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We review recent advances in the capabilities of the open source ab initio Quan-

tum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used

for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) im-

plementation has been greatly expanded to include k-point symmetries, tensor-

hypercontraction, and accelerated graphical processing unit (GPU) support. These

scaling and memory reductions greatly increase the number of orbitals that can prac-

tically be included in AFQMC calculations, increasing accuracy. Advances in real

space methods include techniques for accurate computation of band gaps and for

systematically improving the nodal surface of ground state wavefunctions. Results

of these calculations can be used to validate application of more approximate elec-

tronic structure methods including GW and density functional based techniques.

To provide an improved foundation for these calculations we utilize a new set of

correlation-consistent effective core potentials (pseudopotentials) that are more ac-

curate than previous sets; these can also be applied in quantum-chemical and other

many-body applications, not only QMC. These advances increase the efficiency, ac-

curacy, and range of properties that can be studied in both molecules and materials

with QMC and QMCPACK.

a)kentpr@ornl.gov

3

mailto:kentpr@ornl.gov


I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are an attractive approach for accurately com-

puting and analyzing solutions of the Schrödinger equation.1–3 The methods form a general

ab initio methodology able to solve the quantum many-body problem, applicable to idealized

models such as chains or lattices of atoms through to complex and low-symmetry molec-

ular and condensed matter systems, whether finite or periodic, metallic or insulating, and

with weak to strong electronic correlations. Significantly, the methods can naturally treat

systems with significant multi-reference character, and are without electron self-interaction

error, which challenges many quantum chemical approaches and density functional theory

approximations, respectively. The methods continue to be able to take advantage of im-

provements in computational power, giving reduced time to solution with new generations

of computing. Due to these features, usage of QMC methods for first principles and ab initio

calculations is growing.

Compared to traditional deterministic approaches, QMC methods are generally distin-

guished by: (1) use of statistical methodologies to solve the Schrödinger equation. This

allows the methods to not only treat problems of high-dimensionality efficiently, but also

potentially use basis, wave function, and integral forms that are not amenable to numerical

integration. (2) Use of few and well-identified approximations that can potentially be quan-

tified or made systematically convergeable. (3) A low power scaling with system-size, but

large computational cost prefactor. (4) High suitability to large scale parallel computing ow-

ing to lower communications requirements than conventional electronic structure methods.

Scaling has been demonstrated to millions of compute cores.4

Modern applications of QMC have expanded to cover many of the same systems studied

by density functional theory (DFT) and quantum chemical approaches, and in many cases

also at a similar atom and electron count, although at far greater computational cost. Besides

those described in below, recent molecular applications of QMC include studies of the nature

of the quadruple bond in C2
5, acenes6, physisorption of water on graphene7, binding of

transition metal diatomics8, and DNA stacking energies9. Materials applications include

nitrogen defects in ZnO10, excitations in Mn doped phosphors11, and the singlet-triplet

excitation in MgTi2O4
12. Methodological improvements include: reducing the sensitivity

of pseudopotential evaluation13, extensions to include linear response14, density functional
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embedding15, excited states including geometry optimization16, improved twist averaging17,

and accurate trial wavefunctions via accurate densities18. Importantly, for model systems

such as the hydrogen chain, the methods can be used to benchmark themselves as well as

other many-body approaches19. This partial list of developments and applications from the

last two years alone indicates that the field is growing and maturing.

In this article we describe recent updates to the QMCPACK code and its ecosystem

of wavefunction converters and workflow tools. These updates have aimed to expand the

range of systems, properties, and accuracies that can be achieved both with QMCPACK

and with QMC techniques in general. For a description of the underlying methodology we

refer the reader to Refs. 1–4, and 20. In particular, a thorough description of real space

QMC methods is given in Section 5 of Ref. 4. For an extensive introduction to AFQMC we

refer the reader to Ref.20.

QMCPACK is a fully open source and openly developed QMC package, with 48 coauthors

on the primary citation paper4 published in 2018 and an additional 5 contributors since then.

The main website for QMCPACK is https://qmcpack.org and the source code is currently

available through https://github.com/QMCPACK/qmcpack. QMCPACK aims to implement

state of the art QMC methods, be generally applicable, easy to use, and high-performing on

all modern computers. Since the publication of Ref.4, the range of QMC calculations that

are possible has been expanded by significant enhancements to the Auxiliary-Field QMC

(AFQMC) solver. This orbitally based method is distinct from and complementary to the

longer-implemented real space methods of variational and diffusion QMC (VMC and DMC,

respectively). The AFQMC implementation can fully take advantage of graphics processing

units (GPUs) for a considerable speedup and, unlike the real-space methods, can also exploit

k-point symmetries. It shares the same workflow tool, Nexus, which helps simplify and ease

application of all the QMC methods by new users as well as aid in improving reproducibility

of complex multi-step research investigations. To our knowledge this is currently the only

AFQMC code designed for large scale research calculations that is open source. To help

guarantee the future of the code, it is undergoing rapid development and refactoring to target

the upcoming Exascale architectures as part of the U.S. Exascale Computing Project21,

which also entails major updates to the testing, validation and maintainability.

The electronic structure and quantum chemical codes that QMCPACK is interfaced to for

trial wavefunctions has been expanded to include Qbox22, PySCF23, Quantum Espresso24,
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Quantum Package25, and GAMESS26. Additional codes such as NWCHEM27 can be inter-

faced straightforwardly.

In the following, we first review in Section II the open development principles of QMC-

PACK. In Section III we discuss updates to the Nexus workflow package. This integrates

entire research electronic structure workflows for greater productivity and reproducibility

than by-hand invocation of individual calculations. Due to the infeasibility of performing

QMC calculations for general systems using an all electron approach, use of effective core

potentials (ECPs), or pseudopotentials, is essential. To improve the accuracy obtainable

we have developed a new approach and set of “correlation consistent” ECPs. These can

be used in all ab initio calculations, not only QMC, and are described in Section IV. Ad-

vances in the AFQMC implementation are described in Section V. Turning to real-space

QMC methods in Section VI, algorithms and multiple determinant trial wavefunctions can

now be used to obtain improved ground state energies as well as band gaps in solid-state

materials. As a result, it is now possible to begin to test the accuracy of the nodal surfaces

that have long been used in these calculations. Finally, in Section VII, we give three ap-

plications: first, application to non-valence anions, which challenge all electronic structure

and quantum chemical techniques. Second, application to excitations of localized defects

in solids VII B. Third, the ability to obtain the momentum distribution has recently been

improved, motivated by recent experiments on VO2. A summary is given in Section VIII.

II. OPEN DEVELOPMENT AND TESTING

Fully open source development is an important core value of the QMCPACK develop-

ment team. Besides improving the quality of the software, anecdotally it also improves the

on-boarding experience for new users. While the developers of many electronic structure

packages now practice some degree of open development, QMCPACK has seen very signif-

icant benefits from this in the last few years. We expect other packages would also benefit

from full adoption and therefore give details here.

QMCPACK is an open source package, with releases and the latest development source

code available through https://github.com/QMCPACK/qmcpack. QMCPACK is written in

C++14, with MPI parallelization between compute nodes, OpenMP threading used for

multicore parallelism. CUDA is used for NVIDIA accelerators. Options to support CUDA,
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complex valued wavefunctions, and to adjust the numerical precision used internally are

currently compile time options.

Besides adoption of a distributed source code control system, we have found that devel-

opment productivity can be further increased by adoption of code reviews and continuous

integration (testing). To maximize the efficiency of both contributors and reviewers and

shorten the development cycle of new features, work-in-progress pull requests are encour-

aged for early engagement in the process. The early review allows guidance to be given,

e.g. are the algorithms clear enough to other developers and are the coding guidelines being

followed. At the same time, continuous integration is applied to the proposed code change.

This process routinely catches cases that developers may not have considered or tested

against, e.g. the complex-valued build of QMCPACK or accelerated GPU support, that are

compile time options. This period of comment while the work is being completed also helps

advertise the work to other developers and minimizes risk of duplicated work. Our experi-

ence strongly suggests that this process reduces bugs, reduces potential developer’s effort,

and saves reviewer’s time compared to a late engagement with an unexpected pull request.

All the discussions around the code change become archived searchable documentation and

potential learning materials.

Testing of QMCPACK has been significantly expanded. Two years ago, QMCPACK had

limited unit, integration and performance testing categories: unit tests that run quickly on

individual components; integration tests that exercise entire runs; performance tests for mon-

itoring relative performance between code changes. However, due to the stochastic nature

of QMC, as the number of tests and build combinations increased it became impractical to

run the integration tests long enough to obtain a statistically reliable pass/fail: the smallest

(shortest) integration test set currently takes around one hour to execute on a 16 core ma-

chine, and must necessarily suffer from occasional statistical failures. Thus, a new category

of tests was needed for quickly examining full QMC execution with a reproducible Monte

Carlo trajectory. The new deterministic integration tests are modified QMC runs with only

a few steps, very few Monte Carlo walkers, and fixed random seeds for absolute reproducibil-

ity. All the major features of QMCPACK are covered by this new of category tests. Running

all the unit and deterministic integration tests takes approximately one minute which is fast

enough for iterative development and fast enough to be used in continuous integration. This

fast to run set of tests facilitates significant changes and refactoring of the application which
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otherwise would be far more difficult to test and unlikely to be attempted by non-experts

without long experience with the codebase. All the deterministic tests are accompanied

by longer running statistical tests that can be used to verify a new implementation when

changes alter a previous deterministic result. Combinations of these tests are run automat-

ically on a nightly basis and report to a public dashboard https://cdash.qmcpack.org.

At the time of writing, around 25 different machine and build combinations are used to run

around 1000 labeled tests each, and most of these cover multiple features.

Improving source code readability is critical for both new and experienced developers. In

the past, misleading variable or class names and confusing function names have confused

developers and resulted in subtle bugs, e.g. due to similarly named functions, only one of

which updates internal state in the Monte Carlo algorithm. For this reason, coding standards

including naming conventions have been added in the manual and are enforced on newly

contributed codes. Existing codes are updated to follow the standards as they need other

modifications. Automatic source formatting is also applied with the help of the clang-format

tool. Concomitantly, both developer sections in the manual and source code documentation

are significantly expanded.

As a result of the above changes, new contributors with a basic theoretical background

can connect source code with textbook equations with much less difficulty than in the past.

These efforts are clearly bringing long term benefit to QMCPACK and hopefully can be

transferred to other scientific applications as well.

III. IMPROVING QMC WORKFLOWS WITH NEXUS

QMC techniques are progressing from methods under research towards more routine

application. In this transition, usability of QMC becomes an important factor. A mature,

usable computational method transfers responsibility for correct execution from users to

the code. Major factors determining overall usability include: ease of requesting a desired

result (in the form of input), robustness of the code in obtaining the desired result, and

complexity of the overall calculation process. All of these contribute to the effort required

by the user to obtain desired results. In essence, higher required effort translates directly

into lower productivity of the user base. Lower productivity in turn risks a lower overall

adoption rate and thus blunts overall impact of the method. It is therefore important to
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seek to understand and minimize barriers to the practical use of QMC.

To illustrate the complexity of the QMC calculation process, we describe below a basic

but realistic sequence of calculations (a scientific workflow) that is required to obtain a final

fixed node DMC total energy per formula unit for a single crystalline solid with QMCPACK.

In this workflow, we suppose that self-consistent (SCF) and non-self-consistent (NSCF)

calculations are performed with Quantum Espresso24 and wavefunction optimization (OPT),

variational Monte Carlo (VMC), and diffusion Monte Carlo calculations are performed with

QMCPACK. SCF/NSCF calculations might be performed on a workstation or a few nodes

of a cluster, VMC/OPT calculations on a research-group sized cluster (∼30 nodes), and

DMC on high performance computing resources (∼1000 nodes).

1. Converge DFT orbitals with respect to plane-wave energy cutoff (4–6 SCF calculations

ranging from 300 to 800 Ry for the energy cutoff).

2. Converge B-spline orbital representation with respect to B-spline mesh spacing (1

NSCF, ∼5 VMC calculations in a small supercell over a series of finer mesh spacings).

3. Converge twist grid density (∼5 VMC calculations in a small supercell for a series of

increasingly dense supercell Monkhorst-Pack twist grids).

4. Determine best optimization process (∼6 optimization (OPT) calculations in a small

supercell over varying input parameters and e.g. Jastrow forms).

5. Obtain fixed node DMC total energy (∼3 NSCF, ∼3 OPT and ∼9 DMC calcula-

tions, 3 successively smaller timesteps for timestep extrapolation, 3 successively larger

supercells for finite size extrapolation).

This basic workflow process is to be compared with the much reduced complexity for

obtaining a single converged total energy for DFT, which typically requires only a single

input file and single program execution to perform a single SCF calculation for the final

energy. The complexity intrinsic to the basic workflow translates into a large degree of

effort on the part of the user and limits the accessibility of the method for new users or

for experienced users pursuing ambitious projects comprised of a large number of DMC

calculations.
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Scientific workflow tools make the QMC process more accessible in multiple ways: (1)

bringing the constellation of electronic structure codes needed to produce a single QMC

result under a single framework, (2) reducing the number of inputs required to request a

desired result to a single user-facing input file, (3) reducing overall complexity by abstracting

the execution process, (4) minimizing the direct effort required to execute the workflow

process by assuming the management of simulation execution and monitoring from the user.

Workflow tools have been applied with significant benefit to related electronic structure

methods such as DFT28–31 and also to QMC32,33.

The Nexus workflow automation system34 was created to realize these advantages for users

of QMCPACK. Nexus is a Python-based, object oriented workflow system that can be run on

a range of target architectures. Nexus has been used successfully on simple workstations and

laptops, small group or institutional computing clusters, university level high performance

computing centers in the U.S. and internationally, and Leadership Computing Facilities

supported by the U.S. Department of Energy. Nexus has been used in a growing number of

QMC studies involving QMCPACK and its uptake by new users is high.

Nexus abstracts user’s interactions with each target simulation code that are components

of a desired simulation workflow. Access to each respective code is enabled through single

function calls that only require the user to specify a reduced set of important input param-

eters. Each function call resembles a small input block from a standard input file for an

electronic structure code. Taken together, a sequence of these blocks comprises a new meta-

input file that represents the data flow and execution pattern of the underlying simulation

codes as a combined workflow.

Nexus assumes the responsibility of initiating and monitoring the progress of each sim-

ulation job in the workflow. Nexus generates expanded input files to each code based on

the reduced inputs provided by the user. It also generates job submission files and monitors

job execution progress via a lightweight polling mechanism. Apart from direct execution of

each workflow step, Nexus also automates some tasks that previously fell to users. One ex-

ample is that Nexus selects the best wavefunction produced during the non-linear statistical

optimization process employed by QMCPACK and automatically passes this wavefunction

to other calculations (such as diffusion Monte Carlo), which require it.

In the future, additional productivity gains might be realized with Nexus by further ab-

stracting common workflow patterns. For example, convergence studies for orbital param-
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eters (k-points, mesh-factors, source DFT functional) often follow similar patterns which

could be encapsulated as simple components for users. Additionally, more of the responsi-

bility for obtaining desired results, e.g. total energies to a statistically requested tolerance,

could be handled by Nexus through algorithms that create and monitor dynamic workflows.

IV. EFFECTIVE CORE POTENTIALS

A. Introduction

All-electron (AE) QMC calculations become inefficient and eventually infeasible with in-

creasing atomic number Z since the computational cost grows roughly as35,36 Z6. Since our

primary interest is in valence properties, pseudopotentials and/or effective core potentials

(ECP) are commonly employed to eliminate the atomic cores leading to valence-only effec-

tive Hamiltonians. Unfortunately, the existing tables and ECP generating tools have proved

to exhibit somewhat mixed fidelity to the true all-electron calculations, especially in high

accuracy QMC studies. In order to overcome this limitation, we have proposed and con-

structed a new generation of valence-only Hamiltonians called correlation consistent ECPs

(ccECP)37–40. The key feature of this new set is the many-body construction of ccECPs

from the outset, in particular: (i) we have emphasized and put upfront the accuracy of

many-body valence spectra (eigenvalues and eigenstates) as a guiding principle in addition

to the well-known norm conservation/shape consistency principles; (ii) we have opted for

simplicity, transparency and eventual wide use, in addition to offering several choices of

core sizes or even smoothed-out all-electron nuclear Coulomb potentials; (iii) we have used

a set of tests and benchmarks such as molecular bonds over a range of distances in order to

extensively probe for the quality and transferability of the ccECPs; (iv) we have established

reference data sets for the exact/nearly-exact atomic total energies, kinetic energies, as well

as single-reference and multi-reference fixed-node DMC energies. At present, this covers

elements H-Kr with subsequent plans to fill the periodic table.

B. ccECP atomic and molecular properties.

The construction of ccECPs builds in electron correlations obtained from the accurate

coupled-cluster singles doubles with perturbative triples (CCSD(T)) method. By doing so,
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ccECPs achieve very high accuracy and enjoy spectral properties on the valence subspace

that are in close agreement with the scalar relativistic all-electron (AE) Hamiltonian. The

agreement is often within chemical accuracy over a large range of atomic excitations and

ionizations that often spans hundreds of eV energy windows. Molecular properties such

as binding energies in multiple geometries, equilibrium bond lengths, and vibrational fre-

quencies were also considered in the development, mostly examining oxides, hydrides, and

homonuclear dimers. Especially, compressed bond length properties were given priority as

this corresponds to high-pressure applications and probes for the proper behavior of the

valence charge in the core region. These atomic and molecular tests provide a direct and

comprehensive comparison of ccECP and other core approximations such as BFD41, STU42,

eCEPP43, CRENBL44, SBKJC45, UC (uncorrelated, self-consistent, all-electron core), and

ccECP.S (optimization including only atomic spectrum). Here we illustrate some of these

results for selected cases.

Figure 1 shows the molecular binding energy discrepancies for FeH, FeO, VH, and VO

molecules relative to all-electron CCSD(T) where we observe that some previous ECPs

display significant errors. In addition, Table I, lists a more comprehensive comparison by

tabulating the average of mean absolute deviations (MAD) of molecular binding properties

relative to all-electron CCSD(T) for all 3d transition metal (TM) molecules. Similarly,

Figure 2a presents the MAD of a large valence spectrum for all 3d TM atoms. In both atomic

and molecular tests, we see that ccECP achieves smaller or on par average errors with regard

to the other ECPs. In addition, Fig. 1 shows these improvements to be consistent for different

elements and varying geometries. Hence, we believe that ccECP accomplishes the best

accuracy compromise for atomic spectral and molecular properties. Furthermore, ccECPs

are provided with smaller cores than conventionally used ones in some cases where large

errors were observed. This includes Na-Ar with [He] core and H-Be with softened/canceled

Coulomb singularity at the origin (ccECP(reg)). Selected molecular test results for these

are shown in Figure 3.

For reference, we also provide accurate total and kinetic energies for all ccECPs46 using

methods such as CCSDT(Q)/FCI (FCI, full configuration interaction) with DZ-6Z extrap-

olations to estimate the complete basis set limit. This data, for instance, is useful in the

assessment of fixed-node DMC biases. Figure 2b shows the summary of single-reference

(HF) fixed-node DMC errors for ccECP pseudo atoms.
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FIG. 1: Binding energy discrepancies for (a) FeH, (b) FeO, (c) VH, and (d) VO molecules.

The binding curves are relative to scalar relativistic AE CCSD(T) binding curve. The

shaded region indicates a discrepancy of chemical accuracy in either direction. The

ccECPs are the only valence Hamiltonians that are consistently within the shaded region

of chemical accuracy including short bond lengths which are relevant for high pressures.

Reproduced from Ref. 39, with the permission of AIP Publishing.

C. ccECP Database and Website

In order to facilitate the use ccECPs, we have provided basis sets and a variety of ECP

formats available at https://pseudopotentiallibrary.org, shown in Figure 4. Each

ccECP is presented in a quantum chemistry format for direct use in various codes, including
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UC BFD STU eCEPP ccECP.S ccECP

De(eV) 0.0063(40) 0.0590(41) 0.0380(41) 0.0163(45) 0.0240(40) 0.0104(40)

re(Å) 0.0012(13) 0.0064(13) 0.0026(13) 0.0019(15) 0.0027(13) 0.0010(13)

ωe(cm−1) 2.2(5.8) 10.4(5.9) 4.6(5.9) 3.9(6.9) 6.4(5.8) 2.9(5.8)

Ddiss(eV) 0.021(41) 0.145(41) 0.036(41) 0.032(46) 0.054(40) 0.016(41)

TABLE I: Average MADs of binding parameters for various core approximations with

respect to AE data for 3d TM hydride and oxide molecules. All parameters were obtained

using Morse potential fit. The parameters shown are dissociation energy De, equilibrium

bond length re, vibrational frequency ωe and binding energy discrepancy at dissociation

bond length Ddiss. Reproduced from Ref. 39, with the permission of AIP Publishing.
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FIG. 2: (a) MADs for 3d TM benchmark states from bare [Ne] core up to low-lying neutral

excitations and the anionic state. (b) Fixed-node DMC biases (ε) as a percentage of the

correlation energy for ccECP pseudo atoms: 100ε/|Ecorr|. T-moves47 and single-reference

trial functions were used in calculations with the exception of Be, B, and C with

two-reference form to account for the significant 2s− 2p near-degeneracy. Fig. 2a

reproduced from Ref. 39, with the permission of AIP Publishing. Fig. 2b is adapted with

permission from Ref. 46. Copyright 2020 American Chemical Society.
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FIG. 3: Binding energy discrepancies for (a) LiO and (b) SiO molecules. The uncorrelated

core (UC) results, plus those for many different effective core potentials are given relative

to scalar relativistic all electron (AE) CCSD(T) binding curve. The shaded region indicates

a discrepancy of chemical accuracy in either direction. Details are given in Refs. 38 and 40.

Reproduced from Ref. 40 and Ref. 38, with the permission of AIP Publishing.

Molpro, GAMESS, NWChem, and PySCF which uses the NWChem format. We also

provide an XML format which can directly be used in QMCPACK.

In addition to the ccECPs themselves, we have also provided basis sets appropriate for

correlated calculations in each code format. Specifically, we have provided Dunning style48

correlation consistent basis sets from the DZ to 6Z, and in most cases have also provided

an augmented version. For use in solid state applications using a plane wave basis, we have

also transformed the semi-local potentials into fully nonlocal Kleinman-Bylander potentials49

using the Unified Pseudopotential Format. This allows the ccECPs to be directly used in

codes such as Quantum Espresso. A report file is included giving detailed information

about the quality of the Kleinman-Bylander version of the potential and recommended plane

wave energy cutoff energies.

D. Status and future developments

The ccECP table and construction principles aim at improved account of systematic errors

built into effective valence Hamiltonians in a wide variety of correlated calculations (see
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FIG. 4: Pseudopotential Library, https://pseudopotentiallibrary.org.

encouraging feedback so far50,51). Further effort is focused on adapting ccECPs for efficient

calculations with plane wave basis set (ccECPpw versions). This requires modifying the deep

potentials of the late 3d elements Fe-Zn in particular. The goal is to enable calculations with

plane wave cutoffs not exceeding ∼ 600-800 Ry. Plans for the near future involve ccECPs

for selected 4d and 5d elements that include a number of technologically important elements

and require explicit treatment of the spin-orbit interactions. Additional improvements such

as core polarization and relaxation corrections can be added per specific, application driven

needs. Further plans include seeking feedback from the electronic structure community,

collecting the data for reference and validation as well as adjustments per need for use in a

broad variety of ab initio approaches.

V. AUXILIARY FIELD QUANTUM MONTE CARLO

The latest version of QMCPACK offers a now mature implementation of the phase-

less auxiliary-field quantum Monte Carlo (AFQMC) method20,52 capable of simulating both

molecular53,54 and solid state systems55–57. AFQMC is usually formulated as an orbital-space

approach in which the Hamiltonian is represented in second-quantized form as

Ĥ =
∑
ij

hij ĉ
†
i ĉj +

1

2

∑
ijkl

vijklĉ
†
i ĉ
†
j ĉlĉk + EII , (1)

= Ĥ1 + Ĥ2 + EII , (2)
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where ĉ†i and ĉi are the fermionic creation and annihilation operators, hij and vijkl are the one-

and two-electron matrix elements and EII is the ion-ion repulsion energy. Key to an efficient

implementation of AFQMC is the factorization of the 4-index electron-repulsion integral

(ERI) tensor vijkl, which is essential for the Hubbard-Stratonovich (HS) transformation58,59.

QMCPACK offers three factorization approaches which are appropriate in different

settings. The most generic approach implemented is based on the modified-Cholesky

factorization60–64 of the ERI tensor:

vijkl = V(ik),(lj) ≈
Nchol∑
n

LnikL
∗n
lj , (3)

where the sum is truncated at Nchol = xcM , xc is typically between 5 and 10, M is the

number of basis functions and we have assumed that the single-particle orbitals are in general

complex. The storage requirement is thus naively O(M3) although sparsity can often be

exploited to keep the storage overhead manageable (see Table II). Note that QMCPACK

can accept any 3-index tensor of the form of Lnik so that alternative density-fitting based

approaches can be used. Although the above approach is efficient for moderately sized

molecular and solid-state systems, it is typically best suited to simulating systems with

fewer than 2000 basis functions.

To reduce the memory overhead of storing the three-index tensor we recently adapted

the tensor-hypercontraction65–67 (THC) approach for use in AFQMC56. Within the THC

approach we can approximate the orbital products entering the ERIs as

ϕ∗i (r)ϕk(r) ≈
Nµ∑
µ

ζµ(r)ϕ∗i (rµ)ϕk(rµ), (4)

where ϕi(r) are the one-electron orbitals and rµ are a set of specially selected interpolating

points, ζµ(r) are a set of interpolating vectors and Nµ = xµM . We can then write the ERI

tensor as a product of rank-2 tensors

vijkl ≈
∑
µν

ϕ∗i (rµ)ϕk(rµ)Mµνϕ
∗
j(rν)ϕl(rν), (5)

where

Mµν =

∫
drdr′ζµ(r)

1

|r− r′|ζ
∗
ν (r′). (6)

To determine the interpolating points and vectors we use the interpolative separable density

fitting (ISDF) approach68–70. Note that the storage requirement has been reduced to O(M2).
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For smaller system sizes the three-index approach is preferred due to the typically larger

THC prefactors determined by xµ ≈ 15 for propagation and xµ ≈ 10 for the local energy

evaluation. The THC approach is best suited to simulating large supercells, and is also

easily ported to GPU architectures due to its smaller memory footprint and use of dense

linear algebra. Although the THC-AFQMC approach has so far only been used to simulate

periodic systems, it is also readily capable of simulating large molecular systems using the

advances from Ref. 71.

Finally, we have implemented an explicitly k-point dependent factorization for periodic

systems72

V(ikk+Qkkk),(lkljkl−Q) ≈
nQ
chol∑
n

LQkk
ik,n L

Qkl∗
lj,n , (7)

where now i runs over the number of basis functions (m) for k-point ki in the primitive cell,

Q = ki − kk + G = kl − kj + G′ is the momentum transfer vector (arising from the conser-

vation of crystal momentum) and G,G′ are reciprocal lattice vectors. Although explicitly

incorporating k-point symmetry reduces the scaling of many operations and the storage

requirement by a factor of 1/Nk (see Table. II), perhaps the most significant advantage is

that it permits the use of batched dense linear algebra and is thus highly efficient on GPU

architectures. Note that the THC and k-point symmetric factorization can be combined to

simulate larger unit cells and exploit k-point symmetry, however this has not been used to

date. We compare the three approaches in Table II and provide guidance for their best use.

In addition to state-of-the-art integral factorization techniques, QMCPACK also permits

the use of multi-determinant trial wavefunction expansions of the form

|ψT 〉 =

ND∑
I

cI |DI〉. (8)

We allow for either orthogonal configuration interaction expansions where 〈DI |DJ〉 = δIJ and

also for non-orthogonal multi Slater determinant expansions (NOMSD) where 〈DI |DJ〉 =

SIJ . Orthogonal expansions from complete active space self-consistent field (CASSCF) or

selected CI methods allow for fast overlap and energy evaluation through Sherman-Morrison

based techniques, and thus do not typically incur a significant slowdown. However, they often

require a large number of determinants to converge the phaseless error. NOMSD expansions

do not benefit from fast update techniques, but often require orders of magnitude fewer
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Method Memory Propagation Energy Setting GPU

Dense 3-index xcM
3 O(NM2) O(xcN

2M2) M ≤ 1000 Yes

Sparse 3-index sxcM
3 O(NM2) O(N2M2) M ≤ 2000 No

THC x2
µM

2 O(NM2) O(x2
µNM2) M ≤ 4000 No

k-point xcm
3N2

k O(NM2) O(xcm
2n2N3

k ) Nkm ≤ 6000 Yes

TABLE II: Comparison in the dominant scaling behavior of different factorization

approaches implemented in QMCPACK. We have included a sparsity factor s which can

reduce the computational cost of the three-index approach significantly. For example, in

molecular systems the memory requirement is asymptotically O(M2) in the atomic orbital

basis, whilst for systems with translational symmetry the scaling is in principle identical to

that of the explicitly k-point dependent factorization (i.e. s ≤ 1/Nk) although currently

less computationally efficient. We also indicate the current state of GPU support for the

different factorizations available in QMCPACK. The THC factorization will be ported to

GPUs in the near future. Note that by using plane waves the scaling of the energy

evaluation and propagation can be brought down to O(N2M logM) and O(NM logM)

respectively. This approach essentially removes the memory overhead associated with

storing the ERIs at the cost of using a potentially very large plane-wave basis set73,74. This

plane wave approach is not yet available in QMCPACK.

determinants than their orthogonal counterparts to achieve convergence in the AFQMC

total energy53 (see Fig. 5).

QMCPACK also permits the evaluation of expectation values of operators which do not

commute with the Hamiltonian using the back propagation method59,81,82. In particular,

the back-propagated one-particle reduced density matrix (1RDM) as well components or

contracted forms of the two-particle reduced density matrix are available. As an example

we plot in Fig. 6 the natural orbital occupation numbers computed from the back-propagated

phaseless AFQMC 1RDM.

Tools to generate the one- and two-electron integrals and trial wavefunctions for molecular

and solid state systems are also provided through the afqmctools package distributed with

QMCPACK. To date these tools are mostly dependent on the PySCF software package23,

however we provide conversion scripts for FCIDUMP formatted integrals, as well as simple
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FIG. 5: Comparison in the performance of selected heath-bath configuration interaction

(SHCI) and NOMSD as trial wavefunctions in AFQMC calculations of NaCl in the

cc-pVDZ basis set at its equilibrium bond length. The top panel demonstrates that smaller

NOMSD expansions are necessary to reduce the standard deviation in the energy

estimator (σE) compared to SHCI trial wavefunctions. The bottom panel shows that the

total energy converges more rapidly with determinant number when using a NOMSD trial

wavefunction, where the horizontal dashed line is the coupled cluster singles, doubles,

triples and quadruples (CCSDTQ) result. The SHCI and NOMSD wavefunctions were

generated using the DICE75,76 and PHFMOL77–79 packages respectively. The CCSDTQ

result was computed using the Aquarius package80. Reproduced from Ref.53

Python routines to convert factorized integrals or trial wavefunctions provided from any

source to our internal HDF5 based file format. Detailed tutorials on how to run AFQMC in

QMCPACK are also provided. Nexus (Sec.III) can be used to drive the process of mean-field

20



0 10 20 30 40 50 60 70

Orbital Index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
at

u
ra

l
O

rb
it

al
O

cc
u

p
a
ti

on
N

u
m

b
er

n = 2

n = 3

n = 4

n = 5

n = 6

FIG. 6: Phaseless AFQMC natural orbital occupation numbers computed from the

back-propagated 1RDM for the n-acenes (C2H4C4nH2n) in the STO-3G basis set.

Geometries are taken from Ref. 83. Error bars are plotted but are smaller than the symbol

size.

calculation, wavefunction conversion, and AFQMC calculation. We are using this integration

to perform a study of the relative strengths of AFQMC and real space QMC methods.

Over the next year we plan to extend the list of observables available as well as complete

GPU ports for all factorization and wavefunction combinations. In addition we plan to

implement the finite temperature AFQMC algorithm84–88, and spin-orbit Hamiltonians with

non-collinear wavefunctions. We will also release our ISDF-THC factorization tools and our

interface to Quantum Espresso24. We hope our open-source effort will enable the wider use

of AFQMC in a variety of challenging settings.

VI. TOWARDS SYSTEMATIC CONVERGENCE OF REAL-SPACE QMC

CALCULATIONS

The key factor in reaching high accuracy using QMC is the choice of trial wave function

ΨT . For all-electron DMC calculations the nodes of the wavefunction are the only factor
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in determining the error in the computed energy, while the bulk of the wavefunction affects

the statistical efficiency and timestep error of the calculation. For calculations involving

pseudopotentials, high accuracy of the trial wavefunction is also needed around the atomic

cores to minimize the approximations in evaluating the non-local energy. Single Slater de-

terminant (SD) wavefunctions built with Hartree-Fock or Kohn-Sham orbitals supplemented

by a Jastrow correlation factor generally give good results, e.g. Ref. 89, and are used almost

exclusively today in solid-state calculations.

Reaching systematic convergence of the trial wavefunction and its nodal surface for gen-

eral systems has been a key challenge for real space QMC methods since their invention.

Besides increasing accuracy in calculated properties, this is also required to remove the start-

ing point dependence and allow use of QMC where all potential sources of trial wavefunction

are unreliable. In 2008 this was performed for first row atoms and diatomic molecules Ref.90,

and improved algorithms are aiding calculations on larger systems91. For general systems

with many electrons, the overall challenge remains. Furthermore, if the wavefunction is to

be used in DMC, commonly used optimization techniques only optimize the nodal surface

indirectly by improving the VMC energy and/or variance. Minimization of the objective

function is therefore not guaranteed to minimize the fixed-node energy. Consistently high

accuracy wavefunctions are also needed around atomic cores to minimize the locality error

in pseudopotential evaluation, posing a challenge for trial wavefunction optimization with a

large number of coefficients.

One possible step along the way would be to optimize all the orbital coefficients in a

single determinant wavefunction, but due to the limited flexibility in describing the (3N−1)

dimensional nodal surface this protocol can not give exact nodes for general systems. This

approach could represent a useful starting point independent step, while keeping a simple

form for the trial wavefunction. Other possibilities for improving the trial wavefunction

while retaining simplicity include techniques such as backflow and iterative backflow92,93,

and antisymmetrized geminal product wavefunctions (e.g. Ref. 94). However, more flexible

and complex trial wavefunctions are required to achieve systematic convergence of the nodal

surface and to approach exact results for general systems.

The most straightforward method to improve the quality of the trial wavefunction nodes

in a convergeable manner is to increase its complexity via a multi-Slater determinant (MSD)

or configuration-interaction (CI) expansion:
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ΨT =
M∑
i=1

ciD
↑
iD
↓
i e
J (9)

where ΨT is expanded in a weighted (ci) sum of products of up and down spin deter-

minants Di, and J is the Jastrow correlation factor. In the limit of a full configuration

interaction calculation in a sufficiently large and complete basis set, this wavefunction is

able to represent the exact wavefunction. However, direct application of configuration inter-

action is prohibitively costly for all but the smallest systems, because very large numbers of

determinants are usually required. To speed application, an efficient selection procedure for

the determinants is needed. This can be combined with efficient algorithms for evaluating

the wavefunction in QMC.95–97

A. Ground state calculations

Multiple variants of selected Configuration Interaction (sCI) methods have recently

demonstrated significant success at reaching high accuracy for ground state and excited

states of molecular systems with tractable computational cost. Within the class of sCI

methods, the CIPSI98 method has proven to be practical in providing high accuracy wave-

functions for QMC for both molecular systems and for solids99–105. sCI methods enable

unbiased construction of the trial wavefunction using only a single threshold parameter and

therefore avoid the complexities of, for example, CASSCF techniques which require expert

selection of the active space. CIPSI algorithms are implemented in the Quantum Package

2.0 code25 and fully interfaced with QMCPACK and Nexus.

For systems where CIPSI can be fully converged to the FCI limit and reliably extrapolated

to the basis set limit, QMC is not required, but for any reasonable number of electrons,

QMC can be used to further improve the convergence. The wavefunctions produced from

CIPSI can be used either directly, in which case the nodal error is determined by the CIPSI

procedure, or used to provide an initial selection of determinants whose coefficients are

subsequently reoptimized in presence of a Jastrow function, or used within DMC where the

projection procedure will improve on the CIPSI wavefunction. This procedure is equally

applicable to solids as well as molecules, provided k-points and their symmetries are fully

implemented.
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In the following, we illustrate these techniques by application to molecular and solid-state

lithium fluoride. In both cases, we use Linear Combination of Atomic Orbitals (LCAO) and

different Gaussian basis set sizes to generate the trial wavefunctions. CIPSI energies refer

to the variational energy corrected with the sum of energies from second order perturbation

theory (PT2) of each determinant, i.e. E+PT2 , at convergence in energy with the number of

determinants. Since the sizes of both systems are small enough to reach CIPSI convergence

with, for the largest case, less than 5M determinants, for the DMC calculations, the coeffi-

cients of the determinants are not reoptimized in presence of a Jastrow function. The cost of

DMC with a CIPSI trial wavefunction scales as
√

(N)∗(V arRatio)
2 where N is the number of

determinants in the expansion and V arRatio is the ratio between the variance of a system at

1 determinant and the same system at N determinants (V arRatio = V arNdets
V ar1det

). In the case of

the molecular systems, V arRatio varies between 0.7 (for cc-pcVDZ and N = 1.6M) and 0.8

(cc-pcVQZ and N = 5.2M) or an increase of cost ranging from 620 and 1500 times the cost

of a single determinant DMC run. In the case of the solid, V arRatio varies between 0.83 (for

cc-pVDZ and N = 700k) and 0.56 (cc-pcVQZ and N = 9M) or an increase of cost ranging

from 570 and 940 times the cost of a single determinant DMC run. The main difference

in the change of cost between the molecular system and solid system is the use of ECPs,

reducing significantly the variance of the calculations for both DMC(SD) and DMC(CIPSI)

B. Molecular Lithium Fluoride

Lithium Fluoride is a small molecule for which the multi-determinant expansion and

therefore trial wavefunction can be fully converged to the FCI limit using the CIPSI method.

Moreover, CCSD(T) calculations of the Vertical Ionization Potential (VIP) are feasible and

it’s experimental value is known106, providing reliable reference data. Care has to be taken

in the comparison to experimental values, as experimental measurements include intrinsic

uncertainties and environmental parameters such as temperature. These effects, including

zero-point motion, are not included in our study and might explain the remaining dis-

crepancies between our calculations and the experimental ionization energy value given by

Berkowitz et al. Berkowitz, Tasman, and Chupka 106

While the total energies at each basis set of ground state calculations and cation calcula-

tions are different, their trends are identical and we therefore only show figures representing
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the ground state. Figure-7 shows the ground state DMC total energies of LiF, computed

using various trial wavefunctions; single-determinant such as Hartree-Fock (HF), DFT’s

PBE0 and B3LYP hybrid functionals and multi-determinant using the converged CIPSI

trial wavefunction. CCSD(T) and CIPSI energies are added to the figure for reference and

all calculations are performed for 3 basis-sets increasing in size (cc-pCVNZ, N=D,T,Q) and

extrapolated to the complete basis-set limit (CBS). The trends of CCSD(T) and CIPSI total

energies are in agreement with each other to the CBS limit. CIPSI calculations recover more

correlation energy ∼0.24eV for the ground state and ∼0.13 eV for the cation. This is to be

expected as CCSD(T) includes singles, doubles and perturbative triples excitations while

CIPSI wavefunction includes up to 9th order excitations with more than 70% describing

quadruple excitations (10% describing higher order excitations) for both ground and cation

states. Interestingly, at the CBS limit, CIPSI total energy converges to the same limit as

the DMC(CIPSI) energy while the CCSD(T) converges to the same energy as the SD-DMC

energies.

FIG. 7: Ground state total energies (eV) of molecular LiF for DMC(HF), DMC(B3LYP),

DMC(PBE0), DMC(CIPSI) CCSD(T) and converged CIPSI using cc-pCVNZ basis sets

where N=D,T,Q and extrapolate to the CBS limit. All single-determinant DMC curves are

on top of each other.
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At the DMC level of theory, the dependence on basis-set is rather weak; less than∼10 meV

in the worst case. In the LiF molecular case, the nodal surface of all tested single-determinant

trial wavefunction are within error bars of each other, meaning they are essentially the

same. Such weak dependence on the starting method and on the basis set are a a significant

advantage and strength of the method when compared to other methods such as sCI or

even AFQMC. The use of CIPSI-based trial wavefunctions in DMC allows the recovery

of 0.24eV for the ground state and 0.5eV for the cation. This difference underlines the

different sensitivity of the nodal surface to excited and charged states. The vertical ionization

potential (VIP), EV IP = Ecation−Eground, DMC performed using CIPSI wavefunctions shows

almost no dependency to the basis set size, Fig. 8 while DMC(CIPSI), CIPSI and CCSD(T)

are in perfect agreement at the CBS limit, demonstrating good error compensation for the

latter method.

FIG. 8: Vertical ionization potential of LiF using different methods and trial

wavefunctions. The dashed line corresponds experiment.106
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C. Solid-state Lithium Fluoride

Solid LiF is a face centered cubic material with a large gap, used mainly in electrolysis for

his role in facilitating the formation of an Li-C-F interface on the carbon electrodes107. The

purpose of this example is to demonstrate basis set effect and the systematic convergence of

DMC energy with the number of determinants (a paper demonstrating convergence to the

thermodynamic limit is in preparation). We simulated a cell of (LiF )2 (4 atoms per cell)

at the Gamma point using correlation consistent electron-core potentials (ccECP)Bennett

et al. 37 , Wang et al. 40 described in Sec-IV and the cc-pVDZ, cc-pVTZ and cc-pVQZ basis

set associated with the ccECPs. PySCF, Quantum Package and QMCPACK are able to

simulate all shapes of cells with both real and complex wavefunctions, corresponding to any

possible k-point. In this case, running at Gamma point is simply for convenience.

For such a small simulation cell, it is possible to convergence the sCI wavefunction to the

FCI limit with a reasonable number of determinants, as can be seen in Fig-9. The number

of determinants needed to reach approximate convergence remains important: around 700K

in cc-pVDZ, 6M in cc-pVTZ and 9M in cc-pVQZ. Similarly to the molecular case, in the

converged energies for the cc-pVTZ and cc-pVQZ basis sets are in agreement, indicating

that the basis set is sufficiently convergence. Interestingly, in the cc-pVTZ case the DMC

energy converges significantly faster with the number of determinants (700K instead of

6M). The slower convergence of the cc-pVQZ curve indicates that important determinants

describing relevant static correlations are introduced late in the selection process. Using

natural orbitals or in general, an improved choice of orbitals or selection scheme could

accelerate the convergence.

D. Solid-state band gap calculations

The band gap of a solid is a critical and fundamental property of a material to predict

accurately. QMC calculations for solids have traditionally used completely independent cal-

culations for ground and excited states and single determinant calculations. This approach

can be accurate but it relies on good error cancelation between the calculated total energy

for each state, making the selection of consistently accurate trial wavefunctions critical. Im-

proved methods are needed to enforce good error cancelation including approaches that can
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FIG. 9: Convergence of DMC energies of solid LiF using for different basis sets with

respect to the number of determinants.

be systematically converged to give in-principle exact results.

As discussed above, convergent wavefunctions and energies can be constructed using sCI

techniques. However, even for small primitive cells with relatively uncorrelated electronic

structures, this approach quickly requires millions of determinants making it expensive to

apply today. We have developed theories, methods and implementations to obtain the

band-edge wavefunctions around the fundamental gap and their relative energies efficiently

and to a high accuracy. Error cancelation is built into the methodology so that simpler

trial wavefunctions are effective and the scheme is substantially more efficient to apply.

Surprisingly, for the systems examined so far, only single and double excitations need be

considered to obtain accurate band gaps, even using the simple VMC method. This makes

the technique comparatively cheap to apply.

To compute the optical band gaps of insulators and semi-conductors we use the energy

difference of optimized wave functions that describe the valence band maximum (VBM) and

the conduction band minimum (CBM). Optimizations use the recently developed excited
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state variational principle,108–110

Ω (ω,Ψ) =
〈Ψ|ω −H|Ψ〉〈
Ψ|(ω −H)2|Ψ

〉 =
ω − E

(ω − E)2 + σ2
(10)

whose global minimum is not the ground state but the eigenstate with energy immediately

above the chosen value ω, which could be placed within the band gap to target the first

excited state and thus predict the optical gap. QMCPACK evaluates Ω via variational

Monte Carlo (VMC) method to avoid explicit dealing with the H2 term, and minimizes it

using the linear method. For ground state, we include the closed-shell determinant built

from Kohn-Sham (KS) orbitals, plus all single-particle-hole excitations, which represents

the leading-order terms of orbital rotation that transforms KS orbitals to the ones that

minimizes Ω in the presence of the Jastrow factor. For the excited state, we include all

the single-particle-hole excitations as in Bethe-Salpeter equation (BSE)111 methods as well

as selected double excitations to capture the re-polarization of the electron cloud in the

vicinity of the exciton. We use the variance of the wavefunctions as a proxy for accuracy,

and by varying the number of determinants choose ground and excited states with consistent

variance.

We have used this approach in Ref. 112 to study optical gaps of a variety of solids

ranging from small-gap semi-conductors to large gap insulators and compare our results to

the commonly used GW approach based on many-body perturbation theory (MBPT). As

detailed in the supplemental information of Ref. 112 the band gaps were extrapolated using

calculations on 8, 16 and 24 atom supercells. Figure 10 shows that the predicted optical

gaps are in excellent agreements with experimental values and the mean absolute deviation

(MAD) is just 3.5%, compared to MADs more than twice this large for the optical gaps

obtained by subtracting the known exciton binding energy from G0W0 and self-consistent

GW gaps. These calculations were able to run of departmental level computing and did

not require supercomputers due to the use of VMC and moderate sized supercells utilized.

Remaining errors that have yet to be investigated include the size of the CI expansion and

the limited correlation energy obtained with VMC, the pseudopotentials, and residual finite

size error. DMC may further improve the VMC results.

In order to further show the method’s advantage, we performed a thorough analysis of

zinc oxide, a material that is particularly challenging for MBPT.115 As shown in Figure 10,

the perturbative nature of G0W0 makes its prediction highly sensitive to the amount of
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FIG. 10: Left: VMC optical gap predictions plotted against experimental results. The

VMC wavefunctions are constructed via a configuration interaction singles doubles

expansion (VMC-CISD) or with single determinants (VMC-SD). Right: Comparison of

optical gap of ZnO between G0W0 using one-particle starting points that employ different

fractions of exact exchange with VMC results based on the same starting points. VMC

data from Zhao,112 G0W0 results are from Fuchs113 and experimental data is from Lauck.114

exact exchange included in the DFT reference. As G0W0 assumes a zeroth-order picture,

in which electronic excitations are simple particle-hole transitions between the one-particle

eigenstates of DFT, such a sensitivity indicates the break down of this assumption and

then G0W0 becomes unreliable. On the other hand, our VMC approach is designed to be

insensitive to the DFT choice for two reasons: (1) its ability to include approximate orbital

relaxation counteracts the shortcomings of the DFT orbitals. (2) unlike G0W0 it does not

require orbital energies as input. From Figure 10 we do find that its prediction to optical

gap is both accurate and independent to the choice of DFT functionals.

30



E. Summary

Using DMC as a post-sCI method is very promising to systematically improve molecular

and solid-state calculations beyond the single-determinant picture. It converges faster the

sCI methods used on their own. From a practical perspective, PySCF, Quantum Package

and QMCPACK are fully interfaced with each other through the Nexus workflow automation

system. The necessary multi-step workflow to run the above examples is fully implemented.

In the case of solids, Nexus can automatically manage finite-size scaling calculations by

setting the size of the super-cells, the number of twists angles, and drive PySCF, Quantum

Package, and QMCPACK appropriately and automatically.

VII. APPLICATIONS

To illustrate the application of recent developments in QMCPACK, in Section VII A we

give an example of using real space QMC to study non-valence anions, which are particularly

challenging systems. Section VII B gives an example of computing the excited states of

localized defects, which is a challenge for all electronic structure methods. In Section VII C

we give an example of computing the momentum-distribution and Compton profile from

real space methods. The necessary estimators have recently been specifically optimized for

these tasks.

A. Applications of DMC to Non-valence Anions

In addition to valence anions, molecules and clusters can posses non-valence anions in

which the binding of the excess electron is dominated by a combination of long-range elec-

trostatics and long-range dispersion-type correlation effects. The best known class of non-

valence anions are dipole-bound anions, in which the binding of the excess electron is driven

by the dipole field of the neutral.116–121 Non-valence anions, regardless of the nature of the

long-range interaction responsible for the electron binding, are challenging to treat using

traditional electronic structure methods due to the large, highly diffuse basis sets required.

Both DMC and AFQMC methods have been demonstrated to be useful in characterizing

dipole-bound anions.122,123 Non-valence anions in which electron correlation effects domi-

nate the binding of the excess electron pose an additional challenge, namely, by definition,
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they do not bind the excess electron in the Hartree-Fock (HF) approximation. In fact, HF

calculations on such excess electron systems collapse on to the neutral molecule leaving the

excess electron in a discretized continuum orbital.124 Hence, methods that start from the

HF wave function, e.g., MP2 and CCSD(T),125 also fail to bind the excess electron. Many-

body methods such as equation-of-motion coupled cluster (EOM-CC),126–129 have proven

successful in treating these species, but still face the problem of requiring very large basis

sets.

This raises the question of whether DMC calculations using a single Slater determi-

nant trial wave function to define the nodal surface can accurately describe non-valence

correlation-bound (NVCB) anions. To investigate this, we have undertaken DMC calcula-

tions on a (H2O)4 model with the monomers arranged so that the net dipole is zero.124 This

model has been studied previously using EOM-CC methods. In the present work, we focus

on a geometry at which the excess electron does not bind in the HF approximation, but for

which EOM-EA-CCSDT129 calculations using the aug-cc-pVDZ basis set130,131 augmented

with a 7s7p set of diffuse functions located at the center of the molecular cluster give an

electron binding energy (EBE) of 174 meV.124

For the QMC calculations, Slater-Jastrow trial wave functions that are products of a single

Slater determinant comprised of HF or DFT orbitals and a Jastrow factor were employed.

All calculations were carried out using the ccECP pseudopotentials with the corresponding

aug-cc-pVDZ type basis sets37,39 augmented with the same 7s7p set of diffuse functions

as employed in ref 124. The DMC calculations were carried out at three imaginary time

steps (0.001 Ha−1, 0.003 Ha−1, 0.005 Ha−1), and a linear extrapolation was performed to

obtain the zero time step limit. HF calculations with this basis set fail to bind the excess

electron, and a plot (see Fig. 11) of the singly occupied orbital of the excess electron system

reveals that it is very diffuse because it has collapsed onto the lowest “continuum” solution

as described by the discrete basis set. The QMC calculations were carried out with the

QMCPACK code.

The Jastrow factors used in the trial wave functions included electron-electron, electron-

nuclei, and electron-electron-nuclei terms. Normally, one would optimize the parameters in

the Jastrow factors separately for the neutral and for the anion. However, this approach

would not give meaningful results for an unbound anion, and, as a result, we adopted

the strategy of using the Jastrow factor optimized for the neutral in the subsequent DMC
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FIG. 11: The singly occupied orbital from (left) HF and (right) B3LYP calculations on

the anion of the (H2O)4 cluster model. These were carried out using the ccECP and the

corresponding aug-cc-pVDZ basis set, augmented with a set of 7s7p diffuse functions

centered at the origin. The bounding box is 100 a.u. on each side, and the isosurface value

is set to 0.0005 to enable comparison between the images. The highly diffuse orbital from

the HF calculation is actually describing an approximation to a continuum function in the

finite Gaussian basis rather than the orbital appropriate for the anion.

calculations of the anion. The DMC calculations using trial wave functions determined in

this manner give an EBE of 183±10 meV, in good agreement with the previous EOM-EA-

CCSDT result (174 meV).124 This demonstrates that DMC calculations can recover from

the use of a trial wave function for the anion that has collapsed onto a discretized continuum

solution.

Even so, there remains the question of whether the EBE obtained from DMC calculations

that use an unphysical (i.e., collapsed onto the continuum) trial wave function could incur

an appreciable error due to an inadequate description of the nodal surface of the anion. To

address this question, we also carried out VMC and DMC calculations on the neutral and

anion of the (H2O)4 cluster model using orbitals from B3LYP132–134 calculations employing

the same pseudopotential and basis sets as used for the HF calculations. The anion is

bound by 395 meV in the B3LYP calculations, and the singly occupied orbital of the excess
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electron system, while still diffuse, is localized much closer to the molecule than in the

HF calculations. A comparison of the charge distributions of the singly occupied orbitals

from the HF and DFT calculations (see Fig. 11) shows that the DFT charge distribution is

much less spatially extended. Moreover, it more closely resembles the charge distribution

of the relevant natural orbital from the EOM calculation of Ref. 124. (The over-binding

of the anion in the B3LYP calculations is likely due to the finite extent of the integration

grid.) The DMC calculations using trial wave functions derived from B3LYP orbitals give

an EBE of 212±11 meV, ∼ 29 meV larger than the DMC result obtained using HF orbitals.

This increase indicates that employing a trial wave function with a more physical charge

distribution for the singly occupied orbital of the anion does have an impact on the nodal

surface for the exchange of the electrons. The EOM-EA-CCSDT result obtained using

the aug-cc-pVDZ+7s7p basis set is 38meV smaller than the DMC EBE obtained using the

trial wave function employing B3LYP orbitals. This suggests that the EBE from EOM

calculations may not be fully converged in these large basis sets. Overall, these results

demonstrate that DMC is a viable approach for the characterization of NVCB anions.

B. Excitation energies of localized defects

For defects and interfaces, most ab-initio methods can only achieve qualitative agreement

on the optical properties. We have recently studied emission energies of Mn4+-doped solids

using DMC, which is chosen as proof of principle11. We show that our approach is applicable

to similar systems, provided that the excitation is sufficiently localized. In support of this

work, Nexus scripts and new tutorials on excited state calculations were developed that can

be applied to any gapped system (Lab 5 in the QMCPACK manual).

Multivalent ionic defects, such as Mn4+, can create multiple localized electronic states

that are trapped within the band gap of wide gap materials. Thus, luminescent centers

are created in the dopant sites through radiative recombination. Mn4+ has d3 electronic

configuration all on the t2g orbitals. The ground state is in t↑↑↑2g (4A2g) configuration due to

Hund’s rules, but the excited state is found to be as t↑↑↓2g (2Eg)
135. Therefore, the emission

energy is simply defined as Eem = E(2Eg)− E(4A2g).

Fig. 12(a) shows that DMC can reproduce experimental emission energies of Mn4+ doped

insulating host compounds136–138. DFT+U and hybrid-DFT, however, substantially under-
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FIG. 12: (a) Emission energies of Mn4+ doped host compounds (on x-axis). (b) Number

of electrons per radial volume, n(r), around the Mn atom. The inset shows the radial

distribution function g(r) for the same density. Number of electrons per radial volume and

the radial distribution functions are related as n(r) = g(r)4πr2dr. Reproduced from Ref.

11.

estimate. Relative quantitative success of HSE with respect to PBE (or DFT+U) indicates

that emission energies might be reproduced with a larger portion of exact exchange. How-

ever, this would worsen the accuracy of the computed band gaps in the host compounds11.

In Fig. 12(b), we show the spin flipped electrons per radial volume n(r) = ρ↑ground − ρ↑excited
which is spherically integrated around the Mn4+ atom. n(r) approaches to zero with increas-

ing radius indicating that excited electron density is strongly localized on the impurity atom.

DMC and LDA+U n(r) densities are almost identical to each other despite the large differ-

ence in their emission energies which underscore the difficulties that needed to be overcome

for better DFT functionals139.

C. Calculation of the many-body properties: the momentum distribution

As full-many body methods, QMC can be used to calculate many-body properties that

can not be readily obtained from single-particle or mean-field techniques. We have recently

updated and optimized calculation of the momentum distribution.

Experimentally the momentum distribution function (MDF) can be accessed, e.g., via

angle-resolved photoemission spectroscopy and scattering methods such as Compton scat-
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tering, positron annihilation, the (e, 2e) process, and high energy electron scattering140–143.

In general, the differential cross sections of the scattering can be related to the momentum

distribution. These experimental techniques are powerful probes for understanding subtle

details in the ground state properties of materials, which are manifested in the MDF.

In normal Fermi liquids, the electron MDF has a discontinuity at the Fermi momentum

pF . In three-dimensional systems this discontinuity defines the shape of the Fermi surface,

which is also related to the screening properties of the electrons144. The Fermi surface can

be extracted from the p-space MDF via back-folding145. This leads to occupation density

within the first Brillouin zone from which the Fermi surface topology can be considered146.

The magnitude of the discontinuity at the Fermi surface, however, quantifies the strength

of a quasiparticle excitation and is generally referred to as the renormalization factor147,148.

For strongly coupled systems the renormalization factor tends to zero as the coupling

strength increases, and thus, it provides an estimate for the strength of electron correla-

tions. Interestingly, the discontinuity at the Fermi momentum disappears for superfluids or

superconducting materials. For insulators the discontinuity is absent and the sharp drop is

noticeably broadened, which also holds true for some semi-metals149,150. Even small scale

charge density oscillations lead to clear signatures in the MDF151. Therefore, the momentum

distribution function provides complementary and informative knowledge to other charac-

terizations of many-body systems.

The MDF, n(p), is obtained by taking the Fourier transform of the one-body density

matrix:

n(p) =
Ne

Ω

∫
dRdr′1 e

i(r1−r′1)·pρ(r1, . . . , rNe , r
′
1, . . . , rNe) =

Ne

Ω

∫
ds e−ip·sn(s),

where Ω is the volume containing Ne electrons, R = {r1, . . . , rNe}, s = r′1 − r1, and

n(s) =

∫
dR ρ(r1, . . . , rNe , r1 + s, . . . , rNe).

In variational Monte Carlo this is expressed as

n(s) =

∫
dR Ψ∗(r1, . . . , rNe)Ψ(r1 + s, . . . , rNe) =

∫
dR |Ψ(R)|2 Ψ(R′)

Ψ(R)
,

where R′ = {r1 + s, . . . , rNe}. Thus, we get for the MDF:

n(p) =

∫
dR |Ψ(R)|2Ne

Ω

∫
ds

Ψ(R′)

Ψ(R)
e−ip·s.
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In practice, the Monte Carlo estimate for the MDF with Ns samples is given by

n(p) =

〈
1

ΩNs

Ns∑
i=1

Ne∑
j=1

Ψ(R + sij)

Ψ(R)
e−ip·s

i
j

〉
|Ψ(R)|2

, (11)

where R includes the coordinates of all the electrons, and sij is a displacement vector acting

on the jth electron of the ith sample. In diffusion Monte Carlo calculations the mixed dis-

tribution replaces |Ψ(R)|2 , and additional measures must be taken to calculate or estimate

the density matrix. Notice that the momentum distribution normalizes to the number of

electrons

∑
p

n(p) = Ne =
Ω

(2π)d

∫
dp n(p), (12)

in which d refers to dimensionality. In Eq. (12) a finite system and a system at the thermo-

dynamic limit are described by summation and integration, respectively.

The MDF estimator is a one-body density matrix based estimator with very high compu-

tational cost resulting from the large number of wavefunction evaluations required. A naive

implementation can easily double the cost of a QMC calculation. Thus, efficient algorithm

and implementations are critical, and similar techniques can be used for related estimators.

In Eq. (11), the computation of wavefunction ratios
Ψ(R+sij)

Ψ(R)
and phase factor e−ip·s

i
j are

both expensive. Direct NeNs times of calculation is easy to implement but has a lot of

repeated effort. In the
Ψ(R+sij)

Ψ(R)
term, the evaluation of single particle orbitals at rj + sij

dominates the cost. In fact, its call count can be reduced from NsNe to Ns by making

sij = r′i − rj (13)

where r′i is the electron coordinates of sample i. Although the leading cost of
Ψ(R+sij)

Ψ(R)
is

optimized away, its remaining terms still scale as O(NsN
2
e ) and the computational cost

should be comparable to the non-local pseudopotential calculation.

Unlike the wavefunction ratios which needs to be computed only once for all the p, phase

factors are computed for each p and also take significant portion of time. Similarly, for each

p, the number of evaluations can be reduced to Ns +Ne times by separating indices i and j

in two terms like Eq. (13). The calculation of e−ip·r
′
i and e−ip·rj can be efficiently vectorized

using the single instruction multiple data (SIMD) unit in modern processors.
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FIG. 13: QMCPACK result for the difference in the momentum distribution of VO2 across

the metal-insulator phase transition based on Ref. 151. (a) and (b) show two planes of the

3D difference profile. In (c) the differences are given in four different directions and also for

the angular averaged MDF. For more details, see Ref. 151.

By applying the above techniques and ensuring vectorization of all operations, the over-

head for evaluating the MDF in a 48 atom cell VO2 was reduced from additional 150% to

only 50% cost increase compared to a DMC run without any estimators.

Within the so-called impulse approximation (IA) the Compton profile as well as the

dynamical structure factor are proportional to the projection of n(p) onto a scattering

vector149,152. In this case directional Compton profile in z-direction would be expressed as

J(q) =
Ω

(2π)3

∫∫
n(px, py, pz = q)dpxdpy.

The IA is especially appropriate for X-ray Compton scattering from electronic systems142,149,

and thus, it is capable of providing a unique perspective for understanding the electronic

structure of materials; bulk properties, in particular.

In Ref. 151 QMCPACK was used in obtaining the MDFs and Compton profiles for VO2

across its metal insulator transition from metallic rutile (R) phase to insulating monoclinic

(M1) phase. There the analysis of the MDF shows signatures of the non-Fermi liquid char-

acter of the metallic phase of vanadium dioxide. Moreover, findings therein provide an

explanation for the experimentally observed anomalously low electronic thermal conductiv-

ity153, which manifests as back scattering characteristics within the momentum distribution

function. Fig. 13 shows some examples of MDF differences across the phase transition in

two planes as well as for a few different directions151.
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VIII. SUMMARY

We have described recent enhancements to the open source QMCPACK package. Be-

sides increases in capability for both real space and auxiliary field Quantum Monte Carlo

(QMC) methods, the surrounding ecosystem has also been improved. These enhancements

include the workflow system Nexus, which aims to reduce the complexity of performing

research studies and the tens to hundreds of individual calculations that might be en-

tailed. A new set and open database of effective core potentials has also been established

at https://pseudopotentiallibrary.org, and we expect that these will be of interest

for other quantum chemical and many-body calculations due to their increased accuracy,

including for stretched bonds and excited states. We have also described how improvements

in open software development have benefitted the project. Besides the activities described

in this article, we note that there is substantial ongoing work to enhance the architecture

of QMCPACK for GPU accelerated machines and to obtain portable performance from a

single code base. Once the new design is proven on diverse GPUs it will be described in a

future article.

Overall the applicability of QMC continues to expand, it is becoming easier to apply, and

there are many systems and phenomena where the higher accuracy and many-body nature

of QMC is both warranted and can now be applied. We hope that this article will help

encourage these new applications.
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78C. A. Jiménez-Hoyos, R. Rodŕıguez-Guzmán, and G. E. Scuseria, “Multi-component

symmetry-projected approach for molecular ground state correlations,” The Journal of

Chemical Physics 139, 204102 (2013).
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