of follow-up provide ample statistical power. The availability of comprehensive quantitative
exposure levels is one of the strengths of this analysis. Another strength is the availability
of data on intermittent time-off work, which was used as a time-varying health surrogate.
The use of cross-validated ensemble learners [41] improved model fit possibly reducing bias
in comparison with main term logistic models. The small number of time-varying covariates
resulted in limited positivity violations since few combinations of covariates were predictive
of exposure status.

Our analysis is the first to support a possible causal relationship between MWFs, par-
ticularly straight fluids, and incident colon cancer. Given the ubiquity of exposure to these
chemicals, lowering occupational limits may prevent a large number of colon cancers world-
wide. By estimating the risk reduction associated with lowering occupational exposure limits
for specific types of MWFs, we provide a public health framework for our findings.
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Chapter 3

Drivers of Biased Effect Estimates in
Left Filtered Data

3.1 Introduction

Longitudinal studies of occupational disease often follow participants prospectively, identify-
ing events of interest as they occur. Ideally, all study participants would be enrolled at hire.
However, in many occupational cohort studies the follow-up period begins long after workers
were hired, subjecting these studies to bias from a number of sources. Left truncation oc-
curs when individuals who have already experienced the event of interest are excluded from
the study [59]. Left censoring occurs when a subject has experienced the event of interest
prior to study entry, but its exact timing may be unknown [59]. Left filtering refers to a
situation in which not only the timing, but even whether the event has occurred at all, is
unknown. The latter is the case for incident cancers in the United Autoworkers – General
Motors (UAW-GM) cohort study.

The details of the UAW-GM study have previously been described [16, 27]. Briefly,
the cohort consists of approximately 46,000 workers hired from 1938 until 1982 in three
automotive manufacturing plants in Michigan where workers were exposed to metalworking
fluids (MWFs). MWFs are complex mixtures of mineral oils and chemicals, including several
known or suspected carcinogens [16–18, 27–29]. Exposure and work history were recorded
from hire until 1994. However, the reporting of incident cancers started in 1985, when the
Michigan Cancer Registry was established, and ended in 2009. Studies of incident cancers
in the UAW-GM cohort have included the sub-cohort of workers who were alive in 1985
[16–20]. Incident cancer events are left filtered among this sub-cohort, since workers who
were diagnosed before 1985 are included in the follow-up, but not eligible to become primary
incident cancer cases. In addition, the sub-cohort may represent a biased sample of the full
cohort, particularly in the presence of the healthy-worker survivor effect (HWSE).
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Time-varying confounding affected by prior exposure and selection bias have long been
identified as two potential sources of the HWSE [60]. Time-varying confounding affected by
prior exposure occurs if a covariate is both a confounder of the exposure-outcome relationship
and lies on the causal pathway between earlier exposure and the outcome. Health status, for
instance, may both be affected by past exposure and predict future exposure. It may also
be associated with the outcome of interest if some workers terminated employment because
they were ill [5]. Selection bias occurs because the sub-cohort alive in 1985 represents a
sample of survivors drawn from a target population of all workers initially hired. One of
the ways in which selection bias may perpetuate itself is if workers who are more susceptible
to the adverse health effects of an exposure experience the outcome of interest, die, or self-
select out of the workforce more rapidly than the less susceptible [13]. Effect estimates
generally attenuate with follow-up time as the more susceptible workers leave the cohort
[13]. Under this causal structure, it is conceivable that prior UAW-GM analyses based on
the sub-cohort of workers alive in 1985 may have underestimated the true effect of MWF
exposure. In addition, many of the previous analyses have used traditional methods, such
as Cox regression, which rely on the conditional independence of the time to the event of
interest and time to right censoring. Right censoring occurs when a participant has not yet
experienced the event of interest at study end [59]. The latter assumption would be violated
if workers with unreported (latent) cancer diagnoses were at higher risk of death.

A quantitative assessment of the bias introduced by analytical approaches in the presence
of left filtering has not been carried out in the context of the healthy-worker survivor effect.
In fact, an informal review of the literature yielded no previous studies proposing estimation
approaches in analogous settings. Given that the National Institutes of Health (NIH) list over
50 disease registries in the U.S. alone, one might anticipate many studies with a secondary
follow-up imposed on an existing cohort. To address this gap in the literature, we use a
simulation study that assesses the impact of left filtering in workplace studies.

3.2 Methods

3.2.1 Data description and notation.

To understand how the exposure-response relationship estimated in the subset of workers
alive in 1985 may differ from that in the full UAW-GM cohort, we simulated data in which
incident events were observed from hire until death or end of follow-up. We refer to this
underlying data structure as the full data or the full cohort, and denote it by X. A schematic
of the full data is presented in Figure 3.1A. We additionally simulated the observed data O,
in which (as in UAW-GM) incident cancers were reported only after the establishment of the
cancer registry. In Figure 3.1B we present the underlying structure of the observed data. In
Figure 3.1C we present the data we actually observe. We denote the time from hire until a
cancer diagnosis, the event of interest, by T . C denotes the time to right censoring, defined
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as the time from hire till death or end of follow-up. The time from hire to the start of the
cancer registry is denoted by C∗.

Year 20 

1
2

3

Registry Start/Year 0 

4

A. 

Year 20 

1
2

3

Year 0 

4

B. 

Registry Start 

Year 20 

1
2

3

Year 0 

4

C. 

Registry Start 
at	

Latent Cancer 
Observed Cancer 
Death 
Administrative EOF 

Figure 3.1: Full data (A). The registry started before all workers were hired, and all
incident cancers (workers 1, 2, and 4) are known. Underlying structure of the observed data
(B): the registry started after all workers were hired, and latent cancers that occurred prior
to its start (workers 2, and 4) are unknown. The observed data (C): worker 1 is a known
incident cancer case; workers 2 and 4 are considered non-cases.

For each worker we simulated a set of measured baseline covariates W , an indicator of
susceptibility to exposure-related effects S, and a set of time-varying covariates. For each
year t, we simulated N(t): an indicator of active employment status; H(t): an indicator
of a diagnosis of an adverse health event, such as a chronic health condition; E(t): the
exposure node; and D(t): an indicator of death (right censoring). Workers who terminated
employment could not become actively employed at a later time. In addition, once diagnosed
with an adverse health event, workers were assumed to experience it until the end of follow-
up. E(t) was set to 1 if a worker was exposed to the occupational hazard under study during
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year t, and 0 otherwise. D(t) = I(t > C) was set to 1 if a worker died before the end of year
t, and 0 otherwise. Next, we define Y ∗(t) = I(t ≥ T ) as the indicator of a cancer diagnosis
(whether or not it was observed) on or before year t, and Y (t) as an indicator of a cancer
diagnosis reported in the registry (observed cancer diagnosis). Note that while Y (t) and
Y ∗(t) are always equivalent in the full data, in the observed data they are equivalent only
if the cancer was first diagnosed after the start of the cancer registry (i.e., if T ≥ C∗). A
bar over a variable denotes the history from baseline up to year t. In sum, we assumed the
following full data structure on n independent and identically distributed (iid) units in X:

Xi(t) =
(
C∗
i ,Wi, Si, H̄i(t), N̄i(t), Ēi(t), D̄(t), Ȳ ∗

i (t) = Ȳi(t)
)
.

Since incident cancers were reported from hire, C∗ = 0 for all subjects in the full data.
The data structure on each unit in O is given by:

Oi(t) = (C∗
i ,Wi, H̄i(t), N̄i(t), Ēi(t), D̄i(t), Ȳi(t)).

While Y ∗(t) is truly of interest, in the observed data we only get to measure its proxy,
Y (t). Of note, for some individuals i in the observed data we observe the exact failure time
(C∗

i < Ti ≤ Ci), while for others the failure time is right-censored (C∗
i < Ci < Ti). Since

incident cancer events occurring prior the establishment of the registry are left filtered and
the ones occurring after the end of follow-up are right censored, the observed data is both
left filtered and right censored (i.e., C∗

i < Ti < Ci) [22].

3.2.2 Causal model.

We used the non-parametric structural equation model (NPSEM) framework [61, 62] to
construct the following causal model, denoted as MF :

C∗ = fC∗(UC∗)

W = fW (UW )

S = fS(US)

H(k) = fH(k)(H(k − 1), UH(k))

N(k) = fN(k)(W,N(k − 1), H(k), A(k − 1), UN(k))

A(k) = fA(k)(W, Ā(k − 1), N(k), UA(k))

Y ∗(k) = fY ∗(k)(C
∗,W, S,H(k), Ā(k), UY ∗(k))

Y (k) = fY (k)(C
∗, Y ∗(k))

for k from 1 to K, the maximum follow-up. The full cohort was generated according toMF .
U =

(
UC∗ , UW , US, UH(k), UN(k), UA(k), UY ∗(k)

)
denotes the set of random background factors

that determine the values of

(C∗,W, S,H(k), N(k), A(k), Y ∗(k), Y (k))
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according to the deterministic functions(
fC∗ , fW , fS, fH(k), fN(k), fA(k), fY ∗(k), fY (k)

)
.

Each equation reflects assumptions about how the data were generated by Nature [55].
Changing or intervening on one equation does not affect the remaining equations. The
background factors U are assumed to be jointly independent in this particular model. A
causal effect is defined in terms of the joint distribution of the observed data under an
intervention on one or more of the structural equations.

3.2.3 Simulated data.

Data were simulated to reflect two aspects of the healthy-worker survivor effect, (i) time-
varying confounding affected by prior exposure, and (ii) heterogeneity in susceptibility to
exposure-related effects. Aside from time since hire to the start of the cancer registry, all
covariates were Bernoulli (B) random variables with a probability defined as a logit function
of selected covariates. The full data was generated according to the following formulas:

Random Errors. (UN(t), UE(t), UD(t), UY (t)) ∼ Uniform[0, 1]

Baseline Covariates. S = B(pS),W = B(pW ), C∗ = 0.

Health Status. If H(t− 1) = 1 then H(t) = 1. Otherwise, H(t) ∼ B(pH).

At work. If N(t− 1) = 0 then N(t) = 0. Otherwise,

N(t) ∼ B
{
logit(βN0 + βNWW + βNHH(t) +

[
βNEE(t− 1)

]
I(t > 1) + UN(t))

}
.

Exposure. If N(t) = 0 then E(t) = 0. Otherwise,

E(t) ∼ B
{
logit

([
βE0 + βEWW

]
I(t = 1) +

[
βEEE(t− 1)

]
I(t > 1) + UE(t)

)}
.

Right Censoring. If D(t− 1) = 1 then D(t) = 1. Otherwise,

D(t) ∼ B

{
logit

(
βD0 + βDWW + βDĒ Ē(t− 1) +

[
βDȲ

t−1∑
i=1

Y ∗(i)

]
I(t > 1) + UD(t)

)}
.

Outcome. If Y ∗(t− 1) = 1 then Y ∗(t) = 1. Otherwise,

Y ∗(t) ∼ B
{
logit

(
βY

0 + βY
WW + βY

EE(t) +
[
βY
Ē Ē(t− 1)

]
I(t > 1) + βY

HH(t) + βY
S SĒ(t) + UY (t)

)}
.

Y (t) = Y ∗(t).
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We considered five simulation scenarios in order to evaluate the impact of changing
the parameters of the data generating distribution would have on the bias induced by left
filtering. In the first set of simulations we present the base case (scenario 1), in which 10%
of the workers are susceptible to exposure-related effects, the cumulative incidence of the
outcome is comparable to the life-time risk of the most common cancers (approximately
12%), the log-odds ratio of mortality for each additional year since cancer diagnosis, βD

Ȳ
,

is 0.5, and moderate time-varying confounding affected by prior exposure is present. In
scenario 2 we evaluate the effect of higher cancer-related mortality, by increasing the value
of the coefficient βD

Ȳ
. In scenario 3 we evaluate the impact of increasing the proportion of

susceptible workers (pS). In scenario 4 we evaluate how increasing the magnitude of time-
varying confounding affects bias by increasing the effects of the adverse health status on
leaving work (βNH ), and cancer incidence (βYH). In scenario 5 we increased disease incidence
by increasing βY0 . The values of all coefficients for each set of simulations scenarios are
presented in Table 3.1.

The observed data were generated as a function of the full data. Time from hire to the
establishment of the cancer registry C∗, was generated as a uniformly distributed random
variable ranging from 0 to 20. All indicators Y (t) were set to 0 for those workers who
developed an underlying cancer event (Y ∗(t) = 1, t ≤ C∗) prior the start of the registry, and
the true cancer diagnoses indicators Y ∗(t) were dropped. All datasets were simulated using
the simcausal R package.

3.2.4 Interventions, counterfactuals, and target parameters.

UnderMF , each component of the data structure is generated as a deterministic function of
its parents and the exogenous errors U . That is, we replace the intervention nodes Ā(k) in
fY (k) with those set by our rule, and previous H(k), N(k) nodes by their previously generated
counterfactual values. The counterfactual values of Y (t) are then generated sequentially for
each time point k. Following the Neyman-Rubin model, the counterfactual Yd̄(k) is the
outcome an individual would have at time k if, possibly contrary to fact, they had exposure
assigned according to rule d̄.

Since workers are occupationally exposed only while employed, we focus on the causal
effects of dynamic treatment regimens, which assign exposure according to a worker’s employ-
ment status. More formally, we define d1 as an intervention that sets the right censoring node
D(k) to 0, and exposure node E(k) to 1 while a worker is actively employed (while N(k) is 1).
However, once the value N(k) changes to 0, d1 then sets E(k) to 0. Analogously, d0 is a
dynamic intervention that assigns workers to no exposure while employed and prevents right
censoring. The counterfactual outcome Yd̄1

(k) under exposure rule d1 corresponds to the
outcome that would have been observed if, possibly contrary to fact, a subject were always
exposed while employed and remained uncensored. Similarly, the counterfactual outcome
Yd̄0

(k) corresponds to the outcome that would have been observed at time point k if, possi-
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Coefficient Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

pS 0.10 0.10 0.20 0.10 0.10

pW 0.20 0.20 0.20 0.20 0.20

pH 0.30 0.30 0.30 0.30 0.30

βN
0 3.00 3.00 3.00 3.00 3.00

βN
W -0.10 -0.10 -0.10 -0.10 -0.10

βN
H -0.50 -0.50 -0.50 -1.50 -0.50

βN
E -1.50 -1.50 -1.50 -1.50 -1.50

βE
0 -1.50 -1.50 -1.50 -1.50 -1.50

βE
W -0.50 -0.50 -0.50 -0.50 -0.50

βE
E 2.50 2.50 2.50 2.50 2.50

βD
0 -5.50 -5.50 -5.50 -5.50 -5.50

βD
W 1.00 1.00 1.00 1.00 1.00

βD
Ē

0.50 0.50 0.50 0.50 0.50

βD
Ȳ

0.50 2.00 0.50 0.50 0.50

βY
0 -7.00 -7.00 -7.00 -7.00 -6.00

βY
W 2.00 2.00 2.00 2.00 2.00

βY
E 0.25 0.25 0.25 0.25 0.25

βY
Ē

0.20 0.20 0.20 0.20 0.20

βY
H 0.70 0.70 0.70 1.70 0.70

βY
S 0.30 0.30 0.30 0.30 0.30

Table 3.1: Coefficients of the data generating equations by scenario. For each scenario we
indicate in bold the coefficient that differs from the base case (scenario 1).

bly contrary to fact, a subject were never exposed while at work and remained uncensored.
The corresponding parameters for these interventions were the mean survival times, under
each regimen. The exposure effect was measured by the difference between these quantities.

3.2.5 Estimating survival and evaluating bias.

Bias was measured as the difference between true exposure effects evaluated in the full data
and the estimated exposure effects in the observed data. To determine the true exposure
effects, for each scenario we generated a dataset of million workers followed for a maximum
of 20 years according to the equations for the full data. We computed the counterfactual
survival function of the full data under each of the regimens discussed in the previous section.
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The survival function S(t) expresses the probability that a person has not yet experienced
the event of interest at the end of time point t, i.e. P (T > t). In the previous section we
state that we intervened on the structural equation model to generate the counterfactual
outcomes Yi,d̄1

(t), Yi,d̄0
(t) for all workers i = 1, . . . , n at time point t = 1, . . . , K. The

respective counterfactual survival curves are given by:

S0
d̄1

(t) = 1− E
(
Yi,d̄1

(t)
)
,

S0
d̄0

(t) = 1− 1− E
(
Yi,d̄0

(t)
)
.

Expected time to a cancer diagnosis, or expected (mean) survival under each regimen, was
computed as the area under the respective survival curve,

µ0
d̄ =

K∑
0

S0
d̄(t)dt.

Counterfactual exposure effect was measured in terms of the difference in the expected
counterfatual survival of workers always exposed while at work and workers that were never
exposed while work, given by:

ψ0 = µ0
d̄1
− µ0

d̄0
.

Parameters of full-data counterfactuals represent the truth against which estimates are
compared. In addition to a full dataset, for each scenario we simulated 500 observed datasets
consisting of 50,000 workers. For each dataset, we estimated survival curves for workers
following the regimens of interest using an adjusted Kaplan-Meier estimator [21], which
adjusts for time-varying confounding affected by prior exposure, but ignores left filtering.

Since workers in the observed data cannot have an observed cancer diagnosis prior to
their individual C∗, we used a delayed-entry adjusted Kaplan-Meier estimator to compute
the survival in each of the simulated observed datasets [21, 22]. In addition to allowing
workers to enter risk-sets at their C∗, the estimator adjusted for time-varying confounding
affected by prior exposure and dependent right censoring [21, 22]. Details of the estimator
and its implementation are provided in the next section.

3.2.6 The delayed-entry adjusted Kaplan-Meier estimator.

As in the previous section, let Sd̄(t) denote the survival function for workers following regimen(
d̄1, d̄0

)
∈ d̄ among a group of n workers. Allowing ties, at time t = 1, . . . , K there are are

cd̄(t) incident cancer diagnoses out of Rd̄(t) workers at risk among regimen d̄ followers. Since
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workers are at risk of having a reported incident cancer diagnosis only after the establishment
of the registry,

cd̄(t) =
n∑
i

I (Yi(t) = 1)× I
(
Āi(t) = d̄

)
× I (t ≥ C∗

i ) ,

where I (Yi(t) = 1) is an indicator that worker i is diagnosed with cancer at time t, I
(
Āi(t) = d̄

)
is an indicator that worker i is following regiment d̄ at time t, and I (t ≥ C∗

i ) indicates that
the registry was established before t. The number of workers at risk at t is given by

Rd̄(t) =
n∑
i=1

I
(
Āi(t) = d̄

)
× I (t ≥ C∗

i ) .

Since cumulative exposure is associated with both the outcome of interest (incident can-
cers) and death (right censoring event), our estimator was adjusted for dependent censoring
as well as non-random treatment assignment by weighting each subject at each time point
by a weight that was inversely proportional to their probability of following rule d̄ (i.e., be-
ing always or never exposed while at work and remaining uncensored). Inverse-probability
estimators correct for informative censoring and confounded treatment assignment by giving
extra weight to uncensored subjects who followed the regimen of interest. Details on the
estimation of the weights are provided in the next section. Denoting wi,d̄(t) as the weight of
subject i at time point tj, the weighted number of events and the weighted number at risk
following regimen d̄ are defined as

cwd̄ (t) =
n∑
i

wi,d̄(t)× I (Yi(t) = 1)× I
(
Āi(t) = d̄

)
× I (t ≥ C∗

i ) ,

and

Rw
d̄ (t) =

n∑
i=1

wi,d̄(t)× I
(
Āi(t) = d̄

)
× I (t ≥ C∗

i ) .

The following formula defines the delayed-entry adjusted Kaplan-Meier estimator for follow-
ers of regimen d̄:

Ŝd̄(t) =

{
1 if t < t1∏

j≤t

[
1− cw

d̄
(j)

Rw
d̄

(j)

]
if t1 ≤ t

if Rw
d̄

(t) > 0, and t1 denotes the first failure time. Note that the current estimator differs
from the adjusted Kaplan-Meier estimator proposed by Xie and Liu 14 in two ways. First, our
equations for computing the number of incident events and subjects at risk incorporated an
indicator that the registry was in place. Secondly, in addition to adjusting for confounding
of the exposure-outcome relationship, we additionally adjusted for dependent censoring by
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incorporating the probability of remaining uncensored in the inverse probability weights.
The estimated exposure effect is given by ψ̂ = µ̂d̄1

− µ̂d̄0
, where µ̂d̄ denotes the delayed-entry

adjusted Kaplan-Meier estimated mean survival. Estimation of the survival functions for
the observed data was carried out using the stremr R package [45].

3.2.7 Practical implementation of the inverse-probability weights

In order to estimate the weights wi,d̄(t), we fit two logistic regression models at each time
point:

logit [P (E(t) = 1|W,D(t) = 0, N(t) = 1, E[t− 1])] = α0 + α1W + α2E(t− 1),

logit
[
P
(
D(t) = 1|W,D(t− 1) = 0, Ē(t− 1)

)]
= β0 + β1W + β2Ē(t− 1).

The first model was fit among workers alive and at work at each time point, and was
then used to estimate each employed worker’s probability of exposure at t. We denote this
probability as p̂i,e1(t). The predicted probability that a worker was always exposed at t was
given by the cumulative product of the probabilities of being exposed at all time points up
to t,

p̂i,ē1(t) =
t∏

j=1

p̂i,e1(j).

The predicted probability that a worker was always unexposed at t is:

p̂i,ē0(t) =
t∏

j=1

(1− p̂i,e1(j)) .

The second model was used to estimate the conditional probability that a worker was
censored during time point t, given that they were alive at the end of the previous time
point (Di(t− 1) = 0). We denote this probability as p̂i,c1(t). The probability that a worker
remained uncensored up to t is given by

p̂i,c̄0(t) =
t∏

j=1

(1− p̂i,c1(j)) .

For each worker i and time point t, we computed the weights

wi,d̄1
(t) =

1

p̂i,ē1(t)× p̂i,c̄0(t)
,
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and

wi,d̄0
(t) =

1

p̂i,ē0(t)× p̂i,c̄0(t)
.

All analyses were performed in the R programming language [46].

3.3 Results

Plots of true and estimated survival curves for each of the 5 scenarios we considered are
presented in Figure 3.2. The adjusted Kaplan-Meier estimated curves consistently overes-
timate the true (counterfactual) survival for both regimens and across all scenarios. This
estimator controls for time-varying confounding affected by prior exposure, but ignores left
filtering. Adjusting for time-varying confounding and taking into account left filtering, the
delayed-entry Kaplan-Meier results in near unbiased estimates of exposure effects in four of
the fives scenarios that we considered. Bias increased when disease incidence is increased to
25% in scenario 5.

In Table 3.2 we present the subset of parameters of the data-generating distribution that
vary across simulation scenarios. In addition, Table 3.2 presents the true mean survival for
workers following each of the regimens of interest, and exposure effects, evaluated in the full
data. Exposure effects are expressed in terms of the number of years by which exposure
reduced the mean survival. The mean estimated survival for each regimen and estimator,
as well as the respective exposure effects, averaged across 500 simulated datasets of 50,000
workers, are also provided in Table 3.2. Our measure of bias indicates the number of years
by which exposure effect estimates under- or overestimate the true effect of exposure. For
example, the adjusted Kaplan-Meier exposure effect underestimates the true harmful effects
of exposure by more than half a year (0.56 years) in scenario 1. However, a bias measure of
-0.04 indicates that the delayed-entry Kaplan-Meier exposure effect overestimates the true
harmful effect of exposure by approximately 0.04 years (15 days) over the 20-year follow-
up. The delayed-entry Kaplan Meier estimates had greater variability than the adjusted
Kaplan-Meier estimates across all scenarios.

Scenario 1 (the base case) presents a setting in which 12% of the worker population
were susceptible to exposure-related effects on incident cancers, and the 20-year cumulative
incidence of the outcome under study is approximately 12%. Bias remained practically
unchanged (-0.05 years in scenario 2) when cancer-related mortality was increased, or when
the proportion of susceptible workers was doubled (-0.04 years in scenario 3). We evaluated
the impact of the confounding effect of health status by simultaneously increasing the effects
of poor health on leaving work and on the outcome of interest (scenario 4); bias increased
slightly, from -0.06 years in the base case to -0.12 years in this scenario. Lastly, we evaluated
the effect of increasing the incidence of the outcome (scenario 5); bias was largest under this
scenario (-0.21 years).
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Scenario 5: Increased Cancer Incidence

Scenario 4: Increased Time−Varying Confounding

Scenario 3: Increased Proportion of Suceptibles

Scenario 2: Increased Cancer−Related Mortality

Scenario 1: Base Case
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Figure 3.2: True survival curves (solid), and estimated adjusted Kaplan-Meier (dashed),
and delayed-entry adjusted Kaplan-Meier (dash-dot) survival curves among cohorts of work-
ers that are never exposed (blue) and always exposed (red) while at work. Scenario 1
represents the base case. Scenario 2 evaluates the role of higher cancer-related mortality.
In scenario 3 the proportion of susceptible workers is increased. The magnitude of time-
varying confounding affected by prior exposure is increased in scenario 4. Cancer incidence
is increased in scenario 5.
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0
.5

2
.0

0
.5

0
.5

0.
5

C
o
effi

ci
en

t
fo

r
h

ea
lt

h
st

a
tu

s
on

th
e

d
is

ea
se

,
β
Y H

0
.7

0
.7

0
.7

0
.7

0.
7

C
o
effi

ci
en

t
fo

r
h

ea
lt

h
st

a
tu

s
on

le
av

in
g

w
or

k
,
β
N H

0
.5

0
.5

0
.5

0
.5

0.
5

C
u

m
u

la
ti

ve
in

ci
d

en
ce

in
th

e
fu

ll
d

a
ta

1
2
.0

1
2
.0

1
3.

0
21

.5
25

.0
S
im

u
la
ti
o
n
re
su
lt
s
in

ye
a
rs

T
h

e
tr

u
th

M
ea

n
su

rv
iv

al
if

a
lw

ay
s

ex
p

o
se

d
w

h
il

e
at

w
o
rk

1
7
.3

9
1
7
.3

9
17

.1
7

16
.3

1
1
5.

61
M

ea
n

su
rv

iv
al

if
n

ev
er

ex
p

os
ed

w
h

il
e

at
w

o
rk

18
.2

9
1
8
.2

9
1
8
.2

9
1
7.

38
17

.2
6

D
iff

er
en

ce
in

m
ea

n
su

rv
iv

al
(e

x
p

o
su

re
eff

ec
t)

-0
.9

0
-0

.9
0

-1
.1

3
-1

.0
6

-1
.6

5
O

b
se

rv
e
d

(r
ig

h
t

c
e
n

so
re

d
a
n

d
le

ft
fi

lt
e
re

d
)

d
a
ta

,
m

e
a
n

(S
E

)
A
d
ju
st
ed

K
a
p
la
n
-M

ei
er

M
ea

n
su

rv
iv

al
if

a
lw

ay
s

ex
p

o
se

d
w

h
il

e
at

w
o
rk

1
8
.4

4
(0

.1
6
)

1
8.

4
3

(0
.2

2)
1
8
.3

6
(0

.1
6
)

1
8.

06
(0

.0
9)

17
.7

9
(0

.2
8)

M
ea

n
su

rv
iv

al
if

n
ev

er
ex

p
os

ed
w

h
il

e
at

w
o
rk

18
.7

8
(0

.0
1
)

1
8
.7

8
(0

.0
1
)

1
8.

7
8

(0
.0

1)
18

.4
8

(0
.0

1)
18

.4
7

(0
.0

2)
D

iff
er

en
ce

in
m

ea
n

su
rv

iv
al

(e
x
p

o
su

re
eff

ec
t)

-0
.3

4
(0

.1
6
)

-0
.3

5
(0

.2
2
)

-0
.4

2
(0

.2
4
)

-0
.4

2
(0

.0
9)

-0
.6

8
(0

.2
8)

B
ia

s
0
.5

6
0
.5

5
0
.7

1
0
.6

4
0.

97
D
el
a
ye
d
-E

n
tr
y
A
d
ju
st
ed

K
a
p
la
n
-M

ei
er

M
ea

n
su

rv
iv

al
if

a
lw

ay
s

ex
p

o
se

d
w

h
il

e
at

w
o
rk

1
7
.3

5
(0

.3
1
)

1
7.

3
3

(0
.3

5)
1
7
.1

3
(0

.4
0
)

1
6.

17
(0

.1
8)

15
.3

5
(0

.4
5)

M
ea

n
su

rv
iv

al
if

n
ev

er
ex

p
os

ed
w

h
il

e
at

w
o
rk

18
.2

9
(0

.0
3
)

1
8
.2

9
(0

.0
4
)

1
8.

2
9

(0
.0

3)
17

.3
5

(0
.0

5)
17

.2
4

(0
.0

6)
D

iff
er

en
ce

in
m

ea
n

su
rv

iv
al

(e
x
p

o
su

re
eff

ec
t)

-0
.9

4
(0

.3
1
)

-0
.9

6
(0

.3
5
)

-1
.1

6
(0

.4
0
)

-1
.1

8
(0

.1
9)

-1
.8

6
(0

.4
5)

B
ia

s
-0

.0
4

-0
.0

5
-0

.0
4

-0
.1

2
-0

.2
1

T
a
b
le

3
.2

:
S
el

ec
te

d
si

m
u
la

ti
on

p
ar

am
et

er
s

an
d

si
m

u
la

ti
on

re
su

lt
s

b
y

sc
en

ar
io

.



CHAPTER 3. DRIVERS OF BIASED EFFECT ESTIMATES IN LEFT FILTERED
DATA 34

3.4 Discussion

Although worker exposures to MWFs in the UAW-GM cohort started in the 1940s, cancer
incidence prior to the establishment of the Michigan Cancer Registry in 1985 is unknown.
If the cancer incidence sub-cohort of workers alive in 1985 consists of workers who were less
susceptible to the adverse effects of MWF exposure, then it is a biased representation of the
full cohort. In this first formal evaluation of the bias introduced by left filtering, we found
that estimators that ignore left filtering lead to effect estimates that are biased downward,
and the magnitude of the bias increases with increasing incidence of the disease under study,
or with increasing proportion of susceptible workers. However, addressing left-filtering with
the proposed delayed-entry Kaplan-Meier estimator results in little bias when controlling
for time-varying confounding affected by prior exposure, at least when disease incidence is
not too high. In addition, the magnitude of bias in the latter estimator was not affected
by increases in the proportion of susceptible workers, or the magnitude of time-varying
confounding. However, bias increased when the disease incidence was doubled.

In a previous simulation study, Applebaum et al. evaluated the bias in hazard ratios
for mortality estimated in left truncated occupational cohorts in the presence of heterogene-
ity in susceptibility [15]. Those analyses did not adjust for left truncation and thus were
more analogous to our adjusted Kaplan-Meier estimates. Consistent with our current find-
ings, authors reported downward bias in exposure effect estimates in left truncated cohorts
when susceptibility with respect to exposure-related health effects varied between workers
[15]. This study extends that work in several ways. We evaluated bias in the presence of
time-varying confounding affected by prior exposure, as well as heterogeneous susceptibility.
Attentive to Hernàn’s caution against reporting a summary hazard ratio when the depletion
of susceptible results in decreasing hazard ratios over time [63], we reported full survival
curves in addition to summary measures. In addition, we have proposed an estimator (the
delayed-entry Kaplan-Meier estimator) that leads to unbiased estimates in most common
simulation scenarios, when the time of hire is assumed random (i.e., does not depend on
measured or unmeasured factors).

The depletion of susceptible subjects has also been noted as a source of selection bias
in several non-occupational applications. Selection bias explains the apparently disparate
results from studies of cigarette smoking in relation to dementia risk, where smoking is
harmful overall but appears beneficial at older ages [64]. Most smokers who are susceptible to
developing dementia due to their smoking do so at earlier ages, and thus older groups without
dementia at baseline are depleted of susceptible smokers [64]. Similarly, a recent study of
delayed lead exposure assessment in the Normative Aging Study reported increasing hazard
ratios after adjustment for loss to follow-up between initial enrollment and the bone-lead
sub-study [65]. Finally, birth cohorts are also affected in a similar manner since eligibility
is typically based on live births. Exposure–outcome effect estimates can be biased if the
exposure is associated with reduced likelihood of conception or increased fetal loss [66].
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Our work provides further evidence that, if inappropriately controlled, selective inclusion in
sub-studies of environmental and occupational exposures can substantially bias results.

Aside from left filtering, another feature of the UAW-GM cohort is that follow-up con-
tinues past employment termination. As unemployed workers cannot be exposed, the data
structure results in a violation of the positivity assumption. This has been used to justify
the application of G-estimation of accelerated failure time models in occupational epidemiol-
ogy [53, 54], as the causal interpretation of these parameters does not rely on the positivity
assumption. For rare outcomes such as cancer, however, there are alternative parameters of
realistic interventions that also avoid positivity violations in settings where follow-up extends
past employment termination. For example, a dynamic regimen that assigns exposure levels
in response to subject covariate values [55] makes it possible to define interventions under
which a worker is assigned nonzero exposures only while at work. In this study, we evaluated
causal parameters of dynamic interventions in a setting where worker follow-up continued
past employment termination. The effects of such interventions have been previously assessed
in the field of occupational epidemiology in few simulated or applied examples [56, 57, 67]. A
possible application of these workplace interventions is the estimation of the risk reduction
due to lowering occupational exposure limits below a priori determined cutoffs. A number of
methods have been developed to estimate effects of dynamic intervention from observational
data. One such method, targeted maximum likelihood estimation (TMLE) [37], uses the
efficient estimating equation framework [38, 40] to produce estimators that adjust for time-
varying confounding, are consistent under partial model misspecification (double robustness
property), and are efficient when models for treatment mechanism and outcome are correctly
specified (local efficiency) [37]. However, to our knowledge none of these approaches have
been extended to address left filtering.

In conclusion, this simulation study has demonstrated, for the first time, that left filtering
in the presence of the healthy worker survivor effect induces bias. The delayed-entry adjusted
Kaplan-Meier estimator, proposed here, is one analytic approach that appears to reduce the
bias.
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Chapter 4

Etiologic effect measures versus causal
estimates of real world workplace
interventions

4.1 Introduction

The risk of occupational hazards is often estimated from observational studies in which
exposures are not randomly assigned, but may depend on a number of factors [1–5, 10].
Intermediate health status, for example, may be predicted by past exposure, and may also
predict future exposure and outcomes. Time-varying confounding by factors in the causal
pathway between past exposure and the outcome is a key aspect of the Healthy Worker
Survivor Effect (HWSE) in observational cohort studies of occupational disease. The HWSE
is a ubiquitous process that results in the healthiest workers accruing the most lifetime
exposure while less healthy workers limit their exposure by reducing the time at work,
switching to lower exposed jobs, or altogether leaving the workforce. Driven by the HWSE,
studies may estimate null, or even protective effects of occupational hazards.

The potential outcomes framework defines causal effects as contrasts of the distributions
of counterfactual (potential) outcomes under hypothetical interventions that assign exposure
levels and may further prevent censoring [49]. Interventions that deterministically assign the
same exposure and/or censoring values to all subjects in a population are known as static
interventions [51]. For example, the causal relationship between airborne particulate matter
(PM2.5) and heart disease was inferred by contrasting the 15-year cumulative incidence of
heart disease under an intervention that exposed a cohort of active aluminum workers above
the median PM2.5, to the 15-year cumulative incidence that would have been observed under
a second intervention that exposed the same cohort below the median PM2.5 [68]. Both
interventions prevented leaving work before the age of 55, the normal age of retirement
[68]. Exposure and employment status were set rather than predicted by the past under
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these interventions. Workers, who might transfer to jobs with more or less exposure or
terminate employment as a function of their health status, were instead forced to remain at
work and receive their assigned exposure for the entire duration of the study. As a result
the exposure assignment and employment termination processes were not confounded under
these interventions. We refer to such causal contrasts that are not affected by the HWSE as
etiologic effects, since they reflect the exposure-outcome relationship in the absence of the
influence of factors that determine which workers get exposed.

Counterfactuals can additionally be defined under dynamic interventions that assign
exposure and/or censoring as a function of one’s observed past, in contrast to assigning the
same value(s) to all subjects in a population. For example, a study of diesel exhaust and
lung cancer compared the risk under a series of interventions that set occupational exposure
to hypothetical levels while workers were actively employed [56]. While exposure levels
under each intervention were determined a priori, the interventions permitted health-related
early employment termination. We refer to the latter as realistic interventions, because they
reflect the real-world self-selection of workers out of the workforce. Exposure-response under
realistic interventions is affected by the HWSE. Several recent occupational applications have
used the parametric g-formula to evaluate parameters of realistic interventions [56, 57, 67].
In contrast to etiologic interventions that aim to estimate the biologic effect of long-term,
sustained exposure, realistic interventions aim to estimate the expected disease experience
of a population under a proposed standard.

Exposure effect estimates of the two interventions can differ substantially. Consider a
workplace study where workers exposed to a high level of an occupational hazard may leave
work earlier (accumulating less exposure) than they would have if exposed at a low level.
Etiologic interventions would always result in higher risk estimates under the high exposure
scenario in this setting. It is possible that in the same study, realistic interventions may
results in lower risk estimates for the population under the lower exposure scenario. Ideally,
the choice of intervention whose effects are estimated would be motivated by the research
question. In practice, the choice is often dictated by the available data. For example, in
occupational studies where follow-up continues past employment termination, unemployed
workers have a zero probability of exposure, resulting in violations or near violations of the
positivity assumption, also known as experimental treatment assignment. The assumption
posits sufficient variability in exposure assignment within strata of confounders, and is re-
quired for identifiability of causal effects [6, 50, 60]. Etiologic effects may be non-identifiable
in workplace settings where follow-up extends past employment. In contrast, a well posed
realistic intervention may avoid positivity violations resulting in identifiable causal effects.

Moreover, the National Institute for Occupational Safety and Health (NIOSH) recom-
mended exposure limits, and Occupational Safety and Health Administration (OSHA) per-
missible exposure limits are based [69], that correspond to etiologic interventions. When
the estimation of such effects is infeasible, estimates of realistic interventions may be used
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to assess risk. It is therefore important to understand under what conditions the two ef-
fect measures are comparable, and to identify factors that drive the differences between the
two. In this simulation study we evaluated how the relationship between the two exposure-
response measures varies as a function of key drivers of the HWSE, namely: (i) the strength
of the relationship between intermediate health status and outcome, and the temporal re-
lationship between (ii) intermediate health status and leaving work, and (iii) exposure and
health status relationship.

4.2 Methods

4.2.1 Data description and notation

We denote the underlying data structure of every participant in an occupational cohort as a
realization of the random variable X. For each worker and year t of follow-up, we simulated
a set of time-dependent covariates that included W (t): an indicator of active employment
status in year t; E(t): an indicator of exposure to the occupational hazard under study
in year t; Y (t): an the indicator of a diagnosis with the outcome of interest, such as lung
cancer, on or before year t; and H(t): an indicator of poor health, such as a diagnosis with
an adverse health event or an underlying chronic condition. A bar over a variable denotes
the history from baseline. For example, Ē(t) includes the entire exposure history from year
1 to year t. In addition to time-dependent covariates, we simulated S, an indicator of a
worker’s genetic susceptibility to adverse health outcomes H(t) and Y (t). In summary, the
data on n independent and identically distributed (iid) subjects was defined as:

Xi(t) = (S, W̄i(t), Ēi(t), H̄i(t), Ȳi(t))

for i = 1, . . . , n.

4.2.2 Simulated data-generating distributions

We simulated data under five hypothetical scenarios. All covariates were generated as uni-
form random variables ranging between 0 and 1, or as Bernoulli (B) random variables with
probabilities defined as logit-linear functions of selected covariates and an error term. Only
susceptible workers were at risk of experiencing H(t) and/or Y (t) in all scenarios. In addition
we assumed that workers who terminated employment could not be hired at a later date,
and that once diagnosed with the adverse health event H(t), workers experienced it for the
remainder of follow-up.

The first three scenarios explore how the difference between etiologic and realistic expo-
sure effect measures changes as a function of the strength of the association between mediator
(H(t)) and leaving work (W (t)), one of the key relationships that drives the HWSE. In the
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base case (Scenario 1), health status has a moderate effect on the probability of leaving
work (coefficient βYH = 0.50 in the equations below). The data for each worker in this sce-
nario was generated according to the following longitudinal structural equation model [48]
for t = 1, . . . , 20 years of follow-up:

Random Errors. (UE(t), UH(t), UY (t)) ∼ Uniform[−1, 1]

Susceptibility. S ∼ B(0.50)

Exposure. E(t) = logit
(
−1.00 + 2.00× E(t− 1) + UE(t)

)
.

Health status. If H(t− 1) = 1 then H(t) = 1. Otherwise,

H(t) = logit
(
−2.00 + 0.25× Ē(t) + UH(t)

)
× I(S = 1).

Employment status. W (t) = 0 if H(t− 1) = 1. Otherwise W (t) = 1.

Outcome.

Y (t) = logit
(
βY0 + βYH ×H(t) + βYE × Ē(t) + UY (t)

)
× I(S = 1).

= logit
(
−7.00 + 0.50×H(t) + 0.40× Ē(t) + UY (t)

)
× I(S = 1).

In Scenario 2 we increased the effect of the mediator on the outcome (βYH = 3.00),
changing the equation for the outcome to the following:

Y (t) = logit
(
−7.00 + 3.00×H(t) + 0.40× Ē(t) + UY (t)

)
× I(S = 1).

The remaining equations were the same for this scenario as for the base case. The causal
relationships between the variables in the first two scenarios are also presented in the directed
acyclic graph (DAG) [47, 48] in Figure 4.1. This representation indicates that the mediator
H(1) is both a confounder of the E(2)→ Y (2) relationship in the E(2)← W (2)← H(1)→
H(2) → Y (2) pathway, and a mediator of the E(1) → Y (1) relationship in theE(1) →
H(1)→ Y (1) pathway. Susceptibility is a modifier of the effect of the exposure on these two
factors.

In Scenario 3 the adverse health event does not increase the risk of the outcome and
therefore it is not a mediator of the past exposure-outcome relationship. For example,
occupational silica exposure is known to increase the risk of both silicosis (H(t)), and lung
cancer (Y (t)) [70]. However, it is unclear whether silicosis itself is a risk factor for lung
cancer [70]. The lack of a causal relationship between the two is reflected by the absence of
an arrow between H(t) and Y (t) in Figure 4.2.
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W(2) 

H(1) 

E(1) Y(1) 

H(2) 

E(2) Y(2) 

S

Figure 4.1: DAG for scenarios 1 and 2. Health status (H(t)) and the outcome (Y (t))
are both predicted by cumulative exposure.

W(2) 

H(1) 

E(1) Y(1) 

H(2) 

E(2) Y(2) 

S

Figure 4.2: DAG for scenario 3. Health status does not predict the outcome.

While all other covariates were generated as in the base case, the outcome in this scenario
was generated according to the following equation:

Y (t) = logit
(
−7.00 + 0.00×H(t) + 0.40× Ē(t) + UY (t)

)
× I(S = 1).

Scenario 4 evaluates how the temporal relationship between the mediator and leaving work
impacts etiologic and realistic exposure effect measures. For example, while diabetes (H(t))
increases the risk of cardiovascular events (Y (t)), a number of years may pass between first
diagnosis of diabetes and the appearance of advanced diabetes symptoms that may force
workers to terminate employment. To reflect this temporal relationship, active employment
status in this scenario is predicted by adverse health events occurring 10 years prior, as
follows:

If H(t− 10) = 1 or W (t− 1) = 0 then W (t) = 0. Otherwise W (t) = 1.
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All other covariates were generated as in the base case. Causal relationships for this
scenario are presented in Figure 4.3.

H(1) 

E(1) Y(1) 

H(2) 

…

S

E(2) Y(2) W(2) E(11) Y(11) W(11) 

Figure 4.3: DAG for scenario 4. Active employment status is predicted by health status
10 years prior (H(t− 10)→ W (t)).

Lastly, in Scenario 5 we evaluated the role of the timing of the exposure-mediator re-
lationship. While cumulative exposure predicted health status and outcome in scenarios 1
through 4, here we consider an extreme setting in which only exposures in the first year of
employment predict health status. Consider susceptible workers exposed to a skin irritant
that ultimately causes melanoma. They may immediately experience an acute inflammatory
response that may itself increase melanoma risk many yars later (Figure 4.4). If all suscepti-
ble subjects develop the acute condition right away and leave work, this is a ”perfect screen”
for preventing melanoma.

W(2) 

H(1) 

E(1) Y(1) 

H(2) 

E(2) Y(2) 

S

Figure 4.4: DAG for scenario 5. Health (H(t)) is predicted by exposure in the first year
of employment. The outcome Y (t) is affected by cumulative exposure.

Health status in this scenario was generated as follows:

H(1) =
(
−4.00 + 7.00× E(1) + UH(1)

)
, H(t > 1) = H(1).
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Remaining covariates were generated as in the base case.

4.2.3 Interventions and counterfactuals

As previously noted, our realistic interventions are dynamic interventions that assign ex-
posure according to employment status. Specifically, we define dr,1 as an intervention that
sets the exposure node E(t) to 1 while a worker is actively employed (W (t) = 1). However,
once the worker terminates employment (W (t) = 0), dr,1 sets E(t) to 0. The counterfactual
outcome Yi,d̄r,1(t) corresponds to the outcome that worker i would have in year t if they were
always exposed while at work. Intervention dr,0 assigns workers to no exposure before and
after employment termination. We denote Yi,d̄r,0(t) as the counterfactual outcome for worker
i at year t under the latter intervention.

Our etiologic interventions {de,1, de,0} are static interventions that set binary exposure
E(t) to either 1 or 0, and W (t) to 1 for all years. We denote Yi,d̄e,1(t) and Yi,d̄e,0(t) as the
counterfactual outcomes that worker i would experience in year t if they were always at work,
and respectively always exposed or always unexposed. Counterfactual outcomes under each
intervention were generated by setting nodes E(t),W (t) in the system of equations above as
specified by our interventions, sequentially for each subject i = 1, . . . , n and year of follow-up
t = 1, . . . , 20.

4.2.4 Exposure Effects

Denoting d̄ ∈
(
d̄r,1, d̄r,0, d̄e,1, d̄e,0

)
as one of the four regimens of interest, we computed coun-

terfactual survival curve for each regimen in d̄. The survival function S(t) expresses the
probability that a worker has not yet experienced the outcome of interest by the end of year
t:

S0
d̄(t) = 1− E

(
Yi,d̄(t)

)
.

Expected time to the outcome, or expected (mean) survival under each regimen d̄ was
computed as the area under the respective survival curve,

µ0
d̄ =

∫ K

0

S0
d̄(t)dt.

The realistic exposure effect ψ0
r = µ0

d̄r,1
− µ0

d̄r,0
, contrasts the mean survival of a cohort that

is always exposed while at work to the mean survival if the same cohort were never exposed
while at work: The etiologic exposure effect ψ0

e = µ0
d̄e,1
− µ0

d̄e,0
, measures the difference in

the mean survival of a cohort that is always at work and exposed, to the mean survival if
the same cohort is always at work but unexposed. In order to contrast the effects of the
two intervention classes, we computed the ratio of the etiologic and realistic exposure effect
measures.
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For each simulation scenario we generated 200 datasets ofn = 50, 000 workers. Survival,
exposure effect estimates, and their ratio for each year of follow-up were averaged across the
datasets.

All datasets were simulated using the simcausal R package [71]. All analyses were per-
formed in the R programming language [46].

4.3 Results

In Table 4.1 we present the distribution of all covariates for each scenario and year of follow-
up, among workers following the realistic intervention dr,1 under which they are always
exposed while at work. In the last year of follow-up (t = 20), the proportion of susceptible
workers is smaller when health status strongly predicts the outcome in scenario 2, than in
other scenarios. The proportion of actively employed workers and cumulative exposure is also
higher in scenario 2 than in the base case, since survivors who are less likely to be susceptible
to the effects of exposure are more likely to remain at work. Cumulative exposure at the
end of follow-up is greatest in scenario 4 where the relationship between health status and
leaving work is lagged by 10 years.

In Figures 4.5-4.7 we present comparisons of two or more simulation scenarios, each
intended to illustrate how the survival experience of worker cohorts varies as a function of a
specific aspect of the data generating process under the two interventions. For each scenario
we present survival curves for cohorts of workers that were always exposed and never exposed
according to etiologic and realistic interventions, respectively. For example, Figure 4.5a
indicates that survival was identical for never-exposed workers under both the realistic and
etiologic interventions, shown by overlaid survival curves. However always-exposed workers
experienced a worse survival under the etiologic intervention. While survival at the end of
follow-up was approximately one for workers always exposed under the realistic intervention,
survival was less than 0.80 for workers always exposed under the etiologic intervention (Figure
4.5a). The exposure effect for each intervention was computed as the difference between the
area under the always exposed survival curve and the area under the never exposed survival
curve.

Along with etiologic and realistic exposure effect measures for each scenario, in Table
4.2 we report the etiologic-to-realistic effect ratio, over time. Etiologic effects were greater
than the realistic effects in all scenarios since we simulated harmful exposures that shorten
survival. For example, an etiologic effect of 1.35 years (t = 20) for the base case indicates
that, if at work and exposed for the duration of follow-up, workers would experience the
event 1.35 years sooner than if they had been at work but unexposed for the same time
period. A realistic exposure effect of 0.26 years in the same scenario indicates that workers
who were exposed while at work, but could terminate employment for health-related reasons,
experienced the outcome approximately 3 months sooner than if they had been unexposed.



CHAPTER 4. ETIOLOGIC EFFECT MEASURES VERSUS CAUSAL ESTIMATES OF
REAL WORLD WORKPLACE INTERVENTIONS 44

An etiologic-to-realistic effect ratio of 4.13 in year 20 for scenario 1, denoted by R1(20), indi-
cates that by leaving work as a result of exposure-related poor health, workers experienced
a four-fold increase in their mean survival.

The first three simulation scenarios explore how the etiologic-to-realistic effects ratio
changes as a function of the strength of the association between health status and leaving
work (Figure 4.5). Etiologic and realistic exposure effects were most alike in scenario 2 where
health status had a strong effect on the outcome (Table 4.2). The similarity between the
two effect measures in scenario 2 is also reflected by smaller ratios in this scenario than in
scenarios 1 and 3 (Table 4.2). The two effects were most dissimilar in scenario 3 where the
outcome was not affected by health status, as reflected by the greater etiologic-to-realistic
effect ratios (R1(20) = 4.13, R2(20) = 2.16, R3(20) = 6.86).

In the second comparison (Figure 4.6) we contrast the base case with scenario 4 to explore
how the ratio changes as a function of the temporal relationship between intermediate health
status and leaving work. While health status in the previous year predicts leaving work in
the base case, in scenario 4 leaving work is predicted by health events occurring 10 years
earlier. Etiologic exposure effects were the similar in both scenarios (2.61 vs. 2.53 in year
20). However, realistic exposure effects in scenario 4 were greater than in the base case (0.63
vs. 2.21 in year 20), approximating the etiologic exposure effect. Consequently ratios were
greater in the base case (R1(20) = 4.13, R4(20) = 1.15).

The last comparison (Figure 4.7) contrasts the base case to scenario 5, the latter repre-
senting a setting where workers experience the adverse health event during their very first
year of exposure. Health status in this setting is a perfect screen for preventing the outcome.
While etiologic effects were similar in both scenarios, realistic effects were smaller in scenario
5 (0.63 vs. 0.43 years). The etiologic-to-realistic effect ratios were larger in scenario 5 than
in the base case (R1(20) = 4.13, R5(20) = 9.86).

4.4 Discussion

We evaluated the relationship between causal effects of etiologic workplace interventions that
assign exposure and prevent leaving work, and causal effects of realistic interventions that as-
sign exposure while workers are actively employed, allowing them to terminate employment.
We found that effects of interventions that require workers to remain at work and receive
their assigned exposure were always greater. The etiologic-to-realistic effects ratio represents
the reduction (in the multiplicative scale) in exposure-related risk as a result of limiting ex-
posure by early employment termination. The ratio decreased with increasing strength of
the health status outcome relationship, and with synchronicity of the health-status and
employment termination. The ratio increased when workers terminated employment early
for exposure-related health reasons.
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(a) No effect of health status on outcome (βYH = 0)
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(b) Moderate effect of health status on outcome (βYH = 1)
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(c) Strong effect of health status on outcome (βYH = 3)

Figure 4.5: Evaluating the role of the health status - outcome relationship.
Counterfactual survival curves among cohorts of exposed (solid) and unexposed (dashed)
workers following etiologic (black) and realistic (red) interventions.
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(a) Health status in year t− 1 predicts leaving work in year t (H(t− 1)→W (t))
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(b) Health status in year t− 10 predicts leaving work in year t (H(t− 10)→W (t))

Figure 4.6: Evaluating the role of the temporal relationship between health
status and leaving work. Counterfactual survival curves among cohorts of exposed (solid)
and unexposed (dashed) workers following etiologic (black) and realistic (red) interventions.

Counterfactual survival under no exposure was the same for etiologic and realistic inter-
ventions. Differences between etiologic and realistic effects were thus driven by differences
between the always exposed interventions. It is not surprising that the two interventions
had similar effects when health status had a strong effect on the outcome (scenario 2). The
two effects became more alike with increasing effect of intermediate health status on the
outcome (results not shown). In this case, workers that experienced the adverse health event
were at high risk of experiencing the outcome, whether or not they left work. Leaving work
in this setting did not protect workers health. The two effect measures were most dissimilar
when health status had no effect on the outcome (scenario 3). Notably, the exposure - out-
come relationship was not confounded by health status in this setting, since health status
predicted leaving work and future exposure, but not the outcome. Workers that terminated
employment due to poor health were therefore not at increased risk for the outcome. The
absence of an indirect effect of exposure on the outcome mediated by health status resulted
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(a) Exposure predicts health status in all years (E(t)→ H(t))
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(b) Exposure predicts health status only in the first year (E(1)→ H(1))

Figure 4.7: Evaluating the role of the temporal relationship between exposure
and health status. Counterfactual survival curves among cohorts of exposed (solid) and
unexposed (dashed) workers following etiologic (black) and realistic (red) interventions.

in small etiologic effects, and even smaller realistic effects.

If workers experience advanced symptoms that lead them to leave work years after an
initial diagnosis, as may be the case with the experience of diabetes-related renal disease,
etiologic and realistic effect measures will be very similar (scenario 4). In addition to the
excess risk for the outcome mediated by health status, the amount of cumulative exposure
accrued prior to leaving work would place susceptible workers at high risk for the outcome.
However, when susceptible workers terminated employment early for health-related reasons,
they were protected from the outcome under study under the realistic intervention. This
was reflected by a large etiologic-to-realistic effects ratio in scenario 5. Our scenarios do not
represent all plausible observational occupational studies. Instead we aimed to present a
selection of extreme cases that illustrate key aspects.
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Estimation of causal effects of exposure in the presence of time-varying confounding af-
fected by prior exposure requires the use of g-methods [6, 54, 60, 72], a class of modern
statistical estimation approaches that includes inverse probability weighted estimation [73],
targeted maximum likelihood estimation (TMLE) [36], g-estimation of structural nested
models [74], and g-computation [6]. In addition to being driven by the available data, the
choice of intervention whose effects are estimated may depend on the researcher’s familiarity
or preference for one of these approaches. For example, several recent occupational studies
have used the parametric g-formula to evaluate parameters of realistic interventions[56, 57,
67, 75]. G-estimation of structural nested models has been used to evaluate etiologic effects
in a number of occupational applications [12, 53, 56, 58, 76–79]. The only published occu-
pational application of the TMLE evaluated etiologic effects [68]; however, the approach is
also appropriate for realist effect estimation.

While all aforementioned approaches adjust for time-varying confounding aspect of the
HWSE, it is important to consider the implications of parameters estimated by each applica-
tion. Parameters of interventions that permit leaving work provide estimates of the disease
experience in worker populations under hypothetical standards. In contrast, parameters of
interventions that require workers to stay employed answer questions about the effects of
long-term, sustained exposure, such as may be acquired through a working lifetime. Policy
guidelines intended to protect workers health have typically been based on the latter class
of effect estimates.

In conclusion, in this first evaluation of the relationship between causal effects of vari-
ous workplace interventions, we found that differences between the effects are driven by the
strength of the mediating health status outcome relationship, timing of the health status
employment termination relationship, and how quickly susceptible workers experience symp-
toms that may lead them to leave the workforce. Care should be taken in distinguishing
between effects of real-world interventions in worker populations, and etiologic effects that
would have been observed if workers did not self-select out of the workforce. The two classes
of interventions have different implications for disease prevention.



CHAPTER 4. ETIOLOGIC EFFECT MEASURES VERSUS CAUSAL ESTIMATES OF
REAL WORLD WORKPLACE INTERVENTIONS 50

t
=

1
t

=
2

t
=

3
t

=
4

t
=

5
t

=
6

t
=

7
t

=
8

t
=

9
t

=
10

t
=

11
t

=
12

t
=

13
t

=
14

t
=

1
5

t
=

16
t

=
1
7

t
=

1
8

t
=

19
t

=
20

S
ce
n
a
ri
o
1

E
ti

ol
og

ic
,
ψ
e
(t

)
0.

00
0.

0
0

0
.0

0
0.

0
0

0.
0
1

0.
02

0
.0

4
0.

0
7

0
.1

2
0
.1

8
0
.2

6
0.

37
0.

5
1

0
.6

9
0.

90
1
.1

6
1.

46
1.

81
2
.1

9
2.

61
R

ea
li

st
ic

,
ψ
r
(t

)
0.

00
0.

00
0
.0

0
0
.0

0
0.

0
1

0.
0
2

0
.0

3
0.

05
0
.0

7
0
.1

0
0
.1

3
0.

17
0.

2
1

0
.2

6
0
.3

1
0
.3

6
0.

43
0.

49
0
.5

6
0.

63
R

1
(t

)
=
ψ
e
(t

)/
ψ
r
(t

)
–

–
–

–
1.

0
0

1.
0
0

1.
48

1
.5

9
1
.7

2
1
.8

9
2
.0

6
2
.2

5
2.

46
2.

6
9

2
.9

3
3.

18
3.

44
3
.6

9
3.

92
4.

13
S
ce
n
a
ri
o
2

E
ti

ol
og

ic
,
ψ
e
(t

)
0.

00
0
.0

0
0.

01
0.

02
0.

04
0
.0

8
0
.1

6
0
.2

6
0
.4

1
0.

61
0
.8

5
1
.1

5
1.

4
8

1.
85

2
.2

5
2.

65
3.

07
3
.4

8
3
.8

9
4.

29
R

ea
li

st
ic

,
ψ
r
(t

)
0.

00
0.

0
0

0.
0
1

0.
02

0.
03

0
.0

7
0
.1

1
0
.1

7
0
.2

5
0.

35
0
.4

6
0
.5

9
0.

7
4

0.
89

1
.0

5
1.

22
1.

40
1
.5

9
1.

78
1.

98
R

2
(t

)
=
ψ
e
(t

)/
ψ
r
(t

)
–

–
1.

00
1
.0

50
1
.1

7
1.

3
0

1
.4

1
1
.5

1
1
.6

2
1
.7

2
1.

8
3

1
.9

3
2
.0

2
2.

09
2.

14
2
.1

7
2.

19
2.

19
2
.1

8
2
.1

6
S
ce
n
a
ri
o
3

E
ti

o
lo

gi
c,
ψ
e
(t

)
0.

0
0

0.
0
0

0
.0

0
0
.0

0
0
.0

0
0.

0
1

0.
01

0
.0

2
0
.0

3
0
.0

4
0.

06
0
.0

9
0.

1
3

0.
1
8

0
.2

4
0.

33
0.

43
0
.5

6
0.

72
0.

91
R

ea
li

st
ic

,
ψ
r
(t

)
0.

0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0.

0
0

0
.0

1
0
.0

1
0.

0
2

0
.0

2
0.

03
0
.0

4
0.

05
0.

0
6

0
.0

7
0.

08
0
.0

9
0
.1

0
0.

12
0.

13
R

3
(t

)
=
ψ
e
(t

)/
ψ
r
(t

)
–

–
–

–
–

–
1.

00
1
.4

7
1
.7

1
1
.9

7
2.

21
2
.4

9
2.

8
2

3.
2
0

3
.6

4
4.

16
4.

74
5
.3

9
6.

10
6.

86
S
ce
n
a
ri
o
4

E
ti

ol
og

ic
,
ψ
e
(t

)
0
.0

0
0.

00
0.

0
0

0.
00

0.
01

0.
02

0
.0

4
0.

0
7

0
.1

1
0
.1

7
0.

2
5

0.
35

0
.4

8
0.

6
5

0.
86

1.
12

1
.4

1
1
.7

5
2.

13
2.

53
R

ea
li

st
ic

,
ψ
r
(t

)
0
.0

0
0.

0
0

0.
0
0

0.
0
0

0.
01

0.
0
2

0
.0

4
0.

07
0
.1

1
0
.1

8
0.

2
6

0.
37

0
.5

0
0.

6
7

0
.8

6
1.

08
1
.3

3
1.

61
1.

90
2.

21
R

4
(t

)
=
ψ
e
(t

)/
ψ
r
(t

)
–

–
–

–
1.

08
0
.9

9
0.

96
0
.9

5
0
.9

5
0
.9

5
0.

96
0
.9

6
0
.9

7
0.

98
1.

0
1

1
.0

3
1.

06
1.

09
1
.1

2
1
.1

5
S
ce
n
a
ri
o
5

E
ti

ol
og

ic
,
ψ
e
(t

)
0.

0
0

0.
00

0.
01

0
.0

2
0
.0

4
0
.0

6
0
.0

9
0
.1

4
0
.2

0
0.

27
0.

3
7

0.
4
9

0
.6

4
0.

83
1.

05
1.

3
2

1
.6

2
1.

97
2.

36
2
.7

9
R

ea
li

st
ic

,
ψ
r
(t

)
0.

0
0

0
.0

0
0.

01
0
.0

1
0
.0

2
0
.0

3
0
.0

5
0
.0

6
0
.0

8
0.

10
0.

1
2

0.
1
5

0
.1

7
0
.2

0
0
.2

3
0
.2

6
0
.3

0
0.

34
0.

38
0
.4

3
R

5
(t

)
=
ψ
e
(t

)/
ψ
r
(t

)
–

–
1
.0

0
1
.4

1
1.

6
0

1.
7
7

1
.9

6
2
.1

8
2
.4

3
2
.7

1
3
.0

3
3.

3
8

3.
7
6

4
.1

7
4.

60
5.

02
5.

4
4

5
.8

4
6.

21
6.

53

T
a
b
le

4
.2

:
E

x
p

os
u
re

E
ff

ec
t

E
st

im
at

es
,

an
d

R
at

io
of

E
ti

ol
og

ic
-t

o-
R

ea
li
st

ic
E

ff
ec

ts
,

ov
er

ti
m

e.



51

Chapter 5

Conclusions

This dissertation is concerned with the estimation of causal effects of occupational expo-
sures on incident cancer events in the context of the healthy worker survivor effect. By
controlling for time-varying confounding affected by prior exposure, in Chapter 2 we were
able to establish associations between MWF exposure and colon cancer risk that were not
achieved using standard analytical techniques in previous reports. Our analysis is the first to
support a possible causal relationship between MWFs, particularly straight fluids, and inci-
dent colon cancer. Given the ubiquity of occupational exposure to these chemicals, lowering
recommended exposure limits may prevent a large number of colon cancers worldwide.

In Chapter 3 we considered estimation approaches in the presence of left filtering, which
occurs when a secondary outcome follow-up is imposed on an existing cohort. We found that
approaches that ignore left filtering lead to effect estimates that were biased downward, and
the magnitude of the bias increased with increasing incidence of the disease under study, and
with increasing proportion of susceptible workers. To estimate survival in the left filtered
data we introduced the delayed entry Kaplan-Meier estimator. It combines two known
approaches, the adjusted Kaplan-Meier estimator that adjusts for time-varying confounding
and informative censoring, and the delayed-entry approaches traditionally used to address
left truncation. While neither our method nor any other known analytical methods fully
adjust for left filtering, we found that the delayed-entry adjusted Kaplan-Meier resulted in
little bias when disease incidence was not too high and the number of latent cancers was
small. In addition, the degree of bias was not affected by increases in the proportion of
susceptible workers, or the strength of the time-varying confounding. Bias, however, did
increase when the disease incidence was doubled.

In a first evaluation of the relationship between causal effects of various workplace in-
terventions, in Chapter 4 we found that differences between effects of etiologic interventions
that prevent leaving work, and the effects of realistic interventions that assign exposure while
workers are actively employed, are driven by the strength of the mediating health status -
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outcome relationship, timing of the health status - employment termination relationship,
and how quickly susceptible workers experience symptoms that may lead them to leave the
workforce. Care should be taken in distinguishing between effects of real-world interventions
in worker populations, and etiologic effects that would have been observed if workers did
not self-select out of the workforce. In most settings, realistic parameters underestimate
the disease risk associated with long-term exposure. Policy guidelines intended to protect
workers health should be based on etiologic estimates.

We have demonstrated the ability of causal estimators to correct for time-varying con-
founding of the exposure-outcome relationship in an applied example that suggests a causal
relationship between colon cancer and metalworking fluid exposure. The evaluation of con-
tinuous exposure response curves through the estimation of parameters of marginal structural
models is very deserving of future research. Further, we have proposed an approach that
leads to little bias in the presence of left filtering. However, novel estimators that are based
only on the observed cases may provide better alternatives and should be investigated. We
hope that our discussion of various workplace interventions highlights important considera-
tions for the design and analysis of future studies of occupational hazards.
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