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ABSTRACT

Thé‘contribution of the P (Pomeranchuk) and p! trajectories
_ £§ fhévgenefalized two-particle (low enérgy) potential is shown to be
réﬁulsivé'énd effectively of long range. - A rough expréssion for the .
P fotential is given in terms of the high-enérgy total’c:ossvsectiod
and associated diffraction peak. It ishgrgged that Pomeranchuk
v repulsién représents the ﬁanywparticle channels that dominaﬁe high
energies and that have an important narrowing effect on resonance widihs

| .

, even though these channels are closed in the low-energy resonance
i : ' §
region, . ‘

r=
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I. INTRODUCTION -

ln a recent paper there were discussed ceftain consecuences of
employing Regge poles rather thanufined J poles‘ee thelsource'of
- two~particle generalized potentials.; An important.omission in that
‘peper was an estimate of potentials arising from trajectories for which
the first physical' J value fails to-heve an associated éole of the
S matrix, Two well-established tfajectories are of this type, the
so=called P (Pomeranchuk) and P' trajectories where the first
-associated particles have J = 2,2 whereas the first phyeical angular
momentum velue is J =0, The purpose of the present paﬁer is to
bshow that the J = 0 components of the P and ?' Regge potentiels
are_repulsive and effectively of lcng range, They may constitute the
major bootstrap component, so far overlooked, that tends to make reeonances‘
narrow,

Bootstrap calculations of low;baryonsnumber particles on
the basis of fixed-spin potentials have always yielded larger widths

~than experimentally observed.3

It is well known from the dynamics
of particlee with large baryon.nunber (classical nuclear physics)
that the éroliferation of manyebody cnannels,_open at high energies,
_systematically narrows the widths of low-energy resonances for which
,theee channels are closed, No estinates have'heretofore been given
.of this effect for particles of low baryon number, but the Reggeized
strip approximationh includes the . high-energy inelastic effect and

therefoge shéild manifest the narroving tendency. '
: ’ | ’
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In the new form of strip approximation'ﬁhe'generalizedvtwo—body‘
potential is:represepted;as a sum ovér_contribﬁtions from the leading
Regge trajgctor@es.of crossed reactions, Rereieﬁgevl shows‘that wheﬁ |
the leéding physical -J . .value on thé trajectory has an associated '
physical partlcle, éne may assoc1ate the potential in the conventional
 manner with exchaﬂge of this particle, although there is an imnor£;nﬁ
form facuor ‘which reduces the strength and extends the range~mrelative
to a fixed-spin (elementary) particle potential., A small part of the
P and P potentials may be associated in such a sense with exchange
of the J =2 £(1250) and £*'(1525) particles, but the major component
- belongs to J = 0 == where no particlesvéxist. We suggest that physic;llyb
this latter component represents the aforementioned dynamical effect
of many-particle chgnnels,'closed inside the strip where the potential
is to be employed, but open above the strip boundary,

| Why is such an iden;ificatioﬁ plausible? Firét of all, the P
and..P'_’trajgctories accouﬁt for most of the total cross section in thé

p

 highmenergy region where multiple production dominates. Second, as we

shall see, the J = 0 component of the P and P' potentials 1s

always repulsive andfof a range==corresponding to the forward peaks of

~high energy diffraction scattering--that is relatively long. When'such

8 long-range repulsion 1s added to a shorter fange attraction from

"ordinary" perticle-exchange, one has the dynamical situation favorable | ,
. 6 | . |
20 Narrov resonances,. i

!
|

- “"3 - .

=
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'II, THE J = 0 COMPONENT OF THE POMERANCHUK POTENTIAL

In Reference 1 it was explained that inside the s strip

one may meke a Legendre polynomial. expansion in 2z, of the se=reaction

t
potential associated with the ith Regge poie communicating with the

t reaction, Since the Pomeranchuk trajectory is of even signature,

. we have
8 _ | P . . Y
VAEs) =) () VTR (11:1)
J even ’
where

s+ 2(0) +q %) |
2q,(t)q, (t) ’ S (11:2)

;zi(s,t)

t 2

qae(t) = pemn 'qbe(t) = Temy | - (11:3)

if the 8 reaction.connects channels with particle masses: m,. and . ..

‘m, . It should suffice for our qualitative discussion here, as it did

in Reference 1, to employ the Khuri~Jones formula fof VJP(t) -3
» o aplt) vp(t)  =[geag(e)le (8)
Vg (8 = Bple (e ()] T gy e T T, ()

' P

where BP is‘a'érossing'matrix element (always positive for the

o iy , , A
Pomeranchuk p@ie), YP(t) is the reduced residue (also positive
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near t = 0), and aP(t) is the Pomeranchuk trajectory. The function

%}t) is given by

6y (6) = log [ay(8) + (2,%(e) - oA, (11:5)

 where »zl(t) = z(sl,t) » 8, .being the strip width, that isf the

l '
lowest energy at which the imaginary part of the full amplitude can be
approximated by the imaginary part.of the pdtential. It appears

experimentally that s, % b Gev® .

The qualitative discussion of Reference 1 may be applied to

L

) V?zz(t) . assoéiating this'force component with f(léSO) exchdnée,
although the qamping here with respect to eleﬁentary particle exchaﬁge.
is severe, bur roggh estimate would give a reduction at ‘t =0 by

' é factor « e’2,7 almost one order of magnitude, so the J‘=

v compogent of the Pomeranchuk potential is relati&ely minor, aifhough

attractive (positive). The J = O component, on the other hand, is,

for |t] << Sy

S . ()
Voo(8) = egan (t)YP(t)s P . (11:6)

strongly repulsive. The result for P' is similaf; One may usefully
compare_(II:G) to the high-energy limit of the imaginery part of the
-amplltude--which is the same as the hlghnenergy limlt of the imaginary

part of the Pomeranchuk potential:
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DR Mep®) +12)]ale)
S(tos) —> Bo| 5 (2aP(t)+1) F(aP(t) ) YP(t)-s —

800 (11:7)

“Im VP

. Observe that for s not enormously larger than Sy the t dependence
_of the two forms is similar. Thus the "shape" of the Pomeranchuk
potential is essentially that of the high-energy diffraction peak.

Using the optical theorem,

o*°%(s) 161 Inv, (t=0,8) , | (11:8)
s>>sl

together with the fact that aP(O) = 1 ; we may establish the normalization

to be

vE oy 8y
N
J=0(t = O) A - S

%) . (11:9)
_ 2hn ’ _ C . '

Had'we used the Chew~Jones expression for the Regge formulal’h

rather than the Khuri-Jones expression, we should have found 1n~(II:9)

,.é coefficient fesl/16n2 » corresponding to a slightly different

significance férAthe parameter s, . Since actual dynamical calculations '

1

are more likely to be based on the Chew-Jones expression, we shell use
this latter né;malization in:whgt follows, (The arguments to be

made here are Shly qualitative, so a factor of 3/2 is of no

consequence, )
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III. AN APPARENT CONTRADICTION
Estimating the t-discontinuity (or imaginary part) of (II:6),
one finds it negative in the regidn‘between-the 2r  threshold and
the mass squared of f(l250).8 Since the t discontinuity of'any
‘t-redctionipértial-wave elastic amplitude must be positive, a doubt
arises about the:correctness of (I11:6),

9

S fact, Chew and Teplitz” proposed a technique for evaluation

of the potential which precludes a negative result for the potential

:f‘carrying the vacuum quantum numbers, The reasoning of these éuthors,

. : }
however, depended on the neglect of double spectral functions throughout

the "corner" regions where both variables (s and t) are iﬂsidé their
v_fespective strips, This is equivélent to assuming that ipéide the t
strip the entife t discontinﬁity is contained in the potential for
i’the s reaction.' .
Such is; of course, not strictly the case, and if one asks
_where (in t) the discontinuity of (II:6) becomes lafge, one sees that
it is in the region whefe‘ Ih.aP(t) is large, fhat is, the.upper |

portion of the t ~strip above the mass squared of £(1250). In view

of the relatively narrow width of the f we can be sure that Im aP(t)

2 10

| remains small for t~s’mf .

Now, in the upper portion of the

ot stfip (inside the s “strip) there may be substantial components

of the Mandelstam double'spectral function arising from iteration of .

lower t com@onents_in the potential. This double spectral function

. contributes télthevtotal -t discohtinuity but is excluded (by definition)

75
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from the potential. Were the double soectfal function sufficiently

large it eould produce the required positive sign for the complete t

discontinulty, ‘even though the potential (II 6) may be negative.

 Towards the lover edge of the t strip the potential must

dominate the t discontinuity, so (II:6) cannot there be a good

' epproximation to the complete (vacuum=like) potentisl., Here the
: procedure recommended by Cheﬁ and Teplitz seems appropriate in order -

. to include the effect of secondary trajectories and "packground."

. Notice that our conjectured mechanism for removing the

. contradiction between (II:6) and the positive-definiteness requirement,

.through the double spectral function, 1mpl*es the lnadequacy of -

approximating the left—hand discontinulties in an N/D calculation by

 the discontinuities of the potential. This is perhaps not surprising 1f

one recalls that this latter approximation has been especially deficient

in handling strongly repulsive forces..ll

A lesser paradox is the circumstance that the "range" of the

Pomerenchuk potential (IX:6), as measured by its logarithmic derivative

et t =0 s 1s longer than would be glven by a dispersion-relation

estimate based on the region of t(>m 2 where the imaginafy part

g )

-,becoﬁes large, For pionmpion scattering, as an example, the inverse .

logarithmic derivative with respect to t of the difiraction amplitudn

1s %0.5 6eV° ,*2 while m.2.= 1.6 GeV°,

(II:7) at t =0 end s s .

1

‘The explanstion here 'is that the imaginary part of V§=O(t) oscillates -

when the imaéioary part of aP(t) becomes large, leading to cancellatiohé“

in the disperéion integral, so the dependence on t near t = 0 may
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be sﬁéeper'thanvgiven by'éhe elementary esﬁimate,_whicﬁ tacitly aséumes
'an abéence'of cancellations, Tﬁis circumstance means'that Pomeranéhuk
repulsion even while behaving dynamically like a long-range force, does
not correspond’to‘a "nearby" left~hand singularity in partialawave
emplitudes. It is:a superpoéition of distant singularifies on éggg
‘right (outside the sfrip) and left, in which the oscillatory character
of the discontinuity is én essential feature., To represent such an
effect.in N/D‘models by a few phenomenological poles on the left is

probably hopeless,
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: .IV; ESTIMATE OF THE. IMPORTANCE OF'POMERANCHUK_REPULSION

' Let us now examine for a much studied examnle the 'Id= i
mr  channel, the relative importance of the potentials associated with
the .P and h .trajectories, the latter being the only one usually _
. considered for thie system,
In our pre’vious’paperl wve have roughly estimated the o
potential ae

' Vz“ I-l( t) v= 3(1 + S/2qt2)le(t# 0 { »(IVgl)

. wﬁere, for»-lt|?<_sl .

Lo v g =FF e PP . (va2)

the effective crossing nmatrix element here being equal to 1/2. ;3 o
" The potential is attractive, to- be compared to our estimate above of

the repuléive Pomeranchuk potential:

In Aﬂ%(si,t)

s, ' .
1 tot _ ] :
VI;“ I-l(t) : ) 2;:2- onﬂ_ (co) Im Amr(sl!o). S ’ ’ (1v:3)

Althohgh the detailed shape of the high—energy nnr  forward
diffractlon amplitude is not known, it should suffice here to represent

e

it by a simple.exponential of the above-mentioned width 0,5 GeV2

E

(e



7

=10~

t

| = 12
The value of O Ot(o ) 1is teken as 10 mb,

leading to

Fooa® mo03s v

" ‘where 8 and t are to be evaluated in units of -GeV2 « For the

1 ,
p potential, using'a width T = 110 MeV, a mass m = 0,77 GeV,

and a‘trajectory slope aé = 0.5 mp-g o We have

0 N A - . 5 & : o .
V"“,Igl(t) ~~ lol (r - m“ + > . | N ‘ (IV.S)

'Compa:ing (IV:h) and (iV:S);.one éhogld notice two pdintsi _(a)  The
t. dependence of the two potentials is not very different, but‘the p
& . péteptial has a major cohponént increasing'linearly with S while
- the Pomeranchuk poteﬁtial is independent of s . (b) In the lover
ﬁalf of the strip, where s < sl/2 » the Pomeranchuk repulsion is
_entirely comparable in magnitude to the 'p attréctibn. |
The s-ihcreasing aépect of the. p potential meaﬁs fhat in

N/D dynémics.tﬁis component., acting:like a very'short-raﬂge attractive -
1_force, tends to dominafe thé denominator.functioh and thus to éontrdl
the existence and location of resonancgs ih the amplitude, On the
other hand, the width.of a resbnaﬁce (resonances are expected to.
“occur in the lower half of the strip) is propoftional to the pumeraﬁor
~ function at-€§e resonance energy--which is sénsitive to the value of

the potential in this low-energy region (the "long-range force"),
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Thus a drastic reduction of the potential in the resonance region should

lead to an important resonance narrowing effect.

It has already been remarked that with such a strong repulsion

one may not empioy the N/D device of replacing left=hand partialwwave

‘cuts by the cuts of the potential, It will be necessary to perform

at least a few steps of the Mandelstam iteration in order to achieve

a believable dynamical result. The results of such calculations will,

~ one hopes, be reported at s later-time.'

......
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V. CONCLUSION

The presence of Pomeranchuk repulsion in all two=-particle
" channels may explain why resonance widths. have so uniformly been
overestimated in non-Reggeized bootstrap calculations, At the-same

‘time, certain aspects of the qualitative estimates heretofore given

of the attractive forces essential to forming bound states and resonances.

are not invalidated by Reggeization. There remains a correlation with

the concept of particle exchange, and the sign (attraction or repulsion) -

geperally survives, We can uﬁderstand in this way the success of crude

bootstrap arguments that use crossing matrices and almost nothihg nore,

. The estimates given in this paper and in Referenée 1 indicate, however, .
that to achieve even sgmiquantitativé‘accufacy~in the dynamics it wiil’

be necessary to employ Regge potentials fogether with the Mandelstam

iteration or the equivalent thereto.
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